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An introduction to class numbers
7 has unique factorization:
n=pot . plt
Ok for K = Q(+/—5) does not:
21=3-7 21 = (1 +2v-5)- (1 —-2v-5)

General setting:
Number field K/Q
Class Group CL(K)

CL(K) = Ix/K* = fractional ideals/principal fractional ideals

Class number h(K)
h(K) = [CL(K)|



Properties:
» h(K) is finite
» h(K) = 1 implies unique factorization
Questions:
» growth
> divisibility
Why would we care?
The shortest (false) proof of FLT: xP 4 yP = zP

yp:Zp_Xp<:>y.y...y:(Z_X)(Z_MX)__.(Z_l/Lple)

Dirichlet’s class number formula:
2" (2m)2 Rk

o/ IDx] h(K)

Ress—1(k(s) =



Class numbers of quadratic fields: growth

» quadratic field Q(v/d)
» class group CL(d)
» class number h(d)
Imaginary fields Q(v/—d), d >0
Theorem (Gauss Class Number Conjecture)

Given a positive integer h,
h(—d) =h

for finitely many square-free —d < 0.
Real fields Q(\/d), d >0

Conjecture
h(d) =1 for infinitely many d > 0.



Class numbers of quadratic fields: divisibility

Define

N;(X) = #{-X < d <0, d square-free:3 [a] € CL(d), [a]® = I}

Define N7 (X) equivalently for real fields, 0 < d < X.
Gauss Genus Theory (1801)

Conjecture (Cohen-Lenstra heuristics, 1984)
For each integer g > 3,

Ny (X)~ Cy X and Nj(X)~CfX

for explicit constants C, (imaginary case) and C; (real case).



Our focus: the 3-part of the class number

Definition: the 3-part of the class number (d pos. or neg.)
h3(d) = #{[a] € CL(d) : [a]® = I}

Trivial bound:
hs(d) < h(d) < |d|*/?*

Conjecture: For any € > 0,
h3(d) < |d[*

Prix Fixe Menu for today:
» Part |: averages of h3(d)
» Part II: individual bounds for h3(d)



Part I: Averages of the 3-part
We'd like to understand

Z h3(d)7 Z h3(d)

0<d<X —X<d<0
Consider a fundamental discriminant d, and set
H(d) = h3(d) — 1
2
Properties
» H(d) >0

» H(d) =0 < 31 h(d)
» Hasse: H(d) = the number of triplets of cubic fields of
discriminant d in which no prime ramifies completely
Davenport-Heilbronn correspondence

triplets of such cubic fields equivalence classes under GL»(Z)
of discriminant d — of irred binary cubic

forms of disc d



Counting binary cubic forms
Binary cubic form F(x, y), identified with (a, b, ¢, d) € R*:
aX? + bX?Y + cXY? 4 dY3

Discriminant
» A(a, b, c,d) = b?>c? + 18abcd — 27a%d? — 4b3d — 4c3a
» homogeneous form of degree 4 in 4 variables

Another correspondence:
binary cubic form «—— positive definite binary quadratic form
Example: For A > 0, we may take Q = Hessian(F),
Q(x,y) = Ax* + Bxy + Cy?,

where A= b?>—3ac, B=bc—9ad, C=c?>—3bd.



Applying the correspondence
Define the domain

Vo={(a,b,c,d) €R*:a>1andeither —A<B<A<C
or 0<B<A=C(C}

Then Vg contains a “canonical” representative of each GLy(Z)
equivalence class of binary cubic forms.

New description of H(d):

For any positive fundamental discriminant d,

1
H(d) = 5#{(3, b,c,d) € Vo : aX3+bX2Y+cXY?+dY3 is irred.

and A(a, b,c,d) = d}

Davenport and Heilbronn (1971)
Setat =1, a~ =3. Then

a* X
> H(d)~ - > 1~aiﬁ

deAE(X) deAE(X)



Further results of Davenport-Heilbronn correspondence

Belabas (1996)
For q square-free, g < X1/15—¢ as X — oo,

+
> @~ 1k
denE(x) T q
d=0 (mod q)

Here v(p) = p/(p + 1) defines v multiplicatively.

Fouvry (1999), Fouvry and Katz (2001)
There exists ¢g > 0 and xg such that for x > xg,

X

#{p < x:p=1(mod4), p+4 square-free, 3t h(p+4)} > ;

og x



Moments, convolutions, and twisted averages
We'd like to understand

> (hs(d)), > ha(d)hs(d +r)

0<d<X 0<d<X

First step is to understand

Z h3(d)eq(ad), with (o, q) =1

0<d<X

Simplification: Enlarge V) to V, where
V={(a,b,c,d)eR*:a>1|B| <A< C}
Define for every n > 1:
g(n) =#{(a,b,c,d) € V: A(a, b, c,d) = n}.

Then H(n) = 3(h3(n) — 1) < 3g(n).



A twisted average
Goal is to bound

Z g(n)eq(an), for fixed (a,q) =1
0<n<X

We want to count points in the region
V(X)={(a,b,c,d)eR*:a>1,|B|< A< C,0<A(a,b,c,d) < X}

> truncate to remove cusp, a < X437 (any fixed small n > 0)
» decompose into XQ~* hypercubes of side length Q

V= (U boxes) U margins U cusp = (U B,-) UubDué&
Lemma (Davenport, Belabas and Fouvry)
€l = oxX*™)
|D| _ O(Xl—n + QX3/4+37] |OgX—|— Q3X1/4+ Q4)
= o(xt™), with the choice @ = X'/4~*1(log X)™*



Compute average for each box (case with Q < q)
Compute the twisted average for each box B:
Z Z eq(an) Z Z eq(aB)
0<n<X xeB (mod q) x€B

A(x)=n A(x)=p6(q)

Extend to complete character sum:

:% Z S(a,h; g Zeq(—h-x),

h (mod g)* xeB

where

S(a.hiq) = Z Z eq(h - a)eq(af3)

B (modq) a(m
AQ)=

= ) eal(a)+h-a)

a (mod q)*

od
8 (mod q)



Key exponential sum bound

S(a,hip)= > eg(aA(a)+h-a)
a (mod q)*
Theorem (Fouvry-Katz 2001)
There exists a constant C = C, and closed subschemes X; C A“Z of
relative dimension < 4 — j with X, C --- C X3 C A%, such that:
> for h & Xi(FFp) (dim 3),

|S(ev, b p)| < Cp?
> for h & X5(FFp) (dim 2),

|S(a, h; p)| < Cp°/?
> for h & X3(IFp) (dim 1),

|S(a, h; p)| < Cp?
> for h & Xa(Fp) (dim 0),

|S(a, h; p)| < Cp'/?



Twisted average for a box B

In conclusion, for g square-free:

TB) = > Z eq(an)

O<n<X xeB
1
< = DL 1S(ehig)ll D eg(—h %))
h (mod gq)* xeB
1 _, 1/21/2:1/2
< ?CQ(Q) Z 51/ 52/ 53/
03]02d1|q
#
hg
> (*)E( )( )( )
h (mod gq)* 9 q9 q9

> 3% requires for all p|d;, h (mod p) € Xi(Fp)
> E(t) = min(Q, [|t]| 1)



Final step: sum over boxes and include cusp and margins:

> gln)eqlan) =) T(B:)+ O(ID]) + O(€])

0<n<X B;

Theorem (LP)

For any 1 < q < XY/2-81 g square-free, (o, q) = 1, and € > 0
arbitrarily small,

Z g(n)eq(an) <. [Xq~ Y2 + X107 + X1 (log X)*¢¢.
0<n<X

The analogous result also holds for — X < n < Q.
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Part Il individual bounds for hs(d)

Trivial bound:
hs(d) < h(d) < |d|V/?Fe

Conjecture: For any € > 0,

h3(d) < |d[*

Theorem (Ellenberg, Helfgott, LP3, Venkatesh?)

The 3-part h3(d) of the class number of the quadratic field Q(v/d)
admits a bound
h3(d) < [d|”*

where 0 < 1/2, for any € > 0.



Consequences of a nontrivial bound h3(d) < |d|’**

Cubic Fields (Hasse 1930)
The number of cubic fields over QQ with discriminant d is

O(|d|**)

Elliptic Curves with Fixed Conductor
(Brumer and Silverman 1996, Helfgott and Venkatesh 2006)

#{£/Q : cond(€) = N} = O(N?+),
where oo = 0.5065...
Divisibility (Davenport and Heilbronn 1971)
NE(X) > X107+

Class group exponents (Heath-Brown 2008)



Reducing the problem to counting points
Reflection principle (Scholz 1932)

logs(h3(—3d)) < logs(h3(+d)) < logs(h3(—3d)) + 1

Imaginary quadratic field Q(v/—d) with discriminant A
Suppose [a] € CL(—d), [a]} = 1.
There is an integral ideal b € [qa],

(o) < 2 /[A]
Furthermore, since b3 is principal, we may write
4(N(0))3 = y? + dz?
for some y,z € N. Thus we have the upper bound:
h3(—d) < d“#{4x® = y? + dz? . x < d*?,y < d%/* z < d'/*}.
Similarly, for any g > 3,
hg(—d) < d#{4x8 = y?+dz? : x < d¥? y < d8/* z < q8/471/2},



Counting points on the surface 4x3 = y? 4 dz?
Congruence (LP 2005)
43 = y2 (mod d) 6 — 55/112

Square Sieve (LP 2006)

y? = 4x3 — dz? 0 = 27/56

Elliptic Curve (Helfgott and Venkatesh 2006)
v =4x3+94 0 = 0.44178...

Congruence with divisibility (LP 2005)
4x3 = y? (mod d), do|d, do ~ d°/° 0=5/12

Symmetries (Ellenberg and Venkatesh 2007) 6=1/3



The square sieve: counting square values of a polynomial

Given:
» Polynomial F(x1,x2,...,xk) with integer coefficients
> Box B =[[,[-B:, B

Define:

» square counting function

Np(F) =#{x e B: F(x) =0}
> sieving function

w(n) = #{x € B: F(x) =n}

The Square Sieve (Hooley 1978; Heath-Brown 1984)

Let P be a set of P primes. Suppose w(n) =0 for n = 0 and for
|n| > e”. Then

Np(F) = w(n®) < P71 wn)+P > )

n pP#qEP

sz

- Pq



Main sieve term
Sieving set for a parameter Q > 1:

P ={pprime: Q@ < p<2Q,p not “bad” for F}

Trivial leading term is bounded by
-1 Z << Q- 1+e H B;

Main sieve term

seo(m)-%(5)-, 2 () =

n x€B a (mod pq)* x=a ();weozj pa)k
1 k
<—z Y. Se(m;pq) ][ min(B:,[Imi/pall ")
(pq) K =
m (mod pq) i=1

with mixed character sum

Se(mipg) = Y (F(a)>epq(m'a)

o)

a (mod pq)*



Key exponential sum estimate
Weil bound: for p prime and suitable F,
|SF(m; p)| < crup™/?
Sufficient due to handy multiplicative property: for (g1, g2) =1,
Sr(m; g1g2) = SF(Maz2; g1)SF(Mdz; g2).
Conclusion for main sieve term
N k
> w(n) <> <]] [Bi(pq)‘1/2 + (pq)mﬂ
n pa i=1

Final result

NB(F) < Qfl+e H B; + Qk+6 < (H Bi)l—%ﬂ—ke



Application to hs3(—d)
Relevant polynomial
F(x,z) = 4x3 — dz?
Relevant box
B=[-Bi,Bi] x [-B», B, By = dY?, B, = d'/*
Sieving function
w(n) = #{(x,z) € B: 4x* — dz* = n}
Square sieve result

h3(—d) < d°Y w(n®) < Q7 Med¥* 4+ Q2T « /e,

n

This is as bad as the trivial bound!



What went wrong: completing the exponential sum

For a multiplicative character x modulo r:

) = Y wf@) 31

x<X a (mod r) X(Sxd )
X=a (mod r

= Z Z xr(f(a))e(ma) Z er(—mx)

m (mod r) a (mod r) x<X

< XrV2 4 p/2te
We've passed through the Fourier transform in the wrong

direction, unless
X > vmodulus



What is the modulus?

» modulus: pg ~ @2, so we need B; > Q
> the square sieve can do no better than Q~1*¢ Hfle B;

» non-negotiable lower bound for @ comes from application

New method: decompose B into “big” and “little” dimensions:

B = By x B, Bj) of dimension k;

By = |l & By = |] Bi

Bi>Q Bi<Q

A trivial modification of the square sieve gives:

1
1- k1+1+EBl+e

—1+4€ ki+e€
N5(F) < B1yB2)Q@ 17 + By @ < By, @

Application to class number h3(—d): By = di/?, B(z) = di/4



New approach: reduce the size of the modulus
The g-analogue of van der Corput’s method:
Developed by Heath-Brown (1981) to reduce modulus in sum

S= ) elf(n)
A<n<B

Suppose g = qoq-

Then
H
HS =) > eq(f(n+ hqy))

h=1 A—hq1<n<B—hq
Apply Cauchy’s inequality:

H?|S[? < (B—A+Ha1) Y (H=Ihl) D eqqu(f(n+har))eqa (F(n))

|h|<H nely 4

The new effective modulus:

qo < q



The split square sieve (LP 2006)
Let A={uv:uecl,v €V} where d and V are disjoint sets of
primes. Let A= #A, U= #U, and V = #). Suppose that
w(n) =0 for n =0 and for |n| > exp(min(U, V)). Then

;wn2 < Alz J+HA D Zw(”)(ﬁ)

uv#u' v €A n

(uv,u’v/)=1

S w(n) (%) +A2|EU)|

>wln) (=) |+ A2EW).

w/

+ VA2 Z

uFu' el
+UA? Y
V£V EVY
The error term E(U) (and analogously E())) is defined by:

= 2 e ()

veVuFu'eld "

v|n




The general idea of how to apply the split square sieve
» Square counting function Ng(F) = #{x € B: F(x) =0}
» Sieving function w(n) = #{x € B: F(x) = n}
» Sieving sets for some parameter @ > 1, 0 < a < 1:
U = {primes u: Q¥ < u<2Q% "big" primes
YV = {primesv: Q< v< 201_0‘} “small” primes
A = {uv:uvel,veV}

Sieving set cardinality

A> Q(log Q)2

The main trivial term is bounded by

Qfl+e H B; = Q*lJreB(l)B(z)

By = I] B By =[] B

Bi>Q Bi<Q

where



Main sieve term in split square sieve

Main sieve term has modulus ror; = (uu)(w') = (big)(small)

seo(Gm)= % 5 (G)

Procedure:

> extend sum over x(1) € B(y) into a complete sum modulo rory

» use the g-analogue of van der Corput’s method to reduce
modulus of remaining sum to ry

> now the ranges of x(3) € B(y) satisfy B; > v/modulus

> extend sum over x() € B(2) to complete character sums
modulo rp



The key exponential sum
Exponential sum Sg(h, I, m; p) in 2k; + ko variables:

D> <F(a,cp—|—hr1)><F(l;,c)>ep(l'a_|_b+m.c)’

a (mod p) kl [ (mod p
b (mod p)k1

where | € ZK, h,m € Z*.
Reasonable hope:

ko

Bound(SE) : 1SE(h, 1, m; p)| < plathe/? H(p, mj, hi)'/?
i=1

General conditional result:
Assuming Bound(Sg), the split square sieve yields

1 41

1
Np(F) < B ”8(2)2“, k=k +k/3+1

(1)

k+1

Compare to: Ng(F) < B( y - B



Application to 3-part of class number h3(—d)

> Relevant polynomial F(x,z) = 4x3 — dz°
> Relevant modulus: @ = d*/4*9  ultimately with § = 1/56
> Relevant box: B(y) = d'/2, B = d/*

Theorem (Katz 2006)
Bound(Sk) holds.
Theorem (LP 2006)

hs(—d) < d“Ng(F) < d'/?=1/%6

Question: Can we get a nontrivial bound for hy(—d), g > 57
» Relevant polynomial F(x,z) = 4x& — dz°
» Relevant modulus: Q = d8/471/2+9 some § > 0
> Relevant box: B(;) = d/?, By = qe/4=1/2



Application to quadratic class group exponents

Quadratic field Q(v/—d)
E(—d) = exponent of CL(—d): smallest positive integer r such

that [a]” =/ for all [a] € CL(—d)
Conjecture

Given E, there are finitely many negative fundamental
discriminants —d such that E(—d) = E.

» E =2: Euler

» E = 3: Boyd and Kisilevsky (1972), Weinberg (1973)
» GRH: E(—d) > (log d)/(log log d)

Theorem (Heath-Brown 2008)

Let E=2" or E=3-2" for any integer r > 0. Then there is an
(ineffective) constant dg such that E(—d) # E for every
fundamental discriminant —d with d > dE.



Class group exponent 5

Criterion for E(—d) =5
If E(—d) =75 (and d is sufficiently large), then the equation

y? = 4x° — dz?

has at least d'/* solutions with x < d'/4*¢, z « d1/8+¢,
Apply the split square sieve

Relevant polynomial: F(x,z) = 4x5 — dz?

Relevant modulus: Q = d/8%9, some § > 0

Relevant box: B(yy = d/4t¢, By = d1/8+3¢

Bound(Sr): (Katz 2006)

Theorem (Heath-Brown 2008)

There is an (ineffective) constant ds such that E(—d) # 5 for
every fundamental discriminant —d with d > ds.
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