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There are many results in the arithmetic of modular forms which are, more or less,
concerned with various ways of characterizing a given (primitive) cusp form f from its
siblings, starting from the fact that Fourier coefficients, hence the L-function, determine
uniquely a cusp form f relative to a congruence subgroup Γ of SL(2,Z)1, going through
stronger forms of the multiplicity one theorem for automorphic representations, and then
to various explicit forms of these statements, where only finitely many coefficients are
required (say at primes p 6 X, for some explicit X depending on the parameters defining
f), and to “statistic” versions of the latter, where X can be reduced drastically, provided
one accepts some possible exceptions. Some of these statements were strongly suggested
by the analogy with the problem of the least quadratic-non-residue, which is a problem
of great historic importance in analytic number theory.2

Recently, Lau and Wu [LW2] have found, for real characters, a precise “threshold” y(Q)
for which the upper bound on the number of real characters of conductor q 6 Q with
value +1 for primes p 6 y(Q) almost coincides with a lower bound for this number. Then
they proved in [LW1] a corresponding upper-bound for recognition problems for modular
forms. However, as they mention, it is doubtful that the analogue of the lower bound
holds, because there are much less restrictions on the values of Fourier coefficients (or
Hecke eigenvalues) than on values of real characters (the latter take value in {−1, 0, 1},
whereas, for instance, there are about 4

√
p values for the p-th Fourier coefficient of the

modular form of weight 2 attached to an elliptic curve).
One may be tempted, at least out of curiosity, to try to remove this discrepancy by

considering only the signs of the Fourier coefficients, and the corresponding recognition
problem. In this short note, we consider simply the first basic question:

Question. Assume f has real coefficients. Is it true that f is determined uniquely by
the sequence of signs of its Fourier coefficients λf (p) (where “sign” is interpreted in a
relaxed way so that 0 has the same sign as both positive and negative numbers)?

As we will see, the answer is “Yes”, and one can relax the assumption to hold only
for most primes, allowing a (small) exceptional set. There is no claim here that this is a
particularly deep question, although we use some sophisticated tools; if one wishes to do
so, one can see this as the study of a new type of {±1} sequence which are likely to be
quite random.

Theorem 1. Let q1, q2 > 1 be integers, let k1, k2 > 2 be even integers and f1 ∈ Sk1(q1)
∗,

f2 ∈ Sk2(q2)
∗ be primitive holomorphic cusp forms for the congruence subgroups Γ0(q1),

Γ0(q2) and weight k1, k2 respectively, with trivial nebentypus. Let λf1(p) and λf2(p) denote
the Hecke eigenvalues of f1 and f2 for p prime. Assume neither of f1 or f2 is of CM
type.

1 A fact which is obvious but in fact depends crucially on the existence of cusps, or in other words, of
unipotent elements in Γ.

2 For instance, as the first application, and presumably motivation, for Linnik’s large sieve...
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If we have

(1) λf1(p) > 0 if and only if λf2(p) > 0,

for every prime p, except those in a set S of analytic density κ, with κ < 729/2000000 =
5 · 36 · 10−7, then in fact f1 = f2, and of course q1 = q2, k1 = k2.

To clarify the notation, note that the λf (p) are the analytically normalized Hecke
eigenvalues, i.e., the Fourier expansion of f at the cusp ∞ is given by

f(z) =
∑
n>1

λf (n)n(k−1)/2e(nz),

(but the conclusion of the theorem is also valid with λf (p) replaced by the actual Fourier
coefficients since the assumption (1) is not altered by multiplying by p(k1−1)/2 or p(k2−1)/2).
The eigenvalues λf (p) are real numbers, since the nebentypus is trivial.

Let us finally mention that the analytic density we use is the Dirichlet density: a set
S of primes has density κ if and only if∑

p∈S

1

pσ
∼ κ

∑
p

1

pσ
∼ −κ log(σ − 1), as σ → 1

(of course the statement is also valid with natural density, but this turns out to be the
most convenient to work with).

Before going on to the proof, here is how one can see that the answer should be what
we claim, at least when the exceptional set is empty: in that case, the assumption (1)
translates to

λf1(p)λf2(p) > 0

for all primes p. But it is well-known (from Rankin-Selberg theory) that if f1 6= f2, we
have

(2)
∑

p

λf1(p)λf2(p)

pσ
= O(1)

as σ → 1. Thus we only need to find a lower bound for the left-hand side (which is
a sum of non-negative terms) that grows as X grows to obtain a contradiction. Since
Rankin-Selberg theory also gives

(3)
∑

p

λf1(p)2

pσ
∼ − log(σ − 1), as σ → 1,

the only difficulty is that one might fear that the coefficients of f1 and f2 are such that
whenever λf1(p) is not small, the value of λf2(p) is very small. In other words, what we
must show is that the smaller order of magnitude of (2) compared with (3) is not due to
the small size of the summands, but to sign compensations.

If we assume that the Fourier coefficients obey the Sato-Tate conjecture (for analytic
density suffices), we can immediately see that this can not happen. Indeed, in that case
the sets

{p | λfi
(p) ∈ [a, b]}

of primes have analytic density

1

π

∫ b

a

√
1− t2

4
dt,
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for any fixed a < b in the interval [−2, 2]. In particular, for a small enough, the sets

Si = {p | |λfi
(p)| > a}

have density > 1/2, say, = 3/4, and then the intersection S1∩S2 itself has density > 1/2,
with ∑

p

λf1(p)λf2(p)

pσ
>

∑
p∈S1∩S2

λf1(p)λf2(p)

pσ
> a2(− log(σ − 1) + O(1))

for σ > 1. This does indeed contradict (2).

So we need to work around the fact that we don’t know that the Sato-Tate law holds,
except in the cases recently treated by Taylor (see Mazur’s survey [M]).

For this, the idea is similar to an earlier technique used by Serre (see [Sh]) to prove
consequences of the Sato-Tate Conjecture using the first few symmetric power L-functions
only.

The main lemma is the following result, which is (modestly) of independent interest.

Lemma 2. Let q be an integer, let k > 2 be an even integer and f ∈ Sk(q)
∗ be a

primitive holomorphic cusp form for the congruence subgroup Γ0(q), with weight k and
trivial nebentypus. Let λf (p) for p prime denote the Hecke eigenvalues of f . Assume that
f is not of CM type. Then there exists a constant α > 0 and δ > 1/2 such that∑

|λf (p)|>α

1

pσ
> (δ + o(1))

∑
p

1

pσ

for σ > 1. In fact, one can take

α = 0.27, δ = 1/2 + 1/100.

The lemma does not hold for CM forms, because we then have λf (p) = 0 for a set of
primes of density 1/2. However, one could prove a version of Theorem 1 when f1 (or f2)
is of CM-type using the (better known) distribution of the eigenvalues in those cases.

Proof. We recall first that for any prime p - q, denoting by αp and βp the two roots of the
quadratic polynomial

X2 − λf (p)X + 1,

we can write

λf (p
n) = αn

p + αn−1
p βp + · · ·+ αpβ

n−1
p + βn

p = Xn(λf (p))

for some polynomial Xn ∈ R[X], independent of p (a slightly modified Chebychev poly-
nomial of the second kind). The first few such polynomials with even indices are given
by

(4) X0 = 1, X2 = X2 − 1, X4 = X4 − 3X2 + 1, X6 = X6 − 5X4 + 6X2 − 1,

(it will be clear later on why we do not consider odd indices n).
Now we claim that there exists a polynomial

P = a0 + a2X2 + a4X4 + a6X6 ∈ R[X]

with the following properties: (1) a0 > 1/2; (2) for some α > 0, and x ∈ [−2, 2], we have

(5) P (x) 6 χA(x), where A = {x ∈ [−2, 2] | |x| > α}.
Assuming this, we conclude as follows: by (2), we have∑

|λf (p)|>α

1

pσ
>

∑
p-q

P (λf (p))

pσ
= a0

∑
p-q

1

pσ
+

3∑
i=1

∑
p-q

X2i(λf (p))

pσ
.
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By the holomorphy and non-vanishing at s = 1 of the (partial) second, fourth and
sixth symmetric power L-functions (see [KS, Th. 3.3.7, Prop. 4.3] for the last two), since
Xn(λf (p)) is exactly the p-th coefficient of the n-symmetric power for p - q, we know that∑

p-q

X2i(λf (p))

pσ
= O(1)

for σ > 1 and i = 1, 2, 3. Hence the result follows with δ = a0 > 1/2.
Now to check the claim, and verify the values of α and δ, we just exhibit a suitable

polynomial, namely

P =
1

2
+

1

100
+

1

4
X2 −

1

4
X4 +

14

100
X6 =

7

50
X6 − 19

20
X4 +

46

25
X2 − 13

100
,

which is even and the graph of which on [0, 2] is as follows:

0.99

-0.13
0 2

The origin of this particular example is explained in a remark below; the value of α is
an approximation to the real root

α0 = 0.2709317346442951397319433792 . . .

of P in [0, 2]; the maximum value of P on [0, 2] is attained at x = 2 and is equal to
99/100. �

Before using this lemma to conclude the proof of Theorem 1, let’s explain how the
polynomial comes about, and in particular why we have used the sixth symmetric power.
Indeed, one can not argue similarly using only the second and fourth symmetric power.
In other words, there is no polynomial

P = a0 + a2X2 + a4X4 ∈ R[X]

such that P 6 χI for some interval I = [α, 2] ⊂]0, 2] and with a0 > 1/2. Indeed, note
that if such a polynomial exists, it must satisfy (1) P (0) 6 0; (2) P 6 1 on [0, 2]; (3)
a0 > 1/2.

But then, expressing P in the basis of powers of X, we find

P = a0 − a2 + a4 + (a2 − 3a4)X
2 + a4X

4

and in particular, we check that

P (0) + P (
√

2) = (a0 − a2 + a4) + (a0 − a2 + a4 + 2a2 − 6a4 + 4a4) = 2a0

4



so condition (3) leads to P (0)+P (
√

2) > 1, and if P (0) 6 0, this means that P (
√

2) > 1,
showing that (1) and (2) are then incompatible.

Looking at this argument, however, reveals quickly that it “almost” works: precisely,
this suggests looking at the value P (

√
2) for a general polynomial as above, and then one

notices quickly that the polynomial

P0 =
1

2
+

1

4
X2 −

1

4
X4 = X2 − X4

4
= X2(1−X/2)(1 + X/2)

is “borderline”: we have 0 6 P0 6 1 on [0, 2] and a0 = 1/2; in fact

P0(0) = 0, a0 = 1/2, max
x∈[0,2]

P0(x) = P0(
√

2) = 1.

So we looked for, and found, our polynomial by simply “deforming” slightly this ex-
ample, increasing slightly a0 to have it > 1/2, and compensating with a small multiple
of X6. But we did not really try to optimize this deformation argument.

We can now use this lemma to conclude the proof of Theorem 1. The assumption (1)
implies that

λf1(p)λf2(p) > 0,

for all primes p /∈ S. In addition, we have

|λf1(p)λf2(p)| 6 4,

for all primes p by the Deligne bound. Hence we find that (with α > 0 and δ > 1/2 as in
Lemma 2), we have∑

p

λf1(p)λf2(p)

pσ
=

∑
p/∈S

λf1(p)λf2(p)

pσ
+

∑
p∈S

λf1(p)λf2(p)

pσ

> α2
∑

|λf1
(p)|>α, |λf2

(p)|>α

p/∈S

1

pσ
− 4κ| log(σ − 1)|+ O(1)

> α2
{∑

p

1

pσ
−

∑
p∈S

1

pσ
−

∑
|λf1

(p)|6α

1

pσ

−
∑

|λf1
(p)|6α

1

pσ

}
− 4κ| log(σ − 1)|+ O(1)

> α2
{

(1− 2(1− δ))
∑

p

1

pσ
+ O(1)

}
− 4κ| log(σ − 1)|+ O(1)

= (α2(2δ − 1)− 4κ)| log(σ − 1)|+ O(1)

for any σ > 1.
Since 2δ > 1, we find that the left-hand side goes to +∞ as σ → 1 under the condition

κ <
α2(2δ − 1)

4
=

729

2000000

(with the values of Lemma 2). However, as already mentioned, the theory of Rankin-
Selberg L-functions shows that if f1 6= f2, we have∑

p

λf1(p)λf2(p)

pσ
= O(1)

since there is no pole (or zero) of L(f1× f2, s) at s = 1. So we must indeed have f1 = f2.
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Remark 3. As previously noted, Lemma 2 is somewhat “dual” to well-known investiga-
tions of consequences of holomorphy of the first symmetric power L-functions towards
the Sato-Tate conjecture, explained in particular in Serre’s letter to Shahidi (Appendix
to [Sh]), and refined most recently by Kim and Shahidi [KS, §4]. The difference is that,
in those works, one is interested in finding c ∈ [−2, 2], as large as possible, such that
λf (p) > c for infinitely many p and λf (p) < −c for infinitely many p. In the lemma, the
value of c (i.e., α) is not important, but the density of the set of primes has to be large.

Here are some natural issues that it may be of interest to look at now:
– What is the optimal density κ one can obtain in Theorem 1? If one assumes that f1

and f2 obey the pair-Sato-Tate conjecture:

{p | λf1(p) ∈ [a1, b1] and λf2(p) ∈ [a2, b2]}
has density µST ([a1, b1])µST ([a2, b2]) (where µST is the Sato-Tate distribution; in other
words, the Fourier coefficients are independently Sato-Tate distributed), one may easily
get the result for any κ < 1/2 (corresponding to the probability for µST ⊗ µST of having
the same sign). But this can only hold if f1 and f2 are not related by quadratic twists,
of course (and in that case, for elliptic curves, Harris is currently making progress on the
problem, according to [M, Footnote 12]). If, on the other hand, f2 = f1 ⊗ χ for a real
character χ, the coefficients are of the same sign for a set of primes of density exactly
1/2.
– The limit of the argument we used is fairly easy to determine: if we have all even
symmetric power L-functions at our disposal, we can use polynomials P approximating
arbitrarily closely to χA(x) (see (5)) for any α ∈]0, 2]. The value δ = a0 is then the
probability under the Sato-Tate distribution of A = {x | |x| > α}, namely

a0 =
2

π
arccos

(α

2

)
,

and we are led to maximize over [0, 2] the quantity

κ =
α2

4

( 4

π
arccos

(α

2

)
− 1

)
,

and we find numerically that the best value is around α ' 0.971, allowing to take κ <
0.083571 . . . (i.e., knowing only the individual Sato-Tate conjecture, we can allow about
8% of the primes to be in the exceptional set).
– What happens with Maass forms? The problem there is that the exceptional set might
correspond to primes where the Fourier coefficients are large, since we do not know the
Ramanujan-Petersson bound in this case. This means a direct adaptation must assume
much stronger conditions on the set S; for instance, using

|λ(p)| 6 2p7/64

(the Kim-Sarnak bound) for eigenfunctions of Hecke operators for a Maass form, Theo-
rem 1 holds if

|{p ∈ S | p 6 X}| � X25/32−δ1

for X > 2 and some δ1 > 0 (where the implied constant may depend on f1, f2 and δ1).
– What is the size, as a function of the weight and conductor, of the smallest prime
for which the sign of λf1(p) and λf2(p) are different? If f2 is taken (in effect) to be an
Eisenstein series with positive Fourier coefficients (e.g., d(p), the divisor function, for a
non-holomorphic Eisenstein series, or θ(z)4, where θ is the theta function of weight 1/2,
for Γ0(4)), then the question is to find the first negative Hecke eigenvalue for f1, and
there have been some works done recently on this issue (see for instance the work [IKS]
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of Iwaniec, Kohnen and Sengupta, where this smallest sign-change is found to be �
(k1q

2
1)

29/60).
– Can one prove “statistical” estimates for the number of forms of given weight and
conductor 6 Q for which the sequence of signs for p 6 y(Q) is fixed, for some functions
y(Q) which grow slowly (e.g., y(Q) = Qε for ε > 0 arbitrarily small, or y(Q) = (log Q)A

for some A)?
– Can one then prove lower bounds for this type of number? If one allows non-squarefree
conductor, we can get one by fixing an f1 and considering twists f1 ⊗ χ by all real
characters such that χ(p) = 1 for p 6 y(Q). Thus the Lau-Wu lower bound of [LW2]
applies here also. But if we restrict, say, to squarefree conductors, constructing a lower
bound seems to be a genuinely GL(2)-type question.
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