Tate-Shafarevich groups, regulators of elliptic curves and L-functions

Christophe Delaunay

Notations

- Let E be an elliptic curve defined \mathbb{Q} with conductor N :

$$
E: y^{2}=x^{3}+A x+B
$$

- Let $L(E, s)$ be its L-function:

$$
L(E, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

- Let $\varepsilon(E)$ be the root number:

$$
\Lambda(E, s):=\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma\left(\frac{s}{2}\right) L(E, s)=\varepsilon(E) \Lambda(E, 2-s)
$$

Notations

- If d is a fundamental discriminant coprime with N, let E_{d} be the quadratic twist of E by d :

$$
E_{d}: y^{2}=x^{3}+A d^{2} x+B d^{3}
$$

- The L-function of E_{d} is given:

$$
L\left(E_{d}, s\right)=\sum_{n \geq 1}\left(\frac{d}{n}\right) \frac{a_{n}}{n^{s}}
$$

- The root number is $\varepsilon(E)\left(\frac{d}{-N}\right)$ and the conductor is $N d^{2}$.

Notations

- If d is a fundamental discriminant coprime with N, let E_{d} be the quadratic twist of E by d :

$$
E_{d}: y^{2}=x^{3}+A d^{2} x+B d^{3}
$$

- The L-function of E_{d} is given:

$$
L\left(E_{d}, s\right)=\sum_{n \geq 1}\left(\frac{d}{n}\right) \frac{a_{n}}{n^{s}}
$$

- The root number is $\varepsilon(E)\left(\frac{d}{-N}\right)$ and the conductor is $N d^{2}$.
\rightsquigarrow How do the invariants of E_{d} behave as d is varying over a natural set of discriminants?
\rightarrow The rank, r_{d}, of $E_{d}(\mathbb{Q})$.
\rightarrow The Tate-Shafarevich group, $\amalg\left(E_{d}\right)$, of E_{d} / \mathbb{Q}.
\rightarrow The regulator, $R\left(E_{d}\right)$, of $E_{d}(\mathbb{Q})$.

Notations

- If d is a fundamental discriminant coprime with N, let E_{d} be the quadratic twist of E by d :

$$
E_{d}: y^{2}=x^{3}+A d^{2} x+B d^{3}
$$

- The L-function of E_{d} is given:

$$
L\left(E_{d}, s\right)=\sum_{n \geq 1}\left(\frac{d}{n}\right) \frac{a_{n}}{n^{s}}
$$

- The root number is $\varepsilon(E)\left(\frac{d}{-N}\right)$ and the conductor is $N d^{2}$.
\rightsquigarrow How do the invariants of E_{d} behave as d is varying over a natural set of discriminants?
\rightarrow The rank, r_{d}, of $E_{d}(\mathbb{Q})$.
\rightarrow The Tate-Shafarevich group, $\amalg\left(E_{d}\right)$, of E_{d} / \mathbb{Q}.
\rightarrow The regulator, $R\left(E_{d}\right)$, of $E_{d}(\mathbb{Q})$.
- We separate the even $\left(\varepsilon\left(E_{d}\right)=1\right)$ and the odd $\left(\varepsilon\left(E_{d}\right)=-1\right)$ case.

Even case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=-\varepsilon(E)$.

Even case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=-\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\mathcal{F}(T)=\left\{d<0,|d| \leq T \text {, fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\}
$$

Even case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=-\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\begin{aligned}
& \quad \mathcal{F}(T)=\left\{d<0,|d| \leq T \text {, fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\} \\
& \rightarrow \varepsilon\left(E_{d}\right)=+1
\end{aligned}
$$

Even case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=-\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\begin{aligned}
& \mathcal{F}(T)=\left\{d<0,|d| \leq T \text {, fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\} \\
\rightarrow & \varepsilon\left(E_{d}\right)=+1
\end{aligned}
$$

- Define $Ш_{a}\left(E_{d}\right)$ by:

$$
L\left(E_{d}, 1\right)=\frac{\Omega\left(E_{d}\right) \prod_{p \mid N d^{2}} c_{p}\left(E_{d}\right)}{\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|^{2}} \amalg_{a}\left(E_{d}\right)
$$

Even case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=-\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\mathcal{F}(T)=\left\{d<0,|d| \leq T, \text { fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\}
$$

$\rightarrow \varepsilon\left(E_{d}\right)=+1 ;$

- Define $Ш_{a}\left(E_{d}\right)$ by:

$$
L\left(E_{d}, 1\right)=\frac{\Omega\left(E_{d}\right) \prod_{p \mid N d^{2}} c_{p}\left(E_{d}\right)}{\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|^{2}} \amalg_{a}\left(E_{d}\right)
$$

So $Ш_{a}\left(E_{d}\right)=0$ if $L\left(E_{d}, 1\right)=0$ and $\amalg_{a}\left(E_{d}\right)=\left|\amalg\left(E_{d}\right)\right|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

Even case

Conjecture (Keating-Snaith)

We have, as $T \rightarrow \infty$:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L\left(E_{d}, 1\right)^{k} \sim g_{k}\left(O^{+}\right) a_{k}(E)(\log T)^{k(k-1) / 2}
$$

- $g_{k}\left(O^{+}\right)$is explicit and comes from RMT.
- $a_{k}(E)$ is an explicit arithmetic factor depending on the choice of ε_{p}.

Even case

Conjecture (Keating-Snaith)

We have, as $T \rightarrow \infty$:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L\left(E_{d}, 1\right)^{k} \sim g_{k}\left(O^{+}\right) a_{k}(E)(\log T)^{k(k-1) / 2}
$$

- $g_{k}\left(O^{+}\right)$is explicit and comes from RMT.
- $a_{k}(E)$ is an explicit arithmetic factor depending on the choice of ε_{p}.
- If $k \in \mathbb{N}$, other leading orders can be predicted (by the work of
B. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith).

Even case

Conjecture (Keating-Snaith)

We have, as $T \rightarrow \infty$:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L\left(E_{d}, 1\right)^{k} \sim g_{k}\left(O^{+}\right) a_{k}(E)(\log T)^{k(k-1) / 2}
$$

- $g_{k}\left(O^{+}\right)$is explicit and comes from RMT.
- $a_{k}(E)$ is an explicit arithmetic factor depending on the choice of ε_{p}.
- If $k \in \mathbb{N}$, other leading orders can be predicted (by the work of
B. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith).

What are the consequences on $\amalg_{a}\left(E_{d}\right)$?

Even case

Proposition

For $|d|$ large enough, we have:

$$
L\left(E_{d}, 1\right)=1^{*} \frac{\Omega}{\sqrt{|d|}}\left(\prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \amalg_{a}\left(E_{d}\right)
$$

- Ω depends on the choice ε_{p}.
- $1^{*}=2$ if $8 \mid d$ and c_{4} is even and $1^{*}=1$ otherwise (we will forget it).

Even case

Proposition

For $|d|$ large enough, we have:

$$
L\left(E_{d}, 1\right)=1^{*} \frac{\Omega}{\sqrt{|d|}}\left(\prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \amalg_{a}\left(E_{d}\right)
$$

- Ω depends on the choice ε_{p}.
- $1^{*}=2$ if $8 \mid d$ and c_{4} is even and $1^{*}=1$ otherwise (we will forget it).
- By partial summation on $\sum_{d \in \mathcal{F}(T)} L\left(E_{d}, 1\right)^{k}$, we get:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} Ш_{a}\left(E_{d}\right)^{k} \prod_{p \mid d} c_{p}\left(E_{d}\right)^{k} \sim \frac{g_{k}\left(O^{+}\right) a_{k}(E)}{\Omega^{k}} \frac{2}{k+2} T^{\frac{k}{2}}(\log T)^{\frac{k(k-1)}{2}}
$$

Even case

Proposition

For $|d|$ large enough, we have:

$$
L\left(E_{d}, 1\right)=1^{*} \frac{\Omega}{\sqrt{|d|}}\left(\prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \amalg_{a}\left(E_{d}\right)
$$

- Ω depends on the choice ε_{p}.
- $1^{*}=2$ if $8 \mid d$ and c_{4} is even and $1^{*}=1$ otherwise (we will forget it).
- By partial summation on $\sum_{d \in \mathcal{F}(T)} L\left(E_{d}, 1\right)^{k}$, we get:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} Ш_{a}\left(E_{d}\right)^{k} \prod_{p \mid d} c_{p}\left(E_{d}\right)^{k} \sim \underbrace{\frac{g_{k}\left(O^{+}\right) a_{k}(E)}{\Omega^{k}} \frac{2}{k+2}}_{B_{k}} T^{\frac{k}{2}}(\log T)^{\frac{k(k-1)}{2}}
$$

Average of $\prod_{p \mid d} c_{p}\left(E_{d}\right)^{k}$

- For all $p \mid d$, Tate's algorithm implies:
$c_{p}\left(E_{d}\right)=1+$ the number of roots of $F=x^{3}+A x+B$ in \mathbb{F}_{p}

Average of $\prod_{p \mid d} c_{p}\left(E_{d}\right)^{k}$

- For all $p \mid d$, Tate's algorithm implies:

$$
c_{p}\left(E_{d}\right)=1+\text { the number of roots of } F=x^{3}+A x+B \text { in } \mathbb{F}_{p}
$$

There are 3 cases:

- $F(x)$ has 3 roots in $\mathbb{Q} \rightsquigarrow c_{p}\left(E_{d}\right)=4$.
- $F(x)$ has 1 root in $\mathbb{Q} \rightsquigarrow c_{p}\left(E_{d}\right)=1$ or 4 depending on some congruences classes of p.
- $F(x)$ has no root in $\mathbb{Q} \rightsquigarrow c_{p}\left(E_{d}\right)=1,2$ or 4 with some density for each possibilities.

Average of $\prod_{p \mid d} c_{p}\left(E_{d}\right)^{k}$

In the first cases, we are led to estimate sums of the form:

$$
\sum_{\substack{n<T \\ n \text { squarefree } \\ n \equiv a \bmod N}}\left(\prod_{j \in(\mathbb{Z} / N \mathbb{Z}) \times} t_{j}^{|\{p \mid n, p \equiv j \bmod N\}|}\right)
$$

where the $\left(t_{j}\right)_{j}$ are non-negative numbers.

Average of $\prod_{p \mid d} c_{p}\left(E_{d}\right)^{k}$

In the first cases, we are led to estimate sums of the form:

$$
*(T)=\sum_{\substack{n<T \\ n \text { squarefree } \\ n \equiv a \bmod N}}\left(\prod_{j \in(\mathbb{Z} / N \mathbb{Z})^{\times}} t_{j}^{|\{p \mid n, p \equiv j \bmod N\}|}\right)
$$

where the $\left(t_{j}\right)_{j}$ are non-negative numbers.

Theorem

$$
*(T) \sim \text { Cst } T \log (T)^{t-1}
$$

where $t=\frac{1}{\varphi(N)} \sum_{j \in(\mathbb{Z} / N \mathbb{Z})^{\times}} t_{j}$ is the average of the t_{j} and:

$$
\text { Cst }=\frac{1}{\varphi(N) \Gamma(t)} \prod_{p \mid N}(1-1 / p)^{t} \prod_{j} \prod_{p \equiv j \bmod N}\left(1+t_{j} / p\right)(1-1 / p)^{t_{j}}
$$

Even case

- Finally, we are led to make the following conjecture:

Conjecture

There exists $C_{k}>0$ such that:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} Ш_{a}\left(E_{d}\right)^{k} \sim C_{k} T^{\frac{k}{2}}(\log T)^{\frac{k(k-1)}{2}+\operatorname{tam}_{k}}
$$

Even case

- Finally, we are led to make the following conjecture:

Conjecture

There exists $C_{k}>0$ such that:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} Ш_{a}\left(E_{d}\right)^{k} \sim C_{k} T^{\frac{k}{2}}(\log T)^{\frac{k(k-1)}{2}+\operatorname{tam}_{k}}
$$

Let L be the field of decomposition of $x^{3}+A x+B$ over \mathbb{Q}.
If $[L: \mathbb{Q}]=1$ then $\operatorname{tam}_{k}=4^{-k}-1$.
If $[L: \mathbb{Q}]=2$ then $\operatorname{tam}_{k}=\frac{1}{2}\left(2^{-k}+4^{-k}\right)-1$.
If $[L: \mathbb{Q}]=3$ then $\operatorname{tam}_{k}=\frac{4^{-k}}{3}+\frac{2}{3}-1$.
If $[L: \mathbb{Q}]=6$ then $\operatorname{tam}_{k}=\frac{4^{-k}}{6}+\frac{2^{-k}}{2}+\frac{1}{3}-1$.

Numerical Check

- Need to compute $L\left(E_{d}, 1\right)$, then:

$$
Ш_{a}\left(E_{d}\right)=\frac{L\left(E_{d}, 1\right)}{\Omega \sqrt{|d|}} \prod_{p \mid d} \frac{1}{c_{p}\left(E_{d}\right)}
$$

Numerical Check

- Need to compute $L\left(E_{d}, 1\right)$, then:

$$
Ш_{a}\left(E_{d}\right)=\frac{L\left(E_{d}, 1\right)}{\Omega \sqrt{|d|}} \prod_{p \mid d} \frac{1}{c_{p}\left(E_{d}\right)}
$$

Theorem (Kohnen)
$L\left(E_{d}, 1\right)=(*) b(|d|)^{2}$, where
$\sum b(|d|) q^{|d|}$ is a weight $3 / 2$ modular form

Numerical Check

- Need to compute $L\left(E_{d}, 1\right)$, then:

$$
Ш_{a}\left(E_{d}\right)=\frac{L\left(E_{d}, 1\right)}{\Omega \sqrt{|d|}} \prod_{p \mid d} \frac{1}{c_{p}\left(E_{d}\right)}
$$

Theorem (Kohnen)

$L\left(E_{d}, 1\right)=(*) b(|d|)^{2}$, where

$$
\sum b(|d|) q^{|d|} \text { is a weight } 3 / 2 \text { modular form }
$$

- Example:

$$
E=32 a 2: y^{2}=x^{3}-x
$$

The conjecture is:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} \amalg_{a}\left(E_{d}\right)^{k} \sim C_{k} T^{\frac{k}{2}}(\log T)^{\frac{k(k-1)}{2}+4^{-k}-1}
$$

- An other application: the number of (no) extra-rank:

$$
\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right)=0\right\}\right| \text { or }\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right) \geq 2\right\}\right|
$$

- An other application: the number of (no) extra-rank:

$$
\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right)=0\right\}\right| \text { or }\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right) \geq 2\right\}\right|
$$

No extra-rank

$$
\begin{array}{rlcl}
\left|\left\{d \in \mathcal{F}(T), \quad L\left(E_{d}, 1\right) \neq 0\right\}\right| & \gg T^{1-\varepsilon} & & \text { (Ono-Skinner) } \\
& \gg & \text { for some } E \text { (several authors) } \\
& \sim|\mathcal{F}(T)| & & \text { conjecturally (Goldfeld - BSD) }
\end{array}
$$

- An other application: the number of (no) extra-rank:

$$
\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right)=0\right\}\right| \text { or }\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right) \geq 2\right\}\right|
$$

No extra-rank

$$
\begin{array}{rlcl}
\left|\left\{d \in \mathcal{F}(T), \quad L\left(E_{d}, 1\right) \neq 0\right\}\right| & \gg T^{1-\varepsilon} & & \text { (Ono-Skinner) } \\
& \gg & T & \text { for some } E \text { (several authors) } \\
& \sim|\mathcal{F}(T)| & & \text { conjecturally (Goldfeld - BSD) }
\end{array}
$$

Extra-rank

$$
\begin{aligned}
\left|\left\{d \in \mathcal{F}(T), \quad r_{d} \geq 2\right\}\right| & \gg T^{1 / 2-\varepsilon} \quad \text { under BSD (Gouvêa-Mazur) } \\
& \gg T^{3 / 4-\varepsilon} \quad \text { conjecturally (C.K.R.S.) }
\end{aligned}
$$

- An other application: the number of (no) extra-rank:

$$
\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right)=0\right\}\right| \text { or }\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right) \geq 2\right\}\right|
$$

No extra-rank

$$
\begin{aligned}
&\left|\left\{d \in \mathcal{F}(T), \quad L\left(E_{d}, 1\right) \neq 0\right\}\right| \gg T^{1-\varepsilon} \\
& \text { (Ono-Skinner) } \\
& \gg \\
& \sim|\mathcal{F}(T)| \\
& \text { for some } E \text { (several authors) } \\
& \sim
\end{aligned}
$$

Extra-rank

$$
\begin{aligned}
\left|\left\{d \in \mathcal{F}(T), r_{d} \geq 2\right\}\right| & \gg T^{1 / 2-\varepsilon} \quad \text { under BSD (Gouvêa-Mazur) } \\
& \gg T^{3 / 4-\varepsilon} \quad \text { conjecturally (C.K.R.S.) }
\end{aligned}
$$

Conjecture (Conrey, Keating, Rubinstein and Snaith)

There exist $C_{E}>0$ and $b_{E} \in \mathbb{R}$ such that :

$$
\frac{\left|\left\{d \in \mathcal{F}(T), r_{d} \geq 2\right\}\right|}{|\mathcal{F}(T)|} \sim C_{E} T^{-1 / 4}(\log T)^{b_{E}}
$$

- An other application: the number of (no) extra-rank:

$$
\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right)=0\right\}\right| \text { or }\left|\left\{d \in \mathcal{F}(T), r\left(E_{d}\right) \geq 2\right\}\right|
$$

No extra-rank

$$
\begin{aligned}
&\left|\left\{d \in \mathcal{F}(T), \quad L\left(E_{d}, 1\right) \neq 0\right\}\right| \gg T^{1-\varepsilon} \\
& \text { (Ono-Skinner) } \\
& \gg \\
& \sim|\mathcal{F}(T)| \\
& \text { for some } E \text { (several authors) } \\
& \sim
\end{aligned}
$$

Extra-rank

$$
\begin{aligned}
\left|\left\{d \in \mathcal{F}(T), r_{d} \geq 2\right\}\right| & \gg T^{1 / 2-\varepsilon} \quad \text { under BSD (Gouvêa-Mazur) } \\
& \gg T^{3 / 4-\varepsilon} \quad \text { conjecturally (C.K.R.S.) }
\end{aligned}
$$

Conjecture (Conrey, Keating, Rubinstein and Snaith)

There exist $C_{E}>0$ and $b_{E} \in \mathbb{R}$ such that :

$$
\frac{\left|\left\{d \in \mathcal{F}(T), \quad r_{d} \geq 2\right\}\right|}{|\mathcal{F}(T)|} \sim C_{E} T^{-1 / 4}(\log T)^{b_{E}}
$$

\rightsquigarrow We will discuss about b_{E}.

- RMT model: $\quad \operatorname{prob}\left(L\left(E_{d}, 1\right)<x\right) \approx \sqrt{x}(\log |d|)^{3 / 8} \quad($ as $x \rightarrow 0)$.
- RMT model: $\quad \operatorname{prob}\left(L\left(E_{d}, 1\right)<x\right) \approx \sqrt{x}(\log |d|)^{3 / 8} \quad($ as $x \rightarrow 0)$.
- The discretisation model: $Ш_{a}\left(E_{d}\right)<1 \Leftrightarrow L\left(E_{d}, 1\right)=0$.
- RMT model: $\quad \operatorname{prob}\left(L\left(E_{d}, 1\right)<x\right) \approx \sqrt{x}(\log |d|)^{3 / 8}($ as $x \rightarrow 0)$.
- The discretisation model: $Ш_{a}\left(E_{d}\right)<1 \Leftrightarrow L\left(E_{d}, 1\right)=0$.

$$
\begin{aligned}
& \text { We predict: } \\
& \qquad \operatorname{prob}\left(L\left(E_{d}, 1\right)=0\right)=\operatorname{prob}\left(L\left(E_{d}, 1\right)<\frac{\Omega}{\sqrt{|d|}} \prod_{p \mid d} c_{p}\left(E_{d}\right)\right)
\end{aligned}
$$

- RMT model: $\quad \operatorname{prob}\left(L\left(E_{d}, 1\right)<x\right) \approx \sqrt{x}(\log |d|)^{3 / 8}($ as $x \rightarrow 0)$.
- The discretisation model: $Ш_{a}\left(E_{d}\right)<1 \Leftrightarrow L\left(E_{d}, 1\right)=0$.

$$
\begin{aligned}
& \text { We predict: } \\
& \qquad \begin{aligned}
\operatorname{prob}\left(L\left(E_{d}, 1\right)=0\right) & =\operatorname{prob}\left(L\left(E_{d}, 1\right)<\frac{\Omega}{\sqrt{|d|}} \prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \\
& \approx \frac{\log (|d|)^{3 / 8}}{|d|^{1 / 4}} \sqrt{\prod_{p \mid d} c_{p}\left(E_{d}\right)}
\end{aligned}
\end{aligned}
$$

- RMT model: $\operatorname{prob}\left(L\left(E_{d}, 1\right)<x\right) \approx \sqrt{x}(\log |d|)^{3 / 8} \quad$ (as $\left.x \rightarrow 0\right)$.
- The discretisation model: $Ш_{a}\left(E_{d}\right)<1 \Leftrightarrow L\left(E_{d}, 1\right)=0$.

$$
\begin{aligned}
& \text { We predict: } \\
& \qquad \begin{aligned}
\operatorname{prob}\left(L\left(E_{d}, 1\right)=0\right) & =\operatorname{prob}\left(L\left(E_{d}, 1\right)<\frac{\Omega}{\sqrt{|d|}} \prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \\
& \approx \frac{\log (|d|)^{3 / 8}}{|d|^{1 / 4}} \sqrt{\prod_{p \mid d} c_{p}\left(E_{d}\right)}
\end{aligned}
\end{aligned}
$$

We get:

$$
\frac{\left|\left\{d \in \mathcal{F}(T), L\left(E_{d}, 1\right)=0\right\}\right|}{|\mathcal{F}(T)|} \approx \frac{1}{T} \sum_{d \in \mathcal{F}(T)} \frac{\log (|d|)^{3 / 8}}{|d|^{1 / 4}} \prod_{p \mid d} \sqrt{c_{p}\left(E_{d}\right)}
$$

- RMT model: $\quad \operatorname{prob}\left(L\left(E_{d}, 1\right)<x\right) \approx \sqrt{x}(\log |d|)^{3 / 8} \quad($ as $x \rightarrow 0)$.
- The discretisation model: $Ш_{a}\left(E_{d}\right)<1 \Leftrightarrow L\left(E_{d}, 1\right)=0$.

We predict:

$$
\begin{aligned}
\operatorname{prob}\left(L\left(E_{d}, 1\right)=0\right) & =\operatorname{prob}\left(L\left(E_{d}, 1\right)<\frac{\Omega}{\sqrt{|d|}} \prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \\
& \approx \frac{\log (|d|)^{3 / 8}}{|d|^{1 / 4}} \sqrt{\prod_{p \mid d} c_{p}\left(E_{d}\right)}
\end{aligned}
$$

We get:

$$
\frac{\left|\left\{d \in \mathcal{F}(T), L\left(E_{d}, 1\right)=0\right\}\right|}{|\mathcal{F}(T)|} \approx \frac{1}{T} \sum_{d \in \mathcal{F}(T)} \frac{\log (|d|)^{3 / 8}}{|d|^{1 / 4}} \prod_{p \mid d} \sqrt{c_{p}\left(E_{d}\right)}
$$

So, by partial summation:

$$
\frac{\left|\left\{d \in \mathcal{F}(T), L\left(E_{d}, 1\right)=0\right\}\right|}{|\mathcal{F}(T)|} \approx \frac{(\log T)^{3 / 8}}{T^{1 / 4}}\left(\frac{1}{T} \sum_{d \in \mathcal{F}(T)} \prod_{p \mid d} \sqrt{c_{p}\left(E_{d}\right)}\right)
$$

CKRS Conjecture

$$
E: y^{2}=F(x)
$$

Assume that E is a curve having maximal rational 2 torsion sub-group in its isogeny class.

CKRS Conjecture

$$
E: y^{2}=F(x)
$$

Assume that E is a curve having maximal rational 2 torsion sub-group in its isogeny class.

Heuristics (joint work with M. Watkins)

$$
\frac{\left|\left\{d \in \mathcal{F}(T), L\left(E_{d}, 1\right)=0\right\}\right|}{|\mathcal{F}(T)|} \sim C_{E} T^{-1 / 4}(\log T)^{b_{E}}
$$

where:

- $b_{E}=3 / 8+1$ if $F(x)$ has 3 roots in \mathbb{Q}.
- $b_{E}=3 / 8+\sqrt{2} / 2$ if $F(x)$ has 1 root in \mathbb{Q}.
- $b_{E}=3 / 8+1 / 3$ or $3 / 8+\sqrt{2} / 2-1 / 3$ otherwise.

Example

$$
E=32 a 2: y=x^{3}-x
$$

The heuristic predicts that:

$$
\frac{\left|\left\{d \in \mathcal{F}(T), \quad L\left(E_{d}, 1\right)=0\right\}\right|}{|\mathcal{F}(T)|} \sim C_{E} T^{-1 / 4}(\log T)^{3 / 8+1}
$$

- Compare the numerical data $\left(T=10^{8}\right)$ and the heuristic.
- Problem: we are not able to predict the constant C_{E}.

We adjust the constant C_{E} such that the numerical data and the heuristic agree for $T=5 \times 10^{7}$.

Discussion

- In the discretisation process, it is implicitly assumed that the arithmetic of $\amalg\left(E_{d}\right)$ does not give any contribution to the powers of \log.

Discussion

- In the discretisation process, it is implicitly assumed that the arithmetic of $\amalg\left(E_{d}\right)$ does not give any contribution to the powers of \log.

But it could! As it is the case if we do not consider the good curve it its isogeny class.

Discussion

- In the discretisation process, it is implicitly assumed that the arithmetic of $\amalg\left(E_{d}\right)$ does not give any contribution to the powers of \log.

But it could! As it is the case if we do not consider the good curve it its isogeny class.

- In fact, $\amalg\left(E_{d}\right)$ is believed to have no influence on the powers of \log but it takes a long time for the 2-part of $\amalg\left(E_{d}\right)$ before it behaves as expected.

For our example, the Cohen-Lenstra heuristics for $\amalg\left(E_{d}\right)$ assert that the probability that $p \mid \amalg_{a}\left(E_{d}\right)$ is :

$$
f(p)=1-\prod_{j \geq 1}\left(1-p^{1-2 j}\right)=\frac{1}{p}+\frac{1}{p^{3}}+\cdots
$$

For our example, the Cohen-Lenstra heuristics for $\amalg\left(E_{d}\right)$ assert that the probability that $p \mid \amalg_{a}\left(E_{d}\right)$ is :

$$
f(p)=1-\prod_{j \geq 1}\left(1-p^{1-2 j}\right)=\frac{1}{p}+\frac{1}{p^{3}}+\cdots
$$

p	32a2	predictions
2	0.4357	0.5805
3	0.3579	0.3609
5	0.2076	0.2066
7	0.1483	0.1454

Numerical values for $T=10^{8}$

For our example, the Cohen-Lenstra heuristics for $\amalg\left(E_{d}\right)$ assert that the probability that $p \mid Ш_{a}\left(E_{d}\right)$ is :

$$
f(p)=1-\prod_{j \geq 1}\left(1-p^{1-2 j}\right)=\frac{1}{p}+\frac{1}{p^{3}}+\cdots
$$

p	32a2	predictions
2	0.4357	0.5805
3	0.3579	0.3609
5	0.2076	0.2066
7	0.1483	0.1454

Numerical values for $T=10^{8}$
A theorem of Heath-Brown (and the BSD and Goldfeld conjecture) implies that the correct red value for $T=\infty$ is given by the predictions.

For our example, the Cohen-Lenstra heuristics for $\amalg\left(E_{d}\right)$ assert that the probability that $p \mid Ш_{a}\left(E_{d}\right)$ is :

$$
f(p)=1-\prod_{j \geq 1}\left(1-p^{1-2 j}\right)=\frac{1}{p}+\frac{1}{p^{3}}+\cdots
$$

p	32a2	predictions
2	0.4357	0.5805
3	0.3579	0.3609
5	0.2076	0.2066
7	0.1483	0.1454

Numerical values for $T=10^{8}$
A theorem of Heath-Brown (and the BSD and Goldfeld conjecture) implies that the correct red value for $T=\infty$ is given by the predictions.

But, the d 's need to have a lot of prime factor for this to happen. Hence, the discriminants must be very large!!

Example: We only consider d such that $\omega(d) \geq 5$ for $32 A 2$.

Discussion

- We can also compare the heuristic with the odd part of $\amalg_{a}\left(E_{d}\right)$.

Discussion

- We can also compare the heuristic with the odd part of $\amalg_{a}\left(E_{d}\right)$.
- Indeed, the same arguments works if we count:

$$
\frac{\mid\left\{d \in \mathcal{F}(T), Ш_{a}\left(E_{d}\right) \text { is odd and } \amalg\left(E_{d}\right)_{a} \leq 1\right\} \mid}{\mid\left\{d \in \mathcal{F}(T), Ш_{a}\left(E_{d}\right) \text { is odd }\right\} \mid}
$$

Discussion

- We can also compare the heuristic with the odd part of $Ш_{a}\left(E_{d}\right)$.
- Indeed, the same arguments works if we count:

$$
\frac{\mid\left\{d \in \mathcal{F}(T), Ш_{a}\left(E_{d}\right) \text { is odd and } \amalg\left(E_{d}\right)_{a} \leq 1\right\} \mid}{\mid\left\{d \in \mathcal{F}(T), Ш_{a}\left(E_{d}\right) \text { is odd }\right\} \mid}
$$

Question: Have we

$$
\frac{\left|\left\{d \in \mathcal{F}(T), \quad Ш_{a}\left(E_{d}\right)=1\right\}\right|}{\mid\left\{d \in \mathcal{F}(T), Ш_{a}\left(E_{d}\right) \text { is odd }\right\} \mid} \approx T^{-1 / 4}(\log T)^{3 / 8+1} ?
$$

Example: $E=32 a 2$

Odd case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=\varepsilon(E)$.

Odd case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\mathcal{F}(T)=\left\{d<0,|d| \leq T \text {, fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\}
$$

Odd case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\begin{aligned}
& \mathcal{F}(T)=\left\{d<0,|d| \leq T, \text { fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\} \\
& \rightarrow \varepsilon\left(E_{d}\right)=-1
\end{aligned}
$$

Odd case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\begin{aligned}
& \mathcal{F}(T)=\left\{d<0,|d| \leq T, \text { fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\} \\
& \rightarrow \varepsilon\left(E_{d}\right)=-1
\end{aligned}
$$

- Define $\amalg_{a}\left(E_{d}\right)$ by:

$$
L^{\prime}\left(E_{d}, 1\right)=\frac{\Omega\left(E_{d}\right) \prod_{p \mid N d^{2}} c_{p}\left(E_{d}\right)}{\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|^{2}} R\left(E_{d}\right) \amalg_{a}\left(E_{d}\right)
$$

where $R\left(E_{d}\right)$ is the regulator of E_{d}.

Odd case

- For all $p \mid N$, fix a sign $\varepsilon_{p}= \pm 1$ such that: $\prod_{p \mid N} \varepsilon_{p}=\varepsilon(E)$.
- Consider the family of elliptic curves $\left(E_{d}\right)_{d \in \mathcal{F}(\infty)}$ where:

$$
\begin{aligned}
& \mathcal{F}(T)=\left\{d<0,|d| \leq T \text {, fund. discr. such that }\left(\frac{d}{p}\right)=\varepsilon_{p}\right\} \\
\rightarrow & \varepsilon\left(E_{d}\right)=-1
\end{aligned}
$$

- Define $\amalg_{a}\left(E_{d}\right)$ by:

$$
L^{\prime}\left(E_{d}, 1\right)=\frac{\Omega\left(E_{d}\right) \prod_{p \mid N d^{2}} c_{p}\left(E_{d}\right)}{\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|^{2}} R\left(E_{d}\right) \amalg_{a}\left(E_{d}\right)
$$

where $R\left(E_{d}\right)$ is the regulator of E_{d}.
So $\amalg_{a}\left(E_{d}\right)=0$ if $L^{\prime}\left(E_{d}, 1\right)=0$ and $Ш_{a}\left(E_{d}\right)=\left|\amalg\left(E_{d}\right)\right|$ otherwise (by the Birch and Swinnerton-Dyer conjecture).

Odd case

Conjecture (N. Snaith)

We have, as $T \rightarrow \infty$:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} L^{\prime}\left(E_{d}, 1\right)^{k} \sim A_{k}(\log T)^{k(k+1) / 2}
$$

- A_{k} comes from RMT and an arithmetic factor.

What are the consequences on $R\left(E_{d}\right)$?

Odd case

Proposition

For $|d|$ large enough, we have:

$$
L^{\prime}\left(E_{d}, 1\right)=1^{*} \frac{\Omega}{\sqrt{|d|}}\left(\prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \amalg_{a}\left(E_{d}\right) R\left(E_{d}\right)
$$

- Ω depends on the choice ε_{p}.
- $1^{*}=2$ if $8 \mid d$ and c_{4} is even and $1^{*}=1$ otherwise.

Odd case

Proposition

For $|d|$ large enough, we have:

$$
L^{\prime}\left(E_{d}, 1\right)=1^{*} \frac{\Omega}{\sqrt{|d|}}\left(\prod_{p \mid d} c_{p}\left(E_{d}\right)\right) \amalg_{a}\left(E_{d}\right) R\left(E_{d}\right)
$$

- Ω depends on the choice ε_{p}.
- $1^{*}=2$ if $8 \mid d$ and c_{4} is even and $1^{*}=1$ otherwise.
- By partial summation on $\sum_{d \in \mathcal{F}(T)} L^{\prime}\left(E_{d}, 1\right)^{k}$, we get:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{d \in \mathcal{F}(T)} R\left(E_{d}\right)^{k} \amalg_{a}\left(E_{d}\right)^{k} \prod_{p \mid d} c_{p}\left(E_{d}\right)^{k} \sim B_{k} T^{k / 2}(\log T)^{\frac{k(k+1)}{2}}
$$

for some B_{k}.

Average of $\amalg_{a}\left(E_{d}\right)^{k}$

- Heuristics on $W \rightsquigarrow$ If $0<k<1$ then:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}}\left|\amalg_{a}\left(E_{d}\right)\right|^{k} \rightarrow \operatorname{Cst}(k)
$$

Average of $\amalg_{a}\left(E_{d}\right)^{k}$

- Heuristics on $Ш \rightsquigarrow$ If $0<k<1$ then:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}}\left|\amalg_{a}\left(E_{d}\right)\right|^{k} \rightarrow \operatorname{Cst}(k)
$$

Hence:

Heuristics (joint work with X.-F. Roblot)

For $0<k<1$:

$$
M_{k}(T)=\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}} R\left(E_{d}\right)^{k} \sim A_{k} T^{\frac{k}{2}}(\log T)^{\frac{k(k+1)}{2}+\operatorname{tam}_{\mathrm{k}}}
$$

Average of $\amalg_{a}\left(E_{d}\right)^{k}$

- Heuristics on $Ш \rightsquigarrow$ If $0<k<1$ then:

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}}\left|\amalg_{a}\left(E_{d}\right)\right|^{k} \rightarrow \operatorname{Cst}(k)
$$

Hence:

Heuristics (joint work with X.-F. Roblot)

For $0<k<1$:

$$
M_{k}(T)=\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}} R\left(E_{d}\right)^{k} \sim A_{k} T^{\frac{k}{2}}(\log T)^{\frac{k(k+1)}{2}+\operatorname{tam}_{\mathrm{k}}}
$$

Let $F(x)=x^{3}+A x+B$.

- $\operatorname{tam}_{\mathrm{k}}=4^{-k}-1$ if $F(x)$ has 3 roots in \mathbb{Q}.
- $\operatorname{tam}_{\mathrm{k}}=\frac{1}{2}\left(2^{-k}+4^{-k}\right)-1$ if $F(x)$ has 1 root in \mathbb{Q}.
- $\operatorname{tam}_{\mathrm{k}}=\frac{4^{-k}}{3}+\frac{2}{3}-1$ or $\operatorname{tam}_{\mathrm{k}}=\frac{4^{-k}}{6}+\frac{2^{-k}}{2}+\frac{1}{3}-1$ otherwise.

Upper bounds

- Lindelöf \Rightarrow

$$
R\left(E_{d}\right) \ll|d|^{1 / 2+\varepsilon}
$$

Proposition

N square-free, $\varepsilon_{p}=+1, \forall p \mid N, L(E, 1) \neq 0$ then

$$
\frac{1}{T^{*}} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}} R\left(E_{d}\right) \ll T^{1 / 2} \log T
$$

Lower bounds

Proposition

We have

$$
R\left(E_{d}\right)>\frac{1}{3} \log |d|+O(1)
$$

If $j(E) \neq 0,1728$ and $w_{p}=+1, \forall p \mid N$:

$$
R\left(E_{d}\right)>\frac{1}{1296 c(E)^{2}} \log |d|
$$

Lower bounds

Proposition

We have

$$
R\left(E_{d}\right)>\frac{1}{3} \log |d|+O(1)
$$

If $j(E) \neq 0,1728$ and $w_{p}=+1, \forall p \mid N$:

$$
R\left(E_{d}\right)>\frac{1}{1296 c(E)^{2}} \log |d|
$$

Optimal: $E: y^{2}=x^{3}+A x+B=F(x)$.
The point $(r, 1) \in E_{F(r)}$ and $h \approx \log (F(r))$.

Lower bounds

Proposition

We have

$$
R\left(E_{d}\right)>\frac{1}{3} \log |d|+O(1)
$$

If $j(E) \neq 0,1728$ and $w_{p}=+1, \forall p \mid N$:

$$
R\left(E_{d}\right)>\frac{1}{1296 c(E)^{2}} \log |d|
$$

Optimal: $E: y^{2}=x^{3}+A x+B=F(x)$.
The point $(r, 1) \in E_{F(r)}$ and $h \approx \log (F(r))$.
Example: $E=11 a 1$.

Numerical check

$$
L^{\prime}\left(E_{d}, 1\right)=\frac{\Omega}{\sqrt{|d|}} c\left(E_{d}\right) R\left(E_{d}\right) Ш_{a}\left(E_{d}\right)
$$

\rightarrow If $L^{\prime}\left(E_{d}, 1\right) \neq 0$ then:

$$
\begin{aligned}
& E_{d}(\mathbb{Q})=<G_{d}>\oplus \text { Torsion } \\
& R\left(E_{d}\right)=2 h\left(G_{d}\right) \rightsquigarrow \text { find } G_{d} \in E_{d}(\mathbb{Q}) .
\end{aligned}
$$

Numerical check

$$
L^{\prime}\left(E_{d}, 1\right)=\frac{\Omega}{\sqrt{|d|}} c\left(E_{d}\right) R\left(E_{d}\right) \amalg_{a}\left(E_{d}\right)
$$

\rightarrow If $L^{\prime}\left(E_{d}, 1\right) \neq 0$ then:

$$
\begin{aligned}
& E_{d}(\mathbb{Q})=<G_{d}>\oplus \text { Torsion } \\
& R\left(E_{d}\right)=2 h\left(G_{d}\right) \rightsquigarrow \text { find } G_{d} \in E_{d}(\mathbb{Q}) .
\end{aligned}
$$

- Efficient algorithm for computing G_{d} and $\amalg_{a}\left(E_{d}\right)$ at "the same time".

Example

- Finding G_{d} might be complicated:
$E=11 a 1$ and $d=-1482139$ then (on the minimal model of E_{d}), the abscissa of G_{d} is a rational number such that the numerator and the denominator have ≈ 4320 digits.

And we have : $h\left(E_{d}\right) \approx 9945$.

The numerator of the abscissa of G_{d} is：

2626914163715788373011505693935892465023966285938661623601264958911869710379354821953092228638535709852293922347110 6420693712053799494480957073655050549865973802093302989718994909926085639138521038658387204788969769251829399796376 4230777576140746007001964179159051838221723260217040933423895649679116537266751298303983204220906012167999049681943 2108991850150658469745715485018157989425059588099902104506237536755932925212260557543980051042248814313543553611755 5672877245151326681176620288243743524056666985243046716469271070623979945599500346476075858500767502038588420404741 9615371391071481209937700164975500656691341301117104970941950706763906686415519511398962660874547910208479223761929 7761749441604129930611161529596386056770885057395910471323268713422324228498945306825193761031392864659083178145638 3774034353843313425839451564297663444413589794397666733867803807991851676979482798464903862779903272771125226295396 0709689740806143073222814107041284537473799552472764839194453658808773832989893688133541522076612422285990507198063 9510183749886296789770894175715647798283423515665420127733040056233824808518143038370234558383538634382301040369902 3384802026992740136979769212794545558294822953071468751299836164017907574577661932659762200617526126153077658585554 6506848426645947354728074428162850406554997749157979760331199284302706221388160329039473907019625204959272452574621 8565155659936296955635869761121428551882586654287174878845261760534253181742705464839421275785352400703757690821627 8729908445749796095058136683283297990823308660881695705693600506151097743450867210750226106934157947251454339324643 1896365575013300472586584088202371076890770213739490399091491035034421458336966017108095663635120522776551890717176 6324013327755325819598972996555371068716551397929945109583076385853055605483613471909490886804373891207635242935486 3562692429868333526981388733828283090720213679042919762988507511291676927852877078409469500378725533620588950046510 4539077376239399832524948429671217408367486407765029101408636433205913375104630646129499231160387406474276549966455 7146932030099694430181933164433607927908520505959965338952219957224400854805416114558287197204880545163181227070759 2291971199767322171293729717201194556921005439582013351208129165164869952015234653384880391020482126016211616158829 0525324015939990133108219487354120601177277210167053043521508566198488469274252797538933315924130306794617092796978 2214754047924299473188264050939657419190144275499605206771491607561986665865446762819097190730153789415929434242751 1161897986015746995414991912002116682060842953350351358746265884661776962865691110732960200995585372328157986921482 4719960632571110184671545544726356557924129018443729810065391978502824027745319795173285076102000129252997887065814 8524230661940882793375948201245422737230827618305971638652956620085299679663239209642651113642955951391398230101203 2989050096212602092859688863494997027249550204185803656206656437111399084814788373832313294456657156941686731623322 8248670554466475423467659409128012712077245480899021213905233386864797834788876769927462606380486703546640046629280 3776710374762911549582788008601648701036127577455676693903491106075703378556103344060316663197368770494076563561504 7306981954278922506892815316324486705269952776839705746316794522675847606228109369608162847599501680588151435914265 4180110613422257226637950363225313969002836163239902628408564276997318997078027927418322490270189548644677308357492 9912511549691379149687464162780237142683963750252696660342758869083702649684482358846234344722332741393085759800608 5644022660014457290370173670762559115239593800900725738986249333193105522023360140990051347321614435850671512753176 3295436771738486310505677924931633140121575598952505349068669498680453445072001471864457954529223066758283674614435 6631252476359856334626086714945439031204045142932868406026326950066262489966073930355969958625432977008966902630647 6436225091423987050724457858068127731256011891884596417259739911365870961345765213172391374837585094642732811401268 4486272433157144064127958544081465734907879675192397684715695935004573362169655253163121796284297291028115020174376 0764250644544308635332608897691702824683304398292965971149674453665597467860662180837903081427108202797099114452001 3302480275087559359344739432483804353059317517459045362960801012949009

The method

- We must have $L(E, 1) \neq 0$.
- We take $\varepsilon_{p}=+1$ for all $p \mid N$.

Step 1

- Compute the class group $C l(d)$ of $\mathbb{Q}(\sqrt{d})$.

Step 1

- Compute the class group $C l(d)$ of $\mathbb{Q}(\sqrt{d})$.
\rightsquigarrow For each $[\mathfrak{a}] \in C l(d)$, let $\tau_{[\mathfrak{a}]} \in X_{0}(N)$ the "Heegner point".

Step 1

- Compute the class group $C l(d)$ of $\mathbb{Q}(\sqrt{d})$.
\rightsquigarrow For each $[\mathfrak{a}] \in C l(d)$, let $\tau_{[\mathfrak{a}]} \in X_{0}(N)$ the "Heegner point".
\rightsquigarrow Compute $\quad P_{d}=\sum_{[a]} \varphi\left(\tau_{[a]}\right) \in E(\mathbb{C})$.
where

$$
\varphi: X_{0}(N)=\Gamma_{0}(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})
$$

is the modular parametrization of E.

Step 1

- Compute the class group $C l(d)$ of $\mathbb{Q}(\sqrt{d})$.
\rightsquigarrow For each $[\mathfrak{a}] \in C l(d)$, let $\tau_{[\mathfrak{a}]} \in X_{0}(N)$ the "Heegner point".
\rightsquigarrow Compute $\quad P_{d}=\sum_{[a]} \varphi\left(\tau_{[a]}\right) \in E(\mathbb{C})$.
where

$$
\varphi: X_{0}(N)=\Gamma_{0}(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})
$$

is the modular parametrization of E.

- The point $P_{d} \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point.

Step 1

- Compute the class group $C l(d)$ of $\mathbb{Q}(\sqrt{d})$.
\rightsquigarrow For each $[\mathfrak{a}] \in C l(d)$, let $\tau_{[\mathfrak{a}]} \in X_{0}(N)$ the "Heegner point".
\rightsquigarrow Compute $\quad P_{d}=\sum_{[a]} \varphi\left(\tau_{[a]}\right) \in E(\mathbb{C})$.
where

$$
\varphi: X_{0}(N)=\Gamma_{0}(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})
$$

is the modular parametrization of E.

- The point $P_{d} \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point. In order to recognize it, for each $[\mathfrak{a}] \in C l(d)$ we have to evaluate a polynomial with $O\left(h\left(P_{d}\right)\right)$ coefficients.

Step 1

- Compute the class group $C l(d)$ of $\mathbb{Q}(\sqrt{d})$.
\rightsquigarrow For each $[\mathfrak{a}] \in C l(d)$, let $\tau_{[\mathfrak{a}]} \in X_{0}(N)$ the "Heegner point".
\rightsquigarrow Compute $\quad P_{d}=\sum_{[a]} \varphi\left(\tau_{[a]}\right) \in E(\mathbb{C})$.
where

$$
\varphi: X_{0}(N)=\Gamma_{0}(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})
$$

is the modular parametrization of E.

- The point $P_{d} \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point. In order to recognize it, for each $[\mathfrak{a}] \in C l(d)$ we have to evaluate a polynomial with $O\left(h\left(P_{d}\right)\right)$ coefficients.
\rightsquigarrow This requires $O\left(|C l(d)| h\left(P_{d}\right)\right)=O\left(|d|^{1+\varepsilon}\right)$ steps.

Step 1

- Compute the class group $C l(d)$ of $\mathbb{Q}(\sqrt{d})$.
\rightsquigarrow For each $[\mathfrak{a}] \in C l(d)$, let $\tau_{[\mathfrak{a}]} \in X_{0}(N)$ the "Heegner point".
\rightsquigarrow Compute $\quad P_{d}=\sum_{[a]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
where

$$
\varphi: X_{0}(N)=\Gamma_{0}(N) \backslash \overline{\mathbb{H}} \longrightarrow E(\mathbb{C})
$$

is the modular parametrization of E.

- The point $P_{d} \in E(\mathbb{Q}(\sqrt{d}))$ but it appears as a complex point. In order to recognize it, for each $[\mathfrak{a}] \in C l(d)$ we have to evaluate a polynomial with $O\left(h\left(P_{d}\right)\right)$ coefficients.
\rightsquigarrow This requires $O\left(|C l(d)| h\left(P_{d}\right)\right)=O\left(|d|^{1+\varepsilon}\right)$ steps.
(in fact a simultaneous evaluation $\rightsquigarrow O\left(|d|^{1 / 2+\varepsilon}\right)$ steps.)

Step 2

- We have $P_{d}=\sum_{[\mathfrak{a}]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$

Step 2

- We have $P_{d}=\sum_{[\mathfrak{a}]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$
\rightsquigarrow recognize a and b in \mathbb{Q}.

Step 2

- We have $P_{d}=\sum_{[\mathfrak{a}]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$
\rightsquigarrow recognize a and b in \mathbb{Q}.

This step can fail

Step 2

- We have $P_{d}=\sum_{[\mathfrak{a}]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$
\rightsquigarrow recognize a and b in \mathbb{Q}.

This step can fail

- If $h\left(P_{d}\right)$ is large

Step 2

- We have $P_{d}=\sum_{[a]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$
\rightsquigarrow recognize a and b in \mathbb{Q}.

This step can fail

- If $h\left(P_{d}\right)$ is large
\rightsquigarrow increase the precision.

Step 2

- We have $P_{d}=\sum_{[a]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$
\rightsquigarrow recognize a and b in \mathbb{Q}.

This step can fail

- If $h\left(P_{d}\right)$ is large
\rightsquigarrow increase the precision.
- If P_{d} is a torsion point

Step 2

- We have $P_{d}=\sum_{[a]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$
\rightsquigarrow recognize a and b in \mathbb{Q}.

This step can fail

- If $h\left(P_{d}\right)$ is large
- If P_{d} is a torsion point
\rightsquigarrow increase the precision.
$\Leftrightarrow L^{\prime}\left(E_{d}, 1\right)=0$.

Step 2

- We have $P_{d}=\sum_{[a]} \varphi\left(\tau_{[\mathfrak{a}]}\right) \in E(\mathbb{C})$.
- And $P_{d}=(a+b \sqrt{d}, y) \in E(\mathbb{Q}(\sqrt{d}))$
\rightsquigarrow recognize a and b in \mathbb{Q}.

This step can fail

- If $h\left(P_{d}\right)$ is large
\rightsquigarrow increase the precision.
- If P_{d} is a torsion point

Proposition

$$
L^{\prime}\left(E_{d}, 1\right) \leq \frac{\operatorname{vol}(E)|d|^{-1 / 2}}{2592 c(E)^{2} L(E, 1)} \log |d| \Rightarrow L^{\prime}\left(E_{d}, 1\right)=0
$$

Step 3

At this step, P_{d} is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

Step 3

At this step, P_{d} is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

$$
\text { Let } \psi: E \xrightarrow{\sim} E_{d} \text { defined over } \mathbb{Q}(\sqrt{d})
$$

Step 3

At this step, P_{d} is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

$$
\text { Let } \psi: E \xrightarrow{\sim} E_{d} \text { defined over } \mathbb{Q}(\sqrt{d})
$$

Facts

1. $L^{\prime}\left(E_{d}, 1\right) \neq 0$

$$
\rightsquigarrow E_{d}(\mathbb{Q})=\left\langle G_{d}\right\rangle \oplus \text { Torsion. }
$$

Step 3

At this step, P_{d} is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

$$
\text { Let } \psi: E \xrightarrow{\sim} E_{d} \text { defined over } \mathbb{Q}(\sqrt{d})
$$

Facts

1. $L^{\prime}\left(E_{d}, 1\right) \neq 0$

$$
\rightsquigarrow E_{d}(\mathbb{Q})=\left\langle G_{d}\right\rangle \oplus \text { Torsion. }
$$

2. $Q_{d}=\psi\left(P_{d}-\overline{P_{d}}\right) \in E_{d}(\mathbb{Q}) \quad \rightsquigarrow Q_{d}=\ell_{d} G_{d} \bmod$ Torsion.

Step 3

At this step, P_{d} is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

$$
\text { Let } \psi: E \xrightarrow{\sim} E_{d} \text { defined over } \mathbb{Q}(\sqrt{d})
$$

Facts

1. $L^{\prime}\left(E_{d}, 1\right) \neq 0$

$$
\rightsquigarrow E_{d}(\mathbb{Q})=\left\langle G_{d}\right\rangle \oplus \text { Torsion. }
$$

2. $Q_{d}=\psi\left(P_{d}-\overline{P_{d}}\right) \in E_{d}(\mathbb{Q}) \quad \rightsquigarrow Q_{d}=\ell_{d} G_{d} \bmod$ Torsion.
3. $\ell_{d} \neq 0$.

Step 3

At this step, P_{d} is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

$$
\text { Let } \psi: E \xrightarrow{\sim} E_{d} \text { defined over } \mathbb{Q}(\sqrt{d})
$$

Facts

1. $L^{\prime}\left(E_{d}, 1\right) \neq 0$

$$
\rightsquigarrow E_{d}(\mathbb{Q})=\left\langle G_{d}\right\rangle \oplus \text { Torsion. }
$$

2. $Q_{d}=\psi\left(P_{d}-\overline{P_{d}}\right) \in E_{d}(\mathbb{Q}) \quad \rightsquigarrow Q_{d}=\ell_{d} G_{d} \bmod$ Torsion.
3. $\ell_{d} \neq 0$.

- "Divide" Q_{d} by $1,2, \ldots \ell_{d}$ (when possible) until G_{d} is found.

Step 3

At this step, P_{d} is a point of infinite order in $E(\mathbb{Q}(\sqrt{d}))$.

$$
\text { Let } \psi: E \xrightarrow{\sim} E_{d} \text { defined over } \mathbb{Q}(\sqrt{d})
$$

Facts

1. $L^{\prime}\left(E_{d}, 1\right) \neq 0$
$\rightsquigarrow E_{d}(\mathbb{Q})=\left\langle G_{d}\right\rangle \oplus$ Torsion.
2. $Q_{d}=\psi\left(P_{d}-\overline{P_{d}}\right) \in E_{d}(\mathbb{Q}) \quad \rightsquigarrow Q_{d}=\ell_{d} G_{d} \bmod$ Torsion.
3. $\ell_{d} \neq 0$.

- "Divide" Q_{d} by $1,2, \ldots \ell_{d}$ (when possible) until G_{d} is found.

Proposition

$$
\left|\ell_{d}\right|<36 c(E) \sqrt{\frac{2 h\left(Q_{d}\right)}{\log |d|}}
$$

Step 4

At this step, $G_{d}, R\left(E_{d}\right)=h\left(G_{d}\right)$ and ℓ_{d} have been computed.

Step 4

At this step, $G_{d}, R\left(E_{d}\right)=h\left(G_{d}\right)$ and ℓ_{d} have been computed.

- Calculate $\left|\amalg\left(E_{d}\right)\right|$.
$(\mathrm{BSD}) \rightsquigarrow L^{\prime}\left(E_{d}, 1\right)=\frac{\Omega c\left(E_{d}\right)}{\sqrt{|d|}} R\left(E_{d}\right) \quad\left|\amalg\left(E_{d}\right)\right|$.

Step 4

At this step, $G_{d}, R\left(E_{d}\right)=h\left(G_{d}\right)$ and ℓ_{d} have been computed.

- Calculate $\left|\amalg\left(E_{d}\right)\right|$.

$$
(\mathrm{BSD}) \rightsquigarrow L^{\prime}\left(E_{d}, 1\right)=\frac{\Omega c\left(E_{d}\right)}{\sqrt{|d|}} R\left(E_{d}\right) \quad\left|\amalg\left(E_{d}\right)\right| .
$$

Proposition

$$
\left|\amalg\left(E_{d}\right)\right|=\frac{\left(\left|E(\mathbb{Q})_{\text {tors }}\right|\left|E_{d}(\mathbb{Q})_{\text {tors }}\right| \ell_{d}\right)^{2}}{|Ш(E)| c(E)^{2}} \frac{1}{* c\left(E_{d}\right)}
$$

where $*=2,4$ or 8 is explicit.

Summary

- We computed $G_{d}, R\left(E_{d}\right),\left|\amalg\left(E_{d}\right)\right|$ and $L^{\prime}\left(E_{d}, 1\right)$.

This costs: $O\left(|d|^{1 / 2+\varepsilon}\right)$ steps.

Summary

- We computed $G_{d}, R\left(E_{d}\right),\left|\amalg\left(E_{d}\right)\right|$ and $L^{\prime}\left(E_{d}, 1\right)$.

This costs: $O\left(|d|^{1 / 2+\varepsilon}\right)$ steps.

Remark: Computing $L^{\prime}\left(E_{d}, 1\right)$ by:

$$
L^{\prime}\left(E_{d}, 1\right)=2 \sum_{n \geq 1} \frac{a(n)}{n}\left(\frac{d}{n}\right) \int_{2 \pi n /|d| \sqrt{N}}^{\infty} e^{-t} d t / t
$$

needs $O(|d|)$ coefficients, the constant depending on the precision.

Example : $E=11 a 1$

- $E=11 a 1: y^{2}=x^{3}-4 x^{2}-160 x-1264$.
- $\varepsilon_{11}=+1 \quad \rightsquigarrow d=1,3,4,5,9(\bmod 11)$.
\rightsquigarrow Number of discriminants $222900 \quad(|d| \leq 1600000)$.

Prediction

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}} R\left(E_{d}\right)^{k} \sim A_{k} T^{\frac{k}{2}}(\log T)^{\frac{k(k+1)}{2}+\operatorname{tam}_{k}}
$$

Example : $E=11 a 1$

- $E=11 a 1: y^{2}=x^{3}-4 x^{2}-160 x-1264$.
- $\varepsilon_{11}=+1 \quad \rightsquigarrow d=1,3,4,5,9(\bmod 11)$.
\rightsquigarrow Number of discriminants $222900 \quad(|d| \leq 1600000)$.

Prediction

$$
\frac{1}{|\mathcal{F}(T)|} \sum_{\substack{d \in \mathcal{F}(T) \\ L^{\prime}\left(E_{d}, 1\right) \neq 0}} R\left(E_{d}\right)^{k} \sim A_{k} T^{\frac{k}{2}}(\log T)^{\frac{k(k+1)}{2}+\operatorname{tam}_{k}}
$$

- $M_{1 / 4} \sim 0.50 T^{1 / 8} \log (T)^{0.027 \cdots}$.
- $M_{1 / 2} \sim 0.23 T^{1 / 4} \log (T)^{0.145 \cdots}$.
- $M_{3 / 4} \sim 0.09 T^{3 / 8} \log (T)^{0.350 \cdots}$.

What about $\amalg_{a}\left(E_{d}\right)$?

- $E=11 a 1 \quad: \quad y^{2}=x^{3}-4 x^{2}-160 x-1264$.
- Among the 222900 discriminants:
$\rightsquigarrow 671$ are such that $Ш_{a}\left(E_{d}\right)=0$.
$\rightsquigarrow 207277$ are such that $\amalg_{a}\left(E_{d}\right)=1$.
$\rightsquigarrow 5551$ are such that $Ш_{a}\left(E_{d}\right)=4$.

