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Preface

These are lecture notes for a first course in Number Theory. The contents are entirely
standard, with an emphasis on keeping algebraic and analytic aspects as intertwined as
they should be, and on encouraging an approach which uses computer software for various
experiments to “guess” certain results (or marvel at the weird unpredictable facts that
concrete numbers are made of).

Zürich, October 18, 2024

Acknowledgments. The first draft of these notes was prepared for the course “Num-
ber Theory I” that I taught at ETH Zürich during the Fall Semester 2024.

The computer experiments were performed mostly with Pari/GP (see [17]) and
Magma (see [16]). Some basic scripts are listed in Appendix A.

Thanks to the students of the course for their interest and corrections, especially M.
Verzasconi and J. Mo.

Prerequisites

The basic requirements for this text are standard introductory graduate courses in
algebra, real analysis (Lebesgue integration theory) and complex analysis. In particular,
the theory of finite fields and basic Galois theory will play an important role.

Notation

Number theory has a very rich history, and the statements involved remain often
completely accessible, even after decades of work. However, some phenomena which are
discovered at certains points in history may be re-interpreted, strengthened, etc, in such
a way that the most natural version of a result cannot really be attributed to the first
discoverer, except in spirit. In this case, we will sometimes give attributions with a dagger
exponent, for instance Kronecker† for Theorem 1.4.2 – this indicates that some crucial
insight came from the indicated author, even if he or she could not state or prove the
stronger version which we display.

We will use the following notation:

(1) For a set X, |X| ∈ [0,+∞] denotes its cardinal, with |X| = ∞ if X is infinite.
There is no distinction in this text between the various infinite cardinals.

(2) For any integer n ⩾ 0, we sometimes denote [n] = {1, . . . , n}; if n = 0, this is the
empty set. More generally, we write [n;m] = {n, n + 1, . . . ,m} for any integers
n ⩽ m in Z.

(3) For subsets Y1 and Y2 of an arbitrary set X, we denote by Y1 Y2 the difference
set, i.e., the set of elements x ∈ Y1 such that x /∈ Y2.
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(4) If X is a set and f , g two complex-valued functions on X, then we write synony-
mously f = O(g) or f ≪ g to say that there exists a constant C ⩾ 0 (sometimes
called an “implied constant”) such that |f(x)| ⩽ Cg(x) for all x ∈ X. Note that
this implies that in fact g ⩾ 0. We also write f ≍ g to indicate that f ≪ g and
g ≪ f .

(5) We write a | b for the divisibility relation “a divides b”; we denote by (a, b) the
gcd of two integers a and b, and by [a, b] their lcm.

(6) If p is a prime number and r ∈ Q× is a rational number, we write vp(r) for the
p-adic valuation of r: when r is written as a ratio a/b of coprime integers, vp(r)
is the difference n−m where n is the power of p dividing a and b the power of p
dividing b. This function satisfies the relation

vp(rs) = vp(r) + vp(s),

for any pairs (r, s) of non-zero rational numbers.

(7) Usually, the variable p will always refer to prime numbers. In particular, a series∑
p

(· · · ) refers to a series over primes (summed in increasing order, in case it

is not known to be absolutely convergent), and similarly for a product
∏
p

(· · · )

over primes.

(8) We denote by Fp the finite field Z/pZ, for p prime, and more generally by Fq a
finite field with q elements, where q = pn, n ⩾ 1, is a power of p.

(9) For a complex number z, we write e(z) = e2iπz. If q ⩾ 1 and x ∈ Z/qZ, then
e(x/q) is then well-defined by taking any representative of x in Z to compute
the exponential.

(10) If q ⩾ 1 and x ∈ Z (or x ∈ Z/qZ) is an integer which is coprime to q (or a residue
class invertible modulo q), we sometimes denote by x̄ the inverse class such that
xx̄ = 1 in Z/qZ. This will always be done in such a way that the modulus q is
clear from context, in the case where x is an integer.
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CHAPTER 1

Introduction

1.1. What is number theory?

1.2. Looking at sums of two squares

We will start by considering sums of two squares of (positive) integers. This is an
extremely classical subject, but there are still many research questions connected to it,
some of which will be mentioned below. However, we begin with a natural beginning for
current students: we experiment on a computer to look at these numbers.

Thus, one way or another (with Pari/GP or Magma for instace, or other suitable
software), we might first get a list of the first integers which are sums of two squares;
here is the beginning of that list with 200 numbers:

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74,

80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145,

146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 197, 200, 202,

205, 208, 212, 218, 221, 225, 226, 229, 232, 233, 234, 241, 242, 244, 245, 250, 257, 260, 261, 265,

269, 272, 274, 277, 281, 288, 289, 290, 292, 293, 296, 298, 305, 306, 313, 314, 317, 320, 325,

328, 333, 337, 338, 340, 346, 349, 353, 356, 360, 362, 365, 369, 370, 373, 377, 386, 388, 389,

392, 394, 397, 400, 401, 404, 405, 409, 410, 416, 421, 424, 425, 433, 436, 442, 445, 449, 450,

452, 457, 458, 461, 464, 466, 468, 477, 481, 482, 485, 488, 490, 493, 500, 505, 509, 512, 514, 520,

521, 522, 530, 533, 538, 541, 544, 545, 548, 549, 554, 557, 562, 565, 569, 577, 578, 580, 584, 585,

586, 592, 593, 596, 601, 605, 610, 612, 613, 617, 625, 626, 628, 629.

Remark 1.2.1. There is already a noteworthy feature in this list: we can be sure that
we have constructed the first sums of two squares, because of the lack of cancellation:
if we wanted to know the first positive integers which are (say) of the form a2 − b3, the
difficulty would be that even if, for a given k ⩾ 1, we check numerically that we cannot
express k in this form with a and b bounded by some finite limit, it could be that some
much bigger choices of a and b work.

As a concrete illustration, we will prove later on that the equation

x2 − dy2 = 1

always has a solution in non-negative integers if d ⩾ 0 is an integer which is not a square
(a fact which was known to early Indian mathematicians like Brahmagupta and Bhaskar
II; the established name “Pell equation” is a misnomer, due to Euler, alas). Even for
small values of d, the sizes of the smallest solution (x, y) may be extremely large (we will
also see that there are infinitely many solutions). For instance, for d = 61, one gets that
the smallest solution is

(x, y) = (1766319049, 226153980).
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The origin of these large solutions is understood in principle – but many questions
remain open, as we will discuss later.

Staring at this list, or similar data, leads to many questions. This way (maybe),
Fermat discovered the following remarkable fact, which is truly the tip of an iceberg.

Theorem 1.2.2 (Fermat). Any prime number p which is congruent to 1 modulo 4 is
the sum of two squares of positive integers. Moreover, in a representation p = a2 + b2,
the couple {a, b} is unique; in other words, a and b are unique, except that they can be
exchanged.

Example 1.2.3. In some cases, the representation of a prime as a sum of two squares
is obvious: for instance, the integer p = 22

4
+ 1 = 65537 is prime1 and congruent to 1

modulo 4, and p = (28)2 + 12. But if we vary p, there is no apparent regularity in the
values of a and b: for instance, the next few primes larger than 65537 which are congruent
to 1 modulo 4 are

65557, 65581, 65609,

for which the representations are

65557 = 712 + 2462, 65581 = 1662 + 1952, 65609 = 402 + 2532.

One can say some things about a and b, but that requires a slightly different perspec-
tive, moving from the deterministic to the probabilistic.

We will see in these lectures a number of different proofs of Fermat’s Theorem; accord-
ing to one of these, it will become “obvious”, and become part of a much larger picture
as a consequence of basic facts of algebraic number theory. Other proofs will be equally
well-motivated from slightly different perspectives, and some will even give a “formula”
for a and b. But we begin with another proof of the existence of the representation (it
doesn’t give the uniqueness) – most people consider it as a really bad proof, and it is
worth looking at just to understand why one would think so...2

This proof is due to Heath–Brown [11], and was simplified and popularized by Za-
gier [21]. The key ingredient is the following fact, where we recall that for an arbitrary
set X, a map f : X → X is called an involution if f(f(x)) = x for all x ∈ X (i.e., if f ◦ f
is the identity map of X), and that (for any f), an element x ∈ X is called a fixed point
if f(x) = x.

Lemma 1.2.4. Let X be a finite set and f : X → X an involution. The number of fixed
points of f has the same parity as the size of X. In particular, if |X| is odd, then f has
at least one fixed point, and if f has a unique fixed point, then |X| is odd.

Proof. Because f is an involution, the sets of the form Px = {x, f(x)} with x ∈ X
form a partition of X: they are either equal or disjoint. Indeed, if {x, f(x)}∩ {y, f(y)} is
not empty (the sets are not disjoint), then a common element z is either equal to x = y
or x = f(y); in the first case, the sets are clearly the same, and in the second, the two sets
are {x, f(x)} and {x, y} = {x, f(f(y))} = {x, f(x)}. The fixed points of f correspond to
those sets {x, f(x)} with a single element. Writing

|Px| = (number of fixed points) + 2(number of sets Px with two elements),

1 In fact, Fermat conjectured that 22
k

+ 1 is always prime – this is false, already 22
5

+ 1 =
4294967297 = 641 · 6700417 is not prime, as found out by Euler; it is not known if infinitely many
such integers are prime, but this not expected to be true.

2 Although Elsholtz [?] has discussed the underlying ideas with the aim of making them less
miraculous.
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the result follows. □

Proof of existence in Theorem 1.2.2. Let p be a prime number congruent to 1
modulo 4. Consider the set

X = {(a, b, c) | a, b, c positive integers and a2 + 4bc = p}.

Note that b and c play symmetrical roles in X, and that a representation p = a2 + b2

(with a, b positive integers) corresponds to an element (a, b, b) of X, so the existence
question amounts to showing that the map f : X → X defined by f(a, b, c) = (a, c, b) has
at least one fixed-point. Since the size of X is finite (because of the requirement that a,
b and c are non-negative), this will be true if |X| is odd according to the lemma. Now,
to establish this last fact, we use the lemma again, applied to the map g : X → X defined
by

(1.1) g(a, b, c) =


(a+ 2c, c, b− a− c) if a < b− c

(2b− a, b, a− b+ c) if b− c < a < 2b

(a− 2b, a− b+ c, b) if a > 2b.

Precisely, we claim that (1) the map g is well-defined (i.e., the various right-hand side
formulas always apply and always lead to an element of X if (a, b, c) ∈ X); (2) the map g
is an involution; (3) the map g has a unique fixed point. Assuming this, the conclusion
that |X| is odd follows from the lemma!

All of these things are elementary.3 Let us check a few. For instance, for (3), note
that a fixed point (a, b, c) can only come from the second case in (1.1) (since b and c are
positive), so it must come from an equation

(a, b, c) = (2b− a, b, a− b+ c),

which holds if and only if a = b. But the fact that (a, a, c) ∈ X means that a2 + 4ac = p,
which because p is prime is only possible if a = 1, and then if 1 + 4c = p, which has a
solution because p is congruent to 1 modulo 4.

As far as the fact that g is well-defined, first of all note that if (a, b, c) ∈ X, it is not
possible that a = 2b (it would imply that p = a2 + 4bc is divisible by 4) or a = b− c (it
would mean that p = (b− c)2+4bc = (b+ c)2), so that (a, b, c) ∈ X falls necessarily in one
of the three cases on the right-hand side of the definition. Then we have the algebraic
identities

(a+ 2c)2 + 4c(b− a− c) = (2b− a)2 + 4b(a− b+ c) = (a− 2b)2 + 4(a− b+ c)b,

which show g(a, b, c) ∈ X, since the conditions on the right-hand side also ensure that
the images have positive integral coordinates.

Finally, we check that g is an involution. Let x = (a, b, c) ∈ X, and assume it satisfies
a < b − c, so g(x) is given by the first case in (1.1). Let (α, β, γ) = g(x). We then see
that β − γ = c − (b − a − c) = a + 2c − b < a + 2c = α, and 2β = 2c < 2c + a = α, so
g(g(x)) must be computed by the third case of (1.1). This gives

g(g(x)) = (α− 2β, α− β + γ, β) = (a+ 2c− 2c, a+ 2c− c+ b− a− c, c) = (a, b, c) = x.

We leave the other two cases of the formula g(g(x)) = x to check... □

3 Leading Zagier to state that this was a “one-line proof”.
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1.3. Looking at primes

One of the first non-trivial facts about number theory was Euclid’s proof that there
are infinitely prime numbers (or, to phrase it according to his style: for any given prime
number, there is one which is strictly greater). As soon as number theory was studied a
bit deeper, there arose many questions with the intent of making this fact more precise.
In particular, can one say how many primes there are below a certain number x ⩾ 1?
This quantity is classically denoted π(x), i.e.

π(x) =
∑
p⩽x

1

to display the convention which will be used throughout this book that sums or products
(or set descriptions) involving a variable p will always assume (unless specified otherwise)
that this is restricted to prime values.4

It is worth spending some time trying to make some conjecture or guess about the
growth of π(x) as x → +∞: clearly, π(x) ⩽ x (because primes are integers – an ob-
servation that can be surprisingly efficient!), and Euclid’s result is that π(x) → +∞ as
x → +∞, but what is the order of magnitude?

Legendre, in somewhat imprecise way, and Gauss in an extremely sharp display of
probabilistic thinking, were led to the conjecture that π(x) should, for x large, be of the
order of x/ log(x). A beautiful argument of Chebychev succeeded in showing that this is
not far from the truth, using ingenious elementary methods well before the more precise
Prime Number Theorem was established in 1896 (as we will discuss later).

Theorem 1.3.1 (Chebychev). There exist positive real numbers c1 > 0 and c2 > 0
such that

c1
x

log(x)
⩽ π(x) ⩽ c2

x

log(x)

for all x ⩾ 2.

Neither side of these inequalities is easy, but maybe the lower-bound is the more
surprising (since it shows that, in some sense, there are many prime numbers, maybe
more than a first naive guess might suggest).

Proof. The proof below is based on the following fact: for any integer n, the middle
binomial coefficient

(
2n
n

)
is a (positive) integer for n ⩾ 1.5 This property, which is “trivial”

when the binomial coefficient
(
n
k

)
is interpreted as counting subsets of size k in a set of

size n, is much less obvious if one writes down the formula(
2n

n

)
=

(2n)!

(n!)2
,

because it is absolutely not obvious that the square of n! should divide (2n)!.
We first use this to prove the upper bound in the theorem. We note for this that if p

is a prime number with n < p ⩽ 2n, then p divides (2n)! but not (n!)2, and this tells us
that (

2n

n

)
⩾

∏
n<p⩽2n

p.

4 We will see later in practice why it is very convenient to defined this for arbitrary values of x ⩾ 0,
and not just for integers.

5 This use of binomial coefficients to “package” the ideas of Chebychev is due to Erdős [6].
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However, the binomial coefficient cannot be too large: in fact, since

22n = (1 + 1)2n =
2n∑
k=0

(
2n

k

)
,

positivity of the terms indicates that (
2n

n

)
⩽ 22n

(which also follows immediately from the combinatorial interpretation: the number of
subsets of size n in {1, . . . , 2n} is certainly bounded by the total number 22n of all subsets).
Combining the two inequalities and taking the logarithm, we obtain the inequality∑

n<p⩽2n

log p ⩽ 2n log(2).

It is now easy to deduce the Chebychev upper-bound, by general principles that we
will discuss separately below (dyadic subdivisions and summation by parts), the key point
being that log p is quite close to log(2n) for n < p ⩽ 2n.

Thus we go to the lower-bound, which is more involved. This may not be too sur-
prising, since it amounts to showing that there are many prime numbers, which certainly
seems difficult, given the fact that they are not specified by any formula. However, the
direction of the argument is suggested by the proof of the upper-bound: we might now
wish to combine a lower-bound for

(
2n
n

)
with an upper-bound for

(
2n
n

)
derived from infor-

mation about the primes. But for such an idea to have a chance to work to prove a lower
bound of size n/ log(n), it must be the case that the first part of the proof was not too
far from the truth. This means that the prime factorization of

(
2n
n

)
cannot diverge too

much from the simple product of the primes between n and 2n.
Thus we are led to use the fundamental theorem of arithmetic to express

(
2n
n

)
as a

product of prime powers, and in then trying to determine or estimate the exponents that
appear. Noting that only primes p ⩽ 2n may appear in the factorization (because they
have to divide the numerator (2n)! in the factorial formula), we write(

2n

n

)
=

∏
p⩽2n

pvp

for some integers vp ⩾ 0. There is a formula for vp, following from a formula for vp(k!)
for any k ⩾ 1 given in Lemma 1.3.2 below: we have

vp =
∑
j⩾1

(⌊2n
pj

⌋
− 2

⌊ n

pj

⌋)
,

which follows from the lemma applied to k = 2n and then to k = n, using the addition
formula vp(ab) = vp(a) + vp(b) for all a, b ⩾ 1.

To estimate this valuation, we use two observations: first, that ⌊y⌋ − 2⌊y/2⌋ ⩽ 1 for
all y ⩾ 0 (an elementary fact left to the reader), and second, that the sum over j above
terminates after at most log(2n)/ log(p) terms (i.e., for j larger than this, the summand
is always 0). It follows that

vp ⩽
log(2n)

log p
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for all primes p. Hence, taking once more the logarithm, we get

log
((2n

n

))
) =

∑
p⩽2n

vp log(p) ⩽ π(2n) log(2n).

We finally need to get a lower bound for
(
2n
n

)
, and it should be of exponential size in

order to get the right conclusion. This is indeed the case: we have
(
2n
n

)
⩾ 22n/(2n + 1),

because the middle binomial coefficient is the largest among the 2n + 1 values of
(
2n
k

)
which sum to 22n, so we finally get

π(2n) log(2n) ⩾ 2n log(2)− log(2n+ 1).

This clearly contains the gist of the Chebychev lower bound. To go from this to the
precise statement in Theorem 1.3.1 is again a simple matter of general analytic principles,
which we discuss separately later. □

We used the following lemma, which goes back to Legendre, and has quite a few other
applications.

Lemma 1.3.2. Let k ⩾ 1 be an integer. The exponent vp(k!) such that pvp(k!) divides
k! and pvp(k!)+1 does not is equal to

vp(k!) =
∑
j⩾1

⌊ k

pj

⌋
.

Proof. We use one crucial property of the exponents vp(n) for arbitrary integers n ⩾
1: they satisfy vp(mn) = vp(n) + vp(m) for arbitrary integers n and m. In particular, we
have

vp(k!) =
k∑

n=1

vp(n).

To go further, we insert the following analytic expression for vp(n): we have

vp(n) =
∑
j⩾1
pj |n

1

(i.e., the exponent vp(n) is also the number of j ⩾ 1 such that pj divides n). Inserting
this in the sum defining vp(k!), we obtain

vp(k!) =
k∑

n=1

∑
pj |n

1

and here we exchange the order of the two (finite) sums. We get

vp(k!) =
∑
j⩾1

∑
pj |n

1,

where the second summation is now over those values of n, with 1 ⩽ n ⩽ k, for which
pj divides n. So this inner sum counts the integers in the interval from 1 to k which are
divisible by pj: they are the integers pj, 2pj, . . . , mpj, where m is allowed to increase as
long as mpj ⩽ k, i.e., m ranges from 1 to the largest integers m ⩽ k/pj. This is the same
as saying that m = ⌊k/pj⌋. In other words, we have shown that

vp(k!) =
∑
j⩾1

⌊ k

pj

⌋
,
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which concludes the proof. □

Remark 1.3.3. (1) If we compare Theorem 1.3.1 with Fermat’s Theorem, an imme-
diate natural question arises: among the primes (whose density among integers we now
have some idea about), how many are ≡ 1 (mod 4)? It is a priori not even clear if there
are infinitely many of them! The proof of Chebychev’s Theorem does not in any obvious
way extend to handle this problem, and only by using essential new ideas, going back
to Dirichlet and related to harmonic analysis, will we have robust methods available to
attack such questions.

(2) One can ask whether the binomial coefficient can be replaced by other quantities
to obtain better values of the constants c1 and c2. This is a delicate matter! Indeed, one
can use for instance the fact that

(30n)!n!

(15n)!(10n)!(6n)!

is an integer for all n ⩾ 1 (by no means a clear fact!) to obtain slightly better estimates,
and the question of trying to understand what similar expressions have this property is
quite intricate – following observations of Rodriguez-Villegas, it is related to such topics
as algebraicity of solutions of hypergeometric equations, and we refer to the paper [?] of
Soundararajan for further discussion and results.

1.4. Roots of polynomial equations

The last topic for this introductory chapter concerns integral polynomial equations
in one variable. Of course, a polynomial f ∈ Z[X] of degree ⩾ 2 does not usually have
integral or rational roots. The theory of field extensions and Galois theory show that the
complex roots of such polynomials have subtle properties, and revealing these is one of
the key goals of algebraic number theory.

On the other hand, even if f ∈ Z[X] has no rational root, it may well be that it has
some roots modulo q for certain integers q. For instance, from a relation like

42 + 1 = 17,

we see that 4 (mod 17) is a “square root of −1” in Z/17Z. This immediately raises
questions, among which maybe the most natural would be: for which q ⩾ 1 does there
exist such a “modular i”? This, again, turns out to be an extraordinarily rich problem...

To be more precise, we denote by Zf (Z/qZ) the set of x ∈ Z/qZ such that f(x) =
0 (mod q). We first make a reduction: we express q as a product of prime powers, say

q =
∏
p

pvp

where vp ⩾ 0 and vp ⩾ 1 for finitely many primes only. Then because of the Chinese
Remainder Theorem (the fact that the map

Z/qZ →
∏
p

Z/pvpZ

induced by reducing an integer modulo q modulo the different divisors pvp of q is an
isomorphism of rings), we have a bijection

Zf (Z/qZ) →
∏
p

Zf (Z/p
vpZ),
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which allows us to restrict our attention to those q which are powers of primes.6 Since the
existence of a solution of f(x) = 0 modulo p2 or p3, or higher powers, certainly implies
the existence of a solution modulo p, we will in fact restrict our attention to solutions
modulo primes.

This will more fully be justified a bit later by other general principles which, es-
sentially, state that for all but finitely many primes (depending on f), the number of
solutions modulo pk, for any k ⩾ 2, is the same as the number of solutions modulo p.
Moreover, a good reason a priori to focus on primes is that Z/pZ is a field, whereas
Z/pkZ is not if k ⩾ 2, and this has many algebraic advantages. As is customary, the
emphasize the fact that Z/pZ is a field, we denote it by Fp.

Example 1.4.1. (1) Taking f = X2 + 1 (so we are looking for “modular” versions
of the imaginary unit i ∈ C), here is a list for the first 100 primes7 of the number of
solutions of the equation x2 + 1 = 0 (mod p).

(2, 1), (3, 0), (5, 2), (7, 0), (11, 0), (13, 2), (17, 2), (19, 0), (23, 0), (29, 2), (31, 0), (37, 2),

(41, 2), (43, 0), (47, 0), (53, 2), (59, 0), (61, 2), (67, 0), (71, 0), (73, 2), (79, 0), (83, 0),

(89, 2), (97, 2), (101, 2), (103, 0), (107, 0), (109, 2), (113, 2), (127, 0), (131, 0), (137, 2),

(139, 0), (149, 2), (151, 0), (157, 2), (163, 0), (167, 0), (173, 2), (179, 0), (181, 2), (191, 0),

(193, 2), (197, 2), (199, 0), (211, 0), (223, 0), (227, 0), (229, 2), (233, 2), (239, 0), (241, 2),

(251, 0), (257, 2), (263, 0), (269, 2), (271, 0), (277, 2), (281, 2), (283, 0), (293, 2), (307, 0),

(311, 0), (313, 2), (317, 2), (331, 0), (337, 2), (347, 0), (349, 2), (353, 2), (359, 0), (367, 0),

(373, 2), (379, 0), (383, 0), (389, 2), (397, 2), (401, 2), (409, 2), (419, 0), (421, 2), (431, 0),

(433, 2), (439, 0), (443, 0), (449, 2), (457, 2), (461, 2), (463, 0), (467, 0), (479, 0), (487, 0),

(491, 0), (499, 0), (503, 0), (509, 2), (521, 2), (523, 0), (541, 2).

The reader is already invited to search for patterns and regularities.
(2) Take f = X3 +X− 1. We make the same experiment, and we get:

(2, 0), (3, 1), (5, 0), (7, 0), (11, 1), (13, 1), (17, 1), (19, 0), (23, 1), (29, 1), (31, 2), (37, 1),

(41, 0), (43, 1), (47, 3), (53, 1), (59, 0), (61, 1), (67, 3), (71, 0), (73, 1), (79, 1), (83, 1),

(89, 1), (97, 0), (101, 0), (103, 0), (107, 0), (109, 0), (113, 0), (127, 1), (131, 3), (137, 1),

(139, 1), (149, 3), (151, 1), (157, 0), (163, 0), (167, 1), (173, 3), (179, 1), (181, 1), (191, 0),

(193, 0), (197, 1), (199, 1), (211, 0), (223, 1), (227, 3), (229, 1), (233, 0), (239, 1), (241, 1),

(251, 1), (257, 0), (263, 1), (269, 1), (271, 1), (277, 1), (281, 0), (283, 3), (293, 3), (307, 0),

(311, 0), (313, 1), (317, 0), (331, 1), (337, 1), (347, 1), (349, 3), (353, 1), (359, 0), (367, 1),

(373, 0), (379, 3), (383, 1), (389, 1), (397, 0), (401, 1), (409, 1), (419, 0), (421, 0), (431, 3),

(433, 1), (439, 0), (443, 0), (449, 1), (457, 1), (461, 1), (463, 1), (467, 0), (479, 0), (487, 1),

(491, 1), (499, 1), (503, 0), (509, 1), (521, 3), (523, 1), (541, 0).

6 In other words, we use the fact that for x ∈ Z/qZ corresponding to the family (xp) modulo pvp ,
the value f(x) (mod q) corresponds to the family (f(xp)).

7 It is sometimes useful to remember that 541 is the hundredth prime, 1223 the two-hundredth,
10007 the first prime larger than 10000, and to know a few other prime numbers, especially 163, 691 and
196561.
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Again, what patterns (if any) do seem to emerge? And how does this compare with
the first example?

(3) Here we take f = X8 − 16 and list only the number of roots.

1, 2, 4, 2, 2, 4, 8, 2, 2, 4, 2, 4, 8, 2, 2, 4, 2, 4, 2, 2, 8, 2, 2, 8, 8, 4, 2, 2, 4, 8, 2, 2, 8, 2,

4, 2, 4, 2, 2, 4, 2, 4, 2, 8, 4, 2, 2, 2, 2, 4, 8, 2, 8, 2, 8, 2, 4, 2, 4, 8, 2, 4, 2, 2, 8, 4, 2, 8,

2, 4, 8, 2, 2, 4, 2, 2, 4, 4, 8, 8, 2, 4, 2, 8, 2, 2, 8, 8, 4, 2, 2, 2, 2, 2, 2, 2, 4, 8, 2, 4, 2, 4,

2, 8, 2, 8, 2, 8, 2, 8, 2, 4, 8, 2, 2, 8, 2, 2, 4, 2, 4, 8, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 2, 4, 8, 8,

4, 2, 4, 8, 2, 4, 2, 2, 4, 2, 4, 8, 2, 2, 4, 8, 2, 2, 2, 2, 2, 8, 8, 4, 2, 8, 2, 2, 8, 2, 2, 4, 8, 4,

2, 4, 2, 8, 2, 8, 2, 4, 2, 4, 2, 2, 4, 8, 2, 4, 4, 2, 8, 2, 8, 2, 2, 4, 2, 8, 8, 4, 8, 2.

(4) Now with f = X2 − X+ 41, again listing only the number of roots.

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0,

2, 0, 1, 2, 2, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 2,

0, 0, 2, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 2, 0,

0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2,

2, 0, 0, 2, 0, 0, 2, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2,

2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0.

This last example is related, strangely enough, to the fact that

eπ
√
163 = 262537412640768743.99999999999925007259 . . .

is extremely close to an integer (but it isn’t one...)

We come back to the general discussion. As in these examples, we first concentrate
our attention on the size of Zf (Fp) (a tricky enough problem without trying to address
the actual values of the roots when they exist). We denote νf (p) = |Zf (Fp)|. There
is a fundamental fact which illustrates in the simplest instance a connection between
properties of the complex roots (equivalently, of the polynomial f , viewed as a “global”
object with integral coefficients) and those modulo primes (where each reduction modulo
a prime p is interpreted as giving “local” information); it was discovered by Kronecker [15]
in the late 19th Century (though really only proved a bit later by Dedekind).

Theorem 1.4.2 (Kronecker†). The “average value” of νf (p) as p ranges over primes
is the number of irreducible factors of f over Q, counted without multiplicity. More
precisely, if f is irreducible over Q, then we have the limit formula

lim
x→+∞

1

π(x)

∑
p⩽x

νf (p) = 1.

In contrast to the results of the previous sections, this theorem does not currently
have a simple proof, and it is very doubtful that such a proof could exist (except for
rather special polynomials). We will see later that it is really essentially equivalent to
the fact that the so-called Dedekind ζ function attached to the splitting field of f has a
simple pole at 1.

Example 1.4.3. (1) Let f = X2 + 1. It is relatively easy to compute νf (p) here,
because f(x) = 0 means that x2 = −1 (mod p), and is therefore equivalent to saying that
x is a fourth root of unity (as it should, since it is a version of i modulo p), and it is not
of order 2, unless p = 2. Excluding this case, in order to have such an element in Fp,
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the order p − 1 of the group must be divisible by 4. But conversely, since F×
p is known

to be a cyclic group of order p − 1, we know that it contains a unique cyclic subgroup
of any order dividing p− 1, and thus p ≡ 1 (mod 4) implies the existence of some x with
x2 = −1 (mod p). Therefore we get

νf (p) =


0 if p ≡ 3 (mod 4),

1 if p = 2,

2 if p ≡ 1 (mod 4).

Comparing with Fermat’s Theorem, we see that the primes with νf (p) = 2 are exactly
those which are sums of two primes. One direction of this equality is easy: if a2 + b2 =
p, then reducing modulo p, we see that a2 + b2 ≡ 0 (mod p), and since a is coprime
to p (otherwise the left-hand side is larger than p), we get x2 = −1 (mod p) with x =
b/a (mod p) (the inverse being computed modulo p). The other direction would mean a
different proof of Fermat’s Theorem, where the existence of (a, b) would be deduced from
the existence of x. We will see two or three proofs of this kind later on.

(2) The previous example naturally extends to cyclotomic polynomials, those whose
roots are roots of unity. Indeed, let q ⩾ 1 be an integer and let f = Φq ∈ Z[X] be the
q-th cyclotomic polynomial, namely the monic polynomial whose roots are all primitive
q-th roots of unity. Concretely, this is

Φq =
∏

1⩽a<q
(a,q)=1

(X− e2iaπ/q),

since the e2iaπ/q with a coprime to q are the primitive q-th roots of unity. Thus, this
polynomial has degree φ(q) = |(Z/qZ)×| (whis is called the Euler function).

If q is prime, then this is the simple explicit polynomial

Φq = Xq−1 + · · ·+X+ 1,

but in general this polynomial can be more surprisingly complicated. For instance

Φ210 = X48 − X47 +X46 +X43 − X42 + 2X41 − X40 +X39 +X36 − X35 +X34−
X33 +X32 − X31 − X28 − X26 − X24 − X22 − X20 − X17 +X16 − X15 +X14−

X13 +X12 +X9 − X8 + 2X7 − X6 +X5 +X2 − X+ 1

(where one sees coefficients different from 0, −1 or 1; but note that the first occurrence
of such a coefficient is for Φ105).

The same properties of finite cyclic groups used in the first example (which is the
same as the case q = 4) show that if p does not divide q, then the number of roots of
f = Φq modulo p is given by

νf (p) =

{
φ(q) if p ≡ 1 (mod q),

0 otherwise.

The conclusion of Kronecker’s Theorem is then the assertion that

φ(q)

π(x)

∑
p⩽x

p≡1 (mod q)

1 → m,

where m is the number of irreducible factors of f over Q (note that since f visibly has
no multiple root in C, this number is the same whether we count the irreducible factors
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with or without multiplicity). It is more customary to write the equivalent formula

π(x; q, 1) ∼ m

φ(q)
π(x),

where by definition, for any integer q ⩾ 1 and any integer a coprime to q, we denote by
π(x; q, a) the number of prime numbers p ⩽ x which are ≡ a (mod q).

We can view this in two different ways. First, it is an earlier theorem of Kronecker
(1854) that the cyclotomic polynomial Φq is irreducible over Q (this had been proved
earlier for q prime by Gauss, and simpler proofs were known of that case; although there
are now every simple-looking arguments, such as the one we will review in the next
chapter, this is a deep arithmetic fact, and is a prototype for another very important
type of studies in number theory, nowadays known as “Galois representations”). Thus
we know that m = 1, and we see that Kronecker’s Theorem implies that

π(x; q, 1) ∼ 1

φ(q)
π(x),

and in particular there are infinitely many primes congruent to 1 modulo q (even better,
Chebychev’s estimate shows that the number of those ⩽ x is growing approximately
like 1

φ(q)
x

log(x)
; this is not as precise as stronger forms of the Prime Number Theorem in

arithmetic progressions will provided later, but it is already far from obvious).
There is however another interpretation: one can in fact prove independently of the

irreducibility of the cyclotomic polynomials that

π(x; q, a) ∼ 1

φ(q)
π(x),

as x → +∞, for all a coprime to q (in a weaker form, this is the celebrated theorem of
Dirichlet on primes in arithmetic progressions, which was in fact proved in 1837, before
Kronecker’s result on the irreducibility of Φq). Hence we deduce the non-trivial fact
that Φq is irreducible! Interestingly, in the introduction to the paper where he states
Theorem 1.4.2, Kronecker very clearly states the possibility of such an “analytic” proof
as a motivation for his work exploring the properties of νf (p).

(3) Taking the first example of f = X2 + 1 as the “simplest” irreducible polynomial
over Q, there is another natural generalization which might seem simpler than that of
cyclotomic polynomials: let’s consider f = X2 − d, where d ∈ Z in an arbitrary integer,
and to avoid the case where f is reducible, assume that d is not the square of an integer.
Then νf (p) counts the number of square roots of d modulo p. The study of Kronecker’s
problem in that particular case actually goes back to Fermat, Euler, Lagrange, Legendre
and Gauss. It turns out to be incredibly rich, and even more than Fermat’s Theorem, it
is the starting point of algebraic number theory.

One feature is clear: note that 0 ⩽ νf (p) ⩽ 2 (since f is never identically zero
modulo p), and that −x is a square root of d whwnever x is. So, if νf (p) is non-zero, it
will be equal to 2 unless there is an x ∈ Fp such that x2 = d and x = −x. The last can
only happen if 2x = 0 in Fp, i.e., if p = 2 or x = 0; in the first case, we have νf (2) = 1
(either d is even and x = 0 is the unique root or d is odd and x = 1 is the unique root),
and the second case will occur only if p | d, in which case indeed νf (p) = 1.

We are therefore led to concentrate on the case of primes p not dividing d, where
νf (p) is either 0 or 2, and the question is to determine when these two cases occur.

Here is the data for the first hundred primes when d = 12 and d = −13 for instance,
where we keep track of the primes again as this is crucial to understand the structure.
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For f = X2 − 12:

(2, 1), (3, 1), (5, 0), (7, 0), (11, 2), (13, 2), (17, 0), (19, 0), (23, 2), (29, 0), (31, 0), (37, 2), (41, 0),

(43, 0), (47, 2), (53, 0), (59, 2), (61, 2), (67, 0), (71, 2), (73, 2), (79, 0), (83, 2), (89, 0), (97, 2),

(101, 0), (103, 0), (107, 2), (109, 2), (113, 0), (127, 0), (131, 2), (137, 0), (139, 0), (149, 0), (151, 0),

(157, 2), (163, 0), (167, 2), (173, 0), (179, 2), (181, 2), (191, 2), (193, 2), (197, 0), (199, 0), (211, 0),

(223, 0), (227, 2), (229, 2), (233, 0), (239, 2), (241, 2), (251, 2), (257, 0), (263, 2), (269, 0), (271, 0),

(277, 2), (281, 0), (283, 0), (293, 0), (307, 0), (311, 2), (313, 2), (317, 0), (331, 0), (337, 2), (347, 2),

(349, 2), (353, 0), (359, 2), (367, 0), (373, 2), (379, 0), (383, 2), (389, 0), (397, 2), (401, 0), (409, 2),

(419, 2), (421, 2), (431, 2), (433, 2), (439, 0), (443, 2), (449, 0), (457, 2), (461, 0), (463, 0), (467, 2),

(479, 2), (487, 0), (491, 2), (499, 0), (503, 2), (509, 0), (521, 0), (523, 0), (541, 2).

For f = X2 + 13:

(2, 1), (3, 0), (5, 0), (7, 2), (11, 2), (13, 1), (17, 2), (19, 2), (23, 0), (29, 2), (31, 2), (37, 0),

(41, 0), (43, 0), (47, 2), (53, 2), (59, 2), (61, 2), (67, 2), (71, 2), (73, 0), (79, 0), (83, 2), (89, 0),

(97, 0), (101, 2), (103, 0), (107, 0), (109, 0), (113, 2), (127, 0), (131, 0), (137, 0), (139, 0), (149, 0),

(151, 2), (157, 2), (163, 2), (167, 2), (173, 2), (179, 0), (181, 2), (191, 0), (193, 0), (197, 0),

(199, 0), (211, 0), (223, 2), (227, 2), (229, 0), (233, 2), (239, 2), (241, 0), (251, 0), (257, 2),

(263, 0), (269, 2), (271, 2), (277, 2), (281, 0), (283, 0), (293, 0), (307, 2), (311, 0), (313, 2),

(317, 0), (331, 2), (337, 2), (347, 0), (349, 0), (353, 0), (359, 2), (367, 0), (373, 2), (379, 2),

(383, 2), (389, 2), (397, 0), (401, 0), (409, 0), (419, 0), (421, 0), (431, 2), (433, 2), (439, 0),

(443, 0), (449, 0), (457, 0), (461, 0), (463, 2), (467, 0), (479, 2), (487, 2), (491, 0), (499, 2),

(503, 0), (509, 0), (521, 2), (523, 0), (541, 0).

It is probably based on experiments that Legendre was led to the discovery of some
remarkably regularity in this data concerning modular square roots. In particular, he
found (as you may if considering enough evidence) that, except for finitely many excep-
tions, the set of primes for which X2−d has a root modulo p is determined by arithmetic
progressions modulo d. This appeared in the case of X2 + 1 (where the progression is
modulo 4, and the exception is p = 2), and also – and this may seem very intriguing –
for the higher-degree cyclotomic polynomials. This may lead you back to look at some
of the previous data – for instance, can one see such a pattern for f = X3 +X− 1?

Legendre went far enough to make a precise conjecture on which arithmetic progres-
sions described those primes where X2 − d has a root. We will consider this, but we first
formally close this chapter, as we will start to build the required theory to understand
better these problems.

Theorem 1.4.2 is a fitting conclusion to this introductory chapter, because it shows
how the dichotomies that are sometimes created between “algebraic” or “analytic” num-
ber theory, or the one we proposed between “deterministic” and “probabilistic” number
theory, are always artificial: in Kronecker’s Theorem, if we are given a concrete poly-
nomial f for which we ask whether it is irreducible over Q or not (e.g., Kronecker was
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especially interested in the case of cyclotomic polynomials), the question is certainly de-
terministic, and of algebraic nature. But the answer is in terms of average behavior of
νf (p), which is of probabilistic nature.
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CHAPTER 2

Elementary algebraic number theory

2.1. Introduction

Remark 2.1.1. When we do not give full proofs, we will use as a reference the
textbook of Ireland and Rosen [12], which is very accessible.

2.2. Quadratic reciprocity: the statement

We begin by stating and explaining a proof of what is certainly the most impor-
tant result in algebraic number theory from the historical point of view – the Quadratic
Reciprocity Law, discovered by Legendre and proved first by Gauss. Recall that the
underlying question is the following: given an integer d, not a square, can one describe
the set of primes p such that X2 − d has a root modulo p?

The answer will be provided by the quadratic reciprocity law. This involves the so-
called Legendre symbol, which Legendre introduced to keep track of which residue classes
are squares and which are not modulo a prime number p:

Definition 2.2.1 (Legendre symbol). Let p be a prime number. The quadratic
residue symbol modulo p is the function

Fp → {−1, 0, 1}

denoted x 7→
(
x
p

)
which is defined by

(x
p

)
=


−1 if x is not a square of an element of F×

p ,

0 if x = 0,

1 if x is a square of an element of F×
p .

More generally, if a ∈ Z, we denote by
(
a
p

)
the Legendre symbol of a (mod p) ∈ Fp.

For instance,
(−1

p

)
= 1 whenever p ≡ 1 (mod 4): this is saying that there is a square-

root of −1 modulo p in that case. Note that although it seems somehow related to the
original question, the Legendre symbol seems to be going in the wrong direction: instead
of thinking of finding varying primes p for which a given integer d is a square (i.e., admits
a modular square-root), we are apparently fixing p and looking at all the squares modulo
this prime.

Theorem 2.2.2 (Gauss). Let p and q be distinct odd primes. We then have(p
q

)(q
p

)
= (−1)(p−1)(q−1)/4.

Before talking about the proof, we will spend some time discussing this result. First,
let us check that it provides (essentially) the full solution to the original problem of
modular square roots. This is clear if we consider the square-roots of d modulo primes
when d = q is an odd prime number. Then, except for the single case of p = q, the
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integer q has a square-root modulo p if and only if
(
q
p

)
= 1, by definition, and by

Quadratic Reciprocity, this is true if and only if(p
q

)
= (−1)(p−1)(q−1)/4.

We claim that this is a condition depending only on the residue class of p modulo 4q.
Indeed, if q ≡ 1 (mod 4), the right-hand side is 1, so we are looking to the even simpler
set of primes p which are squares modulo q. On the other hand, if q ≡ 3 (mod 4), then
(q − 1)/2 is odd so the right-hand side is (−1)(p−1)/2. So the set in question is the union
of (1) the set of primes p ≡ 1 (mod 4) which are also squares modulo q; (2) the set of
primes p ≡ 3 (mod 4) which are also non-squares modulo q. By the Chinese Remainder
Theorem, either of these describes uniquely a set of classes modulo 4q.

Suppose now that d is more general than an odd prime number. Then we can use (in
principle) the multiplicativity property(a

p

)( b
p

)
=

(ab
p

)
of the Legendre symbol, which is one justification for its definition (using the characteristic
function of the set of squares would carry the same information of distinguishing squares
and non-squares, but would lack this very useful property). We prove this below; for the
moment, observe that if we factor d in the form

d = εpn1
1 · · · pnk

k

where k ⩾ 0, the pi’s are distinct primes and ni ⩾ 1, and where ε ∈ {−1, 1} indicates the
sign of d (remember that even the case d = −1 is interesting), then we have(d

p

)
=

(ε
p

)(p1
p

)n1

· · ·
(pk
p

)nk

.

If ni is even, then
(
pi
p

)ni = 1, and if ni is odd, then
(
pi
p

)ni =
(
pi
p

)
. So, with the

exception of the possibility p might divide d (in which case d ≡ 0 (mod p), so it is a
square) or that 2 might be one of the primes dividing d, what is needed is to compute(
q
p

)
when q is an odd prime distinct from p, and Quadratic Reciprocity computes this in

terms of
(
p
p

)
. Thus the following additional formulas give access to the full solution of

the problem of existence of modular square-roots modulo odd primes.

Proposition 2.2.3. For all odd primes p, the formulas(−1

p

)
= (−1)(p−1)/2,

(2
p

)
= (−1)(p

2−1)/8

hold.

Note that the first of these refers again to the problem of square-roots of −1 modulo
primes, and we noticed already that it amounted to have p ≡ 1 (mod 4) because of its
interpretation in terms of fourth roots of unity. The second case, however, will need a
separate proof. Note that, concretely, we can check by looking at the various cases that
it means that 2 is a square modulo primes which are either 1 or 7 modulo 8, and is not
a square modulo primes which are 3 or 5 modulo 8.

Before going further, we prove the multiplicativity of the Legendre symbol.

Lemma 2.2.4. Let p be an odd prime number. For all a and b modulo p, we have(a
p

)( b
p

)
=

(ab
p

)
.
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Proof. Note that the only case which is not obvious from the definition is when
both

(
a
p

)
and

(
b
p

)
is −1: then we need to show that the product of two non-squares is a

square. But we use algebra to deal with the general case in one stroke: we consider the
squaring morphism

s : F×
p → F×

p

defined by s(x) = x2. Its image, denoted (F×
p )

2, is the subgroup of non-zero squares

modulo p; its kernel is {−1, 1}, since these are the roots of X2 = 1 modulo p, and
has order 2 (here we use the assumption that p is odd). It follows that the group of
squares has order (p− 1)/2, and the quotient Q = F×

p /(F
×
p )

2 has order 2 by elementary
group theory. But now observe that if we identify Q with the group {−1, 1} (which we
can without ambiguity since both have order 2, and there is only one way to make the
identification!), then the Legendre symbol

(
a
p

)
, for a ∈ F×

p , “is” the value at a of the

quotient morphism F×
p → Q = {−1, 1}. (Indeed, being a square means being the trivial

element in the quotient group, a non-square being the non-trivial element −1). So the
multiplicativity of the Legendre symbol is just the fact that the quotient map is a group
homomorphism. □

Finally, we want to explain that Quadratic Reciprocity is absolutely amazing. There
are at least three reasons why :

(1) It is often said (including in these notes) that distinct primes tend to behave
“independently” of each other, and this is often justified. The Quadratric Reci-
procity Law shows that in fact they are not independent: knowing whether one
is a square modulo the other gives information on the reciprocal situation, which
wouldn’t be true with exact independence.

(2) The statement is, indeed symmetric in terms of p and q, but this symmetry is
completely absent from the way the original problem was phrased: here q was
thought as the fixed source of the polynomial X2 − q, whose modular roots are
studied, while p was varying in the infinite set of primes distinct from q.

(3) The Legendre symbol
(
a
p

)
is defined for a modulo p, so the Legendre symbol

(
q
p

)
doesn’t seem to care whether q is prime or not. But

(
p
q

)
does, since the Legendre

symbol works modulo primes!

2.3. Quadratic reciprocity: sketch of a proof

We will now describe a proof of the Quadratic Reciprocity law. It will not be quite
complete, but it will be easy to finalize it as soon as we have set up the basic outlines of
algebraic number theory. Moreover, this proof, again, opens up an almost infinite horizon
for wider discussion.

The focus of this proof is to keep in mind the original problem. So we are thinking of
the odd prime q as fixed, and we want to find a criterion, in terms of q, for which primes p
admit a modular square-root of q. (It is in some sense irrelevant that the criterion will
take the remarkable form of the Reciprocity Law – in some sense, this might even be
misleading!)

The first step is to reword the problem. Let p be a prime different from q. Whether q
is or not a square modulo p, we can always consider a square-root of q modulo p, which
may simply lie in some extension of the field Fp. Let α be such a root and E = Fp(α).
By the theory of finite fields, the element α belongs to Fp if and only if αp = α. If this is
not the case, then since αp is also a root of X2 = q modulo p, we have αp = −α. Noting
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the sign, we conclude that the Legendre symbol
(
q
p

)
, which we try to compute, is also

characterized by

(2.1) αp =
(q
p

)
α,

for α a square-root of q in some extension of Fp.
This reformulation gives an opening for going further using the following idea: we

will try, in general, to find a second expression for α, for which the value of αp can be
determined. The way to do this is to take seriously the following naive point of view: α
should be “reduction” of the actual number

√
q. In other words, we want to explicitly

link the modular problem with “characteristic zero” information.
This is provided by a remarkable identity, which also goes back to Lagrange and

especially Gauss, which expresses
√
q in terms of expressions now known as Gauss sums.

Proposition 2.3.1. Let q be an odd prime number. The complex number

τq =

q−1∑
a=1

(a
q

)
e2iπa/q

satisfies
τ 2q = (−1)(q−1)/2q.

This means that τq is either a square-root of q (it might not be clear if it is
√
q or

−√
q) or one of −q, depending on whether q ≡ 1 (mod 4) or q ≡ 3 (mod 4) (so it might

be i
√
q or −i

√
q). If we define q∗ = q and τ̃q = τq if q ≡ 1 (mod 4), whereas q∗ = 4q and

τ̃q = iτq if q ≡ 3 (mod 4), then in all cases, we get τ̃ 2q = q, and τ̃q is a linear combination
with integral coefficients of roots of unity of order q∗.

Note that, a priori, this has nothing to do with modular square-roots. However, the
formula for τq (or iτq) represents

√
q (or −√

q or i
√
q or −i

√
q) as an element in the field

Q(e2iπ/q
∗
) generated over Q by the q∗-th roots of unity. In fact, and this is essential, it

gives an expression as an element of the ring Z[e2iπ/q
∗
]. This ring has properties analogue

to those of Z, and in particular this will provide us with reduction maps modulo various
ideals; the images of τ̃q will be modular square-roots of q in the respective quotients.

Now the final link is provided by the fact that, for a square-root α of q modulo a
prime p ̸= q, computing αp means applying to α the Frobenius automorphism x 7→ xp of
an extension in which α lies. A crucial compatibility property is that there is, similarly,
an automorphism of the field Q(e2iπ/q

∗
) which “represents” this Frobenius automorphism

modulo p, in the sense that applying it, then reducing, is the same as reducing, then
applying the Frobenius. It is maybe not too surprising that this automorphism, say σp,
is characterized by the fact that

σp

(
e2iπ/q

)
= e2iπp/q i 7→ ip

(raising to the p-th power the roots of unity!).
The outcome of the previous discussion (which requires a proof, which will come later)

is that σp(τ̃q) will be either τ̃q or −τ̃q (because the square of σp(τ̃q) is the same as that
of τ̃q), and the sign which appears is the same as the one which appears modulo p under
the Frobenius action, which is

(
q
p

)
by (2.1).

Now what is the image of τq under the automorphism σp? We compute

σp(τq) = σp

( q−1∑
a=1

(a
q

)
e2iπa/q

)
=

q−1∑
a=1

(a
q

)
σp

(
e2iπa/q

)
=

q−1∑
a=1

(a
q

)
e2iπap/q.
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To evaluate further, we note that e2iπx/q, for x ∈ Z, only depends on x modulo q,
as does

(
x
q

)
. Since p is different from q, the classes of ap modulo q, as a varies from 1

to q − 1, are exactly the q − 1 invertible residue classes modulo q. Writing b = ap, we
obtain (a

q

)
e2iπap/q =

(bp
q

)
e2iπb/q =

(p
q

)( b
q

)
e2iπb/q

(because
(
bp
q

)
=

(
b
q

)(
p
q

)
=

(
b
q

)2(a
q

)
, by Lemma 2.2.4), and therefore

σp(τq) =

q−1∑
b=1

(p
q

)( b
q

)
e2iπb/q =

(p
q

)
τq.

On the other hand, we have σp(i) = ip = (−1)(p−1)/2i, hence finally

σp(τ̃q) =
(p
q

)
τ̃q if q ≡ 1 (mod 4),

σp(τ̃q) = (−1)(p−1)/2
(p
q

)
τ̃q if q ≡ 3 (mod 4).

We said (and this is, with Proposition 2.3.1, the only unproved part) that the sign
must be the same as in (2.1). Hence we get(q

p

)
=

(p
q

)
if q ≡ 1 (mod 4),(q

p

)
= (−1)(p−1)/2

(p
q

)
if q ≡ 3 (mod 4).

This statement is equivalent to the Quadratic Reciprocity formula: if q ≡ 1 (mod 4),
we have (−1)(p−1)(q−1)/4 = 1, and otherwise (−1)(p−1)(q−1)/4 = (−1)(p−1)/2.

We will prove Proposition 2.3.1 right away, and leave the final compatibility property
to a later point where it will become straightforward. First, to simplify notation (and
make certain things look less “transcendental”), we will use the notation

e(z) = e2iπz

for z ∈ C. This has the property that e(z + w) = e(z)e(w) and e(n) = 1 if and only
if n ∈ Z; moreover, as already observed, for any positive integer m and any a ∈ Z, the
quantity e(a/m) only depends on the class of a modulo m, and we will often consider
e(a/m) where a ∈ Z/mZ.

The square of the Gauss sum. By multiplying the sums, and then using the
multiplicativity of Legendre symbols, we obtain

τ 2q =
∑

1⩽a,b⩽q−1

(a
q

)( b
q

)
e
(a+ b

q

)
=

∑
1⩽a,b⩽q−1

(ab
q

)
e
(a+ b

q

)
.

To go further, we will make a change of variable, and it is convenient to think of a and b
as ranging over F×

q when doing this. Then we define x so that b = ax; the substitution
(a, x) 7→ (a, ax) is bijective from F×

q × F×
q to itself (the inverse is (a, b) 7→ (a, b/a)), so

τ 2q =
∑

a,x∈F×
q

(x
q

)
e
(a(1 + x)

q

)
.
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Figure 2.1. The Gauss sum for q = 10007.
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This change of variable has “separated” the contribution of the Legendre symbol, and
we can now first sum over a for a fixed valued of x. Thus, we have the expression

τ 2q =
∑
x∈F×

q

(x
q

) ∑
a∈F×

q

e
(a(1 + x)

q

)
.

In the inner sum over a, two cases may arise; if x = −1, then all terms are equal to 1,
and the sum is equal to q− 1, whereas if x ̸= −1, we are summing all q-th roots of unity,
except 1, and the sum is then equal to −1 (since we know that the sum of all q-th roots
of unity is zero). So

τ 2q = −
∑
x∈F×

q

x ̸=−1

(x
q

)
+ (q − 1)

(−1

q

)
=

(−1

q

)
q +

∑
x∈F×

q

(x
q

)
.

The last sum is simply the difference between the number of squares in F×
q and the

number of non-squares, so it is zero. And the Legendre symbol
(−1

q

)
is, as always, the sign

(−1)(q−1)/2 detecting the congruence class of q modulo 4... This completes the proof. □

Remark 2.3.2. (1) The formula of Proposition 2.3.1 is by itself a very interesting
statement! One can think of a geometric interpretation: the Gauss sum τq describes a
specific “path” in the complex plane which starts at the origin and ends at some square-
root of (−1)(q−1)/2q (which one?), where the steps are limited to be of length one and roots
of unity of order 2q. How does this path look like? Figure 2.3.2 shows this q = 10007,
where the sum is done in the order indicated in the definition: the variable ranges from
1 to 10006.

The existence of this path is quite fascinating –it is very far from clear that it should
exist (we will discuss later the Kronecker–Weber Theorem, and see that it predicts a
priori only that there is an expression for

√
q in terms of q-th roots of unity, but only

with some unspecified integral coefficients), but one can observe that it is unique up to
reordering the terms of the sum, simply because the primitive q-th roots of unity are
linearly independent over Q (when q is prime).

(2) Again, we ask the natural question: which of the roots of (−1)(q−1)/2q does the
Gauss sum give? The answer is far from clear, so we resort to experiments, and here is
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the data the first few primes, with 5 digits of precision:

τ101 = 10.050, τ103 = 10.149 i, τ107 = 10.344 i, τ109 = 10.440

τ113 = 10.630, τ127 = 11.269 i, τ131 = 11.446 i, τ137 = 11.705

τ139 = 11.790 i, τ149 = 12.207, τ151 = 12.288 i, τ157 = 12.530

τ163 = 12.767 i, τ167 = 12.923 i, τ173 = 13.153, τ179 = 13.379 i

τ181 = 13.454, τ191 = 13.820 i, τ193 = 13.892, τ197 = 14.036

τ199 = 14.107 i

The evidence, which can go much further, leads to the conclusion that: the sign is
always +; in other words, τq is always the positive square root of q if q ≡ 1 (mod 4), and
is always i

√
q if q ≡ 3 (mod 4). This may seem innocuous, but it is a very deep property,

and it is strikingly difficult to prove (which was first done by Gauss, who had seen the
evidence, and struggled for a very long time on finding a proof).

We conclude this section by explaining another way to make this proof rigorous,
without waiting for the basic constructions of algebraic number theory to be available.
This consists simply in constructing the square-root α of q modulo p by imitating the
Gauss sum over Fp. Precisely, for m coprime to p, let ωm denote a primitive m-th root

of unity in some fixed algebraic closure of Fp. In Ẽq = Fp(ωq, ω4), we can define

ηq =

q−1∑
a=1

(a
q

)
ωa
q , η̃q =

{
ηq if q ≡ 1 (mod 4),

iηq if q ≡ 3 (mod 4).

By just reproducing the proof of Proposition 2.3.1, we get η̃2q = q, where the equality
is as elements of Fp. The computation of η̃pq is also straightforward, since raising to the
p-th power is an automorphism in characteristic p, and gives exactly as before the formula

η̃pq =
(p
q

)
η̃q if q ≡ 1 (mod 4),

η̃pq = (−1)(p−1)/2
(p
q

)
η̃q if q ≡ 3 (mod 4).

Using η̃q as the square-root α of q, we obtain the Quadratic Reciprocity Formula, as
an equality (p

q

)(q
p

)
= (−1)(p−1)(q−1)/4

in Fp. But since p is odd and both sides of this formula are equal to 1 or −1 modulo p,
the congruence implies the equality in Z.

2.4. Number fields and their rings of integers

We now begin to develop the theory of number fields, which is one of the main sub-
ject of algebraic number theory. These will be essential tools to understand properly
statements like Quadratic Reciprocity and its generalizations.

Definition 2.4.1. A number field K is a finite (necessarily algebraic) field extension
of Q.

Example 2.4.2. (1) One important construction of number fields is provided by a field
Q(α) obtained by adjoining to Q a root α of a fixed non-constant polynomial f ∈ Q[X].
Indeed, all number fields arise this way, but the polynomial f is far from unique, and the
number field turns out to be a more useful object for further study than the polynomial f .
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Similarly, starting from f , we can construct the splitting field K of f , which is another
number field; this time, it is generated by all roots of f in some field which contains them
all, for instance in C. The number fields obtained this way are characterized as all the
normal finite extensions of Q, or equivalently, all the finite Galois extensions of Q.

(2) Concretely, some of the most classical and important number fields are:

(i) Quadratic fields, of the form K = Q(
√
d), where d ∈ Q is not a square;

(ii) Cyclotomic fields, of the form K = Q(ω) for some root of unity ω ∈ C (of some
order).

These examples are Galois extensions ofQ; they are far from typical, however, because
in both cases, their Galois group is abelian.

(3) In some sense, there doesn’t seem to be “really nice” simple families of number
fields with non-abelian Galois groups. However, for testing purposes, one can consider
examples such that Kn = Q(θn), where θn is a root of

1 + X +
X2

2
+ · · ·+ Xn

n
= 0.

It is known that fn is irreducible over Q (this is due to Schur), and that the Galois
group of the splitting field of Kn is the symmetric group Sn.

To do number theory, however, one needs not only elements of number fields, which
are analogues of rational numbers, but most importantly the analogues of integers. The
most naive approach to defining integers in a number field would be to take, for instance,
Z[α] instead of Q(α). This turns out to be a bad definition in general, and the correct one
is more subtle. We give the general definition (since this can be useful) before considering
its specialization to number fields.

Definition 2.4.3 (Integral element, integral extension). Let A and B be commutative
rings and φ : A → B a morphism of rings, preserving the unit. An element b ∈ B is integral
over A if there exists a monic polynomial f ∈ A[X], say

f = Xd + ad−1X
d−1 + · · ·+ a1X+ a0, ai ∈ A,

such that b is “a root of f”, i.e., such that

bd + φ(ad−1)b
d−1 + · · ·+ φ(a1)b+ φ(a0) = 0.

The set of elements of B which are integral over A is called the integral closure of A
in B.

The ring of integers ZK of a number field K is the integral closure of Z in K.

Although this definition is the correct one, it is not immediately clear why, but this
will appear later. We will also see how, in a natural sense, an element x of a number
field K is integral (i.e., is in ZK) exactly when “it has no denominator”.

Remark 2.4.4. Many (in fact, most) writers use the notation OK for the ring of
integers. The notation ZK is more common in the French community, and seems more
logical.

Remark 2.4.5. Let K be a number field. Since x is algebraic over Q, there is a well-
defined monic minimal polynomial f ∈ Q[X] for f , namely the unique monic generator
of the prime ideal

I = {g ∈ Q[X] | g(x) = 0} ⊂ Q[X].

The generator f is an irreducible polynomial. We claim that if x is integral over Z,
then in fact f ∈ Z[X], so that f(x) = 0 gives an integral equation satisfied by x. Indeed,
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there is an element g ∈ Z[X], irreducible in Z[X], such that g(x) = 0 (taking a factor-
ization of an integral equation satisfied by x, we only need take one of its irreducible
factors). It is known that g is a primitive polynomial (the gcd of the coefficients is equal
to 1) and is irreducible in Q[X] (see, e.g, [2, Prop. 2.6.5]). It follows that g is a generator
of I, so f = αg for some α ∈ K×. Looking at the leading coefficient, it follows that α is
a unit in Z, so is −1 or 1, and then f ∈ Z[X].

Example 2.4.6. (1) Let a ∈ Z. For any integer k ⩾ 1, any k-th root α of a is an
element of C which is integral over Z: we can take the polynomial f = Xk − a.

(2) Let k ⩾ 1. Any k-th root of unity is integral over Z.
(3) The element

α =
1 +

√
5

2
∈ Q(

√
5)

seems to “have a denominator”. However, it is in fact an integer: indeed, α and α′ =
(1−

√
5)/2 are the two real solutions of the quadratic equation

X2 − X− 1 = 0.

Proposition 2.4.7. Let K be a number field of degree d = [K : Q] ⩾ 1. The ring of
integers ZK is a subring of K, containing Z, with fraction field equal to K and satisfying
Q ∩ ZK = Z.

In fact, for any x ∈ K, there exists some integer d ⩾ 1 such that dx ∈ ZK, and there
exists a Q-basis (ω1, . . . , ωd) of K such that

ZK = ω1Z⊕ · · · ⊕ ωdZ.

Proof. The first key fact is that ZK is, indeed, a ring. Since it contains Z (using
X − m as equation to see that m ∈ ZK), one needs to check that the product and the
sum of two integral elements is also integral, and this is done similarly to the proof that
the sum or product of algebraic numbers is still algebraic; see, e.g., [12, Prop. 6.1.5] for
the proof.

We now establish the remaining properties. First, let x ∈ ZK ∩Q, and let

xk + ak−1x
k−1 + · · ·+ a1x+ a0 = 0

with ai ∈ Z be an equation of smallest degree satisfied by x. Write x = a/b with a and b
coprime integers. By multiplying with bk, we obtain

ak + ak−1a
k−1b+ · · ·+ a1ab

k−1 + a0b
k = 0,

and reducing modulo b, we deduce that ak ≡ 0 (mod b). Since a and b are coprime, this
is only possible if b ∈ {−1, 1}, so that x ∈ Z.

Now, let x ∈ K. It satisfies an equation

xk + ak−1x
k−1 + · · ·+ a1x+ a0 = 0

with coefficients ai ∈ Q, for some k ⩽ d. Pick a common denominator d ⩾ 1 such
that bi = dai ∈ Z for all i. Then, multiplying by dk, we see that y = dx satisfies

yk + bk−1y
k−1 + · · ·+ dk−2b1y + dk−1b0 = 0,

which implies that y ∈ ZK. So any element x of K has a “denominator” d such that dx ∈
ZK. It follows that K is the fraction field of ZK.
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Fix now a basis of K over Q; we may assume that its components, say (ω1, . . . , ωd),
are in ZK, by the previous fact. For any x ∈ ZK, we can write

x =
d∑

i=1

λi(x)ωi

where λi(x) ∈ Q. The key property we finally need is: the λi are “almost” integral, in the
sense that there exists some fixed integer D such that Dλi(x) ∈ Z for all i and all x ∈ ZK.
Once we know this, we note that

ω1Z⊕ · · · ⊕ ωdZ ⊂ ZK ⊂ ω1

D
Z⊕ · · · ⊕ ωd

D
Z.

The second inclusion shows that ZK, as an abelian group, is a subgroup of a free
abelian group of rank d, hence is free of some finite rank, and since the first inclusion
finds a free subgroup of rank d in ZK, it follows that ZK is isomorphic to Zd as an abelian
group. A Z-basis of ZK is then necessarily a Q-basic of K, so the final conclusion follows.

To prove the claim, in view of what was already done, we try to “represent” λi by
duality by elements of K, using some non-degenerate bilinear form on K. One such form
is

B(x, y) = Tr(xy),

where the trace map from K → Q is defined to map x ∈ K to the trace of the Q-linear
endomorphism z 7→ xz of K.

This bilinear map is non-degenerate (because if x ̸= 0, then B(x, x−1) = Tr(1) = d),
and induces a bilinear map ZK × ZK → Z (because Tr(x) ∈ Z for x ∈ ZK: one checks
that Tr(x) ∈ ZK∩Q = Z since z 7→ xz maps ZK to ZK). So, in particular, for every i, we
find some element αi ∈ K such that λi(x) = B(αi, x). Fixing D ⩾ 1 such that Dαi ∈ ZK

for all i, we get

Dλi(x) = DB(αi, x) = B(Dαi, x) ∈ Z

whenever x ∈ ZK. □

Remark 2.4.8. (1) Of course, there is no unique Z-basis of ZK.
(2) Another elementary consequence of the definition of integral elements, generalizing

the fact thatQ∩ZK = Z, is that ZK is integrally closed in K, in the sense that any element
of K which is integral over ZK is already in ZK.

Example 2.4.9. (1) Let d = a/b be a non-zero rational number, with a, b coprime

integers. We want to compute the ring of integers of the quadratic field K = Q(
√
d). To

do this, we first observe that K = Q(b
√
d) = Q(

√
ab), which means that we may assume

that d ∈ Z. In this case, since
√
d is a root of X2 − d, we see that

√
d ∈ ZK, hence also

Z[
√
d] ⊂ ZK. We have already seen that (e.g. for d = 5) the inclusion may be strict, so

determining ZK requires some care.
We first make a further simplification: for any prime factor p of d which occurs

with even exponent vp, we may replace d by d/pvp without changing K, and similarly
if vp is odd, we may replace d by d/pvp−1. This allows us to assume that any p | d
occurs with exponent 1 exactly (such integers are called squarefree). For instance, from
d = 1316684 = 22 · 173 · 67, we can reduce to d = 17 · 67.

Let x ∈ ZK. We can certainly write x = m + n
√
d, with m and n in Q. If n = 0,

then x ∈ Z (as we have seen), so assume that n ̸= 0. Then the minimal polynomial f
of x, normalized to be monic, has integral coefficients (Remark 2.4.5), and has degree 2.
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In fact, denoting x′ = m− n
√
d, we have

f = (X− x)(X− x′) = X2 − (x+ x′)X + xx′ = X2 − 2mX+m2 − dn2.

The condition that f ∈ Z[X] means that 2m ∈ Z and m2 − dn2 ∈ Z. The first
condition says that m is either an integer or half an integer. In the first case (m ∈ Z),
the second condition becomes dn2 ∈ Z. Our assumption on d ensures that this is only
possible if n ∈ Z also: for a prime number p, the p-adic valuation of dn2 is vp(d)+2vp(n),
and must be ⩾ 0. But vp(d) is either 0 or 1; in the first case, we get vp(n) ⩾ 0, and in
the second vp(n) ⩾ −1/2, which gives the same thing since vp(n) ∈ Z.

There remains the case where m = µ/2 for some µ ∈ Z. The second condition is
µ2 − 4dn2 ∈ 4Z, so in particular 4dn2 ∈ Z. The same argument previously used still
applies to odd primes p, so that n can only have a power of two in the denominator. For
the prime 2, the condition is

2 + v2(d) + 2v2(n) ⩾ 0.

Using v2(d) ⩽ 1, it follows that v2(n) ⩾ −1, so either n is an integer, or half an
integer. So the final question, for given µ, ν ∈ Z, with ν ̸= 0, is when

x =
µ+ ν

√
d

2

is an element in ZK. This is now equivalent with µ2 − dν2 ∈ 4Z. If ν is even, we deduce
that µ is also even, and then x ∈ Z[

√
d]. If ν is odd, we deduce that d is a square modulo 4.

Since d cannot be 0 modulo 4, we see that d ≡ 1 (mod 4). And finally, assuming this, we
find that the condition is that µ2 − ν2 ∈ 4Z, and this is equivalent to µ ≡ ν (mod 2). In
other words:

(1) If d is not ≡ 1 (mod 4), then ZK = Z[
√
d]. (For instance, for d = −1, we get the

ring of integers Z[i] of Q(i).) A Z-basis of ZK is (1,
√
d).

(2) If d is ≡ 1 (mod 4), then

ZK =
{µ+ ν

√
d

2
| µ, ν ∈ Z and µ− ν ∈ 2Z

}
,

and a Z-basis of ZK is given by(
1,

1 +
√
d

2

)
.

Note that, at least, there is always some integral element α ∈ ZK such that ZK = Z[α],

namely α =
√
d or α = (1+

√
d)/2. This fact is not true for all number fields; the simplest

example where such an α cannot be found is the field K(θ) where θ is a root of the cubic
polynomial

X3 − X2 − 2X− 8

(an example of Dedekind).
(2) The cyclomotic fields are very well behaved from the point of view of the com-

putation of their ring of integers: for any positive integer m ⩾ 1, one can show that the
field Q(e2iπ/m) has ring of integers Z[e2iπ/m]. However, this is not an easy result (see for
instance the proof in Washington’s book [20, Th. 2.6]).

(3) Consider as a random example the polynomial

f = 1 + X +
X2

2
+

X3

6
+

X4

24
.
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Using Pari/GP, we learn that the number field K generated by a root α of f has
ring of integers with Z-basis

1, 3 + 2α +
α2

2
+

α3

4
,−2− α− α2

2
− α3

4
, 2 + α +

α2

2
.

The index [ZK : Z[α]] is equal to 8 here.

Before starting the next topic, we note that the proof of Proposition 2.4.7 has used
the bilinear form (x, y) 7→ Tr(xy) on a number field K, where Tr(x) is the trace of the
Q-linear map z 7→ xz. This bilinear form will reappear often, and one of the most crucial
invariants of a number field K is related to it.

Definition 2.4.10. Let K be a number field of degree d over Q. Let

(ω1, . . . , ωd)

be a Z-basis of ZK. The discriminant of K is the determinant

det(Tr(ωiωj))1⩽i,j⩽d.

The discriminant is well-defined, because for a different Z-basis (ηi), we have

det(Tr(ωiωj)) = det(Tr(ηiηj)) det(A)
2

where A is the base-change matrix, and the latter has determinant either −1 or 1, because
it and its inverse have integral coefficients.

Example 2.4.11. For K = Q(
√
d), with d assumed to be squarefree, we have com-

puted a Z-basis above, so we can compute the discriminant. We have Tr(1) = 2. The

matrix of multiplication by
√
d in the Q-basis (1,

√
d) is(

0 d
1 0

)
,

so that Tr(
√
d) = 0, and in general we get Tr(a+ b

√
d) = 2a (since the trace is Q-linear).

We have two cases: if d is not 1 modulo 4, then we can use the Z-basis (1,
√
d), and

the corresponding matrix whose determinant gives the discriminant is(
Tr(1) Tr(

√
d)

Tr(
√
d) Tr(d)

)
=

(
2 0
0 2d

)
,

hence disc(ZK) = 4d. On the other hand, if d ≡ 1 (mod 4), then we can take the basis

(1, (1 +
√
d)/2); since (1 +√

d

2

)2

=
d+ 1 +

√
d

4
,

the matrix to consider is now (
2 1
1 d+1

2

)
,

hence disc(ZK) = d.
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2.5. Ideal structure

We intend to use the rings of integers in a number field for arguments similar to those
one does with “ordinary” integers. In particular, we want to study the divisibility relation
in ZK, and the existence (or not) of unique factorization. The following questions are
therefore relevant:

(1) What can be said about ideals in ZK? What can be said about the quotient
rings ZK/n when n ⊂ ZK is an ideal?

(2) What can be said about the prime ideals and the maximal ideals in ZK?

(3) What can be said about the units of ZK?

(4) Is ZK is Unique Factorization Domain? A Principal Ideal Domain?

The answers to these questions give the foundations for all of algebraic number theory.
Even here, however, we will quickly see problems which are still unsolved.

The first important fact for number theory, and the first parallel with Z, is the fol-
lowing:

Proposition 2.5.1. Let K be a number field. For any non-zero ideal n ⊂ ZK, the
quotient ring ZK/n is finite.

Proof. Since n is non-zero, there is some non-zero element α ∈ n. Writing an
equation

αd + ad−1α
d−1 + · · ·+ a1α + a0 = 0

with d ⩾ 1 satisfied by α, with a0 ̸= 0, we observe that since α ∈ n, we have

a0 = −α(αd−1 + ad−1α
d−2 + · · ·+ a1) ∈ n.

Since the inclusion a0ZK ⊂ n gives an injective map ZK/n → ZK/a0ZK, we are
reduced to showing that ZK/a0ZK is finite. To see this, fix a Z-basis (ωi) of ZK, and note
that we have an isomorphism

(Z/a0Z)
[K:Q] → ZK/a0ZK

induced by the Z-linear isomorphism Z[K:Q] → ZK given by the chosen basis. □

Definition 2.5.2. Let K be a number field. For a non-zero ideal n ⊂ ZK, the norm
of n is the size of the quotient ring ZK/n; it is denoted |n|.

Remark 2.5.3. It is more traditional to use gothic fonts, such as n or q for ideals in
number fields. Similarly, the usual notation for the norm of an ideal n would be N(n).
We try to use a lighter notation which emphasizes the similarity with the case of Z.

Example 2.5.4. The proof of the proposition shows that if α ∈ Z, we have |αZK| =
|α|[K:Q], where |α| on the right-hand side refers to the usual absolute value.

The finiteness of quotient rings has immediate consequences on the structure of the
ring ZK:

Corollary 2.5.5. Let K be a number field. The ring ZK is a noetherian ring, and
all its non-zero prime ideals are maximal.

Proof. Recall that a ring A is noetherian if and only if all increasing sequences of
ideals

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · ·
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are stationary: there exist m such that Im = In for n ⩾ m. In the case of ZK, we observe
that such a chain gives rise to a decreasing sequence of quotient rings

ZK/I1 ⊃ ZK/I2 ⊃ · · · ⊃ ZK/In ⊃ · · ·
and since the starting point ZK/I1 is finite, there is some m such that ZK/Im = ZK/In for
all n ⩾ m. But then it follows that Im = In for n ⩾ m (because In = ker(ZK → ZK/In)).

For the second statement, let p ⊂ ZK be a non-zero prime ideal. Then the quotient
ring is a finite integral domain, and it is known that such a finite ring is a field; this
means that p is a maximal ideal. □

Remark 2.5.6. (1) The fact that ZK is noetherian can be proved in other ways: for
instance, any ideal n is, as an abelian group, a subgroup of ZK, which has finite rank.
So n is a finitely-generated abelian group, and a fortiori a finitely-generated ZK-module.

(2) In the terminology of commutative algebra and algebraic geometry, the fact that
the non-zero prime ideals of ZK are prime, but ZK is not a field, means that ZK has Krull
dimension equal to 1. It is a very important property, that leads in modern algebraic
geometry (the theory of schemes) to the viewpoint that ZK should be seen as a geometric
object, and that this object is a curve.

Up to now, most of the properties we have discussed are shared by the rings Z[α],
for α ∈ ZK, even when they do not coincide with ZK. This is not the case anymore for
the following essential result, which justifies the definition of ZK. Before stating it, recall
that for any commutative ring A, and any ideals I1 and I2 in A, the product ideal I1I2
is defined as the ideal generated by elements of the form a1a2 with a1 ∈ I1 and a2 ∈ I2.
We have I1I2 ⊂ I1 ∩ I2 (by the ideal property), but there is no equality in general. It
is important to note that associativity and commutativity hold for these products: we
have I1(I2I3) = (I1I2)I3 and I1I2 = I2I1 (both because these have the same generating
sets, using associativity and commutativity of the multiplication in A). Moreover, we
can generalize the product to consider the product I1I2 of ZK-submodules of the field K
(for instance 1

2
Z · 1

2
Z = 1

4
Z ⊂ Q). Finally, we recall that I1 ⊂ I2 is also denoted I2 | I1,

and corresponds to divisibility of ideals.

Theorem 2.5.7 (Dedekind). Let K be a number field. The ring of integers ZK is a
Dedekind domain, i.e., the non-zero ideals of ZK admit unique factorizations as products
of prime ideals.

In concrete terms, this result can be rephrased as the existence of p-adic valuations
for all non-zero prime ideals p of ZK: denoting by I (ZK) the set of all non-zero ideals
of ZK there are well-defined maps

vp : I (ZK) → Z

such that for any non-zero ideal n, all but finitely many of the values vp(n) are non-zero,
and

n =
∏
p

pvp(n),

and these p-adic valuations satisfy the usual properties

vp(nm) = vp(n) + vp(m),(2.2)

vp(n+m) ⩾ min(vp(n), vp(m)).(2.3)

The uniqueness of prime factorization means that

m = n if and only if vp(m) = vp(n)
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for all non-zero prime ideals p. (In particular, note that this implies that vp(p) = 1
and vq(p) = 0 if q is a prime ideal different from p, using the known factorization p = p1

for p.
It also follows that for non-zero ideals m and n, we have m ⊂ n (equivalently, n | m)

if and only if

vp(n) ⩽ vp(m)

for all non-zero prime ideals p ⊂ ZK. We then have a product decomposition m = nn′

with

n′ =
∏
p

pvp(m)−vp(n).

Sketch of proof of Theorem 2.5.7. We sketch a fairly algebraic proof, which
relies only on the fact that ZK is noetherian, integrally closed, and that its non-zero
prime ideals are maximal, and follows Samuel’s account in [18, §3.4]. A more elementary
argument is given in [12, §12.2], relying on first proving Theorem 2.5.12 below. We should
emphasize that all the small non-obvious details in the proof are simple consequences of
the result itself – in this sense, knowing the proof is not really necessary to go further in
understanding number fields (see Example 2.5.10 below).

Step 1. Let p ⊂ ZK be a non-zero prime ideal. Then one shows that the ZK-
submodule

p̃ = {x ∈ K | xp ⊂ ZK}
of K has the property that pp̃ = ZK. It is this step which fails for rings Z[α] ⊂ ZK in
general, because they are not always integrally closed.

More precisely, the ZK-module pp̃ is contained in ZK, so is an ideal in ZK. Since 1 ∈ p̃,
this ideal contains p. By maximality of the non-zero prime ideal p, either pp̃ = p or
pp̃ = ZK, as we are trying to prove.

Assume then for contradiction that pp̃ = p. The next claim, where the fact that ZK is
integrally closed appears, is that this implies that p̃ = ZK. Indeed, assume that pp̃ = p;
for any element x ∈ p̃, we find that Z[x]p ⊂ p. It follows that Z[x] is a finitely-generated
abelian group, and this implies that x is integral over Z. Hence x ∈ ZK by definition
of ZK.

From there, we get a contradiction by checking that p̃, which contains ZK because p
is an ideal of ZK, is not equal to ZK. To see this, we pick some non-zero element a ∈ p.
One shows that the ideal aZK divides (in other words, contains) some ideal n which is a
product of non-zero prime ideals (the argument applies to any non-zero ideal: considering
the set X of non-zero ideals which do not contain a product of prime ideals, one checks
that if X were not empty, there would be no maximal element of X for inclusion, which
would contradict the fact that ZK is noetherian). Then p, which divides aZK, divides
one of the prime ideals into which n factors, and by maximality is equal to one of them;
this gives the relation aZK | pm for some non-zero ideal m. One may assume that aZK

does not divide m (otherwise, use the fact that m is by assumption a product of prime
ideals to repeat the argument with n replaced by m). So aZK | bp for some b /∈ aZK

(any element of m aZK), and therefore b/a ∈ p̃ but b/a /∈ ZK.

Step 2. We prove the existence of prime factorization of ideals using a common
technique in noetherian rings: let X be the set of ideals n ⊂ ZK which are not products
of primes; then if X is not empty (which we try to exclude), it has a maximal element
by another characterization of noetherian rings, say n. Then n is a proper ideal, so is
contained in some maximal ideal p, and is different from p. Then n ⊂ np̃ ⊂ ZK, and
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the first inclusion is strict (because np is strictly contained in n, this being as in Step 1
a consequence of the fact that ZK is integrally closed). So np̃ is not in X, and thus is a
product of prime ideals; this is a contradiction, since then we would have n = (np̃)p ∈ X.

Step 3. Finally, we prove uniqueness. Suppose

p1 · · ·pk = q1 · · · ql

with pi and qj non-zero prime ideals. Then p1 contains the product of the ideals qj,
which by a standard property of prime ideals means that p1 ⊃ qj for some j. Since
the prime ideals in question are maximal, we get p1 = qj. Now multiplying both sides
with p̃1, we obtain an equality

p2 · · ·pk = q1 · · · qj−1qj+1 · · · ql,

with fewer terms, and we conclude by induction. □

This has already one very useful consequence, which again is not always valid for the
simpler rings Z[α].

Corollary 2.5.8. Let K be a number field. For any ideal n and m of ZK, we have
|nm| = |n||m|.

Proof. Using prime factorization for m and induction, it suffices to prove that
|np| = |n||p| when p is a non-zero prime ideal of ZK. We have a standard isomor-
phism of finite abelian groups

(A/np)/(n/pn) → A/n,

so that

|np| = |n| |np/n|,
where one must be somewhat careful that the right-hand side involves the norm of an
ideal and the size of a quotient group. The abelian group E = n/pn is stable under
multiplication by p, so it is naturally a vector space over the finite quotient field k =
ZK/p. To compute its size, it suffices to compute its k-dimension; for this, we observe
that a k-linear subspace F ⊂ E corresponds (by taking inverse image under the projection
n → k) to ideals m such that np ⊂ m ⊂ n. Looking at the p-adic valuation of m, it is
either 0 or 1 because of (2.2), and it follows that F is either 0 or equal to E. Since E ̸= {0}
(because vp(np) = vp(n)+1), we deduce that dimk(F) = 1, and then that |F| = |k| = |p|.
The product formula follows. □

Example 2.5.9. We illustrate the failure of Theorem 2.5.7, through that of Step 1
of its proof, in one of the simplest examples. Let K = Q(

√
5), whose ring of integers

is ZK = Z[(1 +
√
5)/2]. Let A = Z[

√
5].

We note that we can also express A in the form A = Z + 2ZK (e.g., a + b
√
5 =

(a − 2b) + 2b(1 +
√
5)/2). In particular, 2ZK is contained in A, and so is an ideal in A.

The quotient A/2ZK is (Z + 2ZK)/2ZK and is isomorphic to Z/(2ZK ∩ Z) = Z/2Z. In
particular, this ideal p = 2ZK ⊂ A is a prime ideal of A. (Concretely, we just have

2ZK = {a+ b
√
5 ∈ Z[

√
5] | a ≡ b (mod 2)},

so the isomorphism with Z/2Z is given by a+ b
√
5 7→ a (mod 2).)

Let p̃ = {x ∈ K | xp ⊂ A}. If we had pp̃ = A, then we would obtain

{x ∈ K | xp ⊂ p} = A,
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(by multiplying both sides of an inclusion xp ⊂ p by p̃ to check that the left-hand side
is contained in A, the other inclusion being elementary).

But we can check directly that

{x ∈ K | xp ⊂ p} = ZK.

Indeed, ZK is contained in the right-hand side, since p is an ideal of ZK also. Con-
versely, if xp ⊂ p, then 2x ∈ 2ZK, which when writing x = α + β

√
5 with α, β ∈ Q,

translates to

2α + 2β
√
5 ∈ {a+ b

√
5 ∈ Z[

√
5] | a ≡ b (mod 2)},

so α = µ/2 and β = ν/2 for some integers µ and ν with µ ≡ ν (mod 2), which is exactly
the description of ZK.

The conclusion is that Step 1 in the proof of Theorem 2.5.7 fails for this prime ideal p.
Elaborating these arguments, one can see that 2A ⊂ A is an ideal which is not a product
of prime ideals, and moreover one can check that |(2A)2| = 8 ̸= |2A|2 = 4, the norm for
non-zero ideals I of A being defined again as the size of the quotient ring A/I (which is
finite), which shows concretely that Corollary 2.5.8 fails.

Example 2.5.10. We illustrate how, assuming Theorem 2.5.7, one can recover the
property of the key Step 1 in the proof. So let p ⊂ ZK be a non-zero prime ideal, and
define p̃ = {x ∈ K | xp ⊂ ZK}. We have p ⊂ pp̃ ⊂ ZK, or in other words p | pp̃ | ZK.
The only possibility if pp̃ ̸= ZK is pp̃ = p. But there is some α ∈ ZK {0} such
that q = αp̃ is an ideal of ZK; multiplying by α would give pq = αp, and therefore
αp̃ = q = αZK, which implies that p̃ = ZK.

In fact, something more general holds in ZK: given a non-zero ideal n ⊂ ZK, there is
a unique ZK-submodule q of K such that nq = ZK, and it is given by

q = {x ∈ K | xn ⊂ ZK}.

This is even more general than Step 1, since it applies to any non-zero ideal, and not
just to prime ideals. To prove this, we first show that some q exists with the desired
property: namely, write n = p1 · · ·pk, and take q = p̃1 · · · p̃k. To get the uniqueness,
observe that if nq = ZK, then the ZK-module defined by

ñ = {x ∈ K | xn ⊂ ZK}

satisfies q ⊂ ñ. To get the converse inclusion, note that if x ∈ ñ, then xn ⊂ ZK, which
implies by multiplying by q that xZK ⊂ q, i.e. x ∈ q.

Theorem 2.5.7 applies in particular to principal ideals αZK, for α ∈ ZK, but in a
factorization

αZK = p1 · · ·pk,

the prime ideals pj are usually not principal. This is one of the major differences between
the arithmetic of Q and Z and that of number fields. However, a crucial fact is that,
in some sense, the difference is always under control. Before stating the precise form of
this result, we consider an example which indicates that the theory we are discussing has
some depth: we will recover Fermat’s Theorem on sums of two squares.

Example 2.5.11. Let K = Q(i) ⊂ C. The ring of integers is Z[i] (see Example 2.4.9,
(1)). Its elements are called gaussian integers. The ring Z[i] is (exceptionnally) a principal
ideal domain. In fact, it is a euclidean ring: for any x and y ∈ Z[i], provided y ̸= 0, we
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can find unique elements q and r in Z[i], with1 ∥r∥ < ∥y∥, such that

x = qy + r

(geometrically, take r to be the gaussian integer closest to x/y in C, with respect to the
usual distance in the plane, and note that ∥r − x/y∥ < 1). Using this, the proof that an
ideal n ⊂ Z[i] is principal proceeds identically to the proof that Z is principal (namely, if
n = {0}, there is nothing to prove; otherwise, take an element in n of minimal modulus,
and show using euclidean division that it generates n).

Let p be an odd prime number. We claim that p is a sum of two squares of integers
if and only if p factors non-trivially in Z[i], i.e., if p = (a + ib)(c + id) where a + ib and
c+ id are not units. To check this, we first compute the units: the inverse

1

a+ ib
=

a

a2 + b2
− i

b

a2 + b2

in Q(i) of a non-zero element of Z[i] is in Z[i] if and only if a2+ b2 divides a and b, which
means that one of a and b must be zero, and the other is −1 or 1; in other words, the
group of units of Z[i] is {1, i,−1,−i}.

Then, first of all, if p = a2+ b2 (with a and b in Z), then p = (a+ ib)(a− ib) is a non-
trivial factorization. Conversely, from p = (a+ ib)(c+ id), we get p2 = (a2 + b2)(c2 + d2),
which by unique factorization in Z implies that p = a2 + b2 = c2 + d2. This gives
the characterization we claimed. Furthermore, p factors non-trivially in Z[i] if and only
if pZ[i] is not a prime ideal in Z[i].

If p ≡ 1 (mod 4), there exists an integer n with n2+1 ≡ 0 (mod p). Then (n+ i)(n− i)
is in pZ[i] without either of the two factors being there; hence pZ[i] is not a prime ideal,
and consequently p must be a sum of two squares.

So from very basic facts (which do not require the full theory since existence and
uniqueness of prime factorizations in Z[i] follow easily from the fact that it is a Principal
Ideal Domain), we have recovered Fermat’s Theorem. Moreover, the uniqueness of prime
factorization allows us to go beyond our first proof of Theorem 1.2.2: since writing
p = a2 + b2 is equivalent to saying that

pZ[i] = (a+ ib)Z[i] (a− ib)Z[i],

and the ideals (a+ ib)Z[i] and (a− ib)Z[i] are prime (their norms have to be equal to p
since p2 = |pZ[i]|, so the quotients Z[i]/(a + ib)Z[i] and Z[i]/(a − ib)Z[i] have order p,
and therefore are isomorphic to Fp), any representation p = c2 + d2 must satisfy either
(c + id)Z[i] = (a + ib)Z[i] or (c + id)Z[i] = (a − ib)Z[i]. This means that c + id differs
from one of a+ ib and a− ib by multiplication by an element in the group {−1,−i, i, 1}
of units of Z[i]. So the possibilities for c+ id are

(c, d) ∈ {(a, b), (a,−b), (−a,−b), (−a, b), (−b, a), (b, a), (b,−a), (−b,−a)},

and if we insist that a and b be positive, the only possibility is exchanging a and b, as
announced in the original statement of Theorem 1.2.2.

Theorem 2.5.12 (Dedekind). Let K be a number field.

(1) There exists an integer h ⩾ 1 such that nh is principal for all ideals n ⊂ ZK.

1 To avoid confusion with the norm of ideals and elements of Q(i), we use ∥z∥ for the usual modulus
of a complex number; it is the euclidean norm in C.
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(2) More precisely, let P(ZK) denote the set of non-zero principal ideals in ZK. De-
fine the equivalence relation ∼ on I (ZK) by n ∼ m if and only if there exists αZK

and βZK in P(ZK) such that

(αZK)n = (βZK)m.

Then the product of ideals induces on the quotient set I (ZK)/P(ZK) a structure of
finite abelian group.

Sketch of proof. We first observe that it is straightforward that the relation m ∼
n is an equivalence relation.

To prove the finiteness of the number of equivalence classes, we follow the argument
of Hurwitz which is also given in [12, §12.2, Th.1]; it is natural from the point of view of
trying to go as far as possible when trying the imitate the proof that euclidean domains
are principal ideal domains, using euclidean division.

Hurwitz’s statement is the following: there exists an integer m ⩾ 1 such that for any
x ∈ ZK and y ∈ ZK {0}, there exist q and r in ZK and an integer k with 1 ⩽ k ⩽ m
such that

kx = qy + r, with either r = 0 or |rZK| < |yZK|.
(In other words: we might not have a “good” division of x by y, but some small

multiple of x has a “good” division.)
Assuming this property (which we will prove later – it is a clever application of the

pigeon-hole principle), we first show that the quotient set H (K) is finite by finding an
explicit set of ideals which contains a representative of any ideal class.

Let n be any non-zero ideal of ZK. Let y ∈ n be a non-zero element with |yZK| the
smallest possible (in the euclidean case, this would be a generator of n). For any x ∈ n,
we apply Hurwitz’s division property: writing kx = qy + r for some integer k with
1 ⩽ k ⩽ m, we see that r = kx− qy ∈ n, so we cannot have |rZK| < |yZK| by definition
of y. This means that r = 0, or in other words, there exists some positive integer k ⩽ m
such that kx = qy ∈ yZK. This applies to all x, but with k possibly depending on x.
However, in all cases, we get m!x ∈ yZK, so that m!n ⊂ yZK, or equivalently yZK | m!n.

There is therefore a non-zero ideal m of ZK such that m!n = ym, which means that
n ∼ m. But since y ∈ n, we have

ym = m!n | ym!ZK,

and hence m | m!ZK. So the ideal m is one of the finitely many2 dividing the non-zero
ideal m!ZK, and hence the finite set of these ideals exhaust the quotient set H (K).

We next check the first property in the statement. Let n be a non-zero ideal of ZK.
Among the powers nj with j ⩾ 1, there are only finitely many equivalence classes, so
there exists integers 1 ⩽ j < k such that nj ∼ nk, say

αnj = βnk

for some non-zero elements α and β of ZK. It follows that αZK = βnk−j. In particular,
this gives α/β ∈ ZK, and nk−j = (α/β)ZK is principal.

To see that the quotient set is a group, we need here to be a bit careful since I (K),
with the product of ideals, is not a group: although multiplication of ideals is commuta-
tive, associative and has the neutral element ZK, there is no inverse in general. However,

2 The fact that there are only finitely many ideals dividing a given non-zero ideal is another quick
consequence of the existence and uniqueness of factorization in prime ideals: there are only finitely many
possible prime ideals that can appear, and each can only appear with exponent bounded by the valuation
of the original ideal – we will say more about this question in the next chapter.
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given a non-zero ideal n, and an integer h ⩾ 1 such that nh is principal, it follows that
the class of n in H (K) has for inverse the class of nh−1. The remaining properties of an
abelian group follow straightforwardly from the associativity and commutativity of the
product of ideals. □

The quotient group in the second part of the theorem is another among the funda-
mental invariants of a number field. Note for instance that this group is trivial if and
only if every ideal is principal, i.e., if and only if ZK is a principal ideal domain. Indeed,
we can quickly see that the neutral element in H (K) is the class of the ideal ZK: by
definition, to say that n ∼ ZK means that there exist non-zero elements α and β ∈ ZK

with αZK = βn, and this implies that α/β ∈ Zk and n = (α/β)ZK is principal.

Definition 2.5.13 (Class group). Let K be a number field. The quotient group
I (ZK)/P(ZK) is called the ideal class group of K, or just class group of K. It is denoted
H (K). The order of H (K) is called the class number of K, and is denoted h(K).

Remark 2.5.14. Historically, Gauss proved Theorem 2.5.12 in the case of quadratic
fields, but in the language of integral binary quadratic forms instead of quadratic fields.
His investigations went quite deep, including computations by hand of the class group of
many quadratic fields Q(

√
d) (both for d positive and negative).

Example 2.5.15. It is clear from the proof of Example 2.5.11 that an interesting
theorem about representability of certain primes by certain polynomial expressions will
arise whenever a number field has trivial class group. For instance, if d is a square-free
integer which is not congruent to 1 modulo 4, so that the ring of integers of Q(

√
d) is

equal to Z[
√
d], this will concern the representations p = a2−db2. Are the corresponding

class groups (typically) trivial?

Here is a list of data (d, h(Q(
√
d))) for squarefree positive integers d ⩽ 100 which are

not 1 modulo 4:

(2, 1), (3, 1), (6, 1), (7, 1), (10, 2), (11, 1), (14, 1), (15, 2), (19, 1), (221), (231),

(262), (302), (311), (342), (352), (381), (39, 2), (42, 2), (43, 1), (46, 1), (47, 1),

(51, 2), (55, 2), (58, 2), (59, 1), (62, 1), (66, 2), (67, 1), (70, 2), (71, 1), (74, 2), (78, 2),

(79, 3), (82, 4), (83, 1), (86, 1), (87, 2), (91, 2), (94, 1), (95, 2)

and here are ten random values for such d ⩽ 10000:

(7094, 1), (3559, 1), (6491, 1), (4330, 4), (939, 4), (3910, 4),

(8931, 8), (2042, 2), (9991, 8), (7331, 5).

Here is the same for negative values of d:

(−1, 1), (−2, 1), (−5, 2), (−6, 2), (−10, 2), (−13, 2), (−14, 4), (−17, 4), (−21, 4),

(−22, 2), (−26, 6), (−29, 6), (−30, 4), (−33, 4), (−34, 4), (−37, 2), (−38, 6),

(−41, 8), (−42, 4), (−46, 4), (−53, 6), (−57, 4), (−58, 2), (−61, 6), (−62, 8),

(−65, 8), (−66, 8), (−69, 8), (−70, 4), (−73, 4), (−74, 10), (−77, 8), (−78, 4),

(−82, 4), (−85, 4), (−86, 10), (−89, 12), (−93, 4), (−94, 8), (−97, 4),
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and

(−5405, 64), (−6681, 80), (−8193, 52), (−5242, 42), (−854, 44), (−8574, 52),

(−4017, 48), (−6518, 42), (−8893, 46), (−2717, 32).

2.6. Factoring primes

Let again K be a number field. We now consider in general the way principal ideals
generated by primes in Z factor in ZK, which we saw appear in Example 2.5.11.

Let p be a prime number. We write a factorization

(2.4) pZK = pe1
1 · · ·peg

g

where the pi’s are distinct non-zero prime ideals in ZK and ei ⩾ 1 (note that since
pZK ̸= ZK, we have g ⩾ 1). The ideals which appear are, by definition, those which
divide pZK. In general, we will denote by Fp, the quotient finite field ZK/p for any
non-zero prime ideal p (this is called the residue field modulo p).

Lemma 2.6.1. (1) The ideals pi are characterized as the prime ideals p in ZK such
that p ∩ Z = pZ.

(2) For 1 ⩽ i ⩽ g, there exists an integer fi ⩾ 1 such that |pi| = pfi. This integer is
also characterized by the fact that the finite field Fpi

is an extension of degree fi of Fp.

(3) We have the relation

(2.5) [K : Q] =

g∑
i=1

eifi,

and in particular g ⩽ [K : Q], with equality if and only if ei = fi = 1 for 1 ⩽ i ⩽ g.

Proof. (1) The ideals pi are exactly those prime ideals which divide pZK, or in other
words which contain it. In particular, pi ∩ Z ⊃ pZK ∩ Z = pZ. Moreover, since pi ∩ Z is
a prime ideal in Z, and pZ is a maximal ideal, we must have pi ∩ Z = pZ.

Conversely, suppose that p ⊂ ZK is an ideal with p ∩ Z = pZ. Then pZ ⊂ p, so the
ideal pZK generated by pZ is also contained in p, which means that p divides pZK, and
therefore is one of the pi’s.

We prove (2) and (3) at the same time: taking the norm of both sides of (2.4), we
obtain

p[K:Q] =

g∏
i=1

|pi|ei

(by Corollary 2.5.8). It follows that |pi| must be a power of p, say |pi| = pfi , and this
leads to (2.5). The inclusion pZK ⊂ pi gives an induced injective morphism

Fp → ZK/pi,

which means that Fpi is a finite field of characteristic p. It has size pfi , so it has degree fi
as an extension of Fp. □

Some special cases are particularly important, and have separate terminology.

Definition 2.6.2. Let p be a prime number and write pZK = pe1
1 · · ·peg

g as above.

(1) The integer ei is called the ramification index of pi, and the integer fi is called
the residual degree of pi.

(2) If g = [K : Q], then p is said to be totally split in K, or in ZK.
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(3) If g = 1 and e1 = 1, then p is said to be inert in K, or in ZK.

(4) If some ei is ⩾ 2, then p is said to be ramified in K, or in ZK. Otherwise, p is
said to be unramified.

We come back to the general discussion. From the definitions, note in particular that
a ramified prime p is one which generates an ideal of ZK which is not squarefree: it has
some prime (ideal) factor with exponent ⩾ 2. These ramified primes are very important,
but also very constrained, as shown by the next proposition.

Proposition 2.6.3. Let K be a number field.

(1) A prime number p is ramified in K if and only if the quotient ring ZK/pZK contains
some non-zero nilpotent element, i.e., some non-zero element x such that xk = 0 for
some k ⩾ 1.

(2) The set of primes which are ramified in ZK is finite, and coincides with the set of
prime numbers dividing the discriminant of K.

The usual terminology for a commutative ring A without non-zero nilpotent elements
is that A is reduced. So the first part of this proposation states that p is unramified if
and only if ZK/p is reduced.

Proof. According to the previous discussion, we will use the quotient ring ZK/pZK.
(1) By the Chinese Remainder Theorem, there is an isomorphism

ZK/pZK →
g∏

i=1

ZK/p
ei
i .

It is elementary that if A1 and A2 are commutative rings, then A1 ×A2 is reduced if
and only if A1 and A2 are both reduced. This reduces the assertion to the fact that, given
a prime ideal p and an integer e ⩾ 1, the ring ZK/p

e has non-zero nilpotent elements
if and only if e ⩾ 2. Indeed, if e = 1, this ring is a field, so it doesn’t have non-zero
nilpotent elements, whereas if e ⩾ 2 and x ∈ p pe, then the class of x is non-zero in
ZK/p

e and satisfies xe ≡ 0 (modpe), so ZK/p
e is not reduced.

(2) Recall that the discriminant was defined as the determinant of the Gram matrix
associated to the bilinear form (x, y) 7→ Tr(xy) on ZK × ZK (see Definition 2.4.10). The
discriminant modulo a prime p will then be the corresponding determinant for the “same”
bilinear form on ZK/pZK×ZK/pZK. Thus it will vanish (i.e., p divides the discriminant)
if and only if this reduced bilinear form is degenerate. According to (1), we are claiming
that the bilinear form is degenerate if and only if the quotient ZK/pZK is not reduced.

Indeed, first of all, if ZK/pZK contains a non-zero nilpotent element x, then for any y ∈
ZK/pZK, the group homomorphism mxy : z 7→ xyz is nilpotent (some power mk

xy is zero
with k ⩾ 1), so its trace is zero. Conversely, if pZK is squarefree, the fact that the trace
bilinear form on finite fields (see Lemma A.1.2) is non-degenerate quickly implies that
the trace form is non-degenerate for ZK/pZK. □

Remark 2.6.4. (1) Computing the discriminant of a number field can be quite in-
volved. It is often easier to find an integer ∆ such that disc(K) divides ∆, and one
then knows at least that the ramified primes are among the divisors of ∆, which may be
sufficient for certain purposes.

(2) The exponents of primes in the factorization of the discriminant are also quite im-
portant, and can be difficult to compute. For instance, one can show that the discriminant
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of Q(e2iπ/m) is

(−1)φ(m)mφ(m)
∏
p|m

p−φ(m)/(p−1)

(see, e.g., [20, Prop. 2.7]). Thus only p | m are ramified, and the corresponding p-adic
valuation of the discriminant is

φ(m)
(
vp(m)− 1

p− 1

)
(which is indeed an integer because p− 1 | φ(m) if p | m, and is ⩾ 0 because vp(m) ⩾ 1).

Example 2.6.5. (1) We consider again a quadratic field K = Q(
√
d), where d is a

squarefree integer. In this case, we have [K : Q] = 2, and the equation (2.5) for a given
prime number p leaves only three possibilites:

(1) We can have g = 2, f1 = f2 = 1, e1 = e2 = 1: this corresponds to totally split
primes.

(2) We can have g = 1, f1 = 2 and e1 = 1: these are the inert primes.

(3) We have have g = 1, f1 = 1 and e1 = 2: these are the ramified primes.

We can also express these conditions more concretely if p ∤ d, using the Legendre

symbol. The key point is that since
√
d ∈ ZK, the class of

√
d modulo any prime ideal p

is a square-root of d in the quotient field ZK/p.
If p is split, then the two prime ideals dividing pZK have norm p, so the quotient field

is isomorphic to Fp, and this gives a root of
√
d modulo p, which means that

(
d
p

)
= 1

if p ∤ d.
If p is inert, then this means that the square root of d belongs to a quadratic extension

of Fp, so that
(
d
p

)
= −1. This statement is in fact a characterization of inert primes (in

all other cases, there is a root of d modulo p).
Recall that the discriminant of ZK is either d or 4d, the first case corresponding

to d ≡ 1 (mod 4). But instead of using this with Proposition 2.6.3 to determine the
ramified primes, we can recover by hand the results, and this is quite enlightening.

First, any inert prime is unramified, as we already observed.
Second, if p does not divide d and

(
d
p

)
= 1, then we claim that p is unramified and

totally split. Indeed, let a be an integer with a2 ≡ d (mod p). Then note that we have an
isomorphism

ZK/pZK ≃ Z[X]/(p,X2 − d) = Fp[X]/(X− a)(X + a),

and since a and −a are different modulo p (here we use the assumption that p ∤ d), the
polynomials X − a and X + a are coprime in Fp[X]. The Chinese Remainder Theorem
shows that ZK/pZK is then isomorphic to a product of two fields, hence is reduced, which
is equivalent to our claim by the elementary first part of Proposition 2.6.3.

Third, if p is odd and p | d, then we can directly compute ZK/pZK: if d is not 1
modulo 4, then we have isomorphisms

ZK/pZK ≃ Z[X]/(p,X2 − d) = Fp[X]/(X
2 − d) = Fp[X]/(X

2),

while, similarly, if d ≡ 1 (mod 4), then we get

ZK/pZK ≃ Z[X]/(p,X2 − X+ (1− d)/4)

= Fp[X]/(X
2 − X+ (1− d)/4) = Fp[X]/((X− 1/2)2),
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(using the fact that 2 is invertible modulo the odd prime p). Either of these isomorphism
implies that p is ramified in K.

Finally, we determine when 2 is ramified. The first isomorphism still applies to show
that p = 2 is ramified if d is not ≡ 1 (mod 4). So the only remaining question is whether
the prime p = 2 is unramified when d ≡ 1 (mod 4) (it may then be either inert or split).
We start again with the isomorphism

ZK/2ZK ≃ Z[X]/(2,X2 − X+ (1− d)/4) = F2[X]/(X
2 +X+ (1− d)/4)

(which makes sense since (1− d)/4 is an integer). Two cases arise: if d ≡ 1 (mod 8), then
we get

ZK/2ZK ≃ F2[X]/(X(X + 1)),

which (by the Chinese Remainder Theorem again) is isomorphic to F2×F2, so we see as
before that 2 is unramified and split in that case. On the other hand, if d ≡ 5 (mod 8),
then

ZK/2ZK ≃ F2[X]/(X
2 +X+ 1),

and the key point is that X2 +X+ 1 is irreducible in F2[X] (this is easily checked, since
it means that there is no root in F2).

3 This means that 2 is unramified and inert in K.
(2) Let’s look at some concrete examples for p = 2 and d ≡ 1 (mod 4), in which case

we have seen that 2 is unramified in Q(
√
d).

For d = 5, one can check that ZQ(
√
5) is principal. Then we have the factorization

2 = −1 +
√
5

2
· (1−

√
5),

where (1 +
√
5)/2 is a unit, and 1−

√
5 is irreducible. This means that 2 is inert in the

field Q(
√
5).

For d = 17, one can also check that Q(
√
17) is principal. Here, we get by playing

around the factorization

2 =
5 +

√
17

2
· 5−

√
17

2
,

and the elements (5 +
√
17)/2 and (5−

√
17)/2 are both irreducible; their ratio is not a

unit, so

2Z
[1 +√

17

2

]
=

(5 +√
17

2

)
Z
[1 +√

17

2

]
·
(5−√

17

2

)
Z
[1 +√

17

2

]
gives the factorization which shows that the prime 2 is totally split.

(3) We look at a few “random” examples: the data below gives a few polynomials f ,
the discriminant ∆ of the ring of integers of the field Q(α), where α is a root of f , and

3 In fact, X2 +X+ 1 is the only irreducible polynomial of degree 2 in F2[X].
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the factorization of the discriminant:

f = 64x6 − 480x4 + 720x2 − 120,

∆ = 503884800000 = 213 · 39 · 55,
f = x7 + 2x6 + 3x5 + 2x4 − 5x3 + 2x2 + 3x+ 2,

∆ = −60035466240 = −210 · 32 · 5 · 199 · 6547,
f = 6435x8 − 12012x6 + 6930x4 − 1260x2 + 35,

∆ = 224 · 310 · 56 · 77 · 115 · 133,
f = x9 + x8 + 10x7 + 13x6 + 2x5 + 14x4 + 16x3 + 10x2 + 4x+ 5,

∆ = 213287391425295766669 = 683 · 312280221706143143.
These give an indication of the complexity involved in the discriminant.

Before starting the next section, we address a practical question which arises from the
definitions and results concerning ideals in number field, and factorization of primes in
particular: how does one determine the factorization (or splitting type) of a given prime
number? Although the multiplication of ideals may seem at first a bit complicated,
the key point is that the information is also present in the quotient ring ZK/pZK, and
computing this ring will be the main approach to understanding the factorizations of
ideals. Indeed, note the following:

(1) The prime ideals pi in (2.4) are, by construction, the prime ideals containing
pZK, and by elementary algebra, they are in explicit bijection with the prime
ideals of the (finite) ring ZK/pZK. Thus, given a prime ideal I in ZK/pZK, we
obtain one of the primes pi as the set of x ∈ ZK whose class modulo pZK is in I.

(2) Assuming we know one of the prime ideals pi, and its image I ⊂ ZK/pZK,
the exponent ei is determined as the largest positive integer e such that pe

contains pZK and is the number of distinct ideals in the sequence

I ⊃ I2 ⊃ · · · ⊃ Ik ⊃ · · · .
Example 2.6.6. These facts are not specific to the factorization of ideals of the

form pZK. They are indeed perfectly visible already in the case of Z: if n ⩾ 1 factors as

n = pe11 · · · pekk ,

with distinct primes and exponents ei ⩾ 1, we get by the Chinese Remainder Theorem
the isomorphism

Z/nZ →
k∏

i=1

Z/pekk Z.

The prime ideals in the finite product ring are

Ij = {(xi)1⩽i⩽k | xj ∈ pZ/p
ej
j Z}

for 1 ⩽ j ⩽ k. Taking I1 as example, we get for e ⩾ 1 the equality

Ie1 = pe1Z/p
e1
1 Z× Z/pe22 Z× · · ·

and the distinct powers that appear are I1, I
2
1, . . . , I

e
1.

We will illustrate this principle with a theorem which shows how relate the factor-
ization of pZK with that of polynomial over finite fields. Before giving the statement,
we record a very useful lemma which allows to avoid the difference between ZK and the
simpler rings Z[α] in some cases.
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Lemma 2.6.7. Let f ∈ Z[X] be an irreducible monic polynomial, let α ∈ C be a root
of f and K = Q(α) the number field it generates. The set

c = {x ∈ ZK | xZK ⊂ Z[α]},

is a non-zero ideal of ZK contained in Z[α].
For any prime number p such that pZK is coprime to c, the inclusion Z[α] → ZK

induces by passing to the quotients an isomorphism

Z[α]/pZ[α] → ZK/pZK.

Proof. It is straightforward that c is an ideal in ZK; it is contained in Z[α] (since any
x ∈ c satisfies x · 1 = x ∈ Z[α] by definition), and it is non-zero because ZK is a finitely-
generated abelian group (this is the existence of a non-zero “common denominator” for
all the integers of K).

Since pZ[α] ⊂ pZK, the composite Z[α] → ZK/pZK always gives the induced quotient
morphism j : Z[α]/pZ[α] → ZL/pZK.

We now assume that c is coprime to pZK. Then pZK + c = ZK, so any class mod-
ulo pZK has a representative in c, and hence in Z[α], and this shows that the morphism j
is surjective.

The kernel of j is by definition (Z[α]∩ZK)/pZ[α]. We claim that Z[α]∩ZK = pZ[α],
which will prove that j is injective. Indeed, note that c∩Z is a non-zero ideal of Z which
is coprime to pZ. So we can find a ∈ Z and b ∈ c ∩ Z such that a + b = 1. Now let
x ∈ Z[α ∩ pZK; we get x = pax+ bx. But since x ∈ Z[α], we get pax ∈ pZ[α], and since
b ∈ c, we have bx ∈ pZK · c ⊂ pZ[α] by definition of c. □

And now for the theorem.

Theorem 2.6.8. Let f ∈ Z[X] be an irreducible monic polynomial, let α ∈ C be a
root of f and K = Q(α) the number field it generates.

Let

c = {x ∈ ZK | xZK ⊂ Z[α]},
and let p be a prime number coprime to c. Write

f (mod p) = he1
1 · · ·heg

g

where g ⩾ 1, the hi’s are distinct irreducible monic polynomials and ei ⩾ 1 are positive
integers. Denote fi = deg(hi).

Then the ideal pZK factors as a product of g prime ideals pi in ZK with ramification

indices ei and residual degrees fi. In fact, if h̃i ∈ Z[X] is a monic polynomial with h̃i ≡
hi (mod p), then the prime ideal pi is generated by p and h̃i(α).

Proof. We determine the factorization of pZK by computing the ring ZK/pZK, as
explained above. By Lemma 2.6.7, the assumption tells us that the inclusion of Z[α]
in ZK gives an isomorphism Z[α]/pZ[α] → ZK/pZK. Since evaluation at α gives an
isomorphism Z[X]/fZ[X] → Z[α], we get an (explicit) isomorphism

Fp[X]/fFp[X] → Z[X]/(p, fZ[X]) → ZK/pZK.

The Chinese Remainder Theorem in Fp[X] provides us finally with an isomorphism

g∏
i=1

Fp[X]/h
ei
i Fp[X] → Fp[X]/fFp[X] → ZK/pZK.
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The product ring

A =

g∏
i=1

Fp[X]/h
ei
i Fp[X]

contains g distinct prime ideals, namely the ideals Ij for 1 ⩽ j ⩽ g where the only
condition is that the j-th coordinate in this decomposition lies in hjFp[X]/h

ej
j Fp[X].

Thus pZK is divisible by g distinct prime ideals p1, . . . , pg. Moreover, we see that the
sequence

Ij ⊃ I2j ⊃ · · · ⊃ Ikj ⊃ · · ·
stabilizes at e = ej, so the ramification index for pj is equal to ej. By the compatibility
of the previous isomorphisms with computing residue fields, the residue field at pj is
isomorphic to

A/Ij =
( g∏
i=1

Fp[X]/h
ei
i Fp[X]

)
/Ij = Fp[X]/hjFp[X],

which is a finite extension of degree deg(hj) = fj of Fp[X], so the residual degree is fj.
Finally, to conclude the proof, we track back explicitly the isomorphism from Ij to pj,

and see that pj is generated by p and an element h̃j(α) for some monic polynomial h̃j ∈
Z[X] which reduces to hj modulo p. □

The next corollary shows that the study of splitting of primes is a generalization of
the questions surrounding Kronecker’s Theorem in Section 1.4.

Corollary 2.6.9. Let f ∈ Z[X] be an irreducible monic polynomial, let α ∈ C be a
root of f and K = Q(α) the number field it generates. For all but finitely many prime
numbers p, the number νf (p) of roots of f in Fp is equal to the number of non-zero prime
ideals dividing pZK which have residual degree equal to 1.

Proof. Indeed, with the notation of the theorem, νf (p) is equal to the number of
irreducible factors hi of f (mod p) which have degree 1, and this is (according to the
theorem) the same as the number of prime divisors of pZK of residuel degree 1, at least
when p is coprime to c. □

Example 2.6.10. (1) Let (somewhat randomly)

f = X5 − 12X4 +X3 − 163,

and consider K = Q(α) where f(α) = 0. It turns out here that ZK = Z[α] and the
discriminant is 112 · 157 · 163 · 527453. Factoring the defining polynomial modulo 2, 3, 5,
17, 1009 and 2689, we get

f (mod 2) = X5 +X3 + 1 (which is irreducible)

f (mod 3) = (X + 1)(X4 + 2X3 + 2X2 +X+ 2)

f (mod 5) = (X + 1)(X4 + 2X3 + 2X2 +X+ 2)

f (mod 17) = (X2 − 3X− 7)(X3 + 8X2 − 2X− 1)

f (mod 1009) = X5 − 12X4 +X3 − 163 (which is irreducible)

f (mod 2689) = (X + 194)(X + 504)(X + 1024)(X + 1514)(X + 2130).

Hence we can read off the prime factorization of the corresponding principal ideals pZK:
2689 is totally split, 2 and 1009 are inert, 3 and 5 are both the product of a prime with
residue degree 1 and another with residue degree 3, and 17 is the product of a prime

42



with residue degree 2 and another with residue degree 3. Even better, one can give the
generators of the dividing prime ideals: for instance,

17ZK = (17ZK + (α2 − 3α− 7)ZK) · (17ZK + (α3 + 8α2 − 2α− 1)ZK).

(One also checks that, maybe a bit surprisingly, the class group is trivial here.)
(2) Let K = Q(

√
−14). We then have ZK = Z[

√
−14], so the ideal c is ZK. Modulo 3,

we find that
X2 + 14 ≡ X2 − 1 = (X− 1)(X + 1),

hence it follows from the theorem, or from Example 2.6.5, that 3ZK = p1p2 for two
distinct prime ideals p1 and p2. These have norm 3. On the other hand, one can prove
that |(a + b

√
−14)ZK| = a2 + 14b2. Since the equation a2 + 14b2 = 3 has no integral

solution, we conclude that p1 and p2 cannot be principal ideals. In fact, one can check
that H (Q(

√
−14)) is cyclic of order 4, generated by p1 (or p2).

(3) The next example shows that the condition that p is coprime with c is necessary.
Let f = X2 − 5 and α =

√
5, so that K = Q(

√
5). Then ZK = Z[(1 +

√
5)/2], and we see

that 2ZK ⊂ c. We also have c ̸= ZK, since ZK is not contained in Z[
√
5].

This implies that p = 2 is not coprime with c. We have seen that 2 is unramified and
inert in K (Example 2.6.5), but we have f (mod 2) = X2 + 1 = (X + 1)2, which (in the
setting of Theorem 2.6.8) would have suggested that 2 is ramified.

2.7. Galois action and Frobenius automorphism

We have not really used Galois theory up to now, and it is time to do so. The simple
observation which allows us to use it for algebraic integers is that if K is a number field
and σ : K → K′ a field morphism (recall that such a morphism is always injective), then
the image by σ of some integral element x ∈ ZK belongs to ZK′ , simply because from an
equation

xd + ad−1x
d−1 + · · ·+ a1x+ a0 = 0

with ai ∈ Z, we deduce that

σ(x)d + ad−1σ(x)
d−1 + · · ·+ a1σ(x) + a0 = 0

(since σ is always the identity on Q). Hence we have an induced morphism of rings
from ZK → ZK′ . In particular, if n ⊂ ZK is an ideal, then σ(n) is an ideal in ZK′ .
If σ : K → K is a field automorphism of K, we deduce that σ induces by restriction a ring
automorphism ZK → ZK.

We now look at the interaction of the automorphisms with prime factorizations, in
the case of a Galois extension.

Proposition 2.7.1. Let K be a number field which is a Galois extension of Q, and
denote by G the Galois group of K over Q. Let p be a prime number and Sp the set of
non-zero prime ideals p ⊂ ZK which divide pZK.

(1) The group G acts on Sp by σ · p = σ(p), i.e., by taking the set-theoretic image.

(2) This action is transitive, i.e., for any p and q in Sp, there exists σ ∈ G such
that q = σ · p.

Proof. The first statement is straightforward from the definitions and the previous
discussion, since σ is an automorphism. But the second is a fundamental and non-trivial
fact.

The proof is very ingenious. We fix q ∈ Sp, and wish to prove that all other prime
ideals dividing pZK are obtained by taking the image of q by some Galois automorphism.
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Let p ∈ Sp be one such ideal. Let x ∈ p be any element of p. We form the element

y =
∏
σ∈G

σ(x).

We then observe that y belongs to p (since the identity is an element of G, so that x
appear in the product), but also that y is invariant under the action of G on K (i.e., we
have τ(y) = y for all τ ∈ G). This means first that y ∈ Q ∩ ZK = Z. But Z = ZK ∩ q
(by Lemma 2.6.1), so

y =
∏
σ∈G

σ(x) ∈ q.

Since q is a prime ideal, some term in the product belongs to q, which means that
there exists some σ ∈ G (depending a priori on x) such that x ∈ σ−1 · q. We have
therefore shown that

p ⊂
⋃
σ∈G

σ · q.

Since the union of ideals is very rarely an ideal, it should not be too surprising that
this implies that p ⊂ σ · q for some single σ ∈ G, and this is explained in Lemma A.1.1.
Since p and σ · q are both maximal ideals, we then have in fact p = σ · q. This finishes
the proof. □

Intuitively, the transitivity of the action means that all the ideals dividing pZK “look
the same”. In particular, the general factorization pattern is drastically simplified.

Corollary 2.7.2. Let K be a number field which is a Galois extension of Q. Let p
be a prime number. In the factorization

pZK = pe1
1 · · ·peg

g

of pZK, the ramification indices ei and the residual degrees fi = [ZK/pi : Fp] are inde-
pendent of i. If we denote them by e and f , respectively, then we have

efg = [K : Q].

Any transitive action of a group on a non-empty set is isomorphic to that of the
group on the cosets of a subgroup, which is the stabilizer of some fixed element of the
set. Applying this principle to a finite Galois extension K of Q, a prime number p and
the action of the Galois group of K on the prime ideals dividing pZK, we fix some such
prime ideal p, and define the decomposition group at p to be

Dp = {σ ∈ G | σ · p = p}.
We then have a bijection from the cosets G/Dp to the set of prime ideals dividing

pZK by mapping a coset σDp to σ · p (which is well-defined by construction of Dp).
Because of the specific nature of the action involved, we can go further: for any σ ∈ Dp,

the fact that σ ·p = p means that σ defines, by passing to the quotient, a field morphism

σ̃ : ZK/p → ZK/p

which must therefore be a field automorphism of the finite extension Fp = ZK/p of Fp.
This procedure is compatible with restriction, hence we have in fact a group homomor-
phism from Dp to the Galois group of the extension Fp of Fp (recall that any finite
extension of finite fields is a Galois extension). The following is the final4 fundamental
basic fact about algebraic number theory.

4 Except, admittedly, for Dirichlet’s Unit Theorem, which will be discussed later.
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Theorem 2.7.3 (Dedekind). Let K be a number field which is a Galois extension
of Q, and let G be its Galois group. Let p be a prime number and let

φp : G → Gal(Fp/Fp)

be the group homomorphism defined above.

(1) The morphism φp is surjective.

(2) The morphism φp is injective if and only if p is unramified in K.

Recall that for any finite extension F/E of finite fields, the Galois group of F over E is
cyclic, and is generated by the Frobenius automorphism x 7→ x|E|. Dedekind’s Theorem
therefore allows to state the following definition, which remarkably only goes back to
Artin in the 1920’s.

Definition 2.7.4 (Frobenius automorphism). Let K be a number field which is a
Galois extension of Q, and let G be its Galois group. Let p be a prime number and let p
be a prime ideal dividing pZK.

(1) The kernel of the surjective morphism φp : G → Gal(Fp/Fp) is called the inertia
group at p and is denoted Ip.

(2) The Frobenius automorphism at p is the unique element σ of Dp/Ip such that
φp(σ) is the Frobenius automorphism x 7→ xp of Fp. It is denoted Frp if no confusion is
likely.

Remark 2.7.5. (1) Concretely, if p is unramified (which holds for all but finitely
many primes), then Frp is the unique element of G such that the congruence

σ(x) ≡ xp (modp)

holds for all x ∈ ZK. Indeed, this relation first implies that σ belongs to the decomposition
group (since for x ∈ p it gives σ(x) ≡ 0 (modp), so σ(x) ∈ p), and then by definition
means that φp(σ) is the Frobenius automorphism of Fp.

(2) If σ ∈ Gal(K/Q) is any element such that σ ∈ Dp and φp(σ) is the Frobenius
automorphism of Fp, then one says that σ is “a” Frobenius automorphism at p. Similarly,
if σ ∈ Gal(K/Q) is a Frobenius automorphism at some prime ideal p | pZK, then one
says that it is a Frobenius automorphism at p (the original prime number). We will see
soon that all such elements are conjugate in the Galois group when p is unramified.

Sketch of proof of Theorem 2.7.3. We will explain the proof in the case where
we have ZK = Z[α] for some element α ∈ ZK (and hence also K = Q(α)). The general
case can be deduced from this using a general technique called “localization”, which
roughly speaking exploits the fact that the problem only concerns a single prime.

Let f ∈ Z[X] be the minimal monic irreducible polynomial of α and d = deg(f) =
[K : Q]. There are two key points: (1) the set Zf ⊂ ZK of roots of f maps surjectively
to the set Zf (Fp) of roots of f in ZK/p; (2) the Galois group Gal(K/Q) acts transitively
on the roots of f in ZK (by elementary Galois theory, this is equivalent to the fact
that f is irreducible over Q). Thus, denoting α̃ = α (modp) ∈ Fp, there exists first a
root β ∈ Zf of f such that β ≡ αp (mod p) because α̃p ∈ Zf (Fp), and second there exists
an element σ ∈ Gal(K/Q) such that σ(α) = β. We claim that this σ belongs to the
decomposition group Dp and “is” a Frobenius automorphism at p. This will prove the
first part of the theorem.
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Indeed, we simply observe that for all ai ∈ Z for 0 ⩽ i < d, we have

σ
(d−1∑

i=0

aiα
i
)
=

∑
i=0

aiσ(α)
i ≡

∑
i=0

aiα
pi (modp),

which implies that

σ
(d−1∑

i=0

aiα
i
)
≡

(∑
i=0

aiα
i
)p

(modp),

since Fp has characteristic p. By the preceeding remark, this proves the claim.
We now consider the second statement. Here, the point is that for a given σ ∈ Dp, the

element φp of the Galois group of the extension Fp/Fp is entirely determined by the value
of σ(α), which is a root of f . The discriminant of K is divisible by a prime p if and only if
there are two distinct roots α1 and α2 of f which are equal modulo p. If this happens, then
distinct automorphisms σ1 and σ2 with σi(α) = αi will satisfy φp(σ1) = φp(σ2), so φp is
not injective when p is ramified. The converse also follows for the same reason. □

Example 2.7.6. As usual, we discuss some basic examples.

The next result generalizes some of the observations of this example, and gives a very
concrete interpretation of the Frobenius automorphism, in the spirit of Theorem 2.6.8.

Theorem 2.7.7. Let f ∈ Z[X] be an irreducible monic polynomial, let α ∈ C be a
root of f and K = Q(α) the number field it generates. Denote by L ⊃ K the splitting field
of f .

Let
c = {x ∈ ZK | xZK ⊂ Z[α]},

and let p be a prime number coprime to c which is unramified in K. Write

f (mod p) = h1 · · ·hg

where g ⩾ 1 and the hi’s are distinct irreducible monic polynomials of degree fi.
Let p be a prime ideal dividing pZK. The Frobenius automorphism at p, viewed as a

permutation of the roots of f in C, has cycle type given by a product of cycles of length fi.

Proof. TODO □
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CHAPTER 3

Elementary analytic number theory

3.1. Introduction

3.2. Primes in arithmetic progressions, I

3.3. The Prime Number Theorem

3.4. Primes in arithmetic progressions, II
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APPENDIX A

Reminders and scripts

We summarize here, with precise references when needed, a number of elementary
facts that are used in the rest of the text. We also provide for information some basic
Pari/GP scripts that can be used for some of the numerical experiments which appeared
in the text.

A.1. Some algebraic facts

We recall some simple definitions and results from algebra. Below, all rings are as-
sumed to have a unit.

Lemma A.1.1. Let A be a commutative ring and let n ⩾ 1 be an integer. If (p,p1, . . . ,pn)
are prime ideals in A such that

p ⊂
⋃

1⩽i⩽n

pi,

then there exists some j such that p ⊂ pj.

Proof. We argue by induction on n, where the case n = 1 is tautological. Assume
that n ⩾ 2, and that the property is valid for n − 1. Assume further by contradiction
that p is not contained in pi for any i.

It follows then, by induction, that p is not contained in the union of p2, . . . , pn, so
there is some element x1 ∈ p (p2 ∪ · · · ∪ pn), and similarly for any j with 1 ⩽ j ⩽ n,
there is some xj ∈ p which is not in pi if i ̸= j. We necessarily have xj ∈ pj for 1 ⩽ j ⩽ n,
since p is contained in the union of the pi by assumption.

We then consider

y = x1 + x2 · · ·xn.

Note that y ∈ p as combination of elements of p. But y /∈ p1, as this would imply
that x2 · · ·xn ∈ p1, and therefore that some xi with 2 ⩽ i ⩽ n is in p1, since this is a
prime ideal, and this is impossible. For 2 ⩽ j ⩽ n, we also have y /∈ pj, as this would
imply that x1 ∈ pj, which is again not true. This means that we have a contradiction,
so p had to be contained in some pj. □

We will use the basic theory of finite fields. In particular, we recall the non-degeneracy
of the trace. We recall that (as in Chapter 2), the trace of an element x of a finite field E
of characteristic p is the trace of the linear map y 7→ xy, which is Fp-linear.

Lemma A.1.2. Let E be a finite field of characteristic p. The Fp-bilinear form (x, y) 7→
Tr(xy) is non-degenerate.

Proof. When the degree of E over Fp is not divisible by p, this is straightforward:
giving x ∈ E×, we have Tr(x · x−1) = Tr(1) = [E : Fp], which is then non-zero.

Suppose then that p | dim[E : Fp]. In this case, the simplest argument uses the
formula

Tr(z) = z + zp + · · ·+ z[E:Fp]−1
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for z ∈ E. This shows that the trace is a polynomial function on E, represented by a
polynomial of degree p[E:Fp]−1. In particular, such a polynomial has at most that many
roots, and since this number is strictly less than the size of E, there exists some z0 such
that Tr(z0) ̸= 0. For a given x ∈ E×, we then have Tr(xy) ̸= 0 when y = z0/x. □

A.2. Pari/GP scripts

The scripts below have no pretention to being anything but simple tools to obtain
some numerical evidence. In particular, there is no attempt to optimization of any kind.

(1) densities: given a polynomial f and an upper-bound x, returns a vector of
length 1 + deg(f) which contains the number of primes p ⩽ x such that the
number νf (p) of roots of f in Fp is equal to a given i is v[i− 1] (the shift is due
to the fact that vectors in Pari/GP are indexed from 1 to the length).

densities(f,x)=

{

local(j,v=vector (1+ poldegree(f)));

forprime(p=2,x,j=length(polrootsmod(f,p));v[j+1]++);

v

}

(2) gausssum: given q, computes the quadratic Gauss sum of Proposition 2.3.1.
Note that the Legendre symbol is computed by the function Kronecker, re-
ferring to the Kronecker symbol, which generalizes the Legendre symbol.

gaussum(q)=

{

sum(a=1,q-1,exp(2*I*Pi*a/q)* kronecker(a,q))

}
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