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Steven Miller and Nina Snaith



2

Random Matrix Theory ↔ Number Theory

Random Matrix = square matrix where the entries are independent

and identically-distributed

Random Matrices of interests are

1. U(N) – unitary group, XX∗ = IN (entries normally distributed)

2. SO(2N) and SO(2N + 1) – orthogonal group, XXT = IN

3. USp(2N) – symplectic group, XZXT = Z, where

Z =





0 IN

−IN 0





• We are in particular interested in the eigenvalues of a random

matrix. They all lie on the unit circle.

• Each of these compact Lie groups have a Haar measure and

integration formulas. This allows us to do analysis.
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• An L-function is formally a complex valued function of the form

L(s) :=

∞
∑

n=1

an

ns

where an ∈ O(nε) ∀ε > 0. It has an meromorphic continuation

in the whole complex plane, a functional equation and an Euler

product.

• We can form a family of L-functions by ‘twisting’ a given

L-function:

L(s, χd) =
∞
∑

n=1

anχd(n)

ns
.

Here d is an integer [fundamental discriminant] and χd is the

Legendre symbol, it is either −1, 0 or +1.

• The conductor is a ordering quantity within our family of

L-functions. In analogy to RMT is via the matrix size.
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The L-functions considered have a ‘Generalized Riemann Hypothesis’

(GRH): Their non-trivial zeros all lie on the critical line 1/2.

Low lying zeros of ζ(s)

Zürich October 2008



5

Assuming GRH we can consider various zero statistics of

• one individual L-function

• a family of L-functions

E.g. in the latter case: How likely it is to find the first zero of a

L-function from a given family above the critical point with a certain

height?

This was investigated by M Rubinstein in his thesis: Restricting

d < X and twisting the Riemann ζ-function gives a finite set of

L-functions. Now we count how many of them have 1st zeros at a

certain height. We increase the height stepwise and obtain an

histogram:
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Graphic by M Rubinstein
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The step-function is the result of this discrete zero statistic of this

finite set of L-functions. The smooth curve is the distribution of 1st

eigenvalues of USp. Observe that the plots match very nicely.

• In this concrete example we can model the zeros of these

L-functions as the eigenvalues of random matrices of the group

USp.

• In general: The zeros of a family of L-functions show the same

statistics as the eigenvalues of matrices of one of the classical

compact groups. [Katz-Sarnak philosophy]

That’s a big mystery because noone knows why this relation holds.

There are plenty of other examples giving evidence that zeros of

L-functions have spectral interpretation.
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• Via this relation/link we can use RMT to model NT-objects.

• This approach is because we can do concrete calculations in

RMT while in NT this is sometimes hardly possible.

• Once we have found the right RMT-model for an NT-problem we

can do RMT-calculations to make a prediction in NT.

• We will demonstrate this for a family of L-functions coming from

an elliptic curve.
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• An elliptic curve over the field Q of rational numbers is a curve

defined by

E : y2 = x3 + ax + b

where a, b ∈ Z with discriminant ∆ := −16(4a3 + 27b2) 6= 0.

• Like in the case of the L-functions we can twist E by varying

some integer d:

Ed : dy2 = x3 + ax + b

where d satisfies some conditions.

• Basic problem: Given an elliptic curve E, how many solutions in

rational numbers are there?

• The number of rational points is related to the rank of E, which

is an integer. In general the rank of E is hard to determine.
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• To an elliptic curve we can associate an L-function

LE(s) =

∞
∑

n=1

an

ns

where ap = p + 1 − #E(Fp) and #E(Fp) denotes the number of

points on E regarded over Fp, p prime.

• A beautiful connection between the arithmetic of E and analytic

properties of its L-function is spelled out by the

Birch/Swinnerton-Dyer conjecture (Millennium Prize Problems):

The order of vanishing of LE(s) at s = 1/2 is equal to the rank of

E.

• This connection enables us to use RMT to investigate the rank of

elliptic curves by considering their associated L-functions.

• Goal: We want a RMT-model for a given order of vanishing at

the critical point of L-functions.
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• For simplicity consider a family of elliptic curve L-functions with

all having even functional equation. From heuristics their zeros

should show the same statistics as the eigenvalues of random

matrices of SO(2N).

• Hence the subset of even L-functions having order of 2r

vanishing at the critical point should correspond to the subset of

SO(2N) of having 2r zeros at 1.

• Do the multiple eigenvalues at 1 effect near by eigenvalues?

⋆ No → independent model

⋆ Yes → interaction model
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• The independent model has the statistics of SO(2N − 2r) with

2r eigenvalues located at 1. Note SO(2N) has Haar measure

cn ×
∏

1≤j<k≤N

(cos θk − cos θj)
2
∏

1≤j≤N

dθj ,

where cN is some constant.

• RMT-calculation (Snaith & Miller/Dueñez) gives for the

interaction model the alternative measure

c̃N ×
∏

1≤j<k≤N−r

(cos θk − cos θj)
2

∏

1≤j≤N−r

(1 − cos θj)
2rdθj

• Observe that this differs from Haar measure of SO(2N) by

∏

1≤j≤N−r

(1 − cos θj)
2rdθj .
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• With the interaction model we expect to see on the NT side that

⋆ first zero is repelled by zeros at the critical point

⋆ the more central point zeros the greater the repulsion: zeros

not likely to be close to the critical point.

• With the independent model we expect to see on the NT side

zeros do not repell near by zeros.

• Which model is correct?

⋆ Young and Miller showed that for restricted test functions

that some zero statistics of families of elliptic curve

L-functions in the large conductor limit have orthogonal

symmetry → independent model

⋆ However for finite conductor Miller’s experimental data shows

repulsion of the 1st zero for his one-parameter family of

elliptic curve L-functions → interaction model
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Graphic by S Miller
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Graphic by S Miller
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How can we explain the phenomenom of having interaction for finite

conductor and also independency in the large conductor limit?

→ A study of lower order terms might help.

We investigate the family quadratic twists coming from an elliptic

curve L-function with even functional equation because

• Experimental data from Rubinstein’s lcalc can be obtained

• Lower order terms for this family from the ratios conjectures

So we can compare theory and data.
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• For the rest of the talk we focus on the 1-level-density:

S̃1(ϕ) =
1

X∗

∑

d≤X

∑

γd

ϕ(γd)

where ϕ is a even Schwartz test function and γd the ordinate of a

generic zero of LE(s, χd) on the critical line.

• By the argument principle we can write

S̃1(ϕ) =
1

X∗

∑

d≤X

1

2πi

(

∫

(c)

−
∫

(1−c)

)

L′(s, χd)

L(s, χd)
ϕ(−i(s − 1/2))ds

where 3/4 > c > 1/2 + 1/ log X.
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• Hence: If we have a conjecture for

∑

d≤X

L′
E(s, χd)

LE(s, χd)
(1)

we can also give a conjectural answer for S̃1(ϕ).

Using the ratios conjectures we get an estimate for (1).

• The ratios conjectures (Conrey, Farmer, Zirnbauer) give precise

formulas for quantities like

∑

0<d≤X

∏K
k=1 L(1/2 + αk, χd)

∏Q
q=1 L(1/2 + γq, χd)

.

Simpliest case when K = Q = 1.
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• For our family we are interested in the following ratio with

ℜ(α),ℜ(γ) > 0

∑

d≤X

LE(1/2 + α, χd)

LE(1/2 + γ, χd)
=: RE(α, γ)

and observe that

∑

d≤X

L′
E(1/2 + r, χd)

LE(1/2 + r, χd)
=

d

dα
RE(α, γ)

∣

∣

α=γ=r
.
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From the ratios conjecture we get for the 1-level-density

S̃1(g) =
1

2π

∫ ∞

−∞
g(t)

1

X∗

∑

d≤X

(

2 log

(√
M |d|
2π

)

+
Γ′

Γ
(1 + it) +

Γ′

Γ
(1 − it)

+ 2
[

−ζ ′(1 + 2it)

ζ(1 + 2it)
+

L′
E(sym2, 1 + 2it)

LE(sym2, 1 + 2it)
+ A′

f (it, it)

−
(√

M |d|
2π

)−2it
Γ(1 − it)

Γ(1 + it)

ζ(1 + 2it)LE(sym2, 1 − 2it)

LE(sym2, 1)
Af (−it, it)

]

)

dt

+ O(X−1/2+ε)

where M is the conductor of the elliptic curve E and Af is a product

over primes. We note that the ratios conjecture give all terms down

to O(X−1/2+ε) which is a very precise prediction.
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Next we test our prediction:

• We fix the elliptic curve E11 and consider its even quadratic

twists between 0 and 40,000.

• We use Rubinstein’s program to calculate the zeros for each twist

up to height 30.

• With this data we obtain the 1-level-density.

• Then we compare the data with our prediction for finite

conductor.

Zürich October 2008
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1-level density of unscaled zeros from 0 up to height 30 of even quadratic twists
of L_E_11 with 0 < d < 40,000: prediction (dahed) versus numerical data (solid)

Zürich October 2008



23

Our prediction for the 1-level-density of the family of L-functions

with even functional equation coming from an elliptic curve

L-function is

S̃1(g) =
1

2π

∫ ∞

−∞
g(t)

1

X∗

∑

d≤X

(

2 log

(√
M |d|
2π

)

+
Γ′

Γ
(1 + it) +

Γ′

Γ
(1 − it)

+ 2
[

−ζ ′(1 + 2it)

ζ(1 + 2it)
+

L′
E(sym2, 1 + 2it)

LE(sym2, 1 + 2it)
+ A′

f (it, it)

−
(√

M |d|
2π

)−2it
Γ(1 − it)

Γ(1 + it)

ζ(1 + 2it)LE(sym2, 1 − 2it)

LE(sym2, 1)
Af (−it, it)

]

)

dt

+ O(X−1/2+ε)
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Our prediction for the 1-level-density of the family of L-functions

with even functional equation coming from an elliptic curve

L-function is

S̃1(g) =
1

2π

∫ ∞

−∞
g(t)

1

X∗

∑

d≤X

(

2 log

(√
M |d|
2π

)

+
Γ′

Γ
(1 + it) +

Γ′

Γ
(1 − it)

+ 2
[

−ζ ′(1 + 2it)

ζ(1 + 2it)
+

L′
E(sym2, 1 + 2it)

LE(sym2, 1 + 2it)
+ A′

f (it, it)

−
(√

M |d|
2π

)−2it
Γ(1 − it)

Γ(1 + it)

ζ(1 + 2it)LE(sym2, 1 − 2it)

LE(sym2, 1)
Af (−it, it)

]

)

dt

+ O(X−1/2+ε)
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• The scaled 1-level-density in the large N limit of SO(2N) is

1 +
sin(2πx)

2πx
.

• Next we compare this with our conjectural answer for the scaled

1-level-density for the family of quadratic twists for finite

conductor.

• For this we increase the conductor.

Zürich October 2008
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• Using the ratios conjectures we are able to determine all lower

order terms. We see that: lower order terms can be large and

they dominate strongly the behaviour of the zeros for relative

small conductor. Thus we can

⋆ explain many features of the 1-level density for relatively

small conductor

⋆ model the slow convergence to the infinite conductor limit

• Are there limitations of the ratios conjectures?
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Zürich October 2008



39

Graphic by S Miller
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• It seems that our prediction coming from the ratios conjectures

does not capture the observed repulsion in the data from the

critical point.

• Natural question: can the discrepancy can by accounted for by

the error term? Let’s do a test!
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• For each cut-off parameter X0 we obtain a prediction

“theory(X0)” from our formula and corresponding data, call it

“data(X0)”.

• We fix a specific height t0 to compare “theory(X0)” at t0 and

“data(X0)” at t0.

• Now we vary 0 < X < 400, 000:

how big is

|∆(t0, X)| := |theory(t0, X) − data(t0, X)|?

In other words: |∆(t0, X)| = O(Xb+ε), what is b?
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• Now we vary 0 < X < 400, 000:

how big is

|∆(t0, X)| := |theory(t0, X) − data(t0, X)|?

In other words: |∆(t0, X)| = O(Xb+ε), what is b?

• If the error term from the ratios conjectures is correct we have

|∆(t0, X)| = O(X−1/2+ε),

thus b = −1/2.

• We plot

Q∆(t0, X) =
log(|∆(t0, X)|)

log X

for various fixed points t0.

Zürich October 2008
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• We plot

Q∆(t0, X) =
log(|∆(t0, X)|)

log X

for various fixed points t0.

• The question is: do we get

Q∆(t0, X) = b + O

(

log log X

log X

)

for X → ∞ and with b = − 1
2?

Zürich October 2008



45

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  50000  100000  150000  200000  250000  300000  350000  400000

Q(t1,X), t1=0.01
Q(t2,X), t2=0.02
Q(t3,X), t3=0.03
Q(t4,X), t4=0.04
Q(t5,X), t5=0.05
Q(t6,X), t6=0.4
Q(t7,X), t7=0.6
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We make the following observations:

• Curves for sample points near the critical point are smoother →
no sign changes. Those sample points t1, t2 and, t3 are in the

region of repulsion. It appears for t1 = 0.01 in the restricted

range that b > 0. Too few data to decide whether b < 0 if X was

large enough.

• Other sample points suggest that b < 0. → It appears that the

lower order terms give a power savings over the main term.
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• Let us call δ > 0 the width of the band where we observe

repulsion.

• For tj > δ = 0.03 the curves are jagged and look similar

→ many sign changes.

• It seems that δ → 0 for X → ∞.
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• Natural questions:

⋆ Where is the repulsion coming from?

⋆ Can we model the repulsion using random matrix theory?

Zürich October 2008



51

• By formulas of Waldspurger, Shimura, Kohnen-Zaiger the values

of LE(1/2, χd) are discretized, i.e.,

LE(1/2, χd) =
κEcE(|d|)2√

d

where κE only depends on E and cE(|d|) are the Fourier

coefficients of a half-integral weight form and only take integer

values. One way of thinking of this is

LE(1/2, χd) <
κE√

d
=⇒ LE(1/2, χd) = 0.

• A working hypothesis: the discretization of LE(1/2, χd) causes

the observed repulsion.
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• Here is an ad hoc test for our working hypothesis: we consider

“discretized random matrices” at 1.

• More specific, we generate many random matrices from SO(2N)

and consider only those with characteristic polynomial

|Z(1)| > v > 0

for suitable v.

• Then we compare the distribution of the first eigenvalues with

the distribution of the first zeros for our family of elliptic curve

L-functions.
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• On the RMT-side the matrix size N/π plays the role of the mean

density of zeros. Hence we set N/π = log(
√

MX
2π ) and the choice

|Z(1)| > v := κE ×
√

2π√
M

× e−N/(2π)

corresponds for 0 < d < X to

LE(1/2, χd) >
κE√

d
.
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• The repulsion of zeros away from the central point of the family

of quadratic twists of LE11
is qualitively captured in terms of

eigenvalues of random matrices from SO(2N) with |Z(1)| > v.

→ our working hypothesis is pointing into the right direction.

• Further work needs to be done to explain the observed repulsion

and how to model it.

• Our work so far give evidence that SO(2N) is the correct limit

for zero statistics for the family of quadratic twists of an elliptic

curve L-function.
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Summary

• For relatively small conductor and away from the critical point

the lower order terms dominate strongly the behaviour of the

1-level density.

• Our work so far give evidence that SO(2N) is the correct limit

for zero statistics for the family of quadratic twists of an elliptic

curve L-function.

• From our data it appears that the lower order terms give a power

savings over the main term.

• Data suggests that the discretization causes the repulsion.
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