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In their paper on the exponent of distribution of the ternary divisor function, in which they break
the large sieve barrier, Friedlander and Iwaniec [5, p. 329] encounter exponential sums which, for
a prime modulus p, are of the form

T (α, β, γ) =
∑

x,y,z∈F×
p
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+
β

y
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)

where ψ(x) = e(x/p) and α, β, γ are integral parameters.
As observed by Bombieri and Birch [5, p. 347] in their Appendix to [5], summing over x first

and making a change of variable gives the formula

T (α, β, γ) = pS
(β
α
,
γ

α

)
for α 6= 0, where

S(α, β) =
∑

u∈F×
p −{−1}

Kl2

(α
u

)
Kl2

( β

1 + u

)
in terms of classical (normalized) Kloosterman sums

Kl2(a) =
1
√
p

∑
x∈F×

p

e
(ax+ x−1

p

)
.

Bombieri and Birch show ([1, Th. 1]; note the different normalization):

Theorem 1. For any p and α, β ∈ F×p , we have

|S(α, β)| � p1/2

where the implied constant is absolute.

As we observed in [3], one can also interpret the sums S(α;β) as special cases of the correlation
sums arising in our work on algebraic twists of modular forms, and we also noted that our more
general results and techniques had, as special case, this theorem of Birch and Bombieri.

Very recently, Y. Zhang [12, Lemma 12] made a crucial use of this estimate in his work on
bounded gaps between primes. In view of this renewed interest, we spell out the argument of [3]
for this special case, and make it more precise. This gives a conceptual proof of the result which
is quite short, but which depends on two deep results of Deligne: the general form of the Riemann
Hypothesis over finite fields [2], and the construction of Kloosterman sheaves (explained and studied
by Katz in [8]).

Proposition 2. For any prime p and any α, β ∈ F×p , we have

|S(α, β)| 6 8p1/2.
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We first set up some general notation from [3]. For a prime number p, and for a function
K : Fp → C and v ∈ Z/pZ, we denote by

K̂(v) =
1

p1/2

∑
x (mod p)

K(x)e
(vx
p

)
the (unitarily normalized) Fourier transform modulo p of K. Denoting by γ · z the action of PGL2

(or GL2) on P1 by homographies, the correlation sums C(K; γ) of K are defined for γ =

(
a b
c d

)
∈

GL2(Fp) by

(1) C(K; γ) =
∑
z∈Fp

z 6=−d/c

K̂(γ · z)K̂(z).

For K(x) = e(x̄/p) and K(0) = 0, we have

K̂(z) =
S(z, 1; p)
√
p

= K̂(z),

and hence we deduce that

S(α, β) = C
(
K;

(
β 0
1 α

))
.

For a given prime p, we fix a prime ` 6= p, and then we fix an isomorphism ι : Q̄` −→ C, which
we will use as an identification when considering `-adic numbers as complex numbers. Most often,
we will omit it from the notation. For instance, there is an additve character ψ` : Fp −→ Q̄×` such
that ι(ψ`(x)) = ψ(x) = e(x/p), and we will just denote it ψ.

Lemma 3 (Deligne). With notation as above, there exists a lisse geometrically irreducible `-adic
sheaf K`2 of rank 2 on the multiplicative group over Fp such that for a ∈ F×p , the trace of the
geometric Frobenius of Fp acting on the stalk over a is equal to −Kl2(a). The pullback of K`2 to
any open dense subset of the multiplicative group is still geometrically irreducible.

Furthermore, this sheaf is self-dual, tamely ramified at 0 and totally wildly ramified at ∞ with
only break 1/2, hence Swan conductor 1. It is pointwise ι-pure of weight 0.

See [8] for this result, and much more concerning Kloosterman sheaves (including ones parame-
terizing hyper-Kloosterman sums) in particular [8, Th. 4.1.1].

As a corollary, given α and β in F×p and an element γ =

(
β 0
1 α

)
∈ PGL2(Fp), the sheaf

F = K`2 ⊗ γ∗K`2
is lisse and pointwise of weight 0 on U = P1 − {0,−α,∞}, and has trace of Frobenius equal to

Kl2(x) Kl2(γ · x)

for all x ∈ U(Fp). Hence S(α, β) is the sum of the local traces of of this sheaf.
This sheaf is of rank 4. It is tamely ramified at 0 (because K`2 and γ∗K`2 are tame at 0) and

totally wildly ramified at −α and ∞, with Swan conductor 2 at each of these singularities (it has
unique break 1/2 with multiplicity 4 at these points).

Because the sheaf is lisse on U , we have

H0
c (U × F̄p,F) = 0

(see,e.g., [2, (1.4.1)b]) and because the two tensor factors are geometrically irreducible on U and
have different singularities, so that they are not geometrically isomorphic, we have also

H2
c (U × F̄p,F) = 0
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(see [2, (1.4.1)b]).
Because of these two properties of cohomological vanshing, the Grothendieck-Lefschetz trace

formula (see, e.g., [8, 2.3.2]) gives

S(α, β) = − tr(Fr | H1
c (U × F̄p,F))

and Deligne’s general form of the Riemann Hypothesis [2, Th. 3.3.1] implies that all eigenvalues of

the Frobenius acting on H1
c (U × F̄p,F) have modulus at most p1/2, so that

|S(α, β)| 6 (dimH1
c (U × F̄p,F))p1/2.

We conclude by applying:

Lemma 4. We have

dimH1
c (U × F̄p,F) = 8

for α, β ∈ F×p .

Proof. We have

dimH1
c (U × F̄p,F) = −χc(U × F̄p,F),

where

χc(U × F̄p,F) = dimH0
c (U × F̄p,F)− dimH1

c (U × F̄p,F) + dimH1
c (U × F̄p,F)

since the H0
c and H2

c cohomology groups vanish. By the Euler-Poincaré characteristic formula (see,
e.g, [8, 2.3.1]), we have

χc(U × F̄p,F) = rank(F)χc(U × F̄p)− Swan0(F)− Swan−α(F)− Swan∞(F).

Since U = P1 − {0,−α,∞}, its Euler-Poincaré characteristic us −1, and since we have

Swan0(F) = 0, Swan−α(F) = Swan∞(F) = 2,

by the above, we get the result. �

Remark 5. In fact, one can show with some more knowledge of Kloosterman sheaves that an
estimate of the form |C(K; γ)| 6 Cp1/2, with C absolute, holds (in that case) for all γ 6= 1 in
PGL2(Fp).

We add some further comments:
(1) The Friedlander-Iwaniec sum is also used by Heath-Brown [6] in his improvement of the

exponent of distribution for d3. As in our own further improvement [4] (for prime moduli) the sum
appears more naturally by “dimension reduction” from another exponential sum (see [6, (3.10), p.
36]):

Proposition 6. For p prime and a ∈ F×p , let

Kl3(a) =
1

p

∑
xyz=a

e
(x+ y + z

p

)
be the hyper-Kloosterman sum in two variables. We have∑

a∈F×
p

Kl3(a)Kl3(αa)e
(βa
p

)
=

∑
t6=0,−β

Kl2

(1

t

)
Kl2

( α

t+ β

)
− 1

p2
= C

(
K;

(
α 0
β 1

))
− 1

p2
.
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Proof. Expanding the Kloosterman sums and exchanging the sums, the left-hand side is

1

p2

∑
x,y,u,v∈F×

p

ψ(x+ y + u+ v)
{
δ
( 1

xy
− α

uv
+ β

)
− 1
}

by orthogonality of characters. Introducing a variable t = (xy)−1 = α(uv)−1 − β which is in
F×p − {−β}, and summing over t first, we get

1

p

∑
t6=0,−β

∑
xy=t−1

ψ(x+ y)
∑

uv=α/(t+β)

ψ(u+ v)− 1

p2

which is equal to ∑
t6=0,−β

Kl2

(1

t

)
Kl2

( α

t+ β

)
− 1

p2
.

�

The left-hand side, when spelled out explicitly, is a five-variable character sum, and the Bombieri-
Birch estimate gives square-root cancellation in these terms. In terms of correlation sums, the
left-hand side is a correlation sum corresponding to the Fourier transform of a 7→ Kl3(a) and to
an upper-triangular matrix. We note that we can also prove the Bombieri-Birch estimate directly
using this different form.

(2) The correlation sums C(K; γ) also occur (often for other matrices γ than the ones above)
in other papers: one of Pitt [11, Th. 3] and one of Munshi [10, §5.2, p. 8, line -6] (and they are
special cases of the sums appearing in [3]).

(3) One can investigate some properties of the Friedlander-Iwaniec sums numerically. For p =
541, 1151 and 1451, we found for instance that the second moment M2 is very close to 1, where

Mk =
1

(p− 1)2

∑
α,β∈F×

p

(S(α, β)
√
p

)k
,

while the fourth moment M4 is close to 3. Because of the Larsen alternative (see [9]; note that
S(α, β) is real), this suggests that S(α, β) is itself the local trace of a lisse sheaf of rank 8 on
G×G (which can indeed be proved, at least on a dense subset, using higher-direct images) which
is geometrically irreducible and has geometric monodromy group either (special?) orthogonal or
symplectic. Thus one may expect an equidistribution statement for these sums according to the
traces of random Haar-distributed matrices of elements in USp8, SO8 or O8. We hope to come
back to this question.

(4) Here is a slightly different viewpoint on the sum which might clarify the argument we use for
readers with analytic number theory background: we can view the coefficients

a1(x) = −Kl2(x), a2(x) = −Kl2(γ · x)

for x ∈ Fp as “Fourier coefficients” (or better Hecke eigenvalues) of a cusp form on a subgroup of
GL2(Fp(T )), associated to the primes T −x of the ring Fp[T ] (this follows from Drinfeld’s work on
the Langlands correspondance for GL2 over function fields; these automorphic forms are cuspidal
because the Kloosterman sheaves are geometrically irreducible). Then an estimate of the type∑

x

a1(x)a2(x)� √p

is an incarnation of the Riemann Hypothesis for the Rankin-Selberg L-function associated to these
two cusp forms, together with the absence of pole of this L-function, a property which holds because
the cusp forms are distinct – essentially for the trivial reason that their conductor (in the sense
of set of ramified primes) are not the same... This is therefore in exact analogy with the Prime
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Number Theorems for classical cusp forms over Q (see, e.g.,[7, Th. 5.15, Prop. 5.22] for this type
of conditional results); the crucial uniformity in p can then be seen as coming from a uniform
conductor estimate.

However, although one could quote results to prove the Birch–Bombieri estimate in this manner,
this would be a very perverse approach, as the Riemann Hypothesis for cusp forms (and Rankin-
Selberg convolutions) over function fields, which was proved by Lafforgue, proceeds by reducing to
Deligne’s geometric results anyway...
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