
ON THE SUPPORT OF THE KLOOSTERMAN PATHS

EMMANUEL KOWALSKI AND WILL SAWIN

Abstract. We obtain statistical results on the possible distribution of all partial sums of
a Kloosterman sum modulo a prime, by computing explicitly the support of the limiting
random Fourier series of our earlier functional limit theorem for Kloosterman paths.

1. Introduction

Let p be a prime number. For (a, b) ∈ F×p × F×p , we denote

Kl2(a, b; p) =
1
√
p

∑
x∈F×

p

e
(ax+ bx̄

p

)
(where e(z) = e2iπz for z ∈ C) the normalized Kloosterman sums modulo p. As in our
previous paper [15], we consider the Kloosterman paths t 7→ Kp(a, b)(t) for 0 6 t 6 1,
namely the random variables on the finite set F×p × F×p obtained by linearly interpolating
the partial sums

(a, b) 7→ 1
√
p

∑
16x6j

e
(ax+ bx̄

p

)
, 0 6 j 6 p− 1

that correspond to t = j/(p− 1) (see [15, §1]). The set F×p × F×p is viewed as a probability
space with the uniform probability measure, denoted Pp.

We proved [15, Th. 1.1, Th. 1.5] that as p→ +∞, the C([0, 1])-valued random variables
Kp converge in law to the random Fourier series

K(t) = tST0 +
∑
h6=0

e(ht)− 1

2πih
STh

where (STh)h∈Z is a family of independent Sato-Tate random variables (i.e., with law given

by
1

π

√
1− x2

4
dx on [−2, 2]) and the convergence holds almost surely in the sense of uniform

convergence of symmetric partial sums.
We discuss in this paper the support of this random Fourier series K(t), and the arithmetic

consequences of its structure. We will denote the support by S.
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Theorem 1.1. The support S of the law of K in C([0, 1]) is the set of all f ∈ C([0, 1])
such that f(0) = 0, f(1) ∈ [−2, 2] and such that the function g(t) = f(t) − tf(1) satisfies
ĝ(h) ∈ iR and

|ĝ(h)| 6 1

π|h|
for all non-zero h ∈ Z, where

ĝ(h) =

∫ 1

0

g(t)e(−ht)dt

are the Fourier coefficients of g.

See Section 2 for the proof. From the arithmetic point of view, what matters is the
combination of this result and of the next proposition.

Proposition 1.2. Let f ∈ C([0, 1]) be a function in the support S of K. For any ε > 0, we
have

lim inf
p→+∞

1

(p− 1)2

∣∣∣{(a, b) ∈ F×p × F×p |

max
06j6p−1

∣∣∣ 1
√
p

∑
16x6j

e
(ax+ bx̄

p

)
− f

( j

p− 1

)∣∣∣ < ε
}∣∣∣ > 0.

Conversely, if ∈ C([0, 1]) does not belong to S, then there exists δ > 0 such that

lim
p→+∞

1

(p− 1)2

∣∣∣{(a, b) ∈ F×p × F×p | max
06j6p−1

∣∣∣ 1
√
p

∑
16x6j

e
(ax+ bx̄

p

)
− f

( j

p− 1

)∣∣∣ < δ
}∣∣∣ = 0.

As an example, we obtain:

Corollary 1.3. For any ε > 0, we have

lim inf
p→+∞

1

(p− 1)2

∣∣∣{(a, b) ∈ F×p × F×p | max
06j6p−1

∣∣∣ 1
√
p

∑
16x6j

e
(ax+ bx̄

p

)∣∣∣ < ε
}∣∣∣ > 0.

Our goal, after proving these results, will be to illustrate them. We begin in Section 3
by spelling out some properties of the support of K, some of which can be interpreted as
“hidden symmetries” of the Kloosterman paths. Then we discuss some concrete examples
that we find interesting, especially various polygonal paths in Section 5. In Section 6, we
consider functions not in S which can be brought to S by change of variable. We can show:

Proposition 1.4. Let f ∈ C([0, 1]) be a real-valued function such that f(t)+f(1−t) = f(1)
for all t ∈ [0, 1] and |f(1)| 6 2. Then there exists an increasing homeomorphism ϕ : [0, 1]→
[0, 1] such that ϕ(1− t) = 1− ϕ(t) for all t and f ◦ ϕ ∈ S.

We will see that this is related to some classical problems of Fourier analysis around the
Bohr-Pál Theorem.

We also highlight two questions for which we do not know the answer at this time, and
one interesting analogue problem:

(1) Is there a space-filling curve in the support S of K?

(2) Does Proposition 1.4 hold for complex-valued functions f with f(t)+f(1− t) = f(1)?
(A positive answer would also give a positive answer to (1)).
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(3) What can be said about the support of the paths of partial character sums (as in,
e.g., the paper [5] of Bober, Goldmakher, Granville and Koukoulopoulos)?

Acknowledgments. The computations were performed using Pari/GP [20] and Ju-
lia [10]; the plots were produced using the Gadfly.jl package.

Notation. We denote by |X| the cardinality of a set. If X is any set and f : X → C any
function, we write (synonymously) f � g for x ∈ X, or f = O(g) for x ∈ X, if there exists
a constant C > 0 such that |f(x)| 6 Cg(x) for all x ∈ X. The “implied constant” is any
admissible value of C. It may depend on the set X which is always specified or clear in
context.

We denote by C([0, 1]) the space of all continuous complex-valued functions on [0, 1].
For any probability space (Ω,Σ,P), we denote by P(A) the probability of some event A,

and for a C-valued random variable X defined on Ω, we denote by E(X) the expectation
when it exists. We sometimes use different probability spaces, but often keep the same
notation for all expectations and probabilities.

2. Computation of the support

We begin with the proof of Theorem 1.1. This uses a standard probabilistic lemma, for
which we include a proof for completeness.

Lemma 2.1. Let B be a separable real or complex Banach space. Let (Xn)n>1 be a sequence
of independent B-valued random variables such that the series X =

∑
Xn converges almost

surely. The support of the law of X is the closure of the set of all convergent series of the
form

∑
xn, where xn belongs to the support of the law of Xn for all n > 1.

Proof. For N > 1, we write

SN =
N∑
n=1

Xn, RN = X − SN .

The variables SN and RN are independent. It is elementary (by composition of the random
vector (X1, . . . , XN) with the continuous addition map) that the support of SN is the closure
of the set of elements x1 + · · ·+ xN with xn ∈ supp(Xn) for 1 6 n 6 N .

We will prove that all convergent series
∑
xn with xn ∈ supp(Xn) belong to the support

of X, hence the closure of this set is contained in the support of X. Thus let x =
∑
xn be

of this type. Let ε > 0 be fixed.
For all N large enough, we have ∥∥∥∑

n>N

xn

∥∥∥ < ε,

and it follows that x1 + · · · + xN belongs to the intersection of the support of SN (by the
previous remark) and of the open ball Uε of radius ε around x. Hence

P(SN ∈ Uε) > 0

for all N large enough.
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Now the almost sure convergence implies (by the dominated convergence theorem, for
instance) that P(‖RN‖ > ε)→ 0 as N → +∞. Therefore, taking N suitably large, we get

P(‖X − x‖ < 2ε) > P(‖SN − x‖ < ε and ‖RN‖ < ε)

= P(‖SN − x‖ < ε)P(‖RN‖ < ε) > 0

(by independence). Since ε is arbitrary, this shows that x ∈ supp(X), as was to be proved.
The converse inclusion (which we do not need anyway) is elementary since for any n, we

have P(Xn /∈ supp(Xn)) = 0. �

This almost immediately proves Theorem 1.1, but some care is needed since not all con-
tinuous periodic functions are the sum of their Fourier series in C([0, 1]).

Proof of Theorem 1.1. Denote by S̃ the set described in the statement. Then S̃ is closed
in C([0, 1]), since it is the intersection of closed sets. Almost surely, a sample function
f ∈ C([0, 1]) of the random process K is given by a uniformly convergent series

f(t) = α0t+
∑
h6=0

e(ht)− 1

2πih
αh

(in the sense of symmetric partial sums) for some real numbers αh such that |αh| 6 2 ([15,
Th. 1.1 (1)]). The uniform convergence implies

ĝ(h) =
αh

2iπh
, where g(t) = f(t)− tf(1),

for h 6= 0. Hence the function f belongs to S̃. Consequently, the support of K is contained

in S̃.
We now prove the converse inclusion. By Lemma 2.1, the support S contains the set of

continuous functions with uniformly convergent (symmetric) expansions

tα0 +
∑
h6=0

e(ht)− 1

2πih
αh

where αh ∈ [−2, 2] for all h ∈ Z. In particular, since 0 belongs to the support of the Sato-Tate
measure, S contains all finite sums of this type.

Let f ∈ S̃. We have

g(t) = f(t)− tf(1) = lim
N→+∞

∑
|h|6N

ĝ(h)e(ht)
(

1− |h|
N

)
,

in C([0, 1]), by the uniform convergence of Cesàro means of the Fourier series of a continuous
periodic function. Evaluating at 0, where g(0) = 0, and subtracting yields

f(t) = tf(1) + lim
N→+∞

∑
|h|6N

ĝ(h)(e(ht)− 1)
(

1− |h|
N

)
= tf(1) + lim

N→+∞

∑
|h|6N

αh
2iπh

(e(ht)− 1)
(

1− |h|
N

)
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in C([0, 1]), where αh = 2iπhĝ(h) for h 6= 0. Then αh ∈ R and |αh| 6 2 by the assumption

that f ∈ S̃, so each function

tf(1) +
∑

16|h|6N

e(ht)− 1

2πih
αh

(
1− |h|

N

)
,

belongs to S, by the result we recalled. Since S is closed, we conclude that f also belongs to
S. �

We now prove the arithmetic statement of Proposition 1.2.

Proof of Proposition 1.2. Assume f ∈ S. Since the C([0, 1])-valued random variables Kp

converge in law to K as p→ +∞ ([15, Th. 1.5]), a standard equivalent form of convergence
in law implies that for any open set U ⊂ C([0, 1]), we have

lim inf
p→+∞

Pp(Kp ∈ U) > P(K ∈ U)

(see [3, Th. 2.1, (i) and (iv)]). If f ∈ S and U is an open neighborhood of f in C([0, 1]),
then by definition we have P(K ∈ U) > 0, and therefore

lim inf
p→+∞

Pp(Kp ∈ U) > P(K ∈ U) > 0.

Take for U the open ball of radius ε > 0 around f so that Kp ∈ U if and only if

sup
t∈[0,1]

|Kp(t)− f(t)| < ε.

Sampling the supremum at the points tj = j/(p− 1) for 0 6 j 6 p− 1, we deduce

lim inf
p→+∞

Pp

(∣∣∣Kp

( j

p− 1

)
− f

( j

p− 1

)∣∣∣ < ε
)
> 0,

which translates exactly to the first statement.
Conversely, if f /∈ S, there exists a neighborhood U of f such that P(K ∈ U) = 0. For

some δ > 0, this neighborhood contains the closed ball C of radius δ around f , and by [3,
Th. 2.1., (i) and (iii)], we have

0 6 lim sup
p→+∞

Pp(Kp ∈ C) 6 P(K ∈ C) = 0,

hence the second assertion. �

3. Structure and symmetries of the support

We denote by u the continuous linear map C([0, 1])→ C([0, 1]) such that

u(f)(t) = f(t)− f(1)t

for all t ∈ [0, 1].
Let F0 ⊂ C([0, 1]) denote the real Banach space of all complex-valued continuous functions

on [0, 1] such that

(3.1) f(t) + f(1− t) = f(1)
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for all t ∈ [0, 1]. This condition implies (taking t = 1/2) that 2 Re(f(1/2)) = f(1), hence in
particular that f(1) ∈ R. Taking t = 0, it follows also that f(0) = 0. Writing the symmetry
relation (3.1) as

(3.2) f(t)− Re(f(1
2
)) = −f(1− t) + Re(f(1

2
)),

we see also that F0 is the subspace of functions satisfying f(0) = 0 among the space F of all
complex-valued continuous functions f on [0, 1] that satisfy (3.2). This means, in particular,
that the image f([0, 1]) ⊂ C is symmetric with respect to the line Re(z) = 1

2
Re(f(1)) in C.

The linear map u induces by restriction an R-linear map u : F0 → F0. This is a continuous
projection on F0 with 1-dimensional kernel spanned by the identity t 7→ t, and with image
the subspace F1 ⊂ F0 of functions such that f(1) = 0.

Theorem 1.1 implies that S ⊂ F0, where the symmetry condition (3.1) follows from the fact
that the Fourier coefficients of the function g = u(f) are purely imaginary. More precisely,
we have the following criterion that we will use to check that concretely given functions in
F0 are in S:

Lemma 3.1. Let f ∈ C([0, 1]). Then f ∈ F0 if and only if there exist real numbers αh for
h ∈ Z such that

f(t) = α0t+ lim
N→+∞

∑
16|h|6N

αh
e(ht)− 1

2iπh

(
1− |h|

N

)
.

uniformly for t ∈ [0, 1].
For f in F0, the expansion above holds if and only if

α0 = f(1), αh = f(1) + 2iπhf̂(h) for h 6= 0.

We have then f ∈ S if and only if |αh| 6 2 for all h ∈ Z.

Proof. This is a variant of part of the proof of Theorem 1.1. The “if” statement follows
from the uniform convergence by computation of the Fourier coefficients. For the “only if”
statement, consider any f ∈ F0, and write u(f) as the uniform limit of its Cesàro means;
evaluating at t = 0 and using u(f)(0) = 0, we obtain

f(t) = α0t+ lim
N→+∞

∑
16|h|6N

αh
e(ht)− 1

2iπh

(
1− |h|

N

)
.

with α0 = f(1) and αh = f(1) + 2iπhf̂(h) for h 6= 0. The symmetry f(t) + f(1− t) = f(1)
then shows that αh ∈ R.

The remaining statements are then elementary. �

The support S has some symmetry properties that we now describe:

(1) The support S of K is a subset of F0. It is closed, convex and balanced (i.e., if f ∈ S

and α ∈ [−1, 1], then we have αf ∈ S, see [6, EVT, I, p. 6, déf. 3]). In particular, if
f is in S, then −f is also in S.

(2) We have f̄ ∈ S if f ∈ S. In particular, we deduce that if f ∈ S, then Re(f) = 1
2
(f+ f̄)

and i Im(f) = 1
2
(f − f̄) are also in S; on the other hand, Im(f) ∈ S only if f is real-

valued (so the imaginary is zero).
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(3) Denote by S1 the intersection of S and F1, i.e., those f ∈ S with f(1) = 0. Then
f ∈ S if and only if u(f) ∈ S1 and f(1) ∈ [−2, 2]. In particular, we have a kind of
“action” of [−2, 2] on S: given f ∈ S and α ∈ R such that −2 6 α + f(1) 6 2, the
function given by fα(t) = αt + f(t) belongs to S (and fα+β(t) = (fα)β, when this
makes sense).

(4) The support S is “stable under Fourier contractions”: if a function g ∈ F0 satisfies

|g(1)| 6 |f(1)| and |û(g)(h)| 6 |û(f)(h)| for alll h 6= 0 in Z, then g ∈ S.

These are all immediate consequences of the description of S. However, from the point
of view of Kloosterman paths, they are by no means obvious, and reflect hidden symmetry
properties of the “shapes” of Kloosterman sums.

The next remarks describe some “obvious” elements of S.

(1) By a simple integration by parts, the support S contains all functions f such that
f(1) ∈ [−2, 2] and u(f) is in C1([0, 1])∩F0 with ‖f ′‖∞ 6 2. More generally, it suffices
that u(f) be of total variation with the total variation of u(f) at most 2.

(2) Let g : [0, 1] → R be a real-valued continuous function such that g(0) = 0 and
g(1− t) = g(t) for all t. Then for any α with |α| 6 2, the function

f(t) = αt+ ig(t)

(whose image is, for α = 1, the graph of f) is in F0; it belongs to S if and only if the
non-zero Fourier coefficients of g = u(f)/i satisfy

|ĝ(f)| 6 1

π|h|
.

(3) Let G ⊂ F0 be the real subspace of functions f ∈ F0 such that we have

‖f‖G = sup
h∈Z
|hû(f)(h)| < +∞,

given the corresponding structure of Banach space (note that the only constant func-
tion in G is the zero function to see that this is a norm). This space contains all C1

functions that belong to F0 (in fact, it contains all functions f of bounded variation,
and ‖f‖G is bounded by the total variation of f by [25, Th. II.4.12]). We have S ⊂ G,
and S is the closed ball of radius π−1 centered at 0 in G. In particular, for any f ∈ G,
there exists α > 0 such that αf ∈ S. From the arithmetic point of view, this means
that any smooth enough curve satisfying the “obvious” symmetry condition can be
approximated by Kloosterman paths, after re-scaling it to bring the value at 1 and
the Fourier coefficients in the right interval.

The support S of K is, in any reasonable sense, a very “small” subset of the subspace F0

of C([0, 1]). For instance, the natural analogue of the Wiener measure on F0 is the series

N(t) = tN0 +
∑
h6=0

e(ht)− 1

2πih
Nh

where (Nh) are independent standard (real) gaussian random variables. It is elementary that
the support of N is F0, whereas we have P(N ∈ S) = 0.

This sparsity property of S means that the Kloosterman paths (as parameterized paths) are
rather special, and may explain why they seem experimentally rather distinctive (at least to
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certain eyes). More importantly maybe, this feature raises a number of interesting questions
that are simply irrelevant for Brownian motion or Wiener measure: given some “natural”
f ∈ F0, does it belong to S or not? This contrasts with results like Bagchi’s Theorem for
the functional distribution of (say) vertical translates of the Riemann zeta function, where
the support of the limiting distribution is “as large as possible”, given obvious restrictions
(see [1] and [14, §3.2, 3.3]; but note Remark 5.2, which shows that there are also interesting
issues there).

Another subtlety is that the question might be phrased in different ways. A picture of
a Kloosterman path, as in [15], only shows the image f([0, 1]) of a function f ∈ F0, and
therefore different functions lead to the same picture (we may replace f by f ◦ ϕ for any
homeomorphism ϕ : [0, 1]→ [0, 1] such that ϕ(0) = 0 and ϕ(1− t) = 1−ϕ(t), which implies
that f ◦ϕ is also in F0). So even if a function f ∈ F0 does not belong to S, we can ask whether
there exists a reparameterization ϕ such that f ◦ ϕ ∈ S. Following this question leads to
connections with some classical problems of Fourier analysis, as we discuss in Section 6.

Finally, we remark that the support of K only depends on the support of the Sato-Tate
summand, and not on their particular distribution. This implies that S is also the support
of similar random Fourier series where the summands are independent and have support
[−2, 2]. In particular, from the work of Ricotta and Royer [21], this applies to the support
of the random Fourier series that appears as limit in law of the Kloosterman paths modulo
pn for fixed n > 1 and p → +∞, where the corresponding Fourier series has summands
Ch distributed like the trace of a random matrix in the normalizer of the diagonal torus in
SU2(C). (Note however that the values of the liminf and limsup in Proposition 1.2 do, of
course, depend on the laws on the summands).

4. Elementary examples

We present here a number of examples, in the spirit of curiosity. Before we begin, we
remark that since numerical inequalities are important in determining whether a function
f ∈ C([0, 1]) belongs to the support of K, we have “tested” the following computations by
making, in each case, sample checks with Pari/GP to detect multiplicative normalization
errors.

Example 4.1. Take f(t) = αt for some real number α with |α| 6 2. Then f visibly belongs
to the support of K(t) since u(f) = 0.

In particular, for α = 0, we get Corollary 1.3 from Proposition 1.2: for any ε > 0, we have

lim inf
p→+∞

1

(p− 1)2

∣∣∣{(a, b) ∈ F×p × F×p | max
06j6p−1

∣∣∣ 1
√
p

∑
16x6j

e
(ax+ bx̄

p

)∣∣∣ < ε
}∣∣∣ > 0.

So it is possible for the partial sums of the normalized Kloosterman sum to remain at all
time in an arbitrarily small neighborhood of the origin.

Example 4.2. Take f(t) = iαt(1− t) for some real number α. Then f ∈ F0. We compute
(using Lemma 3.1) the coefficients αh in the expansion

f(t) = α0t+ lim
N→+∞

∑
16|h|6N

αh
e(ht)− 1

2iπh

(
1− |h|

N

)
,
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and find that α0 = 0 and αh = α(πh)−1 ∈ R for all h 6= 0. In particular, we have |αh| 6 2
for all h if and only if |α| 6 2π.

The graph of f in that case is the vertical segment [0, iα/4]. So this parameterized segment
[0, iR] can be approximated by the graph of a Kloosterman path as long as |R| 6 π/2. More
precisely, Proposition 1.2 gives

lim inf
p→+∞

1

(p− 1)2

∣∣∣{(a, b) ∈ F×p × F×p |

max
06j6p−1

∣∣∣ 1
√
p

∑
16x6j

e
(ax+ bx̄

p

)
− iα j

p− 1

(
1− j

p− 1

)∣∣∣ < ε
}∣∣∣ > 0,

if |α| 6 π/2.

Example 4.3. Let α ∈ [−1, 1] and consider the map

f1(t) = 2αt+ i
√
α2 − α2(2t− 1)2,

which parameterizes a semicircle above the real axis with diameter [0, 2α]. The function f1

belongs to F0.
Let ϕ1 = u(f1). We have

ϕ1(t) = i
√
α2 − α2(2t− 1)2,

and using the computation of the Fourier transform of a semicircle distribution (see, e.g., [8,
3.752 (2)]), we find

ϕ̂1(h) = α(−1)h
J1(πh)

2h
,

for h 6= 0, where J1 is the Bessel function of the first kind. From Bessel’s integral represen-
tation

J1(x) =
1

2π

∫ 2π

0

cos(t− x sin(t))dt,

(see, e.g., [24, p. 19]) we see immediately that |J1(x)| 6 1 for all x (in fact, the maximal
value of the Bessel function is about 0.58186), hence the bound |ϕ̂1(h)| 6 (π|h|)−1 holds for
all h 6= 0, and therefore f1 belongs to the support of K for |α| 6 1.

Now we consider a second parameterization of the same half circle, namely

f2(t) = 2α(1− cos(πt) + i sin(πt)),

(more precisely, this is below the real axis if α < 0). Let ϕ2 = u(f2). We compute

ϕ̂2(h) = 2α
( 1

iπh
− 1

iπ(h+ 1
2
)

)
,

from which it follows that f2 also belongs to the support of K.
We see in particular here that the Kloosterman sum can follow this semicircle in at least

two ways...

Example 4.4. For t ∈ R, let 〈t〉 denote the distance to the nearest integer. The Takagi
function τ is the real-valued function defined on [0, 1] by

τ(t) =
∑
j>0

〈2jt〉
2j

.
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Figure 1. The Takagi function
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It is continuous and nowhere differentiable, and has many remarkable properties, including
intricate self-similarity (see, e.g., the survey by Lagarias [16]). Since τ(1 − t) = τ(t) for
t ∈ [0, 1] and τ(1) = 0, the function f giving the graph of τ , namely

f(t) = t+ iτ(t),

belongs to F0. Hata and Yamaguti computed the Fourier coefficients of τ , from which it
follows that

û(f)(h) =
1

2mk2iπ2

for h 6= 0, when one writes |h| = 2mk with k an odd integer (see, e.g., [16, Th. 6.1]). Hence

|û(f)(h)| 6 1

2mkπ2
6

1

π2|h|
,

and we can conclude that f ∈ S. An approximation of the graph of τ is plotted in Figure 1.

Example 4.5. Another famous function of real-analysis is Riemann’s Fourier series

%(t) =
∑
n>1

1

πn2
sin(πn2t).

This is a real-valued continuous 2-periodic function such that %(0) = 0 and %(t)+%(2−t) = 0
for all t. It is non-differentiable except at rational points r = a/b with a and b coprime odd
integers, where %′(r) = −1/2 (this is due to Hardy for non-differentiability at irrational t,
and to Gerver for rational points; see Duistermaat’s survey [7], which focuses on the links
between % and the classical theta function). Define f(t) = %(2t). Then f is a real-valued

element of F0 with u(f) = f , and f̂(h) = 0 if |h| is not a square, while

f̂(εh2) =
ε

2iπh2

for all h > 1 and ε ∈ {−1, 1}. Therefore f ∈ S. In Figure 2 is the graph of f (not the path
described by f , which is simply a segment of R).

10



Figure 2. The Riemann function
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Example 4.6. Yet another familiar example is the Cantor staircase function γ, which can
be defined as γ(t) = P(X 6 t), where X is the random series

X =
∑
k>1

Xk

with (Xk) a sequence of independent random variables such that

P(Xk = 0) = P
(
Xk =

2

3k

)
=

1

2

for k > 1.
The Cantor function satisfies γ(0) = 0, γ(1) = 1 and γ(t) + γ(1 − t) = 1 for all t, hence

γ is a real-valued element of F0. Computing using the probabilistic definition, we obtain
quickly the formula

û(γ)(h) =
(−1)h

2iπh

∏
k>1

cos
(2πh

3k

)
,

from which we see that γ ∈ S.

Example 4.7. Let

f(t) =
∑
h>1

µ(h)
e(ht)− 1

2iπ
,

where µ(h) denotes the Möbius function. It is known (essentially from work of Daven-
port, see [2] and [11, Th 13.6], and from the Prime Number Theorem that implies that∑
µ(h)h−1 = 0) that the series converges uniformly. Clearly this function, which we call the

Davenport function, belongs to S. Its path is pictured in the left-hand graph of Figure 3.
We may replace the Möbius function with the Liouville function, and we also display the

resulting path on the right-hand side of Figure 3.

5. Polygonal paths

Polygonal paths provide a very natural class of examples of functions, and we will consider
a number of them. We begin with some elementary preparation.

11



Figure 3. The Davenport function and its variant
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Let z0 and z1 be complex numbers, and t0 < t1 real numbers. We define ∆ = t1 − t0 and
f ∈ C([0, 1]) by

f(t) =

{
1
∆

(z1(t− t0) + z0(t1 − t)) if t0 6 t 6 t1,

0 otherwise,

which parameterizes the segment from z0 to z1 during the interval [t0, t1].
Let h 6= 0 be an integer. By direct computation, we find

f̂(h) = − 1

2iπh
(z1e(−ht1)− z0e(−ht0)) +

1

2iπh
(z1 − z0)e(−ht0)

1

∆

(∫ ∆

0

e(−hu)du
)

= − 1

2iπh
(z1e(−ht1)− z0e(−ht0)) +

1

2iπh
(z1 − z0)

sin(πh∆)

πh∆
e
(
−h
(
t0 +

∆

2

))
.

Consider now an integer n > 1, a family (z0, . . . , zn) of complex numbers and a family
(t0, . . . , tn) of real numbers with

0 = t0 < t1 < . . . < tn−1 < tn = 1.

Let fj be the function as above relative to the points (zj, zj+1) and the interval [tj, tj+1], and
let function

f =
n−1∑
j=0

fj

(in other words, f parameterizes the polygonal path joining z0 to z1 to . . . to zn, over
intervals [t0, t1], . . . , [tn−1, tn]). Let ∆j = tj+1 − tj.

For h 6= 0, we obtain by summing the previous expression, and using a telescoping sum

(5.1) f̂(h) = − 1

2iπh
(zn − z0) +

1

2iπh

n−1∑
j=0

(zj+1 − zj)e
(
−h
(
tj +

∆j

2

))sin(πh∆j)

πh∆j

.

12



Now assume further that ∆j is constant for 0 6 j 6 n − 1, equal to 1/n. We then have
tj = j/n, and we obtain

(5.2) f̂(h) = − 1

2iπh
(zn − z0) +

1

2iπh

sin(πh/n)

πh/n

n−1∑
j=0

(zj+1 − zj)e
(
−
h(j + 1

2
)

n

)
.

It is elementary that f belongs to F0 if and only if z0 = 0 and if the sums

(5.3) f̃(h) =
n−1∑
j=0

(zj+1 − zj)e
(
−
h(j + 1

2
)

n

)
are real-valued. If this is the case, then the polygonal function f belongs to S if and only if
|zn| 6 2 and

(5.4)
∣∣∣sin(πh/n)

πh/n
f̃(h)

∣∣∣ =
∣∣∣sin(πh/n)

πh/n

n−1∑
j=0

(zj+1 − zj)e
(
−hj
n

)∣∣∣ 6 2

for all h 6= 0 (disregarding the constant phase e(−h/(2n)), although it is important to ensure
that the exponential sums are real-valued).

Example 5.1. The first polygonal paths that we consider are – naturally enough – the
Kloosterman paths themselves.

Fix an odd prime p and integers a and b coprime to p. Let f ∈ C([0, 1]) be the function
given by the Kloosterman path Kp(a, b). It is an element of F0, and we can interpret it as a
polygonal function with the following data: n = p− 1, tj = j/(p− 1) for 0 6 j 6 p, and

zj =
1
√
p

∑
16x6j

e
(ax+ bx̄

p

)
, 0 6 j 6 p− 1.

Since zp−1 is the normalized Kloosterman sum Kl2(a, b; p), we have zp−1 ∈ [−2, 2] by the
Weil bound. Since

zj+1 − zj =
1
√
p
e
(a(j + 1) + b(j + 1)

p

)
,

the condition (5.4) becomes∣∣∣sin(πh/(p− 1))

πh/(p− 1)

p−1∑
x=1

e
(ax+ bx̄

p

)
e
(
− hx

p− 1

)∣∣∣ 6 2
√
p

for all non-zero integers h (after a change of variable), or indeed for 1 6 h 6 p(p − 1), by

periodicity of f̃(h), since the function x 7→ | sin(πx/p)/(x/p)| is decreasing along arithmetic
progressions modulo p(p− 1).

The inner sum is not quite the Kloosterman sum Kl2(a − h, b; p), or any other complete
exponential sum. In particular, whether the desired condition is satisfied is not obvious at
all. It suffices that

(5.5)
∣∣∣ 1
√
p

p−1∑
x=1

e
(ax+ bx̄

p

)
e
(
− hx

p− 1

)∣∣∣ 6 2

for 1 6 h 6 p(p− 1) (by periodicity), but this is not a necessary condition.
13



Figure 4. The Kloosterman path K19(8, 1)
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We provide some numerical illustrations. In the following table, we indicate for various
primes p how many a ∈ F×p are such that the Kloosterman path Kp(a, 1) modulo p is in S,
how many satisfy the sufficient condition (5.5) and how many are not in S.

In S with (5.5) In S without (5.5) Not in S

5 4 0 0

7 6 0 0

13 9 3 0

19 1 14 3

23 9 13 0

29 28 0 0

229 0 133 95

233 0 126 106

541 0 0 540

557 0 27 529

Table 1. Kloosterman paths Kp(a, 1)

Maybe there are only finitely many Kloosterman paths in S? The “first” example of a
Kloosterman path not in S is K19(8, 1). We picture it in Figure 4 (and observe that it looks
a lot like a shadok).

Remark 5.2. The analogue question for other probabilistic number theory results can also
be of interest, and quite deep: if we consider Bagchi’s results ([1, Ch. 5]) concerning vertical
translates of the Riemann zeta function restricted to a fixed small circle in the strip 1/2 <
Re(s) < 1, then we see that the Riemann Hypothesis for the Riemann zeta function is
equivalent to the statement that, for any t ∈ R, and any such disc, the restriction of
s 7→ ζ(s+ it) belongs to the support of the limiting distribution.

Example 5.3. We now consider a variant of Kloosterman paths (the Swiss railway clock
version) where the partial sums are joined with intervals of length 1/p, but a pause (of
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duration 1/p) is inserted at the “middle point” (the second hand of a Swiss railway clock
likewise stops about a second and a half at the beginning of each minute).

This means that we consider again a fixed odd prime p and (a, b) ∈ F×p × F×p , and the
polygonal path with n = p, tj = j/p and

zj =
1
√
p

∑
16x6j

e
(ax+ bx̄

p

)
for 0 6 j 6 (p− 1)/2,

and

zj =
1
√
p

∑
16x6j−1

e
(ax+ bx̄

p

)
for (p+ 1)/2 6 j 6 p,

which means in particular that z(p−1)/2 = z(p+1)/2, representing the pause. Because this pause
comes in the middle of the path, we have f ∈ F0.

We get

zj+1 − zj =
1
√
p
e
(a(j + 1) + b(j + 1)

p

)
,

if 0 6 j 6 (p− 3)/2, z(p+1)/2 − z(p−1)/2 = 0 and

zj+1 − zj =
1
√
p
e
(aj + b̄

p

)
,

if (p+ 1)/2 6 j 6 p− 1. Hence the sums f̃(h) given by (5.3) become

1
√
p

(p−3)/2∑
x=0

e
(a(x+ 1) + b(x+ 1)

p

)
e
(
−
h(x+ 1

2
)

p

)
+

1
√
p

p−1∑
x=(p+1)/2

e
(ax+ bx̄

p

)
e
(
−
h(x+ 1

2
)

p

)

=
1
√
p
e
(
− h

2p

) (p−1)/2∑
x=1

e
((a− h)x+ bx̄

p

)
+

1
√
p
e
( h

2p

) p−1∑
x=(p+1)/2

e
((a− h)x+ bx̄

p

)
,

for all non-zero integers h (it is more convenient here to keep the phase).
These are again close to the Kloosterman sums Kl2(a − h, b; p), but slightly different.

Precisely, let

Kl
(·)
2 (a, b; p) = Kp(a, b)(1/2) =

1
√
p

(p−1)/2∑
x=1

e
(ax+ bx̄

p

)
denote the “mezzo del cammin” of the Kloosterman path, so that

2 Re(Kl
(·)
2 (a, b; p)) = Kl2(a, b; p).

The sum f̃(h) above is then equal to

e
(
− h

2p

)
Kl

(·)
2 (a− h, b; p) + e

( h
2p

)
Kl

(·)
2 (a− h, b; p) =

cos(πh/p) Kl2(a− h, b; p) + 2 sin(πh/p) Im(Kl
(·)
2 (a− h, b; p)).

To have f ∈ S in this case, we must have∣∣∣sin(πh/p)

πh/p
f̃(h)

∣∣∣ 6 2
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Figure 5. The Kloosterman path K17(8, 1)
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for all h 6= 0, or (by periodicity of f̃(h) and decay of x 7→ | sin(πx/p)/(x/p)| along arithmetic
progressions modulo p) when 1 6 h 6 p − 1. Whether this holds or not depends on the

values of the imaginary part of Kl
(·)
2 (a − h, b; p) as h varies. As in the previous example, it

suffices that

(5.6) |f̃(h)| 6 2

for 1 6 h 6 p− 1.

It follows from [15, Prop. 4.1] that when p is large the random variable a 7→ Im(Kl
(·)
2 (a, b; p))

on F×p takes (rarely but with positive probability) arbitrary large values. This indicates that
the property above becomes more difficult to achieve for large p. Again, we present numerical
illustrations.

In S with (5.6) In S without (5.6) Not in S

5 4 0 0

17 14 1 1

23 19 2 1

29 26 2 0

229 204 17 7

541 484 36 20

1223 1088 94 40

1987 1763 172 51

2741 2416 239 85

3571 3176 281 113

Table 2. Swiss Railway Clock Kloosterman paths Kp(a, 1)

The first case of a Swiss Clock Kloosterman path that is not in S is the one corresponding
to K17(8, 1), pictured in Figure 5.

Despite these numbers, we can prove:
16



Proposition 5.4. For all p large enough, and all (a, b) ∈ F×p × F×p , we have f /∈ S.

Sketch of proof. By the Weyl criterion, for any fixed k > 1 and any tuple (b1, . . . , bk) of
non-zero integers, the random variables

a 7→
(h
p
,Kl(a, b1; p), . . . ,Kl(a, bk; p)

)
∈ R/Z×Rk

on Fp (with uniform probability measure) converge in law as p→ +∞ to independent random
variables (X0, . . . , Xk) where X0 is uniformly distributed in R/Z and (X1, . . . , Xk) are inde-

pendent Sato-Tate random variables. Using the discrete Fourier expansion of Kl
(·)
2 (a−h, b; p),

it follows that, for any fixed (a, b), the random variables

h 7→
(h
p
,Kl

(·)
2 (a− h, b; p)

)
∈ R/Z×C

on {0, . . . , p− 1} (with uniform probability measure) converge in law to (X0,K(1/2)) where
X0 is independent of K(1/2). Moreover, the convergence is uniform in terms of (a, b).

Therefore, the random variable

h 7→ sin(πh/p)

πh/p
f̃(h)

converges in law to

Y = 2
sin(πX0)

πX0

(
cos(πX0) Re(K(1/2)) + sin(πX0) Im(K(1/2))

)
.

Since X0 and K(1/2) are independent and the real part of K(1/2) is between −1 and 1, we
have (say)

P(|Y | > 2) > P(| Im(K(1/2))| > 10 and |X0 − 1/4| 6 1/10)

= P(| Im(K(1/2))| > 10)P(|X0 − 1/4| 6 1/10) > 0

since we showed in [15, Prop. 4.1] that Im(K(1/2)) can take arbitrarily large values with
positive probability. Hence, for all p large enough, there exists h such that∣∣∣sin(πh/p)

πh/p
f̃(h)

∣∣∣ > 2.

�

Example 5.5. Third-time lucky: the next variant of Kloosterman paths will always be
realized in S. We now insert two pauses of duration 1/(2p) at the beginning and end of the
path. Thus n = p+ 1, t0 = 0 and tp+1 = 1, while ti = (i− 1

2
)/p for 1 6 i 6 p; moreover zi is

given by

z0 = 0, zp+1 = Kl2(a, b; p),

and

zi =
1
√
p

∑
16x6i−1

e
(ax+ bx̄

p

)
for 1 6 i 6 p.
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Since the ti’s are not all equal, the formula (5.3) does not apply, but we derive from (5.1)
that

f̂(h) = − 1

2iπh
Kl2(a, b; p) +

1

2iπh

sin(πh/p)

πh/p

1
√
p

p−1∑
x=1

e
(ax+ bx̄

p

)
e
(
−h

x− 1
2

+ 1
2

p

)
= − 1

2iπh
Kl2(a, b; p) +

1

2iπh

sin(πh/p)

πh/p
Kl2(a− h, b; p)

for all h 6= 0. By the Weil bound for Kloosterman sums, we conclude that f ∈ S.
As a consequence of the symmetry properties discussed in Section 3, all paths obtained

by applying these symmetries to these modified Kloosterman paths f also belong to S,
and therefore can be approximated arbitrarily closely (in the sense of Proposition 1.2) by
(actual!) Kloosterman paths. This is quite remarkable, for instance because (at least if p is
large enough) neither −f nor f̄ is associated to a Kloosterman path (indeed, the pauses show
that this would have to be of the same type as f for a Kloosterman path modulo the same
prime p, and comparing Fourier coefficients, one would need to have either −Kl2(a−h, b; p) =
Kl2(c− h, d; p) for all h or Kl2(a + h, b; p) = Kl2(c− d, d; p) for all h; both can be excluded
by elementary considerations concerning the Kloosterman sheaf).

Example 5.6. We proved in [15, Th. 1.3] that the random Fourier series K is also the limit
of the processes Bp of partial sums of Birch sums

B(a; p) =
1
√
p

∑
06x6p−1

e
(ax+ x3

p

)
where a ∈ Fp is taken uniformly at random. It is then natural to consider these polygonal
Birch paths and to ask whether they belong to the support of K. As defined, there is a trivial
obstruction: the path t 7→ Bp(a)(t) does not belong to F0, because of the initial summand
1/
√
p for x = 0.

We can alter the path minimally by splitting the summand 1/
√
p in two summands

1/(2
√
p) at the beginning and end of the path. The resulting function, which we denote f ,

belongs to F0. This means that we consider the polygonal path with n = p+1, ti = (i− 1
2
)/p

for 1 6 i 6 p, and with zi defined by

z0 = 0, zp+1 = B(a; p),

and

zi =
1

2
√
p

+
1
√
p

∑
16j6i−1

e
(aj + j3

p

)
for 1 6 i 6 p.

As in the previous example, from (5.1) we get

f̂(h) = − 1

2iπh
B(a; p) +

1

2iπh

{ 1

2
√
p
e
(
− h

4p

)sin(πh/(2p))

πh/(2p)

+
sin(πh/p)

πh/p

1
√
p

p−1∑
x=1

e
((a− h)x+ x3

p

)
+

1

2
√
p
e
( h

4p

)sin(πh/(2p))

πh/(2p)

}
.
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The inner expression is equal to

1
√
p

sin(πh/(2p))

πh/(2p)
cos
(πh

2p

)
+

sin(πh/p)

πh/p

(
B(a− h; p)− 1

√
p

)
=

sin(πh/p)

πh/p
B(a− h; p).

By the Weil bound for Birch sums, we conclude that f ∈ S.

Example 5.7. Let p be a prime and χ a non-trivial Dirichlet character modulo p. We
consider the polygonal paths interpolating the partial sums of the multiplicative character
sum

1
√
p

∑
16x6p−1

χ(x).

Let f be the parameterized path where we insert pauses of duration 1/(2p) at the beginning
and at the end. Note that f(1) = 0 by orthogonality of characters. As in the previous
computations, we get

f̂(h) =
1

2iπh

sin(πh/p)

πh/p

1
√
p

p−1∑
x=1

χ(x)e
(
−h

x− 1
2

+ 1
2

p

)
=

1

2iπh

sin(πh/p)

πh/p
χ(−1)τ(χ)χ(h),

where

τ(χ) =
1
√
p

∑
16x6p−1

χ(x)e
(x
p

)
is the normalized Gauss sum associated to χ (note that χ(h) = 0 if p | h). Since |τ(χ)| = 1,

it follows that |f̂(h)| 6 1. However, the Fourier coefficients are only in iR (i.e., f ∈ F0) if
p ≡ 1 (mod 4) and χ is a real character. In other words, Kloosterman sums can perfectly
mimic the character sums associated to the Legendre symbol modulo such primes. (Note
that in this case, the function f is real-valued).

Note that character sums as above have been very extensively studied from many points of
view, because of their importance in many problems of analytic number theory, for instance
in the theory of Dirichlet L-functions. We refer for instance to the works [9, 4, 5] of Bober,
Goldmakher, Granville, Koukoulopoulos and Soundararajan (in various combinations). It
should be possible (and interesting) to study the support of the limiting distribution of these
character paths, but this will be very different from S. Indeed, one can expect (see [5]) that
the support in this case would be continuous functions with totally multiplicative Fourier
coefficients. For instance, one can expect that 0 does not belong to the support in that case.

Example 5.8. More generally, consider a prime p and the polygonal path f associated to
the partial sums of any exponential sum

1
√
p

∑
16x6p

χ(g1(x))e
(g2(x)

p

)
,

where χ is a Dirichlet character modulo p, and g1 and g2 are polynomials in Z[X] (with g2

non-constant). After suitable tweaks, the Fourier coefficients become

f̃(h) =
sin(πh/p)

πh/p

1
√
p

∑
16x6p

χ(g1(x))e
(g2(x)− xh

p

)
.
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Figure 6. Approximations of the Hilbert function
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Assuming f ∈ F0, and under suitable restrictions, we may expect that f ∈ S only if the
geometric monodromy group of the Fourier transform of the rank 1 sheaf with trace function
the summand

x 7→ χ(g1(x))e
(g2(x)

p

)
has rank r at most 2 (otherwise, Deligne’s equidistribution theorem will lead in most cases

to the existence of h such that 0 6 h 6 p− 1 and |f̃(h)| > (r − 1/2) > 2).

Example 5.9. A natural question is whether S contains a space-filling curve. Among the
classical examples of such curves, the Hilbert curve [23, Ch. 2] has a sequence of quite
simple polygonal approximations fn for n > 1 that belong to F0 (see [23, p. 14]). We have
in Figure 6 the plots of the second, third and fourth such approximations (note that there
are many backtrackings, so this is a case where the plot doesn’t give a clear idea of the path
followed).

The function fn is a polygonal path composed of 4n segments of length 2−n. One checks
that the Fourier coefficients are given by

f̃n(h) =
1

2n

4n−1∑
j=0

iδn(j)e
(
−h(j + 1/2)

4n

)
,

for h 6= 0, where the exponents δn(j) (in Z/4Z) are determined inductively by

δ1(0) = 1, δ1(1) = δ1(2) = 0, δ1(3) = 3,

and

δn+1(4j) = 1− δn(j), δn+1(4j + 1) = δn+1(4j + 2) = δn(j), δn+1(4j + 3) = 3− δn(j)
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for n > 1 and 0 6 j 6 4n − 1. The requirement for fn to belong to S is satisfied when these
sums exhibit precisely the analogue of the Weil bounds for 1 6 h 6 4n−1. This may or may
not happen, and it turns out (numerically) that the first three approximations are in S, but
not the fourth.

6. Changing the parameterization

When we display the picture of a Kloosterman path, we are really only seeing the image of
the corresponding function from [0, 1] to C. Although it is not really an arithmetic question
anymore, it seems fairly natural to ask which subsets of C are really going to appear. This
may be interpreted in different ways: (1) given a function f in F0, but not in S, when does
there exist a change of variable ϕ : [0, 1] → [0, 1] such that f ◦ ϕ belongs to S? (2) given a
compact subset X ⊂ C, when does there exist an element f ∈ S such that X = f([0, 1])?

A priori, these questions might be quite different. However, we first show that the second
essentially reduces to the first. Precisely, we have a topological characterization of images of
functions in F0.

Proposition 6.1. Let X ⊂ C be a compact subset. The following conditions are equivalent:

(1) There exists f ∈ F0 such that X is the image of f .
(2) We have 0 ∈ X, there exists a real number α such that X is symmetric with respect

to the line Re(z) = α, and there exists a continuous function f ∈ C([0, 1]) such that
X = f([0, 1]).

(3) We have 0 ∈ X, there exists a real number α such that X is symmetric with respect
to the line Re(z) = α, and X is connected and locally connected.

Proof. It is immediate that (1) implies (2). Conversely, assume that (2) holds and let f be a
continuous function such that f([0, 1]) = X. Let r : C→ C be the symmetry along the line
Re(z) = α, so that X = r(X). By assumption, there exist s0 ∈ [0, 1] and s1 ∈ [0, 1] be such
that f(s0) = 0 and f(s1) = r(0) = 2α. Up to replacing f by t 7→ f(1 − t), we may assume
that s0 6 s1.

Let T be the set of all t ∈ [0, 1] such that t > s0 and Re(f(t)) = α. This set is closed and
it is non-empty (because the image of the continuous real-valued function Re(f) contains
0 = f(s0) and r(0) = 2α = f(s1) by assumption, and s1 > s0). Let t0 = maxT and
Y = f([0, t0]) ∪ r(f([0, t0])). We claim that X = Y . Indeed, suppose some x ∈ X is not in
Y . Then we also have r(x) /∈ Y . Hence we can write x = f(t1) with t1 > t0 and r(x) = f(t2)
with t2 > t0. Then

α =
1

2
(Re(f(t2)) + Re(f(t1)),

so α is in the interval between Re(f(t1)) and Re(f(t2)). By continuity, there exists s between
t1 and t2 with Re(f(s)) = α, contradicting the maximality of t0.

Now define

g(t) =


f(s0(1− 8t)) if 0 6 t 6 1/8

f(2s0(t− 1/8)) if 1/8 6 t 6 1/4

f(s0 + 4(t0 − s0)(t− 1/4)) if 1/4 6 t 6 1/2

and g(t) = r(g(1− t)) = 2α− g(1− t) if 1/2 < t 6 1 (in other words, g(t) covers the path of
f from 0 = f(s0) to f(0) for t ∈ [0, 1/8], then covers it backwards from t = 1/8 to t = 1/4,
then follows the path over [1/4, 1/2] from 0 to f(t0), and then proceeds by reflection).
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We have g(0) = 0 and g is continuous (because Re(g(1/2)) = Re(f(t0)) = α), hence g ∈ F0

by construction. The image of g is contained in X; it contains f([0, t0]) and its reflection, so
its image is X. This proves (1) for the set X.

To prove that (2) and (3) are equivalent, we simply need to invoke the Hahn-Mazurkiewicz
Theorem (see, e.g., [23, Th. 6.8] or [6, TA, III, p. 272, th. 1]): a non-empty compact subset
X ⊂ C is the image of a continuous function f : [0, 1]→ C if and only if X is connected and
locally connected. �

Because of this proposition, it is natural to concentrate on the change of variable problem.
Here a subtlety is whether we wish to have an invertible reparameterization or not: if
ϕ : [0, 1]→ [0, 1] is merely surjective, the image of f ◦ ϕ is the same as that of f . However,
we consider here only transformations ϕ that are homeomorphisms. In fact, let us say that
an increasing homeomorphism ϕ of [0, 1] such that ϕ(1 − t) = 1 − ϕ(t) is a symmetric
homeomorphism. We then have f ◦ ϕ ∈ F0 for all f ∈ F0. The question is: for a given
f ∈ F0, does there exist a symmetric homeomorphism ϕ such that f ◦ ϕ ∈ S?

To prove our result for real-valued functions in Proposition 1.4, we will use a variant of a
result of Sahakian1 [22, Cor. 2].

Recall that the Faber-Schauder functions Λm,j on [0, 1] are defined for m > 0 and 1 6 j 6
2m by the following conditions:

• The support of Λm,j is the dyadic interval[j − 1

2m
,
j

2m

]
,

of length 2−m,
• We have Λm,j((2j − 1)2−m−1) = 1,
• The function Λm,j is affine on the two intervals[j − 1

2m
,
2j − 1

2m+1

]
,

[2j − 1

2m+1
,
j

2m

]
.

Any continuous function f on [0, 1] has a uniformly convergent Faber-Schauder series
expansion

f(t) = β(0) + β(1)t+
∑
m>0

2m∑
j=1

β(m, j)Λm,j(t),

with coefficients

β(0) = f(1), β(1) = f(1)− f(0),

and

(6.1) β(m, j) = f
(2j − 1

2m+1

)
− 1

2

(
f
(j − 1

2m

)
+ f
( j

2m

))
(see, e.g., [13, Ch. VI] for these facts). The function f is 1-periodic if and only if β(1) = 0.

Theorem 6.2 (Sahakian). Let g : [0, 1] → R be a real-valued continuous function with
g(0) = 0. Let ε > 0 be any fixed positive real number.

1 Also spelled Saakjan, Saakian, Saakyan.
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(1) There exists an increasing homeomorphism ϕ : [0, 1] → [0, 1] such that the Fourier
coefficients of the function u(g ◦ ϕ) = g ◦ ϕ− g(1)t satisfy

| ̂u(g ◦ ϕ)(h)| 6 ε

|h|
for all h 6= 0.

(2) If the function g satisfies g(t) + g(1− t) = g(1) for all t, then we may assume that ϕ
is symmetric.

We emphasize that the function g is real-valued; it does not seem to be known whether
the statement (1) holds for a complex-valued function g. The issue in the proof in [22] is the
essential use of the intermediate value theorem.2

Sketch of proof. Below, we will say that a continuous function g : [0, 1] → C is 1-periodic if
g(0) = g(1), which means that the periodic extension of g to R is continuous.

The result requires only very minor changes in Sahakian’s argument, which does not
address exactly this type of uniform “numerical” bounds, but asymptotic statements like

|(̂g ◦ ϕ)(h)| = o(|h|−1) as |h| → +∞ when g is 1-periodic.
For any continuous 1-periodic function f on [0, 1], extended to R by periodicity, define

ωf (δ) = sup
0<α6δ

∫ 1

0

|f(x+ α) + f(x− α)− 2f(x)|dx.

A classical elementary argument (compare [25, II.4]) shows that for a 1-periodic function f ,
we have

(6.2) |f̂(h)| 6 1

4
ωf

( 1

|h|

)
for all h 6= 0. It is also elementary that there exists C > 0 such that

ωΛm,j
(δ) 6 C min(2mδ2, 2−m)

for all m and j.
By [22, Lemma 1], applied to the continuous real-valued function t 7→ g(2πt) on [0, 2π],

there exists a homeomorphism ϕ such that, for any m > 0, the coefficients β(m, j) of the
Faber-Schauder expansion of g ◦ ϕ vanish for all but at most one index jm, and moreover,
we have

|β(m, jm)| < ε

C
.

Note that the text of [22] might suggest that the lemma is stated for 1-periodic functions, but
the proof is in fact written for arbitrary continuous functions (as it must, since it proceeds
by an inductive argument from [0, 1] to dyadic sub-intervals, and any periodicity assumption
in the construction would be lost after the first induction step).

2 One might hope to extend the proof to any continuous function f : [0, 1]→ C satisfying the intermediate
value property, in the sense that the image f([s, t]) of any interval [s, t] ⊂ [0, 1] contains the segment
[f(s), f(t)] (or equivalently such that f([s, t]) is always convex), but it is an open question of Mihalik and
Wieczorek whether such functions exist that do not take values in a line in C (see the paper of Pach and
Rogers [19] for the best known result in this direction.)
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Let γm = β(m, jm) and Φm = Λm,jm . Since g(1) = g(ϕ(1)), we have the series expansion

u(g ◦ ϕ)(t) = (g ◦ ϕ)(t)− g(1)t =
∑
m>0

γmΦm(t),

uniformly for t ∈ [0, 1] and hence, using the subadditivity of f 7→ ωf , we get

ωu(g◦ϕ)(δ) 6 ε
∑
m>0

min(2mδ2, 2−m) 6 4εδ.

By (6.2), we get

|( ̂u(g ◦ ϕ))(h)| 6 ε

|h|
.

for h 6= 0, which proves the first statement.
Consider now the case when the condition g(t) + g(1− t) = g(1) holds. We then apply the

previous argument (properly scaled) to the restriction of g to [0, 1/2], obtaining an increasing
homeomorphism ψ of [0, 1/2] such that

(6.3) (g ◦ ψ)(t)− 2g(1/2)t = (g ◦ ψ)(t)− g(1)t =
∑
m>1

γmΦm(t)

for 0 6 t 6 1/2 where |γm| 6 εC−1 and Φm is a Faber-Schauder function associated to an
interval of length 2−m of [0, 1/2].

We define ϕ : [0, 1]→ [0, 1] so that ϕ coincides with ψ on [0, 1/2] and ϕ(1− t) = 1− ϕ(t)
for 0 6 t 6 1/2. Then ϕ is a symmetric homeomorphism of [0, 1]. Because of the symmetry
of g and (6.3), we have for 1/2 6 t 6 1 the formula

(g ◦ ϕ)(t) = g(1)− g(ϕ(1− t)) = g(1)− (1− t)g(1)−
∑
m>1

γmΦm(1− t)

= g(1)t−
∑
m>1

γmΦm(1− t).

Since the supports are disjoint, we can therefore write

u(g ◦ ϕ)(t) = (g ◦ ϕ)(t)− g(1)t =
∑
m>1

γmΦm(t)−
∑
m>1

γmΦm(1− t)

for all t ∈ [0, 1]. Now we evaluate the Fourier coefficients as before. �

We can now prove Proposition 1.4.

Proof of Proposition 1.4. Let f be a real-valued function f ∈ F0 with |f(1)| 6 2. Theo-
rem 1.1 and Theorem 6.2 (2) applied to f (which satisfies f(t) + f(1− t) = f(1) since it is
real-valued) with ε = 1/π imply the existence of the desired reparameterization. �

Remark 6.3. (1) The prototypical statement of “improvement” of convergence of a Fourier
series by change of variable is the Bohr-Pál Theorem (see, e.g., [25, Th. VII.10.18]), which
gives for any 1-periodic continuous real-valued function f a homeomorphism ϕ of [0, 1] such
that the Fourier f ◦ ϕ converges uniformly on [0, 1]. The extension to complex-valued func-
tions was obtained by Kahane and Katznelson [12].
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(2) It seems that the problem of obtaining the bound f̂ ◦ ϕ(h) = O(|h|−1) for a complex-

valued 1-periodic function f ∈ C([0, 1]) is quite delicate. For instance, let W
1/2
2 be the

Banach space of integrable functions f on [0, 1] such that∑
h∈Z

|h||ĝ(h)|2 < +∞.

Let f1 be a real-valued 1-periodic function in C([0, 1]). Lebedev [17, Th. 4] proves that if f1

has the property that, for any f ∈ C([0, 1]) with real part f1, there exists an homeomorphism

ϕ such that both f1 ◦ ϕ = Re(f) ◦ ϕ and Im(f) ◦ ϕ belong to W
1/2
2 , then f1 is of bounded

variation (and indeed, the converse is true).
(3) Note that in any reparameterization f ◦ϕ of f ∈ F0 with ϕ symmetric, the coefficient

β(0, 1) of the Faber-Schauder function Λ0,1 is unchanged: because ϕ(1/2) = 1/2, it is

β(0, 1) = f
(1

2

)
− 1

2
(f(0) + f(1)) = Im(f(1

2
)).

In particular, one cannot hope to reparameterize all functions with f(1/2) /∈ R using infor-
mation on the Faber-Schauder expansion of f ◦ ϕ and individual estimates for each Faber-
Schauder function that is involved.
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E-mail address: william.sawin@math.ethz.ch

26

arXiv:1508.06673v2
pari.math.u-bordeaux.fr/
pari.math.u-bordeaux.fr/
iopscience.iop.org/0025-5734/38/4/A07

	1. Introduction
	Notation.

	2. Computation of the support
	3. Structure and symmetries of the support
	4. Elementary examples
	5. Polygonal paths
	6. Changing the parameterization
	References

