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1 Introduction

When Linnik introduced the classical large-sieve in 1941 [Lin], he was motivated
by the following problem: given a non-trivial primitive character χ modulo q,
how large (compared to q) can be the first n such that χ(n) 6= 1?

From the Riemann Hypothesis one can deduce (see [Mon] chapter 13 for
instance)

n� (log q)2

and the (weaker) conjecture n � qε for all ε > 0 is known as Vinogradov’s
conjecture.

Linnik’s technique makes it possible to prove that the number of exceptions
to these conjectures is extremely small. For example, let N(Q,α) be the number
of primitive characters χ of modulus q 6 Q such that

χ(n) = 1

for all n 6 (logQ)α, (n, q) = 1, α > 1 being given; then from the large-sieve
inequality for Dirichlet characters, we can derive

N(Q,α)� Q2/α+ε (1)

for all ε > 0, whereas there are about Q2 primitive characters of modulus at
most Q 1.

Moreover, because the exponent is less than 1 for α > 2 and there are about
Q real characters of modulus less than Q, our statement also proves that there
are very few exceptions for real characters, which corresponds to the problem
of the least quadratic non-residue. In particular, for Q tending to infinity,

∗Research supported in part by NSF Grant No. DMS-9507797.
1What Linnik actually did was, for χ a real character, to assume χ(n) = 1 in the larger

range n 6 Qε and prove that there are at most O(log logQ) possible χ of level less than Q.
He was also using his own additive form of the large-sieve.
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the probability that two real characters take the same values for all primes
p 6 (logQ)α tends to zero.

In recent years, it has been widely perceived that elliptic curves over Q are a
natural analogue of real Dirichlet characters. In this context, the corresponding
problem would be, given two elliptic curves E and F of conductor less than Q,
how large (always compared to Q) can n be if E and F have the same number
of points modulo p for all primes less than n and yet are not isogenous?

This problem was considered by Serre, for instance, in [Ser]. Assuming
the Riemann-Hypothesis for Artin L-functions, he showed that in this case too
n� (logQ)2 follows.

In this paper, we are able to prove some analogues of (1).

Theorem 1 Let M(Q,α) be the maximal number of isogeny classes of semi-
stable elliptic curves over Q with conductor less than or equal to Q which for
every prime p 6 (logQ)α have a fixed number of points modulo p.

Then we have for any ε > 0

M(Q,α)� Q8/α+ε.

It follows from this and a lower bound for the number of isogeny classes of
semi-stable elliptic curves with conductor less than Q that the probability that
two such elliptic curves have this property tends to zero as Q tends to infinity,
if α is large enough. We also have other results in more general cases.

As in Linnik’s original treatment, we attack the problem by means of an
analytic inequality for a larger class of objects encompassing the elliptic curves,
namely holomorphic cusp-forms of weight two. Thus we use the theorem of
Wiles [Wil], and its further extensions, which prove the modularity of many
elliptic curves over Q, to embed the set of isogeny classes of modular elliptic
curves over Q in the set of primitive cusp forms 2.

However, due to incomplete knowledge of lower bounds for the Fourier coef-
ficients of cusp forms it will appear that this inequality is not sufficient to prove
the result we are seeking. We have to supplement its use by that of another
similar inequality for the coefficients of the symmetric square L-function of cusp
forms, and also appeal to a result of Ramakrishnan about the possible multi-
plicity of the symmetric square, the proof of which appears in an Appendix to
this paper.

This other inequality requires the study of Rankin-Selberg convolutions of
GL(3) automorphic forms, and it is actually not much harder to prove a general-
ization of our mean-value estimate to all GL(n), in the context of automorphic
representations satisfying the Ramanujan-Petersson bound. The result is re-
lated to the large-sieve, although it is not as powerful as one could expect;
roughly it corresponds to the case of sums much longer than the conductor of
the forms appearing.

2Also called “newforms” in the literature; we use the vocabulary of [Miy] to emphasize
again the analogy with Dirichlet characters.
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We will first study the Linnik problem for primitive cusp forms, stating
the analytic results required for the proof before showing how our main result
follows from this.

We then apply the theorem to elliptic curves, with a short preliminary dis-
cussion of estimates for the number of isogeny classes of elliptic curves over
Q with conductor at most Q. Both upper and lower bound are used in our
theorem. The problem of finding an upper bound for a fixed level q was re-
cently considered by Brumer and Silverman [B-S]. Their individual bound can
be strengthened on average and we show how this is done.

It is then time to come back to the proof of the mean-value estimate, in its
full generality for GL(n). This result may be of independent interest, although
it falls short of the hypothetical large-sieve inequalities which can be expected
by analogy with the case of Dirichlet characters (namely, the case of GL(1)). A
variant for Maass forms is used by Luo in [Luo].

Acknowledgement. We wish to thank H. Iwaniec for helpful discussions
about this paper, and especially for suggesting to look at the symmetric squares
to circumvent the difficulties with lower-bounds for the Fourier coefficients. We
also thank A. Brumer and J. Silverman for communicating their result about the
number of elliptic curves of a given conductor and allowing us to present here
the straightforward application of their ideas which strengthens their bound on
average.

Notational remark. When using Vinogradov’s � notation, it will often
occur that we consider inequalities such as “for any ε > 0, it holds f(x) �
xεg(x)”; as is customary in this case, the implied constant always depends on
ε.

We may also remind that, as is usual in analytic number theory, the ε may
be different from line to line in an argument.

2 The Linnik problem for cusp forms

2.1 Notations and statement of the mean-value estimates

Our main result in this section is about (families of) primitive cusp forms having
the same Fourier coefficients for the first few primes. For k even, k > 2, we will
denote by Sk(q)+ the set of primitive cusp forms of weight k and level q and by
Sk(6Q)+ the set of primitive cusp forms of weight k and level less than or equal
to Q. Moreover, for f ∈ Sk(6Q)+, we will write λf (n) its Hecke eigenvalues,
normalized so that the critical line for the L-function

L(f, s) =
∑
n>1

λf (n)n−s

is the line Re(s) = 1/2. This means that the Fourier expansion of f is

f(z) =
∑
n>1

af (n)e(nz)
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with
λf (p) = p−(k−1)/2af (p)

for all primes p.
Note that

|λf (n)| 6 τ(n) (2)

is then the Ramanujan-Petersson bound (proved by Deligne) for f .
We need some estimates for the cardinality of the various sets appearing.

The easiest one is Sk(6Q)+. Classical results about the genus of the modular
curves X0(q) and the index of Γ0(q) in SL(2,Z) show that |Sk(6Q)+| is about
kQ2, more precisely there is a constant c(k) > 0 with

|Sk(6Q)+| ∼ c(k)Q2 (3)

(see for instance [Shi] pages 25 and 46). Only the dependence in Q actually
matters to us.

We will need to argue, here and in section 4, in the language of automorphic
representations, which is better suited to the various L-functions and to the
context of GL(n) automorphic forms. Many useful facts, and precise references,
for the analytic properties of general L-functions of automorphic representations
of GL(n) which interest us here can be found in the paper [R-S] of Rudnick and
Sarnak.

Recall first that there is an injective map f 7→ πf from Sk(q)+ to a cer-
tain subset of the set of cuspidal automorphic representations of GL(2) over
Q (see [Del], or [Gel]). This map is compatible with L-functions in the sense that
L(f) = L∞(πf ), where L(f) is the classical Hecke L-function, defined above,
and L(πf ) is the Jacquet-Langlands L-function (complete with the Gamma fac-
tor at infinity), which is defined in terms of representation theory; here and
elsewhere L∞, for automorphic-representation L-functions, denotes the finite
part of such an L-function.

Moreover, Gelbart and Jacquet have described a map π 7→ π(2) associating
a “symmetric square”, a certain automorphic representation of GL(3), to a
cuspidal automorphic representation of GL(2) [G-J].

Let L∞(π(2)
f ) be the finite part of the L-function of π(2)

f ; it is a Dirichlet
series which we write

L∞(π(2)
f , s) =

∑
n>1

λ
(2)
f (n)n−s.

We then claim that for squarefree n, we have

λ
(2)
f (n) = λf (n2). (4)

This is actually due to Shimura, and it follows from the local computa-
tions of [G-J] with the fact that f 7→ πf preserves L-functions: indeed, writing
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ζN (s) = L(s, εN ) for any integer N > 1 where εN is the trivial Dirichlet char-
acter modulo N (so ζN is the Riemann zeta function with the Euler factors at
p | N removed), we have

ζq′(2s)
∑
n>1

λf (n2)n−s = L∞(π(2)
f , s)

(where q′ is the conductor of π(2)
f ) whence

λ
(2)
f (n) =

∑
d2|n

εq′(d)λf
(n2

d4

)
which immediately implies (4) for squarefree n.

The automorphic representation π(2) is not always cuspidal, however, which
means that L(π(2)) is not always entire. More precisely, Gelbart and Jacquet
have established that π(2) is non-cuspidal if and only if there exists a non-trivial
(primitive) character η such that π = π⊗ η. Such representations, and the cusp
forms in Sk(q)+ to which they correspond, are called monomial representations.
It is known from the work of Hecke, Maass, Langlands and others, that they
are the forms obtained from Hecke characters χ of a quadratic extension of Q
by automorphic induction, so that L(s, π) = L(s, χ).

We will write Sk(6Q)] for the set of primitive cusp forms of level less than
or equal to Q which are not monomial. Then we write S(2)

k (6Q)] for the image
of Sk(6Q)] by the map f 7→ π

(2)
f . The number of monomial representations

can be easily shown to be � Q1+ε for any ε > 0, so the estimate

|Sk(6Q)]| ∼ c(k)Q2

holds again.
The monomial representations are exceptional in many respects, in particular

we will see this in the case of the Linnik problem (see the remarks at the end
of the next section).

The map f 7→ πf 7→ π
(2)
f is not injective; roughly, twisting by quadratic

characters doesn’t change the symmetric square, but the corollary to theorem
A of the Appendix shows that this is the only case that can occur. We state it
here in the form we will use.

Theorem 2 (Ramakrishnan) Let f and g be primitive cusp forms of level qf
and qg. If

π
(2)
f = π(2)

g

then there exists a quadratic character χ of conductor d dividing qfqg such that

λp(f) = λp(g)χ(p)

for almost all primes p, or equivalently, by the strong multiplicity one theorem
for GL(2) (see [Gel])

πf = πg ⊗ χ. (5)

Moreover, if qf and qg are squarefree, then f = g.
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(We do not have necessarily f = g ⊗ χ, because g ⊗ χ might be non-primitive;
but (5) is correct because the tensor product is in the sense of automorphic
representations, and πg ⊗ χ is the representation whose L-function coincides
with that of g⊗χ for all but finitely many places, in other words it corresponds
to the “newform” associated to the (possibly) “old-form” g ⊗ χ.)

As in section 4, we suppose that we are given for every q > 1 a subset
S(q) ⊂ Sk(q)+. We then write

S(6Q) =
⋃
q6Q

S(q)

and assume that d > 0 is such that

|S(6Q)| = O(Qd) (6)

(note that this holds for any choice of subsets S(q) for d = 2; indeed taking d = 2
in what follows only results in having a slightly larger constant Bd and is not
of great importance, so the reader may prefer to assume d = 2 for simplicity).

As above, the superscript ] restricts the set to the subset of non-monomial
forms, and the superscript (2) to the image of the non-monomial forms by the
symmetric square map.

Now we can quote from section 4 the mean-value estimates that we will
require in the proof of the main theorem in the next subsection, namely corol-
lary 5: if β > 2d+ 2 then for any ε > 0 we have∑

f∈S(6Q)]

∣∣∣ ∑
n6Qβ

anλf (n)
∣∣∣2 � Qβ+ε

∑
n6Qβ

|an|2; (7)

and corollary 6: if β > 2(d+ 3) then for any ε > 0∑
πf∈S(2)(6Q)]

∣∣∣ ∑
n6Qβ

anλ
(2)
f (n)

∣∣∣2 � Qβ+ε
∑
n6Qβ

|an|2. (8)

From this last equation we deduce by (4), for any ε > 0,∑
πf∈S(2)(6Q)]

∣∣∣∑[

n6Qβ

anλf (n2)
∣∣∣2 � Qβ+ε

∑[

n6Qβ

|an|2 (9)

for any complex numbers (an)16n6Qβ , where
∑[ denotes a sum restricted to

squarefree integers. Remark that this is not a sum over all f since quadratic
twists give the same πf .

2.2 The main result

Now fix a set P of prime numbers of positive natural density δ (for instance, all
primes in an arithmetic progression an+ b with (a, b) = 1), and a real number
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α > 1. For (non-monomial) primitive forms f and g in Sk(6Q)], write f ∼ g if
λf (p) = λg(p) for all primes p ∈ P, p 6 (logQ)α.3

Then clearly ∼ is an equivalence relation (depending on P, Q, k, and α)
on the finite set Sk(6Q)], inducing one on the subset S(6Q)], which is thus
partitioned into finitely many finite equivalence classes. We will denote by
MS(P, Q, α) the maximum cardinality of such an equivalence class: in other
words, MS(P, Q, α) is the largest possible number of non-monomial forms in
the set S(6Q) whose Hecke eigenvalues are all equal for primes p 6 (logQ)α.

The analogue of Linnik’s result is the following:

Theorem 3 There exists a constant Bd > 0 such that for all α > 1, we have

MS(P, Q, α)� Q
1
2+

Bd
α +ε

for all ε > 0, the implied constant depending on ε, P and the family S.
Furthermore, if T is any fixed set of primes, then the number of elements of

any equivalence class whose level is squarefree outside T (that is, p2 | q implies
p ∈ T ) is � Q

Bd
α +ε for any ε > 0, the constant depending further on T .

Moreover, Bd = 2(d+ 3) is admissible.

Of course, this result is non-trivial only if S(6Q)] contains more elements than
the bound given for the exceptions, so the efficiency of our result depends also
on a lower bound for the number of forms we are considering. In particular,
it is always trivial if d 6 1/2 (but the result for forms with almost squarefree
conductor is not, for α large enough, as long as |S(6Q)| is larger than some
fixed positive power of Q).

As one immediate corollary, we have for instance, taking S(q) = Sk(q) and
using (3):

Corollary 1 Fix α > 2B2/3. Then for Q tending to infinity, the probability
that two non-monomial primitive forms of level less than Q have the same Hecke
eigenvalues for all primes less than (logQ)α in a fixed arithmetic progression
tends to zero. Here B2 = 10 is admissible.

Proof of theorem 3.

We will omit P in the notation and write only MS(Q,α) in the proof.
Take an equivalence class of cardinality MS(Q,α) for ∼, and an element f

in this class, of level qf .
The idea of the proof is that because of the multiplicativity of the Hecke

eigenvalues the hypothesis implies that for any g ∼ f , we have

λf (n) = λg(n)

for any n such that all its prime factors are in P and less than (logQ)α; those
n form a rather large set, but on the other hand choosing an = λf (n) in the

3It is possible to relax this condition by asking that the equality holds only with a “small”
number of exceptions (to exclude ramified primes for instance). This complicates the argument
slightly so we will not do it here, as our results are not definitive anyway.
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mean-value estimate (7), we get the same sum over those n with multiplicity
MS(Q,α), and it remains only to find a lower bound for this common sum to
get some result by positivity. The quality of the result depends on that of the
lower bound, and we will see that this fails to give a good result because of the
impossibility to be sure that Fourier coefficients are “large” for enough primes;
however the deus ex machina is the well-known formula (for p unramified)

λf (p)2 − λf (p2) = 1, (10)

which implies that if λf (p) is “small” then λf (p2) can not be, and in this case
we use the inequality (9) instead (with an = λf (n2) this time). This trick has
already been used, for instance in [DFI], in other contexts when this problem
of the lower bound for Fourier coefficients of cusp forms arose. The great virtue
of (10) is its complete uniformity in any parameter involved. Since we are
considering very small primes (compared to the conductor), this is absolutely
vital.

We now come to the details.
By the assumption, the number of primes in P less than (logQ)α is

πP((logQ)α) ∼ δ(logQ)α

α log logQ
.

Since qf has only� logQ prime divisors, the set P(Q) of primes p 6 (logQ)α

with p not dividing qf satisfies also

|P(Q)| ∼ δ(logQ)α

α log logQ
.

For any p ∈ P(Q) we have, as mentioned, λf (p)2−λf (p2) = 1, so one of the
two sets of primes

P1(Q) = {p ∈ P(Q) | |λf (p)| > 1/2}

and
P2(Q) = {p ∈ P(Q) | |λf (p2)| > 1/2}

(say Pi(Q)) must satisfy

|Pi(Q)| > |P(Q)|/2 > δ(logQ)α

3α log logQ

for Q large enough.
If g ∼ f , we have a fortiori λg(p) = λf (p) for all primes p ∈ Pi(Q) so that,

by multiplicativity and the Hecke relations:

λg(n) = λf (n)

if n =
∏
p∈Pi(Q) p

vp(n) has all its prime factors in Pi(Q).
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Among those integers consider the set N (Q) of squarefree integers n such
that n has m (which will be chosen later) prime factors exactly, all in Pi(Q).
From the definition of Pi(Q), it follows that

|λg(ni)| > 2−m (11)

for all n ∈ N (Q) and all g ∼ f (note the i on the left hand side). Let N =
Max (N (Q)), so N 6 (logQ)αm = N ′.

We now assume that m is chosen so that N ′ is less than, but near, Qβ , with
β > 2(d+ 3). Then for n 6 Qβ take

an =
{
λf (ni) for n ∈ N (Q)
0 otherwise

in (7) or (9) if i = 1 or i = 2, respectively.
In the first case we get

MS(Q,α)
∣∣∣ ∑
n∈N (Q)

|λf (n)|2
∣∣∣2 6

∑
h∈S(6Q)]

∣∣∣∑[

n6Qβ

anλh(n)
∣∣∣2

� Qβ+ε
∑[

n6Qβ

|an|2

= Qβ+ε
∑

n∈N (Q)

|λf (n)|2

for any ε > 0, whence

MS(Q,α) � Qβ+ε
( ∑
n∈N (Q)

|λf (n)|2
)−1

� Qβ+ε2m|N (Q)|−1

by (11).
In the second case, let M (2)

S (Q,α) be the cardinality of the image of the
equivalence class of f via f 7→ π

(2)
f . Then by the second mean-value estimate:

M
(2)
S (Q,α)

∣∣∣ ∑
n∈N (Q)

|λf (n2)|2
∣∣∣2 6

∑
πh∈S(2)(6Q)]

∣∣∣∑[

n6Qβ

anλh(n2)
∣∣∣2

� Qβ+ε
∑[

n6Qβ

|an|2

= Qβ+ε
∑

n∈N (Q)

|λf (n2)|2

for any ε > 0, and

M
(2)
S (Q,α) � Qβ+ε

( ∑
n∈N (Q)

|λf (n2)|2
)−1

� Qβ+ε2m|N (Q)|−1
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by (11).
We now choose m and estimate N ′ and |N (Q)|.
As already mentioned, we select m so that the upper bound N ′ for N is

about the same as Qβ , namely

m =
[

β logQ
α log logQ

]
.

Then we have 2m � Qε if Q is sufficiently large. Similarly

(δ/3α)(logQ)/(log logQ) � Q−ε.

Finally, by unique factorization of integers and Stirling’s formula

|N (Q)| >
(
|Pi(Q)|
m

)
� m−1/2

(
|Pi(Q)|
m

)m
�

(
δ(logQ)α

3α log logQ
α log logQ
β logQ

)m
m−1/2

� Q−ε
(
(logQ)α−1

)β(logQ)(α log logQ)−1−1

� Qβ
α−1
α −ε

(for Q sufficiently large again), so that we get from the above estimate, for any
ε > 0:

• If i = 1,
MS(Q,α)� Qβ−β

α−1
α +ε = Q

β
α+ε

which concludes the proof in this case, with a much better exponent ac-
tually (B = 2d+ 2 is enough then).

• If i = 2,
M

(2)
S (Q,α)� Qβ−β

α−1
α +ε = Q

β
α+ε

and it remains to relate M (2)
S (Q,α) and MS(Q,α), which may be bigger

since f 7→ π
(2)
f is not injective.

Take a form g in the equivalence class of f whose symmetric square has
maximum multiplicity, say Mg, so

MS(Q,α) 6MgM
(2)
S (Q,α)

and choose g furthermore so that its level qg is the smallest possible. If h is
a form equivalent to g with the same symmetric square, then by theorem 2
there exists a quadratic character χ, of conductor d, such that πh = πg⊗χ.

If we write uniquely d = d1d2 with d1 | q∞g and (d2, qg) = 1, then compar-
ing conductors we get an equality

qh = d2
2d
′
1qg
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where d′1 | d2
1. For any given d1, we may have as many as

√
Q/qg 6 Q1/2

possible values of d2. Since the number of integers less than Q divisible
only by primes dividing qg is � Qε for any ε > 0, it follows that

Mg � Q
1
2+ε

so
MS(Q,α)� Q

1
2+ β

α+ε

for any ε > 0.

If however we are given a fixed finite set of primes T such that we only
consider forms of level squarefree outside T , then clearly from

qh = d2
2d
′
1qg

we see that the conductor of the character χ must be divisible only by
primes in T or dividing qg. The number of such d less thanQ is again� Qε

for any ε > 0, and the last statement of the theorem follows accordingly.

So the theorem is proved.
�

3 The Linnik problem for elliptic curves

3.1 Notations and counting problems

We can now approach the Linnik problem for elliptic curves by means of the
L-functions of elliptic curves and their modularity.

Recall that the general modularity conjecture for elliptic curves over Q says
that the map which associates to an elliptic curve E the inverse Mellin transform
of its Hasse-Weil zeta function

L(E, s) =
∏
p

(1− aE(p)p−s + εN (p)p1−2s)−1

(where N is the conductor of E, and aE is defined as usual by the equality
|E(Fp)| = p+ 1− aE(p), if p doesn’t divide N) induces a bijection between the
set Ell(q) of isogeny classes of elliptic curves over Q of conductor q and the set
S2(q,Z)+ of primitive cusp forms of weight two and level q with integer Fourier
coefficients. In particular, this would embed Ell(6Q) (with obvious notation)
into the set S2(6Q)+.

This modularity conjecture is now, after the breakthrough of Wiles [Wil],
known in many cases: according to Diamond’s extension of Wiles’ result, any
elliptic curve E/Q which doesn’t have additive reduction at either 3 or 5 is
modular. We will work either with all elliptic curves. assuming the full modu-
larity conjecture, or with classes which are known to be modular. Our results
can also be restated as holding for modular elliptic curves.
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The cusp form fE corresponding to a modular elliptic curve E is known to
be monomial if and only if E has complex multiplication. In that case, the
modularity was already well-known. As we apply our result of the previous
section we have to exclude those curves. We will write Ell(6Q)] for the set of
isogeny classes of non-CM elliptic curves over Q of conductor less than Q, and
Ell(6 Q)[ for the subset of Ell(6 Q) given by semi-stable elliptic curves, i.e.
those whose conductor is squarefree. We have Ell(6Q)[ ⊂ Ell(6Q)] since CM-
curves are not semi-stable. Also, by Wiles’s theorem, the curves in Ell(6Q)[

are modular.
As in the previous subsection, we first need to estimate the cardinality of

the sets we will consider. This is a subtler question than the corresponding one
for cusp forms.

First we consider the problem of an upper bound for |Ell(6Q)|. We will
actually deal with Ell(6 Q), the set of isomorphism classes of elliptic curves
over Q of conductor less than Q. According to results of Mazur and Kenku
(see [Si1], page 265), there are at most 8 isomorphism classes of elliptic curves
over Q isogenous to a given curve E/Q, so all our O( ) estimates for Ell(6Q)
will also be true for Ell(6Q).

Recently, Brumer and Silverman [B-S], proved the estimate

|Ell(q)| � q1/2+ε (12)

for all ε > 0. This trivially gives |Ell(6Q)| � Q3/2+ε, but the proof of (12) can
actually be extended to give a sharper bound on average.

Proposition 1 For any ε > 0 it holds

|Ell(6Q)| � Q1+ε

and
|Ell(6Q)| � Q1+ε.

Proof. We have already seen how the second statement follows from the
first.

Brumer and Silverman actually count elliptic curves having good reduction
outside a given (finite) set of primes S (containing 2 and 3) by writing, for such
an elliptic curve E/Q,

1728∆E = ad6 (13)

where a is 6-th power free, and observing that (c6(E)/d3, c4(E)/d2) is then an
S-integral point on the elliptic curve Ea given by

Ea : Y 3 = X2 + a

so that it only remains to estimate how many a’s are possible, how many S-
integral points there are on Ea for a given a and how many different curves E
can be associated to the same a.
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We begin by writing

|Ell(6Q)| =
∑
q6Q

|Ell(q)|

6
∑
q6Q

|Ell(q)′|

where Ell(q)′ is the set of isomorphism classes of elliptic curves over Q having
good reduction outside the set of prime divisors of q, with 2 and 3 added.

Now we rewrite straightforwardly the counting argument of Brumer and
Silverman for Ell(q)′, obtaining

|Ell(6Q)| 6
∑
q6Q

∑
a∈A(q)

∑
P∈Ea(Zq)

|E(P )|

where:

• A(q) is the set of possible a’s for a given level q.

• Zq is ZS for S the set of prime factors of q, with 2 and 3 added.

• E(P ) is the set of elliptic curves that give the point P ∈ Ea(Zq) in the
way sketched above.

Brumer and Silverman show that the inner sum is � Qε for any ε > 0, so we
get

|Ell(6Q)| � Qε
∑
q6Q

∑
a∈A(q)

|Ea(Zq)|

and then, still following their argument, we apply deep bounds of Silverman and
Evertse for |Ea(Zq)| to obtain the estimate

|Ell(6Q)| � Qε
∑
q6Q

∑
a∈A(q)

h3(Q(
√
−a))

in terms of the 3-part of the class group of the imaginary quadratic field Q(
√
−a)

(here and in the remainder of the argument, ε is different from line to line). This
is where the saving on average will come from: whereas no better individual
bound for h3(Q(

√
−a)) is known than h3 6 h 6 a1/2(log 2a), Davenport and

Heilbronn established a sharp average bound in [D-H]. We now apply it.
For this, write the sum over a as the sum over the squarefree kernels a′ of

elements of A(q). Using that a is 6-th power free and a q-unit to bound the
multiplicity, it follows that the number of a for a given a′ is again bounded by
Qε, giving

|Ell(6Q)| � Qε
∑
q6Q

∑
a′

h3(Q(
√
−a′)).

Then we exchange the order of summation; a′ being squarefree implies |a′| 6
1728q 6 1728Q (see (13)) and moreover a′ divides the discriminant ∆ of any

13



curve (of conductor q) for which it may appear, so again because a′ is squarefree
it must actually divide the conductor q, whence the multiplicity of q for a given
a′ is less than the number of divisors of q, and thus

|Ell(6Q)| � Qε
∑

|a′|61728Q

h3(Q(
√
−a′))

which is � Q1+ε by theorem 3 of Davenport and Heilbronn, as claimed.
�

We need also a lower bound of the form

|Ell(6Q)| � Qd

for some d > 1/2, or for semi-stable curves

|Ell(6Q)[| � Qd

(which of course implies the former inequality). This is proved in [FNT] with
d = 5/6, namely

|Ell(6Q)[| � Q5/6. (14)

Remark. The case K = 1 of the main theorem of [FNT] is not far from
giving also proposition 1; the difference is that it deals with the discriminant
instead of the conductor, but most of the ingredients are present there.

3.2 The Linnik problem for elliptic curves

We will now deduce from theorem 3 our applications to Linnik’s problem for
elliptic curves. Assuming the general modularity conjecture, we take for S(q)
the set of primitive forms associated to isogeny classes of elliptic curves over Q
with conductor q. From proposition 1 we can take d = 1+ε for any ε > 0, so the
constant B in the theorem may be B = 8 + 2ε, and actually ε can be absorbed
in the other ε from theorem 3, so B = 8 is admissible.

Consider first the case of semi-stable elliptic curves over Q, and take there-
fore T = ∅ in the second statement of theorem 3. In this case we need not assume
the modularity conjecture. Using the lower-bound (14), we get theorem 1 from
the introduction, the statement of which we now recall.

Corollary 2 Let M(Q,α) be the maximal number of isogeny classes of semi-
stable elliptic curves over Q with conductor less than or equal to Q which for
every prime p 6 (logQ)α have a fixed number of points modulo p.

Then we have for any ε > 0

M(Q,α)� QB/α+ε

and this is non-trivial for α > 6B/5. Moreover, if we only ask that the curves
have a fixed number of points modulo p for p in a fixed set of primes of positive
natural density, the bound still holds, with a constant in � depending on the
set.

14



Or, applied to a special case in a probabilistic phrasing:

Corollary 3 Fix α > 6B/5. Then for Q tending to infinity, the probability that
two semi-stable elliptic curves of conductor 6 Q have the same number of points
modulo p for all primes less than (logQ)α in a fixed arithmetic progression tends
to zero.

We have a somewhat weaker estimate for the general case.

Corollary 4 Assume the general modularity conjecture.
Fix α > 3B and a set P of primes with positive natural density. Then for all

ε > 0 the maximal number of isogeny classes of elliptic curves of conductor 6 Q
without complex multiplication which have the same number of points modulo p
for all p 6 (logQ)α in P is bounded by Q1/2+B/α+ε up to a positive constant
depending only on ε, α and P.

The probabilistic statement also holds in this general case.

Remarks.

• The case of CM-curves (or monomial forms) is actually different, since
an estimate such as the one for general P in corollary 2, with exponent
tending to zero as α tends to infinity, is false for them. For example,
taking all curves

ED : y2 = x3 +D (15)

it is known that
aED (p) = 0

for all p congruent to 2 mod 3, p unramified, so if we choose this arith-
metic progression as our set P, we have as many as Q1/2 elliptic curves of
conductor less than Q having the same Fourier coefficients for p ∈ P.

This shows that our introduction of the symmetric square, because of the
lack of lower bound for the Fourier coefficients of cusp-forms, is not as
technical as it may seem.

However, if we consider all primes, then on the Generalized Riemann Hy-
pothesis two monomial forms are still distinguished by some prime less
than (logQ)2, so the corresponding analogue of Linnik’s result should
hold.

We can actually prove it: if E/Q is an elliptic curve with complex mul-
tiplication and conductor less than Q, then it follows from our proof of
theorem 3 and the knowledge of the Fourier coefficients of the correspond-
ing primitive forms that the number of isogeny classes of elliptic curves
over Q with complex multiplication and conductor less than Q having the
same Fourier coefficients as E for p 6 (logQ)α is� QB/α+ε for any ε > 0
and some B > 0 (actually, B = 6 is enough).

15



Indeed, there are only a finite number of j-invariants of elliptic curves over
Q with complex multiplication, and each possible j gives rise to a family
of twists similar to (15) above (see [Si2], appendix A for instance).

It then suffices to find a lower bound for each family, which is not very
difficult (see [DFI] page 224 for the reasoning in the case of y2 = x3 +D).

Once the lower bound is known, it remains to apply the same proof with
the mean-value estimate for GL(2) forms applied to the family of primitive
forms associated to complex multiplication curves.

Of course, it is then possible to bring both results together and say that the
number of elements in the whole set Ell(6Q) which have the same Fourier
coefficients for all primes p 6 (logQ)α for α large enough is� Q1/2+B/α+ε

for any ε > 0 and some B > 0.

4 A mean-value estimate for automorphic rep-
resentations

The original large-sieve inequality for primitive Dirichlet characters is∑
q6Q

∑∗

χ (q)

∣∣∣∑
n6N

anχ(n)
∣∣∣2 6 (N +Q2)

∑
n6N

|an|2 (16)

for any sequence (an)n6N of complex numbers.
This is a kind of quasi-orthogonality statement for the truncated sequences
(χ(n))16n6N considered as elements of a finite dimensional Hilbert space.
After the work of Jacquet and Langlands, it has appeared that Dirichlet

characters are only the case n = 1 of a much more general theory of automor-
phic representations on the algebraic group GL(n). For such an automorphic
representation, a (standard) L-function L(π) is also defined; it is the product of
a Gamma factor and a Dirichlet series

L∞(π, s) =
∑
n>1

λπ(n)n−s.

It is expected that the coefficients λπ(n) of those L-functions should satisfy
inequalities similar to (16) when (large enough) increasing families of automor-
phic representations, where certain parameters (the conductor, the weight, or
others) are bounded, are considered in the outer sum on the left-hand side. The
hypothetical bound on the right hand side would be roughly the length N of the
inner sum plus the number of representations considered, up to small factors.
Some results exist, with the weight varying for instance, for the classical case of
GL(2)-automorphic forms, see for example [D-I].

We will establish such an estimate for certain families of automorphic repre-
sentations, but only in the easiest case, when the length N of the sum is much
larger than the number of π’s.

16



To define those families, fix first an admissible representation π∞ of (the
Hecke group algebra of) GL(n,R) considered as infinite component of some cus-
pidal automorphic representation of GL(n) over Q – for example, if n = 2, and
π∞ is the discrete series representation σ(µ1, µ2) with µ1µ

−1
2 (t) = tk−1sgn(t)

(see [Gel] page 91 for the notations), for some integer k > 2, then π∞ is the
infinite component of all automorphic representations corresponding to classical
weight k modular forms.

Fix also a character η of the idèle class group of Q.
Then for any integer q > 1 we let Aut(q) denote the set of cuspidal auto-

morphic representations π of GL(n) over Q such that:

• π∞ is the infinite component of π, and η its central character;

• π satisfies the Ramanujan-Petersson conjecture: if

L∞(π, s) =
∑
n>1

λπ(n)n−s

is the finite part of the standard L-function of π, we have

λπ(n)� nε (17)

for any ε > 0;

• The conductor of π is q.

With respect to the Ramanujan-Petersson bound, we recall that because of
the Euler product

L∞(π, s) =
∏
p

∏
16j6n

(1− απ,j(p)p−s)−1

it is known that (17) implies
|απ,j(p)| 6 1

which shows that the bound (17) is actually uniform with respect to π. This
will be important.

It should then be true that Aut(q) is finite and its cardinality (as a function
of q) is bounded by a fixed power of q. We don’t actually need this fact.

We further set

Aut(6Q) =
⋃
q6Q

Aut(q).

Again, Aut(6Q) should be finite and its cardinality at most polynomial in
Q.

Now we will suppose given for every q > 1 a subset S(q) of Aut(q) and write

S(6Q) =
⋃
q6Q

S(q).

We can now state our result.
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Theorem 4 Fix n > 0. Given sets S(6Q) as above, assume that

|S(6Q)| = O(Qd). (18)

There exists an absolute constant Bn,d > 0 such that if N > Qβ with β > Bn,d,
then for any ε > 0 the inequality∑

π∈S(6Q)

∣∣∣∑
n6N

anλπ(n)
∣∣∣2 � N1+ε

∑
n6N

|an|2 (19)

holds for all complex numbers (an)16n6N . Moreover, Bn,d = 2d+n is admissi-
ble.

Proof.
The strategy is familiar, being based on the well-known duality principle.
The inequality (19) is equivalent to the estimate

||TN,Q||2 � N1+ε

for the norm of the linear operator

TN,Q : (an)n6N 7→
(∑
n6N

anλπ(n)
)
π∈S(6Q)

where both the domain and range are finite dimensional Hilbert spaces (with
the natural hermitian form). Now by general Hilbert theory, we know that the
norm of TN,Q is the same as that of (the conjugate of) its adjoint, which is the
operator

T ∗N,Q : (απ)π∈S(6Q) 7→
( ∑
π∈S(6Q)

απλπ(n)
)
n6N

.

In concrete terms this means that (19) is equivalent to the dual inequality∑
n6N

∣∣∣ ∑
π∈S(6Q)

απλπ(n)
∣∣∣2 � N1+ε

∑
π

|απ|2. (20)

We now choose a smooth, positive, compactly supported test function ψ on
[0,+∞[, equal to 1 between 0 and 1, and such that 0 6 ψ(x) 6 1 for all x ∈ R.

Then by positivity the left-hand side of (20) is less than∑
n>1

∣∣∣ ∑
π∈S(6Q)

απλπ(n)
∣∣∣2ψ(n/N)

so it is enough to prove the inequality for this last expression.
This we write, expanding the square and interchanging the order of summa-

tion, as ∑
π1,π2∈S(6Q)

απ1απ2

∑
n>1

λπ1(n)λπ2(n)ψ(n/N).
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Let us denote by SN (π1, π2) the inner sum,

SN (π1, π2) =
∑
n>1

λπ1(n)λπ2(n)ψ(n/N).

We thus have

||T ∗N,Q(α)||2 6
∑

π1,π2∈S(6Q)

απ1απ2SN (π1, π2). (21)

We will use the following well-known lemma:

Lemma 1 Let
Q(α) =

∑
π1,π2

απ1απ2K(π1, π2)

be a quadratic form, with K(π1, π2) ∈ C. Then we have

||Q|| 6 Max
π1

∑
π2

|K(π1, π2)|.

We are thus reduced to the problem of estimating the sums SN (π1, π2). This
we will achieve by studying the analytic properties of the Dirichlet series

Lb(π1 ⊗ π̃2, s) =
∑
n>1

λπ1(n)λπ2(n)n−s

(which might be called the “bilinear” convolution of the automorphic represen-
tations π1 and π2) and expressing the sums as Mellin transforms.

The necessary properties of Lb are consequences of a result which compare
it to the Rankin-Selberg convolution of π1 and π2. In complete generality,
Jacquet, Piatetskii-Shapiro and Shalika have developed a theory of Rankin-
Selberg convolutions of automorphic representations of GL(n)×GL(m) ([JPS]
and other papers); in particular, they have defined a corresponding L-function
and studied its properties (analytic continuation and functional equation). Some
points which they didn’t treat have been established by various other authors
(among whom Shahidi, Moeglin and Waldspurger for instance).

In our case, this allows us to consider the L-function L(π1 ⊗ π̃2) of the
representation-theoretic convolution of π1 and the contragredient representation
of π2. 4

We will prove below

Proposition 2 Let π1 and π2 be automorphic representations of GL(n) satis-
fying the Ramanujan-Petersson bound, of conductor q1 and q2 respectively.

4In the case of GL(3), the convolution of the symmetric squares of two cusp forms f and
g has already been used in other contexts in analytic number theory by Hoffstein and Lock-
hart [H-L] and by Luo, Rudnick, Sarnak [LRS] to obtain deep results aboutGL(2) automorphic
forms, especially non-holomorphic Maass forms.
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There exists an Euler product

H(π1, π2; s) =
∏
p

Hp(π1, π2; p−s)

where Hp(π1, π2) is a rational function for all p and a polynomial (of degree
bounded by a constant depending only on n1 and n2) for almost all p, such that
H(π1, π2) converges absolutely for Re(s) > 1/2 (in particular, has no poles in
this region), and

Lb(π1 ⊗ π2, s) = H(π1, π2; s)L∞(π1 ⊗ π2, s).

Moreover, we have for any ε > 0 and uniformly for Re(s) = σ > 1/2 a bound

H(π1, π2; s)� [q1, q2]εH(σ)

where H is a fixed Dirichlet series absolutely convergent for Re(s) > 1/2 satis-
fying in this region

H(σ)� (σ − 1/2)−A

for some A > 0 depending only on n1 and n2.

This reflects the fact that the coefficients of L∞(π1 ⊗ π2) and Lb(π1 ⊗ π2) are
the same for squarefree integers n (see equation (26) below).

In particular, because L∞(π1 ⊗ π2) has a meromorphic continuation, this
gives the analytic continuation of Lb up to the critical line.

If we grant the proposition we can now apply Mellin inversion, namely if we
let ψ̂ denote the Mellin transform of ψ,

ψ̂(s) =
∫ +∞

0

ψ(x)xs
dx

x

then we have
ψ(x) =

1
2πi

∫
(3)

ψ̂(s)x−sds

(the integral being on the line Re(s) = 3 of the complex plane), from which
easily follows the basic formula

SN (π1, π2) =
1

2πi

∫
(3)

Nsψ̂(s)Lb(π1 ⊗ π̃2, s)ds

=
1

2πi

∫
(3)

Nsψ̂(s)H(π1, π̃2; s)L∞(π1 ⊗ π̃2, s)ds.

We now move the line of integration to Re(s) = 1/2 + c where c < 1/2
will be chosen later. The Mellin transform ψ̂ is easily seen to be holomorphic

for Re(s) > 0 and quickly decreasing in any vertical strip δ < Re(s) < b (δ > 0);
the other terms in the integral being at most of polynomial growth, shifting the
contour is possible.

The only singularities we can pick up by doing so are those of L∞(π1 ⊗ π̃2).
From the Rankin-Selberg theory, those are known. Indeed [M-W] establishes:
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Theorem 5 If there are no t ∈ C such that π1 = π2 ⊗ | · |t, then L(π1 ⊗ π̃2) is
entire.

If π1 = π2, then L(π1⊗π̃2) has two simple poles at 0 and 1 and is holomorphic
outside those points.

In our case, π1 and π2 having unitary central character η, we can have π1 =
π2 ⊗ | · |t only if t = 0, so this theorem describes all possible cases where poles
may appear in the convolution.

Keeping this in mind we then estimate the integral on the other line, namely

1
2πi

∫
(1/2+c)

Nsψ̂(s)H(π1, π̃2; s)L∞(π1 ⊗ π̃2, s)ds.

We are only interested in the q-aspect of the matters. By the bounds for H
in proposition 2, for any ε > 0 we have

H(π1, π̃2; 1/2 + c+ it)� Qεc−A.

As for the Rankin-Selberg convolution, after inserting the correct Gamma
factors it has a functional equation relating its value at s with that of the
contragredient convolution L(π̃1 ⊗ π2) at 1 − s (see the references to several
articles of Shahidi in [M-W]):

L(π1 ⊗ π̃2, s) = g(π1 ⊗ π̃2)q(π1 ⊗ π̃2)1/2−sL(π̃1 ⊗ π2, 1− s)

where g(π1 ⊗ π̃2) is a complex number of absolute value 1 and q(π1 ⊗ π̃2) is
the conductor of π1 ⊗ π̃2. By a theorem of Bushnell and Henniart [B-H], it
is bounded by the product of the n-th powers of the conductors of π1 and π̃2,
which themselves are at most Q, so that

q(π1 ⊗ π̃2) 6 (Q2)n = Q2n.

From the functional equation, Stirling’s formula and the convexity principle
of Phragmen-Lindelöf, this implies in turn

L∞(π1 ⊗ π̃2, 1/2 + c+ it)� Q2n(1/4−c/2)|t|E = Qn/2−nc|t|E

for some E > 0. With the previous bound for H, and using the fact that ψ̂
decreases faster than any polynomial on the line, we get the estimate

c−AN1/2+cQn/2−nc+ε

for the integral. Recalling that N > Qβ and taking c = (logQ)−1 so that
1� Qc � 1, N c � 1 and c−A = (logQ)A we obtain therefore for any ε > 0

SN (π1, π2) = δ(π1, π2)ψ̂(1)NRπ1 +O(N1/2+n/(2β)+ε) (22)

where δ(π1, π2) is the Kronecker delta, and Rπ1 is the residue of the bilinear
convolution considered when π1 = π2, namely

Rπ = H(π, π; 1)Ress=1(L∞(π ⊗ π̃, s)).
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We then claim that for any π (and uniformly in π)

Rπ � Qε (23)

for all ε > 0.
This is a straightforward consequence of (22) for π1 = π2 = π and the

Ramanujan-Petersson bound (17) which, we have already mentioned, is uniform
in π. 5

Now according to lemma 1, the quantity we have to bound is actually

Max
π1

∑
π2∈S(6Q)

|SN (π1, π2)|.

Therefore (22) and lemma 1 give (see also (18) and (23))∑
π∈S(6Q)

∣∣∣∑
n6N

anλπ(n)
∣∣∣2 � (N +N1/2+(2d+n)/(2β))Nε

∑
n6N

|an|2

for any ε > 0, and this implies (20) if 1
2 + 2d+n

2β < 1, that is β > 2d+ n.
�

Proof of proposition 2. We actually treat a more general case where πi
is an automorphic representation of GL(ni) for i = 1, 2.

Write
L∞(πi, s) =

∑
n>1

λi(n)n−s

for the finite part of the standard L-functions, and put as above

Lb(π1 ⊗ π2, s) =
∑
n>1

λ1(n)λ2(n)n−s.

We have to compare Lb(π1⊗π2) and the Rankin-Selberg convolution L∞(π1⊗
π2).

The Rankin-Selberg convolution has an Euler product by the general theory,
and the bilinear convolution also has one because it’s a Dirichlet series whose
coefficients are multiplicative:

Lb(π1 ⊗ π2, s) =
∏
p

∑
k>0

λ1(pk)λ2(pk)p−ks.

Therefore, since we claim the existence of an Euler product

H(π1, π2) =
∏
p

Hp(π1, π2)

5For n = 2 or n = 3 for the symmetric square, which are the two applications used in the
Linnik problem, it is possible to give an elementary proof of (23) - not using Deligne’s proof of
the Ramanujan-Petersson conjecture - using a trick of Iwaniec, see [Iwa] page 131 for n = 2.
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relating the two, we can proceed locally for each prime p.
For any automorphic L-function, we denote by Lp its p-factor, considered as

a polynomial (in p−s) with complex coefficients.
Assume first that p is an unramified prime of the Rankin-Selberg convolution.

This is true for almost all p, and we will prove now the existence of a polynomial
Hp(π1, π2) such that∑

k>0

λ1(pk)λ2(pk)Xk = Hp(π1, π2)Lp(π1 ⊗ π2). (24)

We know that p is unramified for both π1 and π2, so that the p-factor of the
standard L-function is

Lp(πi)−1 =
∏

16j6ni

(1− αi,jX) (25)

where αi,j are the Satake parameters of the local representation at p.
Again, the general theory gives the p-factor of the Rankin-Selberg convolu-

tion
Lp(π1 ⊗ π2)−1 =

∏
16j6n1
16k6n2

(1− α1,jα2,kX).

Assume, to begin with, that the αi,j are all distinct and the α1,jα2,k also.
Coming then to the p-factor of the bilinear convolution, we deduce from the
Dirichlet series for L∞(πi)∑

k>0

λi(pk)Xk =
∏

16j6ni

(1− αi,jX)−1

=
∑

16j6ni

ri,j
1− αi,jX

for some complex numbers ri,j (partial fraction expansion, since the α’s are
distinct), whence

λi(pk) =
∑

16j6ni

ri,jα
k
i,j .

This implies∑
k>0

λ1(pk)λ2(pk)Xk =
∑
k>0

( ∑
16i6n1
16j6n2

r1,ir2,jα
k
1,iα

k
2,j

)
Xk

=
∑
i,j

r1,ir2,j
1− α1,iα2,jX

.

Reducing to a common denominator, which is exactly Lp(π1 ⊗ π2), we get
the required formula (24).

Moreover, it is obvious that the coefficients of Hp(π1, π2) are polynomials
in the α’s and since the Ramanujan bound implies |αi,j | 6 1 it follows that
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those coefficients are bounded by some constants depending only on n1 and
n2. Hence the absolute convergence (and the absence of poles) in Re(s) > 1/2
of the product over the unramified primes will follow if we can show that the
coefficient of X of Hp(π1, π2) vanishes, since there is no term in p−s then.

But for any rational function

r =
f

g

with polynomials f and g, satisfying r(0) = 1, the coefficient of X of the nu-
merator f of r is f ′(0), and so equals g(0)r′(0) + g′(0).

If r =
∑
k bkX

k is the power series development of r, we have therefore

f ′(0) = g(0)b1 + g′(0).

Assume moreover that g =
∏
j (1− βjX). Then

f ′(0) = b1 −
∑
j

βj .

Applying this to the local factor of Lb which is of this form, we see that the
corresponding coefficient is indeed zero since

λ1(p)λ2(p) =
∑
i,j

α1,iα2,j . (26)

We can now use a continuity argument to deduce that the existence of the
polynomial Hp satisfying formula (24) and the vanishing of the coefficient of X
remain valid when some of the roots of the local L-functions are the same.

It remains to treat the case of the ramified primes. The local factor at p of
the L-functions of π1 and π2 is still of the form

Lp(πi) =
∏

16j6n′i

(1− αi,jX)−1

for some n′i 6 ni. The same proof as the unramified case shows again that the
local factor of the bilinear convolution is a rational function which has poles only
among the reciprocals of the products α1,jα2,k. So we can define Hp(π1, π2) by

Hp(π1, π2) =
(∑
k>0

λ1(pk)λ2(pk)Xk
)
Lp(π1 ⊗ π2)−1 (27)

and it’s also a rational function.
It remains to establish that the finite product over the ramified primes has

no pole for Re(s) > 1/2. But a pole s0 of Hp(π1, π2, p
−s) must satisfy

α1,jα2,kp
−s0 = 1

(for some j and k), so by the Ramanujan bound again we get Re(s0) 6 0.
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As for bounding H(π1, π2; s), clearly by the Ramanujan bound the product
over the unramified primes is absolutely convergent for Re(s) > 1/2. It is dom-
inated (termwise) by the Euler product H whose factors are obtained by taking
the corresponding factor of Hp and replacing each coefficient of the polynomial
by its absolute value, which in turn, since the coefficient of X2 is absolutely
bounded (say by A), is dominated by an Euler product which may be written
(by factoring by force ζ(2s)) as ζ(2s)AJ(s) where J(s) is absolutely convergent
for Re(s) > 1/3. The estimate

H(σ)� (σ − 1/2)−A

then follows directly.
We now estimate the product over the ramified primes∏

p|[q1,q2]

Hp(π1, π2; p−s)

using (27).
For Lp(π1 ⊗ π2)−1, which is a polynomial of degree at most n1n2 we write,

by the Ramanujan bound again:∏
p|[q1,q2]

Lp(π1 ⊗ π2) 6
∏

p|[q1,q2]

(1 + p−σ)n1n2

6 (
∏

p|[q1,q2]

2)n1n2

� [q1, q2]ε

for any ε > 0, since (see [H-W], chapter 22 for instance) the number of prime
divisors of an integer n is O(log n/ log log n).

On the other hand, still by Ramanujan, for any ε > 0∑
k>0

λ1(pk)λ2(pk)p−ks �
∑
k>0

pk(ε−s)

=
1

1− p−s+ε

so that taking the product over p | [q1, q2] we obtain by the same reasoning the
same bound as above for the product of those terms, and in the end∏

p|[q1,q2]

Hp(π1, π2; p−s)� [q1, q2]ε .

�

It is clear that as n increases the condition N > QBn,d beyond which the
inequality is proved becomes more restricted. It seems that further ideas are
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required to establish sharp forms of the large-sieve inequalities in those cases (or
even to refute them if they happen to be false). Using variants of a trick due to
Viola and Forti for Dirichlet characters, it is likely that a sharp large-sieve in-
equality would follow if we could take Bn,d = d in the mean-value estimate (19).

We now state the corollaries which are used in the Linnik problem, see
subsection 2.1.

First for n = 2, and for any weight k > 2, we have mentioned already that
for a certain π∞ and η = 1, it holds

Aut(q) = Sk(q)+

since Deligne has proved that cusp-forms of weight larger than 2 satisfy the
Ramanujan-Petersson bound. Take then as S(q) some subset of the automorphic
representations corresponding to Sk(6Q)] (recall that ] means non-monomial)
such that

|S(6Q)| = O(Qd).

Then:

Corollary 5 If N = Qβ with β > 2d+ 2, then for any ε > 0, it holds∑
f∈S(6Q)]

∣∣∣∑
n6N

anλf (n)
∣∣∣2 � N1+ε

∑
n6N

|an|2

for any sequence (an)n6N of complex numbers.

Now for n = 3; if f ∈ Sk(q)], its infinite component is fixed; let π∞ be the
representation of GL(3,R) which is its local symmetric square (see [G-J]), and
again η = 1.

From the Gelbart-Jacquet theory we see that the image of Sk(6 Q)] by
the map f 7→ π

(2)
f already mentioned in subsection 2.1 is contained in the

corresponding Aut(q); we write again S(2)(6Q)] for the image of S(6Q)] and
apply theorem 4. Here Q2 replaces Q and since trivially

|S(2)(6Q)]| = O(Qd)

we get:

Corollary 6 If N = Qβ with β > 2(d+ 3), then for any ε > 0, it holds∑
πf∈S(2)(6Q)]

∣∣∣∑
n6N

anλ
(2)
f (n)

∣∣∣2 � N1+ε
∑
n6N

|an|2

for any sequence (an)n6N of complex numbers.
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Appendix

Recovering modular forms from squares
Dinakar Ramakrishnan

The purpose of this appendix is to provide a proof of the fact that a holo-
morphic newform f of weight 2k, level N and trivial character, with Hecke
eigenvalues {ap | (p,N) = 1}, is determined up to a quadratic twist, in fact on
the nose if N is square-free, by the knowledge of a2

p for all primes p in a set of
sufficiently large density. We will in fact prove a more general statement below,
including the case of odd weight and non-trivial character, and also establish
a mod ` analog. We found this result in the summer of 94, and we have since
learned that it has also been known to others, including Don Blasius and J.-P.
Serre. Also, Siman Wong has recently come up with a different proof in the
weight 2 case (with trivial character). So we do not intend any display of great
achievement by this write-up, and we give all the details for ease of use by those
working in classical modular forms and number theory. We have also found a
non-trivial extension of this result (in characteristic zero) to Maass forms using
an array of results on automorphic L−functions, and this is the subject matter
of a paper under preparation. This work was partially supported by an NSF
grant. We thank Serre for his helpful comments on an earlier version which led
to a finer result.

For every pair of integers N, k > 1, and character ω : (Z/N)∗ → C∗,
denote by Snew

k (N,ω) the set of normalized newforms f of weight k, level N
and character ω, with Hecke eigenvalues ap(f), for all p not dividing N, and
corresponding p−Euler factors

Lp(s, f) = (1− αpp−s)−1(1− βpp−s)−1,

where αp = αp(f) and βp = βp(f) are non-zero algebraic integers satisfying

ap(f) = αp + βp, and ω(p)pk−1 = αpβp.

Let us set

Lp(s,Ad(f)) = (1− αp
βp
p−s)−1(1− p−s)−2(1− βp

αp
p−s)−1.

Theorem A Let f ∈ Snew
k (N,ω) and g ∈ Snew

k′ (N ′, ω′), k > k′, be such that,
for all primes p outside a set S of Dirichlet density δ(S) < 1

18 , we have

(∗) Lp(s,Ad(f)) = Lp(s,Ad(g)).

Then k = k′, and there exists a Dirichlet character χ of conductor M dividing
NN ′ such that

ap(f) = ap(g)χ(p),
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all p prime to NN ′. In particular, ω = ω′χ2.
If f, g are not of CM type and have weights k, k′ > 2, then the same con-

clusion results if (*) is assumed to hold only for a set of primes of positive
density.

When f and g have the same character, we can deduce the stronger result
below:

Corollary Let f ∈ Snew
k (N,ω) and g ∈ Snew

k (N ′, ω) be such that, for all
primes p outside a set S of density δ(S) < 1

18 , we have

ap(f)2 = ap(g)2,

Then there exists a quadratic character χ of conductor M dividing NN ′ such
that

ap(f) = ap(g)χ(p),

for all p not dividing NN ′. Moreover, if ω = 1 and N , N ′ square-free, then
f = g.

When f, g are not of CM type and of weight > 2, we get the same conclusion
assuming only that δ(S) is < 1.

Theorem A =⇒ Corollary. The hypotheses imply that (αp(f)/βp(f)) +
(βp(f)/αp(f)) + 1 equals (αp(g)/βp(g)) + (βp(g)/αp(g)) + 1), for all p outside
S. It is then easy to see that Lp(s,Ad(f)) equals Lp(s,Ad(g)), for all such
p. So we may apply the Theorem and deduce the existence of a χ such that
ap(f) = ap(g)χ(p), for all p prime to NN ′. Comparing squares, we see that χ
must be quadratic.

Next let N,N ′ be square-free, and ω trivial. Suppose χ is non-trivial. Denote
by π, π′ the cuspidal automorphic representations of GL(2,AQ) of trivial central
character associated to f , g respectively. Then, up to exchanging f and g
if necessary, N = N(π) must be N(π′ ⊗ χ), the conductor of π′ ⊗ (χ ◦ det).
(Here we are identifying χ with the idèle class character of Q it defines.) Since
N ′ = N(π′) is square-free, and since π′ has trivial central character, one sees
easily from the description of local representations and their conductors in [Ge],
p.73, that the p−component π′p must be the unramified special (Steinberg)
representation at every prime p dividing N ′. One sees then, by using the same
theorem (loc. cit.) that ordp(N(π′ ⊗ χ)) > 2, for any p dividing the conductor
M of χ. Since Q has class number 1, there are no unramified characters χ. In
other words, N = N(π′⊗χ) is not square-free, giving the desired contradiction.
QED.

Proof of Theorem A. We will in fact give two proofs. We fix a prime `
not dividing NN ′, and begin with the theorems of Deligne ([De], for k > 3),
Eichler-Shimura ([Sh], for k = 2), and Deligne-Serre ([DS] for k = 1), giving the
existence, for h = f or g, of an irreducible, continuous representation

σ`(h) : Gal(Q/Q) −→ GL2(Q`),

30



such that, for any prime p not dividing N`,

tr(σ`(h)(Frp)) = ap(h) = αp(h) + βp(h), |αp(h)| = |βp(h)| = p(k(h)−1)/2,

and
det(σ`(h)) = ω(h)χk(h)−1

cyc .

Here Frp denotes the Frobenius conjugacy class at p, Q` a fixed algebraic closure
of Q`, and χcyc the cyclotomic character given by the Galois action on the inverse
system of `m−th roots of unity. (ω(h) is ω or ω′ depending on whether h is f or
g; similarly for k(h).) If we consider the field E generated by the coefficients of
f, and a place λ of E above `, then one has in fact a representation of Gal(Q/Q)
into GL2(Eλ), and our σ` is its extension to Q`. We work over Q` because we
will need to appeal to Schur’s lemma.

For any two dimensional Q`−representation σ` of Gal(Q/Q), set

Ad(σ`) = sym2(σ`)⊗ det(σ`)−1.

Theorem B Let K be a number field, and let σ` and σ′` be irreducible two
dimensional Q`-representations of Gal(Q/K) with Frobenius traces aP , a′P (for
almost all primes P ) and conductors N , N ′ respectively. Suppose Ad(σ`) '
Ad(σ′`). Then there exists ψ` ∈ Homcont(Gal(Q/K),Q

∗
` ) such that

σ` ' σ′` ⊗ ψ`.

Next let K = Q. Suppose we know either that σ` and σ′` are Hodge-Tate
(see [Se1]) or that the ratio of their determinants is a finite order character
times an even power of χcyc. Then

(∗∗) ψ` = χrcycν`,

where r is an integer, and ν` the `−adic character defined by a Dirichlet char-
acter ν.

Theorem B =⇒ Theorem A. Let f , g be as in Theorem A. Since σ`(f)
and σ`(g) are simple, Ad(σ`(f)) and Ad(σ`(g)) are semisimple, and we claim
that they are isomorphic.

Modulo this claim, we proceed as follows. Applying the first part of Theorem
B, we get a character ψ` such that σ`(f) ' σ`(g)⊗ψ`. Comparing determinants,
we get for almost all p,

(I) ψ`(Frp)2 = χcyc(Frp)k−k
′
ω(p)ω′(p)−1.

At this point, one can use (at least) three different methods to finish the ar-
gument. The first uses a theorem of Faltings [Fa], which says that σ`(h) is
Hodge-Tate for any newform h of conductor prime to `. So, by the second part of
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Theorem B, k and k′ are of the same parity, and we get (**) with r = (k−k′)/2.
Let H(f) (resp. H(g)) be the Q-Hodge structure of weight k − 1 (resp. k′ − 1)
associated to (the motive of) f (resp. g). Then we must have H(f) ' H(g)(r),
where H(g)(r) denotes the Tate twist H(g) ⊗ Q(r). Then r must be zero,
since the Hodge type of H(f) (resp. H(g)) is {(k − 1, 0), (0, k − 1)} (resp.
{(k′−1, 0), (0, k′−1)}), while that of H(g)(r) is {(k′−1−r,−r), (−r, k′−1−r)}.
Done.

The second method uses L-functions. Let ν be the finite order character
defined as ψ`χ

(k′−k)/2
cyc . Then by (I) we have, for every Dirichlet character µ, an

identity
Lp(s, f ⊗ µ) = Lp(s− (k − k′)/2, g ⊗ µν),

for all p in the set T of all primes not dividing `NN ′ and the conductor of µ. We
may fix a µ, sufficiently ramified at the primes in T , such that the local factors
of f ⊗µ and g⊗νµ at any prime in T are 1. Interchanging f and g if necessary,
we may assume that k 6 k′. Since the archimedean factor attached to f ⊗ µ is
(2π)−sΓ(s), and since its product with (the global Euler product) L(s, f ⊗ µ)
is entire, any pole of the Gamma factor results in a zero of L(s, f ⊗ µ), which
is
∏
p/∈T Lp(s, f ⊗ µ) by the choice of µ. This happens for example at s = 0,

and consequently, by the identity above, L(s+ (k′ − k)/2) has a zero at s = 0,
even though its the archimedean factor does not have a pole there (as k′ > k).
Then, by applying the functional equation for g⊗µν (which relates s to k′− s),
we see that L(s, g ⊗ µν) has a zero at s = (k′ + k)/2. This is absurd (see [JS])
as this point is in the region (resp. on the boundary) of absolute convergence if
k > 1 (resp. k = 1). So we must have k = k′.

The third method is to appeal, for ` large enough, to the mod ` result proved
later in this appendix.

Now we prove the claim. The identity (*) says that the characteristic poly-
nomials of the Frobenius classes Frp agree on Ad(σ`(f)) and Ad(σ`(g)), for all
p outside a set S of density δ < 1

18 . If δ(S) = 0, then by the Tchebotarev
density theorem, Ad(σ`(f)) and Ad(σ`(g)) would be equivalent, and our object
is to get the same conclusion under the weaker hypothesis on δ. By [GJ], we
know that, for h = f or g, there is an (isobaric) automorphic representation
Ad(h) of GL(3,AQ), whose standard L-function identifies, after removing the
archimedean factors, with

∏
p Lp(s − 1,Ad(h)). It suffices to show that Ad(f)

and Ad(g) are isomorphic. Suppose not. Then we can find (isobaric) automor-
phic representations π, π′ of GL(k,AQ), k 6 3, such that Ad(f) ' π � η and
Ad(g) ' π′ � η, where η is an automorphic representation of GL(3 − k,AQ),
taken to be 0 if k = 3. Let ZS(s) be as in equation (3) of [Ra]. In the present
case, if m (resp. r) denotes the number of cuspidals occurring in the isobaric
decomposition [La] of π (resp. π′), necessarily with multiplicity 1, we have
−ords=1ZS(s) = m2 + r2 (compare with (4) of [Ra]). Since one knows the Ra-
manujan conjecture for holomorphic forms by Deligne, it is easy to verify that
Lemma 2 of [Ra] holds for π (resp. π′) with β less than k2m2δ (resp. k2r2δ).
Then the argument of section 2 of [Ra] shows that we must have 1 6 2k2δ.
Since δ < 1/18 and k 6 3, we get the desired contradictiction.
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It remains to treat the case when f, g are not of CM type and have weights
> 2, with δ assumed to be just < 1. One knows by the works of Serre and
Ribet [Ri] that σ`(f) is absolutely irreducible under restriction to any open
subgroup. We note then that the same must be true for Ad(σ`(f)), as otherwise
the restriction σ`(f)K will, for some number fieldK, be induced by a character of
Gal(Q/F ), for a quadratic extension F/K (see below), making σ`(f)F reducible.
Now, applying Theorem 2 of [Raj] for example, we may conclude that, as δ < 1,
Ad(σ`(f)) must be isomorphic to Ad(σ`(g)) ⊗ ν`, for some one-dimensional ν`
of Gal(Q/Q) defined by a Dirichlet character. Let K be the cyclic extension
of Q corresponding to ν`, and let τ be a generator of Gal(K/Q). Then, since
Ad(σ`(f)K) and Ad(σ`(g)K) are isomorphic, we may apply Theorem B and
conclude that σ`(f)K ' σ`(g)K ⊗ λ`, for a character λ` of Gal(Q/K). Since
σ`(f)K and σ`(g)K are invariant under τ , we get

σ`(g)K ⊗ (λ/λ[τ ]) ' σ`(g)K .

Since σ`(g) is irreducible under restriction to any open subgroup, σ`(g)K cannot
admit any non-trivial self-twist, and λ must be invariant under τ and hence must
extend to a character of Gal(Q/Q). The rest of the argument goes through as
above, and Theorem A follows.

Proof of Theorem B. First we need a simple

Lemma. Let ρ` be an irreducible, n−dimensional, self-dual Q`-representation
of Gal(Q/K). Then there exists an invariant non-degenerate bilinear form B
on (the space of) ρ`, which is symmetric or alternating, such that

• (i) B is unique up to a non-zero scalar; and

• (ii) If ρ′` is another irreducible, n−dimensional, self-dual Q`-representa-
tion of Gal(Q/K) with invariant non-degenerate bilinear form B′, such
that ρ` and ρ′` are isomorphic, then they are isometric relative to B and
B′.

Indeed, (i) and the statement above it are immediate consequences of Schur’s
lemma. Also, since Q` is algebraically closed, cB is isometric to B for any
c ∈ Q

∗
` ; hence we get (ii) as well.

Now let σ` and σ′` be as in Theorem B. Suppose (the semisimple representa-
tion) Ad(σ`) is reducible. Then it must contain a one dimensional summand η`,
say. Then η` occurs in the (self-dual) End(σ`) = σ`⊗σ∨` = Ad(σ`)⊕1. Schur’s
lemma above forces η` to be non-trivial. Either η` is quadratic, or otherwise
η∨` will also occur in End(σ`). In either case, we see that End(σ`) must contain
a quadratic character δ`, say; let F be the corresponding quadratic extension
of K with non-trivial automorphism θ. Denote by σF,` the restriction of σ` to
Gal(Q/F ). We claim (as is well known) that if τ` is another semisimple rep-
resentation of Gal(Q/K) whose restriction to Gal(Q/F ) is isomorphic to σF,`,
then τ` ' σ` ⊗ δj` , for j ∈ {0, 1}. Indeed, by the hypothesis, the restriction of
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η` := τ` ⊗ σ∨` to Gal(Q/F ) contains the trivial representation; so by Frobenius
reciprocity, there is a non-trivial homomorphism between η` and the represen-
tation of Gal(Q/K) induced by the trivial representation of Gal(Q/F ), which
decomposes as 1⊕δ`. So δj` occurs in η`, for j = 0 or 1. Equivalently, there is an
intertwining operator between τ` and σ`⊗ δj` , which implies the claim by virtue
of the irreducibility of σ`. Next observe that σF,` must be reducible as End(σF,`)
contains 1 with multiplicity 2 (as the restriction of δ` to Gal(Q/F ) is trivial).
Write σF,` = ν` ⊕ µ`, with ν`, µ` being one-dimensionals of Gal(Q/F ). We
claim that ν` is not θ-invariant. Indeed, otherwise µ` would also be θ-invariant
as σF,` is, and both ν` and µ` would admit extensions to Gal(Q/K) and result
in a reducible extension of σ`,F , which is impossible by the claim above. Thus
ν` is not fixed by θ, and so we must have σF,` ' ν` ⊕ ν[θ]

` . This forces σ` to
be the induced representation IndKF (ν`), as this induced representation has the
same restriction to Gal(Q/F ) as σ` and is moreover isomorphic to its twist by
any character of Gal(Q/K) trivial on Gal(Q/F ). Since End(σ`) = End(σ′`), σ

′
`

must also be of the form IndKF (ν′`), for some one-dimensional ν′` of Gal(Q/F ).
Since the determinant of IndKF (ν`) is the transfer of ν` to Gal(Q/K) times δ`,
we see that

Ad(σ`) ' IndKF (ν`/ν
[θ]
` ) ⊕ δ`,

and similarly for Ad(σ′`). This implies that, up to replacing ν` by ν[θ]
` , we have

ν`/ν
[θ]
` = ν′`/(ν

′
`)

[θ].

Then ν`/ν
′
` is θ−invariant, and hence extends to a character ψ` of Gal(Q/K).

In other words, σ` ' σ′` ⊗ ψ`, as claimed.

We next consider the case when Ad(σ`) and Ad(σ′`) are irreducible. Let λ`
denote the product of the determinants ω`, ω′` of σ`, σ′` respectively. Set

η` := σ` ⊗ σ′`.

Then
sym2(η`)⊗ λ−1

` ' Ad(σ`)⊗Ad(σ′`) ⊕ 1.

Since Ad(σ`) and Ad(σ′`) are irreducible, self-dual and isomorphic, 1 occurs in
their tensor product. Hence the multiplicity of λ` is greater than 1 in sym2(η`),
showing that η` is reducible. Now suppose η` contains a two dimensional sum-
mand τ`, say. Then the one dimensional det(τ`) occurs in the exterior square of
η`. But on the other hand, we have

Λ2(η`) ' sym2(σ`)⊗ ω′` ⊕ ω′` ⊗ sym2(σ′`),

showing that, as the symmetric squares of σ` and σ′` are irreducible, there can
be no one dimensional summand of Λ2(η`). This shows that η` has no two
dimensional summand. Since it is reducible, it must then have a one dimensional
summand ν`, say. Then

σ` ' σ′`
∨ ⊗ ν` ' σ′` ⊗ ω′`

−1
ν`.
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So we get the desired ψ` by taking it to be ω′`
−1
ν`.

Now letK = Q. Comparing determinants, we see that ψ2
` = det(σ`)det(σ′`)

−1.
So we get (**) immediately if the ratio of the determinants is a finite order char-
acter times an even power of χcyc. Finally, suppose σ` and σ′` are Hodge-Tate.
Then ψ` will also be Hodge-Tate as it occurs in σ` ⊗ (σ′`)

∨. Consequently, it
corresponds to an algebraic Hecke character ψ. Since we are working over Q, it
must be a finite order character times a power of χcyc. Done.

For the second proof, we begin by recalling the fact that the adjoint represen-
tation Ad: PGL(2,Q`) −→ GL(3,Q`) is isomorphic onto the special orthogonal
group SO(3,Q`). Denote by σ` (resp. σ′`) the composite of σ` (resp. σ′`) with
the natural homomorphism of GL(2,Q`) onto PGL(2,Q`). Then it is easy to
see that Ad(σ`) identifies with the Ad(σ`) defined earlier (above Theorem B).
So, by our hypothesis, we get two representations, namely Ad(σ`) and Ad(σ′`),
into SO(3,Q`), which are equivalent in GL(3,Q`). Suppose they are irreducible.
Then we may apply part (ii) of the Lemma and deduce that they are in fact
isometric. By changing the isometry by −I if necessary, we may assume that
they are equivalent in SO(3,Q`). Since Ad is an isomorphism, σ` and σ′` define
equivalent homomorphisms into PGL(2,Q`). Hence σ` must be equivalent to
σ′` ⊗ ψ`, for some ψ` ∈ Hom(Gal(Q/K),Q

∗
` ). When Ad(σ`) is reducible, one

uses explicit arguments as in the reducible case of the first proof to conclude
that Ad(σ`) and Ad(σ′`) are isometric. The rest follows.
QED.

The mod ` version. For each newform f , let Kf denote the number field
generated by the coefficients of f . If g is another newform, let Of,g denote
the ring of integers of the compositum KfKg. For h = f or g, write for p not
dividing the level,

Qh(T ) = (1− αp(h)
βp(h)

T )(1− T )(1− βp(h)
αp(h)

T ),

so that Lp(s,Ad(h)) = Qh(p−s)−1. Note that, since αp(h)βp(h) = ω(h)pk(h)−1,
αp(h) and βp(h) are invertible modulo any prime ` not dividing pN(h).

Theorem C Let ` be an odd prime number and N,N ′ positive integers prime
to `. Let f (resp. g) be a newform of level N (resp. N ′), weight k (resp. k′),
and character ω (resp. ω′). Let λ be a prime ideal above ` in Of,g. Suppose we
have

(C) Qf (T ) ≡ Qg(T ) (mod λ),

for all p outside a set S (containing the primes divisors of `NN ′) of density 0.
Then k ≡ k′ (mod ` − 1), and there exists a character β, unramified at `, such
that

ap ≡ bpβ(p) (mod λ),

for all p not dividing `NN ′.
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Remark: Note that if ω and ω′ are the same mod λ, and if k − k′ ≡ 0(mod
`− 1), the hypothesis (C) is equivalent to the congruence

a2
p ≡ b2p (mod λ).

In this case β is necessarily quadratic. Moreover, if N and N ′ are in addition
square-free, one can conclude (as in the characteristic zero case) that β is trivial.

Proof. Let Fλ denote the residue field Of,g/λ. Reducing the (integrally
defined) `-adic representations associated to f, g modulo λ and extending scalars
to Fλ, we get representations

σλ : Gal(Q/Q) −→ GL2(Fλ)

and
σ′λ : Gal(Q/Q) −→ GL2(Fλ)

such that, for all p not dividing NN ′`, tr(σλ(Frp)) (resp. tr(σ′λ(Frp))) is the
image of ap (resp. bp) in Fλ. Moreover, by hypothesis, det(σλ) and det(σ′λ)
both equal χk−1ω (resp. χk

′−1ω′), where χ : Gal(Q/Q) → F∗` is the mod `
cyclotomic character and ω (resp. ω′) the reduction (mod λ) of ω (resp. ω′).
Clearly, the images of Gal(Q/Q) under these two representations are finite.

For any Fλ-representation τλ of a finite groupG of dimension d, let τ ss
λ denote

its semisimplification. Note that in characteristic `, the semisimplification is
determined by the characteristic polynomials of τλ(g) for all g in G when d > `,
and also when d = ` = 3 if τλ is orthogonal of determinant 1.

By the hypothesis (C), the characteristic polynomials of Frp in the adjoint
representations of σλ and σ′λ are the same for all p in a set of density 1. Thus,
by the Tchebotarev density theorem and the remark above, we see that

Ad(σss
λ ) ' Ad(σ′λ

ss).

Since End(σss
λ ) (resp. End(σ′λ

ss)) is Ad(σss
λ )⊕ 1 (resp. Ad(σ′λ

ss)⊕ 1), it follows
that σλ is irreducible iff σ′λ is.

First suppose that σλ and σ′λ are irreducible. In this case the detailed `-adic
argument given in the proof of (the first part of) Theorem B goes through, with
Q` replaced everywhere by Fλ, once one notes the availability of the relevant
form of the Frobenius reciprocity in characteristic ` (cf. [A], chap. III, Lemma
6) and the fact that the tensor square of a simple Galois module is semisimple
[Se3]. One deduces an isomorphism of σλ with σ′λ ⊗ νλ, for some character
νλ of Gal(Q/Q) into Fλ. Since ωλ and ω′λ are the same modulo λ, we see by
comparing determinants that ν2

λ is χk−k
′
ω/ω′. We may write νλ as χjβλ, for

some j ∈ {0, . . . , ` − 2}, and a character βλ unramified at `. Consequently,
k − k′ ≡ 2j( mod `− 1), β2

λ = ω/ω′, and

(∗ ∗ ∗) σλ ' σ′λ ⊗ χjβλ.
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Let G` denote the decomposition group at ` of Gal(Q/Q), and let I denote the
inertia subgroup. When a` is not zero modulo λ, one knows by Deligne (cf. [E],
Theorem 2.5, for example), that ρλ|G` is reducible, and its semisimplification is
of the form χk−1µ1,λ⊕µ2,λ, where each µj,λ is unramified. When a` is divisible
by λ, a result of Fontaine (see [E], Theorem 2.6) asserts that the restriction to
G` is irreducible, while the restriction to I demposes as ψk−1 ⊕ ψ′k−1, where
ψ,ψ′ are the two fundamental characters of level 2 [Se2]. Similarly for the
restriction of σ′λ at `. In either case, we see that the only way (***) can hold is
for j to be 0 modulo `− 1.

It remains to consider when σλ (and hence σ′λ) is reducible. Here we may
write

σss
λ ' ηλ ⊕ χk−1ω/ηλ,

and
σ′λ

ss ' η′λ ⊕ χk
′−1ω/η′λ,

for some F
∗
λ-valued characters ηλ, η′λ of Gal(Q/Q). Then we have

Ad(σss
λ ) ' η2

λ/ωχ
k−1 ⊕ 1⊕ ωχk−1/η2

λ,

and
Ad(σ′λ

ss) ' η′λ
2
/ωχk

′−1 ⊕ 1⊕ ωχk
′−1/η′λ

2
.

Since Ad commutes with semisimplification, it follows, after possibly replacing
ηλ with χk−1ω/ηλ, that η2

λ/χ
k = η′λ

2
/χk

′
. Arguing as above, we see that ηλ is

of the form η′λχ
jβλ, for some j ∈ {0, . . . , ` − 2} with k − k′ ≡ 2j( mod ` − 1),

and a character βλ :Gal(Q/Q) → F
∗
λ, unramified at `, such that β2

λ = ω/ω′.
We obtain

σλ
ss ' η′λβλχ

(k−k′)/2 ⊕ βλχ(k+k′)/2−1ω′/η′λ.

The reducibility of σλ (resp. σ′λ) forces a` (resp. b`) to be non-zero modulo λ,
as the restriction of σssλ (resp. σ′λ

ss) to I must then be given by a direct sum
of characters of level 1 [Se2]. Applying Deligne’s result on the shape of the
restriction to G` (see above), we see that the only possibility is for k and k′ to
be congruent modulo `− 1. Then σssλ is isomorphic to σ′λ

ss ⊗ βλ. Done.
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