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Points on curves over finite fields

Notation:

I Fp = Z/pZ: finite field with p elements, p prime.
I Want to consider families of smooth curves {Cf }f defined

over Fp. Example:
I Hyperelliptic curves: f ∈ Fp[X ] ranges over monic polynomials

with distinct roots, say of degree 2g + 1.

Cf = {x , y ∈ Fp : y2 = f (x)} ∪ {point at ∞}

I Will study the set of Fp-points on the curves, e.g.,

Cf (Fp) := {x , y ∈ Fp : y2 = f (x)} ∪ {point at ∞}
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Riemann hypothesis for curves

Basic questions:

I How large/small is |Cf (Fp)|?
I How does |Cf (Fp)| vary when we vary f ?

Theorem (A. Weil — “RH for curves”)

Let C be a smooth curve, defined over Fp and of genus g. Then∣∣|C (Fp)| − (p + 1)
∣∣ ≤ 2g

√
p

I Thus: for g fixed, p →∞, |C (Fp)| ∼ p.

I BUT: what about fluctuations around p + 1? In particular,
what if p fixed and g →∞?
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Fluctations when g = 1 (elliptic curves)

I When g = 1, hyperelliptics become family of elliptic curves.
With Cf = {x , y : y2 = f (x)} and

Fp := {f (X ) ∈ Fp[X ] : f monic, deg(f ) = 3, (f , f ′) = 1}

wish to consider the family {Cf }f ∈Fp .

I By the Hasse/Weil bounds,
∣∣|Cf (Fp)| − (p + 1)

∣∣ ≤ 2
√

p, write
fluctuations as:

ap,f := p + 1− |Cf (Fp)|

I How does ap,f vary when we vary f ? Normalize to get rid of
p-dependency: consider ap,f /

√
p ∈ [−2, 2].
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Fluctuations via Haar measure on compact Lie groups

I Fact (“vertical Sato-Tate distribution”): as p →∞,

|{f ∈ Fp : ap,f /
√

p ∈ [t1, t2]}|
|Fp|

' 1

2π

∫ t2

t1

√
4− x2 dx

I Where does semicircle come from? “Miracle”:

µHaar({g ∈ SU2(C) : Trace(g) ∈ [t1, t2]}) =
1

2π

∫ t2

t1

√
4− x2 dx

I Why SU2(C)? Can write

ap,f /
√

p = Trace(Up,f )

where Up,f ∈ SU2(C).
I Distribution of normalized fluctuations “comes from”

distribution of Trace(Up,f ).
I By Deligne’s equidistribution theorem, {Up,f }f ∈F become

equidistributed1 in SU2(C) when p →∞.
1Really should phrase this in terms of conjugacy classes in SU2(C).
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Generalized Sato-Tate distribution

What about families of hyperelliptic curves? Let

Fp := {f (X ) ∈ Fp[X ] : f monic, deg(f ) = 2g + 1, (f , f ′) = 1}

For f ∈ Fp, let Cf = {y2 = f (x)}, and let ap,f = p + 1− |Cf (Fp)|.
Let

USp(2g) := U(2g) ∩ Sp(2g).

Turns out that ap,f /
√

p = Trace(Up,f ) where Up,f ∈ USp(2g).

Theorem (Katz-Sarnak)

As p →∞, {Up,f }f ∈F becomes equidistributed in USp(2g). In
particular,

|{f ∈ Fp : ap,f /
√

p ∈ [t1, t2]}|
|Fp|
' µHaar({h ∈ USp(2g) : Trace(h) ∈ [t1, t2]})
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Large genus limit

What is distribution of {Trace(h)}h∈USp2g (C) when g →∞?

Theorem (Diaconis-Shahshahani)

As g →∞, the distribution of {Trace(h)}h∈USp2g (C) becomes
Gaussian. I.e., given an compact interval I ⊂ R,

lim
g→∞

µHaar({h ∈ USp(2g) : Trace(h) ∈ I}) =
1√
2π

∫
I

e−x
2/2 dx

Remarks:

I If h ∈ USp(2g), then Trace(h) =
∑2g

i=1 λi , and |λi | = 1.

I One thus might expect Trace(h) being of size ∼
√

2g (cf.
random walk). BUT: eigenvalues of typical elements in
USp(2g) are very regularly spaced; get massive cancellation
(like summing roots of unity).

I Gaussian “without” CLT — we don’t divide by
√

2g . (!)
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Point count statistics in large genus limit

Katz-Sarnak plus Diaconis-Shahshahani: point count fluctuations
(normalized by

√
p) is Gaussian for family of hyperelliptics

provided we take limits in the order

lim
g→∞

( lim
p→∞

...)

Remarks:

I K-S plus D-S gives Gaussian point counts for other families,
e.g., family of all genus g curves. (Via Mg ,n.)

I M. Larsen (unpublished) obtained Gaussian moments for
hyperelliptics of the form y2 =

∏d
i=1(x − αi ), αi ∈ Fp.

What about other limits?

I limp,g→∞ in arbitrary way?

I What about p fixed??
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Warmup problem for p fixed

I “Toy model” family (non-smooth!):

F = Fp := {f ∈ Fp : f monic and deg(f ) = d}

and, as d →∞, consider Cf : y2 = f (x).
I “Coin flip model” for |Cf (Fp)|: define independent random

variables {Xi}pi=1 where

Xi =


0 with prob. 1/p

1 with prob. (p − 1)/2p

−1 with prob. (p − 1)/2p

I Claim: if d ≥ p, then the fluctuations of

{|Cf (Fp)|}f ∈F and

p∑
i=1

Xi

have the same distribution.

Pär Kurlberg Point count statistics for families of curves over finite fields



Proof:

I Recall Legendre symbol

(
x

p

)
=


1 if x = � in Fp, x 6= 0,

−1 if x 6= � in Fp,

0 if x = 0.

I Since |{y : y2 = f (x)}| = 1 +
(
f (x)
p

)
, we get

|Cf (Fp)| = 1 +
∑
x∈Fp

(1 +

(
f (x)

p

)
) = 1 + p +

∑
x∈Fp

(
f (x)

p

)

so fluctuations given by
∑

x∈Fp

(
f (x)
p

)
.

I Result now follows immediately from:
I the linear evaluation map f → (f (1), f (2), . . . , f (p)) is

surjective if d ≥ p.
I Number of nonzero squares: (p − 1)/2. Number of

nonsquares: (p − 1)/2. Number of zero elements: 1.
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Back to hyperelliptics

I For smoothness, need (f ′, f ) = 1, i.e., f must be square free;
let F := {f ∈ Fp[X ] : f squarefree and monic, deg(f ) = d}.

I Again, seems reasonable to expect that point count
fluctuations for |Cf (Fp)|, f ∈ F should be same as

∑p
i=1 Xi

I Surprise (!?): Basically correct, but must adjust coin flip
model: define independent random variables {Yi}pi=1 where

Yi =

{
0 with prob. 1

p+1

±1, each with prob. 1
2(1+1/p)

Theorem (K.-Rudnick)

|{f ∈ F : |Cf (Fp)| − (p + 1) = n}|
|F|

= Prob(

p∑
i=1

Yi = n)·(1+O(p(3p−d)/2))

Why correction? f (x) = 0 a little less likely if f square free.
Pär Kurlberg Point count statistics for families of curves over finite fields



Gaussian by letting p, d →∞

Flipping many coins should give Gaussian:

I If p large,
∑p

i=1 Yi behaves as the sum of p fair coin flips
(with ±1 on each side.)

I Hence ap,f = |Cf (Fp)| − (p + 1) has zero mean, variance p.

I In particular, if p, d →∞ s.t. d − 3p →∞, get Gaussian
distribution (with mean zero, variance one) for ap,f /

√
p.

Is d − 3p, p →∞ needed? No!

Theorem (K.-Rudnick)

{ap,f /
√

p}f ∈F has Gaussian moments as long as p, d →∞.

Rough idea of proofs: use sieve to pick out square free
polynomials, use surjectivity of evaluation map “on remainder”.

What about p fixed?
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Random matrix theory must fail if p fixed and g →∞

I Recall Weil bounds etc:

|Cf (Fp)| = p + 1− ap,f = p + 1− p1/2 · Trace(Up,f )

I Expect: for Cf in “nice” family of genus g curves, {Up,f }f
equidistribute in some compact Lie group of
2g × 2g -matrices. (True for p →∞.)

I In particular, Trace(Up,f ) ' 2g can/should happen if random
matrix model also correct when p fixed.

I BUT: if this happens when g →∞ and p fixed, positivity is
violated(!!):

0 ≤ |Cf (Fp)| = p + 1− ap,f ' p + 1− p1/2 · 2g

Mystery: how adjust random matrix model when p fixed?
Possible to get Gaussian even if p fixed?
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Gaussian point counts for p fixed

Given a family F of curves, what is necessary for normalized
fluctuations to be Gaussian?
Define the mean and variance of point counts as

M :=

∑
C∈F |C (Fp)|
|F|

, V :=

∑
C∈F |C (Fp)|2

|F|
−M2,

To get Gaussian (with mean zero, variance one), should look at
normalized point counts:

|C (Fp)| −M

V 1/2

Now, since |C (Fp)| is integer valued, must have V →∞ for
normalized point counts to have a continuous distribution.
Further, V →∞ and |C (Fp)| ≥ 0 implies that we also need
M →∞ (the Gaussian is symmetric!)
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Candidates for Gaussian point counts (p fixed)

I Problem with hyperelliptics: |Cf (Fp)| ≤ 2p + 1, so M →∞
impossible no matter how large deg(f ) is.

I Any collection of families of curves C that can be embedded
in Pn suffers same problem: |C (Fp)| ≤ |Pn(Fp)| gives upper
bound on mean.

I What about all genus g curves Mg (Fp)? Well, not so clear

that mean =

∑
C∈Mg

|C(Fp)|
|Mg | →∞ when g →∞.

Pär Kurlberg Point count statistics for families of curves over finite fields



Families of curves with many points

I Goal: produce sequence of families of curves (over Fp) such
that M, the average point count, tends to infinity (along with
the variance.)

I Idea: Given a projective surface X ⊂ Pn and a degree d
homogenuous polynomial f (X0,X1, . . . ,Xn) define

Cf := X ∩ Hf

where Hf = {P ∈ Pn : f (P) = 0} is the hypersurface defined
by f .

I If |X (Fp)| large, |Cf (Fp)| might be large for many f .

I Model for |Cf (Fp)|: toss |X (Fp)| unfair coins, where prob. of
success = 1/p = Prob(f (P) = 0).

I Problem: Cf might not be smooth for all f . Perhaps generic,
or “most”, f works?
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Smooth curves “by definition”

Recall: X ⊂ Pn is a surface, Cf := X ∩ Hf where Hf is
hypersurface.

I Let Sd ⊂ Fp[X0, . . . ,Xn] be the set of degree d homogenuous
polynomials in n + 1 variables.

I Define smooth family of curves

F(d) := {Cf : f ∈ Sd , and Cf smooth.}

I Problem: F(d) might be empty.
I By Poonen’s “finite field Bertini”, when d →∞,

|F(d)| = |S(d)|/ζX (3) · (1 + o(1)).

Here ζX (s) is the zeta function of X , i.e.,

ζX (s) :=
∏

P∈X , P closed

(1− |P|−s)−1

I Upshot: |F(d)| → ∞ when d →∞.
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A coin flip model for (X ∩ Hf )(Fp)

A slightly more explicit version of Poonen’s “finite field Bertini
with Taylor coeffecients” gives:

Proposition (K.-Wigman)

As d →∞,

|{C ∈ F(d) : |C (Fp)| = s}|
|F(d)|

=

(
|X (Fp)|

s

)(
p + 1

p2 + p + 1

)s (
1− p + 1

p2 + p + 1

)|X (Fp)|−s
·(1+o(1))

uniformly for 0 ≤ s ≤ |X (Fp)|.
Note: this is just coin flip model with prob. of success = p+1

p2+p+1
.

(But not = 1/p.)
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Making the average point count tend to infinity

I M, the mean point count of C ∈ F(d) equals

|X (Fp)| · (p+1)
p2+p+1

· (1 + o(1)) as d →∞.

I How ensure M →∞? Just take sequence of surfaces Xi such
that Xi (Fp)→∞.

I One way to do this: use Ihara (or Tsfasman, Vlăduţ, and
Zink) construction of tower of modular curves Y0(l), l prime,
with many points over Fp2 : Y0(l)(Fp2) ≥ (p − 1)(l + 1)/12.
Letting Xi be the restriction of scalars of Y0(li )(Fp2) to Fp,
get surfaces Xi s.t Xi (Fp)� li

I Thus, if we let di grow fast enough and take Fi := Fi (di ),
{Fi}i≥1 will be sequence of families of smooth curves s.t.

I Mi , |Fi | → ∞.
I Easy to see that Vi →∞.
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Gaussian for p fixed (at last!)

Theorem (K.-Wigman)

There exists a sequence of families {Fi}∞i=1 of smooth curves
defined over Fp with the following properties: |Fi |,Mi ,Vi all tend
to infinity, and, for all compact intervals I ,

1

|Fi |

∣∣∣∣∣
{

C ∈ Fi :
|C (Fp)| −Mi

V
1/2
i

∈ I

}∣∣∣∣∣ =
1√
2π

∫
I

e−x
2/2dx + o(1),

as i →∞.
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Wrong bias

Why do coins have “wrong” bias — why (p + 1)/(p2 + p + 1)
rather than 1/p?

I We expect that f vanishes at Q ∈ X with prob. 1/p.

I However: we conditioned on f so that Cf = X ∩ Hf is
smooth; this changes things.

I Let f |X = A + BT1 + CT2 + (higher order) in local coords
T1,T2 at Q ∈ X . (Corresponding to T1 = T2 = 0.)

I Prob. that Cf smooth at Q (whether Q ∈ Cf or not):
(p3 − 1)/p3 = (1− p−3). (Must avoid A = B = C = 0.)

I Prob. that Cf smooth at Q and f (Q) = 0: (p2 − 1)/p3.
(Must have A = 0 and avoid B = C = 0.)

I Thus: prob. that Q ∈ Cf given that Cf smooth

=
(p2 − 1)/p3

(p3 − 1)/p3
=

p + 1

p2 + p + 1
6= 1/p
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Some related results

I Knizhnerman and Sokolinskii: computed moments of
fluctuations for y2 = f (x) and f ranging over non-square
polynomials.

I Bucur, David, Feigon, Laĺın:
I Coin flip model valid for curves of the form y l = f (x) when

d = deg(f ) tends to infinity (l fixed.)
Get Gaussian distribution if p, d →∞.

I Coin flip model also valid for smooth plane curves given by
homogenous polynomials f ∈ Fp[X0,X1,X2] when d = deg(f )
tends to infinity.
Get Gaussian distribution if p, d →∞ provided d > p1+ε.

I M. Xiong: Similar results for y l = f (x) where f ranges over
degree d families of polynomials — either l-th power free, or
irreducible. (Proof uses character sums.)
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