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Abstract. In this paper we calculate the asymptotics of various moments of the central values of
Rankin-Selberg convolution L functions of large level, thus generalizing the results and methods
of Duke-Friedlander-Iwaniec and the authors. Consequences include convexity-breaking bounds,
non-vanishing of a positive proportion of central values, and linear independence results for certain
Hecke operators.
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1. Introduction

In this paper, we continue the program sketched in [KMV2] on the central values of L-functions
in the level aspect, building on the method developed by Duke, Friedlander, and Iwaniec in [DFI II]
and then further refined in [KMV2].

Let D be square-free, and fix g a modular form (not necessarily cuspidal or holomorphic) on
Γ0(D). Let k > 2 be even and let q be coprime to D. We let S∗k(q) denote the set of primitive
cuspidal newforms on Γ0(q) with trivial nebentypus and weight k. In this paper we investigate the
distribution of the values of the Rankin-Selberg convolution L-functions {L(f ⊗ g, s)}f∈S∗k(q) for s
on the critical line (<es = 1

2) as q grows. Recall that L(f ⊗ g, s) admits an analytic continuation
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to all of C and a functional equation of the form

L∞(f ⊗ g, s)L(f ⊗ g, s) = ε(f ⊗ g)(
qD

4π
)sL∞(f ⊗ g, 1− s)L(f ⊗ g, 1− s)

where L∞(f ⊗ g, s) is an explicit product of Γ factors (see Section 4) and ε(f ⊗ g) is called the
root number. When ε(f ⊗ g) depends only on g and q we shall denote it as ε(g).

One important challenge in the theory of L functions is to provide upper bounds for their values
on the critical line, in particular to improve, by a positive exponent, the “convexity” bound arising
from the Phragmen-Lindelöf principle (see [IS2] for a motivating introduction to these questions).
For our first result, we do so, in the q aspect (see [DFI II, DFI I, CI] for some other examples):

Theorem 1.1. Let g be a primitive cuspidal holomorphic newform of integral weight, or a non-
exceptional weight zero Maass form, on Γ1(D) with D square-free. Then for all ε > 0, all integers
j > 0, and all f ∈ S∗k(q) with (q,D) = 1,

|L(j)(f ⊗ g, 1
2 + it)| �ε,k,j,g (1 + |t|)Bqε+1/2−1/80,

where the exponent B is absolute.

As one can check from the proof, the constant involved in�ε,k,j,g depends polynomially on the
parameters of g (the level, the weight, or the eigenvalue).

Remark. In the above Theorem, a Maass form is called “non-exceptional” if its eigenvalue under
−∆ is greater than 1/4. According to a conjecture of Selberg, exceptional Maass forms do not
exist. For g exceptional, a weaker but still convexity-breaking bound can be obtained but we have
preferred to limit ourselves to the simplest (and presumably only) case.

Theorem 1.1 can be seen as the generalization to the cuspidal case of a famous convexity-
breaking result of Duke-Friedlander-Iwaniec [DFI II]:

Theorem 1.2. Let χD be a primitive character of conductor D. Then for all ε > 0, all integers
j > 0, and for all f ∈ S∗k(q) one has

|L(j)(f ⊗ χD, 1
2 + it)|2 �ε,k,j D

B(1 + |t|)Bqε+1/2−1/96,

where the exponent B is absolute.

To see the analogy between Theorem 1.1 and this one, note that for χD primitive there is a
(non-holomorphic, weight zero) Eisenstein series EχD on Γ0(D2) with nebentypus χ2

D such that
L(f ⊗EχD , s) = L(f ⊗ χD, s)2. The slightly better exponent 1/80 of Theorem 1.1 also applies in
Theorem 1.2: it is the result of exploiting some extra averaging in the large sieve inequality of
Section 7.1.

Remark. In fact our result is a little bit more general: one can also break convexity for f ’s with
non-trivial nebentypus as long as the conductor of the nebentypus is relatively small with respect
to q, we refer the reader to Theorem 7.2 for the general statement. Moreover, by using slightly
more sophisticated arguments, the same method yields the convexity-breaking bound without any
assumption on D [Mi].

As a corollary, we obtain the first unconditional improvement of the “trivial bound” for the
problem of distinguishing modular forms by their first Fourier coefficients. This analogue of the
smallest quadratic non-residue problem was suggested to us by P. Sarnak.
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Corollary 1.3. Let g be a primitive cusp form as in Theorem 1.1 with D > 1, k > 2 an even
integer and ε > 0. There exists a constant C = C(g, k, ε) depending on g, k and ε only such that
for any primitive holomorphic form f ∈ S∗k(q), there exists n 6 Cq1−1/40+ε such that

(1.1) λf (n) 6= λg(n).

Here the λf (n), λg(n) are the Fourier coefficients of f and g.

The “obvious” bound is n 6 Cq1+ε for any ε > 0. Under the generalized Riemann Hypothesis
for Rankin-Selberg L-functions, (1.1) would be true for n = C(log qD)2, with an absolute C.
Using modularity, this applies in particular to elliptic curves. See [DK] for a related result “on
average”.

Let us mention another possible application of Theorem 1.1: P. Sarnak has recently obtained a
convexity-breaking bound for Ranking-Selberg convolution L-functions in the weight aspect, using
somewhat different techniques [Sa]. His main motivation was the Quantum Unique Ergodicity
problem: for f ∈ S∗k(q), let µf be the probability measure on X0(q) given by µf = 3

π
|f(z)|2
(f,f) y

k dxdy
y2

where (f, f) is the Petersson inner product.

Conjecture 1.4. [RuSa] Let q > 1. Let {fj}j>1 be any sequence of primitive holomorphic forms
on X0(q) with increasing weights kj. As j → +∞ the sequence of probability measure µfj , j > 1
converge weakly to the Poincaré measure on X0(q), µ = 1

vol(X0(q))
dxdy
y2

.

The main application of the convexity-breaking bound of [Sa] is the proof of this conjecture
when the primitive forms are of CM type (in the sense of [Ri]). The proof uses a formula of T.
Watson [W], relating the central value of the triple product L function of 3 modular forms to
the square of the integral of the product of the 3 forms. This formula shows that proving a non-
trivial estimate for the Weyl sums corresponding to this equidistribution problem is tantamount
to proving a convexity-breaking bound (in the weight aspect) for the central value of the triple
product L function of fj ⊗ fj ⊗ g where g is a weight 0 Maass form (or even an Eisenstein series).
For fj a CM form this reduces to a convexity-breaking bound for a Rankin-Selberg L function.

A possible analog of conjecture 1.4 in the level aspect is the following: for any q > 1 let
πq : X0(q)→ X0(1) be the canonical projection

Conjecture 1.5. For k > 2 even and fixed, let {fj}j>1 be any sequence of primitive holomorphic
forms of weight k with increasing levels qj. As j → +∞ the sequence of probability measure
πqj ,∗(µfj ), j > 1 converge weakly to the Poincaré measure on X0(1), µ = 3

π
dxdy
y2

.

Although it has not yet been fully established in this context, it is likely that Watson’s formula
continues to hold, so that, combined with Theorem 1.1, it should give a proof of Conjecture 1.5,
when the fj are CM forms.

Theorem 1.1 follows from the amplification method invented by Friedlander and Iwaniec, ap-
plied to bounds of the form

Mg,g(1
2 + µ; `) =

1
|S∗k(q)|

∑
f∈S∗k(q)

|L(f ⊗ g, 1
2 + µ)|2λf (`)�ε,g (1 + |t|)B qε

`1/2

for µ = δ+it, δ, t ∈ R, |δ| 6 1/ log q, and 0 < ` < qα for some small α > 0. We prove these bounds
in the process of obtaining an explicit asymptotic expansion of this second moment. While we
prove the bounds in the general case, we calculate the asymptotics only for the more restrictive
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case when q is prime and k < 12, so that the space of cusps forms is spanned by the newforms1. An
asymptotic formula for Mg,g appears in Theorem 7.3, which is a generalization of the main result
of [KMV2], where an asymptotic formula is established for the second momentMg,g(1

2 +µ; `) for
g the level-one Eisenstein series

(1.2) E′(z, 1
2) :=

∂

∂s
E(z, s)|s=1/2 = y1/2 log y + 4y1/2

∑
n>1

τ(n) cos(2πnx)K0(2πny).

Here E(z, s) is the Eisenstein series for the full modular group (see [I1] Chap. 3 p.68) and τ(n)
is the divisor function.In the later case, the second moment is the fourth moment of L(f, 1

2 + µ).
However there are several differences: since g is cuspidal, a very complicated term from our
previous work (so called ”off-off-diagonal” in [KMV2]), vanishes here; on the other hand, we have
to take care of the perturbations created by the (possibily non-trivial) level and nebentypus of g
using the theory of Atkin-Lehner-Li operators, showing a nice matching between the ”diagonal”
and ”off-diagonal” terms.

An immediate application of Theorem 7.3 is to take the specific values µ = 0, ` = 1 in these
asymptotics, and assume for example that χD is trivial, and g is holomorphic. We have the
following result

Proposition 1.6. For q prime, k < 12, χq and χD trivial,

1
|S∗k(q)|

∑
f∈S∗k(q)

|L(f ⊗ g, 1
2)|2 = P (log q) +Og,k,ε(q−1/12+ε)

for all ε > 0, where P (x) is a cubic polynomial, depending on g. The leading coefficient of P is
1

3ζ(2)2
L(sym2g, 1)

∏
p|D

(1−p−1)2

1+p−1 , where L(sym2g, s) is the symmetric square L-function of g.

The asymptotics for small `, combined with those for the first twisted moment

Mg(1
2 + µ; `) :=

1
|S∗k(q)|

∑
f

L(f ⊗ g, 1
2 + µ)λf (`)

at µ = 0, allow us to apply the older mollification technique to infer various nonvanishing results
for the critical values L(f ⊗ g, 1

2).

Theorem 1.7. There exists a positive constant c such that, given g as in Theorem 1.1, k < 12
and for any sufficiently large prime q,

• if either g has real Fourier coefficients and ε(g) = 1 or g has non-real Fourier coefficients,

(1.3)
|{f ∈ S∗k(q), L(f ⊗ g, 1

2) 6= 0}|
|S∗k(q)|

> c+ og(1),

• if g has real Fourier coefficients and ε(g) = −1, then

(1.4)
|{f ∈ S∗k(q), L′(f ⊗ g, 1

2) 6= 0}|
|S∗k(q)|

> c+ og(1).

1This hypothesis is rather technical and comes from the fact that we are using, rather crudely, Petersson’s trace
formula to average over newforms. Recently Iwaniec provided a very convenient variant of Petersson’s formula in
the square-free level case, in order to average over the set of primitive newforms (rather than over a full orthogonal
basis) and we suspect that, using this, one can prove the results of this paper valid for any square-free level with
no small prime divisor (see [IS1] for a striking application of this formula).
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This second case is needed because L(f ⊗ g, 1
2) is identically zero when ε(g) = −1. The

dependence on D is much weaker here than in Theorem 1.2, since we use a zero-free region for
L(g ⊗ g, s).

Finally, the precise evaluation of the second moment for µ 6= 0 allows one, following the methods
of [KM1, HM], to study the order of vanishing of L(f ⊗ g, s) at the critical point s = 1

2 , which we
denote by r(f ⊗ g), in order to infer that there exists an absolute constant A > 0 such that, for
all q prime,

(1.5)
∑

f∈S∗k(q)

exp(Ar(f ⊗ g))�g |S∗k(q)|.

Since the methods are essentially identical to those of the cited papers, we do not pursue this
proof in detail here.

Our paper is organized as follows. First, we discuss some arithmetic interpretations of these
results. In the next section we recall some basic facts about various types of modular functions.
Next we recall the definition of the Rankin-Selberg convolution L function and its functional
equation. In Sections 5 and 6 we compute the first moment in two ways, the second of which
introduces tools necessary to attack the second moment. We evaluate the second moment in
Section 7, while proving the convexity-breaking bound (Theorem 1.1) along the way. In Section 8
we use our estimates of the first moment to deduce various linear independence lemmas in the spirit
of Theorem 2.1. We include the mollification in Section 9. In the first of a series of appendices we
review the Atkin-Lehner theory of newforms and deduce from it several Poisson-type summation
formulae which are our basic tools. Then we prove a bound on shifted convolutions in a manner
based on [DFI II]. Finally, we review some basic identities and bounds for Bessel functions.

In several places, we use the following notational convenience: given L(s) =
∏
p Lp(s) be an

Euler product, we will write LD(s) :=
∏
p|D Lp(s) and L(D)(s) :=

∏
(p,D)=1 Lp(s).

Aknowledgments. A large portion of this project was completed while the second author was
enjoying the hospitality of the Institute for Advanced Study during the academic year 1999-2000.
We would also like to express our gratitude to E. Fouvry, H. Iwaniec and P. Sarnak for their
encouragement, and for many discussions related to this work.

2. Arithmetic interpretations of the results

This project was motivated by the fact that in many situations the central value L(f ⊗ g, 1
2)

is known (or, more often, conjectured) to have deep arithmetical interpretations. One of these is
found in the work of Rohrlich [Ro], based on a remark of Kazhdan: let A be an abelian variety
defined over Q, and GQ = Gal(Q/Q) the absolute Galois group. A central object of study is
the Galois module defined by the algebraic points on A, A(Q) ⊗Z C (GQ acting trivially on
the second factor). By the Mordell-Weil theorem, this Galois representation decomposes as an
algebraic direct sum of finite dimensional complex irreducible representations of GQ, each of
them occuring with finite multiplicity. Given ρ : Gal(Q/Q)→ GLn(C) an irreducible continuous
complex Galois representation (automaticaly the image of ρ is finite, and ρ factorizes through
a finite quotient of GQ := Gal(Q/Q)), the remark of Kazhdan gives a conjectural formula for
the multiplicity of ρ in A(Q)⊗Z C: under various standard conjectures (including the Birch and
Swinnerton-Dyer conjecture for A over the subfields of Qker ρ) one has the following formula:

multiplicity of ρ in A(Q)⊗Z C = ords=1L(AQ ⊗ ρ, s)
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whereA in L(AQ⊗ρ, s) refers to the Galois representation on an `-adic Tate module ofAQ (see [Ro]
for the definition of the L function). In our applications we will take A = Jacnew(X0(q)) = Jnew0 (q)
the new part of the Jacobian of the modular curve. Up to a finite number of Euler factors,

L(Jnew0 (q)Q ⊗ ρ, s+ 1
2) =

∏
f∈S∗2 (q)

L(f ⊗ πρ, s)

where πg is the conjectural GLn automorphic representation associated to ρ by the Langlands
correspondance and L(f ⊗πρ, s) is the Rankin-Selberg convolution of f (more accurately, πf , the
GL2 automorphic representation canonically associated with f) and πρ. Hence, conjecturally,

multiplicity of ρ in Jnew0 (q)(Q)⊗Z C =
∑

f∈S∗2 (q)

ords=1/2L(f ⊗ πρ, s),

so it seems worthwhile to study the distribution of the “analytic ranks”

r(f ⊗ πρ) := ords=1/2L(f ⊗ πρ, s)

when f varies over the family S∗2(q).
When ρ is one dimensional πρ corresponds to a Dirichlet character. When this character is triv-

ial, the multiplicity is simply the rank of Jnew0 (q)(Q). This was investigated first in [Br, Mu] and
then more thoroughly in [IS1, KM1, KM2, KMV2, V1] when q is prime (so that J0(q) = Jnew0 (q));
the latter analytical works, combined with the partial progress of Gross-Zagier, Kolyvagin and
Kolyvagin-Logachev towards the Birch–Swinnerton-Dyer conjecture, imply both conditional and
unconditional results regarding the rank of J0(q)(Q) for q prime. We address the question of
non-trivial characters in the paper [MV].

In this paper we focus on the case n = 2. Here the very existence of πρ is a deep question,
which has now been solved in many cases: if ρ is of dihedral, tetrahedral or octahedral type it
follows from work of Hecke, Maass, Langlands and Tunnel; while for certain infinite families of
icosahedral type it follows from recent work of Buzzard, Dickinson, Shepherd-Baron and Taylor.
In cases where the existence is known (now using classical terminology) one may associate to
an irreducible ρ a cuspidal modular form gρ which is either an holomorphic form of weight one
(if det ρ is odd) or a Maass form with eigenvalue 1/4 (if det ρ is even). In particular, assuming
the Birch–Swinnerton-Dyer conjecture, Theorem 1.7 has some bearing on the multiplicity of ρ in
J0(q)(Q).

In [Ro], the main concern is to produce non-trivial explicit examples of vanishing of L(f⊗gρ, s)
at s = 1

2 ; here, our result is in the other direction, giving a large collection of f ’s for which
L(f ⊗ gρ, s) does not vanish at this point (or at least vanishes to the minimal possible order).
Moreover, inequality (1.5) suggests that f ’s with a high order of vanishing are very rare.

Concerning the conjecture of Birch and Swinnerton-Dyer, one can say much more when ρ is
dihedral. We recall briefly the theory of Heegner points and the Gross-Zagier formula [GZ]: let
K = Q(

√
−D) be an imaginary quadratic field with ring of integers OK , let HK be the Hilbert

class field, and let χ̃ be a character of Gal(HK/K). Let ρχ̃ = Ind
GQ

GK
denote the 2-dimensional

representation induced by χ̃. It is irreducible if and only if χ̃ is not quadratic. The associated
modular form gρχ̃ is the theta series on Γ0(D) of weight one and nebentypus χD (the Kronecker
symbol of K) given by

gχ̃(z) = δχ̃=1L(χD, 1) +
∑

06=a⊂OK

χ̃((a))e(NK/Q(a)z),
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where we have identified χ̃ with a character of the ideal class group of OK . If χ̃ is non-quadratic,
gχ̃ is cuspidal, otherwise gχ̃ is an Eisenstein series. When every prime factor of q splits in K,
one finds in X0(q)(HK) the set of Heegner points corresponding to pairs of elliptic curves, linked
by a cyclic isogeny of degree q, with complex multiplication by OK . Letting eK ∈ J0(q)(HK)
denote the image of one of these points in the Jacobian, the Gross-Zagier formula (for D odd
at least) interprets the central value of the derivative L′(f ⊗ gχ̃, 1

2) in terms of the Neron-Tate
height of the (χ̃, f)-eigencomponent of eK . In particular, for q prime, we obtain from (1.4) a lower
bound for the dimension of the χ̃-isotypical component of the Gal(Q/K)-module J0(q)(HK): let
J0(q)(HK)χ̃ ⊂ J0(q)(HK)⊗Z Z[χ̃]:

(2.1) rankZJ0(q)(HK)χ̃ > (c+ oK(1)) dimJ0(q).

This can also be shown for χ̃ real by more elementary methods (it amounts to proving a double
non-vanishing result for two real characters) by combining a slight variant of the methods of
[IS1, KM2, KMV1]); in particular we have

rankZJ0(q)(HK) > (c+ oK(1))|HK | dim J0(q).

Note also that Theorem 1.1 provides a non-trivial upper bound for the Neron-Tate height of the
(f, χ̃)-eigencomponent eK,χ̃,f in the q aspect.

Concerning the original question of estimating the multiplicity of ρχ̃, observe that if χ̃ is not real
and eK,χ̃,f 6= 0, then the vector space spanned by {eK,χ̃,f , σ(eK,χ̃,f )} (σ the complex conjugation)
is 2-dimensional and realizes ρχ̃: in fact σ(eK,χ̃,f ) = e′

K,χ̃,f
where e′K = σ(eK), so the two vectors

eK,χ̃,f and σ(eK,χ̃,f ) cannot be colinear. In conclusion, we have for χ̃ non real

multiplicity of ρχ̃ in J0(q)(Q)⊗Z C >(c+ oK(1)) dimJ0(q).

Following the methods of [V2], the techniques used to prove Theorem 1.7 can also be used to
give the following linear independence result, which, along with some variants given in Section 8,
may have interesting arithmetic applications:

Theorem 2.1. Let K be an imaginary quadratic field of odd discriminant −D, let HK be the
Hilbert-class field of K, and let χ̃ be a character of Gal(HK/K). Let q be a prime number which

splits in K and let eK be a Heegner divisor in J0(q)(HK). For ε > 0 fixed and L �ε (q/D5)
1
2−ε

an integer, the images of the χ̃-eigencomponent of eK by the first Hecke operators

T1eK,χ̃, T2eK,χ̃, . . . , TLeK,χ̃

are linearly independent in J0(q)(HK)⊗Z C.

If q is inert in K, or if K is real and q splits, one has very similar constructions of Hecke
modules generated by Heegner points (or cycles) endowed with a proper height pairing, whose
values at the Heegner eigencomponents are expressed in terms of the central values L(f ⊗ gχ̃, 1

2);
we refer the interested reader to [G, GKZ, D, BD]. In particular, when K is imaginary, q is
inert and χ̃ is a character of order 6 4, (1.3), combined with the results of Bertolini-Darmon
[BD], proves the existence, for q a sufficiently large prime, of a quotient Jχ̃ defined over Q of
dimension � dim J0(q) such that the χ̃-eigencomponent of the Gal(Q/K)-module Jχ̃(Q)⊗Z C is
zero-dimensional.

3. Review of automorphic forms

In this section we review the types of automorphic forms to considered in the rest of the paper.



8 E. KOWALSKI, P. MICHEL, AND J. VANDERKAM

3.1. Holomorphic cusp forms. For k and q two integers, k > 2, and χq a Dirichlet character of
modulus q and conductor q̂, let Sk(q, χq) denote the complex vector space of weight k holomorphic
cusp forms with level q and nebentypus χq. These are the bounded holomorphic functions on the
upper half plane which satisfy the automorphy relation

(3.1) ∀γ =
(
a b
c d

)
∈ Γ0(q), f|γ(z) :=

f(γz)
(cz + d)k

= χq(d)f(z)

We represent these elements by their Fourier series:

f(z) =
∑
n>1

f̂(m)e(mz) =
∑
n>1

ψf (m)m(k−1)/2e(mz).

This space is equipped with Petersson’s inner product,

(f, g)k =
∫
X0(q)

f(z)g(z)yk−2dxdy.

The Hecke operators Tn, with (n, q) = 1, are normal with respect to the inner product, more
precisely, T ∗ = χq(n)Tn for (n, q) = 1, where T ∗ denotes the adjoint. One can thus find an
orthogonal basis of Sk(q, χq), Bk(q), formed of eigenvectors of all the {Tn, (n, q) = 1}. For f an
Hecke-eigenvector, let λf (n)n

k−1
2 denote the eigenvalue of Tn (sometimes one speaks of λf (n) of

the normalized eigenvalue). We have the adjointness relation

(3.2) λf (n) = χq(n)λf (n), ψf (n) = χq(n)ψf (n) for (n, q) = 1.

and for (n, q) = 1 the recursion formulae

ψf (m)λf (n) =
∑

d|(m,n)

χq(d)ψf (
m

d

n

d
)(3.3)

ψf (mn) =
∑

d|(m,n)

µ(d)χq(d)ψf (
m

d
)λf (

n

d
).(3.4)

The space of newforms Sk(q, χq)new is the orthogonal complement of the (old) subspace generated
by the forms f(dz) with f ∈ Sk(q′, χq′), dq′|q q′ 6= q and χq′ inducing χq. This space is stable
under all the Tn, and in [ALi] it is shown that the Tn can be simultaneously diagonalized. For f
such a newform, the equalities (3.3), (3.4) hold for all m,n, and in particular ψf (1) 6= 0. We say
that such an f is primitive if ψf (1) = 1; in that case, for all n, ψf (n) = λf (n). We let S∗k(q, χq)
denote the set of primitive new forms, it forms an orthogonal basis of Sk(q, χq)new.

3.1.1. Petersson’s trace formula. Let Bk(q) be an orthogonal basis of Sk(q, χq). Petersson’s for-
mula states that

(3.5)
Γ(k − 1)
(4π)k−1

∑
f∈Bk(q)

ψf (m)ψf (n)
(f, f)

= δm,n + ∆(m,n)

with

∆(m,n) := 2πi−k
∑
c≡0(q)
c>0

S(m,n; c)
c

Jk−1(
4π
√
mn

c
)

and S(m,n; c) the (twisted) Kloostermann sum

S(m,n; c) =
∑

x(c),(x,c)=1

χq(x)e(
mx+ nx

c
).
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Note that (3.5) is independent of the choice of basis; in what follows, we assume that Bk(q) is
an Hecke-eigenbasis and that it contains S∗k(q, χq). For Bk(q) such a basis we use the following
notation: ∑h

f∈Bk(q)

αf :=
Γ(k − 1)
(4π)k−1

∑
f∈Bk(q)

αf
(f, f)

,

and refer to it as the harmonic average.

Remark. Sometimes we will make the stronger hypothesis that there are no old forms: Bk(q) =
S∗k(q, χq). This is the case when χq is primitive or if k < 12 and χq is trivial.

3.2. Maass forms. Let D be a positive integer, χD a character of modulus D and conductor D̂,
and λ a positive real number. Let Mλ(D,χD) denote the (finite dimensional) space of weight zero
Maass forms of level D, nebentypus χD and eigenvalue λ. In other words, Mλ(D,χD) consists
of functions g, satisfying relation (3.1) for k = 0, which satisfy (∆ + λ)g = 0 for the hyperbolic
Laplacian ∆, with λ = 1

4 +r2 and either r ∈ R+ or ir ∈ [−1/4, 1/4].2 Let Sλ(D,χD) ⊂Mλ(D,χD)
denote the subspace of Maass cusp forms. Any g ∈ Mλ(D,χD) has a Fourier expansion near
infinity of the form

g(z) =
∑
n∈Z

ψg(n)e(nx)2|y|1/2Kir(2π|ny|),

where z = x + iy, Ks is the K Bessel function, and ψg(0) = 0 for g ∈ Sλ(D,χD). The Hecke
operators act on the Hilbert space Sλ(D,χD) (equipped with the Petersson inner product), and
the theory of old/new forms is identical to that in the holomorphic case. We again call a new
form f primitive if ψf (1) = 1; in that case, ψf (n) = λf (n) for all n, where λf (n) is the eigenvalue
of Tn associated to f and the equalities (3.3) and (3.4) are valid (replacing q by D) for all m and
n. Let Sλ(D,χD)∗ denote the set of primitive new forms. There is another operator acting on
Mλ(D,χD), namely the reflection operator Rf(z) = f(−z). Since it commutes with the Tn, a
primitive cusp form g satisfies Rg = εgg with εg = ±1. We call g even or odd according to the
value of εg.

3.3. Bounds on Fourier coefficients. Given g a primitive form of one of the types presented
above, we often need upper bounds for the normalized Fourier coefficients λg(n). For p prime, let
αg,1(p), αg,2(p) be the complex roots of the quadratic polynomial X2−λg(p)X+χD(p), when g is
holomorphic (by work of Eichler, Shimura, Ihara and Deligne) the Ramanujan-Petersson bounds
are valid, namely

(3.6) |αg,1(p)|, |αg,2(p)| 6 1, so that ∀|n > 1, λg(n)| 6 τ(n).

When g is a Maass form this bound is not known in general (althought it holds for the forms
of type gρ given in the introduction). Nevertheless, the following bound of Serre [Sh] will be
sufficient for our purposes:

(3.7) |αg,1(p)|, |αg,2(p)| 6 p1/5, so that ∀n > 1, |λg(n)| 6 τ(n)n1/5.

More often we will use the results of Rankin-Selberg theory, which gives the Ramanujan-Petersson
bound “on average”:

(3.8) ∀X > 0,
∑
n6X

|λg(n)|2 �g X.

2The latter comes from the “Selberg bound” for exceptional eigenvalues on congruence subgroups. We use it
only in section A.4, everywhere else we will assume that r ∈ R.
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Finally we will need to introduce the following function σg(n) :=
∑

d|n |λg(d)|, first this function
is almost multiplicative: by (3.3), and (3.4)

(3.9) (mn)−εσg(mn)� σg(m)σg(n)� (mn)εσg(mn)

forall ε > 0, the implied constant depending on ε only, and from (3.8) we have

(3.10) ∀X > 0,
∑
n6X

σg(n)2 � X1+ε,

for all ε > 0, the implied constant depending on ε, and g.

4. Review of Rankin-Selberg convolution L-functions

Let χD and χq be Dirichlet characters modulo q and D, respectively, and let χ := χqχD denote
the character modulo qD. Let f ∈ Sk(q, χq)∗ and g ∈ S∗(D,χD)∗ be normalized newforms, g
either a holomorphic form of weight k′ or a Maass form with eigenvalue λ = 1/4 + r2 > 1/4 (so
that r ∈ R). The Rankin-Selberg convolution L function is

(4.1) L(f ⊗ g, s) := L(χ, 2s)
∑
n>1

λf (n)λg(n)
ns

=
∏
p

2∏
i=1

2∏
j=1

(
1−

αf,i(p)αg,j(p)
ps

)−1

where for each prime p, αf,1(p), αf,2(p) and αg,1(p), αg,2(p) are the roots of the quadratic equations

X2 − λf (p)X + χq(p) = 0, X2 − λg(p)X + χD(p) = 0.

Rankin, Selberg, and others proved that L(f⊗g, s) admits an analytic continuation over the whole
complex plane except when f = g, in which case there are simple poles at s = 0, 1. Moreover, this
L function admits a functional equation linking s to 1 − s. When (q,D) = 1 we set (see [Li2]3,
Theorem 2.2 and Example 2)

(4.2) Λ(f ⊗ g, s) := (
qD

4π2
)sΓg(s)L(f ⊗ g, s),

with

Γg(s) = Γ(s+
|k − k′|

2
)Γ(s+

k + k′

2
− 1) for g holomorphic

Γg(s) = Γ(s+
k + 2ir − 1

2
)Γ(s+

k − 2ir − 1
2

) for g a Maass form.

We then have

(4.3) Λ(f ⊗ g, s) = ε(f ⊗ g)Λ(f ⊗ g, 1− s),
with

(4.4) ε(f ⊗ g) =
{
χD(−q)χq(D)ηf (q)2ηg(D)2 if g is holomorphic and k′ > k,
χD(q)χq(−D)ηf (q)2ηg(D)2 else.

Here ηf (q), ηg(D) are the pseudo-eigenvalues of f, g for the Atkin-Lehner-Li operators Wq,WD

and g is the primitive form proportional to WDg, that is WDg = ηg(D)g (see Section A.1). A
particularly important case arises when ηf (q)2 = 1 (for example, if χq is real), so we define

(4.5) ε(g) =
{

χD(q)ηg(D)2 if g is holomorphic and k′ > k
χD(−q)ηg(D)2 else.

3This gives the holomorphic case, but the proof also works when g is a Maass form.
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4.1. The twisted moments. In what follows we will use µ to denote a complex number of the
form µ = δ + it with |δ| 6 1/ log q. Let g and g′ be primitive cusp forms with weights kg, kg′ or
eigenvalues λg, λg′ , square-free levels D and D′, and nebentypus χD and χD′ , respectively, which
are not exceptional. Following the methods of [KMV2], we wish to compute the twisted moments

(4.6) Mg(µ; `) :=
∑h

f∈S∗k(q,χq)

L(f ⊗ g, 1
2 + µ)λf (`)

and

(4.7) Mg,g′(µ, µ′; `) :=
∑h

f∈S∗k(q,χq)

L(f ⊗ g, 1
2 + µ)L(f ⊗ g′, 1

2 + µ′)λf (`).

We use the functional equation (4.3) to represent L(f ⊗ g, 1/2 + µ) as a rapidly converging
series. To this end, we set

Gg,µ(s) :=
(4π2)µ

Γg(1
2 + µ)

(
ξ(1

2 + s− µ)
ξ(1

2)
)5 Pg(s)
Pg(µ)

Here ξ(s) = s(1− s)π−s/2Γ( s2)ζ(s) is the completed ζ function of Riemann4 and Pg(s) is an even
polynomial with real coefficients, depending on k, kg only, such that Pg(s)Γg(1

2 +s) is holomorphic
in the region −A < <es for some A > 1/2. The functional equation of ξ(s) implies that

(4.8) Gg,µ(−s) =
(4π2)µΓg(1

2 − µ)
(4π2)−µΓg(1

2 + µ)
Gg,−µ(s).

With this in mind, we define

Hg,µ(s) := (4π2)−sΓg(1
2 + s)Gg,µ(s)

Note that Hg,µ(µ) = 1.
Using contour shifts and the functional equations of L(f ⊗ g, s) and (4.8), one shows that

(4.9) (qD)µL(f ⊗ g, 1/2 + µ) =
∑
n>1

λf (n)λg(n)
n1/2

Vg,µ(
n

qD
) + εµ(f ⊗ g)

∑
n>1

λf (n)λg(n)
n1/2

Vg,−µ(
n

qD
)

with

(4.10) Vg,µ(y) :=
1

2πi

∫
(3)

Hg,µ(s)L(χ, 1 + 2s)y−s
ds

s− µ
,

Vg,−µ(y) :=
1

2πi

∫
(3)

Hg,−µ(s)L(χ, 1 + 2s)y−s
ds

s+ µ
,

and

εµ(f ⊗ g) =
(4π2)µΓg(1

2 − µ)
(4π2)−µΓg(1

2 + µ)
ε(f ⊗ g).

4The arithmetic nature of this function is not needed for the proof, it is here merely to force polynomial growth
in the t variable in the forthcoming computations.
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In the particular case where the λf (n), λg(n) are real , ε(g) = −1, and µ = 0, the functional
equation then automatically forces L(f ⊗ g, 1/2) to vanish, so any analysis must focus on the first
derivative, which is given in much the same way by

L′(f ⊗ g, 1/2) = 2
∑
n>1

λf (n)λg(n)
n1/2

Wg(
n

qD
)

with

(4.11) Wg(y) :=
1

2πi

∫
(3)

Hg(s)L(χ, 1 + 2s)y−s
ds

s2
.

In what follows, for notational simplicity, we will suppress dependence on µ and µ′. However to
be consistent, we make the following convention explicit:

Convention 4.1. An expression Expg,µ depending on g and µ, will usually be writen Expg;
accordingly, by Expg′ we mean implicitly Expg′,µ′, and by Expg (resp. Expg′) we always mean
Expg,−µ (resp. Expg′,−µ′).

In this paper, these notations will never conflict.
By a contour shift to the right, the definition of ξ, and Stirling’s formula,

(4.12) Vg(y)�A (1 + |t|)By−A

for all A > 0, and by shifting the contour to the left to <s = −1/ log(qD) we pass a pole at s = µ
and get

(4.13) Vg(y)�g (1 + |t|)Bτ(qD)(log qD + | log y|)

while by shifting the contour to <s = −1/4 we obtain, using Burgess’s bound on L(χ, s),

(4.14) Vg(y) = (ress=0 + ress=µ)Hg(s)L(χ, 1 + 2s)
y−s

s− µ
+O((1 + |t|)B(qD)ε(q̂D̂)

3/16
y1/4)

for all ε > 0, the implied constant depending on ε and g.
We compute the moments (4.6) and (4.7). Closely related to these are the more general, “spec-

trally complete” moments defined by extending the averaging over the whole Hecke-eigenbasis
Bk(q)

(4.15) Mg(`) :=
∑
n

λg(n)
n1/2

Vg(
n

qD
)
∑h

f∈Bk(q)

ψf (n)ψf (`).

(4.16) Mg,g′(`) =
∑
m,n>1

λg(m)λg′(n)
m1/2n1/2

Vg(
m

qD
)Vg′(

n

qD′
)
∑h

f∈Bk(q)

ψf (m)ψf (n)λf (`),

where we use Convention 4.1 but also take as a definition that the χ′ appearing in Vg′ = Vg′,µ′ is
χ′ = χqχD′ . Note that, to have λf (`) well-defined for all f ∈ Bk(q), we must assume either that
Bk(q) = S∗k(q, χq) or that (`, q) = 1.

For simplicity we give the expression of (4.6) and (4.7) only when χq is trivial and Bk(q) =
S∗k(q, χq): then ε(f ⊗ g) = ε(g) is independent of f (see (4.5)). From (4.9) we have

(4.17) (qD)µMg(`) = Mg(`) + εµ(g)Mg(`)
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with

(4.18) εµ(g) =
(4π2)µΓg(1

2 − µ)
(4π2)−µΓg(1

2 + µ)
ε(g).

Similarly, (4.7) is a sum of four terms:

qµ+µ′DµD′µ
′
Mg,g′(`) =(4.19)

Mg,g′(`) + εµ(g)Mg,g′(`) + εµ′(g′)Mg,g′(`) + εµ(g)εµ′(g′)Mg,g′(`)

5. Evaluation of the first partial moment

We now evaluate the first partial moment Mg(`) in two ways.
• The first approach to evaluating this sum, given in the present section, is largely axiomatic,

and uses very little information about the λg’s. This very robust method is based on large
sieve inequalities for Kloosterman sums developed by Deshouillers and Iwaniec [DI]. In
particular, we shall use the form given in Proposition 1 of [DFI II].
• The second approach, given in Section 6, uses the modularity properties of the λg, and

rests on the summation formulae of Section A.5. While this approach is less general, it is
more powerful, and we will use its techniques to compute the second moments as well.

5.1. The first approach: the large sieve. We compute the linear form

Lg(~x) :=
∑
`6L

x`Mg(`)

for ~x = (x1, x2, . . . , xL) ∈ CL. In what follows L will be smaller than a fixed power of qD.

5.1.1. Treatment of Lg(µ; ~x). Applying (3.5), we obtain

Lg(~x) = LDg (~x) + LNDg (~x)

with

LDg (~x) =
∑
`6L

x`
λg(`)
`1/2

Vg(
`

qD
)

LNDg (~x) =
∑
`6L

x`
∑
n

λg(n)
n1/2

Vg(
n

qD
)∆(n, `).

Note that, by Weil’s bound for Kloosterman sums, ∆(`, n)�
√
`nq−3/2. Using the rapid decay of

Vg(y) for y > 1, we may assume that n 6 (qD)1+ε for any small positive ε, since the contribution
of the remaining terms will be a Oε,A,g((1+ |t|)B||~x||1(qD)−A) for all A. Now we can use the large
sieve for Kloosterman sums ([DFI II] Prop. 1 and the remark following it):

Proposition 5.1. Let k > 2 be an integer. For η a smooth function supported in [C, 2C] such
that η(i) �i C

−i for all i > 0, set

∆η(n, `) := 2πi−k
∑
c≡0(q)
c>0

S(n, `; c)
c

Jk−1(
4π
√
`n

c
)η(c).

Then for any sequences of complex numbers x`, yn,∑
`6L

∑
n6N

x`yn∆η(`, n)�ε,k C
ε(
√
LN

C
)k−3/2(1 +

L

q
)1/2(1 +

N

q
)1/2||x||2||y||2
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with any ε > 0. Moreover the exponent k − 3/2 can be replaced by 1/2.

Proofs of this proposition only appear in the literature for χq trivial and k even, but one
can show, following the methods of [DFI II] and [DeI] (using Proskurin’s generalization of the
Kuznetzov trace formula for integral weight), that it holds in our more general case as well. Thus
for all ε > 0

LNDg (~x) �ε (1 + |t|)Bqε
(
DL

q

)1/4(
1 +

L

q

)1/2

D1/2

 ∑
n6(qD)1+ε

|λg(n)|2

n

1/2

||~x||2

�ε,g (1 + |t|)Bqε
(
L

q

)1/4

D3/4||~x||2,(5.1)

so long as L 6 q (here we have used (3.8)).
Next we apply formula (4.14) to evaluate LD(~x). The resulting error term is

Oε,g((1 + |t|)B(qD)ε(q̂D̂)3/16

(
L

qD

)1/4

||~x||2).

Thus we obtain

Proposition 5.2. For L 6 q and ~x ∈ CL,

Lg(~x) =
∑
`6L

x`
`1/2

λg(`)ress=µ
Hg(s)L(χ, 1 + 2s)

s− µ
(
`

qD
)−s+

Oε,g((1 + |t|)B(qD)ε
(
L

q

)1/4

(q̂3/16 +D3/4)||~x||2).

If χ = χDχq is non-trivial and µ = 0

ress=0
Hg(s)L(χD, 1 + 2s)

s
(
`

qD
)−s = L(χD, 1);

while if χ = χDχq is the trivial character modulo qD and µ = 0

ress=0
Hg(s)L(χD, 1 + 2s)

s
(
`

qD
)−s = 1

2

ϕ(D)
D

log(
qD

`
) +

ϕ(D)
D

Ψ(qD) + CqD,

with Ψ(D) :=
∑

p|D
log p
p−1 , and CqD = Og(1).

The evaluation of the original first moment Mg(`) then follows quickly by restricting the sums
to one term.

6. Another approach for the first partial moment

In this section we give another approach, which stems from the techniques of Iwaniec and
Sarnak (see [IS1]) and is based on the summation formulae of Appendix A, thus relying on the
automorphic nature of the λg(n). We assume that g is a modular form of square-free level. We
again compute Mg(`), providing a slight improvement on Proposition 5.2 (although this has no
significant contribution to applications) and also allowing us to attack the second partial moment.

Applying (3.5), we obtain Mg(`) = MD
g (`) +MND

g (`), with

(6.1) MD
g (`) =

λg(`)
`1/2

Vg(
`

qD
)
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(6.2) MND
g (`) =

∑
n

λg(n)
n1/2

Vg(
n

qD
)∆(n, `)

= 2πi−k
∑

c≡0(q),c>0

1
c2
c
∑
n

λg(n)S(n, `; c)
1

n1/2
Vg(

n

qD
)Jk−1

(
4π
c

√
`n

)
.

We partition the n sum using a smooth function η(x) which is zero for x 6 1/2, one for x > 1,
and partitions further into smooth functions by

η(x) =
∑
M>1

ηM (x)

with ηM compactly supported in [M/2, 2M ] such that xiηM (x)(i) �i 1 for any i > 0. We also
require that

∑
M6X 1� logX. We set

F (x) :=
1
x1/2

Vg(
x

qD
)η(x) =

∑
M>1

1
n1/2

Vg(
n

qD
)ηM (x) :=

∑
M>1

FM (x)

so that for all i, A > 0 (using (4.13) and (4.12))

xi
∂i

∂ix
FM (x)�g,A,i (1 + |t|)Bτ(q)M−1/2(log q)1+i(

qD

x
)A.

We also define
TM (c) := c

∑
n

λg(n)S(n, `; c)FM (n)Jk−1(
4π
c

√
`n)

so that
MND
g (µ; `) = 2πi−k

∑
c≡0(q),c>0

∑
M

1
c2
TM (c).

For C > q2, it is enough to bound the sum on c > C through use of Weil’s bound on Kloosterman
sums, getting (by (3.8))

Oε,g((1 + |t|)Bqε
√
`

C
) = Oε,g((1 + |t|)Bqε

√
`

q
).

Thus we may assume that c 6 C. We may also assume that M 6 q1+ε since the contribution of
the M ′s such that M > q1+ε is a Og((1 + |t|)B

√
`M−A) for some large A > 0.

We open the Kloosterman sum and apply Proposition A.5 to the n sum (which is possible since
D is square free) to get

(6.3)

TM (c) = χD2(−c)ηg(D2)√
D2

∑
n

λgD2
(n)GχqD1

(`− nD2; c)
∫ ∞

0
FM (x)Jk−1(

4π
c

√
`x)Jg(

4π
√
nx

c
√
D2

)dx

+χD2(c)
ηg(D2)√
D2

∑
n

λgD2
(n)GχqD1

(`+ nD2; c)
∫ ∞

0
F (x)MJk−1(

4π
c

√
`x)Kg(

4π
√
nx

c
√
D2

)dx

where
GχqD1

(a; c) =
∑
x(c)

(x,c)=1

χqD1(x)e(ax/c),

D1 = (c,D), and D2 = D/D1.
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We split this sum into two parts: the term corresponding to n = `D2, which we denote

(6.4) TODM (c) = χD2(−c)ηg(D2)√
D2

λgD2
(`D2)GχqD1

(0; c)
∫ ∞

0
FM (x)Jk−1(

4π
√
`x

c
)Jg(

4π
√
`x

c
)dx,

and the remaining terms for which n 6= `D2, which we denote T 6=M (c). In the next section we
show that (under the Ramanujan-Petersson for the Fourier coefficients of g) the T 6=M (c) terms are
negligibly small: ∑

M6q1+ε

∑
c6C
q|c

1
c2
T 6=M (c) = Oε,g((1 + |t|)Bqε

√
q̂
√
`

q
).

6.1. The off-diagonal remainder term. The term T 6=M (c) splits naturally as the sum of two
terms corresponding to `−D2n and `+D2n.

We consider the case of `−D2n, the case of `+D2n being treated in the same way. The full
sum is then∑
c6C
q|c

1
c2
χD2(−c)ηg(D2)√

D2

∑
n6=D2`

λgD2
(n)GχqD1

(`− nD2; c)
∫ ∞

0
FM (x)Jk−1(

4π
c

√
`x)Jg(

4π
√
nx

c
√
D2

)dx.

We exploit the oscillations of Jg(x), which is either 2πik
′
Jk′−1(x) (with k′ > 1 an integer),

−2πY0(x), or −π(J2ir(x)− J−2ir(x))/ sin(πir) (with r ∈ R∗ by our assumptions on g).

Lemma 6.1. Let h(x) be a smooth function supported in [M, 2M ] which satisfies

|xih(i)(x)| �i a
i(1 + | log x|)

for some a > 1, and all i > 0, x > 0. For ν complex and j > 0,∫ ∞
0

Jν(x)h(x)dx�ν,j
aj(1 + | logM |)

M j−1

M<eν+j+1

(1 +M)<eν+j+1/2
.

Proof. We integrate by parts, using (C.1) and (C.4):∫ ∞
0

Jν(x)h(x)dx = −
∫ ∞

0

xν+1

Mν+1
Jν+1(x)[(

M

x
)ν+1h(x)]′dx = M−1

∫ ∞
0

Jν+1(x)h1(x)dx

with h1(x) := −(
x

M
)ν+1M [(

M

x
)ν+1h(x)]′, so that

|xig(i)
1 (x)| �i,ν a

i+1(1 + | log x|)

for all i > 0, x > 0. Iterating, we have∫ ∞
0

Jν(x)h(x)dx = M−j
∫ ∞

0
Jν+j(x)hj(x)dx

with hj a smooth function supported on [M, 2M ] with

|xih(i)
j (x)| �i,j,ν a

i+j(1 + | log x|)

for all i > 0, x > 0. The lemma then follows from (C.4) applied to Jν+j . �

Remark. The lemma also holds for Y0, up to an extra factor of (1 + | logM |).
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We apply this to the integral∫ ∞
0

FM (x)Jk−1(
4π
c

√
`x)Jν(

4π
√
nx

c
√
D2

)dx = 2
c

4π

√
D2

n

∫ ∞
0

h(y)Jν(y)dx

with

h(y) =
c

4π

√
D2

n
yFM ((

c

4π

√
D2

n
y)2)Jk−1(

√
`D2

n
y).

The function h satisfies the conditions of Lemma 6.1 with M ′ = 4π
c

√
Mn
D2

and a = log q. In

particular, if n > qεc2/M the integral is very small. For n 6 qεc2/M we use (C.4), k > 2, and
<eν > 0 to bound the integral by

Oε,g(qε(1 + |t|)BM
√
`

c
).

To finish bounding this term with minimal effort, we assume that the Ramanujan-Petersson
conjecture holds for g: so that for n > 1, D2|D, ε > 0 we have |λgD2

(n)| �ε n
ε. Using the trivial

bound
|GχqD1

(`±D2n; c)| 6
√
q̂D1(n±D2`, c),

we find that these terms are then bounded (using
∑

M6X 1 6 logX) by

�g,ε q
ε(1 + |t|)B

√
q̂
√
`
∑

M6q1+ε

M
∑
c6C
q|c

1
c3

∑
n6qεc2/M

(n−D2`, c)�g,ε q
ε(1 + |t|)B

√
q̂
√
`

q
.

Remark. The Ramanujan-Petersson conjecture is not vital here, and it could be avoided with
more work, but since this section is more to demonstrate techniques we used the shorter proof.
The main point here is the next subsection where the off-diagonal term is evaluated quite precisely
(without any hypothesis). It will only contribute a remainder term (as we already knew by the
results of the previous section), but the identity we obtain will be essential for the computation
of the second moment.

6.2. The off-diagonal main term. Now we evaluate TODM (c) (the n = `D2 term of (6.3)), which
will also contribute as a remainder term to the first moment. However, since terms very much
like it contribute to the second moment, we evaluate it in a little more detail. Convergence issues
are less of a worry here, so we can sum TODM (c) over all M (including those with M > q1+ε, which
we know to be negligible) to get TOD(c), defined like TODM (c) with FM replaced by F .

If χqD1 is non-trivial, GχqD1
(0; c) = 0, while if χqD1 is trivialGχD1

(0; c) = ϕ(c). So (6.4) vanishes
identically if χq is non-trivial, in which case we are done. Thus we may assume that χqD1 is trivial
(and thus the λf (n) are real). Since (c,D2) = 1, c must be coprime to the primitive conductor of
χD, which we call D̂. From (A.2) and the first part of Proposition A.1 we have gD2 = gD = g.

Thus we may replace c with cqD1, where D1D2 = D, D̂|D2, and (c,D2) = 1. Summing over the
new c variable, we obtain the main term of MND

g (`), which we call the “off-diagonal” term:

MOD
g,C (`) = 2π

i−k

q2
χD(−q)

∑
D1D2=D
(D1,D̂)=1

χD̂(D1)
D2

1

ηg(D2)√
D2

λg(`D2)

×
∑

c6C/qD1

ϕ(cqD1)
c2

χD2(c)
∫ ∞

0
F (x)Jk−1(

4π
√
`x

cqD1
)Jg(

4π
√
`x

cqD1
)dx.
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We can now replace η(x) by 1 in the formula for F (x) at a cost of at msot Og,ε(qε−1), by Lemma
C.2. We can also remove the constraint c 6 C/qD1 with an error term of Og,ε(qε

√
`/C) (using

Lemma C.2 and k > 2). Setting y = 4π
√
`x/(cqD1), the main term of MND

g (`) becomes

(6.5) MOD
g (`) =

i−k

q

λg(`)√
`
χD(−q)

∑
D1D2=D
(D1,D̂)=1

χD̂(D1)
D1

ηg(D2)√
D2

λg(D2)

× 1
2πi

∫
(1)

Hg(s)L(χ, 1 + 2s)Z(s)H(s)(
(4π)2D2`

D1q
)s

ds

s− µ

with

Z(s) :=
∑
c>1

ϕ(cqD1)χD2(c)
c1+2s

and H(s) :=
∫ ∞

0
Jk−1(y)Jg(y)y−2sdy.

Since ϕ and χD2 are multiplicative,

Z(s) = ϕ(qD1)LD2(χD̂, 2s)
−1 L(χD̂, 2s)
L(χ, 1 + 2s)

,

where

Ln(χ, s)−1 :=
∏
p|n

(1− χ(p)
ps

).

Shifting the contour in (6.5) to <es = 1/2 + ε and using the standard bounds (see Lemma
(C.2)) for the Bessel functions, we have

(6.6) MOD
g (`) = Oε,g((1 + |t|)Bqε

√
`σg(`)
q

),

while if we shift to <es = ε we have

(6.7) MOD
g (`) = Oε,g((1 + |t|)Bqεσg(`)

`1/2
).

This completes our bound for the non-diagonal term.

6.3. A more precise computation of the off-diagonal term. We now calculate the off-
diagonal term more precisely. For this we use the precise expression for H(s).

In the holomorphic case, from [EMOT] 6.8 (33),

(6.8) H(s) =
2πikg2−2sΓ(2s)Γ(k+kg

2 − 1
2 − s)

Γ(k+kg
2 − 1

2 + s)Γ( |k−kg |2 + 1
2 + s)Γ(− |k−kg |2 + 1

2 + s)
.

Using (A.15) and (A.16), we have

H(s) = ikg
√
π

Γ(s)Γ(s+ 1
2)

π cos(π(s− |k−kg |2 ))

Γg(1
2 − s)

Γg(1
2 + s)

,

so the off-diagonal term is

(6.9) MOD
g (`) =

λg(`)√
`

ϕ(q)
q

χD(−q)
∑

D1D2=D
(D1,D̂)=1

ϕ(D1)
D1

ηg(D2)√
D2

λg(D2)
1

2πi

∫
(3)

(4π)sΓg(1
2 − s)Gg(s)
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×
√
π
ikg−kΓ(s)Γ(s+ 1

2)

π cos(π(s− |k−kg |2 ))
(
D̂

π
)sL(χD̂, 2s)LD2/D̂

(χD̂, 2s)
−1(

D2`

D̂D1q
)s

ds

s− µ
.

The functional equation for L(χD̂, s) is (see [D])

(6.10) (
D̂

π
)sΓ(s+

a

2
)L(χD̂, 2s) = εχD̂(

D̂

π
)

1
2−sΓ(1

2 +
a

2
− s)L(χD̂, 1− 2s), εχD̂ = (−i)a

G(χD̂)

D̂1/2
,

where a = 0 if χD̂ is even and a = 1 if it is odd. We consider these cases separately.

6.3.1. χ even. In this case χD (hence χD̂) is even, and kg too, so using (A.15) we have

(6.11)
ikg−kΓ(s)Γ(s+ 1

2)

π cos(π(s− |k−kg |2 ))
=

Γ(s)
Γ(1

2 − s)
.

Applying (6.10), the integral in (6.9) simplifies and, after making the change of variable s↔ −s
and using (4.8), we obtain

MOD
g (`) = −λg(`)√

`

ϕ(q)
q

χD(−q)
G(χD̂)λg(D̂)√

D̂

∑
D1D2=D/D̂

χD̂(D1)
ϕ(D1)
D1

ηg(
D

D1
)
λg(D2)√

D2

(6.12) × 1
2πi

∫
(−3)

(4π2)µΓg(1
2 − µ)

(4π2)−µΓg(1
2 + µ)

Hg(s)L(χD̂, 1 + 2s)LD2(χD̂,−2s)−1(
D2`

D̂D1q
)−s

ds

s+ µ
.

6.3.2. χ odd. In this case χD (hence χD̂) is odd, and kg too, so using (A.15) we have

ikg−kΓ(s+ 1
2)Γ(s)

π cos(π(s− |k−kg |2 ))
= ikg−k+|k−kg |−1 Γ(s+ 1

2)Γ(s)
π sin(πs)

= i|k−kg |−1 Γ(s+ 1
2)

Γ(1− s)
.

Again using (6.10), the integral in (6.9) simplifies and we find that MOD
g (`) equals the right hand

side of (6.12) multiplied by −ikg−k+|k−kg | = ±1.

6.4. When g is a Maass form. Here χD̂ is even and kg = 0. Using [EMOT] 6.8 (33), we obtain
(using 0 < <es 6 3/4 < 1

2 + k−1
2 − |<eir|)

H(s) =
−π2−2s

sin(πir)
[

B(2s, 1
2 − s+ k−1+2ir

2 )

Γ(1
2 + s+ k−1−2ir

2 )Γ(1
2 + s− k−1−2ir

2 )
−

B(2s, 1
2 − s+ k−1−2ir

2 )

Γ(1
2 + s+ k−1+2ir

2 )Γ(1
2 + s− k−1+2ir

2 )
],

where B(x, y) = Γ(x)Γ(y)/Γ(x + y). Taking a common denominator, applying (A.15) to the
numerator, and transforming some cosines in the denominator into products of Gamma functions
through (A.15), we get

H(s) = 21−2sΓ(2s) cos(π(s− k

2
))

Γg(1
2 − s)

Γg(1
2 + s)

= ik
√
π

Γ(s)
Γ(1

2 − s)
Γg(1

2 − s)
Γg(1

2 + s)
.

This leads to (6.12) after applying the procedure given after (6.11).
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6.5. End of the computations. We use the following equalities which follow from Proposition
A.1: recall that we have the decomposition D = D1D2D̂ where D̂ is the conductor of χD,

|λg(D̂)| = 1 so λg(D̂) = λg(D̂)−1, |λg(D2)
√
D2| = 1 so λg(D2)

√
D2 = (λg(D2)

√
D2)−1

G(χD̂)λg(D̂)√
D̂

= ηg(D̂), 1 = χD̂(D1)ηg(D1)2, ηg(
D

D1
) = χD̂(D2)ηg(D2)ηg(D̂)

λg(D2)√
D2

=
µ(D2)ηg(D2)

D2
, (χD̂(D1D2)ηg(D1)ηg(D2)ηg(D̂))2 = ηg(D)2.

We plug these formulas into (6.12); after some straightforward computations, we obtain using
(4.5) and (4.18):

MOD(`) = −εµ(g)
λg(`)√

`

ϕ(q)
q

1
2πi

∫
(−3)

Hg(s)L(χD̂, 1 + 2s)

×
∑

D1D2=D/D̂

ϕ(D1)
D1−s

1

µ(D2)χD̂(D2)
D1+s

2

∏
p|D2

(1− χD̂(p)p2s)(
`

D̂q
)−s

ds

s+ µ
.

The arithmetic function inside the integral equals∏
p|D/D̂

(
p− 1
p1−s −

χD̂(p)
p1+s

(1− χD̂(p)p2s)
)

= (D/D̂)s
∏

p|D/D̂

(1−
χD̂(p)
p1+2s

)

so we have

MOD(`) = −εµ(g)
λg(`)√

`

ϕ(q)
q

1
2πi

∫
(−3)

Hg(s)L(χD, 1 + 2s)(
`

qD
)−s

ds

s+ µ

(6.13) = ress=0,−µ

(
εµ(g)

λg(`)√
`

ϕ(q)
q

1
s+ µ

Hg(s)L(χD, 1 + 2s)(
`

Dq
)−s
)

−εµ(g)
λg(`)√

`

ϕ(q)
q

1
2πi

∫
(3)

Hg(s)L(χD, 1 + 2s)(
`

Dq
)−s

ds

s+ µ
.

Note that there may be another pole at s = 0 if χD is trivial. Note also that the second term of
(6.13) is very similar to the diagonal term

(6.14) − εµ(g)MD
g (`) = −εµ(g)

1
2πi

∫
(3)

Hg(s)L(q)(χD, 1 + 2s)(
`

Dq
)−s

ds

s+ µ
.

More precisely, since

L(q)(χD, 1 + 2s)− ϕ(q)
q

L(χD, 1 + 2s) =
(∏
p|q

(1− χD(q)
q1+2s

)−
∏
p|q

(1− 1
q

)
)
L(χD, 1 + 2s),

the difference between the second term of (6.13) and (6.14), after shifting the contour in the
integrals for the V ’s to <es = ε > 0, is at most O((1 + |t|)Bqε |λg(`)|

q−
√
`

) where q− is the smallest
prime divisor of q.
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Proposition 6.2. Let q̂ be the conductor of χq and let q− be the smallest prime factor of q. If
q̂ 6= 1, then MOD

g (`) = 0. Otherwise, we have

MOD
g (`) = εµ(g)

λg(`)√
`

ϕ(q)
q

ress=0,−µHg(s)L(χD, 1 + 2s)(
`

Dq
)−s

1
s+ µ

−εµ(g)MD
g (`) +Oε,g((1 + |t|)Bqε σg(`)

q−
√
`
).

Moreover, assuming that the λg(n) satisfies the Ramanujan-Petersson bound,

Mg(`) = MD
g (`) +MOD

g (`) +Oε,g((1 + |t|)Bqε
√
q̂`

q
).

7. The second moment

In this section we compute the twisted second partial moment Mg,g′(µ, µ′; `) defined by (4.16).
Recall that we have to assume either that ` is coprime with q or that S∗k(q, χq) = Bk(q) so that
λf (`) is well defined for all f ∈ Bk(q). As with the first moment, it will be useful to consider for
~x = (x1, . . . , x`, . . . , xL) ∈ CL the linear form

(7.1) Lg,g′(~x) =
∑
`6L

(`,q)=1

x`Mg,g′(`).

¿From our hypothesis on ` we may apply the Hecke recursion formula (3.3) for f , followed by
(3.4) for g′ (since g′ is primitive, (3.4) holds without restriction on m,n), and obtain

(7.2) Mg,g′(`) =
∑
de=`

χq(d)
d1/2

∑
ab=d

µ(a)χD′(a)
a1/2

λg′(b)

×
∑
m,n>1

λg(m)λg′(n)
(mn)1/2

Vg(
m

qD
)Vg′(

adn

qD′
)
∑h

f

ψf (m)ψf (aen).

We apply Petersson’s formula (3.5) to obtain Mg,g′(`) := MD
g,g′(`) +MND

g,g′ (`) with

MD
g,g′(`) =

∑
de=`

χq(d)
d1/2

∑
ab=d

µ(a)χD′(a)
a1/2

λg′(b)
∑
n

λg(aen)λg′(n)
(ae)1/2n

Vg(
aen

qD
)Vg′(

adn

qD′
),

MND
g,g′ (`) = 2πi−k

∑
de=`

1
d1/2

∑
ab=d

µ(a)χD′(a)√
a

λg′(b)

×
∑
c≡0(q)

1
c

∑
m,n

λg(m)λg′(n)√
mn

Vg(
m

qD
)Vg′(

adn

qD′
)S(m, aen; c)Jk−1(

4π
√
aemn

c
).

Applying (3.4) in the reverse direction we have (by (4.13), (3.9) and (3.10))

MD
g,g′(`) =

1
`1/2

∑
de=`

∑
n

λg(en)λg′(dn)
n

Vg(
en

qD
)Vg′(

dn

qD′
)(7.3)

= Oε,g,g′

(
(1 + |t|+ |t′|)Bqεσg(`)

`1/2

)
.

To save notation we now assume that |t| > |t′|.
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7.1. The non-diagonal main term. We next evaluate MND(`), following the methods used in
[DFI II, KMV2]. We will evaluate the sum precisely for restricted ranges of the variable m,n, c,
and the remaining ranges will be bounded using the large sieve inequality of Section 5.1. As in
Section 6, we define

FM,N (m,n) :=
1

(mn)1/2
Vg(

m

qD
)Vg′(

dan

qD′
)ηM (m)ηN (n)

and

F (m,n) :=
1

(mn)1/2
Vg(

m

qD
)Vg′(

dan

qD′
) =

∑
M,N>1

FM,N (m,n).

We also define

(7.4) TM,N (c) = c
∑
m,n

λg(m)λg′(n)S(m, aen; c)FM,N (m,n)Jk−1(
4π
√
aemn

c
),

TM,N :=
∑
q|c

1
c2
TM,N (c),

so that

(7.5) MND(`) = 2πi−k
∑
de=`

1
d1/2

∑
ab=d

µ(a)χD′(a)
a1/2

λg′(b)
∑
M,N

TM,N .

Note that the derivatives of FM,N satisfy the bounds

(7.6) xiyj
∂i

∂ix

∂j

∂jy
FM,N (x, y)� (1 + |t|)B(MN)−1/2(log q)i+j(

qD

x
)A(

qD′

day
)A
′

for all i, j, A,A′ > 0. By taking i = j = 0 and either A or A′ large in (7.6), we have∑
M+N�q1+ε

MND
g,g′,M,N �ε,A,g,g′ (1 + |t|)Bq−A,

for any ε > 0 and any A > 0. Thus we may assume that

(7.7) M 6 (qD)1+ε, N 6 (qD′)1+ε.

It will also prove convenient to remove large values of c through the large sieve inequality (Propo-
sition 5.1) together with (3.8), which implies that, for M,N � q1+ε,

(7.8)
∑

q|c,c>C

1
c2
TM,N (c)�ε (1 + |t|)Bqε `

3/4(DD′)1/2(MN)1/4

C1/2
.

Note also that one can do slightly better when averaging over `. Namely, using also (3.7) to bound
λg′(b), the corresponding term for Lg,g′(~x) (see (7.1)) is bounded by

(7.9)
∑
`6L

(`,q)=1

x`
∑
de=`

1
d1/2

∑
ab=d

µ(a)χD′(a)
a1/2

λg′(b)
∑

q|c,c>C

1
c2
TM,N (c)

�ε (1 + |t|)BqεL
3/4(DD′)1/2(MN)1/4

C1/2
||~x||2.

Accordingly, in the next two sections we attach a smooth compact function ηC(c) vanishing for
c > 2C and equal to one for c 6 C.
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7.2. Applying the summation formula. We apply the summation formula (A.5) on the m
variable with the effect of splitting

(7.10) TM,N (c) = TODM,N (c) + T−M,N (c) + T+
M,N (c)

with (see (6.3))

(7.11) TODM,N (c) = δχq=εq |χD̂(c)|ϕ(c)χD2(−c)ηg(D2)√
D2

∑
n

λgD2
(aenD2)λg′(n)G−(aen, n)

T±M,N (c) = χD2(±c)ηg(D2)√
D2

∑
m,n

m 6=±aenD2

λgD2
(m)λg′(n)GχqD1

(aen±mD2; c)G±(
m

D2
, n),

(7.12) G−(z, y) :=
∫ ∞

0
Jg(

4π
√
zx

c
)Jk−1(

4π
√
aexy

c
)FM,N (x, y)dx

G+(z, y) :=
∫ ∞

0
Kg(

4π
√
zx

c
)Jk−1(

4π
√
aexy

c
)FM,N (x, y)dx.

7.2.1. Treatment of T±M,N (c). We rewrite T±M,N (c) as

T±M,N (c) := χD2(±c)ηg(D2)√
D2

∑
h6=0

GχqD1
(±hD2; c)T±h (c)

with
T±h (c) =

∑
m,n

m±aeD2n=h

λgD2
(m)λg′(n)G±(

m

D2
, n).

Following [DFI II], we set P := 1 + c−1(aeMN)1/2, Y = aeN and Z := c2P 2M−1 and f(z, y) =
G±(m/D2, y/ae) by integrating by part (cf. [DFI II] p. 229) one has for all A, i, j > 0

ziyjf (ij)f(z, y)�A,i,j (1 +
z

Z
)−A(1 +

y

Y
)−A

(ae)1/2M

c
P i+j−3/2.

We evaluate expressions like T±h (c) in Proposition B.1, which gives

T+
M,N (c) + T−M,N (c) = Oε,g,g′((1 + |t|)B

√
q̂Z(aeP )3/4N1/4M1/2cε))

= Oε,g,g′((1 + |t|)B
√
q̂(ae)3/4P 11/4N1/4M−1/2c2+ε)).

Remark. Note that at this point there is a major simplification compared with the treatment
given in [DFI II] or [KMV2] (and also the forthcoming [MV]): in these papers, g is an Eisenstein
series, with the effect that T+

M,N (c) + T−M,N (c) contains a main term (coming from the constant
coefficient of g) thus contributing to the second moment.

Setting q̂ = qβ and summing over c, we bound the contribution of these terms by

�ε,g,g′ (1 + |t|)Bqε
(√

q̂`3/4
N1/4

M1/2

C

q
+
√
q̂`17/8M

7/8N13/8

q11/4

)
�ε (1 + |t|)Bqε

(
`3/4q−(1−2β)/12 + `17/8q−(1−2β)/4

)
(7.13)
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on choosing C = M1/2q2/3(1−β/2). The first error term agrees with the one in (7.8). If now we
consider the corresponding terms for the average Lg,g′(~x) then their contribution is bounded by

�ε (1 + |t|)Bqε
(√

q̂L3/4 N
1/4

M1/2

C

q
||~x||1 +

√
q̂L17/8M

7/8N13/8

q11/4
||~x||1

)
�ε (1 + |t|)Bqε

(
L3/4q−(1−2β)/12||~x||2/32 ||~x||

1/3
1 + L17/8q−(1−2β)/4||~x||1

)
(7.14)

on choosing C = M1/2q2/3(1−β/2)(||~x||2/||~x||1)2/3 so that the first error terms equals that of
refsclargelinear.

Note that, to beat the convexity bound by a positive power with our current methods, the
conductor of χq has to be smaller than q1/2−δ for some positive δ. We suspect that this can be
improved through more careful analysis of the cancellation between various Gauss sums, but for
the purposes of this paper such a restriction is acceptible.

This finishes our estimate if χq is non-trivial, since in that case the TODM,N (c) are zero: from
(7.14) we obtain for non-trivial χq the equality

Mg,g′(`) = MD
g,g′(`) +Oε,g,g′((1 + |t|)Bqε

(
`3/4q−(1−2β)/12 + `17/8q−(1−2β)/4

)
where MD

g,g′(`) is defined in (7.3), while from (7.14) we have

(7.15) Lg,g′(~x) =
∑
`6L

(`,q)=1

x`M
D
g,g′(`)

+Oε,g,g′

(
(1 + |t|)Bqε

(
L3/4q−(1−2β)/12||~x||2/32 ||~x||

1/3
1 + L17/8q−(1−2β)/4||~x||1

))
.

7.3. Expanding the c sum. Assume now that χq is the trivial character. We concentrate on

TODM,N :=
∑
q|c

(c,D̂)=1

1
c2
TODM,N (c),

where the sum is performed over c 6 C. We first add back the terms from large c at an admissible
cost. To be specific, the bounds Jg(x),Kg(x) � log(x), Jk−1(x) � x imply that TODM,N (c) �ε

(1 + |t|)Bqε`1/2MN , so∑
q|c,c>C

1
c2
TODM,N (c)�ε,g,g′ (1 + |t|)Bqε `

1/2MN

Cq
�ε,g,g′ (1 + |t|)Bqε `

1/2

q1/6
.

Next we consider
TOD :=

∑
M,N

TODM,N

where the sum is over the indices such that M 6 (qD)1+ε, N 6 (qD′)1+ε. Again, we may reinsert
large values of M and N at a cost which is OA((1 + |t|)Bq−A) for all A > 0. Thus up to an
admissible term TOD can be rewritten like (7.11) but with FM,N (x, y) replaced by η(x)η(y)F (x, y)
in (7.12). We can replace η(y) by 1 since it leaves the n sum unchanged. We can also replace η(x)



RANKIN-SELBERG L FUNCTIONS IN THE LEVEL ASPECT 25

by one at an admissible cost, namely the size of the term obtained by replacing η(x) by 1− η(x),
which is Oε((1 + |t|)Bqε`1/2D′q ). Thus we have, up to admissible error,

2πi−kTOD =
∑
n

λg′(n)√
n

Vg′(
adn

qD′
)MOD

g (aen),

where MOD
g (`) is the non-diagonal term defined in (6.5). From (7.5), this equality, (7.13) and the

Hecke recursion formulae (3.4) we obtain that the non-diagonal term is given by

MND(`) = MOD
g,g′ (`) +Oε,g,g′

(
(1 + |t|)Bqε

(
`3/4q−(1−2β)/12 + `17/8q−(1−2β)/4

))
where

(7.16) MOD
g,g′ (`) =

∑
de=`

1
d1/2

∑
n

λg′(dn)√
n

Vg′(
dn

qD′
)MOD

g (en).

Applying the bound (6.7) gives

MOD
g,g′ (`) = Oε,g,g′((1 + |t|)Bqεσg(`)√

`
),

and adding this to (7.3) we obtain, in view of (7.13), (7.14), and (7.15) the following proposition.

Proposition 7.1. Let D be a square-free integer, denote by q̂ = qβ the conductor of χq. For
L > 1 an integer and ~x = (x1, . . . xL) ∈ CL let Lg,g′(~x) the linear form defined in (7.1). We have
(7.17)

Lg,g′(~x)� qε(1+ |t|+ |t′|)B
(∑
`6L

|x`|
σg(`)
`1/2

+L3/4q−(1−2β)/12||~x||2/32 ||~x||
1/3
1 +L17/8q−(1−2β)/4||~x||1

)
,

for all ε > 0 the implied constants depending only on ε, k, g, g′. In particular for ` 6 q(1−2β)/15

coprime with q, we have

Mg,g′(`)� (1 + |t|+ |t′|)Bqεσg(`)√
`
.

Before continuing our evaluation of the second moment under somewhat restrictive conditions
we derive a generalization of the main result of [DFI II].

7.4. Breaking convexity for Rankin-Selberg convolutions. We now use Proposition 7.1 to
bound L(f ⊗ g, s) and its derivatives along the critical line.

Theorem 7.2. Let g be cuspidal with square-free level D, and let q̂ = qβ be the conductor of χq.
Then for all f ∈ S∗k(q, χq), t ∈ R, and j > 0,

|L(j)(f ⊗ g, 1
2 + it)| �ε (1 + |t|)Bq1/2−(1−2β)/80+ε.

for all ε > 0, the exponent B being absolute, and the implied constant depending on k, g, ε.

Proof. We use the amplification technique of [DFI II]: consider a sequence of real numbers ~x :=
(x`)`6L indexed by the integers coprime with q. For µ = δ+ it with |δ| 6 1/ log q we consider the
quadratic form

Q(~x) :=
∑h

f∈S∗k(q,χq)

|
∑
`6L

(`,q)=1

x`λf (`)|2|L(f ⊗ g, 1
2 + µ)|2



26 E. KOWALSKI, P. MICHEL, AND J. VANDERKAM

We want an upper bound for this quadratic form. Using the functional equation, we have

|L(f ⊗ g, 1
2 + µ)|2 � |

∑
m

λg(m)λf (m)
m1/2

Vg(
m

qD
)|2 + |

∑
m

λg(m)λf (m)
m1/2

Vg(
m

qD′
)|2.

Since we only need an upper bound, we can extend the sum to all f ∈ Bk(q):

Q(~x)�
∑h

f∈Bk(q)

|
∑
`6L

(`,q)=1

x`λf (`)|2
{
|
∑
m

λg(m)ψf (m)
m1/2

Vg(
m

qD′
)|2 + |

∑
m

λg(m)ψf (m)
m1/2

Vg(
m

qD′
)|2
}
.

Using (`, q) = 1 along with (3.3), we have

|
∑
`6L

(`,q)=1

x`λf (`)|2 =
∑
d

∑
`1,`26L/d

(d`1`2,q)=1

xd`1χq(`2)xd`2λf (`1`2).

Now for ` 6 L2 we define X` =
∑

d

∑
`1`2=` xd`1χq(`2)xd`2 so that

Q(~x)� Lg,g( ~X) + Lg,g( ~X).

Hence from Proposition 7.1 applied to (g, µ), (g′, µ′) = (g, µ) and from the estimates∑
`6L2

|X`|
σg(`)
`1/2

� Lε
∑
`6L

|x`|2,
∑
`6L2

|X`| � Lε(
∑
`6L

|x`|)2,
∑
`6L2

|X`|2 � Lε(
∑
`6L

|x`|2)2,

we obtain for each f ∈ S∗k(q, χq)

(f, f)−1|
∑
`6L

(`,q)=1

x`λf (`)|2|L(f ⊗ g, 1
2 + µ)|2 � Q(~x)

� (1 + |t|)Bqε
(
||~x||22 + L3/2q−(1−2β)/12||~x||4/32 ||~x||

2/3
1 + L17/4q−(1−2β)/4||~x||21

)
.

We finish the proof by choosing for (x`) similarly to [DFI II], page 236: we take

x` =


−χq(p) if ` = p2, p a prime 6 L1/2

χq(p)λf (p) if ` = p a prime 6 L1/2

0 else
.

The x` satisfy

|
∑
`6L

(`,q)=1

x`λf (`)|2 � q−εL, and ||~x||1 + ||~x||22 � L1/2.

Using this for L = q1/20 and the upper bound (f, f) �k q log3 q, we obtain the theorem in the
case j = 0 and for the variable s = 1

2 + µ in a 1/ log q-neigborhood of the critical line. Cauchy’s
formula then provides the bound for 1

2 + µ on the critical line for higher derivatives. �
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7.4.1. Proof of Corollary 1.3. Let ϕ be a smooth test function on [0,+∞[, equal to 1 for 0 6 x 6
1/2 and equal to 0 for x > 1. Let f ∈ S∗k(q) as in the statement. Let X = X(f) be the largest
integer such that λf (n) = λg(n) for all n 6 X. If X < D, we are finished. Otherwise we have

X �g

∑
n6X/2

|λg(n)|2 =
∑

n6X/2

λf (n)λg(n) 6
∑
n6X

λf (n)λg(n)ϕ(n/X),

where the first inequality follows by the fact that the Rankin-Selberg convolution L(g ⊗ g, s) has
a simple pole at s = 1, and the others by the non-negativity of of ϕ and of λf (n)λg(n) for n 6 X.
The last sum is estimated by Mellin transform and a contour shift to Re(s) = 1/2 + δ for any
δ > 0: applying the Phragmen-Lindelöf principle with the bound of Theorem 1.1, one finds that∑

n6X

λf (n)λg(n)ϕ(n/X)�ϕ,δ X
1/2+δq(1/2−δ)(1−2γ)

(where γ = 1/80 − ε is the exponent improving on the convexity bound for the Rankin-Selberg
convolution). It follows that

X �g,δ q
1−2γ+δ

for any δ > 0, which is Corollary 1.3.

7.5. Asymptotic evaluation. To prove Theorem 1.7, we need the asymptotics of the second
moment, not just an upper bound. Our techniques only accomplish this when S∗k(q) = Bk(q), so
we add the assumptions that χq is trivial, q is prime, and k < 12. At this point essentially all
of the work has been done, it is a matter to combine all the preceeding estimates: first by (7.16)
along with Proposition 6.2 we have

MOD
g,g′ (`) = εµ(g)

ϕ(q)
q`1/2

ress=0,−µ
∑
de=`

e−s
∑
n

λg(en)λg′(dn)
n1+s

L(χD, 1 + 2s)Hg(s)Vg′(
dn

qD′
)
(Dq)s

s+ µ

−εµ(g)
∑
de=`

d−1/2
∑
n

λg′(dn)
n1/2

Vg′(
dn

qD′
)MD

g (en) +Oε,g,g′((1 + |t|)Bqε−1),(7.18)

and from (7.3) (applied to the pairs (g1, µ1) = (g,−µ), (g2, µ2) = (g′, µ′)) and (6.1) we know that
the second term in (7.18) equals

−εµ(g)MD
g,g′(`) +Oε,g,g′((1 + |t|)Bqε−1).

Combining (4.19) with the equality

Mg,g′(`) = MD
g,g′(`) +MOD

g,g′ (`) +Oε,g,g′

(
(1 + |t|+ |t′|)Bqε

(
`3/4q−1/12 + `17/8q−1/4

))
,

we see that the various MD terms cancel each other as well as the possible extra residu at s = 0
for µ 6= 0 (since in that case χD is trivial and g = g); hence we obtain the following:

Theorem 7.3. Let g and g′ be primitive (non exceptional) cusp forms of square free level D,D′

and nebentypus χD, χD′, respectively. Assume that q is prime, coprime with DD′, that χq is the
trivial character and S∗k(q) = Bk(q). Let µ := δ + it, µ′ = δ′ + it′ with |δ|, |δ′| 6 1/ log q and
t, t′ ∈ R. For any ` < q and any ε > 0,

(qD)µ(qD′)µ
′Mg,g′(`) = Mmain

g,g′ (`) + εµ(g)εµ′(g′)Mmain
g,g′ (`)

+εµ′(g′)Mmain
g,g′ (`) + εµ(g)Mmain

g,g′ (`)

+Oε

(
(1 + |t|+ |t′|)Bqε

(
`3/4q−1/12 + `17/8q−1/4

))
,
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the implied constant depending on ε, k, g, g′ with εµ(g) defined in (4.18),

Mmain
g,g′ (`) :=

ϕ(q)
q`1/2

ress=µ
1

2πi

∫
(3)

Jg,g′(s, t)qs+tDsD′
t dt

(s− µ)(t− µ′)
,

Jg,g′(s, t) := Hg(s)L(χD, 1 + 2s)Hg′(t)L(q)(χD′ , 1 + 2t)L(g ⊗ g′; `; s, t),

L(g ⊗ g′; `; s, t) = νg,g′(`; s, t)
L(g ⊗ g′, 1 + s+ t)

L(χDχD′ , 2 + 2s+ 2t)
,

where νg,g′(`; s, t) is the multiplicative function of ` defined by

νg,g′(`; s, t) :=
∑
de=`

1
dset

∏
p|de

( ∞∑
k=0

λg(pk+vp(d))λg′(pk+vp(e))
pk(1+s+t)

)( ∞∑
k=0

λg(pk)λg′(pk)
pk(1+s+t)

)−1

;

and the 3 other mains terms are defined following Convention 4.1

Now we prove Proposition 1.6. We suppose that g has trivial nebentypus (so g is self-dual)
and holomorphic. Applying Theorem 7.3 for µ = µ′ = 0 and ` = 1, we find that, up to remainder
terms of order q−1/12+ε, the second moment equals

Mg,g(1) = 4
φ(q)
q

ress=0
1

2πi

∫
(3)

Hg(s)Hg(t)

×(qD)s+tζ(D)(1 + 2s)ζ(D)(1 + 2t)
L(g ⊗ g, 1 + s+ t)
ζ(D)(2 + 2s+ 2t)

dt

st
.

We can shift the t contour to <et = −1/2 without hitting any poles other than at t = 0, so it
remains to calculate the asymptotics at that point since the remaining contour contributes as a
O(q−1/2+ε). The residue at s = t = 0 clearly give a polynomial in log q. The leading term comes
from replacing ζ(D)(1 + 2z) by φ(D)

D (2z)−1 and L(g ⊗ g, 1 + s+ t) by Rg(s+ t)−1 where

Rg = ress=1L(g ⊗ g, s) = ress=1
ζ(s)
ζD(s)

L(sym2g, s)
ζ(2s)

=

∏
p|D(1− p−1)

ζ(2)
L(sym2g, 1).

Since ress,t=0
qs+t

s2t2(s+t)
= (log q)3

3 , we can conclude the proof of Proposition 1.6.

8. Quadratic forms and linear independence

In this section, we restrict to the case when χq is trivial, q is prime, and k < 12, so Bk(q) = S∗k(q)
and ε(f⊗g) = ε(g). We restrict to the case when µ = 0 and g has real coefficients (thus ε(g) = ±1
and χD is real), and we assume that the coefficients λg(n) satisfy the Ramanujan-Petersson bound
(3.6). We will use the results of Sections 5 and 6 to analyze the behavior of certain quadratic
forms related to the values L(f ⊗ g, 1/2). This will in turn allow us to prove a series of linear
independence results similar to those of [V2].

8.1. When ε(g) = 1. We compute the quadratic form

Q(~x) :=
∑h

f∈S∗k(q)

L(f ⊗ g, 1/2)|
∑
`6L

x`λf (`)|2.

We will show that, under certain restrictions, this is positive definite.



RANKIN-SELBERG L FUNCTIONS IN THE LEVEL ASPECT 29

Theorem 8.1. For any fixed 1/2 > ε > 0, for L 6 (q/D5)1/2−ε, and for q sufficiently large
(depending on ε, g) the quadratic form Q(~x) is positive definite.

Proof. For the moment, we assume that χ is non-trivial. We have

λf (`1)λf (`2) =
∑

d|(`1,`2)

εq(d)λf (`1`2/d2),

so that
Q(~x) =

∑
d

εq(d)
∑
`1,`2

xd`1xd`2M1(`1`2).

Let L′ = L2 and define, for ` 6 L′,

x` :=
∑
d

εq(d)
∑
`1`2=`

xd`1xd`2 ,

so that
Q(~x) = L( ~X), ~X ∈ RL′ .

This is now a linear form in ~X, so we can use the results of Section 5.1 to show that

Q(~x) = QM (~x) + Err(~x)

with

(8.1) Err(~x)�ε q
ε

(
L′1/2

q1/2D1/2
+
(
L′

q

)1/4

D3/4

)
|| ~X||2,

the implied constant depending on ε, g and

QM (~x) = 2L(χD, 1)
∑
d

εq(d)
∑
`1,`2

xd`1xd`2

`
1/2
1 `

1/2
2

λg(`1`2).

By the Hecke recursion,

λg(`1`2) =
∑

b|(`1,`2)

χD(b)µ(b)λg(`1/b)λg(`2/b),

so

QM (~x) = 2L(χD, 1)
∑
k

ν(k)(
∑
`

xk`
λg(`)
`1/2

)2 := 2L(χD, 1)
∑
k

ν(k)y2
k

with

ν(k) =
∑
bd=k

εq(d)µ(b)
ε2(b)
b

=
∏
p|k

(1− 1
p

) if k < q (since q is prime),

and

yk =
∑
`

xk`
λg(`)
`1/2

.

In other words, we have diagonalizedQM (~x), which is now clearly positive definite since L(χD, 1)ν(k)
is positive for all k. It remains to bound Err(~x) in terms of QM (~x) to prove that Q(~x) is positive
definite. We have∑

`6L2

|x`|2 6
∑
`

(
∑
`1`2=`

∑
d

|xd`1 ||xd`2 |)2 �ε L
ε
∑
`1,`2

(
∑
d

|xd`1 ||xd`2 |)2

�ε L
ε
∑
`1,`2

∑
d1

|xd1`1 |2
∑
d2

|xd2`2 |2 �ε L
ε(
∑
`

|x`|2)2.
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By Moebius inversion,

x` =
∑
k

yk`
(λ−1
g )(k)
k1/2

where λ−1
g is the convolution inverse of λg:

(λ−1
g )(k) =

∑
mn2=k

µ(m)λg(m)χD(n)µ2(n).

Thus ∑
`6L

|x`|2 6
∑
`

(
∑
k6L/l

|yk`|
(λ−1
g )(k)
k1/2

)2

6
∑
`

(
∑
k6L/`

|yk`|2)(
∑
k6L/`

|(λ−1
g )(k)|2

k
)�ε q

ε
∑
k

|yk|2,

by (3.8). Combining this with (8.1) we have

Err(~x)�ε q
ε(

L

q1/2D1/2
+
(
L2

q

)1/4

D3/4)
∑
k

|yk|2.

Returning to QM (~x), since χD is real we have L(χD, 1) � D−1/2 (of course, we could use
L(χD, 1) > c(ε)D−ε but we prefer the results to be effective) so that

QD(~x)�ε q
εD−1/2

∑
k

|yk|2

which finishes the proof of Theorem 8.1 if χD is non-trivial.
If χD is trivial, the analysis of the quadratic form is essentially that of [V2] and we do not

repeat the details here. �

8.2. When ε(g) = −1. Now we consider the case where ε(g) = −1 and χD is non-trivial. The
functional equation then implies that L(f ⊗ g, 1/2) = 0, so we must consider the first derivative
to get interesting results. The corresponding quadratic form is then

Q′(~x) :=
∑h

f∈S∗k(q)

L′(f ⊗ g, 1/2)(
∑
`6L

x`λf (`))2.

Theorem 8.2. For any fixed 1/2 > ε > 0, for L 6 (q/D5)1/2−ε, and for q large enough (depending
on ε, g) the quadratic form Q′(~x) is positive definite.

We can again use the functional equation to get

(8.2) L′(f ⊗ g, 1/2) = 2
∑
n>1

λf (n)λg(n)
n1/2

Wg(
n

qD
)

with

Wg(y) :=
1

2πi

∫
(3)

Hg(s)L(χ, 1 + 2s)y−s
ds

s2
.

Note that, by the usual argument, for all A > 0 we have

Wg(y)�A y
−A
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and

(8.3) Wg(y) = ress=0Hg(s)L(χ, 1 + 2s)
y−s

s2
+O(τ(D)D̂1/2y1/2).

Following the methods of the previous section, we can again write

Q′(~x) = Q′M (~x) + Err(~x)

with Err(~x) satisfying the same bound as before and

Q′M (~x) = (L(χ, 1) log qD + 2L′(χ, 1) +H ′g(0)L(χ, 1))R(~x)− L(χ, 1)S(~x)

where R(~x), S(~x) are as above. Thus

Q′M (~x) > (L(χ, 1) log(qD/L2)(1 + o(1)) + 2L′(χ, 1))
∑
k

ν(k)y2
k

From the Hadamard factorization theorem [D] for L(χ, s), we have

L′

L
(χ, 1) > −1

2 logD +O(1)

so that
Q′M (~x) > L(χ, 1) log(q/L2)(1 + o(1))

∑
k

ν(k)y2
k,

and we finish as before.

Remark. There are stronger variants of Theorems 8.1 and 8.2 which can be obtained along the
same lines. It is possible to replace L(f ⊗ g, 1

2) by L(f, 1
2)L(f ⊗ g, 1

2) to get the same result at the
cost of sharpening the condition L �ε (q/D5)1/2−ε to L �ε (q/D5)1/4−ε. Using Theorem 7.3, it
is also possible to replace L(f ⊗ g, 1

2) by L(f ⊗ g, 1
2)L(f ⊗ g′, 1

2) with the stronger condition that
L�ε,g,g′ q

1/30−ε.

8.3. Linear independence results. We now use Theorems 8.1 and 8.2 to prove the linear
independence of the actions of Hecke operators in various settings. The general situation is the
following: we have a complex hermitian vector space (V, (, )) equipped with a linear action of
the Hecke algebra T , generated by {T1, . . . T` . . . }(`,q)=1, which is symmetric with respect to the
inner product. Suppose there is an element eg ∈ V with f -eigencomponents eg,f satisfying the
orthogonality relations

(8.4) (eg,f , eg,f ′) = δf=f ′cgL(f ⊗ g, 1/2) if ε(g) = 1

(8.5) (eg,f , eg,f ′) = δf=f ′cgL
′(f ⊗ g, 1/2))if ε(g) = −1

for some positive cg > 0. In the settings we consider, the fact that (eg,f , eg,f ′) = 0 for f 6= f ′

follows immediately from the symmetry of the action of the T` and the strong multiplicity one
theorem.

Theorem 8.3. For any fixed 1/2 > ε > 0, for L 6 (qD−5)1/2−ε, and for q large enough the
vectors T1eg, T2eg, . . . , TLeg are linearly independent.

Proof. Suppose that there exists ~x = (x1, . . . xL) ∈ CL such that∑
`

x`T`eg = 0V .
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Then for each f ∈ S∗k(q, χq) ∑
`

x`T`eg,f = 0V =
∑
`

x`λf (`)eg,f ,

and taking the inner product of this last vector with itself, and summing over f , gives

Q(~x) = 0 =
∑
f

L(f ⊗ g, 1/2)|
∑
`6L

x`λf (`)|2.

Since the λf (`) and L(f ⊗ g, 1/2) are real numbers Theorem 8.1 implies that ~x = 0 if L is small
enough. �

Theorem 8.3 may have interesting arithmetic interpretations. Let K := Q(
√
−D) be an imagi-

nary quadratic field of discriminant D, χD = (−D∗ ) the associated Kronecker symbol, and HK the
Hilbert class field of K. As discussed in the introduction, given a character χ̃ of Gal(HK/K), we
can associate to it a theta function gχ̃(z) which is a modular form of weight one on Γ0(D) with
nebentypus χK . The sign of the functional equation of L(f ⊗ gχ̃, s) is ε(g) = χK(−q) = −χK(q).
When every prime factor of q splits in K, the above axiomatic applies to eg = eK,χ̃, the χ̃-
eigencomponent of a Heegner divisor in J0(q)(HK). In this case formula (8.5) is the celebrated
formula of Gross and Zagier [GZ]. Theorem 8.3 thus implies Theorem 2.1.

If q is inert in K (see [G, BD]), the vector space V is defined to be M ⊗ C, where M is the
free finite Z-module of degree zero divisors supported on the set of supersingular points in the
fiber (of bad reduction) of X0(q)(Fq) (this fiber is formed by the union of two projective curves
intersecting transversally at the super-singular points). The action of the Hecke algebra extends
to this fiber, and the Hecke module M is equipped with an nondegenerate inner product which
gives (, ) on V . Alternatively, M can be described as the character group of the toric part of the
fiber at q of the Jacobian J0(q), the inner product becoming the monodromy pairing. Associated
to K is a finite set of Heegner divisors {eK} living on M which are acted on by Gal(HK/K).
For any eK , the χ̃-eigencomponent eK,χ̃ can be taken as our eg of Theorem 8.3. In this case the
formula (8.4) was proven by Gross in [G].

In higher weight (k > 2) there is a similar theory and similar formulae which involve higher
dimensional Sato-Kuga varieties instead of X0(q). The analogue of the Gross-Zagier formula is
due to Zhang (see [Z1],[Z2]). In this setting, the inner product is not known to be positive (and
L′(f ⊗ g, 1/2) is not known to be non-negative), but we do not use the individual positivity in
our argument, so the linear independence of the image of the corresponding Heegner cycles still
holds.

9. Mollification

In this section, we compute the mollified moments and thus prove Theorem 1.7. We assume
for the moment that L(f ⊗ g, 1

2) is not identically zero (that is, if g is real then ε(g) = 1), so we
wish to evaluate

Mg :=
∑h

f∈S∗k(q)

L(f ⊗ g, 1/2)M(f ⊗ g)

and
Mg,g :=

∑h

f∈S∗k(q)

|L(f ⊗ g, 1/2)|2|M(f ⊗ g)|2

for a particular mollifier. Since the exact proportion of non-vanishing for L(f ⊗ g, 1
2) (or its

derivatives), is not terribly important, we will take a very coarse mollifier. Moreover, since we do
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not want to assume the Ramanujan-Petersson conjecture in general, we are also going to sieve a
certain number of “small” primes: let C > 1 be a constant to be chosen later, and set P =

∏
p6C p

the product of the primes less than C. For L > 1, not an integer, we define the mollifier

(9.1) MP (f ⊗ g) =
∑

`6L,(`,P )=1

µ(`)λf (`)λg(`)
`1/2

1
2πi

∫
(3)

(
L

`
)z
dz

z3
=

∑
`<L,(`,P )=1

λf (`)
`1/2

x`.

The summation condition ` 6 L is redundant, since when ` > L the integral defining x` vanishes,
as is easily seen by shifting the contour to the right. Since our focus in this section will usually
be on poles of holomorphic functions, rather than their values, we denote by ν(z1, z2, . . . , zn)
any function, holomorphic and non-vanishing in the domain <ezi > −1/10 i = 1 . . . n, which is
uniformly bounded in this domain, as are its inverse and all of its low partial derivatives. In
particular, we can use this notation for

ν(z) = LP (g ⊗ g, 1 + z) :=
∏
p|P

Lp(g ⊗ g, 1 + z),

the product over small primes of the local factors of the Rankin-Selberg convolution L-function.
By (3.6) and (3.7), this above function satisfies the required properties in every domain of the
form <ez > −4/5 + ε for ε > 0. In the sequel, the value of the ν function may change from one
line to another.

9.1. The first mollified moment. Shifting the z contour in (9.1) to <ez = ε, we find by (3.8)
that ∑

`6L,(`,P )=1

|x`|2

`
�g,ε L

ε.

By (4.6) and Proposition 5.2 (for µ = 0),

Mg = Mmain
g + ε(g)Mmain

g +Oε,g(L1/4q−1/4+ε),

where

Mmain
g = ress=0

Hg(s)L(χD, 1 + 2s)(qD)s

s

∑
`

x`λg(`)
`1+s

(9.2) = ress=0
Hg(s)L(χD, 1 + 2s)(qD)s

s

1
2πi

∫
(3)

∑
(`,P )=1

µ(`)λ2
g(`)

`1+s+z

Lzdz

z3
.

The error term is admissible when L = q∆ for some fixed ∆ < 1. We have the factorization

∑
(`,P )=1

µ(`)λ2
g(`)

`1+s+z
= ν1(s+ z)

L(P )(χ2
D, 2 + 2s+ 2z)

L(P )(g ⊗ g, 1 + s+ z)
= ν1(s, z)

L(χ2
D, 2 + 2s+ 2z)

L(g ⊗ g, 1 + s+ z)
,

where for P large enough ν1(s, z) is of the type described above. If P is choosen large enough,
then |ν1(0, 0)| is bounded from below by a positive constant depending on P only.
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9.1.1. Shifting the z contour. As in [KMV1] Section 4., we evaluate Mmain
g by calculating the s

residue and deforming the z contour to the left of the line <ez = 0, so that the main term comes
from the residue of the resulting expression at z = 0, the integral along the new contour being
negligible. We use the following lemma which can be proved by combining the modularity of the
symetric square L function established by Gelbart-Jacquet, the modularity of GL2×GL2 Rankin-
Selberg L functions established recently by Ramakrisnan [Ra] with the method of Hadamard–de
la Vallée-Poussin and the general theory of Rankin-Selberg L functions for automorphic forms on
GL3 and GL4 (see [Mo]).

Lemma 9.1. Given g as above there exists cg > 0 such that the functions L(g ⊗ g, 1 + z),
L(g ⊗ g, 1 + z), and L(g ⊗ g, 1 + z) have no zeros in the domain

{z, <ez > −cg
log(|=mz|+ 2)

}.

Moreover, on the border γ := {z, <ez = −cg
log(|=mz|+2)}, these functions, their inverses and all their

derivatives up to any order α are bounded in modulus by Cg,α,δ(1 + |=mz|)δ for any δ > 0.

Let γ denote the contour {z, <ez = −cg
log(|=mz|+2)}.

5 By shifting the z contour of (9.2) to
γ we encounter a pole at z = 0 and a contour integral which, by Lemma 9.1, is bounded by
Og(e−c

′
g

√
logL). This will turn out to be a negligible term since the residue will be a power of

log q.
So the main term of (9.2) is

(9.3) ress,z=0
ν1(0, 0)Hg(s)L(χD, 1 + 2s)(qD)s

s

L(χ2
D, 2 + 2s+ 2z)Lz

L(g ⊗ g, 1 + s+ z)z3
.

What is important to us are the highest powers of log q or logL coming from this expression, so
in the forthcoming computation we will replace any function holomorphic and smaller than any
power of log q near (0, 0) by its value at that point. Evaluating this term depends on the number
of poles at the origin, which in turn depends on whether χD is trivial or not. We thus break into
two cases.

9.1.2. χD non-trivial. Suppose first that g has complex coefficients. The only poles in (9.3) come
from the 1/sz3 factor, so the main term is

(9.4) ν1(0, 0)
L(χD, 1)L(χ2

D, 2)
L(g ⊗ g, 1)

ress,z=0
(qD)sLz

sz3
=
ν1(0, 0)

2
L(χD, 1)L(χ2

D, 2)
L(g ⊗ g, 1)

log2 L,

the remaining terms being smaller by a power of log q (note also the importance of η1(0, 0) being
non-zero). Putting this into Mmain

g , we have∑
`

µ(`)|λg(`)|2

`1+s+z
= ν1(s, z)

L(χDχD, 2 + 2s+ 2z)
L(g ⊗ g, 1 + s+ z)

,

so that, setting Rg = ress=1L(g ⊗ g, s),

ν1(0, 0)
L(χD, 1)L(χDχD, 2)

Rg
ress,z=0

(qD)sLz(s+ z)
sz3

= ν1(0, 0)
L(χD, 1)L(χ2

D, 2)
Rg

logL,

which is smaller than (9.4) by a factor of logL. Thus this term can be ignored, and the main
term for the first mollified moment is given by (9.4).

5We take cg < 1/10 so that we may bound any function of the form ν1 on γ.
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Similarly, if g = g, the main term of the mollified first moment is given by

(9.5) 2ν1(0, 0)
L(χD, 1)L(χ2

D, 2)
Rg

ress,z=0
(qD)sLz(s+ z)

sz3
= 2ν1(0, 0)

L(χD, 1)L(χ2
D, 2)

Rg
logL.

9.1.3. χD trivial. If χD is the trivial character, then g = g and L(χD, 1 + 2s) has a simple pole
at s = 0. The same sort of calculations as above lead to a main term of

2ν1(0, 0)
ϕ(D)
2D

L(χ2
D, 2)
Rg

ress,z=0
(qD)sLz(s+ z)

s2z3

(9.6) = ν1(0, 0)
ϕ(D)
D

L(χ2
D, 2)
Rg

(log qD logL+ 1
2 log2 L).

9.2. The second mollified moment. Next we turn to the second moment. We start with the
square of the mollifier: by (3.3) we obtain

(9.7) |MP (f ⊗ g)|2 =
∑
`<L2

(`,P )=1

λf (`)
`1/2

=
∑

`<L2,(`,P )=1

λf (`)
`1/2

x`

where

x` :=
1

(2iπ)2

∫∫
(3)2

∑
d, (d,P `)=1

∑
`1`2=`

µ2(d)|λg(d)|2

d1+z1+z2

µ(`1)λg(`1)µ(`2)λg(`2)
`z11 `

z2
2

Lz1+z2 dz1dz2

z3
1z

3
2

.

Shifting the z1 and z2 contours to <ezi = ε and using (3.8), we obtain

(9.8) |x`| �ε,g q
ε
∑
`1|`

|λg(`1)|2.

Now we have
Mg,g =

∑
`6L2

(`,P )=1

x`
`1/2
Mg,g(0, 0; `),

where Mg,g(`) is defined in (4.7). Using Theorem 7.3 for µ = µ′ = 0, g′ = g, together with (9.8),
we obtain

(9.9) Mg,g =Mmain
g,g +Oε,g(qε(L5/2q−1/12 + L21/4q−1/4)),

with
Mmain

g,g = Mmain
g,g (L) +Mmain

g,g (L) + ε(g)Mmain
g,g (L) + ε(g)Mmain

g,g (L),

(9.10) Mmain
g,g (L) :=

ϕ(q)
q

ress=0
1

2πi

∫
(3)

Jg,g(s, t)
∑
`<L2

(`,P )=1

x`ηg,g(`; s, t)
`

(qD)s+t
dt

st
,

and

(9.11) Jg,g′(s, t) := Hg(s)Hg(t)L(χD, 1 + 2s)L(q)(χD, 1 + 2t)
L(g ⊗ g, 1 + s+ t)

L(χDχD, 2 + 2s+ 2t)
,

where

(9.12) ηg,g(`; s, t) =
∑
de=`

1
dset

∏
p|de

(∑
k>0

λg(pk+vp(d))λg(pk+vp(e))
pk(1+s+t)

)(∑
k>0

λg(pk)λg(pk)
pk(1+s+t)

)−1

.
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The other three terms, Mmain
g,g (L), Mmain

g,g (L), and Mmain
g,g (L) are defined similarly. As long as

L = q∆ for some fixed 0 < ∆ < 1/30 the error term in (9.9) is o(1) which is admissible since the
main term will be a power of log q. We also replace ϕ(q)/q by 1 at an admissible cost.

We will concentrate on the first term, Mmain
g,g (L), but we will also mention where the other

terms differ.

9.3. The main term of the second moment. First we get rid of the t integral in (9.10): we
evaluate the residue at s = 0 then shift the t contour to <et = −1/2+ε, picking up a pole at t = 0.
By (9.8), together with (3.8), the integral along the new contour is bounded by Oε,g(q−1/2+ε),
which we can ignore. Thus, up to an admissible error term,

Mmain
g,g (L) = ress,t=0Jg,g(s, t)

∑
(`,P )=1

xlηg,g(`; s, t)
`

(qD)s+t

st

(9.13) =
1

(2iπ)2

∫∫
(3)2

ress,t=0Jg,g(s, t)
(qD)s+t

st
Kg,g(s, t, z1, z2)Lz1+z2 dz1dz2

z3
1z

3
2

,

where

Kg,g(s, t, z1, z2) =
∑

(`,P )=1

ηg,g(`; s, t)
`

( ∑
`1`2=`

µ(`1)λg(`1)µ(`2)λg(`2)
`z11 `

z2
2

) ∑
d,(d,P `)=1

µ2(d)|λg(d)|2

d1+z1+z2
.

Note that ∑
d,(d,P `)=1

µ2(d)|λg(d)|2

d1+z1+z2
=
∏
p|`

(1 +
|λg(p)|2

p1+z1+z2
)ν2(z1 + z2)

L(g ⊗ g, 1 + z1 + z2)
L(χDχD, 2(1 + z1 + z2))

.

We may choose P large enough (but independently of g) so that by (3.7), Kg,g(s, t, z1, z2) admits
a factorization of the form

(9.14) Kg,g(s, t, z1, z2) =

ν2(s, t, z1, z2)L(χDχD, 2)|L(χ2
D, 2)|2L(g ⊗ g, 1 + z1 + z2)

L(g ⊗ g, 1 + s+ z2)L(g ⊗ g, 1 + t+ z1)L(g ⊗ g, 1 + s+ z1)L(g ⊗ g, 1 + t+ z2)
Once again we extract the main term by shifting the contours of z1 and z2 one at a time to γ. The
difference from the first moment is that we will have to deal with an extra pole at z1 +z2 = 0. We
will handle this extra contribution in a way similar [KMV2] Section 5.3 (except with only two z
variables instead of the four found there). Here we merely sketch the argument: first we shift the
zj contour to − γ

4−j , then we shift the z1 contour to γ encountering poles at z1 = 0 and z1 = −z2.
The resulting integral of z1 along γ is negligible: shifting z2 to <z2 = 1/ log q lets us bound the
resulting z2 integral by (log q(1 + |z1|))B for some absolute constant B using Lemma 9.1, so the
z1 integral along γ is bounded by∫

R
(log q)B

′
(log(2 + |u|)B′L−cg/2 log(2+|u|) du

(1 + |u|)4

�g (log q)B
′
eB
′ log(log q))−b1(logL)1/2 �g e

−δ log1/2 q

for some absolute δ = δ(g,B′,∆) > 0. This is certainly sufficient, so we may ignore the resulting
z1 contour and deal only with the residues passed during the shift.
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9.3.1. The pole at z1 = −z2. ¿From (9.14) this pole is simple, so to evaluate it we replace L(g ⊗
g, 1 + z1 + z2) by Rg and all other z1’s by −z2. At this point there are no powers of L remaining,
so we are left with the residues at s = t = 0 and for these the main contribution contribution
come only from the Jg,g(s, t)(qD)s+t portion (recall that z2 is along −γ/2 which is faraway from
0). We find that the contribution of this pole is

Og(log q3) if χD is trivial,(9.15)
Og(log q) if χD is non-trivial.(9.16)

In each case these will turn out to be smaller than the poles encountered at z1 = z2 = 0. Note
that the powers of log q in (9.15) and (9.16) are independent of the power of z, we have taken for
the mollifier (here 3). Had we choosen that power to be 2, these terms would have been the main
contribution, which is very inefficient for the mollification.

9.3.2. The pole at z1 = 0. We are left with the contribution of the pole at z1 = 0. We evaluate
the residue at z1 = 0 then shift the z2 contour to γ. In the process, we meet a pole at z2 = 0 and
the resulting z2 integral along γ contributes a negligible error term as above. So the main term
of Mmain

g,g (L) is given by the residue of (9.13) at s = t = z1 = z2 = 0. The term with the highest
power of log q and logL is

ν2(0, 0, 0, 0)|L(χ2
D, 2)|2

ress,t,z1,z2=0
(qD)s+tLz1+z2L(χD, 1 + 2s)L(χD, 1 + 2t)L(g ⊗ g, 1 + z1 + z2)L(g ⊗ g, 1 + s+ t)

stz3
1z

3
2L(g ⊗ g, 1 + s+ z2)L(g ⊗ g, 1 + t+ z1)L(g ⊗ g, 1 + s+ z1)L(g ⊗ g, 1 + t+ z2)

.

Again, it makes a considerable difference whether χD is trivial or not, and whether g = g or not.

9.3.3. χD non-trivial and g 6= g. When χD is non-trivial we may replace L(χD, 1+2s)L(χD, 1+2t)
by |L(χD, 1)|2, since they contribute no poles to the expression. We may also replace L(g⊗ g, 1 +
s+ z1)L(g ⊗ g, 1 + t+ z2) by |L(g ⊗ g, 1)|2, so it is enough to compute

ress,t,z1,z2=0
(qD)s+tLz1+z2

stz3
1z

3
2

(s+ z2)(t+ z1)
(s+ t)(z1 + z2)

.

The pole at s = 0 is simple, so this equals

rest,z1,z2=0
(qD)tLz1+z2

t2z3
1z

2
2

(t+ z1)
(z1 + z2)

=
log4 L

8
+ log qD

log3 L

3
.

Note that from (9.16) the z1 + z2 = 0 pole does not contribute as a main term.
This is the first time that the evaluation of Mmain

g,g (L) differs. In that case, ηg,g is replaced by
ηg,g and Jg,g is transformed into Jg,g, so arguing as before we have a main term of

ν2(0, 0, 0, 0)|L(χ2
D, 2)|2ress,t,z1,z2=0

(qD)s+tLz1+z2L(χD, 1 + 2s)L(χD, 1 + 2t)L(g ⊗ g, 1 + s+ t)L(g ⊗ g, 1 + z1 + z2)
stz3

1z
3
2L(g ⊗ g, 1 + s+ z1)L(g ⊗ g, 1 + t+ z1)L(g ⊗ g, 1 + s+ z2)L(g ⊗ g, 1 + t+ z2)

.

This time L(g ⊗ g, 1 + s+ t) has no pole at s+ t = 0 so the residue is smaller by a factor logL,
thus this term and that coming from Mmain

g,g (L) do not contribute as main terms.
Adding in the contribution from Mmain

g,g (L), the main term for the second mollified moment is

(9.17) 2ν2(0, 0, 0, 0)
|L(χ2

D, 2)|2|L(χD, 1)|2

|L(g ⊗ g, 1)|2
(
log4 L

8
+ log qD

log3 L

3
).
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Comparing with the square of the modulus of (9.4) we see that the powers of logL and log q
match, so the fraction of L(f ⊗ g, 1

2) which do not vanish is at least∑h

f∈S∗k(q)

L(f⊗g,12 )6=0

1 >
|M1(g)|2

M2(g)
� ∆

|ν1(0, 0)|2

ν2(0, 0, 0, 0)
(1 + og(1)).

In particular, the positive constant ∆ |ν1(0,0)|2
ν2(0,0,0,0) is bounded from below independent of g.

9.3.4. χD non-trivial and g = g. In this case all four Mmain
g,g (L) terms are equal, so the main term

is
4ν2(0, 0, 0, 0)|L(χ2

D, 2)|2ress,t,z1,z2=0

(qD)s+tLz1+z2 |L(χD, 1)|2L(g ⊗ g, 1 + z1 + z2)L(g ⊗ g, 1 + s+ t)
stz3

1z
3
2L(g ⊗ g, 1 + s+ z1)L(g ⊗ g, 1 + s+ z2)L(g ⊗ g, 1 + t+ z1)L(g ⊗ g, 1 + t+ z2)

,

which reduces to

4ν2(0, 0, 0, 0)
|L(χ2

D, 2)|2|L(χD, 1)|2

R2
g

ress,t,z1,z2=0
(qD)s+tLz1+z2

stz3
1z

3
2

(s+ z1)(s+ z2)(t+ z1)(t+ z2)
(s+ t)(z1 + z2)

(9.18) = 4ν2(0, 0, 0, 0)
|L(χ2

D, 2)|2|L(χD, 1)|2

R2
g

(log2 L+ logL log qD)

Again, from (9.16), the z1 + z2 = 0 pole does not contribute as a main term and the ratio of the
square of the modulus of (9.5) to the modulus of (9.18) is bounded from below by an absolute
positive constant.

9.3.5. χD trivial. In this case g = g and we are reduced to

4ν2(0, 0, 0, 0)(
ϕ(D)
2D

)2L(χ2
D, 2)2

R2
g

×ress,t,z1,z2=0
(qD)s+tLz1+z2

s2t2z3
1z

3
2

(s+ z1)(s+ z2)(t+ z1)(t+ z2)
(s+ t)(z1 + z2)

(9.19) = ν2(0, 0, 0, 0)(
ϕ(D)
D

)2L(χ2
D, 2)2

R2
g

(
log4 L

4
+log3 L log qD+log2 L log2 qD+

logL(log qD)3

3
)

and again this matches with the square of (9.6) in magnitude.

9.4. Non-vanishing of the first derivative. Finally, if g = g and ε(g) = −1 we have L(f ⊗
g, 1

2) = 0 identically, so we turn to computing the first and second mollified moments of the first
derivative: ∑h

f∈S∗k(q)

L′(f ⊗ g)M(f ⊗ g), and
∑h

f∈S∗k(q)

L′(f ⊗ g)2M(f ⊗ g)2

The case is completely analoguous to the above one, starting from (4.11), all that we do is replace
ds
s and dt

t by ds
s2

and dt
t2

, which affects the orders of magnitude of the first and second moments in
the same way (increasing order of magnitude of the former by one factor of log q, and increasing
the order of the latter by two factors of log q, while changing the constants slightly).
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9.5. Removing the harmonic weight. So far we have proved (1.3) with

|{f ∈ S∗k(q), L(f ⊗ g, 1
2) 6= 0}|

|S∗k(q)|
replaced by

Γ(k − 1)
(4π)k−1

∑
f∈S∗k(q)

L(f⊗g,12 )6=0

1
(f, f)

and (1.4) with

|{f ∈ S∗k(q), L′(f ⊗ g, 1
2) 6= 0}|

|S∗k(q)|
replaced by

Γ(k − 1)
(4π)k−1

∑
f∈S∗k(q)

L′(f⊗g,12 ) 6=0

1
(f, f)

.

In [KMV2], Section 6, a procedure is described for passing from harmonic weights to natural
weights. This same procedure applies in our case, the key point being the convexity-breaking
bound of Theorem 1.1 (in [KMV2] the necessary breaking-convexity bound was provided by
Theorem 1.2). From this one can conclude the proof of Theorem 1.7.

Appendix A. Summation formulae

In this appendix we derive formulas for expressions of the type∑
n

λg(n)e(
an

c
)F (n),

where g is one of the forms discussed in Section 3, with nebentypus χD, a and c are relatively
prime, and F is a smooth function, decaying rapidly at infinity, which vanishes in a neighborhood
of the origin.

Such formulae do not seem to be in the literature for non-trivial levels (although they are
certainly known to several people). We mix the methods of Jutila [J] and Duke-Iwaniec [DI],
starting first by establishing the analytic continuation and functional equation of the Dirichlet
series L(g, ac , s) =

∑
n>1 λg(n)e(nac )n−s, using the automorphic properties of g. The summation

formulae then follow through Mellin inversion.
Recall that the action (of weight k) of GL+

2 (R) on the space of functions on the upper half is

f|γ(z) :=
detk/2 γ
j(γ, z)k

f(γ.z)

where γ =
(
a b
c d

)
, j(γ, z) = cz + d, and γ.z = az+b

cz+d . The form g satisfies the automorphy

equation
g|γ(z) = χD(γ)g(z)

where χD(γ) = χD(d).

A.1. A review of Atkin-Lehner theory. The theory of holomorphic newforms in the classical
setting is primarily due to Atkin and Lehner [AL] in the case of trivial nebentypus, and was
extended by Li in [Li1, ALi] to the general case. We review these results in this section, noting
that they apply equally well to Maass forms. In what follows let S∗(D,χD) denote either a space
of holomorphic forms (in which case ∗ may be replaced by a k) or Maass forms.

An important role in this theory is played by the Atkin-Lehner operators, which are defined
as follows. Given a factorization D = D1D2 with (D1, D2) = 1, χD factors uniquely into χD =
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χD1χD2 where χDi is a Dirichlet character of modulus Di. For any y ≡ 1(D1), x ≡ 1(D2) and
integers z, w such that D2

1xw −Dyz = D1, the matrix(
xD1 y
zD wD1

)
,

defines a linear map
WD1 : S∗(D,χD1χD2) =⇒ S∗(D,χD1

χD2)
which is independent of the choice of w, x, y, and z. In addition, if W ′D1

comes from another
matrix of the same form but with no assumption on congruence classes x′ (mod D2) and y′ (mod
D1), then

(A.1) W ′D1
= χD1

(y′)χD2
(x′)WD1 .

For (D1, D2) = 1 with D1D2|D such that (D1D2, D/D1D2) = 1, we have

(A.2) WD2 ◦WD1 = χD2
(D1)WD1D2 , WD1 ◦WD1 = χD1(−1)χD/D1

(D1)I,

with I the identity operator. Note that if D1 = D, WD is the Atkin-Lehner involution represented
by the matrix

WD =
(

0 1
−D 0

)
.

These operators act in a convenient way on the space of newforms. To be more precise, we enclose
in the two propositions below the properties of these operators that we will use in the sequel:

Proposition A.1. [Li1, ALi] If D = D1D2 with (D1, D2) = 1, the operator WD1 sends newforms
to newforms:

• For g ∈ S∗(D,χD1χD2)∗,
g|WD1

=: ηg(D1)gD1

with gD1 ∈ S∗(D,χD1
χD2)∗ and |ηg(D1)| = 1. The constant ηg(D1) is called the pseudo-

eigenvalue of the operator WD1. If χD1 is trivial, then WD1 is an endomorphism of
S∗(D,χ) and ηg(D1) is a true eigenvalue: gD1 = g.
• If λg(D1) 6= 0,

(A.3) ηg(D1) =
G(χD1)

λg(D1)
√
D1

where G(χD1) is the Gauss sum associated with the character χD1. Moreover for D1D2|D,
such that D1 and D2 are coprimes, coprimes with D/D1D2 and λg(D1D2) 6= 0 we have

ηg(D1D2) = χD1(D2)χD2(D1)ηg(D1)ηg(D2)

• The Fourier coefficients of gD1 are

(A.4) λgD1
(n) =

{
χD1(n)λg(n) if (n,D1) = 1
χD2(n)λg(n) if n|D∞1

• If D1 = D then g|WD
= ηg(D)g with g(z) =

∑
n>1 ĝ(n)e(nz), and

(A.5) λg(n) = χD(n)λg(n) if (n,D) = 1.

In [ALi] the formula (A.3) is given only for D1 a prime power but it extends to composite D1

by (A.2) and by the multiplicative relation for the Gauss sums:

G(χD1χD2) = χD1(D2)G(χD1)χD2(D1)G(χD2).
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Proposition A.2. Let D = D0D̂ where D̂ is the conductor of χD. For g ∈ S∗(D,χD1χD2)∗ and
p a prime factor of D one has

• if p|D0,

(A.6) λg(p)2 =
{
χD̂(p)p−1 if (p,D/p) = 1,

0 if p2 |D

• if p|D̂/(D0, D̂), |λg(p)| = 1.

A.2. A factorization lemma.

Lemma A.3. Let D > 1 be an integer, and let a, c two coprimes integers. We suppose that

D1 := (c,D) is coprime with D2 := D/D1 then there exists a matrix of the form γ =
(
a b
c d

)
∈

SL2(Z), such that the following identity holds (as operators acting on weight k modular forms,
not as matrices)

γ =
(
a b
c d

)
=
(

a′ b′

c′D d′

)
◦WD2 ◦

(
1 0
0 D2

)
for some γ1 =

(
a′ b′

c′D d′

)
∈ Γ0(D). The integer d′ satisfies the congruences

(A.7) d′ ≡ a(D1), d′ ≡ −c(D2)

Proof. Since (a, c) = 1 and moreover (c,D) is coprime with D2, we may select of the form

γ =
(
a b
c d

)
with D2|d. Now pick any matrix WD2 =

(
xD2 y
zD wD2

)
representing the Atkin-

Lehner operator (in particular y ≡ 1(D2), x ≡ 1(D1)) then form

γ1 := D2Id.γ.

(
1 0
0 D−1

2

)
.W−1

D2
=
(
awD2 − zbD1 −ay + xb
cwD2 − zdD1 −cy + xd

)
∈ Γ0(D)

by our choice of d. Moreover, d′ = −cy + xd ≡ d ≡ a(D1) and d′ = −cy + xd ≡ −c(D2), hence
the lemma follows since scalar matrices act as the identity. �

A.3. The summation formula: holomorphic cusp forms. Given a, c coprimes integers such
that D1 = (c,D) is coprime with D2 = D/D1, in the next three sections we return to showing
that

L(g,
a

c
, s) :=

∑
n>1

λg(n)e(n
a

c
)n−s

admits an analytic continuation over C with a functional equation which we describe below. We
then obtain the desired summation formula by Mellin inversion.

We start with g a holomorphic cusp form of weight k. Take γ ∈ SL2(Z) as in Lemma A.3. For
any z with <ez > 0 we have, in view of Lemma A.3,

g(γz) = (cz + d)kg|γ(z) = (cz + d)kD−k/22 χ(γ1)ηg(D2)gD2(
z

D2
).

From (A.7) we have
χ(γ1) = χD1(d′)χD2(d′) = χD1(a)χD2(−c),

so that

(A.8) g(γz) = χD1(a)χD2(−c)ηg(D2)D−k/22 (cz + d)kgD2(z/D2) := κD
−k/2
2 (cz + d)kgD2(z/D2).
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For t ∈ R∗+ set zt := −d
c + i

ct , so that czt + d = i/t, γzt = it/c. By Lemma (A.3), D2 divides d,
so

e(−n d

cD2
) = e(−ndD2

c
− n dc

D2
) = e(−ndD2

c
) = e(−naD2

c
),

which in turn implies that

g(γzt) =
∑
n>1

λg(n)e(n
a

c
)n

k−1
2 exp(−2πnt

c
) =

(A.9) ik
κ√
D2

∑
n>1

λgD2
(n)e(−naD2

c
)(
n

D2
)
k−1
2 exp(− 2πn

cD2t
)t−k.

Since t→ g(γzt) has exponential decay at zero and infinity, the Mellin transform
∫∞

0 g(γzt)ts+
k−1
2

dt
t

is analytic on C. For <es sufficiently large, by the first equality in (A.9) we have∫ ∞
0

g(γzt)ts+
k−1
2
dt

t
= (

c

2π
)s+

k−1
2 Γ(s+

k − 1
2

)L(g,
a

c
, s),

which provides the analytic continuation of Γ(s+ k−1
2 )L(g, ac , s) over C. Multipliying both sides

of (A.9) by ts+(k−1)/2−1 with −<es sufficiently large, then integrating over t, we have

(A.10) (
c
√
D2

2π
)sΓ(s+

k − 1
2

)L(g,
a

c
, s) = ikκ(

c
√
D2

2π
)1−sΓ(1− s+

k − 1
2

)L(gD2 ,−
D2a

c
, 1− s),

the functional equation. Note in particular that since the left side is holomorphic for s > (k+1)/2,
the poles of the Γ function on the right must be cancelled by zeros of the L function.

Now let F : R+ → R be smooth, vanish near the origin, and decay (along with all its deriva-
tives) rapidly at infinity. Let F̂ (s) denote its Mellin transform. Equation (A.10) then gives

1
2πi

∫
(1)

F̂ (s)L(g,
a

c
, s)ds = ikκ

1
2πi

∫
(1)

F̂ (s)(
c
√
D2

2π
)1−2sΓ(1− s+ k−1

2 )

Γ(s+ k−1
2 )

L(gD2 ,−
D2a

c
, 1− s)ds.

By Mellin inversion (and a contour shift slightly to the right), the left-hand side equals∑
n>1

λg(n)e(n
a

c
)F (n).

To evaluate the right-hand side, we shift the contour to <es = −1 (crossing no poles, by the
above argument) and change variables, replacing 2(1−s) with s. The sum on n is then absolutely
convergent, and we can write our sum as

2πikκ
c
√
D2

∑
n>1

λD2(n)e(−nD2a

c
)1

2

1
2πi

∫
(4)

F̂ (1− s

2
)

Γ( s2 + k−1
2 )

Γ(1− s
2 + k−1

2 )
(
2π
√
n

c
√
D2

)−sds

Next we open the Mellin transform, with the goal of writing this expression as the integral of
a single function against F . There is a slight problem of absolute convergence when k = 1, to
avoid it we deform the line <es = 4 to the contour joining the points −1/4 + i∞,−1/4 + i, 3/4 +
i, 3/4− i,−1/4− i,−1/4− i∞, replace F̂ (1− s/2) with the integral of F against x−s/2, and shift
the s contour back to <es = 3/4 (note that the shift is justified since we perform a shift in the
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domain <es < 1 for which the residual horizontal integral go to 0 as |t| → +∞). Finally, we use
the identity ([EMOT])

Jk−1(x) = 1
2

1
2πi

∫
(σ)

(x/2)−s
Γ( s2 + k−1

2 )

Γ(1− s
2 + k−1

2 )
ds, for 0 < σ < 1

to obtain
c
∑
n>1

λg(n)e(n
a

c
)F (n) =

χD1(a)χD2(−c)ηg(D2)√
D2

∑
n>1

λgD2
(n)e(−naD2

c
)
∫ ∞

0
F (x)

[
2πikJk−1(

4π
√
nx

c
√
D2

)
]
dx.

A.4. The summation formula: Maass cusp forms. Suppose now that g is a primitive Maass
form with nebentypus χD, with a Fourier development at infinity of the form

g(z) =
∑
n>1

λg(n)cεg(nx)2|y|1/2Kir(2π|y|).

where
c+(x) = 2 cos(2πx), c−(x) = 2i sin(2πx).

Since these forms satisfy the same sorts of modular relations as do the holomorphic forms, Atkin-
Lehner theory applies to them as well. Note also that since R(f|γ) = (R(f))|γ̃ , where γ̃ is the
matrix γ with the antidiagonal multiplied by −1, we can use (A.1) to show that, for D2|D, WD2g
has parity χD2(−1)εg.

For (a, c) = 1, we first evaluate the sums∑
n>1

λg(n)c±(n
a

c
)F (n),

of which our desired sum is a simple linear combination. As before we start by establishing the
analytic continuation and functional equation of

L+(g,
a

c
, s) :=

∑
n>1

λg(n)cεg(n
a

c
)n−s, L−(g,

a

c
, s) :=

∑
n>1

λg(n)c−εg(n
a

c
)n−s

Once again, relation (A.8) is valid (with k = 1), where gD2 is some primitive Maass form of
nebentypus χD1χD2

. Using the same zt as before, we get

(A.11)
∑
n>1

λg(n)cεg(n
a

c
)2

√
t

c
Kir(2πn

t

c
) = κ

∑
n>1

λgD2
(n)cεgD2 (−nD2a

c
)2
√

1
cD2t

Kir(2πn
1

cD2t
).

For <es sufficiently large, we use the identity (see [EMOT] 6.8 (26))∫ ∞
0

√
t

c
Kir(2πn

t

c
)ts
dt

t
=

1√
c
(
c

2πn
)s+

1
2 2s−3/2Γ(

s+ 1
2 + ir

2
)Γ(

s+ 1
2 − ir
2

)

to show that∫ ∞
0

g(γzt)ts
dt

t
= 1

2c
sπ−s−

1
2 Γ(

s+ 1
2 + ir

2
)Γ(

s+ 1
2 − ir
2

)L+(g,
a

c
, 1

2 + s).

The exponential decay of g(γzt) at zero and infinity implies the analytic continuation of

Γ(
s+ 1

2 + ir

2
)Γ(

s+ 1
2 − ir
2

)L+(g,
a

c
, s).
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Arguing as before, we infer the functional equation

(A.12) Λ+(g,
a

c
, s) = κΛ+(gD2 ,−

D2a

c
, 1− s)

Λ+(g,
a

c
, s) = (

c
√
D2

π
)sΓ(

s+ ir

2
)Γ(

s− ir
2

)L+(g,
a

c
, s).

To get L−,we apply the differential operator 1
2πi

∂
∂x on both sides of (A.8) getting (since γ ∈

SL2(Z))
1

(cz + d)2

∑
n>1

λg(n)nc−εg(n<eγz)2|=mγz|1/2Kir(2πn=mγz) =

κ

D2

∑
n>1

λgD2
(n)nc−εgD2 (nx/D2)2

√
y

D2
Kir(2πny/D2).

The same argument as above leads to the functional equation

(A.13) Λ−(g,
a

c
, s) = −κΛ−(gD2 ,−

D2a

c
, 1− s),

Λ−(g,
a

c
, s) = (

c
√
D2

π
)sΓ(

1 + s+ ir

2
)Γ(

1 + s− ir
2

)L−(g,
a

c
, s).

Taking a linear combination, we have

2L(g,
a

c
, s) = L+(g,

a

c
, s) + L−(g,

a

c
, s)

= κ(
c
√
D2

π
)1−2s[(C+(s)− C−(s))L(gD2 ,−

D2a

c
, s) + εgD2

(C+(s) + C−(s))L(gD2 ,
D2a

c
, s)]

with

C+(s) =
Γ(1−s+ir

2 )Γ(1−s−ir
2 )

Γ( s+ir2 )Γ( s−ir2 )
, C−(s) =

Γ(2−s+ir
2 )Γ(2−s−ir

2 )
Γ(1+s+ir

2 )Γ(1+s−ir
2 )

.

This in turn leads to the identity

2
∑
n>1

λg(n)e(n
a

c
)F (n) =

(A.14)
2πκ
c
√
D2

∑
n>1

λD2(n)e(−nD2a

c
)1

2

1
2πi

∫
(4)

F̂ (1− s

2
)(C+(1− s

2
)− C−(1− s

2
))(

2π
√
n

c
√
D2

)−sds

+εgD2

2πκ
c
√
D2

∑
n>1

λD2(n)e(
nD2a

c
)1

2

1
2πi

∫
(4)

F̂ (1− s

2
)(C+(1− s

2
) + C−(1− s

2
))(

2π
√
n

c
√
D2

)−sds.
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A.4.1. Computation of C+(s) ± C−(s). We compute C+(s) ± C−(s) using the basic recursion
properties of Γ (the functional equation and the duplication formula):

(A.15) Γ(s)Γ(1− s) = π/ sin(πs),Γ(1
2 + s)Γ(1

2 − s) = π/ cos(πs),

(A.16) Γ(s)Γ(s+ 1
2) = 21−2sπ1/2Γ(2s).

Some straightforward trigonometric calculations give

(A.17) C+(s) + C−(s) =
cos(πir)
2−2sπ

Γ(1− s+ ir)Γ(1− s− ir),

(A.18) C+(s)− C−(s) =
22s−1

sin(πir)

[
Γ(1− s− ir)

Γ(s− ir)
− Γ(1− s+ ir)

Γ(s+ ir)

]
.

At this point, we repeat the arguments of the preceeding section, arriving at integrals of the
form

1
2πi

∫
(3/4)

F̂ (1− s

2
)Γ(

s

2
+ ir)Γ(

s

2
− ir)(4π

√
n

c
√
D2

)−sds

or
1

2πi

∫
(3/4)

F̂ (1− s

2
)
[

Γ( s2 − ir)
Γ(1− s

2 − ir)
−

Γ( s2 + ir)
Γ(1− s

2 + ir)

]
(
4π
√
n

c
√
D2

)−sds.

We again replace F̂ (1−s/2) with the integral of F against x−s/2 and exchange orders of integration.
In order to maintain convergence, and to avoid the poles at s = ±2ir, instead of staying at
<es = 3/4 we use the s-contour linking the points −1/4 + i∞,−1/4 + 2i|r|, 3/4 + 2i|r|, 3/4 −
2i|r|,−1/4 − 2i|r|,−1/4 − i∞. In particular, if ir ∈ R∗ (the case of exceptional eigenvalues) we
still have from Selberg’s bound that 3/4 > 1/2 > |2ir|. From this and the identities [EMOT]

K2ir(x) = 1
2

1
2πi

∫
(σ)

(x/2)−sΓ(
s

2
+ ir)Γ(

s

2
− ir)ds, −<e2ir < σ

J2ir(x) = 1
2

1
2πi

∫
(σ)

(x/2)−s
Γ( s2 + ir)

Γ(1− s
2 + ir)

ds, −<e2ir < σ < 1.

we have

c
∑
n>1

λg(n)e(n
a

c
)F (n) = χD1(a)χD2(−c)ηg(D2)√

D2

∑
n>1

λgD2
(n)e(−naD2

c
)
∫ ∞

0
F (x)Jg(

4π
√
nx

c
√
D2

)dx

+εgD2
χD1(a)χD2(−c)ηg(D2)√

D2

∑
n>1

λgD2
(n)e(n

aD2

c
)
∫ ∞

0
F (x)Kg(

4π
√
nx

c
√
D2

)dx,

where εgD2
= χD2(−1)εg and

Jg(x) = − π

sin(πir)
(J2ir(x)− J−2ir(x)), Kg(x) = 4 cos(πir)K2ir(x).

When r = 0, the case of greatest interest, the functions reduces to −2πY0 and 4K0, respectively.
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A.5. The summation formula recapitulated. We put everything into one formula for conve-
nient reference.

Theorem A.4. Let D be positive integer, χD a character of modulus D, and g be one of the
forms presented in Section 3. For (a, c) = 1, set D1 = (c,D), D2 = D/D1, and assume that
(D1, D2) = 1, so that χD = χD1χD2 is the unique factorization of χD into characters of modulus
D1 and D2. For F ∈ C∞(R∗+) a smooth function vanishing in a neighborhood of zero and rapidly
decreasing

c
∑
n>1

λg(n)e(n
a

c
)F (n) =

χD1(a)χD2(−c)ηg(D2)√
D2

∑
n>1

λgD2
(n)e(−naD2

c
)
∫ ∞

0
F (x)Jg(

4π
c

√
nx

D2
)dx

+χD1(a)χD2(c)
ηg(D2)√
D2

∑
n>1

λgD2
(n)e(n

aD2

c
)
∫ ∞

0
F (x)Kg(

4π
c

√
nx

D2
)dx.

In this formula

• ηg(D2) is the pseudo-eigenvalue of the Atkin-Lehner operator WD2. If λg(D2) 6= 0 it equals
value

ηg(D2) =
G(χD2)

λg(D2)
√
D2

;

• If g is holomorphic of weight kg, then

Jg(x) = 2πikgJkg−1(x), Kg(x) = 0;

• if g is a Maass form with (∆ + λ)g = 0, then let r satisfy λ = (1
2 + ir)(1

2 − ir) and let εg
be the eigenvalue of g under the reflection operator:

Jg(x) =
−π

sin(πir)
(J2ir(x)− J−2ir(x)), Kg(x) = εg4 cosh(πr)K2ir(x).

• if r = 0,

Jg(x) = −2πY0(x), Kg(x) = εg4K0(x).

Finally, for completeness, we recall the summation formula of [J]:

c
∑
n>1

τ(n)e
(an
c

)
F (n) = 2

∫ +∞

0
(log
√
x

c
+ γ)F (x)dx

+
∑
n>1

τ(n)
∫ +∞

0

(
−2πe

(
−an
c

)
Y0

(4π
√
nx

c

)
+ 4e

(an
c

)
K0

(4π
√
nx

c

))
F (x)dx.

This corresponds to the summation formula for the Eisenstein series E′(z, 1/2) given in (1.2).
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Appendix B. Shifted convolutions of modular forms

In this section we establish the bound cited in Section 7.2.1; we follow [DFI I] almost exactly.
We work in a more general setting: consider two primitive forms g, g′ of squarefree level D,D′,
and nebentypus χD, χ′D′ which are not exceptional. We are given a smooth test function f(z, y)
on R∗+ ×R∗+ satisfying

ziyjf (ij)(z, y)�i,j (1 +
z

Z
)(1 +

y

Y
)P i+j

for all i, j > 0 with some P,Z, Y > 1. For (a, b) = 1, we wish to evaluate the sum

(B.1) D±f (a, b;h) :=
∑

am±bn=h

λg(m)λg′(n)f(am, bn).

Proposition B.1. Suppose (a, b) = 1 and h 6= 0, and suppose that f satisfies the above conditions.
Then

(B.2) D±f (a, b;h) = Oε,g,g′(P 5/4(Z + Y )1/4(Y Z)1/4+ε)

This is a direct generalization of Theorem 1 of [DFI I], which corresponds to the case g = g′ =
E′(z, 1

2).
We borrow the notation of [DFI I] (22) p.214 and set U = R2 = min(Y,Z)P−1. Following that

proof, we have
D±f (a, b;h) :=

∑
16r<2R

D±f (a, b, r;h)

=
∑

16r<2R

∑
d(r)

∗
e(
−dh
r

)
∑
m,n

λg(m)λg′(n)e(
dam± dbn

r
)E(m,n),

where E(z, y) := F (az, by)∆r(az − by − h) with ∆r(u) defined by equation (11) of [DFI I] (with
r replaced by q) and F (z, y) = f(z, y)ϕ(x− y− h) where ϕ(u) is a smooth function supported on
|u| < U such that ϕ(0) = 1 and ϕ(i)(u)�i U

−i.
We apply the formulae of Section A in each variable, setting ra = r/(a, r), ar = a/(a, r)

rb = r/(b, r), br = b/(b, r), D1 = (D, ra) and D′1 = (D′, rb), D1D2 = D, D′1D
′
2 = D′, so that

r2

(ab, r)

∑
m,n

= χ′D′1
(±1)κκ′χD1χD′1(d)

∑
m,n

λgD2
(m)λg′

D′2
(n)e

(
−m(a, r)ardD2

r
∓n(b, r)brdD′2

r

)
Iab(m,n)

+ ∗ ∗∗
with

κ(a, r,D) = χD1(ar)χD2(−ra)ηg(D2)/
√
D2,

κ(b, r,D′) = χ′D′1
(br)χ′D′2(−rb)ηg′(D′2)/

√
D′2,

and

Iab(m,n, h) =
∫∫ ∞

0
Jg(

4π(a, r)
√
mz

r
√
D2

)Jg′(
4π(b, r)

√
ny

r
√
D
′
2

)E(z, y)dzdy

and three more terms involving the Kg,Kg′ functions implicit in + ∗ ∗∗.
Summing over d, we obtain

D±f (a, b;h) =
∑

16r<2R

(ab, r)
r2

χ′D′1
(±1)κκ′

{
∗ ∗ ∗
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+
∑
m,n>1

λgD2
(m)λgD′2

(n)SχD1
χ′
D′1

(h,∓n(b, r)brdD′2 −m(a, r)ardD2; r)Iab(m,n)

}
,

where SχD1
χ′
D′1

(x, y; r) is the Kloosterman sum of modulus r, twisted by the caracter χD1
χ′D′1

.

We proceed as in [DFI I], using that the modular forms g, g′ are not exceptional and (3.8)). to
find that all the terms above contribute to the error term of (B.2).

Appendix C. Properties of Bessel functions

In this section we collect some useful properties of the Bessel functions encountered in Section
A. They can be obtained from [EMOT2] Chap. VII.

Lemma C.1. For z > 0, and for all ν

(C.1) (zνJν(z))′ = zνJν−1(z)

(C.2) (zνKν(z))′ = −zνKν−1(z)

(C.3) (zνYν(z))′ = zνYν−1(z).

Lemma C.2. For z > 0 and k > 0 we have

(C.4) |zkJ (k)
ν (z)| �k,ν

z<eν

(1 + z)<eν+1/2

(
�k,ν

1
(1 + z)1/2

if <eν > 0

)

(C.5) <eν = 0, |zkK(k)
ν (z)| �k,ν

e−z(1 + | log z|)
(1 + z)1/2

(C.6) |zkY (k)
0 (z)| �k

(1 + | log z|)
(1 + z)1/2

.
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