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Abstract. We survey the recent applications and developments of sieve methods re-
lated to discrete groups, especially in the case of infinite index subgroups of arithmetic
groups.

1. Introduction

Sieve methods appeared in number theory as a tool to try to understand the additive
properties of prime numbers, and then evolved over the 20th Century into very sophisti-
cated tools. Not only did they provide extremely strong results concerning the problems
most directly relevant to their origin (such as Goldbach’s conjecture, the Twin Primes
conjecture, or the problem of the existence of infinitely many primes of the form n2 + 1),
but they also became tools of crucial important in the solution of many problems which
were not so obviously related (examples are the first proof of the Erdös-Kac theorem,
and more recently sieve appeared in the progress, and solution, of the Quantum Unique
Ergodicity conjecture of Rudnick and Sarnak).

It is only quite recently that sieve methods have been applied to new problems, of-
ten obviously related to the historical roots of sieve, which involve complicated infinite
discrete groups (of exponential growth) as basic substrate instead of the usual integers.
Moreover, both “small” and “large” sieves turn out to be applicable in this context to a
wide variety of very appealing questions, some of which are rather surprising. We will
attempt to present this story in this survey, following the mini-course at the “Thin groups
and super-strong-approximation” workshop. The basic outline is the following: in Sec-
tion 2, we present a sieve framework that is general enough to describe both the classical
examples and those involving discrete groups; in Section 3, we show how to implement a
sieve, with emphasis on “small” sieves. In Section 5, we take up the “large” sieve, which
we discuss in a fair amount of details since it is only briefly mentioned in [29] and has
the potential to be a very useful general tool even outside of number-theoretic contexts.
Finally, we conclude with a sampling of problems and further questions in Section 6.

We include a general version of the Erdös-Kac Theorem in the context of affine sieve
(Theorem 4.12), which follows easily from the method of Granville and Soundararajan [19]
(it generalizes a result of Djanković [7] for Apollonian circle packings.)

Apart from this, the writing will follow fairly closely the notes for the course at MSRI,
and in particular there will be relatively few details and no attempts at the greatest
known generality. The final section had no parallel in the actual lectures, for reasons of
time. More information can be gathered from the author’s Bourbaki lecture [29], or from
Salehi-Golsefidy’s paper in these Proceedings [50], and of course from the original papers.
Overall, we have tried to emphasize general principles and some specific applications,
rather than to repeat the more comprehensive survey of known results found in [29].

Notation. We recall here some basic notation.

Key words and phrases. Expander graphs, Cayley graphs, sieve methods, prime numbers, thin sets,
random walks on groups, large sieve.
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– The letters p will always refer to a prime number; for a prime p, we write Fp for the
finite field Z/pZ. For a set X, |X| is its cardinality, a non-negative integer or +∞.
– The Landau and Vinogradov notation f = O(g) and f � g are synonymous, and
f(x) = O(g(x)) for all x ∈ D means that there exists an “implied” constant C > 0
(which may be a function of other parameters) such that |f(x)| 6 Cg(x) for all x ∈ D.
This definition differs from that of N. Bourbaki [1, Chap. V] since the latter is of
topological nature. We write f � g if f � g and g � f . On the other hand, the notation
f(x) ∼ g(x) and f = o(g) are used with the asymptotic meaning of loc. cit.

Reference. As a general reference on sieve in general, the best book available today
is the masterful work of Friedlander and Iwaniec [10]. Concerning the large sieve, the
author’s book [28] contains very general results. We also recommend Sarnak’s lectures
on the affine sieve [53]. Another survey of sieve in discrete groups, with a particular em-
phasis on small sieves, is the Bourbaki seminar of the author [29], and Salehi-Golsefidy’s
paper [50] in these Proceedings gives an account of the most general version of the affine
sieve, due to him and Sarnak [51].

Acknowledgments. Thanks to A. Kontorovich and A. Salehi-Golsefidy for pointing
out imprecisions and minor mistakes in the first drafts of this paper, and to H. Oh for
suggestions that helped clarify the text.

2. The setting for sieve in discrete groups

Sieve methods attempt to obtain estimates on the size of sets constructed using local-
global and inclusion-exclusion principles. We start by describing a fairly general frame-
work for this type of questions, tailored to applications to discrete groups (there are also
other settings of great interest, e.g., concerning the distribution of Frobenius conjugacy
classes related to families of algebraic varieties over finite fields, see [28, Ch. 8]).

We will consider a group Γ, viewed as a discrete group, which will usually be finitely
generated, and which is given either as a subgroup Γ ⊂ GLr(Z) for some r > 1, or more
generally is given with a homomorphism

φ : Γ −→ GLr(Z),

which may not be injective (and of course is typically not surjective). Here are three
examples.

Example 2.1. (1) We can take Γ = Z, embedded in GL2(Z) for instance, using the map

φ(n) =

(
1 n
0 1

)
.

This case is of course the most classical.
(2) Consider a finite symmetric set S ⊂ SLr(Z), and let Γ = 〈S〉 ⊂ GLr(Z). Of

particular interest for us is the case when Γ is “large” in the sense that it is Zariski-
dense in SLr. Recall that this means that there exist no polynomial relations among all
elements g ∈ Γ except for those which are consequence of the equation det(g) = 1. A
concrete example is as follows: for k > 1, let

Sk =
{(

1 ±k
0 1

)
,

(
1 0
±k 1

)}
and let Γ(k) be the subgroup of SL2(Z) generated by Sk. It is well-known that for k > 1,
this is a Zariski-dense subgroup of SL2.
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We are especially interested in situations where Γ is nevertheless “small”, in the sense
that the index of Γ in the arithmetic group SLr(Z) is infinite. We will call this the sparse
case (though the terminology thin is also commonly used, we will wish to speak later of
thin subsets of SLr, as defined by Serre, and Γ is not thin in this sense).

In the example above, the groups Γ(1) = SL2(Z) and Γ(2) are of finite index in SL2(Z)
(the latter is the kernel of the reduction map modulo 2), but Γ(k) is sparse for all k > 3.
In particular, the subgroup Γ(3) is sometimes known as the Lubotzky group.

(3) Here is an example where the group Γ is not given as a subgroup of a linear group:
for an integer g > 1, let Γ be the mapping class group of a closed surface Σg of genus g,
and let

φ : Γ −→ Sp2g(Z) ⊂ GL2g(Z)

be the map giving the action of Γ on the first homology group H1(Σg,Z) ' Z2g, which
is symplectic with respect to the intersection pairing on H1(Σg,Z). Here it is known (for
instance, through the use of specific generators of Γ mapping to elementary matrices in
Sp2g(Z)) that φ is surjective. (All facts on mapping class groups that we will use are
fairly elementary and are contained in the book of Farb and Margalit [9].)

The next piece of data are surjective maps

πp : Γ −→ Γp

where p runs over prime numbers (or possibly over a subset of them) and Γp are finite
groups. We view each such map as giving “local” information at the prime p, typically
by reduction modulo p. Indeed, in all cases in this text, the homomorphism πp is the
composition

Γ
φ−→ GLr(Z) −→ GLr(Fp)

of φ with the reduction map of matrices modulo p, and Γp is defined as the image of this
map.

Example 2.2. (1) For Γ = Z, reduction modulo p is surjective onto Γp = Z/pZ for all
primes.

(2) If Γ is Zariski-dense in SLr, and we use reduction modulo p to define πp, it is a
consequence of general strong approximation statements that there exists a finite set of
primes T (Γ) such that πp has image equal to SLr(Fp) for all p /∈ T (Γ), and in particular
for all primes large enough.1 For instance, in the case of the subgroups Γ(k) ⊂ SL2(Z),
this property is visibly valid with

T (Γ(k)) = {primes p dividing k}.
We refer to the survey [47] by Rapinchuk in these Proceedings for a general account of

Strong Approximation.
(3) For the mapping class group Γ of Σg, and φ given by the action on homology, the

image of reduction modulo p is equal to Sp2g(Fp) for all primes p (simply because φ is
onto, and Sp2g(Z) surjects to Sp2g(Fp) for all p).

We want to combine the maps πp, corresponding to local information, modulo many
primes in order to get “global” results. This clearly only makes sense if using more than
a single prime leads to an increase of information. Intuitively, this is the case when the
reduction maps πp, πq, associated to distinct primes p and q are independent : knowing

1 This is directly related to the fact that SLr is, as a linear algebraic group, connected and simply
connected.
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the reduction modulo p of an element of Γ should give no information concerning the
reduction modulo q. We therefore make the following assumption on the data:

Assumption 2.3 (Independence). There exists a finite set of primes T1(Γ), sometimes
called the Γ-exceptional primes, such that for any finite set I of primes p /∈ T1(Γ), the
simultaneous reduction map

πI : Γ −→
∏
p∈I

Γp

modulo primes in I is onto.

We will write
ΓI =

∏
p∈I

Γp, qI =
∏
p∈I

p.

Note that qI is a squarefree integer, coprime with T1(Γ).

Example 2.4. (1) For Γ = Z, the Chinese Remainder Theorem shows that for any finite
set of primes I, we have ∏

p∈I

Z/piZ ' Z/qIZ,

and hence the map πI above can be identified with reduction modulo qI . In particular,
it is surjective, so that the assumption holds with an empty set of exceptional primes.

(2) If Γ ⊂ GLr(Z) has Zariski closure SLr, then the Independence Assumption holds for
the same set of primes T1(Γ) = T (Γ) such that πp is surjective onto SLr(Fp) for p /∈ T (Γ),
simply for group-theoretic reasons: any subgroup of a finite product∏

p∈I

SLr(Fp)

which surjects to each factor SLr(Fp) is equal to the whole product (this type of result is
known as Goursat’s Lemma, see, e.g., [6, Prop. 5.1] or as Hall’s Lemma [8, Lemma 3.7]).
Again a similar property holds if the Zariski closure of Γ is an almost simple, connected,
simply-connected algebraic group.

(3) In particular, the Independence Assumption holds with T1(Γ) = ∅ for the mapping
class group of Σg acting on the homology of the surface, because Goursat’s Lemma applies
to the finite groups Sp2g(Fp).

(4) The Independence Assumption may fail, for instance in the context of orthogonal
groups, when there is a global invariant which can be read off any reduction. The simplest
example of such an invariant is the determinant: if Γ ⊂ GLr(Z) is not contained in SLr(Z),
the compatibility condition

det(πp(g)) = det(g) ∈ {±1} ⊂ F×p

valid for all p and g ∈ GLr(Z) shows that the image of πI is always contained in the
proper subgroup

{(gp) ∈ ΓI | det(gp) = det(gq) for all p, q ∈ I}
(identifying all copies of {±1}). This issue appears, concretely, in the example of the Apol-
lonian group and Apollonian circle packings, since the latter is a subgroup of an indefinite
orthogonal group intersecting both cosets of the special orthogonal group, see [11, 13] for
a precise analysis of this case, and [12] for a survey.

It should be emphasized that this failure of the Independence Assumption is not dra-
matic: one can replace Γ by Γ∩SLr for instance, or by the other coset of the determinant
(with some adaptation since this is not a group).
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We can now define the sifted sets S ⊂ Γ constructed by inclusion-exclusion using local
information: given a set P of primes (usually finite), and subsets

Ωp ⊂ Γp

for p ∈ P, we let

S = S(P; Ω) = {g ∈ Γ | πp(g) /∈ Ωp for all p ∈ P} =
⋂
p∈P

(Γ− π−1
p (Ωp)).

We want to know something about the size, or maybe more ambitiously the structure,
of such sifted sets. In fact, quite often, we wish to study sets which are not exactly of
this shape, but are closely related.

Frequently, we have an integer parameter Q > 1, and we take P = {p 6 Q}, the set of
primes up to Q. In that case, we will often denote S(Q; Ω) = S(P; Ω), and we may even
sometimes simplify this to S(Q) if it is clear that Ω is fixed.

Example 2.5. (1) Let Γ = Z, and let Ωp = {0,−2} ⊂ Fp for all primes p 6 Q, where
Q > 2 is some parameter. Taking P = {p 6 Q}, we have by definition

S(Q) = S(P; Ω) = {n ∈ Z | neither n nor n+ 2 has a prime factor 6 Q}.
In particular, for N > 1, the initial segment S(Q) ∩ {1, . . . , N} contains all “twin

primes” n between Q and N , i.e., all primes p with Q < p 6 N such that p + 2 is
also prime. Hence an upper-bound on the size of this initial segment will be an upper-
bound for the number of twin primes in this range. This is valid independently of the
value of Q. Furthermore, if Q >

√
N + 2, we have in fact equality: an integer n ∈

S(
√
N + 2) ∩ {1, . . . , N} must be prime, as well as n + 2, since both integers only have

prime factors larger than their square-root. More generally, if Q = Nβ for some β > 0,
we see that S(Q) ∩ {1, . . . , N} contains only integers n such that both n and n+ 2 have
less than 1/β prime factors.

(2) The first example is the prototypical example showing how sieve methods are used
to study prime patterns of various type. Bourgain, Gamburd and Sarnak [3] extended
this type of questions to discrete subgroups of GLr(Z). We present here a special case
of what is called the affine linear sieve or the sieve in orbits. There will be a few other
examples below, and we refer to the original paper or to [29] for a more general approach.

We assume for simplicity, as before, that Γ is Zariski-dense in SLr. Let

f : SLr(Z) −→ Z

be a non-constant polynomial function, for instance the product of the coordinates. We
want to study the multiplicative properties of the integers f(g) when g runs over Γ.
Consider

(2.1) Ωp = {g ∈ Γp | f(g) ≡ 0 (mod p)} ⊂ Γp ⊂ SLr(Fp),

for p 6 Q. Then S(Q; Ω) (recall that this is the sifted set for P = {p 6 Q}) is the set
of g ∈ Γ such that f(g) has no prime factor 6 Q. In particular, for any ∆ > 0, the
intersection

S(Q; Ω) ∩ {g ∈ Γ | |f(g)| 6 Q∆}
consists of elements where f(g) has < ∆ prime factors. For instance, when f is the
product of coordinates, this set contains elements g ∈ Γ where all coordinates have less
than ∆ prime factors.

(3) For our last example, consider the mapping class group Γ of Σg. Let Hg be a
handlebody with boundary Σg. For a mapping class φ ∈ Γ, we denote by Mφ the compact
3-manifold obtained by Heegaard splitting using Hg and φ, i.e., it is the union of two
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copies of Hg where the boundaries are identified using (a representative of) φ (see [8] for
more about this construction).

The image J of H1(Hg,Z) ' Zg in H1(Σg,Z) ' Z2g is a lagrangian subspace (i.e., a
subgroup of rank g such that the intersection pairing is identically zero on J). We denote
by Jp ⊂ F2g

p its reduction modulo p. It follows from algebraic topology that

H1(Mφ,Z) ' H1(Σg,Z)/〈J, φ · J〉,
H1(Mφ,Fp) ' H1(Mφ,Z)⊗ Fp ' H1(Σg,Fp)/〈Jp, φ · Jp〉.

Thus if we let

(2.2) Ωp = {γ ∈ Sp2g(Fp) | γ · Jp ∩ Jp = ∅} = {γ ∈ Sp2g(Fp) | 〈Jp, γ · Jp〉 = F2g
p },

we see that any sifted set S(P; Ω) contains all mapping classes such that Mφ has first
rational Betti number positive.

We will discuss this example further in Section 5. The reader who is not familiar with
sieve is however encouraged to try to find the answer to the following question: What is
the great difference that exists between this example and the previous ones?

3. Conditions for sieving

Having defined sifted sets and seen that they contain information of great potential
interest, we want to say something about them. The basic question is “How large is a
sifted set S?” In order to make this precise, some truncation of S is needed, since in
general this is (or is expected to be) an infinite set. In fact, we saw in the simplest
examples (e.g., twin primes) that this truncation (in that case, the consideration of an
initial segment of a sifted set) is crucially linked to deriving interesting information from
S, as one needs usually to handle a truncation which is correlated with the size of the
primes in the set P defining the sieve conditions.

When sieving in the generality we consider, it is a striking fact that there are different
ways to truncate the sifted sets, or indeed to measure subsets of Γ in general (although
those we describe below seem, ultimately, to be closely related.) We will speak of “count-
ing methods” below to refer to these various truncation techniques.

Method 1. [Archimedean balls] Fix a norm ‖ · ‖ (or some other metric) on the ambient
Lie group GLr(R) (for instance the operator norm as linear maps on euclidean space, but
other choices are possible) and consider

S ∩ {g ∈ Γ | ‖g‖ 6 T}
for some parameter T > 1. This is a finite set, and one can try to estimate (from above
or below, or both) its cardinality.

Example 3.1. Let Γ be a Zariski-dense subgroup of SLr(Z) and f a non-constant poly-
nomial function on SLr(Z). For some d > 1, we have

|f(g)| � ‖g‖d

for all g ∈ Γ. Hence if we consider the sifted set (2.1) for Q = T β, the elements in

S(Q) ∩ {g ∈ Γ | ‖g‖ 6 T}
are such that f(g) has at most d/β prime factors.

Counting in archimedean balls in subgroups of arithmetic groups, even without involv-
ing sieve, is a delicate matter, especially in the sparse case, which involves deep ideas from
spectral theory, harmonic analysis and ergodic theory. We refer to the book of Gorod-
nik and Nevo [16] for the case of arithmetic groups, and to Oh’s surveys [42] and [43]
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for the sparse case, as well as to the recent paper of Mohamadi and Oh [40] concerning
geometrically finite subgroups of isometries of hyperbolic spaces.

Method 2. [Combinatorial balls] Since the groups Γ of interest are most often finitely
generated, and indeed sometimes given with a set of generators, one can replace the
archimedean metric of the first method with a combinatorial one. Thus if S = S−1 is
a generating set of Γ, we denote by `S(g) the word-length metric on Γ defined using S.
The sets

S ∩ {g ∈ Γ | `S(g) 6 T}, or S ∩ {g ∈ Γ | `S(g) = T},
are again finite, and one can attempt to estimate their size.

This method is particularly interesting when S is a set of free generators of Γ (and their
inverses), because one knows precisely the size of the balls for the combinatorial metric
in that case. And even if this is not the case, one can often find a subgroup of Γ which is
free of rank > 2, and use this subgroup instead of the original Γ (this technique is used
in [3]; in that case, the necessary free subgroup is found using the Tits Alternative, a
very specific case of which says that if Γ is Zariski-dense in SLr, then it contains a free
subgroup of rank 2.)

Method 3. [Random walks] Instead of trying to reduce to free groups using a sub-
group, one can replace Γ by the free group F (S) generated by S and use the obvious
homomorphisms

φ : F (S) −→ Γ −→ GLr(Z)

and
F (S) −→ Γ −→ Γp

to define sieve problems and sifted sets. An alternative to this description is to use
the generating set S and count elements in balls for the word-length metric `S with
multiplicity, the multiplicity being the number of representations of g ∈ Γ by a word of
given (or bounded) length. This means one measures the size of a set X ⊂ Γ truncated
to the sphere of radius N > 1 around the origin by its density

µN(X) =
1

|S|N
|{(s1, . . . , sN) ∈ SN | s1 · · · sN ∈ X}|

and therefore one tries to measure the density of the sifted set µN(S), as a way of mea-
suring its size within a given ball. If one wishes to measure balls instead of spheres, a
simple expedient is to replace S by S1 = S ∪ {1} (since the sphere of radius N for `S1 is
the ball of radius N for `S).

It is often convenient to think of this in terms of a random walk: one assumes given,
on a probability space Ω, a sequence of independent S-valued random variables ξn, and
one defines a random walk (γn) on Γ by

γ0 = 1, γn+1 = γnξn+1 for n > 0.

If all steps ξn are uniformly distributed on S, it follows that

µN(X) = P(γN ∈ X),

or in other words, the density µN is the probability distribution of the N -th step of this
random walk.

Example 3.2. The analogue (for Methods 2 and 3) of the argument in Example 3.1 is
the following: given a function f as in that example, there exists C > 1 such that, for all
g ∈ Γ, we have

|f(g)| 6 C`S(g)
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(simply because the operator norm of g is submultiplicative and hence grows at most
exponentially with the word-length metric). Thus elements which have word-length at
most N and belong to a sifted set S(Q; Ω) with Q of size AN , for some A > 1, have at
most (logA)/(logC) prime factors.

Example 3.3 (Dunfield–Thurston random manifolds). This third counting method is
the least familiar to classical analytic number theory. This random walk approach was
however already considered by Dunfield–Thurston [8] as a way of studying random 3-
manifolds, using the Heegard-splitting construction based on mapping class groups as in
Example 2.5, (3): given an integer g > 1, they consider a finite generating set S of the
mapping class group Γ of Σg and the associated random walk (φn). The 3-manifolds Mφn

are then “random 3-manifolds” and some of their properties can be studied using sieve
methods.

It is of course useful to have a way of considering these three methods in parallel. This
can be done by assuming that one has a sequence (µN) of finite measures on Γ, and by
considering the problem of estimating µN(S), the measure of the sifted set. In Method
1, these measures would be the uniform counting measure on the intersection of Γ with
the balls of radius N in GLr(R), in Method 2, the uniform counting measure on the
combinatorial ball of radius N , and in Method 3, the probability law of the N -th step of
the random walk.

4. Implementing sieve with expanders

We will now explain how all this relates to expanders. The one-line summary is that
the expander condition will allow us to apply classical results of sieve theory to settings
of discrete groups “with exponential growth” (one might prefer to say, “in non-amenable
settings”). We can motivate this convincingly as follows.

The simplest possible sieve problem occurs when the set P of conditions is restricted
to a single prime, and one is asking for

µN({g ∈ Γ | πp(g) = g0})

for a fixed prime p and a fixed g0 ∈ Γp. One sees that, assuming p is fixed, this elementary-
looking question concerns the distribution of the image of the sequence πp,∗µN of measures
on the finite group Γp. This may well be expected to have a good answer.

Example 4.1. Consider (one last time) the classical case Γ = Z. If we truncate by
considering initial segments {1, . . . , N}, we are asking here about the number of positive
integers 6 N congruent to a given a modulo p. The proportion of these converges of
course to 1/p, and this is usually so self-evident that one never mentions it specifically.
(But, still in classical cases, note that if one starts the sieve from the set of primes instead
of Z, then this basic question is resolved by Dirichlet’s Theorem on primes in arithmetic
progressions, and the uniformity in this question is basically the issue of the Generalized
Riemann Hypothesis.)

On intuitive grounds as well as theoretically, one can expect that the “probability” that
g reduces modulo p to g0 should be about 1/|Γp|. This amounts to expecting that the
probability measures πp,∗(µ)/µN(Γ) converge weakly to the uniform (Haar) probability
measure on this finite group. It is when considering uniformity of such convergence that
expander graphs enter the picture.
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We can already deduce from this intuition the following heuristic concerning the size
of a sifted set S(P; Ω): each condition πp(g) /∈ Ωp should hold with “probability” approx-
imately

1− |Ωp|
|Γp|

,

and these sieving conditions, for distinct primes, should be independent. Hence one may
expect that

(4.1) µN(S(P; Ω)) ≈ µN(Γ)
∏
p∈P

(
1− |Ωp|
|Γp|

)
(where the symbol ≈ here only means that the right-hand side is a first guess for the
left-hand side...)

The simplest counting method to explain this is Method 3, where the argument is
very transparent. We therefore assume in the remainder of this section that µN is the
probability law of the N -th step of a random walk on Γ as above.

It is then an immediate corollary of the theory of finite Markov chains (applied to
the random walk on the Cayley graph of Γp induced by that on Γ) that, if 1 ∈ S (or
more generally if this Cayley graph is not bipartite, i.e., if there exists no surjective
homomorphism Γp −→ {±1} such that each generator s ∈ S maps to −1), we have
exponentially-fast convergence to the probability Haar measure. Precisely, let Mp be the
Markov operator acting on functions on Γp by

(Mpϕ)(x) =
1

|S|
∑
s∈S

ϕ(xs).

This operator also acts on functions of mean 0, i.e., on the space L2
0(Γp) of functions

such that ∑
g∈Γp

ϕ(g) = 0,

and has real eigenvalues. Let %p < 1 be its spectral radius (it is < 1 because the eigenvalue
1 is removed by restricting to L2

0, while −1 is not an eigenvalue because the graph is not
bipartite). We then have ∣∣∣µN(πp(g) = g0)− 1

|Γp|

∣∣∣ 6 %Np

for all N > 1.
More generally, under the Independence Assumption 2.3, if I is a finite set of primes

not in T1(Γ), the same argument applied to the quotient

Γ −→ ΓI =
∏
p∈I

Γp

shows that that for any (gp) ∈ ΓI , we have

(4.2)
∣∣∣µN(πp(g) = gp for p ∈ I

)
−
∏
p∈I

1

|Γp|

∣∣∣ 6 %NI

where %I < 1 is the corresponding spectral radius for ΓI . It follows by summing over
x = (gp) ∈ ΓI that we have a quantitative equidistribution

(4.3)

∫
ϕ((πp(g))p∈I)dµN(g) =

1

|ΓI |
∑
x∈ΓI

ϕ(x) +O(|ΓI |‖ϕ‖∞%NI )

9



(with an absolute implied constant) for any function ϕ on ΓI .
In particular, we see that if P is a fixed set of primes (not in T1(Γ)), then as N → +∞,

the basic heuristic (4.1) is valid asymptotically:

(4.4) lim
N→+∞

µN(S(P; Ω)) = lim
N→+∞

P(γN ∈ S(P; Ω)) =
∏
p∈P

(
1− |Ωp|
|Γp|

)
(we will call this a “bounded sieve” statement).

The difficulty (and fun!) of sieve methods is that the sifted sets of most interest are such
that the primes involved in P are not fixed as N → +∞: they are in ranges increasing
with the size of the elements being considered (as shown already by the example of
the twin primes). It is clear that in order to handle such sifted sets, we need a uniform
control of the equidistribution properties modulo primes, and modulo finite sets of primes
simultaneously. The best we can hope for is that (4.2) hold with the spectral radius
bounded away from one independently of I. This is, of course, exactly the conditions
under which the family of Cayley graphs of ΓI with respect to the generators S is a
family of (absolute) expander graphs.

Remark 4.2. We have discussed the example of the random walk counting method. It is
a fact that analogues of (4.2) hold in all cases where sieve methods have been successfully
applied. Moreover, these analogues hold uniformly with respect to I, and ultimately, the
source is always equivalent to the expansion property of the Cayley graphs, although the
proofs and the equivalence might be much more involved than the transparent argument
that exists in the case of random walks.

Example 4.3. The first case beyond the classical examples (or the case of arithmetic
groups, where Property (T ) or (τ) can be used,2 although this also had not been done
before) where sieve in discrete groups was implemented is due to Bourgain, Gamburd
and Sarnak [3], who (based on earlier work of Helfgott [21] and Bourgain–Gamburd [2])
proved that if Γ is a finitely-generated Zariski-dense subgroup of SL2(Z) (or even of
SL2(O), where O is the ring of integers in a number field), the Cayley graphs of ΓI , where
I runs over finite subsets of T1(Γ), form a family of (absolute) expanders. The problem of
generalizing this to SLr, or to Zariski-dense subgroups of other algebraic groups, was one
of the motivations for the recent developments of this result, and of the basic “growth”
theorem of Helfgott, to more general groups. We now know an essentially best possible
result (see [52, 56], and the surveys [50, 5, 46] of Salehi-Golsefidy, Breuillard and Pyber–
Szabó in these Proceedings for introductions to this area):

Theorem 4.4 (Salehi-Golsefidy–Varjú). Let Γ ⊂ GLr(Z) be finitely generated by S =
S−1, with Zariski-closure G. For p prime, let Γp be the image of Γ under reduction
modulo p, and for a finite set of primes I, let ΓI be the image of Γ in∏

p∈I

Γp,

under the simultaneous reduction homomorphism.
If the connected component of the identity in G is a perfect group, then there exists a

finite set of primes T1(Γ) such that the family of Cayley graphs of ΓI , for I ∩ T1(Γ) = ∅,
is an expander family.

We can now describe what is the implication of some classical sieve results in the
context of discrete groups. We assume formally the following:

2 See the works of Gorodnik and Nevo [17] for the best known in this direction.
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Assumption 4.5 (Expansion). There exists a finite set of primes T2(Γ) such that Γ
satisfies the Independence Assumption 4.5 for primes not in T2(Γ), and furthermore the
family of Cayley graphs of ΓI , for I ∩ T2(Γ) = ∅, is an expander family, i.e., there exists
% < 1, such that for any finite set I of primes p /∈ T2(Γ), the spectral radius for the
Markov operator on ΓI satisfies

%I 6 %.

By (4.2), this assumption implies that the asymptotic formula

(4.5) P(πp(γn) = gp for p ∈ I
)
∼
∏
p∈I

1

|Γp|

holds uniformly for n > 1 and sets I such that |ΓI | 6 %̃−n, for any %̃ > %. If we assume
that

(4.6) |Γp| 6 pB

for some fixed B > 1, this means that we can control simultaneously and uniformly all
reductions of the N -th step as long as qI 6 %̃−n/B. Note that (4.6) is not very restrictive:
it holds (with B = r2) if πp is just the reduction modulo p on GLr(Z), which is the case
in all our applications.

The most classical types of sieve are those when the sieving conditions determined by
Ωp hold with probability approximately κ/p, at least on average, were κ is a fixed real
number traditionally called the dimension of the sieve. Precisely, we say that (Ωp) is of
dimension κ if we have3

(4.7)
∑
p6X

|Ωp|
|Γp|

log p = κ logX +O(1)

for X > 2. Note that this is certainly true, by the Prime Number Theorem, if

|Ωp|
|Γp|

=
κ

p
+O

( 1

p1+δ

)
for some δ > 0 and all p prime.

We then have the following basic result:

Theorem 4.6 (Small sieve in discrete groups). Let Γ be a discrete group finitely generated
by S = S−1, given with φ : Γ −→ GLr(Z) and surjective homomorphisms πp to finite
groups Γp as above, in particular with (4.6) for some fixed B > 1. Assume that Γ satisfies
the Independence Assumption 2.3 and the Expansion Assumption 4.5. Let (γn) denote a
random walk on Γ using steps from S, and let µn denote the probability law of the n-th
step. Let Ωp ⊂ Γp be finite sets such that (4.7) holds for some κ > 0.

There exists A > 0 such that, for all n > 1, if we let Q = An and take P to be the set
of primes p 6 Q with p /∈ T2(Γ), then we have

P(γn ∈ S(P; Ω)) � 1

nκ

for all N large enough.

This is essentially a direct consequence of the standard Brun-type sieve, building on
the Independence and Expansion assumptions. The mechanism is explained in [29], and
to avoid repetition, we will not give further details here. We simply add a few remarks.
First, this result confirms the heuristic (4.1) as far as the order of magnitude is concerned,

3 There are other weaker conditions that are enough to allow an efficient sieve, but we refer only
to [10, §5.5] for a discussion of these aspects.
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i.e., up to multiplicative constants. Indeed, the right-hand side of (4.1) is, in this case,
given by ∏

p6An

p/∈T2(Γ)

(
1− |Ωp|
|Γp|

)
∼
∏
p6An

(
1− κ

p

)
� n−κ

as n → +∞, by (4.7) and the Mertens Formula (or the Prime Number Theorem.) Sec-
ondly, the result is best possible in the sense that one cannot replace the inequalities up
to multiplicative constants by an asymptotic formula in this generality (this is also seen
from the Mertens Formula and the Prime Number Theorem). Finally, the result is by no
means an easy consequence of (4.2) and the uniformity afforded by expansion.

Example 4.7 (Sieve in orbits). We illustrate the above result by deriving, as a corollary,
a special case of the sieve in orbits (or affine linear sieve) of [3].

Let Γ be Zariski-dense in SLr(Z) with r > 2, and generated by the finite set S = S−1.
We take for πp the reduction maps. Let

f : SLr(Z) −→ Z

be a non-constant polynomial map and let Ωp ⊂ SLr(Fp) be the set of zeros of f . Since
f is non-constant, the algebraic subvariety Zf of SLr defined by the equation f = 0 is a
hypersurface in SLr. Relatively elementary considerations of algebraic geometry, together
with the Lang-Weil estimates for the number of points on algebraic varieties over finite
fields, show that we have

(4.8)
|Ωp|
|Γp|

=
κp
p

+O(p−3/2)

for some κp > 0 which depends on the splitting of p in the field of definition of the
geometrically irreducible components of Zf (if all geometrically irreducible components
of Zf are defined over Q, then κp is the number of these irreducible components, as is
well-known; the general case is carefully explained by Salehi-Golsefidy and Sarnak [51,
Prop. 15, Cor. 17]). A further application of the Chebotarev density theorem (see [51,
Lemma 21]) shows that ∑

p6X

κp = κπ(X) +O(X/(logX)2)

where κ is the number of Q-irreducible components of Zf (if all geometrically irreducible
components are defined over Q, we have κp = κ for all but finitely many p).

Example 4.8. (1) Consider the function

f
((

a b
c d

))
= a2 + d2

on SL2. For p ≡ 3 (mod 4), we have κp = 0 (since a2 + d2 = 0 ∈ Fp implies a = d = 0
in this case), while for p ≡ 1 (mod 4), we have κp = 2, reflecting the fact that Zf has
then, over Fp, the two geometrically irreducible components defined by a + εd = 0 and
a− εd = 0, where ε2 = −1. The average of κp over p is then equal to κ = 1.

(2) Consider the function

f(gi,j) =
∏
i,j

gi,j

on SLr. Then the irreducible components are defined by gi,j = 0 for a fixed (i, j), and
are all defined over Q. Thus we have κ = κp = r2 for all primes p.

12



Thus all assumptions of Theorem 4.6 hold (the Expansion Assumption coming from
Theorem 4.4), and we deduce that there exists a finite set of primes T and A > 1 such
that if P is the set of primes not in T and 6 An, we have

P(γn ∈ S(P; Ω)) � n−κ.

Using Example 3.2, we therefore deduce:

Theorem 4.9 (Sieve in orbits; Bourgain–Gamburd–Sarnak). Let Γ and f be as above.
There exists ω > 1 such that the set Of (ω) of all g ∈ Γ such that f(g) has at most ω
prime factors satisfies

(4.9) P(γn ∈ Of (ω)) � n−κ

for n large enough.

One of the insights of Bourgain–Gamburd–Sarnak was that such a statement has a
more qualitative corollary which is already very interesting and doesn’t require any con-
sideration of a special counting method:

Corollary 4.10. Let Γ and f be as above. There exists ω > 1 such that the set Of (ω) is
Zariski-dense in SLr.

Proof. It is enough to check that if a subset X ⊂ Γ is not Zariski-dense, then a lower-
bound

P(γn ∈ X)� n−κ

does not hold for any κ > 0, since Of (ω) ⊂ Z would then contradict the sieve lower
bound (4.9) (note that here (γn) is just an auxiliary tool).

Given X, there exists a non-trivial polynomial f such that X ⊂ Zf (recall that this is
the zero set of f). Then, for any prime p (large enough so that reduction of f modulo
p makes sense) the image of X modulo p is contained in the zeros of f modulo p. But
using (4.8) and summing (4.5) over the zeros of f modulo p, we have

P(πp(γn) ∈ Zf (mod p)) ∼ κpp
−1

uniformly for p 6 An for some A > 1. Taking p of size An, we deduce

P(γn ∈ X) 6 P(πp(γn) ∈ Zf (mod p))� A−n

for n large enough. Thus the probability to be a zero of a given function f is in fact
exponentially small for a long walk, and this contradicts the lower bounds for Of (ω). �

In fact, as noted in [29] and as we will see in the next section, this has a natural
refinement where Zariski-dense is replaced by “not thin” in the sense of Serre.

Note that Salehi-Golsefidy and Sarnak [51] have extended the basic small sieve state-
ment to much more general groups, not necessarily reductive, using the full power of
Theorem 4.4 together with special considerations to handle unipotent groups.

Example 4.11. Theorem 4.6 also applies in the context of Dunfield–Thurston manifolds,
as in Example 3.3. Indeed, the Expansion Assumption 4.5 is here a consequence of
Property (T ) for Sp2g(Z). As observed in [29], a consequence of Theorem 4.6 which is
similar in spirit to the affine linear sieve is that there exists ω > 1 such that

P(H1(Mφn ,Z) is finite and has order divisible by 6 ω primes) � n−1

for n large enough. (We recall that the genus g defining the Heegard splitting is fixed).
13



One can certainly use the sieve setting for many other purposes. As one further ex-
ample, we show how the method of Granville and Soundararajan [19, Prop. 3] gives a
version of the Erdös-Kac Theorem for discrete groups. For simplicity, we only state the
result for the affine sieve, and give one further example afterwards (a version of this for
curvatures of Apollonian circle packings was proved by Djanković [7]).

Theorem 4.12 (Erdös-Kac central limit theorem for affine sieve). Assume that Γ ⊂
SLr(Z) is Zariski-dense in SLr and f is a non-constant polynomial function satisfying
the assumptions of Theorem 4.9. For a random walk (γn) on Γ, let ωf (γn) = ω(f(γn)) if
f(γn) 6= 0, and ωf (γn) = 0 otherwise. Then the random variables

ωf (γn)− κ log n√
κ log n

converge in law to the standard normal random variable as n→ +∞.

Proof. We proceed exactly as in [19], leaving some details to the reader. This uses the
method of moments to prove convergence in law to the normal distribution: classical
probability results imply that it is enough to prove that for all integers k > 0, we have

E
((ωf (γn)− κ log n√

κ log n

)k)
−→ ck

as n → +∞, where ck = E(N(0, 1)k) is the k-th moment of a standard normal random
variable.

We first deal with the possibility that f(γn) 6= 0. By bounding

P(f(γn) = 0) 6 P(f(πp(γ)) = 0)

for any prime p large enough, and arguing as in the proof of Corollary 4.10, we get

P(f(γn) = 0)� c−n

for some c > 1. Thus the expectation above, restricted to the set f(γn) = 0, is

� (κ log n)k/2c−n −→ 0

as n→ +∞.
Below we use the notation Ẽ to denote expectation restricted to f(γn) 6= 0. We fix

some integer k > 0, and fix some auxiliary A > 1. We will compare

Mk = Ẽ((ωf (γn)− κ log n)k)

with the moment of “truncated” count of primes dividing f(γn) defined by

Nk = Ẽ
(( ∑

p6An

πp(γn)∈Ωp

1−
∑
p6An

δp

)k)
,

where

δp =
|Ωp|
|Γp|

,

and then estimate asymptotically this second moment when A > 1 is small enough with
respect to k.

For the first step, we note that when f(γn) 6= 0, we have

ωf (γn)− κ log n = A1 + A2 + A3

14



where

A1 =
∑
p6An

πp(γn)∈Ωp

1−
∑
p6An

δp

A2 = ω(f(γn))−
∑
p6An

πp(γn)∈Ωp

1

A3 =
∑
p6An

δp − κ log n

If C > 1 is such that |f(g)| 6 C`S(g), then we get

0 6 A2 6
logC

logA
,

while, by (4.7), we have

A3 =
∑
p6An

δp − κ log n =
∑
p6An

|Ωp|
|Γp|
− κ log n = O(1),

so that A2 + A3 is uniformly bounded for a fixed choice of A. Using the multinomial
theorem, it follows that

Mk = Nk +O( max
j6k−1

Ñj),

where

Ñj = Ẽ
(∣∣∣ ∑

p6An

πp(γn)∈Ωp

1−
∑
p6An

δp

∣∣∣k).
We have Ñj = Nj is even and if j is odd, we get

Ñj 6
√
Ñj−1Ñj+1 =

√
Nj−1Nj+1

by the Cauchy-Schwarz inequality, showing that good understanding of Nj for j 6 k will
suffice to estimate Mk.

For the second step, we write

Xp = 1πp(·)∈Ωp − δp
for p 6 An, sum over p, and open the k-th power defining Nk. Note that |Xp| 6 1.
Exchanging the multiple sum over primes and the expectation, we get

Nk =
∑
· · ·
∑

p1,...pk6An

Ẽ
( k∏
j=1

Xpj

)
.

For any fixed (p1, . . . , pk), we note that

Ẽ
( k∏
j=1

Xpj

)
= E

( k∏
j=1

Xpj

)
− E

( k∏
j=1

Xpj1f(γn)=0

)
and the second term is bounded by P(f(γn) = 0) � c−n since 0 6 Xpj 6 1. Thus the

total change in replacing Ẽ by E in the formula above for Nk is � Ankc−n, which is
negligible if A is chosen small enough.
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Having written

Nk =
∑
· · ·
∑

p1,...pk6An

Ẽ
( k∏
j=1

Xpj

)
=
∑
· · ·
∑

p1,...pk6An

E
( k∏
j=1

Xpj

)
+O(Ankc−n),

we can apply the equidistribution (4.3) to each expectation term, obtaining a main term
which we will discuss in a moment and a total error term E which is bounded by

E � Ank(1+B)%n + Ankc−n

(where B is as in (4.6)). Therefore E tends to 0 as n→ +∞ if A is chosen small enough
(in terms of k), which we assume to be done.

There remains the main term. However, the latter is, by the Independence Assump-
tion 2.3 and by retracing our steps, almost tautologically the same as

E
((∑

p6An

Yp − δp
)k)

where the (Yp) are independent Bernoulli random variables with expectation E(Yp) =
δp = |Ωp|/|Γp|. It is a basic probabilistic fact that the sum∑

p6An

Yp

satisfies the Central Limit Theorem, with mean κ log n and variance κ log n (because
of (4.7) again). Therefore this sum has the right k-th moment for all k > 0, and this
easily concludes the proof (or see [19] for a direct analysis of this type of main terms to
see the combinatorics from which the normal moments explicitly appear). �

Example 4.13 (Erdös-Kac theorem for random 3-manifolds). It is clear that the argu-
ment can be applied in greater generality (including for other counting methods, pro-
vided the analogue of quantitative and suitably uniform equidistribution is known). For
instance, one sees that, for Dunfield–Thurston random 3-manifolds, the number ω(Mφn)
of primes p such that H1(Mφn ,Fp) 6= 0 is such that

ω(Mφn)− log n√
log n

converges to a standard normal random variable, with the convention ω(Mφn) = 0 if
H1(Mφn ,Q) 6= 0.

5. The large sieve

We begin with a motivating example.

Example 5.1. Consider Corollary 4.10. Although the Zariski topology contains a fair
amount of information (see [3] for examples of distinction it makes concerning the sieve
in orbits), it is not very arithmetic. By itself, the fact that Of (ω) is Zariski-dense in SLr
does not exclude the possibility that this set is contained, for instance, in the subset X
of SLr(Z) of matrices where the top-left coefficient is a perfect square (since X is Zariski-
dense in SLr.) It is natural to try to study this and similar possibilities. The following
definition is relevant (see [55, Chapter 3]):

Definition 5.2 (Thin set). A subset X ⊂ SLr(Q) is thin if there exists an algebraic

variety W/Q with dim(W ) 6 r2 − 1 and a morphism W
π−→ SLr such that (1) π has no

rational section; (2) we have X ⊂ π(W (Q)).
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Example 5.3. (1) The set X = {g ∈ SLr(Q) | g1,1 is a square} is thin. Indeed, we have
a Q-morphism

π : Ar2 −→ Ar2

mapping (gi,j) to the matrix (hi,j) with h1,1 = g2
1,1 and all other coordinates unchanged.

The pull-back of this morphism to SLr ⊂ Ar2 gives a morphism

π : W −→ SLr,

where
W = {g ∈ Ar2 | det(π(g)) = 1},

for which we have X ⊂ π(W (Q)) by construction (and dimW 6 dim SLr is clear since π
has finite fibers.)

(2) A subset X which is not Zariski-dense is thin.

We wish to prove:

Proposition 5.4. Let Γ and f be as in Corollary 4.10. Then there exists ω > 1 such
that Of (ω) is not thin in SLr.

The natural idea to prove this is to prove that if X is a thin set, then for a random
walk on Γ, the probability

P(γn ∈ X)

is too small to be compatible with (4.9). For this, we observe, as in the proof of the
Zariski-density, that if X ⊂ π(W (Q)) for some

π : W −→ SLr

as in the definition, we have
πp(X) ⊂ π(W (Fp)),

for all primes p large enough (such that W and π make sense modulo p). Hence if g ∈ X,
we have

πp(g) /∈ Ωp = SLr(Fp)− π(W (Fp)),

for all p large enough. This implies a sieve upper bound

X ⊂ S(P; Ω),

where P contains all but finitely many primes.
However, the size of Ωp is typically much larger than the number of points of an

algebraic variety, as one can guess by just looking at the example of squares in Q, where
the image modulo p contains roughly half of all residue classes. Indeed, in general we
have:

Lemma 5.5. Let π : W −→ SLr be a Q-rational morphism with dimW 6 r2 − 1 and
with no Q-rational section. There exists δ < 1 such that, for p large enough, we have

|π(W (Fp))|
| SLr(Fp)|

6 δ.

For the proof, see e.g. [55, Th. 3.6.2].

Example 5.6 (Homology of Dunfield–Thurston random manifolds). We consider the
situation of Example 2.5, (3). Here we found sifting conditions Ωp defined in (2.2) such
that, if Mφn denotes the manifold obtained from the n-th step of a random walk on the
mapping class group Γ (as in Example 3.3), we have

P(H1(Mφn ,Q) 6= 0) 6 P(φn ∈ S(Q,Ωp))
17



for any Q > 1, where Q refers to using all primes p 6 Q as sieve conditions. It is an
interesting computation to show that

|Ωp|
|Γp|

= 1−
g∏
j=1

1

1 + p−j

(see [8, Th. 8.4]) so that, for fixed g, there exists δg > 0 for which

|Ωp|
|Γp|
> δg

for all p.

We now revert to the general setting of a discrete group Γ with local information
πp : Γ −→ Γp. We have found above two natural instances of large sieves, a terminology
which refers to sieving problems where the sets Ωp are “large”, something which most
commonly means that they contain a positive proportion of Γp: for some δ > 0, we have

(5.1)
|Ωp|
|Γp|
> δ > 0

for all p ∈ P. This is to be compared with the “small” sieve assumption (4.7), and
this leads to an interesting remark (answering the question to the reader at the end of
Example 2.5, (3)): the primes occur explicitly on both sides of (4.7), but as far as the
left-hand side is concerned, they are just indices that could be replaced with any other
countable set. However, on the right-hand side, the actual size of primes (and hence their
distribution) is involved. This feature disappears in (5.1). This suggests that the “large”
sieve could be of interest in much wider contexts outside of number theory. This is indeed
the case, as was shown already partly in the book [28], and even more convincingly in the
recent works of Lubotzky, Meiri and Rosenzweig that we will discuss, some of which prove
general algebraic statements about linear groups using some forms of sieve methods.

To present the large sieve in the context of discrete groups, we will use here the very
simple version from the paper [33] of Lubotzky and Meiri, adapted to our setting.

Theorem 5.7 (Large sieve). Let Γ be a group generated by a finite symmetric set S with
1 ∈ S. Let Γ −→ Γp be surjective homomorphisms onto finite groups for p > p0. Assume
that:

(1) For any p 6= q primes > p0, the induced homomorphisms

(5.2) Γ −→ Γp × Γq = Γp,q

are onto.
(2) The family of Cayley graphs of Γp,q and Γp with respect to S is an expander family,

for p, q > p0.
(3) For some B > 1 we have

|Γp| 6 pB.

Let Ωp ⊂ Γp be such that

(5.3)
|Ωp|
|Γp|
> δ

for some δ > 0 independent of p.
Then there exists A > 1 and c > 1 such that for Q = An, we have

P(γn ∈ S(Q; Ω))� c−n

for n large enough, where the sieving is done using primes p0 6 p 6 Q.
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Note how the assumptions concerning the group and the Γp are slightly weaker versions
of those used for the small sieve in Theorem 4.6, since expansion and independence is
only required for pairs of primes instead of all squarefree integers. Thus this version of
the large sieve applies whenever Theorem 4.6 is applicable.

In particular, in view of the example at the beginning of this section, we see that this
theorem proves Proposition 5.4. Similarly, for the Dunfield–Thurston random manifolds
of Example 5.6, this implies the following:

Proposition 5.8. Let g > 1 be an integer, and let (φn) be a random walk on the mapping
class group Γ of Σg associated to a finite generating set S. Then there exists c > 1 such
that

P(H1(Mφn ,Q) 6= 0)� c−n

for n > 1.

The fact that the probability tends to zero was already proved by Dunfield and Thurston
(see [8, Cor. 8.5]), and the exponential decay was obtained in [28, Prop. 7.19].

Remark 5.9. It would be unreasonable to expect lower-bounds for the size of sifted sets in
the large sieve situation, unless the set P determining the sieving conditions is extremely
small (so the situation essentially reverts to a bounded sieve (4.4)). Indeed, if we consider
integers and sieve by removing the non-square residue classes modulo p for all p ∈ P,
which is certainly a large sieve, the right-hand side of the heuristic size of the remaining
set is (1/2)|P|. If P is the set of primes 6 Q, then this is much smaller than the number
of squares in {1, . . . , N}, which certainly remain after the sieve, if Q = N ε for any fixed
ε > 0. (See [20] for a discussion of the fascinating question of the possibility of an
“inverse” large sieve statement for integers.)

We adapt the simple proof of Theorem 5.7 in [33] (due to R. Peled; it is reminiscent of
some classical arguments going back to Rényi and Turán, see [28, Prop. 2.15].)

Proof. For a fixed n, let Xp denote the Bernoulli random variable equal to 1 when πp(γn) ∈
Ωp and 0 otherwise, and let

X =
∑

p06p6Q

Xp.

We see that γn ∈ S(Q; Ω) is tautologically equivalent to the condition X = 0. We can
compute easily the expectation of X, namely

E(X) =
∑
p

P(πp(γn) ∈ Ωp),

which, by Expansion for (Γp), satisfies

E(X) =
∑
p

|Ωp|
|Γp|

+O(Q1+B%n),

where % < 1 is an upper-bound for the spectral radius of the expansion of the Cayley
graphs. If Q1+B � %n, this gives

E(X)� π(Q)� Q

logQ

using the large sieve assumption on the size of Ωp.
We will now use the Chebychev inequality

P(γn ∈ S(Q; Ω)) = P(X = 0) 6
V(X)

E(X)2
,
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where V(X) is the variance of X. We compute

V(X) = E((X − E(X))2) =
∑
p,q

W (p, q)

by expanding the square, where

W (p, q) = E(XpXq)− E(Xp) E(Xq)

= P(πp(γn) ∈ Ωp and πq(γn) ∈ Ωq)−P(πp(γn) ∈ Ωp) P(πq(γn) ∈ Ωq)

(a measure of the correlation between two primes). We isolate the diagonal terms where
p = q, for which we use the trivial bound |W (p, p)| 6 1, and obtain

V(X) 6 Q+Q2 max
p 6=q
|W (p, q)|.

Finally, to estimate W (p, q) when p 6= q, we can apply the assumption (5.2) and the
expansion of the Cayley graphs of Γp,q and Γp: we have

P(πp(γn) ∈ Ωp and πq(γn) ∈ Ωq) =
|Ωp||Ωq|
|Γp||Γq|

+O(Q2B%n)

while, by the same argument used for computing the expectation, we have

P(πp(γn) ∈ Ωp) P(πq(γn) ∈ Ωq) =
|Ωp||Ωq|
|Γp||Γq|

+O(QB%n).

The main terms cancel, and therefore

Q2 max
p 6=q
|W (p, q)| � Q2+2B%n.

Take Q as large as possible so that Q2+2B%n < 1, so that Q > An for some A > 1.
Then the Chebychev inequality gives

P(γn ∈ S(Q; Ω))� (Q+Q2+2B%n)(logQ)2

Q2
� (logQ)2

Q

which is of exponential decay in terms of n. �

Remark 5.10. (1) Clearly, one can restrict the large sieve assumption (5.3) to a subset of
primes with positive natural density (e.g., some arithmetic progression) without changing
the conclusion, and this is often useful.

(2) This very simple proof is well-suited to situations where precise information on the
expansion constant of the relevant Cayley graphs is missing (as is most often the case).
When such information is available, one gets from this argument an explicit constant
c > 1, and one may wish to get it as large as possible. For this, one can use rather more
precise inequalities, as discussed extensively in [28].

The point of the large sieve is really the exponential decay it provides. If one is
interested in a statement of qualitative decay

(5.4) lim
n→+∞

P(γn ∈ X) = 0

for a subset X ⊂ Γ such that
X ⊂ S(Q; Ω)

for all Q large enough, where the Ωp satisfy (5.3), then one can more easily apply the
bounded sieve (4.4) to a finite set I, getting

lim sup
n→+∞

P(γn ∈ X) 6 lim
n→+∞

P(πp(γn) /∈ Ωp for p ∈ I) =
∏
p∈I

(
1− |Ωp|
|Γp|

)
6 (1− δ)|I|.
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Then, letting |I| → +∞, we obtain (5.4). As an example, note that this qualitative
decay is not sufficient to prove Proposition 5.4.

Lubotzky and Meiri introduce the following convenient definition:

Definition 5.11 (Exponentially small sets). Let Γ be a finitely generated group. A subset
X ⊂ Γ is exponentially small if, for any finite symmetric generating set S containing 1,
and with (γn) the corresponding random walk on Γ, there exists a constant cS > 1 such
that

P(γn ∈ X)� c−nS
for n > 1.

Remark 5.12. Thus, we can summarize part of our previous discussion by stating that if X
is a thin subset of SLr(Q), and Γ is a finitely generated Zariski-dense subgroup of SLr(Z),
then X ∩ Γ is exponentially small in Γ, and by saying that the set of mapping classes
(in a fixed mapping class group Γ of genus g > 1) for which the corresponding manifold
obtained by Heegaard splitting has positive first rational Betti number is exponentially
small.

The first inkling of the large sieve in non-abelian discrete groups is found in appli-
cations of the qualitative argument above by Dunfield–Thurston [8] and Rivin [48, 49]
in geometric contexts (the second paper [49] of Rivin was the first to obtain exponential
decay, though its publication was delayed by a journal with overly long backlog; we thank
I. Rivin for clarifying the priority in publication here). We illustrate further the large
sieve with an example from the second, and then discuss briefly two other applications.

Example 5.13 (Pseudo-Anosov elements of the mapping class group). Let g > 1 be
given and let Γ be the mapping class group of Σg. Thurston’s celebrated theory classifies
the elements γ ∈ Γ as (1) reducible; (2) finite-order; or (3) pseudo-Anosov. To quantify
the feeling that “most” elements are of the third type, Rivin used a criterion based on
the action of γ on H1(Σg,Z), which says that if (but not only if) the characteristic
polynomial Pγ of this action is Pγ is irreducible, and satisfies further easy conditions,
then γ is pseudo-Anosov. One then notes that if Pγ is reducible, then so is its reduction
modulo any prime, so πp(γ) is not in the subset Ωp of elements of Sp2g(Fp) for which the
characteristic polynomial is irreducible. A computation that goes back to Chavdarov [6,
§3] shows that, for some δ > 0, we have

|Ωp|
| Sp2g(Fp)|

> δ > 0

for all p, and hence the large sieve applies. A simple further argument deals with the
other necessary conditions in the pseudo-Anosov criterion, and one concludes that the
set of non-pseudo-Anosov elements is exponentially small in Γ.

It should be said, however, that this proof is to some extent unsatisfactory, because it
doesn’t use the deeper structural and dynamical properties of pseudo-Anosov elements.
For instance, using the action on homology means that one cannot argue similarly for
subgroups Γ̃ ⊂ Γ for which the action on homology is small, especially subgroups of the
Torelli group, which is defined precisely as the kernel of the homomorphism

Γ −→ Sp2g(Z)

giving this action.
However, Maher [37, 38] has shown, using more geometric methods, that non-pseudo-

Anosov elements are exponentially small in any subgroup of Γ, except those for which
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this property is false for obvious reasons, and his work applies in particular to the Torelli
subgroup.

On the other hand, Lubotzky–Meiri [34] and Malestein–Souto [39] (independently)
have recently found proofs that non-pseudo-Anosov elements are exponentially small in
the Torelli group using ideas similar to those above.

Example 5.14 (Powers in linear groups). In [33], Lubotzky and Meiri prove the following
statement using the large sieve. The reader should note that this is, on the face of it, a
purely algebraic property of finitely generated linear groups.

Theorem 5.15 (Lubotzky–Meiri). Let Γ be a finitely generated subgroup of GLr(C) for
some r > 2. If Γ is not virtually solvable,4 then the set X of proper powers, i.e., the set
of those g ∈ Γ such that there exists k > 2 and h ∈ Γ with g = hk, is exponentially small
in Γ.

This strenghtens considerably some earlier work of a Hrushovski, Kropholler, Lubotzky
and Shalev [22]. The proof is also very instructive, in particular by showing how sieve
should be considered as a tool among others: here, one can use the large sieve to control
elements which are k-th powers for a fixed k > 2, but taking the union over all k > 2
cannot be done with sieve alone. So Lubotzky and Meiri use other tools to deal with
large values of k, in that case based on ideas related to the work of Lubotzky, Mozes and
Raghunathan comparing archimedean and word-length metrics [36].

Example 5.16 (Typical Galois groups of characteristic polynomials). Our last example
has been studied by Rivin [48], Jouve–Kowalski–Zywina [23], Gorodnik–Nevo [18] and
most recently Lubotzky–Rosenzweig [35], who were the first to explicitly consider the
case of sparse subgroups. However, the underlying idea of probabilistic Galois theory
goes back to versions of Hilbert’s irreducibility theorem, and especially to Gallagher’s
introduction of the large sieve in this context [15]. (There are also relations with works
of Prasad and Rapinchuk [44, 45].)

In the (most general) version of Lubotzky–Rosenzweig, one considers a finitely gener-
ated field K ⊂ C and a finitely generated subgroup Γ ⊂ GLr(K) for some r > 2. The
basic question is: what is the “typical” behavior of the splitting field of the characteristic
polynomial det(T − g) ∈ K[T ] for some element g ∈ Γ?

This can be studied using the large sieve, as we explain in the simplest case when
Γ ⊂ SLr(Z). Let G be the Zariski-closure of Γ, and assume that G is connected and split
over Q, for instance G = SLr. Let W be the Weyl group of G: this will turn out to be
the typical Galois group in this case.

To see this, the first ingredient is the existence, for any prime p large enough (such
that G can be reduced modulo p), of a certain map

ϕ : G(Fp)
]
r −→ W ]

going back to Carter and Steinberg, where G] denotes the set of conjugacy classes of
a finite group and the subscript r restricts to regular semisimple elements in the finite
group G(Fp).

This map is used to detect elements in the Galois groups of elements in Γ in the
following way. First, for g ∈ SLr(Z), let Pg be the characteristic polynomial and let Kg

be its splitting field, Galg its Galois group over Q. The point is that, if g is a regular
semisimple element of Γ, it is shown in [23] that there exists an injective homomorphism

jg : Galg ↪→ W,

4 I.e., there is no finite-index solvable subgroup of Γ.
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canonical up to conjugation, such that if p is any prime unramified in Kg, the Frobenius
conjugacy class at p maps under jg to the conjugacy class ϕ(πp(g)) ∈ W ]. Thus one
can detect whether the image of Galg in W intersects various conjugacy classes by seeing
where the reduction modulo p of g lies with respect to ϕ. As it turns out, the image of
ϕ becomes equidistributed among the conjugacy classes in W as p becomes large. Using
this, it is not too hard to show that if α ∈ W ] is a given conjugacy class and if Ωp denotes
the set of g ∈ G(Fp) such that ϕ(g) /∈ α, then these sets satisfy a large sieve density
assumption

|Ωg|
|G(Fp)|

> δα > 0

for some δα > 0 and all p large enough. It follows by the large sieve that the probability
that the element γn at the n-th step of a random walk on Γ has Galois group such that
jg(Galg)∩α = ∅ is exponentially small. This holds for all the finitely many classes in W ,
and a well-known lemma of Jordan5 allows us to conclude that the set of g ∈ Γ where jg
is not onto is exponentially small.

The general case treated by Lubotzky–Rosenzweig is quite a bit more involved. In
particular, new phenomena appear when G is not connected, and the different cosets of
the connected component of the identity then usually have different typical Galois groups.
We refer to their paper for details.

6. Problems and questions

We discuss here a few questions and problems, selected to a large extent according to
the author’s own interests and bias.

(1) [Effective results] A striking aspect of the results we have described is how little
they use the many refinements and developments of sieve theory, as described
in [10] for small sieves, and in [28] for the large sieve. This is due to the almost
complete absence of explicit forms of the Expansion Assumption for sparse groups,
from which it follows that one can not, for instance, give a numerical value of the
integer ω guaranteed to exist in Corollary 4.10 (recall that in classical sieves, the
current state of the art is very refined indeed: one knows, for instance, that the
number of primes p 6 x such that p + 2 has at most two prime factors is of the
right order of magnitude). In fact, when implementing the combinatorial counting
methods (either word-length or random walks), there is no known explicit sieve
statement, as far as the author knows6 (whereas a few explicit bounds do exist
for archimedean balls, based on spectral or ergodic methods, see, e.g., the works
of Kontorovich [24], Kontorovich–Oh [27], Nevo–Sarnak [41], Liu–Sarnak [32],
and Gorodnik–Nevo [17], or for random walks in a few arithmetic groups [28]).
It seems clear that the current proofs of expansion for sparse groups, although
they are effective, would lead to dreadful bounds on a suitable ω (see [30] for a
numerical upper-bound on the spectral radius for Cayley graphs of Zariski-dense
subgroups of SL2(Z) modulo primes, which suggests, e.g., that one could not get

better than ω of size at least 2240 or so for the product of coordinates function on
the Lubotzky group. . . ).

5 In a finite group G, there is no proper subgroup H such that H ∩ α 6= ∅ for all conjugacy classes α
in G.

6 The remarkable results of Bourgain and Kontorovich [4] are explicit, but not directly related to the
sieve as we have considered here; see [25] for a survey in these Proceedings.
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(2) [Average expansion?] One possibility suggested by the classical Bombieri–Vino-
gradov Theorem is to attempt a proof of expansion “on average” for the relevant
Cayley graphs: for many applications, it would be sufficient to prove estimates
for quantities like∑

qI6Q

max
(gp)∈ΓI

∣∣∣µN(πp(g) = gp for p ∈ I)− 1

|ΓI |

∣∣∣,
and such estimates could conceivably be provable without resorting to individual
estimates for each qI . They could also, optimistically, be of better quality than
what is true for individual I. (Such a property is known for classical sieve, by
work of Fouvry, Bombieri, Friedlander and Iwaniec).

(3) [Combinatorial balls] It would be very interesting to have equidistribution and
sieve results using trunctions based on word-length balls, without resorting to
random walks. Here, the hope is that one might not need to compute the asymp-
totics of the size of the combinatorial balls, since one is only interested in relative
proportions of elements in a ball mapping to a given g ∈ Γp.

(4) [Reverse power] This question is related to (1): at least in some cases, one has
very convincing conjectures for the counting function of primes arising from small
sieve in orbits (see, e.g., [11, 13]). Suppose one assumes such conjectures. What
does this imply for prime numbers? In other words, can one exploit information
on primes represented using the sieve in orbits to derive other properties of prime
numbers? Here the reference to keep in mind is the result of Gallagher (see [14]
and the generalization in [31]) that shows that uniform versions of the Hardy–
Littlewood k-tuples conjecture imply that the number of primes p 6 x in intervals
of length λ log x, for fixed λ > 0, is asymptotically Poisson-distributed.
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[2] J. Bourgain and A. Gamburd: Uniform expansion bounds for Cayley graphs of SL2(Fp), Ann. of

Math. 167 (2008), 625–642.
[3] J. Bourgain, A. Gamburd and P. Sarnak: The affine linear sieve, Invent. math. 179 (2010), 559–644.
[4] J. Bourgain and A. Kontorovich: On representations of integers in thin subgroups of SL(2,Z), GAFA

20 (2010), 1144–1174; Erratum, GAFA 20 (2010), 1548–1549.
[5] E. Breuillard: Mini-course on approximate groups, these Proceedings.
[6] N. Chavdarov: The generic irreducibility of the numerator of the zeta function in a family of curves

with large monodromy, Duke Math. J. 87 (1997), 151–180.
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