Tate-Shafarevich groups, regulators of elliptic curves and *L*-functions

Christophe Delaunay

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Let *E* be an elliptic curve defined \mathbb{Q} with conductor *N*:

 $E : y^2 = x^3 + Ax + B$

• Let L(E, s) be its *L*-function:

$$L(E,s) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

• Let $\varepsilon(E)$ be the root number:

$$\Lambda(E,s) := \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma\left(\frac{s}{2}\right) L(E,s) = \varepsilon(E) \Lambda(E,2-s)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• If *d* is a fundamental discriminant coprime with *N*, let E_d be the quadratic twist of *E* by *d*:

$$E_d : y^2 = x^3 + Ad^2x + Bd^3$$

• The *L*-function of E_d is given:

$$L(E_d, s) = \sum_{n \ge 1} \left(\frac{d}{n}\right) \frac{a_n}{n^s}$$

• The root number is $\varepsilon(E)\left(\frac{d}{-N}\right)$ and the conductor is Nd^2 .

 \rightsquigarrow How do the invariants of E_d behave as d is varying over a natural set of discriminants?

 \rightarrow The rank, r_d , of $E_d(\mathbb{Q})$.

 \rightarrow The Tate-Shafarevich group, III(E_d), of E_d/\mathbb{Q} .

 \rightarrow The regulator, $R(E_d)$, of $E_d(\mathbb{Q})$.

• We separate the even ($\varepsilon(E_d) = 1$) and the odd ($\varepsilon(E_d) = -1$) case.

• If *d* is a fundamental discriminant coprime with *N*, let E_d be the quadratic twist of *E* by *d*:

$$E_d : y^2 = x^3 + Ad^2x + Bd^3$$

• The *L*-function of E_d is given:

$$L(E_d, s) = \sum_{n \ge 1} \left(\frac{d}{n}\right) \frac{a_n}{n^s}$$

• The root number is $\varepsilon(E)\left(\frac{d}{-N}\right)$ and the conductor is Nd^2 .

 \rightsquigarrow How do the invariants of E_d behave as d is varying over a natural set of discriminants?

 \rightarrow The rank, r_d , of $E_d(\mathbb{Q})$.

 \rightarrow The Tate-Shafarevich group, $\coprod(E_d)$, of E_d/\mathbb{Q} .

 \rightarrow The regulator, $R(E_d)$, of $E_d(\mathbb{Q})$.

• We separate the even ($\varepsilon(E_d) = 1$) and the odd ($\varepsilon(E_d) = -1$) case.

• If *d* is a fundamental discriminant coprime with *N*, let E_d be the quadratic twist of *E* by *d*:

$$E_d : y^2 = x^3 + Ad^2x + Bd^3$$

• The *L*-function of E_d is given:

$$L(E_d, s) = \sum_{n \ge 1} \left(\frac{d}{n}\right) \frac{a_n}{n^s}$$

• The root number is $\varepsilon(E)\left(\frac{d}{-N}\right)$ and the conductor is Nd^2 .

 \rightsquigarrow How do the invariants of E_d behave as d is varying over a natural set of discriminants?

 \rightarrow The rank, r_d , of $E_d(\mathbb{Q})$.

 \rightarrow The Tate-Shafarevich group, $\coprod(E_d)$, of E_d/\mathbb{Q} .

 \rightarrow The regulator, $R(E_d)$, of $E_d(\mathbb{Q})$.

• We separate the even ($\varepsilon(E_d) = 1$) and the odd ($\varepsilon(E_d) = -1$) case.

• For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = -\varepsilon(E)$.

• Consider the family of elliptic curves $(E_d)_{d\in\mathcal{F}(\infty)}$ where:

 $\mathcal{F}(T) = \{ d < 0 \;, |d| \leq T \;, ext{fund. discr. such that } \left(rac{d}{p}
ight) = arepsilon_p \}$

 $\rightarrow \varepsilon(E_d) = +1;$

• Define $\operatorname{III}_{a}(E_{d})$ by:

$$L(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} \amalg_a(E_d)$$

So $III_a(E_d) = 0$ if $L(E_d, 1) = 0$ and $III_a(E_d) = |III(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

・ロット (雪) (日) (日) (日)

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = -\varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d \in \mathcal{F}(\infty)}$ where:

 $\mathcal{F}(T) = \{ d < 0 \ , |d| \le T \ , \text{fund. discr. such that} \ \left(\frac{d}{p} \right) = \varepsilon_p \}$

 $\rightarrow \varepsilon(E_d) = +1;$

• Define $\operatorname{III}_{a}(E_{d})$ by:

$$L(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} \amalg_a(E_d)$$

So $III_a(E_d) = 0$ if $L(E_d, 1) = 0$ and $III_a(E_d) = |III(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

(日) (日) (日) (日) (日) (日) (日)

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = -\varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d\in\mathcal{F}(\infty)}$ where:

 $\mathcal{F}(T) = \{ d < 0 \ , |d| \le T \ , \text{fund. discr. such that } \left(\frac{d}{p} \right) = \varepsilon_p \}$

 $\rightarrow \varepsilon(E_d) = +1;$

• Define $\operatorname{III}_{a}(E_{d})$ by:

$$L(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} \amalg_a(E_d)$$

So $III_a(E_d) = 0$ if $L(E_d, 1) = 0$ and $III_a(E_d) = |III(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

(日) (日) (日) (日) (日) (日) (日)

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = -\varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d \in \mathcal{F}(\infty)}$ where:

$$\mathcal{F}(T) = \{ d < 0 \ , |d| \le T \ , \text{fund. discr. such that } \left(rac{d}{p}
ight) = arepsilon_p \}$$

 $\rightarrow \varepsilon(E_d) = +1;$

• Define $\coprod_a(E_d)$ by:

$$L(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} \text{III}_a(E_d)$$

So $III_a(E_d) = 0$ if $L(E_d, 1) = 0$ and $III_a(E_d) = |III(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = -\varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d\in\mathcal{F}(\infty)}$ where:

$$\mathcal{F}(T) = \{ d < 0 \ , |d| \le T \ , \text{fund. discr. such that } \left(\frac{d}{p} \right) = \varepsilon_p \}$$

 $\rightarrow \varepsilon(E_d) = +1;$

• Define $\coprod_a(E_d)$ by:

$$L(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} \amalg_a(E_d)$$

So $\text{III}_a(E_d) = 0$ if $L(E_d, 1) = 0$ and $\text{III}_a(E_d) = |\text{III}(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conjecture (Keating-Snaith)

We have, as $T \to \infty$:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L(E_d, 1)^k \sim g_k(O^+) a_k(E) (\log T)^{k(k-1)/2}$$

- $g_k(O^+)$ is explicit and comes from RMT.
- $a_k(E)$ is an explicit arithmetic factor depending on the choice of ε_p .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• If $k \in \mathbb{N}$, other leading orders can be predicted (by the work of B. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith).

What are the consequences on $III_a(E_d)$?

Conjecture (Keating-Snaith)

We have, as $T \to \infty$:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L(E_d, 1)^k \sim g_k(O^+) a_k(E) (\log T)^{k(k-1)/2}$$

- $g_k(O^+)$ is explicit and comes from RMT.
- $a_k(E)$ is an explicit arithmetic factor depending on the choice of ε_p .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• If $k \in \mathbb{N}$, other leading orders can be predicted (by the work of B. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith).

What are the consequences on $III_a(E_d)$?

Conjecture (Keating-Snaith)

We have, as $T \to \infty$:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L(E_d, 1)^k \sim g_k(O^+) a_k(E) (\log T)^{k(k-1)/2}$$

- $g_k(O^+)$ is explicit and comes from RMT.
- $a_k(E)$ is an explicit arithmetic factor depending on the choice of ε_p .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• If $k \in \mathbb{N}$, other leading orders can be predicted (by the work of B. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith).

What are the consequences on $\coprod_a(E_d)$?

Proposition

For |d| large enough, we have:

$$L(E_d, 1) = 1^* \frac{\Omega}{\sqrt{|d|}} \left(\prod_{p|d} c_p(E_d) \right) \amalg_a(E_d)$$

- Ω depends on the choice ε_p .
- $1^* = 2$ if $8 \mid d$ and c_4 is even and $1^* = 1$ otherwise (we will forget it).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• By partial summation on $\sum_{d \in \mathcal{F}(T)} L(E_d, 1)^k$, we get: $\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} III_a(E_d)^k \prod_{p|d} c_p(E_d)^k \sim T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2}}$

Proposition

For |d| large enough, we have:

$$L(E_d, 1) = 1^* \frac{\Omega}{\sqrt{|d|}} \left(\prod_{p|d} c_p(E_d) \right) \text{III}_a(E_d)$$

• Ω depends on the choice ε_p .

- $1^* = 2$ if $8 \mid d$ and c_4 is even and $1^* = 1$ otherwise (we will forget it).
- By partial summation on $\sum_{d \in \mathcal{F}(T)} L(E_d, 1)^k$, we get:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} III_a(E_d)^k \prod_{p|d} c_p(E_d)^k \sim \frac{g_k(O^+)a_k(E)}{\Omega^k} \frac{2}{k+2} T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2}}$$

Proposition

For |d| large enough, we have:

$$L(E_d, 1) = 1^* \frac{\Omega}{\sqrt{|d|}} \left(\prod_{p|d} c_p(E_d) \right) \text{III}_a(E_d)$$

- Ω depends on the choice ε_p .
- $1^* = 2$ if $8 \mid d$ and c_4 is even and $1^* = 1$ otherwise (we will forget it).
- By partial summation on $\sum_{d \in \mathcal{F}(T)} L(E_d, 1)^k$, we get:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} III_a(E_d)^k \prod_{p|d} c_p(E_d)^k \sim \underbrace{\frac{g_k(O^+)a_k(E)}{\Omega^k} \frac{2}{k+2}}_{B_k} T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2}}$$

Average of $\prod_{p|d} c_p (E_d)^k$

• For all $p \mid d$, Tate's algorithm implies:

 $c_p(E_d) = 1 +$ the number of roots of $F = x^3 + Ax + B$ in \mathbb{F}_p

There are 3 cases:

• F(x) has 3 roots in $\mathbb{Q} \rightarrow c_p(E_d) = 4$.

• F(x) has 1 root in $\mathbb{Q} \longrightarrow c_p(E_d) = 1$ or 4 depending on some congruences classes of p.

• F(x) has no root in $\mathbb{Q}_{-} \rightsquigarrow c_p(E_d) = 1, 2$ or 4 with some density for each possibilities.

(日) (日) (日) (日) (日) (日) (日)

Average of $\prod_{p|d} c_p(E_d)^k$

• For all $p \mid d$, Tate's algorithm implies:

 $c_p(E_d) = 1 + \text{ the number of roots of } F = x^3 + Ax + B \text{ in } \mathbb{F}_p$

There are 3 cases:

- F(x) has 3 roots in $\mathbb{Q} \rightsquigarrow c_p(E_d) = 4$.
- F(x) has 1 root in $\mathbb{Q} \longrightarrow c_p(E_d) = 1$ or 4 depending on some congruences classes of p.

• F(x) has no root in $\mathbb{Q} \rightarrow c_p(E_d) = 1$, 2 or 4 with some density for each possibilities.

Average of $\prod_{p|d} c_p (E_d)^k$

In the first cases, we are led to estimate sums of the form:

$$= (T) = \sum_{\substack{n < T \\ n \text{ squarefree} \\ n \equiv a \mod N}} \left(\prod_{j \in (\mathbb{Z}/N\mathbb{Z})^{\times}} t_j^{|\{p|n \ , \ p \equiv j \mod N\}|} \right)$$

where the $(t_j)_j$ are non-negative numbers.

Theorem

$*(T) \sim \operatorname{Cst} T \log(T)^{t-1}$

where $t = rac{1}{arphi(N)} \sum\limits_{j \in (\mathbb{Z}/N\mathbb{Z})^{ imes}} t_j$ is the average of the t_j and:

Cst =
$$\frac{1}{\varphi(N)\Gamma(t)} \prod_{p|N} (1 - 1/p)^t \prod_{j=p \equiv j \mod N} (1 + t_j/p)(1 - 1/p)^{t_j}$$

Average of $\prod_{p|d} c_p(E_d)^k$

In the first cases, we are led to estimate sums of the form:

$$*(T) = \sum_{\substack{n < T \\ n \text{ squarefree} \\ n \equiv a \mod N}} \left(\prod_{j \in (\mathbb{Z}/N\mathbb{Z})^{\times}} t_j^{|\{p|n, p \equiv j \mod N\}|} \right)$$

where the $(t_j)_j$ are non-negative numbers.

Theorem

$$*(T) \sim \operatorname{Cst} T \log(T)^{t-1}$$

where $t = \frac{1}{\varphi(N)} \sum_{j \in (\mathbb{Z}/N\mathbb{Z})^{\times}} t_j$ is the average of the t_j and:

Cst =
$$\frac{1}{\varphi(N)\Gamma(t)} \prod_{p|N} (1 - 1/p)^t \prod_j \prod_{p \equiv j \mod N} (1 + t_j/p)(1 - 1/p)^{t_j}$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

• Finally, we are led to make the following conjecture:

Conjecture

There exists $C_k > 0$ such that:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} \operatorname{III}_{a}(E_{d})^{k} \sim C_{k} T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2} + \operatorname{tam}_{k}}$$

Let *L* be the field of decomposition of $x^3 + Ax + B$ over \mathbb{Q} . If $[L : \mathbb{Q}] = 1$ then $\tan_k = 4^{-k} - 1$. If $[L : \mathbb{Q}] = 2$ then $\tan_k = \frac{1}{2}(2^{-k} + 4^{-k}) - 1$. If $[L : \mathbb{Q}] = 3$ then $\tan_k = \frac{4^{-k}}{3} + \frac{2}{3} - 1$. If $[L : \mathbb{Q}] = 6$ then $\tan_k = \frac{4^{-k}}{6} + \frac{2^{-k}}{2} + \frac{1}{3} - 1$.

• Finally, we are led to make the following conjecture:

Conjecture

There exists $C_k > 0$ such that:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} \operatorname{III}_{a}(E_{d})^{k} \sim C_{k} T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2} + \operatorname{tam}_{k}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *L* be the field of decomposition of $x^3 + Ax + B$ over \mathbb{Q} .

If
$$[L:\mathbb{Q}] = 1$$
 then $\tan_k = 4^{-k} - 1$.
If $[L:\mathbb{Q}] = 2$ then $\tan_k = \frac{1}{2}(2^{-k} + 4^{-k}) - 1$.
If $[L:\mathbb{Q}] = 3$ then $\tan_k = \frac{4^{-k}}{3} + \frac{2}{3} - 1$.
If $[L:\mathbb{Q}] = 6$ then $\tan_k = \frac{4^{-k}}{6} + \frac{2^{-k}}{2} + \frac{1}{3} - 1$.

Numerical Check

• Need to compute $L(E_d, 1)$, then:

$$III_a(E_d) = \frac{L(E_d, 1)}{\Omega\sqrt{|d|}} \prod_{p|d} \frac{1}{c_p(E_d)}$$

Theorem (Kohnen)

 $L(E_d, 1) = (*) b(|d|)^2$, where

 $\sum b(|d|)q^{|d|}$ is a weight 3/2 modular form

• Example:

$$E = 32a2 : y^2 = x^3 - x$$

The conjecture is:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} \prod_{d \in \mathcal{F}(T)} \prod_{d \in \mathcal{F}(T)} C_d (E_d)^k \sim C_k T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2} + 4^{-k} - 1}$$

◆□ > ◆□ > ◆注 > ◆注 > ─ 注 ─

Numerical Check

• Need to compute $L(E_d, 1)$, then:

$$\amalg_a(E_d) = \frac{L(E_d, 1)}{\Omega\sqrt{|d|}} \prod_{p|d} \frac{1}{c_p(E_d)}$$

Theorem (Kohnen)

 $L(E_d, 1) = (*) \ b(|d|)^2$, where

 $\sum b(|d|)q^{|d|}$ is a weight 3/2 modular form

• Example:

$$E = 32a2 : y^2 = x^3 - x$$

The conjecture is:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} \amalg_{a} (E_{d})^{k} \sim C_{k} T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2} + 4^{-k} - 1}$$

Numerical Check

• Need to compute $L(E_d, 1)$, then:

$$\amalg_a(E_d) = \frac{L(E_d, 1)}{\Omega\sqrt{|d|}} \prod_{p|d} \frac{1}{c_p(E_d)}$$

Theorem (Kohnen)

 $L(E_d, 1) = (*) \ b(|d|)^2$, where

 $\sum b(|d|)q^{|d|}$ is a weight 3/2 modular form

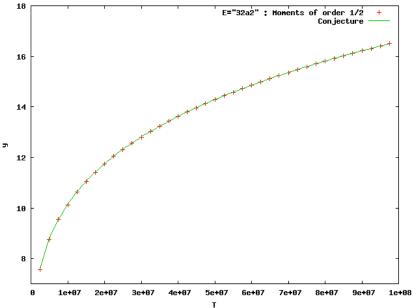
• Example:

$$E = 32a2 : y^2 = x^3 - x$$

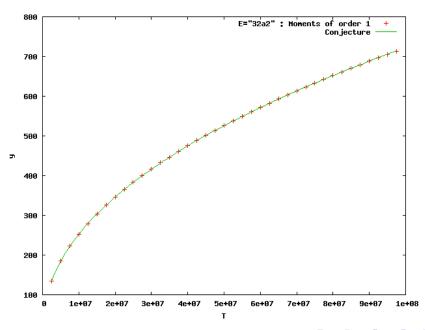
The conjecture is:

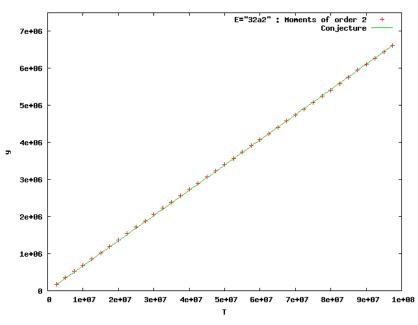
$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} \mathrm{III}_{a} (E_{d})^{k} \sim C_{k} T^{\frac{k}{2}} (\log T)^{\frac{k(k-1)}{2} + 4^{-k} - 1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●



・ロト ・聞ト ・ヨト ・ヨト æ





 $|\{d \in \mathcal{F}(T) , r(E_d) = 0\}|$ or $|\{d \in \mathcal{F}(T) , r(E_d) \ge 2\}|$

$$\begin{split} & \text{No extra-rank} \\ & |\{d \in \mathcal{F}(T), \ L(E_d, 1) \neq 0\}| \gg T^{1-\varepsilon} \quad (\text{Ono-Skinner}) \\ & \gg T \quad \text{for some } E \text{ (several authors)} \\ & \sim |\mathcal{F}(T)| \quad \text{conjecturally (Goldfeld - BSD)} \end{split}$$
 $\begin{aligned} & \text{Extra-rank} \\ & |\{d \in \mathcal{F}(T), \ r_d \geq 2\}| \gg T^{1/2-\varepsilon} \quad \text{under BSD (Gouvêa-Mazur)} \\ & \gg T^{3/4-\varepsilon} \quad \text{conjecturally (C.K.B.S.)} \end{split}$

Conjecture (Conrey, Keating, Rubinstein and Snaith)

There exist $C_E > 0$ and $b_E \in \mathbb{R}$ such that :

 $\frac{|\{d \in \mathcal{F}(T), r_d \ge 2\}|}{|\mathcal{F}(T)|} \sim C_E \ T^{-1/4} \ (\log T)^{b_E}$

 \rightsquigarrow We will discuss about b_E .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $|\{d \in \mathcal{F}(T), r(E_d) = 0\}|$ or $|\{d \in \mathcal{F}(T), r(E_d) \ge 2\}|$

No extra-rank

$$\begin{split} |\{d \in \mathcal{F}(T), \ L(E_d, 1) \neq 0\}| \gg & T^{1-\varepsilon} \quad \text{(Ono-Skinner)} \\ \gg & T \quad \text{for some } E \text{ (several authors)} \\ &\sim & |\mathcal{F}(T)| \quad \text{conjecturally (Goldfeld - BSD)} \end{split}$$

Extra-rank $|\{d \in \mathcal{F}(T), r_d \ge 2\}| \gg T^{1/2-\varepsilon}$ under BSD (Gouvêa-Mazur) $\gg T^{3/4-\varepsilon}$ conjecturally (C.K.R.S.)

Conjecture (Conrey, Keating, Rubinstein and Snaith)

There exist $C_E>0$ and $b_E\in\mathbb{R}$ such that :

 $\frac{|\{d \in \mathcal{F}(T), r_d \ge 2\}|}{|\mathcal{F}(T)|} \sim C_E \ T^{-1/4} \ (\log T)^{b_E}$

 \rightsquigarrow We will discuss about b_E .

▲ロト▲圖ト▲目ト▲目ト 目 のへで

 $|\{d \in \mathcal{F}(T), r(E_d) = 0\}|$ or $|\{d \in \mathcal{F}(T), r(E_d) \ge 2\}|$

No extra-rank

$$\begin{split} |\{d \in \mathcal{F}(T), \ L(E_d, 1) \neq 0\}| \gg & T^{1-\varepsilon} & (\text{Ono-Skinner}) \\ \gg & T & \text{for some } E \text{ (several authors)} \\ &\sim & |\mathcal{F}(T)| & \text{conjecturally (Goldfeld - BSD)} \end{split}$$

Extra-rank

$$\begin{split} |\{d \in \mathcal{F}(T), \ r_d \geq 2\}| \gg \quad T^{1/2-\varepsilon} \quad \text{under BSD (Gouvêa-Mazur)} \\ \gg \quad T^{3/4-\varepsilon} \quad \text{conjecturally (C.K.R.S.)} \end{split}$$

Conjecture (Conrey, Keating, Rubinstein and Snaith)

There exist $C_E>0$ and $b_E\in\mathbb{R}$ such that :

 $\frac{|\{d \in \mathcal{F}(T), r_d \ge 2\}|}{|\mathcal{F}(T)|} \sim C_E \ T^{-1/4} \ (\log T)^{b_E}$

 \rightsquigarrow We will discuss about b_E .

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

 $|\{d \in \mathcal{F}(T), r(E_d) = 0\}|$ or $|\{d \in \mathcal{F}(T), r(E_d) \ge 2\}|$

No extra-rank

$$\begin{split} |\{d \in \mathcal{F}(T), \ L(E_d, 1) \neq 0\}| \gg & T^{1-\epsilon} & (\text{Ono-Skinner}) \\ \gg & T & \text{for some } E \text{ (several authors)} \\ &\sim & |\mathcal{F}(T)| & \text{conjecturally (Goldfeld - BSD)} \end{split}$$

Extra-rank

$$\begin{split} |\{d \in \mathcal{F}(T), \ r_d \geq 2\}| \gg & T^{1/2-\varepsilon} \quad \text{under BSD (Gouvêa-Mazur)} \\ \gg & T^{3/4-\varepsilon} \quad \text{conjecturally (C.K.R.S.)} \end{split}$$

Conjecture (Conrey, Keating, Rubinstein and Snaith)

There exist $C_E > 0$ and $b_E \in \mathbb{R}$ such that :

$$\frac{|\{d \in \mathcal{F}(T), r_d \ge 2\}|}{|\mathcal{F}(T)|} \sim C_E \ T^{-1/4} \ (\log T)^{b_E}$$

 $|\{d \in \mathcal{F}(T), r(E_d) = 0\}|$ or $|\{d \in \mathcal{F}(T), r(E_d) \ge 2\}|$

No extra-rank

$$\begin{split} |\{d \in \mathcal{F}(T), \ L(E_d, 1) \neq 0\}| \gg & T^{1-\varepsilon} & (\text{Ono-Skinner}) \\ \gg & T & \text{for some } E \text{ (several authors)} \\ &\sim & |\mathcal{F}(T)| & \text{conjecturally (Goldfeld - BSD)} \end{split}$$

Extra-rank

$$\begin{split} |\{d \in \mathcal{F}(T), \ r_d \geq 2\}| \gg & T^{1/2-\varepsilon} \quad \text{under BSD (Gouvêa-Mazur)} \\ \gg & T^{3/4-\varepsilon} \quad \text{conjecturally (C.K.R.S.)} \end{split}$$

Conjecture (Conrey, Keating, Rubinstein and Snaith)

There exist $C_E > 0$ and $b_E \in \mathbb{R}$ such that :

$$\frac{|\{d \in \mathcal{F}(T), r_d \ge 2\}|}{|\mathcal{F}(T)|} \sim C_E \ T^{-1/4} \ (\log T)^{b_E}$$

 \rightsquigarrow We will discuss about b_E .

• RMT model: $\operatorname{prob}(L(E_d, 1) < x) \approx \sqrt{x} (\log |d|)^{3/8}$ (as $x \to 0$).

• The discretisation model: $III_a(E_d) < 1 \Leftrightarrow L(E_d, 1) = 0.$

We predict:

 $\operatorname{prob}\left(L(E_d, 1) = 0\right) = \operatorname{prob}\left(L(E_d, 1) < \frac{\Omega}{\sqrt{|d|}} \prod c_p(E_d)\right)$

- RMT model: $\operatorname{prob}(L(E_d, 1) < x) \approx \sqrt{x} (\log |d|)^{3/8}$ (as $x \to 0$).
- The discretisation model: $III_a(E_d) < 1 \Leftrightarrow L(E_d, 1) = 0.$

We predict: $\operatorname{prob}\left(L(E_d,1)=0\right) = \operatorname{prob}\left(L(E_d,1) < \frac{\Omega}{\sqrt{|d|}}\prod_{p|d}c_p(E_d)\right)$

(ロ) (同) (三) (三) (三) (○) (○)

- RMT model: $\operatorname{prob}(L(E_d, 1) < x) \approx \sqrt{x} (\log |d|)^{3/8}$ (as $x \to 0$).
- The discretisation model: $\operatorname{III}_a(E_d) < 1 \Leftrightarrow L(E_d, 1) = 0.$

We predict:

predict:
prob
$$(L(E_d, 1) = 0)$$
 = prob $\left(L(E_d, 1) < \frac{\Omega}{\sqrt{|d|}} \prod_{p|d} c_p(E_d) \right)$

We get:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{1}{T} \sum_{d \in \mathcal{F}(T)} \frac{\log(|d|)^{3/8}}{|d|^{1/4}} \prod_{p|d} \sqrt{c_p(E_d)}$$

So, by partial summation:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{(\log T)^{3/8}}{T^{1/4}} \left(\frac{1}{T} \sum_{d \in \mathcal{F}(T)} \prod_{p \mid d} \sqrt{c_p(E_d)}\right)$$

- RMT model: $\operatorname{prob}(L(E_d, 1) < x) \approx \sqrt{x} (\log |d|)^{3/8}$ (as $x \to 0$).
- The discretisation model: $\operatorname{III}_a(E_d) < 1 \Leftrightarrow L(E_d, 1) = 0.$

We predict:

predict:

$$prob\left(L(E_d, 1) = 0\right) = prob\left(L(E_d, 1) < \frac{\Omega}{\sqrt{|d|}} \prod_{p|d} c_p(E_d)\right)$$

$$\approx \frac{\log(|d|)^{3/8}}{|d|^{1/4}} \sqrt{\prod_{p|d} c_p(E_d)}$$

We get:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{1}{T} \sum_{d \in \mathcal{F}(T)} \frac{\log(|d|)^{3/8}}{|d|^{1/4}} \prod_{p \mid d} \sqrt{c_p(E_d)}$$

So, by partial summation:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{(\log T)^{3/8}}{T^{1/4}} \left(\frac{1}{T} \sum_{d \in \mathcal{F}(T)} \prod_{p \mid d} \sqrt{c_p(E_d)}\right)$$

- RMT model: $\operatorname{prob}(L(E_d, 1) < x) \approx \sqrt{x} (\log |d|)^{3/8}$ (as $x \to 0$).
- The discretisation model: $\operatorname{III}_a(E_d) < 1 \Leftrightarrow L(E_d, 1) = 0.$

We predict:

predict:

$$\operatorname{prob}\left(L(E_d, 1) = 0\right) = \operatorname{prob}\left(L(E_d, 1) < \frac{\Omega}{\sqrt{|d|}} \prod_{p|d} c_p(E_d)\right)$$

$$\approx \frac{\log(|d|)^{3/8}}{|d|^{1/4}} \sqrt{\prod_{p|d} c_p(E_d)}$$

We get:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{1}{T} \sum_{d \in \mathcal{F}(T)} \frac{\log(|d|)^{3/8}}{|d|^{1/4}} \prod_{p|d} \sqrt{c_p(E_d)}$$

So, by partial summation:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{(\log T)^{3/8}}{T^{1/4}} \left(\frac{1}{T} \sum_{d \in \mathcal{F}(T)} \prod_{p \mid d} \sqrt{c_p(E_d)}\right)$$

- RMT model: $\operatorname{prob}(L(E_d, 1) < x) \approx \sqrt{x} (\log |d|)^{3/8}$ (as $x \to 0$).
- The discretisation model: $\operatorname{III}_{a}(E_{d}) < 1 \Leftrightarrow L(E_{d}, 1) = 0.$

We predict:

predict:

$$\operatorname{prob}\left(L(E_d, 1) = 0\right) = \operatorname{prob}\left(L(E_d, 1) < \frac{\Omega}{\sqrt{|d|}} \prod_{p|d} c_p(E_d)\right)$$

$$\approx \frac{\log(|d|)^{3/8}}{|d|^{1/4}} \sqrt{\prod_{p|d} c_p(E_d)}$$

`

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We get:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{1}{T} \sum_{d \in \mathcal{F}(T)} \frac{\log(|d|)^{3/8}}{|d|^{1/4}} \prod_{p|d} \sqrt{c_p(E_d)}$$

So, by partial summation:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \approx \frac{(\log T)^{3/8}}{T^{1/4}} \left(\frac{1}{T} \sum_{d \in \mathcal{F}(T)} \prod_{p \mid d} \sqrt{c_p(E_d)}\right)$$

CKRS Conjecture

$$E : y^2 = F(x)$$

Assume that E is a curve having maximal rational 2 torsion sub-group in its isogeny class.

where:

• $b_E = 3/8 + 1$ if F(x) has 3 roots in \mathbb{Q} .

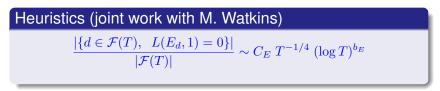
• $b_E = 3/8 + \sqrt{2}/2$ if F(x) has 1 root in Q.

• $b_E = 3/8 + 1/3$ or $3/8 + \sqrt{2}/2 - 1/3$ otherwise.

CKRS Conjecture

$$E : y^2 = F(x)$$

Assume that E is a curve having maximal rational 2 torsion sub-group in its isogeny class.



where:

- $b_E = 3/8 + 1$ if F(x) has 3 roots in \mathbb{Q} .
- $b_E = 3/8 + \sqrt{2}/2$ if F(x) has 1 root in \mathbb{Q} .
- $b_E = 3/8 + 1/3$ or $3/8 + \sqrt{2}/2 1/3$ otherwise.

Example

$$E = 32a2 : y = x^3 - x$$

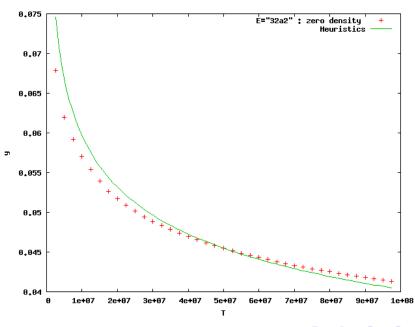
The heuristic predicts that:

$$\frac{|\{d \in \mathcal{F}(T), \ L(E_d, 1) = 0\}|}{|\mathcal{F}(T)|} \sim C_E \ T^{-1/4} \ (\log T)^{3/8+1}$$

- Compare the numerical data $(T = 10^8)$ and the heuristic.
- Problem: we are not able to predict the constant C_E .

We adjust the constant C_E such that the numerical data and the heuristic agree for $T = 5 \times 10^7$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>



• In the discretisation process, it is implicitly assumed that the arithmetic of $\mathrm{III}(E_d)$ does not give any contribution to the powers of log.

But it could! As it is the case if we do not consider the good curve it its isogeny class.

• In fact, $\operatorname{III}(E_d)$ is believed to have no influence on the powers of \log but it takes a long time for the 2-part of $\operatorname{III}(E_d)$ before it behaves as expected.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• In the discretisation process, it is implicitly assumed that the arithmetic of $\mathrm{III}(E_d)$ does not give any contribution to the powers of log.

But it could! As it is the case if we do not consider the good curve it its isogeny class.

• In fact, $III(E_d)$ is believed to have no influence on the powers of \log but it takes a long time for the 2-part of $III(E_d)$ before it behaves as expected.

(日) (日) (日) (日) (日) (日) (日)

• In the discretisation process, it is implicitly assumed that the arithmetic of $\mathrm{III}(E_d)$ does not give any contribution to the powers of log.

But it could! As it is the case if we do not consider the good curve it its isogeny class.

• In fact, $\operatorname{III}(E_d)$ is believed to have no influence on the powers of log but it takes a long time for the 2-part of $\operatorname{III}(E_d)$ before it behaves as expected.

(ロ) (同) (三) (三) (三) (○) (○)

$$f(p) = 1 - \prod_{j \ge 1} (1 - p^{1-2j}) = \frac{1}{p} + \frac{1}{p^3} + \cdots$$

A theorem of Heath-Brown (and the BSD and Goldfeld conjecture) implies that the correct red value for $T = \infty$ is given by the predictions.

But, the *d*'s need to have a lot of prime factor for this to happen. Hence, the discriminants must be very large!!

Example: We only consider d such that $\omega(d) \ge 5$ for 32.42.

$$f(p) = 1 - \prod_{j \ge 1} (1 - p^{1-2j}) = \frac{1}{p} + \frac{1}{p^3} + \cdots$$

p	32a2	predictions
2	0.4357	0.5805
3	0.3579	0.3609
5	0.2076	0.2066
7	0.1483	0.1454
Jum	erical val	ues for $T = 10^8$

A theorem of Heath-Brown (and the BSD and Goldfeld conjecture) implies that the correct red value for $T = \infty$ is given by the predictions.

But, the *d*'s need to have a lot of prime factor for this to happen. Hence, the discriminants must be very large!!

Example: We only consider d such that $\omega(d) \ge 5$ for 32.42.

$$f(p) = 1 - \prod_{j \ge 1} (1 - p^{1-2j}) = \frac{1}{p} + \frac{1}{p^3} + \cdots$$

p	32a2	predictions
2	0.4357	0.5805
3	0.3579	0.3609
5	0.2076	0.2066
7	0.1483	0.1454
$ \dots - n = n \dots - n \dots - n \dots - n \dots - 1 $		

Numerical values for $T = 10^8$

A theorem of Heath-Brown (and the BSD and Goldfeld conjecture) implies that the correct red value for $T = \infty$ is given by the predictions.

But, the *d*'s need to have a lot of prime factor for this to happen. Hence, the discriminants must be very large!!

Example: We only consider *d* such that $\omega(d) \ge 5$ for 32A2.

$$f(p) = 1 - \prod_{j \ge 1} (1 - p^{1-2j}) = \frac{1}{p} + \frac{1}{p^3} + \cdots$$

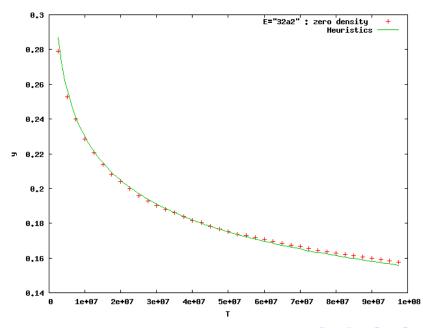
p	32a2	predictions	
2	0.4357	0.5805	
3	0.3579	0.3609	
5	0.2076	0.2066	
7	0.1483	0.1454	
$ \dots - n - n \dots - $			

Numerical values for $T = 10^8$

A theorem of Heath-Brown (and the BSD and Goldfeld conjecture) implies that the correct red value for $T = \infty$ is given by the predictions.

But, the *d*'s need to have a lot of prime factor for this to happen. Hence, the discriminants must be very large!!

Example: We only consider d such that $\omega(d) \ge 5$ for 32A2.



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• We can also compare the heuristic with the odd part of $III_a(E_d)$.

Indeed, the same arguments works if we count:

 $\frac{|\{d \in \mathcal{F}(T), \ \Pi III_a(E_d) \text{ is odd and } \Pi III(E_d)_a \leq 1\}|}{|\{d \in \mathcal{F}(T), \ \Pi IIa(E_d) \text{ is odd}\}|}$

Question: Have we

 $\frac{|\{d \in \mathcal{F}(T), \ \Pi I_a(E_d) = 1\}|}{|\{d \in \mathcal{F}(T), \ \Pi I_a(E_d) \text{ is odd}\}|} \approx T^{-1/4} \ (\log T)^{3/8+1} ?$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example: E = 32a2

- We can also compare the heuristic with the odd part of $III_a(E_d)$.
- Indeed, the same arguments works if we count:

 $\frac{|\{d \in \mathcal{F}(T), \ \operatorname{III}_a(E_d) \text{ is odd and } \operatorname{III}(E_d)_a \leq 1\}|}{|\{d \in \mathcal{F}(T), \ \operatorname{III}_a(E_d) \text{ is odd}\}|}$

Question: Have we

 $\frac{|\{d \in \mathcal{F}(T), \ \Pi I_a(E_d) = 1\}|}{|\{d \in \mathcal{F}(T), \ \Pi I_a(E_d) \text{ is odd}\}|} \approx T^{-1/4} \ (\log T)^{3/8+1} ?$

Example: $E = 32a^2$

- We can also compare the heuristic with the odd part of $III_a(E_d)$.
- Indeed, the same arguments works if we count:

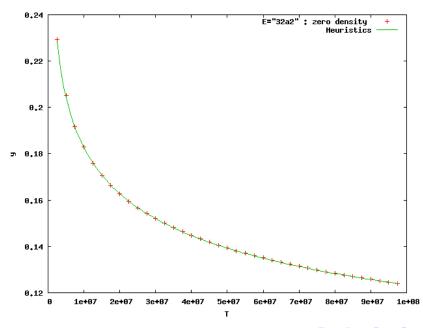
 $\frac{|\{d \in \mathcal{F}(T), \ \operatorname{III}_a(E_d) \text{ is odd and } \operatorname{III}(E_d)_a \leq 1\}|}{|\{d \in \mathcal{F}(T), \ \operatorname{III}_a(E_d) \text{ is odd}\}|}$

Question: Have we

$$\frac{|\{d \in \mathcal{F}(T), \ \text{III}_a(E_d) = 1\}|}{|\{d \in \mathcal{F}(T), \ \text{III}_a(E_d) \text{ is odd}\}|} \approx T^{-1/4} \ (\log T)^{3/8+1} ?$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example: E = 32a2



▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

• For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = \varepsilon(E)$.

• Consider the family of elliptic curves $(E_d)_{d\in\mathcal{F}(\infty)}$ where:

 $\mathcal{F}(T) = \{ d < 0 \;, |d| \leq T \;, ext{fund. discr. such that } \left(rac{d}{p}
ight) = arepsilon_p \}$

- $\rightarrow \varepsilon(E_d) = -1;$
- Define $\operatorname{III}_{a}(E_{d})$ by:

$$L'(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} R(E_d) \amalg_a(E_d)$$

where $R(E_d)$ is the regulator of E_d .

So $III_a(E_d) = 0$ if $L'(E_d, 1) = 0$ and $III_a(E_d) = |III(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = \varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d \in \mathcal{F}(\infty)}$ where:

$$\mathcal{F}(T) = \{ d < 0 \;, |d| \leq T \;, ext{fund. discr. such that} \;\; \left(rac{d}{p}
ight) = arepsilon_p \}$$

$$\rightarrow \varepsilon(E_d) = -1;$$

• Define $\operatorname{III}_a(E_d)$ by:

$$L'(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} R(E_d) \amalg_a(E_d)$$

where $R(E_d)$ is the regulator of E_d .

So $III_a(E_d) = 0$ if $L'(E_d, 1) = 0$ and $III_a(E_d) = |III(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

(日) (日) (日) (日) (日) (日) (日)

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = \varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d \in \mathcal{F}(\infty)}$ where:

$$\mathcal{F}(T) = \{ d < 0 \ , |d| \leq T \ , ext{fund. discr. such that} \ \left(rac{d}{p}
ight) = arepsilon_p \}$$

 $\rightarrow \varepsilon(E_d) = -1;$

• Define $\operatorname{III}_a(E_d)$ by:

$$L'(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} R(E_d) \amalg_a(E_d)$$

where $R(E_d)$ is the regulator of E_d .

So $III_a(E_d) = 0$ if $L'(E_d, 1) = 0$ and $III_a(E_d) = |III(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

(日) (日) (日) (日) (日) (日) (日)

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = \varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d \in \mathcal{F}(\infty)}$ where:

 $\mathcal{F}(T) = \{ d < 0 \ , |d| \leq T \ ,$ fund. discr. such that $\left(rac{d}{p}
ight) = \varepsilon_p \}$

 $\rightarrow \varepsilon(E_d) = -1;$

• Define $\coprod_a(E_d)$ by:

$$L'(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} R(E_d) \amalg_a(E_d)$$

where $R(E_d)$ is the regulator of E_d .

So $\operatorname{III}_a(E_d) = 0$ if $L'(E_d, 1) = 0$ and $\operatorname{III}_a(E_d) = |\operatorname{III}(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

A D F A 同 F A E F A E F A Q A

- For all $p \mid N$, fix a sign $\varepsilon_p = \pm 1$ such that: $\prod_{p \mid N} \varepsilon_p = \varepsilon(E)$.
- Consider the family of elliptic curves $(E_d)_{d \in \mathcal{F}(\infty)}$ where:

 $\mathcal{F}(T) = \{ d < 0 \ , |d| \leq T \ ,$ fund. discr. such that $\left(rac{d}{p}
ight) = \varepsilon_p \}$

 $\rightarrow \varepsilon(E_d) = -1;$

• Define $\coprod_a(E_d)$ by:

$$L'(E_d, 1) = \frac{\Omega(E_d) \prod_{p \mid Nd^2} c_p(E_d)}{|E_d(\mathbb{Q})_{\text{tors}}|^2} R(E_d) \amalg_a(E_d)$$

where $R(E_d)$ is the regulator of E_d .

So $\operatorname{III}_a(E_d) = 0$ if $L'(E_d, 1) = 0$ and $\operatorname{III}_a(E_d) = |\operatorname{III}(E_d)|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

Conjecture (N. Snaith)

We have, as $T \to \infty$:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L'(E_d, 1)^k \sim A_k (\log T)^{k(k+1)/2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• A_k comes from RMT and an arithmetic factor.

What are the consequences on $R(E_d)$?

Proposition

For |d| large enough, we have:

$$L'(E_d, 1) = 1^* \frac{\Omega}{\sqrt{|d|}} \left(\prod_{p|d} c_p(E_d) \right) \operatorname{III}_a(E_d) R(E_d)$$

• Ω depends on the choice ε_p .

• $1^* = 2$ if $8 \mid d$ and c_4 is even and $1^* = 1$ otherwise.

• By partial summation on $\sum_{d\in \mathcal{F}(T)} L'(E_d,1)^k$, we get:

 $\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} R(E_d)^k \coprod_a (E_d)^k \prod_{p \mid d} c_p (E_d)^k \sim B_k |T^{k/2} (\log T)^{\frac{k(k+1)}{2}}$

for some B_k .

Proposition

For |d| large enough, we have:

$$L'(E_d, 1) = 1^* \frac{\Omega}{\sqrt{|d|}} \left(\prod_{p|d} c_p(E_d) \right) \operatorname{III}_a(E_d) R(E_d)$$

• Ω depends on the choice ε_p .

- $1^* = 2$ if $8 \mid d$ and c_4 is even and $1^* = 1$ otherwise.
- By partial summation on $\sum_{d \in \mathcal{F}(T)} L'(E_d, 1)^k$, we get:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} R(E_d)^k \operatorname{III}_a(E_d)^k \prod_{p|d} c_p(E_d)^k \sim B_k T^{k/2} (\log T)^{\frac{k(k+1)}{2}}$$

(ロ) (同) (三) (三) (三) (○) (○)

for some B_k .

Average of $\coprod_a (E_d)^k$

• Heuristics on $\coprod \rightsquigarrow$ If 0 < k < 1 then:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} |\mathrm{III}_a(E_d)|^k \to \mathrm{Cst}(k)$$

Hence:

Heuristics (joint work with X.-F. Roblot) For 0 < k < 1: $M_k(T) = \frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} R(E_d)^k \sim A_k \ T^{\frac{k}{2}} \left(\log T\right)^{\frac{k(k+1)}{2} + \tan k}$

Let $F(x) = x^3 + Ax + B$. • $\tan_k = 4^{-k} - 1$ if F(x) has 3 roots in Q. • $\tan_k = \frac{1}{2}(2^{-k} + 4^{-k}) - 1$ if F(x) has 1 root in Q. • $\tan_k = \frac{4^{-k}}{3} + \frac{2}{3} - 1$ or $\tan_k = \frac{4^{-k}}{6} + \frac{2^{-k}}{2} + \frac{1}{3} - 1$ otherwise.

Average of $\coprod_a (E_d)^k$

• Heuristics on $\coprod \rightsquigarrow$ If 0 < k < 1 then:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} |\mathrm{III}_a(E_d)|^k \to \mathrm{Cst}(k)$$

Hence:

Heuristics (joint work with X.-F. Roblot)

For 0 < k < 1:

$$M_k(T) = \frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} R(E_d)^k \sim A_k \ T^{\frac{k}{2}} \ (\log T)^{\frac{k(k+1)}{2} + \tan_k}$$

Let $F(x) = x^3 + Ax + B$.

• $\tan_k = 4^{-k} - 1$ if F(x) has 3 roots in \mathbb{Q} .

• $\tan_k = \frac{1}{2}(2^{-k} + 4^{-k}) - 1$ if F(x) has 1 root in \mathbb{Q} .

• $\tan_k = \frac{4^{-k}}{3} + \frac{2}{3} - 1$ or $\tan_k = \frac{4^{-k}}{6} + \frac{2^{-k}}{2} + \frac{1}{3} - 1$ otherwise. $(\Box) \cdot (\overline{a}) \cdot ($

Average of $\coprod_a (E_d)^k$

• Heuristics on $\coprod \rightsquigarrow$ If 0 < k < 1 then:

$$\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} |\mathrm{III}_a(E_d)|^k \to \mathrm{Cst}(k)$$

Hence:

Heuristics (joint work with X.-F. Roblot)

For 0 < k < 1:

$$M_k(T) = \frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} R(E_d)^k \sim A_k \ T^{\frac{k}{2}} \ (\log T)^{\frac{k(k+1)}{2} + \tan_k}$$

Let $F(x) = x^3 + Ax + B$.

•
$$\tan_{\mathbf{k}} = 4^{-k} - 1$$
 if $F(x)$ has 3 roots in \mathbb{Q} .

• $\tan_k = \frac{1}{2}(2^{-k} + 4^{-k}) - 1$ if F(x) has 1 root in \mathbb{Q} .

•
$$\tan_k = \frac{4^{-k}}{3} + \frac{2}{3} - 1$$
 or $\tan_k = \frac{4^{-k}}{6} + \frac{2^{-k}}{2} + \frac{1}{3} - 1$ otherwise.

Upper bounds

• Lindelöf \Rightarrow

 $R(E_d) \ll |d|^{1/2+\varepsilon}$

Proposition

N square-free, $\varepsilon_p = +1, \ \forall p | N, \ L(E, 1) \neq 0$ then

$$\frac{1}{T^*} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} R(E_d) \ll T^{1/2} \log T$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Lower bounds

Proposition

We have

$$R(E_d) > \frac{1}{3} \log |d| + O(1)$$

If $j(E) \neq 0,1728$ and $w_p = +1, \forall p \mid N$:

$$R(E_d) > \frac{1}{1296c(E)^2} \log |d|$$

Optimal: $E : y^2 = x^3 + Ax + B = F(x)$.

The point $(r,1) \in E_{F(r)}$ and $h \approx \log(F(r))$.

Example: E = 11a1.

Lower bounds

Proposition

We have

$$R(E_d) > \frac{1}{3} \log |d| + O(1)$$

If $j(E) \neq 0,1728$ and $w_p = +1, \forall p \mid N$:

$$R(E_d) > \frac{1}{1296c(E)^2} \log |d|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Optimal: $E : y^2 = x^3 + Ax + B = F(x)$.

The point $(r,1) \in E_{F(r)}$ and $h \approx \log(F(r))$.

Example: E = 11a1.

Lower bounds

Proposition

We have

$$R(E_d) > \frac{1}{3} \log |d| + O(1)$$

If $j(E) \neq 0,1728$ and $w_p = +1, \forall p \mid N$:

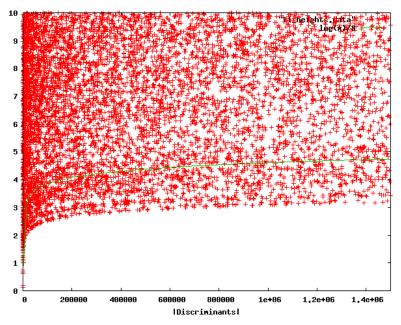
$$R(E_d) > \frac{1}{1296c(E)^2} \log |d|$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Optimal: $E : y^2 = x^3 + Ax + B = F(x)$.

The point $(r,1) \in E_{F(r)}$ and $h \approx \log(F(r))$.

Example: E = 11a1.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Numerical check

$$L'(E_d, 1) = \frac{\Omega}{\sqrt{|d|}} c(E_d) \ R(E_d) \ \operatorname{III}_a(E_d)$$

 \rightarrow If $L'(E_d, 1) \neq 0$ then:

$$E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion}$$
$$R(E_d) = 2h(G_d) \rightsquigarrow \text{find } G_d \in E_d(\mathbb{Q}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Efficient algorithm for computing G_d and $\operatorname{III}_a(E_d)$ at "the same time".

Numerical check

$$L'(E_d, 1) = \frac{\Omega}{\sqrt{|d|}} c(E_d) \ R(E_d) \ \operatorname{III}_a(E_d)$$

 \rightarrow If $L'(E_d, 1) \neq 0$ then:

$$E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion}$$
$$R(E_d) = 2h(G_d) \rightsquigarrow \text{find } G_d \in E_d(\mathbb{Q}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Efficient algorithm for computing G_d and $\coprod_a(E_d)$ at "the same time".

Example

• Finding G_d might be complicated:

E = 11a1 and d = -1482139 then (on the minimal model of E_d), the abscissa of G_d is a rational number such that the numerator and the denominator have ≈ 4320 digits.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

And we have : $h(E_d) \approx 9945$.

The numerator of the abscissa of G_d is:

The method

• We must have $L(E, 1) \neq 0$.

• We take $\varepsilon_p = +1$ for all $p \mid N$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Compute the class group Cl(d) of $\mathbb{Q}(\sqrt{d})$.

 \rightsquigarrow For each $[\mathfrak{a}] \in Cl(d)$, let $\tau_{|\mathfrak{a}|} \in X_0(N)$ the "Heegner point".

$$\rightsquigarrow$$
 Compute $P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$

where

 $\varphi \; : \; X_0(N) = \Gamma_0(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})$

is the modular parametrization of E.

• The point $P_d \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point. In order to recognize it, for each $[\mathfrak{a}] \in Cl(d)$ we have to evaluate a polynomial with $O(h(P_d))$ coefficients.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 \rightsquigarrow This requires $O(|Cl(d)|h(P_d)) = O(|d|^{1+\varepsilon})$ steps.

(in fact a simultaneous evaluation $\rightsquigarrow O(|d|^{1/2+\epsilon})$ steps.)

• Compute the class group Cl(d) of $\mathbb{Q}(\sqrt{d})$.

 \rightsquigarrow For each $[\mathfrak{a}] \in Cl(d)$, let $\tau_{[\mathfrak{a}]} \in X_0(N)$ the "Heegner point".

$$\rightsquigarrow$$
 Compute $P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$

where

 $\varphi : X_0(N) = \Gamma_0(N) \setminus \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})$

is the modular parametrization of E.

• The point $P_d \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point. In order to recognize it, for each $[\mathfrak{a}] \in Cl(d)$ we have to evaluate a polynomial with $O(h(P_d))$ coefficients.

 \rightsquigarrow This requires $O(|Cl(d)|h(P_d)) = O(|d|^{1+\varepsilon})$ steps.

(in fact a simultaneous evaluation $\rightsquigarrow O(|d|^{1/2+\epsilon})$ steps.)

• Compute the class group Cl(d) of $\mathbb{Q}(\sqrt{d})$.

 \rightsquigarrow For each $[\mathfrak{a}] \in Cl(d)$, let $\tau_{[\mathfrak{a}]} \in X_0(N)$ the "Heegner point".

$$\rightsquigarrow \text{Compute} \quad P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

where

$$\varphi \; : \; X_0(N) = \Gamma_0(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})$$

is the modular parametrization of E.

• The point $P_d \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point. In order to recognize it, for each $[\mathfrak{a}] \in Cl(d)$ we have to evaluate a polynomial with $O(h(P_d))$ coefficients.

(日) (日) (日) (日) (日) (日) (日)

 \rightsquigarrow This requires $O(|Cl(d)|h(P_d)) = O(|d|^{1+\varepsilon})$ steps.

(in fact a simultaneous evaluation $\rightsquigarrow O(|d|^{1/2+\epsilon})$ steps.)

• Compute the class group Cl(d) of $\mathbb{Q}(\sqrt{d})$.

 \rightsquigarrow For each $[\mathfrak{a}] \in Cl(d)$, let $\tau_{[\mathfrak{a}]} \in X_0(N)$ the "Heegner point".

$$\rightsquigarrow$$
 Compute $P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$

where

$$\varphi : X_0(N) = \Gamma_0(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})$$

is the modular parametrization of E.

• The point $P_d \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point.

In order to recognize it, for each $[\mathfrak{a}] \in Cl(d)$ we have to evaluate a polynomial with $O(h(P_d))$ coefficients.

 \rightsquigarrow This requires $O(|Cl(d)|h(P_d)) = O(|d|^{1+\epsilon})$ steps.

(in fact a simultaneous evaluation $\rightsquigarrow O(|d|^{1/2+arepsilon})$ steps.)

• Compute the class group Cl(d) of $\mathbb{Q}(\sqrt{d})$.

 \rightsquigarrow For each $[\mathfrak{a}] \in Cl(d)$, let $\tau_{[\mathfrak{a}]} \in X_0(N)$ the "Heegner point".

$$\rightsquigarrow$$
 Compute $P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$

where

$$\varphi : X_0(N) = \Gamma_0(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})$$

is the modular parametrization of E.

• The point $P_d \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point.

In order to recognize it, for each $[a] \in Cl(d)$ we have to evaluate a polynomial with $O(h(P_d))$ coefficients.

 \rightsquigarrow This requires $O(|Cl(d)|h(P_d)) = O(|d|^{1+\varepsilon})$ steps.

(in fact a simultaneous evaluation $\rightsquigarrow O(|d|^{1/2+arepsilon})$ steps.)

• Compute the class group Cl(d) of $\mathbb{Q}(\sqrt{d})$.

 \rightsquigarrow For each $[\mathfrak{a}] \in Cl(d)$, let $\tau_{[\mathfrak{a}]} \in X_0(N)$ the "Heegner point".

$$\rightsquigarrow$$
 Compute $P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$

where

$$\varphi : X_0(N) = \Gamma_0(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})$$

is the modular parametrization of E.

• The point $P_d \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point.

In order to recognize it, for each $[a] \in Cl(d)$ we have to evaluate a polynomial with $O(h(P_d))$ coefficients.

 \rightsquigarrow This requires $O(|Cl(d)|h(P_d)) = O(|d|^{1+\varepsilon})$ steps.

(in fact a simultaneous evaluation $\rightsquigarrow O(|d|^{1/2+\varepsilon})$ steps.)

• Compute the class group Cl(d) of $\mathbb{Q}(\sqrt{d})$.

 \rightsquigarrow For each $[\mathfrak{a}] \in Cl(d)$, let $\tau_{[\mathfrak{a}]} \in X_0(N)$ the "Heegner point".

$$\rightsquigarrow$$
 Compute $P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$

where

$$\varphi : X_0(N) = \Gamma_0(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})$$

is the modular parametrization of E.

• The point $P_d \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point.

In order to recognize it, for each $[\mathfrak{a}] \in Cl(d)$ we have to evaluate a polynomial with $O(h(P_d))$ coefficients.

 \rightsquigarrow This requires $O(|Cl(d)|h(P_d)) = O(|d|^{1+\varepsilon})$ steps.

(in fact a simultaneous evaluation $\rightsquigarrow O(|d|^{1/2+\varepsilon})$ steps.)

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$
 recognize a and b in Q

This step can fail

• If $h(P_d)$ is large

• If P_d is a torsion point

→ increase the precision.

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition

 $L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2 L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$

・ロト・西ト・西ト・西ト・日・

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$

$$\rightsquigarrow$$
 recognize a and b in \mathbb{Q} .

This step can fail

• If $h(P_d)$ is large

• If P_d is a torsion point

→ increase the precision.

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition

 $L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2 L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$

・ロト・西ト・西ト・西ト・日・

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$

$$\rightsquigarrow$$
 recognize a and b in \mathbb{Q} .

This step can fail

• If $h(P_d)$ is large

→ increase the precision.

• If P_d is a torsion point

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition

 $L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2 L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$

・ロト・日本・日本・日本・日本・日本

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$

$$\rightsquigarrow$$
 recognize a and b in \mathbb{Q} .

This step can fail

• If $h(P_d)$ is large

→ increase the precision.

(日) (圖) (E) (E) (E)

• If P_d is a torsion point

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition

$$L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2 L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$$

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$

 \rightsquigarrow recognize a and b in \mathbb{Q} .

This step can fail

• If $h(P_d)$ is large

 \rightsquigarrow increase the precision.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• If P_d is a torsion point

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition

$$L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$$

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$

$$\rightsquigarrow$$
 recognize a and b in \mathbb{Q} .

This step can fail

- If $h(P_d)$ is large
- If P_d is a torsion point

 \rightsquigarrow increase the precision.

イロト 不得 トイヨト イヨト ニヨー

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition $L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$

$$\rightsquigarrow$$
 recognize a and b in \mathbb{Q} .

This step can fail

- If $h(P_d)$ is large
- If P_d is a torsion point

 \rightsquigarrow increase the precision.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition $L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$

• We have
$$P_d = \sum_{[\mathfrak{a}]} \varphi(\tau_{[\mathfrak{a}]}) \in E(\mathbb{C}).$$

• And
$$P_d = (a + b\sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$$

$$\rightsquigarrow$$
 recognize a and b in \mathbb{Q} .

This step can fail

- If $h(P_d)$ is large
- If P_d is a torsion point

 \rightsquigarrow increase the precision.

 $\Leftrightarrow L'(E_d, 1) = 0.$

Proposition

$$L'(E_d, 1) \le \frac{\operatorname{vol}(E)|d|^{-1/2}}{2592c(E)^2 L(E, 1)} \log |d| \Rightarrow L'(E_d, 1) = 0$$

・ロト・日本・日本・日本・日本・日本

At this step, P_d is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

Let $\psi : E \xrightarrow{\sim} E_d$ defined over $\mathbb{Q}(\sqrt{d})$

Facts

- **1.** $L'(E_d, 1) \neq 0$ $\rightsquigarrow E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion.}$
- **2.** $Q_d = \psi(P_d \overline{P_d}) \in E_d(\mathbb{Q}) \longrightarrow Q_d = \ell_d G_d \mod \text{Torsion}.$

3. $\ell_d \neq 0$.

• "Divide" Q_d by $1, 2, \ldots \ell_d$ (when possible) until G_d is found.

At this step, P_d is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

Let $\psi : E \xrightarrow{\sim} E_d$ defined over $\mathbb{Q}(\sqrt{d})$

Facts

1. $L'(E_d, 1) \neq 0$ $\rightsquigarrow E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion.}$

2. $Q_d = \psi(P_d - \overline{P_d}) \in E_d(\mathbb{Q}) \longrightarrow Q_d = \ell_d G_d \mod \text{Torsion}.$

3. $\ell_d \neq 0$.

• "Divide" Q_d by $1, 2, \ldots \ell_d$ (when possible) until G_d is found.

At this step, P_d is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

Let $\psi : E \xrightarrow{\sim} E_d$ defined over $\mathbb{Q}(\sqrt{d})$

Facts

- **1.** $L'(E_d, 1) \neq 0$ $\rightsquigarrow E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion.}$
- **2.** $Q_d = \psi(P_d \overline{P_d}) \in E_d(\mathbb{Q}) \longrightarrow Q_d = \ell_d G_d \mod \text{Torsion}.$ **3.** $\ell_d \neq 0$
- "Divide" Q_d by $1, 2, \ldots \ell_d$ (when possible) until G_d is found.

At this step, P_d is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

Let $\psi : E \xrightarrow{\sim} E_d$ defined over $\mathbb{Q}(\sqrt{d})$

Facts

- **1.** $L'(E_d, 1) \neq 0$ $\rightsquigarrow E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion.}$
- **2.** $Q_d = \psi(P_d \overline{P_d}) \in E_d(\mathbb{Q}) \quad \rightsquigarrow Q_d = \ell_d G_d \text{ mod Torsion.}$

3. $\ell_d \neq 0$.

• "Divide" Q_d by $1, 2, \ldots \ell_d$ (when possible) until G_d is found.

At this step, P_d is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

Let $\psi : E \xrightarrow{\sim} E_d$ defined over $\mathbb{Q}(\sqrt{d})$

Facts

- **1.** $L'(E_d, 1) \neq 0$ $\rightsquigarrow E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion.}$
- **2.** $Q_d = \psi(P_d \overline{P_d}) \in E_d(\mathbb{Q}) \quad \rightsquigarrow Q_d = \ell_d G_d \text{ mod Torsion.}$

3. $\ell_d \neq 0$.

• "Divide" Q_d by $1, 2, \ldots \ell_d$ (when possible) until G_d is found.

At this step, P_d is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

Let $\psi : E \xrightarrow{\sim} E_d$ defined over $\mathbb{Q}(\sqrt{d})$

Facts

- **1.** $L'(E_d, 1) \neq 0$ $\rightsquigarrow E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion.}$
- **2.** $Q_d = \psi(P_d \overline{P_d}) \in E_d(\mathbb{Q}) \quad \rightsquigarrow Q_d = \ell_d G_d \text{ mod Torsion.}$

3. $\ell_d \neq 0$.

• "Divide" Q_d by $1, 2, \ldots \ell_d$ (when possible) until G_d is found.

Proposition $|\ell_d| < 36c(E) \sqrt{\frac{2h(Q_d)}{\log |d|}}$

At this step, P_d is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

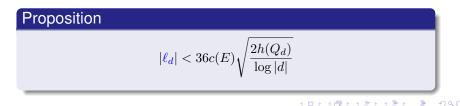
Let $\psi : E \xrightarrow{\sim} E_d$ defined over $\mathbb{Q}(\sqrt{d})$

Facts

- **1.** $L'(E_d, 1) \neq 0$ $\rightsquigarrow E_d(\mathbb{Q}) = \langle G_d \rangle \oplus \text{Torsion.}$
- **2.** $Q_d = \psi(P_d \overline{P_d}) \in E_d(\mathbb{Q}) \quad \rightsquigarrow Q_d = \ell_d G_d \text{ mod Torsion.}$

3. $\ell_d \neq 0$.

• "Divide" Q_d by $1, 2, \ldots \ell_d$ (when possible) until G_d is found.



At this step, G_d , $R(E_d) = h(G_d)$ and ℓ_d have been computed.

• Calculate $|\mathrm{III}(E_d)|$. (BSD) $\rightsquigarrow L'(E_d, 1) = \frac{\Omega c(E_d)}{\sqrt{|d|}} R(E_d) \quad |\mathrm{III}(E_d)|$.

Proposition $|\mathrm{III}(E_d)| = \frac{(|E(\mathbb{Q})_{\mathrm{tors}}| |E_d(\mathbb{Q})_{\mathrm{tors}}| |\ell_d)^2}{|\mathrm{III}(E)|c(E)^2} \frac{1}{* c(E_d)}$ where * = 2, 4 or 8 is explicit.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ▶

At this step, G_d , $R(E_d) = h(G_d)$ and ℓ_d have been computed.

• Calculate $|\operatorname{III}(E_d)|$. (BSD) $\rightsquigarrow L'(E_d, 1) = \frac{\Omega c(E_d)}{\sqrt{|d|}} R(E_d) \quad |\operatorname{III}(E_d)|$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

At this step, G_d , $R(E_d) = h(G_d)$ and ℓ_d have been computed.

• Calculate $|\amalg(E_d)|$.

(BSD)
$$\rightsquigarrow L'(E_d, 1) = \frac{\Omega c(E_d)}{\sqrt{|d|}} R(E_d) \quad |\mathrm{III}(E_d)|.$$

Proposition $|III(E_d)| = \frac{(|E(\mathbb{Q})_{tors}| |E_d(\mathbb{Q})_{tors}| |\ell_d)^2}{|III(E)|c(E)^2} \frac{1}{* c(E_d)}$ where * = 2, 4 or 8 is explicit.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

• We computed G_d , $R(E_d)$, $|III(E_d)|$ and $L'(E_d, 1)$.

This costs: $O(|d|^{1/2+\varepsilon})$ steps.

Remark: Computing $L'(E_d, 1)$ by:

$$L'(E_d, 1) = 2\sum_{n\geq 1} \frac{a(n)}{n} \left(\frac{d}{n}\right) \int_{2\pi n/|d|\sqrt{N}}^{\infty} e^{-t} dt/t$$

needs O(|d|) coefficients, the constant depending on the precision.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

• We computed G_d , $R(E_d)$, $|III(E_d)|$ and $L'(E_d, 1)$.

This costs: $O(|d|^{1/2+\varepsilon})$ steps.

Remark: Computing $L'(E_d, 1)$ by:

$$L'(E_d, 1) = 2\sum_{n\geq 1} \frac{a(n)}{n} \left(\frac{d}{n}\right) \int_{2\pi n/|d|\sqrt{N}}^{\infty} e^{-t} dt/t$$

needs O(|d|) coefficients, the constant depending on the precision.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example : E = 11a1

- E = 11a1 : $y^2 = x^3 4x^2 160x 1264$.
- $\varepsilon_{11} = +1 \quad \rightsquigarrow d = 1, 3, 4, 5, 9 \pmod{11}$.

 \rightsquigarrow Number of discriminants 222900 ($|d| \le 1600000$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Prediction

$$\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} R(E_d)^k \sim A_k T^{\frac{k}{2}} (\log T)^{\frac{k(k+1)}{2} + \tan_k}$$

• $M_{1/4} \sim 0.50 \ T^{1/8} \log(T)^{0.027\cdots}$.

• $M_{1/2} \sim 0.23 \ T^{1/4} \log(T)^{0.145\cdots}$.

• $M_{3/4} \sim 0.09 \ T^{3/8} \log(T)^{0.350\cdots}$.

Example : E = 11a1

- E = 11a1 : $y^2 = x^3 4x^2 160x 1264$.
- $\varepsilon_{11} = +1 \quad \rightsquigarrow d = 1, 3, 4, 5, 9 \pmod{11}$.

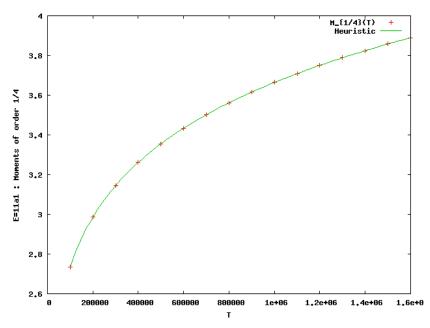
 \rightsquigarrow Number of discriminants 222900 ($|d| \le 1600000$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

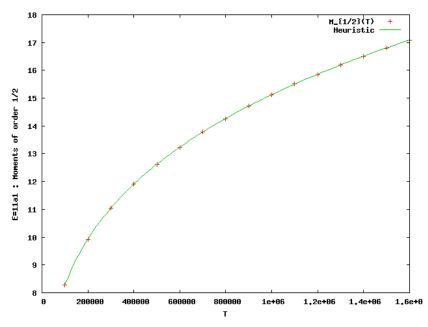
Prediction

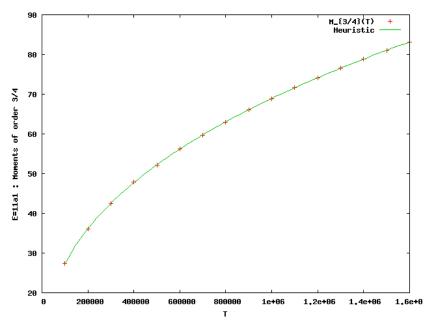
$$\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L'(E_d, 1) \neq 0}} R(E_d)^k \sim A_k T^{\frac{k}{2}} (\log T)^{\frac{k(k+1)}{2} + \tan_k}$$

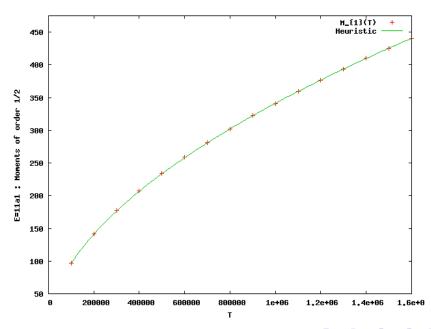
- $M_{1/4} \sim 0.50 \ T^{1/8} \log(T)^{0.027\cdots}$.
- $M_{1/2} \sim 0.23 \ T^{1/4} \log(T)^{0.145\cdots}$.
- $M_{3/4} \sim 0.09 \ T^{3/8} \log(T)^{0.350\cdots}$.



▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで







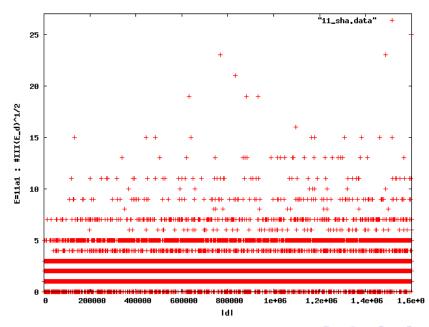
What about $III_a(E_d)$?

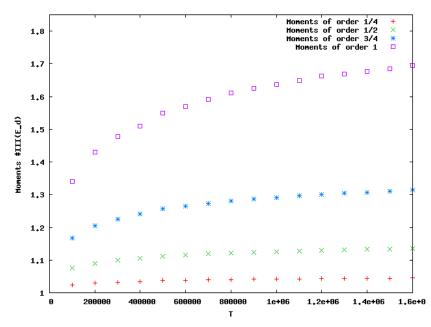
•
$$E = 11a1$$
 : $y^2 = x^3 - 4x^2 - 160x - 1264$.

- Among the 222900 discriminants:
- $\rightsquigarrow 671$ are such that $\coprod_a(E_d) = 0$.
- $\rightsquigarrow 207277$ are such that $\coprod_a(E_d) = 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\rightsquigarrow 5551$ are such that $\coprod_a(E_d) = 4$.





◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶