

Work in collaboration with Man Yue Mo
The derivative
of the
Riemann-zeta
function,
Toeplitz
determinants
and the
Riemann-
Hilbert
problem
Francesco
Mezzadri
(1) The problem
(2) Where we are
(3) Question to answer
(4) Motivations
(5) The Riemann-Hilbert approach
(6) Comments

The problem
Where we are
Question to answer

Motivations
The RiemannHilbert approach

The derivative of the
Riemann-zeta
function,
Toeplitz
determinants and the
Riemann-
Hilbert problem

Francesco
Mezzadri

- The j.p.d.f. for the eigenvalues for matrices in the CUE:

$$
P_{\mathrm{CUE}}\left(\theta_{1}, \ldots, \theta_{N}\right)=\frac{1}{(2 \pi)^{N} N!} \prod_{1 \leq j<k \leq N}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{2}
$$

- Characteristic polynomial of a matrix in the CUE:

$$
\Lambda(z)=\operatorname{det}(I z-U)=\sum_{k=0}^{N} a_{k} z^{N-k}
$$

What can we say about the distributions of the roots of

$$
\Lambda^{\prime}(z)=\frac{d \Lambda(z)}{d z} \quad ?
$$

Where we are
Question to
answer
Motivations
The Riemann-
Hilbert
approach

The derivative of the Riemann-zeta function, Toeplitz determinants and the RiemannHilbert problem

Francesco Mezzadri

```
The problem
```

```
The problem
```


$N=20$

The problem

$N=50$

The derivative of the Riemann-zeta function, Toeplitz determinants and the
Riemann-
Hilbert problem

Francesco
Mezzadri

The problem
Where we are
Question to answer

Where we are

Theorem (FM 2003)

$$
Q(\lambda) \sim \frac{1}{\lambda^{2}}, \quad \lambda \rightarrow \infty
$$

Conjecture (FM 2003)

$$
Q(\lambda) \sim \frac{4}{3 \pi} \lambda^{1 / 2}, \quad \lambda \rightarrow 0
$$

Theorem (Dueñez, Farmer, Froehlich, Hughes, FM, and Phan 2008)

$$
Q(\lambda)=\frac{4}{3 \pi} \lambda^{1 / 2}-\frac{14}{15 \pi} \lambda^{3 / 2}+O\left(\lambda^{5 / 2}\right)
$$

Where we are

The derivative of the Riemann-zeta function, Toeplitz determinants and the RiemannHilbert problem

Francesco Mezzadri
The problem

Question to answer

Question to answer

What happens in between?

Zeros of $\Lambda^{\prime}(z), N=100$

Motivations

- The Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \operatorname{Re}(s)>1
$$

- The local correlations the zeros of $\zeta(1 / 2+i t)$ for large t are the same as those of eigenvalues of matrices in the CUE.
- The local statistical properties of $\zeta(1 / 2+i t)$ as $t \rightarrow \infty$ are accurately modelled by $\Lambda(z)$.

Theorem (Speiser 1934)

The Riemann hypothesis is equivalent to the statement that $\zeta^{\prime}(s)$ has no zeros to the left of the critical line $\operatorname{Re}(s)=\frac{1}{2}$.

Re. part of zeros of $\zeta^{\prime}(s)$. 10^{5} zeros, $t \in\left[10^{6}, 10^{6}+60,000\right]$

Motivations

Interior of the unit circle

Zeros of $\Lambda^{\prime}(z), N=100$.

The derivative of the
 function,
Toeplitz
determinants and the
Riemann-
Hilbert problem

Francesco Mezzadri

The Riemann-Hilbert approach

$Q(\lambda ; N)$ can be written as

$$
\begin{aligned}
Q(\lambda ; N)= & -\frac{N^{2}}{4 \pi(N-1)} \\
& \times \frac{\partial^{2}}{\partial \alpha^{2}}\left[\int \int _ { \mathbb { C } } \left(D_{N-1}\left[\exp \left(i \varphi^{1}\right)\right](w, \alpha, z)\right.\right. \\
& \left.\left.+D_{N-1}\left[\exp \left(i \varphi^{2}\right)\right](w, \alpha, z)\right) d^{2} w\right]_{\alpha=0}
\end{aligned}
$$

where $\varphi^{1}(\theta, w, \alpha, z)$ and $\varphi^{2}(\theta, w, \alpha, z)$ are

$$
\begin{aligned}
\varphi^{1}(\theta, w, \alpha, z) & =\operatorname{Re}\left(\frac{\bar{w}}{N\left(z-e^{i \theta}\right)}-\frac{\alpha}{\left(N\left(z-e^{i \theta}\right)\right)^{2}}\right) \\
\varphi^{2}(\theta, w, \alpha, z) & =\operatorname{Re}\left(\frac{\bar{w}}{N\left(z-e^{i \theta}\right)}\right)-\operatorname{Im}\left(\frac{\alpha}{\left(N\left(z-e^{i \theta}\right)\right)^{2}}\right)
\end{aligned}
$$

with $|z|=1-\lambda / N$.

The Riemann-Hilbert approach

- Why the Riemann-Hilbert Problem (RHP)?
- There is a close connection between the RHP and integrable operators.
- This is the kernel of an integrable operator:

$$
K(x, y)=\frac{\sin (\pi(x-y))}{\pi(x-y)}
$$

- The Christoffel-Darboux formula is another one:

$$
\sum_{j=0}^{N-1} \frac{p_{j}(x) p_{j}(y)}{\left(p_{j}, p_{j}\right)}=C_{N} \frac{p_{N}(x) p_{N-1}(y)-p_{N-1}(x) p_{N}(y)}{x-y}
$$

The Riemann-Hilbert approach

- Toeplitz operators are integrable.
- Let $\varphi(z)$ be analytic in some annulus

$$
\Gamma_{\rho}=\left\{z: \rho<|z|<\rho^{-1}, \quad 0<\rho<1\right\}
$$

and consider

$$
T_{N-1}=\left\{\varphi_{j-k}\right\}_{0 \leq j, k \leq N-1}
$$

- T_{N-1} induces a map on the space of trigonometric polynomials $\tau_{N-1}: P_{N-1} \rightarrow P_{N-1}$ defined by

$$
\tau_{N-1} z^{k}=\sum_{j=0}^{N-1} \varphi_{j-k} z^{j}, \quad z \in \mathbb{S}^{1}, \quad 0 \leq k \leq N-1
$$

The derivative of the Riemann-zeta function, Toeplitz
determinants and the
Riemann-
Hilbert problem

Francesco Mezzadri

The problem
Where we are
Question to answer

The RiemannHilbert approach

The Riemann-Hilbert approach

- If $p(z)=\sum_{j=0}^{N-1} a_{j} z^{j}$ then

$$
\begin{aligned}
{\left[\tau_{N-1} p\right](z) } & =\left[\left(1-K_{N-1}\right) p\right](z) \\
& =p(z)-\int_{\mathbb{S}^{1}} K_{N-1}\left(z, z^{\prime}\right) p\left(z^{\prime}\right) d z^{\prime}
\end{aligned}
$$

- K_{N-1} is an integrable operator:

$$
K_{N-1}\left(z, z^{\prime}\right)=\frac{1}{2 \pi i} \frac{\left(z^{N}\left(z^{\prime}\right)^{-N}-1\right)\left(1-\varphi\left(z^{\prime}\right)\right)}{z-z^{\prime}}
$$

- Then

$$
D_{N-1}=\operatorname{det}\left(T_{N-1}\right)=\operatorname{det}\left(1-K_{N-1}\right)
$$

$$
K\left(z, z^{\prime}\right)=\frac{\sum_{j=1}^{k} f_{j}(z) g_{j}\left(z^{\prime}\right)}{z-z^{\prime}}
$$

- The action of K on $L^{2}(\Sigma,|d z|)$ is

$$
[K h](z)=\pi i \sum_{j=1}^{k} f_{j}(z)\left[H h g_{j}\right](z), \quad z \in \Sigma
$$

where H is the Cauchy Principal Value Operator

$$
[H f](z)=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi i} \int_{\left\{z^{\prime} \in \Sigma,\left|z-z^{\prime}\right|>\epsilon\right\}} \frac{f\left(z^{\prime}\right)}{z-z^{\prime}} d z^{\prime}
$$

The derivative of the Riemann-zeta function, Toeplitz determinants and the
Riemann-
Hilbert problem

Francesco Mezzadri

The Riemann-Hilbert approach

- The resolvent R is an integrable operator too:

$$
R\left(z, z^{\prime}\right)=\frac{\sum_{j=1}^{k} F_{j}(z) G_{j}\left(z^{\prime}\right)}{z-z^{\prime}}
$$

where

$$
\begin{aligned}
F_{j} & =(1-K)^{-1} f_{j}=(1+R) f_{j} \\
G_{j} & =(1-K)^{-1} g_{j}=(1+R) g_{j}
\end{aligned}
$$

It is a remarkable fact that the functions F_{J} and G_{j} can be computed in terms of the solution of a Riemann-Hilbert Matrix Factorization Problem.

The Riemann-Hilbert approach

- An $k \times k$ matrix function $M(z)$ is the unique solution (if it exists) of the RHP (Σ, v) if
- $M(z)$ is analytic in $\mathbb{C} \backslash \Sigma$,
- $M_{+}(z)=M_{-}(z) v(z), \quad z \in \Sigma$,
- $M(z) \rightarrow I$ as $z \rightarrow \infty$.
- $v(z)$ is called jump matrix.

Recipe to compute the resolvent R :

(1) Let $f=\left(f_{1}, \ldots, f_{k}\right)^{t}$ and $g=\left(g_{1}, \ldots, g_{k}\right)^{t}$. Construct the following jump matrix:

$$
v(z)=I-\left(\frac{2 \pi i}{1+i \pi\langle g, f\rangle}\right) f g^{t} .
$$

(2) Find the solution (if it exists) of the RHP (Σ, v).

The Riemann-Hilbert approach

(3) We have

$$
\begin{aligned}
& F=\left(F_{1}, \ldots, F_{k}\right)^{t}=(1 \mp\langle g, f\rangle)^{-1} M_{ \pm} f \\
& G=\left(G_{1}, \ldots, G_{k}\right)^{t}=(1 \mp\langle g, f\rangle)^{-1}\left(M_{ \pm}^{t}\right)^{-1} g
\end{aligned}
$$

(4) Insert F and G into the formula

$$
R\left(z, z^{\prime}\right)=\frac{\sum_{j=1}^{k} F_{j}(z) G_{j}\left(z^{\prime}\right)}{z-z^{\prime}}
$$

The Riemann-Hilbert approach is particularly powerful when the integrable operator K depends on one or more asymptotic parameters and singularities need to be handled.

The derivative of the Riemann-zeta function,
Toeplitz
determinants and the
Riemann-
Hilbert problem

Francesco Mezzadri

The Riemann-Hilbert approach

Theorem (Deift 1999)
Let φ_{t} be the symbol of a Toeplitz determinant D_{N-1}, then

$$
\begin{aligned}
\frac{d \log D_{N-1}}{d t} & =\int_{\mathbb{S}^{1}}\left(1-\varphi_{t}\right)^{-1} \frac{d \varphi_{t}}{d t} \sum_{j=1}^{2} F_{t, j}^{\prime}(\zeta) G_{t, j}(\zeta) d \zeta \\
\left(F_{t, 1}, F_{t, 2}\right)^{T} & =M_{+}^{t}(\zeta)\left(\zeta^{N}, 1\right)^{T} \\
\left(G_{t, 1}, G_{t, 2}\right)^{T} & =\frac{1-\varphi_{t}}{2 \pi i}\left(\left(M_{+}^{t}\right)^{T}\right)^{-1}(\zeta)\left(\zeta^{-N},-1\right)^{T}
\end{aligned}
$$

where $M_{t,+}(\zeta)$ is the boundary value from the left of the solution of the RHP

$$
\begin{aligned}
& M_{+}^{t}(\zeta)=M_{-}^{t}(\zeta)\left(\begin{array}{cc}
\varphi_{t} & -\left(\varphi_{t}^{-1}-1\right) \zeta^{N} \\
\zeta^{-N}\left(\varphi_{t}-1\right) & 2-\varphi_{t}
\end{array}\right), \quad \zeta \in \mathbb{S}^{1} \\
& M^{t}(\zeta)=I+O\left(\zeta^{-1}\right), \quad \zeta \rightarrow \infty
\end{aligned}
$$

Where we are

The derivative of the Riemann-zeta function, Toeplitz determinants and the RiemannHilbert problem

Francesco Mezzadri
The problem

Question to answer

The RiemannHilbert
approach

The Riemann-Hilbert approach

$$
\begin{array}{ll}
\Gamma_{1}=\left\{|\zeta|=1-N^{-\frac{1}{2}}\right\}, & \Gamma_{2}=\Gamma_{1}^{-1} \\
\Gamma_{3}=\{|\zeta|=\rho, \rho<1, \rho=O(1)\}, & \Gamma_{4}=\Gamma_{3}^{-1}
\end{array}
$$

The Riemann-Hilbert approach

The previous RHP becomes

$$
\begin{array}{ll}
M^{(1, t)}(\zeta)=M^{t}(\zeta) \varphi_{t}^{-\frac{\sigma_{3}}{2}} & |\zeta|<\rho \\
M^{(1, t)}(\zeta)=M^{t}(\zeta)\left(\begin{array}{cc}
1 & \zeta^{N} \\
0 & 1
\end{array}\right) \varphi_{t}^{-\frac{\sigma_{3}}{2}} & \text { between } \Gamma_{3} \text { and } \Gamma_{1} \\
M^{(1, t)}(\zeta)=M^{t}(\zeta)\left(\begin{array}{cc}
1 & \left(1-\varphi_{t}^{-1}\right) \zeta^{N} \\
0 & 1
\end{array}\right) \varphi_{t}^{-\frac{\sigma_{3}}{2}} & \text { between } \Gamma_{1} \text { and } \mathbb{S}^{1} \\
M^{(1, t)}(\zeta)=M^{t}(\zeta)\left(\begin{array}{cc}
1 & 0 \\
\zeta^{-N}\left(1-\varphi_{t}^{-1}\right) & 1
\end{array}\right) \varphi_{t}^{\frac{\sigma_{3}}{2}} & \text { between } \mathbb{S}^{1} \text { and } \Gamma_{2} \\
M^{(1, t)}(\zeta)=M^{t}(\zeta)\left(\begin{array}{cc}
1 & 0 \\
\zeta^{-N} & 1
\end{array}\right) \varphi_{t}^{\frac{\sigma_{3}}{2}} & \text { between } \Gamma_{2} \text { and } \Gamma_{4} \\
M^{(1, t)}(\zeta)=M^{t}(\zeta) \varphi_{t}^{\frac{\sigma_{3}}{2}} & |\zeta|>\rho^{-1}
\end{array}
$$

The Riemann-Hilbert approach

 Then $M^{(1, t)}(\zeta)$ satisfies the jump conditions$$
\begin{aligned}
& \nu^{(1)}(\zeta)=\left(\begin{array}{cc}
1 & -\varphi_{t} \zeta^{N} \\
0 & 1
\end{array}\right) \quad|\zeta|=\rho \\
& \nu^{(1)}(\zeta)=\left(\begin{array}{cc}
1 & \zeta^{N} \\
0 & 1
\end{array}\right) \quad \zeta \in \Gamma_{1} \\
& \nu^{(1)}(\zeta)=\left(\begin{array}{cc}
1 & 0 \\
-\zeta^{-N} & 1
\end{array}\right) \quad \zeta \in \Gamma_{2} \\
& \nu^{(1)}(\zeta)=\left(\begin{array}{cc}
1 & 0 \\
\varphi_{t}^{-1} \zeta^{-N} & 1
\end{array}\right) \quad|\zeta|=\rho^{-1}
\end{aligned}
$$

$M^{(1, t)}$ has singularities at $z=\left(1-\frac{\lambda}{N}\right)^{ \pm 1}$:

$$
\begin{aligned}
& M^{(1, t)}(\zeta)=\left(M_{\lambda}^{(1, t)}+O(\zeta-z)\right) \varphi_{t}^{-\frac{\sigma_{3}}{2}} \quad \zeta \rightarrow z \\
& M^{(1, t)}(\zeta)=\left(M_{-\lambda}^{(1, t)}+O\left(\zeta-z^{-1}\right)\right) \varphi_{t}^{\frac{\sigma_{3}}{2}} \quad \zeta \rightarrow z^{-1}
\end{aligned}
$$

Where we are
Question to
answer
Motivations

The derivative of the
Riemann-zeta function, Toeplitz determinants and the RiemannHilbert problem

Francesco Mezzadri

```
The problem
```

```
The problem
```

The RiemannHilbert
approach

The Riemann-Hilbert approach

$$
D_{1}=\left\{\zeta:|\zeta-1| \leq N^{-\frac{1}{2}}\right\}
$$

The Riemann-Hilbert approach

- Outside $D_{1}, \nu^{(1)} \rightarrow I$ as $N \rightarrow \infty$. Thus, $M^{(1, t)}(\zeta) \rightarrow I$.
- We need to solve the RHP exactly in D_{1}, then match it with the approximate solution outside.
- The substitution

$$
\xi=N \log \zeta
$$

maps D_{1} to \mathbb{C}.

- The RHP inside D_{1} is mapped into

The derivative of the
Riemann-zeta function, Toeplitz
determinants and the
Riemann-
Hilbert problem

Francesco Mezzadri

The Riemann-Hilbert approach

$$
\begin{aligned}
M_{+}^{(2, t)}(\xi)= & M_{-}^{(2, t)}(\xi)\left(\begin{array}{cc}
1 & e^{\xi} \\
0 & 1
\end{array}\right) \quad \xi \in \Gamma_{1} \\
M_{+}^{(2, t)}(\xi)= & M_{-}^{(2, t)}(\xi)\left(\begin{array}{cc}
1 & 0 \\
-e^{-\xi} & 1
\end{array}\right) \quad \xi \in \Gamma_{2} \\
M^{(2, t)}(\xi)= & \left(C_{+}+O\left(\xi-\gamma_{N}(\lambda)\right)\right) e^{-i\left(\frac{\beta}{\left(\xi-\gamma_{N}(\lambda)\right)^{2}}-\frac{u}{\left(\xi-\gamma_{N}(\lambda)\right)}\right) \sigma_{3}} \\
& \xi \rightarrow \gamma_{N}(\lambda) \\
M^{(2, t)}(\xi)= & \left(C_{-}+O\left(\xi+\gamma_{N}(\lambda)\right)\right) e^{i\left(\frac{\beta}{\left(\xi+\gamma_{N}(\lambda)\right)^{2}}+\frac{\bar{\gamma}}{\left(\xi+\gamma_{N}(\lambda)\right)}\right) \sigma_{3}} \\
& \xi \rightarrow-\gamma_{N}(\lambda) \\
M^{(2, t)}(\xi)= & \left(I+O\left(\xi^{-1}\right)\right) \quad \xi \rightarrow \infty,
\end{aligned}
$$

where $\gamma_{N}(\lambda)=N \log \left(1-\frac{\lambda}{N}\right)$ and β, u are related to the parameters in φ^{1} and φ^{2}.

The derivative of the
Riemann-zeta function, Toeplitz
determinants and the
Riemann-
Hilbert problem

Francesco Mezzadri

The Riemann-Hilbert approach

- The solution of the original RHP is

$$
M^{(1, t)}(\zeta)= \begin{cases}I+O\left(N^{-\frac{1}{2}}\right) & \zeta \in \mathbb{C} \backslash D_{1} \\ \left(I+O\left(N^{-\frac{1}{2}}\right)\right) M^{(2, t)}(\zeta) & \zeta \in D_{1}\end{cases}
$$

- The Toeplitz determinant D_{N-1} in terms of $M^{(2, t)}$ becomes

$$
\begin{gathered}
\log D_{N-1}=N \hat{\eta}_{0}+\sum_{k=1}^{\infty} k \hat{\eta}_{k} \hat{\eta}_{-k}+\int_{0}^{1} \int_{i \mathbb{R}} \frac{d \log \varphi_{t}}{d t}(\xi) \\
\times \operatorname{tr}\left(\left(M^{(2, t)}(\xi)\right)^{-1}\left(M^{(2, t)}(\xi)\right)^{t}\left(\begin{array}{cc}
1 & -e^{\xi} \\
e^{-\xi} & 1
\end{array}\right)\right) d \xi d t \\
+O\left(N^{-\frac{1}{2}}\right)
\end{gathered}
$$

The derivative of the
Riemann-zeta function, Toeplitz
determinants and the
Riemann-
Hilbert problem

Francesco Mezzadri

The Riemann-Hilbert approach

- If we define $Y(\xi)=M^{(2, t)} e^{\frac{\xi}{2} \sigma_{3}}$, then

$$
\begin{aligned}
\partial_{\xi} Y(\xi) & =A(\xi) Y(\xi) \\
A(\xi) & =\sum_{i=1}^{3} \frac{A_{i}^{+}}{\left(\xi-\gamma_{N}(x)\right)^{i}}+\sum_{i=1}^{3} \frac{A_{i}^{-}}{\left(\xi+\gamma_{N}(x)\right)^{i}}+\frac{\sigma_{3}}{2}
\end{aligned}
$$

where the $A_{i}^{+} \mathrm{s}$ and $A_{i}^{-} \mathrm{s}$ are complicated functions of the parameters in the symbols φ^{1} and φ^{2}.

- This equation has three multiple poles at $\pm \gamma_{N}(x)$ and ∞.

Comments

- Szegő's theorem does not apply because of essential singularities in the symbols.
- The RHP problem needs to be solved exactly in a neighbourhood of these points and matched with the approximate solution outside.
- Similar techniques as in the study of the double-scaling limit of RMT but with a more complicated singularity structure (three essential singularities)
- Isomonodromic problem with three multiple poles

