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Let p be a prime, n ≥ 1, q = pn, d = pn + 1 and
k = Fq2 = Fp(µd).

Consider the elliptic curve

E : y2 − xy + ty = x3 − tx2

over k(t).

If p > 2, let
P(v) = (X (v),Y (v)) =(

vq(vq − v)

1 + 4vq
,
1

2

[
v2q

(1 + 4v)q−1
+

v2q(1 + 2v + 2vq)

(1 + 4v)(3q−1)/2

])
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E : y2 − txy + y = x3 − tx2

P(v) =

(
vq(vq − v)

1 + 4vq
,
1

2

[
v2q

(1 + 4v)q−1
+

v2q(1 + 2v + 2vq)

(1 + 4v)(3q−1)/2

])

Let u = t1/d and Kd = k(u). Then for i = 0, . . . , d − 1

P(ζ i
du) ∈ E (Kd),

they are almost independent (1 relation), and they generate a
finite index subgroup of E (Kd) which has rank d − 1.
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Goal is to explain a systematic construction of such examples.

More elaborate examples have parameters (families!) so may be
useful as a test bed for conjectures.

Heights, regulators, , ...

Engineering applications?
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One can now produce ubiquitous examples of high analytic rank
situations.

Roughly speaking, start with data (a curve, an abelian variety, ... a
Galois representation) over K = Fq(t). If the data satisfies a mild
parity condition, then the analytic rank of the L-function attached
to the data over Kd = Fq(t

1/d) will be unbounded as d varies.

For example, if p > 3 and E is an elliptic curve over Fp(t) with an
odd number of places of multiplicative reduction away from t = 0
and t = ∞, then ords=1 L(E/Kd , s) is unbounded as d varies.

Example:
y2 = x2g+2 + x2g+1 + t



Motivation
Berger’s construction

Explicit Berger
First example

Second example

An example
High analytic ranks
Less ubiquitous BSD
Sketch of 4-monomial proof

One can now produce ubiquitous examples of high analytic rank
situations.

Roughly speaking, start with data (a curve, an abelian variety, ... a
Galois representation) over K = Fq(t). If the data satisfies a mild
parity condition, then the analytic rank of the L-function attached
to the data over Kd = Fq(t

1/d) will be unbounded as d varies.

For example, if p > 3 and E is an elliptic curve over Fp(t) with an
odd number of places of multiplicative reduction away from t = 0
and t = ∞, then ords=1 L(E/Kd , s) is unbounded as d varies.

Example:
y2 = x2g+2 + x2g+1 + t



Motivation
Berger’s construction

Explicit Berger
First example

Second example

An example
High analytic ranks
Less ubiquitous BSD
Sketch of 4-monomial proof

One can now produce ubiquitous examples of high analytic rank
situations.

Roughly speaking, start with data (a curve, an abelian variety, ... a
Galois representation) over K = Fq(t). If the data satisfies a mild
parity condition, then the analytic rank of the L-function attached
to the data over Kd = Fq(t

1/d) will be unbounded as d varies.

For example, if p > 3 and E is an elliptic curve over Fp(t) with an
odd number of places of multiplicative reduction away from t = 0
and t = ∞, then ords=1 L(E/Kd , s) is unbounded as d varies.

Example:
y2 = x2g+2 + x2g+1 + t



Motivation
Berger’s construction

Explicit Berger
First example

Second example

An example
High analytic ranks
Less ubiquitous BSD
Sketch of 4-monomial proof

One can now produce ubiquitous examples of high analytic rank
situations.

Roughly speaking, start with data (a curve, an abelian variety, ... a
Galois representation) over K = Fq(t). If the data satisfies a mild
parity condition, then the analytic rank of the L-function attached
to the data over Kd = Fq(t

1/d) will be unbounded as d varies.

For example, if p > 3 and E is an elliptic curve over Fp(t) with an
odd number of places of multiplicative reduction away from t = 0
and t = ∞, then ords=1 L(E/Kd , s) is unbounded as d varies.

Example:
y2 = x2g+2 + x2g+1 + t



Motivation
Berger’s construction

Explicit Berger
First example

Second example

An example
High analytic ranks
Less ubiquitous BSD
Sketch of 4-monomial proof

The BSD conjecture says ords=1 L(E/Kd , s) = Rank E (Kd). There
are far fewer situations where one can prove this. Here is one:

Theorem: Let X be a curve over K = Fq(t) and suppose there
exists g ∈ Fq[t, x , y ] which is the sum of exactly 4 non-zero
monomials and such that K (X ) = Frac (Fq[t, x , y ]/(g)). Then
under mild conditions on the exponents appearing in g , the BSD
conjecture holds for J = Jac(X ).

This gives many examples of (simple, non-isotrivial) abelian
varieties of every dimension with large rank.
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Curves/surfaces

points/divisors

L-functions/ζ-functions

BSD/Tate
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Sketch continued:

4-monomials implies dominated by Fermat curves

Tate for products (for general k, good control on divisors on a
product)

Tate under dominant morphisms

Put it all together
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Remarks:

• 4-monomials is a stand-in for DPC

+ it is preserved in towers

− it is very rigid

Project: Find less rigid constructions of surfaces DPCT.
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k arbitrary. C, D curves over k. f ∈ k(C)×, g ∈ k(D)×.

C × D99KP1 via (x , y) 7→ f (x)/g(y).

Let X be the generic fiber, a curve over K .

Associated surfaces Sd → P1 with generic fiber X/Kd .

Theorem (Berger, UA thesis 2007, JNT 2008): Under mild
hypotheses on f and g ,

X is absolutely irreducible

simple formula for genus of X

Sd is DPC for all d

Cor: For k = Fq, there are families with parameters of elliptic
curves over Fq(t) with arbitrarily large rank in the tower Fq(t

1/d).
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Back to k arbitrary.

Berger’s DPCT argument was based on π1.

But it can be made much more explicit:

Cd : zd = f (x) Dd : wd = g(y)

(Cd ×Dd)/µd ˜99KSd
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Working out the geometry leads to the following rank formula for
J = Jac(X ):

Rank J(Kd) = Rank homk−av (JCd
, JDd

)µd − c1d + c2

where c1 is a constant and c2 is periodic (usually constant).
(k = k here, ...)

The numerical formula comes from a connection between
homomorphisms and points which in good cases can be made very
explicit.
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Let C = D = P1. Let f (x) = x(x − 1) and g(y) = y2/(y − 1).

It turns out that X = E is the elliptic curve at the beginning. One
finds c1 = c2 = 0

Cd
∼= Dd in a way that anti-commutes with µd actions. So,

Rank E (Kd) = Rank Endk−av (JCd
)anti−µd
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If k has characteristic zero, considering action of µd on 1-forms on
X shows that Rank E (Kd) = 0 for all d .

If k is finite of characteristic p, let d = pn + 1 and note that
Frpn ◦ ζd = ζ−1

d ◦ Frpn . Similarly,

(Frpn ◦ ζ i
d) ◦ ζd = ζ−1

d ◦ (Frpn ◦ ζ i
d)

for all i . This gives many independent endomorphisms in
Endk−av (JCd

)anti−µd . Tracing through the geometry leads to many
independent points in E (Kd).
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Assume k = C for simplicity. Let C = D = P1. Let
f (x) = x(x − a)/(x − 1) and g(y) = y(y − a)/(y − 1). Here
a ∈ P1 \ {0, 1,∞}.

X = E is again an elliptic curve. Let

S = P1 \ {0, 1,∞,−1, 1/2, 2, ζ6, ζ6}

For a ∈ S one finds c1 = 1, c2 = 4 and

Rank E (Kd) = Rank homk−av (JCd
, JDd

)µd − d + 4.

The term −d cancels out the obvious endomorphisms
ζ i
d : JCd

→ JDd
. To get rank we need some extra endomorphisms,

i.e., CM.
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Theorem: For

d ∈ {2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24}

there are infinitely many a ∈ S such that

Rank E (Kd) ≥ φ(d) + 3.

Sketch: new/old, variation of Hodge structures, period domain is
(H)r .

A-O: for fixed d only finitely many good a. But what about if d
varies?
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