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Notations

• Let E be an elliptic curve defined Q with conductor N :

E : y2 = x3 +Ax+B

• Let L(E, s) be its L-function:

L(E, s) =
∑
n≥1

an
ns

• Let ε(E) be the root number:

Λ(E, s) :=

(√
N

2π

)s
Γ
(s

2

)
L(E, s) = ε(E) Λ(E, 2− s)



Notations
• If d is a fundamental discriminant coprime with N , let Ed be the
quadratic twist of E by d:

Ed : y2 = x3 +Ad2x+Bd3

• The L-function of Ed is given:

L(Ed, s) =
∑
n≥1

(
d

n

)
an
ns

• The root number is ε(E)
(

d
−N

)
and the conductor is Nd2.

 How do the invariants of Ed behave as d is varying over a natural
set of discriminants?

→ The rank, rd, of Ed(Q).

→ The Tate-Shafarevich group, X(Ed), of Ed/Q.

→ The regulator, R(Ed), of Ed(Q).

•We separate the even (ε(Ed) = 1) and the odd (ε(Ed) = −1) case.
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Even case
• For all p | N , fix a sign εp = ±1 such that:

∏
p|N

εp = −ε(E).

• Consider the family of elliptic curves (Ed)d∈F(∞) where:

F(T ) = {d < 0 , |d| ≤ T , fund. discr. such that
(
d

p

)
= εp}

→ ε(Ed) = +1;

• Define Xa(Ed) by:

L(Ed, 1) =
Ω(Ed)

∏
p|Nd2 cp(Ed)

|Ed(Q)tors|2
Xa(Ed)

So Xa(Ed) = 0 if L(Ed, 1) = 0 and Xa(Ed) = |X(Ed)| otherwise (by
the Birch and Swinnerton-Dyer conjecture).
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Even case

Conjecture (Keating-Snaith)
We have, as T →∞:

1
|F(T )|

∑
d∈F(T )

L(Ed, 1)k ∼ gk(O+)ak(E)(log T )k(k−1)/2

• gk(O+) is explicit and comes from RMT.

• ak(E) is an explicit arithmetic factor depending on the choice of εp.

• If k ∈ N, other leading orders can be predicted (by the work of
B. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith).

What are the consequences on Xa(Ed)?
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Even case

Proposition
For |d| large enough, we have:

L(Ed, 1) = 1∗
Ω√
|d|

∏
p|d

cp(Ed)

Xa(Ed)

• Ω depends on the choice εp.

• 1∗ = 2 if 8 | d and c4 is even and 1∗ = 1 otherwise (we will forget it).

• By partial summation on
∑

d∈F(T )

L(Ed, 1)k, we get:

1
|F(T )|

∑
d∈F(T )

Xa(Ed)k
∏
p|d

cp(Ed)k ∼ T
k
2 (log T )

k(k−1)
2
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Average of
∏

p|d cp(Ed)
k

• For all p | d, Tate’s algorithm implies:

cp(Ed) = 1 + the number of roots of F = x3 +Ax+B in Fp

There are 3 cases:

• F (x) has 3 roots in Q  cp(Ed) = 4.

• F (x) has 1 root in Q  cp(Ed) = 1 or 4 depending on some
congruences classes of p.

• F (x) has no root in Q  cp(Ed) = 1, 2 or 4 with some density for
each possibilities.
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Average of
∏

p|d cp(Ed)
k

In the first cases, we are led to estimate sums of the form:

∗ (T ) =
∑
n<T

n squarefree
n≡a mod N

 ∏
j∈(Z/NZ)×

t
|{p|n , p≡j mod N}|
j



where the (tj)j are non-negative numbers.

Theorem

∗(T ) ∼ Cst T log(T )t−1

where t = 1
ϕ(N)

∑
j∈(Z/NZ)×

tj is the average of the tj and:

Cst =
1

ϕ(N)Γ(t)

Y
p|N

(1− 1/p)t
Y

j

Y
p≡j mod N

(1 + tj/p)(1− 1/p)tj
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Even case
• Finally, we are led to make the following conjecture:

Conjecture
There exists Ck > 0 such that:

1
|F(T )|

∑
d∈F(T )

Xa(Ed)k ∼ Ck T
k
2 (log T )

k(k−1)
2 +tamk

Let L be the field of decomposition of x3 +Ax+B over Q.

If [L : Q] = 1 then tamk = 4−k − 1.

If [L : Q] = 2 then tamk = 1
2 (2−k + 4−k)− 1.

If [L : Q] = 3 then tamk = 4−k

3 + 2
3 − 1.

If [L : Q] = 6 then tamk = 4−k

6 + 2−k

2 + 1
3 − 1.
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Numerical Check
• Need to compute L(Ed, 1), then:

Xa(Ed) =
L(Ed, 1)
Ω
√
|d|

∏
p|d

1
cp(Ed)

Theorem (Kohnen)
L(Ed, 1) = (∗) b(|d|)2, where∑

b(|d|)q|d| is a weight 3/2 modular form

• Example:
E = 32a2 : y2 = x3 − x

The conjecture is:

1
|F(T )|

∑
d∈F(T )

Xa(Ed)k ∼ CkT
k
2 (log T )

k(k−1)
2 +4−k−1
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• An other application: the number of (no) extra-rank:

|{d ∈ F(T ) , r(Ed) = 0}| or |{d ∈ F(T ) , r(Ed) ≥ 2}|

No extra-rank
|{d ∈ F(T ), L(Ed, 1) 6= 0}| � T 1−ε (Ono-Skinner)

� T for some E (several authors)
∼ |F(T )| conjecturally (Goldfeld - BSD)

Extra-rank
|{d ∈ F(T ), rd ≥ 2}| � T 1/2−ε under BSD (Gouvêa-Mazur)

� T 3/4−ε conjecturally (C.K.R.S.)

Conjecture (Conrey, Keating, Rubinstein and Snaith)
There exist CE > 0 and bE ∈ R such that :

|{d ∈ F(T ), rd ≥ 2}|
|F(T )|

∼ CE T−1/4 (log T )bE

 We will discuss about bE .
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• RMT model: prob (L(Ed, 1) < x) ≈
√
x (log |d|)3/8 (as x→ 0).

• The discretisation model: Xa(Ed) < 1⇔ L(Ed, 1) = 0.

We predict:

prob (L(Ed, 1) = 0) = prob

L(Ed, 1) <
Ω√
|d|

∏
p|d

cp(Ed)


≈ log(|d|)3/8

|d|1/4

√∏
p|d

cp(Ed)

We get:

|{d ∈ F(T ), L(Ed, 1) = 0}|
|F(T )|

≈ 1
T

∑
d∈F(T )

log(|d|)3/8

|d|1/4
∏
p|d

√
cp(Ed)

So, by partial summation:

|{d ∈ F(T ), L(Ed, 1) = 0}|
|F(T )|

≈ (log T )3/8

T 1/4

 1
T

∑
d∈F(T )

∏
p|d

√
cp(Ed)
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cp(Ed)





CKRS Conjecture

E : y2 = F (x)

Assume that E is a curve having maximal rational 2 torsion sub-group
in its isogeny class.

Heuristics (joint work with M. Watkins)
|{d ∈ F(T ), L(Ed, 1) = 0}|

|F(T )|
∼ CE T−1/4 (log T )bE

where:

• bE = 3/8 + 1 if F (x) has 3 roots in Q.

• bE = 3/8 +
√

2/2 if F (x) has 1 root in Q.

• bE = 3/8 + 1/3 or 3/8 +
√

2/2− 1/3 otherwise.
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∼ CE T−1/4 (log T )bE

where:
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2/2 if F (x) has 1 root in Q.

• bE = 3/8 + 1/3 or 3/8 +
√

2/2− 1/3 otherwise.



Example
E = 32a2 : y = x3 − x

The heuristic predicts that:

|{d ∈ F(T ), L(Ed, 1) = 0}|
|F(T )|

∼ CE T−1/4 (log T )3/8+1

• Compare the numerical data (T = 108) and the heuristic.

• Problem: we are not able to predict the constant CE .

We adjust the constant CE such that the numerical data and the
heuristic agree for T = 5× 107.





Discussion

• In the discretisation process, it is implicitly assumed that the
arithmetic of X(Ed) does not give any contribution to the powers of
log.

But it could! As it is the case if we do not consider the good curve it
its isogeny class.

• In fact, X(Ed) is believed to have no influence on the powers
of log but it takes a long time for the 2-part of X(Ed) before it
behaves as expected.
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For our example, the Cohen-Lenstra heuristics for X(Ed) assert that
the probability that p |Xa(Ed) is :

f(p) = 1−
∏
j≥1

(1− p1−2j) =
1
p

+
1
p3

+ · · ·

p 32a2 predictions
2 0.4357 0.5805
3 0.3579 0.3609
5 0.2076 0.2066
7 0.1483 0.1454

Numerical values for T = 108

A theorem of Heath-Brown (and the BSD and Goldfeld conjecture)
implies that the correct red value for T =∞ is given by the
predictions.

But, the d’s need to have a lot of prime factor for this to happen.
Hence, the discriminants must be very large!!

Example: We only consider d such that ω(d) ≥ 5 for 32A2.
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Discussion

•We can also compare the heuristic with the odd part of Xa(Ed).

• Indeed, the same arguments works if we count:

|{d ∈ F(T ), Xa(Ed) is odd and X(Ed)a ≤ 1}|
|{d ∈ F(T ), Xa(Ed) is odd}|

Question: Have we

|{d ∈ F(T ), Xa(Ed) = 1}|
|{d ∈ F(T ), Xa(Ed) is odd}|

≈ T−1/4 (log T )3/8+1 ?

Example: E = 32a2
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Odd case
• For all p | N , fix a sign εp = ±1 such that:

∏
p|N

εp = ε(E).

• Consider the family of elliptic curves (Ed)d∈F(∞) where:

F(T ) = {d < 0 , |d| ≤ T , fund. discr. such that
(
d

p

)
= εp}

→ ε(Ed) = −1;

• Define Xa(Ed) by:

L′(Ed, 1) =
Ω(Ed)

∏
p|Nd2 cp(Ed)

|Ed(Q)tors|2
R(Ed)Xa(Ed)

where R(Ed) is the regulator of Ed.

So Xa(Ed) = 0 if L′(Ed, 1) = 0 and Xa(Ed) = |X(Ed)| otherwise
(by the Birch and Swinnerton-Dyer conjecture).
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Odd case

Conjecture (N. Snaith)
We have, as T →∞:

1
|F(T )|

∑
d∈F(T )

L′(Ed, 1)k ∼ Ak(log T )k(k+1)/2

• Ak comes from RMT and an arithmetic factor.

What are the consequences on R(Ed)?



Odd case

Proposition
For |d| large enough, we have:

L′(Ed, 1) = 1∗
Ω√
|d|

∏
p|d

cp(Ed)

Xa(Ed)R(Ed)

• Ω depends on the choice εp.

• 1∗ = 2 if 8 | d and c4 is even and 1∗ = 1 otherwise.

• By partial summation on
∑

d∈F(T )

L′(Ed, 1)k, we get:

1
|F(T )|

∑
d∈F(T )

R(Ed)kXa(Ed)k
∏
p|d

cp(Ed)k ∼ Bk T k/2(log T )
k(k+1)

2

for some Bk.



Odd case

Proposition
For |d| large enough, we have:

L′(Ed, 1) = 1∗
Ω√
|d|

∏
p|d

cp(Ed)

Xa(Ed)R(Ed)

• Ω depends on the choice εp.

• 1∗ = 2 if 8 | d and c4 is even and 1∗ = 1 otherwise.

• By partial summation on
∑

d∈F(T )

L′(Ed, 1)k, we get:

1
|F(T )|

∑
d∈F(T )

R(Ed)kXa(Ed)k
∏
p|d

cp(Ed)k ∼ Bk T k/2(log T )
k(k+1)

2

for some Bk.



Average of Xa(Ed)
k

• Heuristics on X If 0 < k < 1 then:

1
|F(T )|

∑
d∈F(T )

L′(Ed,1)6=0

|Xa(Ed)|k → Cst(k)

Hence:

Heuristics (joint work with X.-F. Roblot)
For 0 < k < 1:

Mk(T ) =
1

|F(T )|
∑

d∈F(T )
L′(Ed,1) 6=0

R(Ed)k ∼ Ak T
k
2 (log T )

k(k+1)
2 +tamk

Let F (x) = x3 +Ax+B.

• tamk = 4−k − 1 if F (x) has 3 roots in Q.

• tamk = 1
2 (2−k + 4−k)− 1 if F (x) has 1 root in Q.

• tamk = 4−k

3 + 2
3 − 1 or tamk = 4−k

6 + 2−k

2 + 1
3 − 1 otherwise.
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Upper bounds

• Lindelöf⇒

R(Ed)� |d|1/2+ε

Proposition
N square-free, εp = +1, ∀p|N , L(E, 1) 6= 0 then

1
T ∗

∑
d∈F(T )

L′(Ed,1) 6=0

R(Ed)� T 1/2 log T



Lower bounds

Proposition
We have

R(Ed) >
1
3

log |d|+O(1)

If j(E) 6= 0, 1728 and wp = +1, ∀p | N :

R(Ed) >
1

1296c(E)2
log |d|

Optimal: E : y2 = x3 +Ax+B = F (x).

The point (r, 1) ∈ EF (r) and h ≈ log(F (r)).

Example: E = 11a1.
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Numerical check

L′(Ed, 1) =
Ω√
|d|
c(Ed) R(Ed) Xa(Ed)

→ If L′(Ed, 1) 6= 0 then:

Ed(Q) =< Gd > ⊕Torsion

R(Ed) = 2h(Gd) find Gd ∈ Ed(Q).

• Efficient algorithm for computing Gd and Xa(Ed) at “the same
time”.
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Example

• Finding Gd might be complicated:

E = 11a1 and d = −1482139 then (on the minimal model of Ed), the
abscissa of Gd is a rational number such that the numerator and the
denominator have ≈ 4320 digits.

And we have : h(Ed) ≈ 9945.



The numerator of the abscissa of Gd is:

2626914163715788373011505693935892465023966285938661623601264958911869710379354821953092228638535709852293922347110
6420693712053799494480957073655050549865973802093302989718994909926085639138521038658387204788969769251829399796376
4230777576140746007001964179159051838221723260217040933423895649679116537266751298303983204220906012167999049681943
2108991850150658469745715485018157989425059588099902104506237536755932925212260557543980051042248814313543553611755
5672877245151326681176620288243743524056666985243046716469271070623979945599500346476075858500767502038588420404741
9615371391071481209937700164975500656691341301117104970941950706763906686415519511398962660874547910208479223761929
7761749441604129930611161529596386056770885057395910471323268713422324228498945306825193761031392864659083178145638
3774034353843313425839451564297663444413589794397666733867803807991851676979482798464903862779903272771125226295396
0709689740806143073222814107041284537473799552472764839194453658808773832989893688133541522076612422285990507198063
9510183749886296789770894175715647798283423515665420127733040056233824808518143038370234558383538634382301040369902
3384802026992740136979769212794545558294822953071468751299836164017907574577661932659762200617526126153077658585554
6506848426645947354728074428162850406554997749157979760331199284302706221388160329039473907019625204959272452574621
8565155659936296955635869761121428551882586654287174878845261760534253181742705464839421275785352400703757690821627
8729908445749796095058136683283297990823308660881695705693600506151097743450867210750226106934157947251454339324643
1896365575013300472586584088202371076890770213739490399091491035034421458336966017108095663635120522776551890717176
6324013327755325819598972996555371068716551397929945109583076385853055605483613471909490886804373891207635242935486
3562692429868333526981388733828283090720213679042919762988507511291676927852877078409469500378725533620588950046510
4539077376239399832524948429671217408367486407765029101408636433205913375104630646129499231160387406474276549966455
7146932030099694430181933164433607927908520505959965338952219957224400854805416114558287197204880545163181227070759
2291971199767322171293729717201194556921005439582013351208129165164869952015234653384880391020482126016211616158829
0525324015939990133108219487354120601177277210167053043521508566198488469274252797538933315924130306794617092796978
2214754047924299473188264050939657419190144275499605206771491607561986665865446762819097190730153789415929434242751
1161897986015746995414991912002116682060842953350351358746265884661776962865691110732960200995585372328157986921482
4719960632571110184671545544726356557924129018443729810065391978502824027745319795173285076102000129252997887065814
8524230661940882793375948201245422737230827618305971638652956620085299679663239209642651113642955951391398230101203
2989050096212602092859688863494997027249550204185803656206656437111399084814788373832313294456657156941686731623322
8248670554466475423467659409128012712077245480899021213905233386864797834788876769927462606380486703546640046629280
3776710374762911549582788008601648701036127577455676693903491106075703378556103344060316663197368770494076563561504
7306981954278922506892815316324486705269952776839705746316794522675847606228109369608162847599501680588151435914265
4180110613422257226637950363225313969002836163239902628408564276997318997078027927418322490270189548644677308357492
9912511549691379149687464162780237142683963750252696660342758869083702649684482358846234344722332741393085759800608
5644022660014457290370173670762559115239593800900725738986249333193105522023360140990051347321614435850671512753176
3295436771738486310505677924931633140121575598952505349068669498680453445072001471864457954529223066758283674614435
6631252476359856334626086714945439031204045142932868406026326950066262489966073930355969958625432977008966902630647
6436225091423987050724457858068127731256011891884596417259739911365870961345765213172391374837585094642732811401268
4486272433157144064127958544081465734907879675192397684715695935004573362169655253163121796284297291028115020174376
0764250644544308635332608897691702824683304398292965971149674453665597467860662180837903081427108202797099114452001
3302480275087559359344739432483804353059317517459045362960801012949009



The method

•We must have L(E, 1) 6= 0.

•We take εp = +1 for all p | N .



Step 1
• Compute the class group Cl(d) of Q(

√
d).

 For each [a] ∈ Cl(d), let τ[a] ∈ X0(N) the “Heegner point”.

 Compute Pd =
∑
[a]

ϕ(τ[a]) ∈ E(C).

where
ϕ : X0(N) = Γ0(N)\H −→ E(C)

is the modular parametrization of E.

• The point Pd ∈ E(Q(
√
d)) but it appears as a complex point.

In order to recognize it, for each [a] ∈ Cl(d) we have to evaluate a
polynomial with O(h(Pd)) coefficients.

 This requires O(|Cl(d)|h(Pd)) = O(|d|1+ε) steps.

(in fact a simultaneous evaluation O(|d|1/2+ε) steps.)
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Step 2
•We have Pd =

∑
[a]

ϕ(τ[a]) ∈ E(C).

• And Pd = (a+ b
√
d, y) ∈ E(Q(

√
d))  recognize a and b in Q.

This step can fail

• If h(Pd) is large  increase the precision.

• If Pd is a torsion point ⇔ L′(Ed, 1) = 0.

Proposition

L′(Ed, 1) ≤ vol(E)|d|−1/2

2592c(E)2L(E, 1)
log |d| ⇒ L′(Ed, 1) = 0
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Step 3
At this step, Pd is a point of infinite order in E(Q(

√
d)).

Let ψ : E ∼−→ Ed defined over Q(
√
d)

Facts

1. L′(Ed, 1) 6= 0  Ed(Q) = 〈Gd〉 ⊕ Torsion.

2. Qd = ψ(Pd − Pd) ∈ Ed(Q)  Qd = `dGd mod Torsion.

3. `d 6= 0.

• “Divide” Qd by 1, 2, . . . `d (when possible) until Gd is found.

Proposition

|`d| < 36c(E)

√
2h(Qd)
log |d|
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Step 4

At this step, Gd, R(Ed) = h(Gd) and `d have been computed.

• Calculate |X(Ed)|.

(BSD) L′(Ed, 1) =
Ωc(Ed)√
|d|

R(Ed) |X(Ed)|.

Proposition

|X(Ed)| =
(|E(Q)tors| |Ed(Q)tors| `d)2

|X(E)|c(E)2
1

∗ c(Ed)
where ∗ = 2, 4 or 8 is explicit.
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Summary

•We computed Gd, R(Ed), |X(Ed)| and L′(Ed, 1).

This costs: O(|d|1/2+ε) steps.

Remark: Computing L′(Ed, 1) by:

L′(Ed, 1) = 2
∑
n≥1

a(n)
n

(
d

n

)∫ ∞
2πn/|d|

√
N

e−tdt/t

needs O(|d|) coefficients, the constant depending on the precision.
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Example : E = 11a1

• E = 11a1 : y2 = x3 − 4x2 − 160x− 1264.

• ε11 = +1  d = 1, 3, 4, 5, 9 (mod 11).

 Number of discriminants 222900 (|d| ≤ 1600000).

Prediction

1
|F(T )|

∑
d∈F(T )

L′(Ed,1) 6=0

R(Ed)k ∼ AkT
k
2 (log T )

k(k+1)
2 +tamk

•M1/4 ∼ 0.50 T 1/8 log(T )0.027···.

•M1/2 ∼ 0.23 T 1/4 log(T )0.145···.

•M3/4 ∼ 0.09 T 3/8 log(T )0.350···.
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What about Xa(Ed)?

• E = 11a1 : y2 = x3 − 4x2 − 160x− 1264.

• Among the 222900 discriminants:

 671 are such that Xa(Ed) = 0.

 207277 are such that Xa(Ed) = 1.

 5551 are such that Xa(Ed) = 4.
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