Random Matrix Theory and Zero Statistics of Elliptic Curve L-functions

Duc-Khiem Huynh, Zürich, October 2008

Joint work with Jon Keating, Eduardo Dueñez, Steven Miller and Nina Snaith

Random Matrix Theory \leftrightarrow Number Theory

Random Matrix = square matrix where the entries are independent and identically-distributed

Random Matrices of interests are

1. $U(N)$ - unitary group, $X X^{*}=I_{N}$ (entries normally distributed)
2. $S O(2 N)$ and $S O(2 N+1)$ - orthogonal group, $X X^{T}=I_{N}$
3. $\operatorname{USp}(2 N)$ - symplectic group, $X Z X^{T}=Z$, where

$$
Z=\left(\begin{array}{cc}
0 & I_{N} \\
-I_{N} & 0
\end{array}\right)
$$

- We are in particular interested in the eigenvalues of a random matrix. They all lie on the unit circle.
- Each of these compact Lie groups have a Haar measure and integration formulas. This allows us to do analysis.
- An L-function is formally a complex valued function of the form

$$
L(s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

where $a_{n} \in O\left(n^{\varepsilon}\right) \quad \forall \varepsilon>0$. It has an meromorphic continuation in the whole complex plane, a functional equation and an Euler product.

- We can form a family of L-functions by 'twisting' a given L-function:

$$
L\left(s, \chi_{d}\right)=\sum_{n=1}^{\infty} \frac{a_{n} \chi_{d}(n)}{n^{s}}
$$

Here d is an integer [fundamental discriminant] and χ_{d} is the Legendre symbol, it is either $-1,0$ or +1 .

- The conductor is a ordering quantity within our family of L-functions. In analogy to RMT is via the matrix size.

The L-functions considered have a 'Generalized Riemann Hypothesis' (GRH): Their non-trivial zeros all lie on the critical line $1 / 2$.

Low lying zeros of $\zeta(s)$

Assuming GRH we can consider various zero statistics of

- one individual L-function
- a family of L-functions
E.g. in the latter case: How likely it is to find the first zero of a L-function from a given family above the critical point with a certain height?

This was investigated by M Rubinstein in his thesis: Restricting $d<X$ and twisting the Riemann ζ-function gives a finite set of L-functions. Now we count how many of them have 1 st zeros at a certain height. We increase the height stepwise and obtain an histogram:

Graphic by M Rubinstein

The step-function is the result of this discrete zero statistic of this finite set of L-functions. The smooth curve is the distribution of 1st eigenvalues of $U S p$. Observe that the plots match very nicely.

- In this concrete example we can model the zeros of these L-functions as the eigenvalues of random matrices of the group $U S p$.
- In general: The zeros of a family of L-functions show the same statistics as the eigenvalues of matrices of one of the classical compact groups. [Katz-Sarnak philosophy]

That's a big mystery because noone knows why this relation holds.
There are plenty of other examples giving evidence that zeros of L-functions have spectral interpretation.

- Via this relation/link we can use RMT to model NT-objects.
- This approach is because we can do concrete calculations in RMT while in NT this is sometimes hardly possible.
- Once we have found the right RMT-model for an NT-problem we can do RMT-calculations to make a prediction in NT.
- We will demonstrate this for a family of L-functions coming from an elliptic curve.
- An elliptic curve over the field \mathbb{Q} of rational numbers is a curve defined by

$$
E: y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbb{Z}$ with discriminant $\Delta:=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$.

- Like in the case of the L-functions we can twist E by varying some integer d :

$$
E_{d}: d y^{2}=x^{3}+a x+b
$$

where d satisfies some conditions.

- Basic problem: Given an elliptic curve E, how many solutions in rational numbers are there?
- The number of rational points is related to the rank of E, which is an integer. In general the rank of E is hard to determine.
- To an elliptic curve we can associate an L-function

$$
L_{E}(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

where $a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)$ and $\# E\left(\mathbb{F}_{p}\right)$ denotes the number of points on E regarded over \mathbb{F}_{p}, p prime.

- A beautiful connection between the arithmetic of E and analytic properties of its L-function is spelled out by the Birch/Swinnerton-Dyer conjecture (Millennium Prize Problems): The order of vanishing of $L_{E}(s)$ at $s=1 / 2$ is equal to the rank of E.
- This connection enables us to use RMT to investigate the rank of elliptic curves by considering their associated L-functions.
- Goal: We want a RMT-model for a given order of vanishing at the critical point of L-functions.
- For simplicity consider a family of elliptic curve L-functions with all having even functional equation. From heuristics their zeros should show the same statistics as the eigenvalues of random matrices of $S O(2 N)$.
- Hence the subset of even L-functions having order of $2 r$ vanishing at the critical point should correspond to the subset of $S O(2 N)$ of having $2 r$ zeros at 1 .
- Do the multiple eigenvalues at 1 effect near by eigenvalues?
\star No \rightarrow independent model
\star Yes \rightarrow interaction model
- The independent model has the statistics of $S O(2 N-2 r)$ with $2 r$ eigenvalues located at 1 . Note $S O(2 N)$ has Haar measure

$$
c_{n} \times \prod_{1 \leq j<k \leq N}\left(\cos \theta_{k}-\cos \theta_{j}\right)^{2} \prod_{1 \leq j \leq N} d \theta_{j},
$$

where c_{N} is some constant.

- RMT-calculation (Snaith \& Miller/Dueñez) gives for the interaction model the alternative measure

$$
\tilde{c}_{N} \times \prod_{1 \leq j<k \leq N-r}\left(\cos \theta_{k}-\cos \theta_{j}\right)^{2} \prod_{1 \leq j \leq N-r}\left(1-\cos \theta_{j}\right)^{2 r} d \theta_{j}
$$

- Observe that this differs from Haar measure of $S O(2 N)$ by

$$
\prod_{\leq j \leq N-r}\left(1-\cos \theta_{j}\right)^{2 r} d \theta_{j}
$$

- With the interaction model we expect to see on the NT side that
* first zero is repelled by zeros at the critical point
* the more central point zeros the greater the repulsion: zeros not likely to be close to the critical point.
- With the independent model we expect to see on the NT side zeros do not repell near by zeros.
- Which model is correct?
* Young and Miller showed that for restricted test functions that some zero statistics of families of elliptic curve L-functions in the large conductor limit have orthogonal symmetry \rightarrow independent model
* However for finite conductor Miller's experimental data shows repulsion of the 1st zero for his one-parameter family of elliptic curve L-functions \rightarrow interaction model

Figure 5: First normalized zero above the central point:
665 rank 2 curves from $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.
$\log ($ cond $) \in[10,10.3125]$, median $=2.29$, mean $=2.30$
Graphic by S Miller

Figure 1b: First normalized eigenangle above 1: $23,040 \mathrm{SO}(6)$ matrices Mean $=.635$, Standard Deviation about the Mean $=.574$, Median $=.635$

Graphic by S Miller

How can we explain the phenomenom of having interaction for finite conductor and also independency in the large conductor limit?
\rightarrow A study of lower order terms might help.
We investigate the family quadratic twists coming from an elliptic curve L-function with even functional equation because

- Experimental data from Rubinstein's Icalc can be obtained
- Lower order terms for this family from the ratios conjectures

So we can compare theory and data.

- For the rest of the talk we focus on the 1-level-density:

$$
\tilde{S}_{1}(\varphi)=\frac{1}{X^{*}} \sum_{d \leq X} \sum_{\gamma_{d}} \varphi\left(\gamma_{d}\right)
$$

where φ is a even Schwartz test function and γ_{d} the ordinate of a generic zero of $L_{E}\left(s, \chi_{d}\right)$ on the critical line.

- By the argument principle we can write

$$
\tilde{S}_{1}(\varphi)=\frac{1}{X^{*}} \sum_{d \leq X} \frac{1}{2 \pi i}\left(\int_{(c)}-\int_{(1-c)}\right) \frac{L^{\prime}\left(s, \chi_{d}\right)}{L\left(s, \chi_{d}\right)} \varphi(-i(s-1 / 2)) d s
$$

where $3 / 4>c>1 / 2+1 / \log X$.

- Hence: If we have a conjecture for

$$
\begin{equation*}
\sum_{d \leq X} \frac{L_{E}^{\prime}\left(s, \chi_{d}\right)}{L_{E}\left(s, \chi_{d}\right)} \tag{1}
\end{equation*}
$$

we can also give a conjectural answer for $\tilde{S}_{1}(\varphi)$.
Using the ratios conjectures we get an estimate for (1).

- The ratios conjectures (Conrey, Farmer, Zirnbauer) give precise formulas for quantities like

$$
\sum_{0<d \leq X} \frac{\prod_{k=1}^{K} L\left(1 / 2+\alpha_{k}, \chi_{d}\right)}{\prod_{q=1}^{Q} L\left(1 / 2+\gamma_{q}, \chi_{d}\right)}
$$

Simpliest case when $K=Q=1$.

- For our family we are interested in the following ratio with $\Re(\alpha), \Re(\gamma)>0$

$$
\sum_{d \leq X} \frac{L_{E}\left(1 / 2+\alpha, \chi_{d}\right)}{L_{E}\left(1 / 2+\gamma, \chi_{d}\right)}=: R_{E}(\alpha, \gamma)
$$

and observe that

$$
\sum_{d \leq X} \frac{L_{E}^{\prime}\left(1 / 2+r, \chi_{d}\right)}{L_{E}\left(1 / 2+r, \chi_{d}\right)}=\left.\frac{d}{d \alpha} R_{E}(\alpha, \gamma)\right|_{\alpha=\gamma=r}
$$

From the ratios conjecture we get for the 1-level-density

$$
\begin{aligned}
& \tilde{S}_{1}(g)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(t) \frac{1}{X^{*}} \sum_{d \leq X}\left(2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)\right. \\
& +\frac{\Gamma^{\prime}}{\Gamma}(1+i t)+\frac{\Gamma^{\prime}}{\Gamma}(1-i t) \\
& +2\left[-\frac{\zeta^{\prime}(1+2 i t)}{\zeta(1+2 i t)}+\frac{L_{E}^{\prime}\left(\operatorname{sym}^{2}, 1+2 i t\right)}{L_{E}\left(\operatorname{sym}^{2}, 1+2 i t\right)}+A_{f}^{\prime}(i t, i t)\right. \\
& \left.\left.-\left(\frac{\sqrt{M}|d|}{2 \pi}\right)^{-2 i t} \frac{\Gamma(1-i t)}{\Gamma(1+i t)} \frac{\zeta(1+2 i t) L_{E}\left(\operatorname{sym}^{2}, 1-2 i t\right)}{L_{E}\left(\operatorname{sym}^{2}, 1\right)} A_{f}(-i t, i t)\right]\right) d t \\
& +O\left(X^{-1 / 2+\varepsilon}\right)
\end{aligned}
$$

where M is the conductor of the elliptic curve E and A_{f} is a product over primes. We note that the ratios conjecture give all terms down to $O\left(X^{-1 / 2+\varepsilon}\right)$ which is a very precise prediction.

Next we test our prediction:

- We fix the elliptic curve E_{11} and consider its even quadratic twists between 0 and 40,000.
- We use Rubinstein's program to calculate the zeros for each twist up to height 30 .
- With this data we obtain the 1-level-density.
- Then we compare the data with our prediction for finite conductor.

Zürich October 2008

Our prediction for the 1-level-density of the family of L-functions with even functional equation coming from an elliptic curve L-function is

$$
\begin{aligned}
& \tilde{S}_{1}(g)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(t) \frac{1}{X^{*}} \sum_{d \leq X}\left(2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)\right. \\
& +\frac{\Gamma^{\prime}}{\Gamma}(1+i t)+\frac{\Gamma^{\prime}}{\Gamma}(1-i t) \\
& +2\left[-\frac{\zeta^{\prime}(1+2 i t)}{\zeta(1+2 i t)}+\frac{L_{E}^{\prime}\left(\mathrm{sym}^{2}, 1+2 i t\right)}{L_{E}\left(\mathrm{sym}^{2}, 1+2 i t\right)}+A_{f}^{\prime}(i t, i t)\right. \\
& \left.\left.-\left(\frac{\sqrt{M}|d|}{2 \pi}\right)^{-2 i t} \frac{\Gamma(1-i t)}{\Gamma(1+i t)} \frac{\zeta(1+2 i t) L_{E}\left(\mathrm{sym}^{2}, 1-2 i t\right)}{L_{E}\left(\mathrm{sym}^{2}, 1\right)} A_{f}(-i t, i t)\right]\right) d t \\
& +O\left(X^{-1 / 2+\varepsilon}\right)
\end{aligned}
$$

Zürich October 2008

Our prediction for the 1-level-density of the family of L-functions with even functional equation coming from an elliptic curve L-function is

$$
\begin{aligned}
& \tilde{S}_{1}(g)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(t) \frac{1}{X^{*}} \sum_{d \leq X}\left(2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)\right. \\
& +\frac{\Gamma^{\prime}}{\Gamma}(1+i t)+\frac{\Gamma^{\prime}}{\Gamma}(1-i t) \\
& +2\left[-\frac{\zeta^{\prime}(1+2 i t)}{\zeta(1+2 i t)}+\frac{L_{E}^{\prime}\left(\mathrm{sym}^{2}, 1+2 i t\right)}{L_{E}\left(\mathrm{sym}^{2}, 1+2 i t\right)}+A_{f}^{\prime}(i t, i t)\right. \\
& \left.\left.-\left(\frac{\sqrt{M}|d|}{2 \pi}\right)^{-2 i t} \frac{\Gamma(1-i t)}{\Gamma(1+i t)} \frac{\zeta(1+2 i t) L_{E}\left(\mathrm{sym}^{2}, 1-2 i t\right)}{L_{E}\left(\mathrm{sym}^{2}, 1\right)} A_{f}(-i t, i t)\right]\right) d t \\
& +O\left(X^{-1 / 2+\varepsilon}\right)
\end{aligned}
$$

Zürich October 2008

Zürich October 2008

- The scaled 1-level-density in the large N limit of $S O(2 N)$ is

$$
1+\frac{\sin (2 \pi x)}{2 \pi x} .
$$

- Next we compare this with our conjectural answer for the scaled 1-level-density for the family of quadratic twists for finite conductor.
- For this we increase the conductor.

Zürich October 2008

Zürich October 2008

- Using the ratios conjectures we are able to determine all lower order terms. We see that: lower order terms can be large and they dominate strongly the behaviour of the zeros for relative small conductor. Thus we can
\star explain many features of the 1-level density for relatively small conductor
* model the slow convergence to the infinite conductor limit
- Are there limitations of the ratios conjectures?

Figure 1: 1-level density of unscaled zeros from 0 up to height 0.6 of even quadratic twists of $L_{E_{11}}$ with $0<d<100,000$ for left and $0<d<400,000$ for right hand side, prediction (solid) versus data (bar chart)

Figure 5: First normalized zero above the central point:
665 rank 2 curves from $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$. $\log ($ cond $) \in[10,10.3125]$, median $=2.29$, mean $=2.30$

Graphic by S Miller

- It seems that our prediction coming from the ratios conjectures does not capture the observed repulsion in the data from the critical point.
- Natural question: can the discrepancy can by accounted for by the error term? Let's do a test!

- For each cut-off parameter X_{0} we obtain a prediction "theory $\left(X_{0}\right)$ " from our formula and corresponding data, call it "data $\left(X_{0}\right)$ ".
- We fix a specific height t_{0} to compare "theory $\left(X_{0}\right)$ " at t_{0} and "data $\left(X_{0}\right) "$ at t_{0}.
- Now we vary $0<X<400,000$:
how big is

$$
\left|\Delta\left(t_{0}, X\right)\right|:=\mid \text { theory }\left(t_{0}, X\right)-\operatorname{data}\left(t_{0}, X\right) \mid ?
$$

In other words: $\left|\Delta\left(t_{0}, X\right)\right|=O\left(X^{b+\varepsilon}\right)$, what is b ?

- Now we vary $0<X<400,000$:
how big is

$$
\left|\Delta\left(t_{0}, X\right)\right|:=\mid \text { theory }\left(t_{0}, X\right)-\operatorname{data}\left(t_{0}, X\right) \mid ?
$$

In other words: $\left|\Delta\left(t_{0}, X\right)\right|=O\left(X^{b+\varepsilon}\right)$, what is b ?

- If the error term from the ratios conjectures is correct we have

$$
\left|\Delta\left(t_{0}, X\right)\right|=O\left(X^{-1 / 2+\varepsilon}\right)
$$

thus $b=-1 / 2$.

- We plot

$$
Q_{\Delta}\left(t_{0}, X\right)=\frac{\log \left(\left|\Delta\left(t_{0}, X\right)\right|\right)}{\log X}
$$

for various fixed points t_{0}.

- We plot

$$
Q_{\Delta}\left(t_{0}, X\right)=\frac{\log \left(\left|\Delta\left(t_{0}, X\right)\right|\right)}{\log X}
$$

for various fixed points t_{0}.

- The question is: do we get

$$
Q_{\Delta}\left(t_{0}, X\right)=b+O\left(\frac{\log \log X}{\log X}\right)
$$

for $X \rightarrow \infty$ and with $b=-\frac{1}{2}$?

Zürich October 2008

We make the following observations:

- Curves for sample points near the critical point are smoother \rightarrow no sign changes. Those sample points t_{1}, t_{2} and, t_{3} are in the region of repulsion. It appears for $t_{1}=0.01$ in the restricted range that $b>0$. Too few data to decide whether $b<0$ if X was large enough.
- Other sample points suggest that $b<0 . \rightarrow$ It appears that the lower order terms give a power savings over the main term.

- Let us call $\delta>0$ the width of the band where we observe repulsion.
- For $t_{j}>\delta=0.03$ the curves are jagged and look similar \rightarrow many sign changes.
- It seems that $\delta \rightarrow 0$ for $X \rightarrow \infty$.

- Natural questions:
\star Where is the repulsion coming from?
* Can we model the repulsion using random matrix theory?
- By formulas of Waldspurger, Shimura, Kohnen-Zaiger the values of $L_{E}\left(1 / 2, \chi_{d}\right)$ are discretized, i.e.,

$$
L_{E}\left(1 / 2, \chi_{d}\right)=\frac{\kappa_{E} c_{E}(|d|)^{2}}{\sqrt{d}}
$$

where κ_{E} only depends on E and $c_{E}(|d|)$ are the Fourier coefficients of a half-integral weight form and only take integer values. One way of thinking of this is

$$
L_{E}\left(1 / 2, \chi_{d}\right)<\frac{\kappa_{E}}{\sqrt{d}} \Longrightarrow L_{E}\left(1 / 2, \chi_{d}\right)=0
$$

- A working hypothesis: the discretization of $L_{E}\left(1 / 2, \chi_{d}\right)$ causes the observed repulsion.
- Here is an ad hoc test for our working hypothesis: we consider "discretized random matrices" at 1.
- More specific, we generate many random matrices from $S O(2 N)$ and consider only those with characteristic polynomial

$$
|Z(1)|>v>0
$$

for suitable v.

- Then we compare the distribution of the first eigenvalues with the distribution of the first zeros for our family of elliptic curve L-functions.
- On the RMT-side the matrix size N / π plays the role of the mean density of zeros. Hence we set $N / \pi=\log \left(\frac{\sqrt{M} X}{2 \pi}\right)$ and the choice

$$
|Z(1)|>v:=\kappa_{E} \times \sqrt{\frac{2 \pi}{\sqrt{M}}} \times e^{-N /(2 \pi)}
$$

corresponds for $0<d<X$ to

$$
L_{E}\left(1 / 2, \chi_{d}\right)>\frac{\kappa_{E}}{\sqrt{d}}
$$

Zürich October 2008

- The repulsion of zeros away from the central point of the family of quadratic twists of $L_{E_{11}}$ is qualitively captured in terms of eigenvalues of random matrices from $S O(2 N)$ with $|Z(1)|>v$. \rightarrow our working hypothesis is pointing into the right direction.
- Further work needs to be done to explain the observed repulsion and how to model it.
- Our work so far give evidence that $S O(2 N)$ is the correct limit for zero statistics for the family of quadratic twists of an elliptic curve L-function.

Summary

- For relatively small conductor and away from the critical point the lower order terms dominate strongly the behaviour of the 1-level density.
- Our work so far give evidence that $S O(2 N)$ is the correct limit for zero statistics for the family of quadratic twists of an elliptic curve L-function.
- From our data it appears that the lower order terms give a power savings over the main term.
- Data suggests that the discretization causes the repulsion.

