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Integers as sums of 3 squares
Legendre/Gauss: n:x2 +y2 +Z2 <= n¢4a(8b-|—7)

Primitive representation: gcd(x,y,z)=1

n is primitively represented as a sum of 3 squares <> n;é0,4,7 mod 8

The number of representations

N, :z#{(x, V7)) i =n}
(iza 1= 19 O)a (ila = 29 O)a (iza 09 T 1)9
Gl O RGOS (0, + 1, + 2)

Example: n=5 then we have Ns=24

Exercise: if N=42 then N_=6



Growth of N_ for large n

For squarefree n, NHZ\/H olE@EED

Siegel:

j‘> If n is primitively representable as a sum of three squares then Nn:nl/ 2+o0(1)



Spatial distribution of solutions

Project the different representations of n
to the unit sphere S

1
(xa 7Z)H_(-x7 7Z)ESz
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We get a set E(n) of about N, points on S?

- call them “Linnik points”™

Uniform distribution (Linnik’s conjecture)

As n—o0, n#0,4,7 mod 8, the set E(n) becomes uniformly distributed on S2 .

Proved by Linnik assuming GRH, (1940),

Proved unconditionally by Duke, Golubeva-Fomenko (1988), (via Iwaniec).



Uniform distribution on S2

Definition: The sets E(n) become uniformly distributed in S? if for any nice set B in S?

#(E(n)NB) g area(B)
#E(n) "% area(S”?)

Equivalently for any continuous function feC(S?),

#E(n) P;{ P —= >area(s )I SR




Beyond equidistribution I:
The electrostatic energy

The electrostatic energy of N points on the sphere S? is

5 Bl ) =
rergy R P = 23 o

Visualization: Rob Womersley

Thompson’s question: (1904): Find configurations of charges on
the sphere which minimize E (stable configurations)

Wagner (1992): The energy of stable configurations is

Energy o, = N [ [-22_o (N ")
Ix—yl

5252
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Question: What is the energy for Linnik points E(n)?  J-J- Thompson, Nobel prize 1903



The energy of Linnik points
Theorem (Bourgain, ZR, Sarnak): The energy of the Linnik points E(n) is close to minimal

Energy(E(n))=N"+O(N>°)

Proof: equidistribution + control of # of close neighbours

Energy (E(n)) = Z Z 1
PeE(n)LQ;tPl 2R Q lJ

Would like to use uniform distribution to claim that for each P

| (155w - LA
ZIP—QI leP—xI_ j> EnE—) N =N

QeE(n) PeE(n)
P#0

Problem: The function Q — 1/IP-QI is not continuous !

In fact a point Q with [P-QI<1/N!-°() | gives a contribution bigger than main term N



Example: A close pair
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(k+1,k,0) Q= L(k,k +1,0)
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Controlling close pairs
Counting pairs of points at a given distance

A(n,h) :=#{x,yeZ3 xlPd yFP=n, Ix—ylzzh}
Siegel's mass formuta: —~ A(1,h) =24-a,(n,h) | [, (n,h)

nlh(2n—h)
plh(2n—h)
p#2

Venkov, 1931, Pall, 1948 : Explicit computation of local factors (crucial).

) A(n,h) << n ged(n, h)"?

- allows to control contribution of “close” pairs and show Energy(E(n))~N?. QED



Beyond equidistribution lI:
randomness on smaller scales

Uniform distribution means randomness on scale of O(1) — subsets in S? of fixed size.

Question: randomness on smaller scales?
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Analyzing point patterns

POINT PROCESS METHODS [N FORESTRY STATISTICS

with the Bind permiseion of H. Pretzsch.)
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Point processes on S?

Random point process on S?= random countable subset X in S?
Intensity of a point process: For any subset A of S?2, E( #ANX)= pec(A)
o(A):=area(A)/area(S?)

Binomial process: N independent points, each uniformly distributed on S? :
N k N—k
Proby,#ANX=k)=|  [o(A) (1-0(A)

Poisson process of intensity p: characterized by
1) #ANX is a Poisson variable with intensity pec(A)
2) If A,B are disjoint then #ANX , #BNX are independent

— -0 (A) (/u ) O-(A))k
k!

Prob,,. ., (#ANX =k)=e



Tests for randomness: Minimal distances

Nearest neighbor distance:

S(x):=minlx—yl’

Y#X

Average value:

For random points (Poisson model)
1) <0>~4/N

2) Distribution of normalized distances 8(x)/<&> is exponential
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Distribution of minimal distances

Conjecture: For the Linnik points E(n)

1) <0> ~4/N.~ =Poisson value
2) Distribution P(s) of normalized distances 0(x)/<6> is exponential: P(s)=exp(-s)

minimal distances for (10" +1)—th prime CDF of minimal distances for (10 +1 1—th pnme

LOF _ -

Proposition: Any possible limit P(s) is absolutely continuous (assuming GRH)




The least spacing statistic

Because the point sets E(n) come from integer points, the least spacing is >1/vn

. 1 —1+o0
Onin (1) = min |x—y|>_:N1 (1)

- 7m

x,yeE(n)

Is this a non-random feature ?

Compare: For N random points, least spacing is a.s. N1+ (lower & upper bound)
-- “birthday paradox”

Theorem: For almost all n, 0. (n)~n-1/2+o()=N-1+o()

min

Implied by: almost all n is a sum of two squares and a “mini-square”

= R i< o

Wooley: can make Izl<(log N)!*o(D)



Second order statistics

Ripley’s K-function: for a homogeneous point process with intensity L,
uK(r):=expected number of other points at distance r from a typical point of the process
Alternatively,

u? K(r)=# distinct pairs (x,y) with Ix-yl<r
For Poisson process, E{ K(T) }=7t * = area

A smaller value of K(T) is interpreted as repulsion (e.g. for determinantal processes).

Intensity=# pts
per unit area



The critical scaling regime

we look at values of r where a ball of radius r is expected to contain O(1) points:

Define critical radius p, by

N -mp. =area(S*)

We conjecture that at the critical scale, the two-point statistic K coincides with
that of random points

Conjecture: Fix A>0. For r=VAep_then K_(r)~m 12 as n—oo

limN.K,N4p,) =4

n—a0



K(r) at critical scaling

limN.K, N Ap,) =4

n—oo
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n=107+1"th prime, N=100,000 (effectively 2000 points)



bounds at critical scaling

Theorem (on GRH): For N 17D < r <2, K. (r) <2010 ° i

Theorem: For a positive density of square-free n, we have

1
NK Wip)>
. "7 9010

A

Note: the upper bound holds for individual n

Thus we have lower & upper bounds on K(r) consistent with random behavior.



Main tool: Venkov’s formula

Arithmetic ingredient: Counting pairs of vectors with length? =n and given distance:

i

K (r)=
() P

v 74 A
#lx yilxPayP=n, 12 2pPcit= A(n,h
{ y y s > A(n,h)

Jn

Siegel’s mass formula A(I’l, ]’l) =) s A, (n, h) H ap (n, h)

plh(2n—h)
1 p#2

&, (n,h) = [ip—# v, ymod p* 1 x =l y P=n, | x— y P= h}

k—>o0

Venkov, 1931, Pall, 1948 : Explicit computation of local factors (crucial).



Approximating A(n,h)

A(n,h) 1s essentially a multiplicative function along a quadratic progression

A(n,h) <24-F (h(2n—h))

F (a)~ Zgj

This allows us to use results about sums of multiplicative functions along
polynomial progressions (Shiu, Nair) to get upper bound on K(r)



Nair’s theorem (1992)

F=multiplicative function: F(1)=1, F(ab)=F(a)F(b) if a,b coprime,
F non-negative: F>0, slowly growing: F(n)<< n®

P(t)eZ[t] polynomial

Then for X* <y<X

Y FUP(m)1) <<p.p y HLl e p(p)J ’ eXPLZ p(p)f (p)J

X—y<m<x P<X p P=X p

p(m)=#{xeZ/mZ: P(x)=0modm }

In our case:
-n

P(t)=t2n-t) , f(a)=F,(a)= Z(gj . x=n, y= li] 1/ 2ro(0)

n
d odd



Why do we need GRH ?

Nair’s theorem gives a bound on K(r) of

NnKn(pn\/Z) <<Z><( — ! A exp(y, l”(p)ﬂz
ULOL2,) el e |

The L-value arises because NnZ\/n e e

- Need GRH to guarantee RHS is << A



summary

We studied properties of the sets E(n) of points on the sphere arising from writing
n=x’+y?+z> which go beyond uniform distribution:

*The electrostatic energy is close to minimal .

*Empirical agreement of various statistics with those of a random point process

eSome theoretical results.




