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Integers as sums of 3 squares
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Legendre/Gauss:

Primitive representation: gcd(x,y,z)=1 

n is primitively represented as a sum of 3 squares ↔ n≠0,4,7 mod 8

The number of representations

Exercise: if n=4a then Nn=6 
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Example: n=5 then we have N5=24 

The number of representations



Growth of Nn for large n

For squarefree n, Nn≈√n •L(1,χ-n) 
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If n is primitively representable as a sum of three squares then  Nn=n1/2±o(1)



Spatial distribution of solutions

Project the different representations of n 

to the unit sphere S2:

2),,(
1

),,( Szyx
n

zyx ∈a

We get a set E(n) of about N points on S2

Uniform distribution (Linnik’s conjecture)

As n→∞, n≠0,4,7 mod 8, the set E(n) becomes uniformly distributed on S2 . 

Proved by Linnik assuming GRH, (1940), 

Proved unconditionally by Duke, Golubeva-Fomenko (1988), (via Iwaniec).

We get a set E(n) of about Nn points on S2

- call them “Linnik points”



Uniform distribution on S2
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Definition: The sets E(n) become uniformly distributed in S2 if for any nice set B in S2

Equivalently, for any continuous function fεC(S2), 
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Beyond equidistribution I: 
The electrostatic energy

Visualization: Rob Womersley 
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The electrostatic energy of N points on the sphere S2 is

Thompson’s question: (1904): Find configurations of charges on 

the sphere which minimize E (stable configurations)

J.J. Thompson, Nobel prize 1903

Wagner (1992): The energy of stable configurations is 
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Question: What is the energy for Linnik points  E(n)?



The energy of Linnik points

Theorem (Bourgain, ZR, Sarnak): The energy of the Linnik points E(n) is close to minimal
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Proof: equidistribution + control of # of close neighbours
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Would like to use uniform distribution to claim  that for each P
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Problem: The function Q → 1/|P-Q| is not continuous ! 

In fact a point Q with |P-Q|<1/N1-o(1) , gives a contribution bigger than  main term N 



Example: A close pair
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Controlling close pairs
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Counting pairs of points at a given distance
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Venkov, 1931, Pall, 1948 : Explicit computation of local factors (crucial).
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- allows to control contribution of “close” pairs and show Energy(E(n))~N2 .  QED



Beyond equidistribution II: 
randomness on smaller scales

Uniform distribution means randomness on scale of O(1) – subsets in S2 of fixed size.

Question: randomness on smaller scales?



Analyzing point patterns



Point processes on S2

Binomial process: N independent points, each uniformly distributed on S2 :

Random point process on S2= random countable subset  X in S2

Intensity of a point process: For any subset A of S2, E( #A∩X)= µ•σ(A)

σ(A):=area(A)/area(S2)
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Poisson process of intensity µ: characterized by

1) #A∩X  is a Poisson variable with intensity µ•σ(A)

2) If A,B are disjoint then #A∩X , #B∩X  are independent
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Tests for randomness: Minimal distances
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Nearest neighbor distance:

Average value:
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Average value:

For random points (Poisson model)

1)  <δ> ~4/N

2) Distribution of normalized distances δ(x)/<δ> is exponential



Distribution of minimal distances
Conjecture:  For the Linnik points E(n)

1)  <δ>n~4/Nn  =Poisson value 

2) Distribution P(s) of normalized distances δ(x)/<δ> is exponential: P(s)=exp(-s)

Proposition: Any possible limit P(s) is absolutely continuous (assuming GRH)



The least spacing statistic

Because the point sets E(n) come from integer points, the least spacing is >1/√n
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Is this a non-random feature ? Is this a non-random feature ? 

Compare: For  N random points, least spacing is a.s. N-1+o(1) (lower & upper bound)   

-- “birthday paradox”

Theorem: For almost all n,   δmin(n)≈n-1/2+o(1)=N-1+o(1)

Implied by: almost all n is a sum of two squares and a “mini-square”
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Wooley: can make |z|<(log N)1+o(1)



Second order statistics

Ripley’s K-function: for a homogeneous point process with intensity µ, 

µK(r):=expected number of other points at distance r from a typical point of the process

Alternatively, 

µ2 K(r)=# distinct pairs (x,y) with |x-y|<r

For Poisson process, E{K(r)}=π r2 = area

A smaller value of K(r) is interpreted as repulsion (e.g. for determinantal processes).

Intensity=# pts 

per unit area



The critical scaling regime

we look at values of r where a ball of radius r is expected to contain O(1) points:

Define critical radius ρn by 
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Conjecture: Fix λ>0. For  r=√λ•ρn then Kn(r)~π r2 as n→∞
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We conjecture that at the critical scale, the two-point statistic K coincides with 

that of random points



K(r) at critical scaling
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n=107+1’th prime, N≈100,000  (effectively 2000 points)



bounds at critical scaling

Theorem: For a positive density of square-free n, we have  
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Theorem (on GRH): For   N-1+o(1) < r <2,       Kn(r) <2010 • r2
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Note: the upper bound holds for individual n

Thus we have lower & upper bounds on K(r) consistent with random behavior.



Main tool: Venkov’s formula

Arithmetic ingredient: Counting pairs of vectors with length2 =n and given distance: 
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Venkov, 1931, Pall, 1948 : Explicit computation of local factors (crucial).
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p hnhnhnA ααSiegel’s mass formula
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Approximating A(n,h)
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A(n,h) is essentially a multiplicative function along a quadratic progression
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This allows us to use results about sums of multiplicative functions along 

polynomial progressions (Shiu, Nair) to get upper bound on K(r)



Nair’s theorem (1992)

F=multiplicative  function: F(1)=1, F(ab)=F(a)F(b) if a,b coprime, 

F non-negative: F≥0,  slowly growing: F(n)<< nε

P(t)εZ[t] polynomial

Then for xa <y<x
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In our case: 



Why do we need GRH ?

Nair’s theorem gives a bound on K(r) of 
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- Need GRH to guarantee RHS is << λ

The L-value arises because Nn≈√n •L(1,χ-n)



summary

We studied properties of the sets E(n) of  points on the sphere arising from writing 

n=x2+y2+z2  which go beyond uniform distribution: 

•The electrostatic energy is close to minimal .

•Empirical agreement of various statistics with those of a random point process

•Some theoretical results.


