Lecture Notes

Differential Geometry I

Urs Lang

ETH Zürich

Autumn Semester 2019

Preliminary and incomplete version
17 August 2020

Contents

Differential Geometry in \mathbb{R}^{n} 1
1 Curves 1
2 Surfaces 9
3 Intrinsic geometry of surfaces 13
4 Curvature of hypersurfaces 19
5 Special classes of surfaces 25
6 Global surface theory 30
7 Hyperbolic space 33
Differential Topology 37
8 Differentiable manifolds 37
9 Transversality 44
10 Vector bundles, vector fields and flows 52
11 Differential forms 59
12 Lie groups 67
Appendix 75
A Analysis 75
B General topology 77
C Multilinear algebra 79
Bibliography 83

Differential Geometry in \mathbb{R}^{n}

1 Curves

Parametrized curves

In the following, the symbol I will always denote an interval, that is, a connected subset of \mathbb{R}. A continuous map $c: I \rightarrow X$ into a topological space X is called a (parametrized) curve in X. A curve defined on $[0,1]$ is also called a path.

Now let $X=(X, d)$ be a metric space. The length $L(c) \in[0, \infty]$ of the curve $c: I \rightarrow X$ is defined as

$$
L(c):=\sup \sum_{i=1}^{k} d\left(c\left(t_{i-1}\right), c\left(t_{i}\right)\right)
$$

where the supremum is taken over all finite, non-decreasing sequences $t_{0} \leq t_{1} \leq$ $\ldots \leq t_{k}$ in I. The curve c is rectifiable if $L(c)<\infty$, and c has constant speed or is parametrized proportionally to arc length if there exists a constant $\lambda \geq 0$, the speed of c, such that for every subinterval $[a, b] \subset I$,

$$
L\left(\left.c\right|_{[a, b]}\right)=\lambda(b-a) ;
$$

if $\lambda=1$, then c has unit speed or is parametrized by arc length.
The curve $c: I \rightarrow X$ is a reparametrization of another curve $\tilde{c}: \tilde{I} \rightarrow X$ if there exists a continuous, surjective, non-decreasing or non-increasing map $\varphi: I \rightarrow \tilde{I}$ (thus $a<b$ implies $\varphi(a) \leq \varphi(b)$ or $\varphi(a) \geq \varphi(b)$, respectively) such that $c=\tilde{c} \circ \varphi$. Then clearly $L(c)=L(\tilde{c})$. The following lemma shows that every curve of locally finite length is a reparametrization of a unit speed curve.
1.1 Lemma (reparametrization) Suppose that $c: I \rightarrow(X, d)$ is a curve with $L\left(\left.c\right|_{[a, b]}\right)<\infty$ for every subinterval $[a, b] \subset I$. Pick $s \in I$, and define $\varphi: I \rightarrow \mathbb{R}$ such that $\varphi(t)=L\left(\left.c\right|_{[s, t]}\right)$ for $t \geq s$ and $\varphi(t)=-L\left(\left.c\right|_{[t, s]}\right)$ for $t<s$. Then φ is continuous and non-decreasing, and there is a well-defined unit speed curve $\tilde{c}: \varphi(I) \rightarrow X$ such that $\tilde{c}(\varphi(t))=c(t)$ for all $t \in I$.

Proof: Whenever $a, b \in I$ and $a<b$, then

$$
\begin{equation*}
d(c(a), c(b)) \leq L\left(\left.c\right|_{[a, b]}\right)=\varphi(b)-\varphi(a) . \tag{*}
\end{equation*}
$$

Thus φ is non-decreasing. Moreover, given such a, b and $\epsilon>0$, there exists a sequence $a=t_{0}<t_{1}<\ldots<t_{k}=b$ such that

$$
L(c \mid[a, b])-\epsilon \leq \sum_{i=1}^{k} d\left(c\left(t_{i-1}\right), c\left(t_{i}\right)\right) \leq d(c(a), c(r))+L\left(\left.c\right|_{[r, b]}\right)
$$

for all $r \in\left(a, t_{1}\right]$, and there is a $\delta>0$ such that $d(c(a), c(r))<\epsilon$ for all $r \in(a, a+\delta)$; thus $L\left(\left.c\right|_{[a, r]}\right)=L\left(\left.c\right|_{[a, b]}\right)-L\left(\left.c\right|_{[r, b]}\right)<2 \epsilon$ for $r>a$ close enough to a. It follows that φ is right-continuous, and left-continuity is shown analogously.

By $(*)$ there is a well-defined 1-Lipschitz curve $\tilde{c}: \varphi(I) \rightarrow X$ such that $\tilde{c}(\varphi(t))=$ $c(t)$ for all $t \in I$. Then $L\left(\left.\tilde{c}\right|_{[\varphi(a), \varphi(b)]}\right)=L\left(\left.c\right|_{[a, b]}\right)=\varphi(b)-\varphi(a)$ for all $[a, b] \subset I$, hence \tilde{c} is parametrized by arc length.

We now turn to the target space $X=\mathbb{R}^{n}$, endowed with the canonical inner product

$$
\langle x, y\rangle=\left\langle\left(x^{1}, \ldots, x^{n}\right),\left(y^{1}, \ldots, y^{n}\right)\right\rangle:=\sum_{i=1}^{n} x^{i} y^{i}
$$

and the Euclidean metric

$$
d(x, y):=|x-y|:=\sqrt{\langle x-y, x-y\rangle} .
$$

In the following we will tacitly assume that the interior of the interval I is non-empty. For $q \in\{0\} \cup\{1,2, \ldots\} \cup\{\infty\}$ we write as usual $c \in C^{q}\left(I, \mathbb{R}^{n}\right)$ if c is continuous or q times continuously differentiable or infinitely differentiable, respectively. In the case that $q \geq 1$ and I is not open, this means that c admits an extension $\bar{c} \in C^{q}\left(J, \mathbb{R}^{n}\right)$ to an open interval $J \supset I$.

Suppose now that $c \in C^{q}\left(I, \mathbb{R}^{n}\right)$ for some $q \geq 1$. Then

$$
L\left(\left.c\right|_{[a, b]}\right)=\int_{a}^{b}\left|c^{\prime}(t)\right| d t<\infty
$$

for every subinterval $[a, b] \subset I$ (a not easy exercise), and thus the function φ from Lemma 1.1 satisfies $\varphi(t)=\int_{S}^{t}\left|c^{\prime}(r)\right| d r$ for all $t \in I$. The curve c is called regular if $c^{\prime}(t) \neq 0$ for all $t \in I$; then $\varphi^{\prime}=\left|c^{\prime}\right|>0$ on I, and both $\varphi: I \rightarrow \varphi(I)$ and the inverse $\varphi^{-1}: \varphi(I) \rightarrow I$ are also of class C^{q}, that is, φ is a C^{q} diffeomorphism. Note also that $c \in C^{1}\left(I, \mathbb{R}^{n}\right)$ has constant speed $\lambda \geq 0$ if and only if $\left|c^{\prime}(t)\right|=\lambda$ for all $t \in I$.

Local theory of curves

The following notions go back to Jean Frédéric Frenet (1816-1900).
1.2 Definition (Frenet curve) The curve $c \in C^{n}\left(I, \mathbb{R}^{n}\right)$ is called a Frenet curve if for all $t \in I$ the vectors $c^{\prime}(t), c^{\prime \prime}(t), \ldots, c^{(n-1)}(t)$ are linearly independent. The corresponding Frenet frame $\left(e_{1}, \ldots, e_{n}\right), e_{i}: I \rightarrow \mathbb{R}^{n}$, is then characterized by the following conditions:
(1) $\left(e_{1}(t), \ldots, e_{n}(t)\right)$ is a positively oriented orthonormal basis of \mathbb{R}^{n} for $t \in I$;
(2) $\operatorname{span}\left(e_{1}(t), \ldots, e_{i}(t)\right)=\operatorname{span}\left(c^{\prime}(t), \ldots, c^{(i)}(t)\right)$ and $\left\langle e_{i}(t), c^{(i)}(t)\right\rangle>0$ for $i=$ $1, \ldots, n-1$ and $t \in I$.

Condition (2) refers to the linear span. The vectors $e_{1}(t), \ldots, e_{n-1}(t)$ are obtained from $c^{\prime}(t), \ldots, c^{(n-1)}(t)$ by means of the Gram-Schmidt process, and $e_{n}(t)$ is then determined by condition (1). Note that $e_{i} \in C^{n-i}\left(I, \mathbb{R}^{n}\right)$ for $i=1, \ldots, n-1$, in particular $e_{1}, \ldots, e_{n} \in C^{1}\left(I, \mathbb{R}^{n}\right)$.
1.3 Definition (Frenet curvatures) Let $c \in C^{n}\left(I, \mathbb{R}^{n}\right)$ be a Frenet curve with Frenet frame $\left(e_{1}, \ldots, e_{n}\right)$. For $i=1, \ldots, n-1$, the function $\kappa_{i}: I \rightarrow \mathbb{R}$,

$$
\kappa_{i}(t):=\frac{1}{\left|c^{\prime}(t)\right|}\left\langle e_{i}^{\prime}(t), e_{i+1}(t)\right\rangle
$$

is called the i-th Frenet curvature of c.
Note that $\kappa_{i} \in C^{n-i-1}(I)$; in particular $\kappa_{1}, \ldots, \kappa_{n-1}$ are continuous.
Suppose now that $c=\tilde{c} \circ \varphi$ for some curve $\tilde{c} \in C^{n}\left(\tilde{I}, \mathbb{R}^{n}\right)$ and a C^{n} diffeomor$\operatorname{phism} \varphi: I \rightarrow \tilde{I}$ with $\varphi^{\prime}>0$. For $i=1, \ldots, n-1$, the i-th derivative $c^{(i)}(t)$ is a linear combination $\sum_{k=1}^{i} a_{k}(t) \tilde{c}^{(k)}(\varphi(t))$ with $a_{i}(t)=\left(\varphi^{\prime}(t)\right)^{i}>0$, thus

$$
\operatorname{span}\left(c^{\prime}(t), \ldots, c^{(i)}(t)\right)=\operatorname{span}\left(\left(\tilde{c}^{\prime} \circ \varphi\right)(t), \ldots,\left(\tilde{c}^{(i)} \circ \varphi\right)(t)\right)
$$

c is Frenet if and only if \tilde{c} is Frenet, and the corresponding Frenet vector fields then satisfy the relation $e_{i}=\tilde{e}_{i} \circ \varphi$. Likewise, for the Frenet curvatures,

$$
\kappa_{i}=\frac{1}{\left|c^{\prime}\right|}\left\langle e_{i}^{\prime}, e_{i+1}\right\rangle=\frac{1}{\left|\tilde{c}^{\prime} \circ \varphi\right|\left|\varphi^{\prime}\right|}\left\langle\left(\tilde{e}_{i}^{\prime} \circ \varphi\right) \varphi^{\prime}, \tilde{e}_{i+1} \circ \varphi\right\rangle=\tilde{\kappa}_{i} \circ \varphi .
$$

Thus the curvatures are invariant under sense preserving reparametrization.
1.4 Proposition (Frenet equations) Let $c \in C^{n}\left(I, \mathbb{R}^{n}\right)$ be a Frenet curve with Frenet frame $\left(e_{1}, \ldots, e_{n}\right)$ and Frenet curvatures $\kappa_{1}, \ldots, \kappa_{n-1}$. Then $\kappa_{1}, \ldots, \kappa_{n-2}>0$, and

$$
\frac{1}{\left|c^{\prime}\right|} e_{i}^{\prime}= \begin{cases}\kappa_{1} e_{2} & \text { if } i=1 \\ -\kappa_{i-1} e_{i-1}+\kappa_{i} e_{i+1} & \text { if } 2 \leq i \leq n-1 \\ -\kappa_{n-1} e_{n-1} & \text { if } i=n\end{cases}
$$

Proof: Since $\left(e_{1}(t), \ldots, e_{n}(t)\right)$ is orthonormal,

$$
e_{i}^{\prime}(t)=\sum_{j=1}^{n}\left\langle e_{i}^{\prime}(t), e_{j}(t)\right\rangle e_{j}(t)
$$

for $i=1, \ldots, n$, and since $\left\langle e_{i}^{\prime}, e_{j}\right\rangle+\left\langle e_{i}, e_{j}^{\prime}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle^{\prime}=0$, the coefficient matrix $K(t)=\left(\left\langle e_{i}^{\prime}(t), e_{j}(t)\right\rangle\right)$ is skew-symmetric. For $i=1, \ldots, n-1$,

$$
\left\langle e_{i}^{\prime}, e_{i+1}\right\rangle=\left|c^{\prime}\right| \kappa_{i}
$$

Now let $i \leq n-2$, and recall condition (2) of Definition 1.2. The vector $e_{i}(t)$ is a linear combination $\sum_{k=1}^{i} a_{i k}(t) c^{(k)}(t)$ with $a_{i i}(t)>0$, so $e_{i}^{\prime}(t)$ is of the form $\sum_{k=1}^{i} b_{i k}(t) c^{(k)}(t)+a_{i i}(t) c^{(i+1)}(t)$, and it follows that

$$
\left\langle e_{i}^{\prime}, e_{i+2}\right\rangle=\ldots=\left\langle e_{i}^{\prime}, e_{n}\right\rangle=0
$$

and $\left\langle e_{i}^{\prime}, e_{i+1}\right\rangle=a_{i i}\left\langle c^{(i+1)}, e_{i+1}\right\rangle>0$. This gives the result.
In the case $n=2$, a curve $c \in C^{2}\left(I, \mathbb{R}^{2}\right)$ is Frenet if and only if c is regular. Then the sole Frenet curvature

$$
\kappa_{\mathrm{or}}:=\kappa_{1}=\frac{1}{\left|c^{\prime}\right|}\left\langle e_{1}^{\prime}, e_{2}\right\rangle
$$

is called the oriented curvature (or signed curvature) of c. Note that $e_{1}=c^{\prime} /\left|c^{\prime}\right|$ and $\left\langle c^{\prime}, e_{2}\right\rangle=0$, thus

$$
\kappa_{\text {or }}=\frac{\left\langle c^{\prime \prime}, e_{2}\right\rangle}{\left|c^{\prime}\right|^{2}}=\frac{\operatorname{det}\left(e_{1}, c^{\prime \prime}\right)}{\left|c^{\prime}\right|^{2}}=\frac{\operatorname{det}\left(c^{\prime}, c^{\prime \prime}\right)}{\left|c^{\prime}\right|^{3}}
$$

The Frenet equations may be written in matrix form as

$$
\frac{1}{\left|c^{\prime}\right|}\binom{e_{1}^{\prime}}{e_{2}^{\prime}}=\left(\begin{array}{cc}
0 & \kappa_{\mathrm{or}} \\
-\kappa_{\mathrm{or}} & 0
\end{array}\right)\binom{e_{1}}{e_{2}}
$$

The osculating circle (Schmiegkreis) of c at a point t with $\kappa_{\text {or }}(t) \neq 0$ is the circle with center $c(t)+\left(1 / \kappa_{\mathrm{or}}(t)\right) e_{2}(t)$ and radius $1 /\left|\kappa_{\mathrm{or}}(t)\right|$, which approximates the curve at t up to second order (exercise).

In the case $n=3, c \in C^{3}\left(I, \mathbb{R}^{3}\right)$ is a Frenet curve if and only if c^{\prime} and $c^{\prime \prime}$ are everywhere linearly independent. The vectors e_{2} and $e_{3}=e_{1} \times e_{2}$ (vector product) are called the normal and the binormal of c, respectively. The two Frenet curvatures

$$
\kappa:=\kappa_{1}=\frac{1}{\left|c^{\prime}\right|}\left\langle e_{1}^{\prime}, e_{2}\right\rangle>0, \quad \tau:=\kappa_{2}=\frac{1}{\left|c^{\prime}\right|}\left\langle e_{2}^{\prime}, e_{3}\right\rangle
$$

are called curvature and torsion of c; the latter measures the rotation of the osculating plane (Schmiegebene) $\operatorname{span}\left\{c^{\prime}, c^{\prime \prime}\right\}=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ about e_{1}. Both κ and τ are also invariant under sense reversing reparametrization, but τ changes sign under orientation reversing isometries of \mathbb{R}^{3}. The Frenet equations for curves in \mathbb{R}^{3} read

$$
\frac{1}{\left|c^{\prime}\right|}\left(\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

If c is parametrized by arc length, then $2\left\langle c^{\prime}, c^{\prime \prime}\right\rangle=\left\langle c^{\prime}, c^{\prime}\right\rangle^{\prime}=0$ and hence $e_{2}=$ $c^{\prime \prime} /\left|c^{\prime \prime}\right|$, thus $\kappa=\left\langle e_{1}^{\prime}, e_{2}\right\rangle=\left|c^{\prime \prime}\right|$.
1.5 Theorem (fundamental theorem of local curve theory) If $n-1$ functions $\kappa_{1}, \ldots, \kappa_{n-1} \in C^{\infty}(I, \mathbb{R})$ with $\kappa_{1}, \ldots, \kappa_{n-2}>0$ are given, and if $s_{0} \in I, x_{0} \in \mathbb{R}^{n}$, and $\left(b_{1}, \ldots, b_{n}\right)$ is a positively oriented orthonormal basis of \mathbb{R}^{n}, then there exists a unique Frenet curve $c \in C^{\infty}\left(I, \mathbb{R}^{n}\right)$ of constant speed one such that
(1) $c\left(s_{0}\right)=x_{0}$;
(2) $\left(b_{1}, \ldots, b_{n}\right)$ is the Frenet frame of c at s_{0};
(3) $\kappa_{1}, \ldots, \kappa_{n-1}$ are the Frenet curvatures of c.

The differentiability assumptions may be weakened.
Proof:
We now turn to some global results.

The rotation index of a plane curve

In the following it is assumed that $a<b$. A curve $c:[a, b] \rightarrow X$ in a topological space X is called closed or a loop if $c(a)=c(b)$, and c is said to be simple if $\left.c\right|_{[a, b)}$ is injective in addition. Now let again $X=\mathbb{R}^{n}$. For $q \in\{1,2, \ldots\} \cup\{\infty\}$, a closed curve $c \in C^{q}\left([a, b], \mathbb{R}^{n}\right)$ will be called C^{q}-closed if c admits a $(b-a)$-periodic extension $\bar{c} \in C^{q}\left(\mathbb{R}, \mathbb{R}^{n}\right)$, that is, $\bar{c}(t+b-a)=\bar{c}(t)$ for all $t \in \mathbb{R}$.

Suppose now that $c:[a, b] \rightarrow \mathbb{R}^{2}$ is a C^{1}-closed and regular plane curve. Let $S^{1} \subset \mathbb{R}^{2}$ denote the unit circle. The normalized velocity vector $e(t):=$ $c^{\prime}(t) /\left|c^{\prime}(t)\right| \in S^{1}$ of c may be represented as

$$
e(t)=(\cos \theta(t), \sin \theta(t))
$$

for a continuous polar angle function $\theta:[a, b] \rightarrow \mathbb{R}$, which is uniquely determined up to addition of an integral multiple of 2π. More precisely, θ is a lifting of $e:[a, b] \rightarrow S^{1}$ with respect to the canonical covering

$$
\sigma: \mathbb{R} \rightarrow S^{1}, \quad \sigma(s):=(\cos (s), \sin (s)) ;
$$

that is, $\sigma \circ \theta=e$. To show that such a function θ exists, one may use the uniform continuity of e on the compact interval $[a, b]$ to find a subdivision $a=a_{0}<a_{1}<$ $\ldots<a_{k}=b$ such that none of the subintervals $\left[a_{i-1}, a_{i}\right]$ is mapped onto S^{1}. Then, for every choice of $\theta(a)$ with $\sigma(\theta(a))=e(a)$, there are successive unique extensions of θ to the intervals $\left[a, a_{i}\right]$ for $i=1, \ldots, k$.

Since $e(a)=e(b)$, there is a unique integer ϱ_{c}, independent of the choice of θ, such that

$$
\theta(b)-\theta(a)=2 \pi \varrho_{c} .
$$

This number ϱ_{c} is called the rotation index (Umlaufzahl) of c. If c is a reparametrization of another C^{1}-closed regular curve \tilde{c}, then $\varrho_{c}=\varrho_{\tilde{c}}$.
1.6 Theorem (Umlaufsatz) The rotation index of a simple C^{1}-closed, regular curve $c:[a, b] \rightarrow \mathbb{R}^{2}$ equals 1 or -1 .

This probably goes back to Riemann. The following elegant argument is due to H. Hopf [Ho1935].

Proof: We assume that c is parametrized by arc length and that $[a, b]=[0, L]$. Furthermore, we suppose that the image of c lies in the upper half-plane $\mathbb{R} \times[0, \infty)$ and that $c(0)=(0,0)$ and $c^{\prime}(0)=(1,0)$. We will show that $\varrho_{c}=1$ under these assumptions.

We consider the triangular domain $D:=\left\{(s, t) \in \mathbb{R}^{2}: 0 \leq s \leq t \leq L\right\}$ and assign to every point in D a unit vector as follows:

$$
e(s, t):= \begin{cases}c^{\prime}(s) & \text { if } s=t \\ -c^{\prime}(0)=(-1,0) & \text { if }(s, t)=(0, L) \\ \frac{c(t)-c(s)}{|c(t)-c(s)|} & \text { otherwise }\end{cases}
$$

Note that this definition is possible since c is simple. The resulting map $e: D \rightarrow S^{1}$ is easily seen to be continuous.

It then follows from the homotopy lifting property in topology that there is a continuous function $\theta: D \rightarrow \mathbb{R}$ such that $\sigma \circ \theta=e$, where $\sigma: \mathbb{R} \rightarrow S^{1}$ is the canonical covering as above. For an alternative direct argument, note that by the uniform continuity of e on the compact set D there is an integer $k \geq 1$ such that for $\delta:=L /(k+1)$, none of the subsets

$$
D_{j, i}:=D \cap([i \delta,(i+1) \delta] \times[j \delta,(j+1) \delta]), \quad j=0, \ldots, k, \quad i=0, \ldots, j,
$$

is mapped onto S^{1}. Clearly θ may be defined on $D_{0,0}$, and then there exist successive unique extensions to $D_{1,0}, D_{1,1}, D_{2,0}, D_{2,1}, D_{2,2}, \ldots$ (lexicographic order).

Now, since $e(0, t)$ lies in the upper half-plane for all $t \in[0, L]$, and $e(0,0)=(1,0)$ and $e(0, L)=(-1,0)$, it follows that $\theta(0, L)=\theta(0,0)+\pi$. Similarly, $e(s, L)$ is in the lower half-plane for all $s \in[0, L]$, and $e(L, L)$ is again equal to (1,0), hence

$$
\theta(L, L)=\theta(0, L)+\pi=\theta(0,0)+2 \pi .
$$

Since $s \mapsto \theta(s, s)$ is an angle function for $s \mapsto e(s, s)=c^{\prime}(s)$, this shows that $\varrho_{c}=1$.

Total curvature of closed curves

Now let $c:[0, L] \rightarrow \mathbb{R}^{2}(L>0)$ be a C^{2} curve of constant speed one with Frenet frame $\left(e_{1}, e_{2}\right)$. If $\theta:[0, L] \rightarrow \mathbb{R}$ is continuous and $e_{1}(s)=(\cos \theta(s), \sin \theta(s))$, then θ is continuously differentiable, and

$$
e_{1}^{\prime}(s)=\theta^{\prime}(s)(-\sin \theta(s), \cos \theta(s))=\theta^{\prime}(s) e_{2}(s)
$$

On the other hand, $e_{1}^{\prime}(s)=\kappa_{\mathrm{or}}(s) e_{2}(s)$ by the first Frenet equation, thus $\theta^{\prime}=\kappa_{\mathrm{or}}$. The total curvature of c therefore satisfies

$$
\int_{0}^{L} \kappa_{\mathrm{or}}(s) d s=\int_{0}^{L} \theta^{\prime}(s) d s=\theta(L)-\theta(0)
$$

If c is C^{2}-closed and simple, then Theorem 1.6 asserts that $|\theta(L)-\theta(0)|=2 \pi$, thus

$$
\int_{0}^{L}\left|\kappa_{\mathrm{or}}(s)\right| d s \geq\left|\int_{0}^{L} \kappa_{\mathrm{or}}(s) d s\right|=2 \pi
$$

Equality holds if and only if $\kappa_{\text {or }}$ does not change sign, that is, $\kappa_{\text {or }} \geq 0$ or $\kappa_{\text {or }} \leq 0$. This in turn holds if and only if c is convex, that is, the trace $c([0, L])$ is the boundary of a convex set $C \subset \mathbb{R}^{2}$ (exercise).

We now turn to curves in \mathbb{R}^{n} for $n \geq 3$. If $c \in C^{n}\left(I, \mathbb{R}^{n}\right)$ is a Frenet curve parametrized by arc length, then $\kappa_{1}=\left|c^{\prime \prime}\right|$. It is thus consistent to define the curvature of an arbitrary unit speed curve $c \in C^{2}\left(I, \mathbb{R}^{n}\right)$ by

$$
\kappa:=\left|c^{\prime \prime}\right| .
$$

1.7 Theorem (Fenchel-Borsuk) Suppose that $c:[0, L] \rightarrow \mathbb{R}^{n}$ is a C^{2}-closed unit speed curve whose trace is not contained in a 2-dimensional plane. Then

$$
\int_{0}^{L} \kappa(s) d s>2 \pi
$$

This is due to Fenchel [Fe1929] for $n=3$ and to Borsuk [Bo1947] in the general case. Fáry [Fa1949] and Milnor [Mi1950] showed independently that the total curvature of a knotted curve in \mathbb{R}^{3} is even $>4 \pi$, thus answering a question raised by Borsuk.

Proof: It suffices to show the conclusion for $n=3,4, \ldots$ under the assumption that the trace of c is not contained in an $(n-1)$-dimensional plane.

The derivative of c, viewed as a $\left(C^{1}\right)$ curve $c^{\prime}:[0, L] \rightarrow S^{n-1}$ into the unit sphere, is called the tangent indicatrix of c. Clearly

$$
\int_{0}^{L} \kappa(s) d s=\int_{0}^{L}\left|c^{\prime \prime}(s)\right| d s=L\left(c^{\prime}\right)
$$

For every fixed unit vector $e \in S^{n-1}$,

$$
\int_{0}^{L}\left\langle c^{\prime}(s), e\right\rangle d s=\langle c(L), e\rangle-\langle c(0), e\rangle=0
$$

and $\left\langle c^{\prime}, e\right\rangle$ cannot be constantly zero, for then $\operatorname{im}(c)$ would be contained in a hyperplane orthogonal to e; thus $\left\langle c^{\prime}, e\right\rangle$ must change sign. This shows that no closed hemisphere of S^{n-1} contains the entire trace of the tangent indicatrix. It now follows from the next proposition that $L\left(c^{\prime}\right)>2 \pi$.
1.8 Proposition If $c:[a, b] \rightarrow S^{n-1} \subset \mathbb{R}^{n}$ is a closed curve whose trace is not contained in a closed hemisphere, then $L(c)>2 \pi$.

Note that here c is merely continuous.

Proof:

2 Surfaces

Submanifolds and immersions

We now consider m-dimensional surfaces in \mathbb{R}^{n}.
2.1 Definition (submanifold) A subset $M \subset \mathbb{R}^{n}$ is a (smooth) m-dimensional submanifold of \mathbb{R}^{n} if for every point $p \in M$ there exist an open neighborhood $V \subset \mathbb{R}^{n}$ of p and a C^{∞} diffeomorphism $\varphi: V \rightarrow \varphi(V)$ onto an open set $\varphi(V) \subset \mathbb{R}^{n}$ such that $\varphi(M \cap V)=\left(\mathbb{R}^{m} \times\{0\}\right) \cap \varphi(V)$.

The number $k:=n-m$ is called the codimension of M in \mathbb{R}^{n}, and φ is a submanifold chart (Schnittkarte) of M. Submanifolds of class $C^{q}, 1 \leq q \leq \infty$, are defined analogously.

Now let $W \subset \mathbb{R}^{n}$ be an open set, and let $F: W \rightarrow \mathbb{R}^{k}$ be a differentiable map. A point $p \in W$ is called a regular point of F if the differential $d F_{p}$ is surjective, otherwise p is called a singular or critical point of F. A point $x \in \mathbb{R}^{k}$ is a regular value of F if all points $p \in F^{-1}\{x\}$ are regular; otherwise, if $F^{-1}\{x\}$ contains a singular point, x is a singular or critical value of F. Note that, according to this definition, every $x \in \mathbb{R}^{k} \backslash F(W)$ is a regular value of F.
2.2 Theorem (regular value theorem) If $W \subset \mathbb{R}^{n}$ is open and $F \in C^{\infty}\left(W, \mathbb{R}^{k}\right)$, and if $x \in F(W)$ is a regular value of F, then $M:=F^{-1}\{x\}$ is a submanifold of \mathbb{R}^{n} of dimension $m:=n-k \geq 0$ (thus the codimension of M equals k).

Proof: We assume that $x=0$. Let $p \in M=F^{-1}\{0\}$. Since $d F_{p}$ is surjective, it follows from Theorem A.2 (implicit function theorem, surjective form) that there exist open neighborhoods $U \subset \mathbb{R}^{n-k} \times \mathbb{R}^{k}$ of $(0,0)$ and $V \subset W$ of p and a C^{∞} diffeomorphism $\psi: U \rightarrow V$ such that $\psi(0,0)=p$ and

$$
(F \circ \psi)(x, y)=y \quad \text { for all }(x, y) \in U .
$$

Then $\varphi:=\psi^{-1}: V \rightarrow U$ is a submanifold chart of M around $p: \varphi(M \cap V)$ equals the set of all $(x, y) \in U$ such that $\psi(x, y) \in M=F^{-1}\{0\}$ and thus $y=(F \circ \psi)(x, y)=0$.

The following alternative notion of surface extends the concept of a regular (parametrized) curve to higher dimensions.
2.3 Definition (immersion) A map $f \in C^{\infty}\left(U, \mathbb{R}^{n}\right)$ from an open set $U \subset \mathbb{R}^{m}$ into \mathbb{R}^{n} is called an immersion if for all $x \in U$ the differential $d f_{x}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is injective.
2.4 Theorem (immersion theorem) Let $f \in C^{\infty}\left(U, \mathbb{R}^{n}\right)$ be an immersion of the open set $U \subset \mathbb{R}^{m}$. Then, for every point $x \in U$, there exists an open neighborhood $U_{x} \subset U$ of x such that $f\left(U_{x}\right)$ is an m-dimensional submanifold of \mathbb{R}^{n}.

Proof: We suppose that $x=0 \in U$ and $f(0)=p$. Since $d f_{0}$ is injective, it follows from Theorem A. 2 (implicit function theorem, injective form) that there exist open neighborhoods $V \subset \mathbb{R}^{n}$ of p and $W \subset U \times \mathbb{R}^{n-m}$ of $(0,0)$ and a C^{∞} diffeomorphism $\varphi: V \rightarrow W$ such that $\varphi(p)=(0,0)$ and

$$
(\varphi \circ f)(x)=(x, 0) \quad \text { whenever }(x, 0) \in W
$$

Put $U_{0}:=\{x \in U:(x, 0) \in W\}$ and $M:=f\left(U_{0}\right)$. Then φ is a (global) submanifold chart for M, since $\varphi(M \cap V)=\varphi\left(f\left(U_{0}\right)\right)=U_{0} \times\{0\}$.

In general, even if an immersion is injective, its image need not be a submanifold. For example, the trace of the injective regular curve

$$
c:(0,2 \pi) \rightarrow \mathbb{R}^{2}, \quad c(t)=(\sin (t), \sin (2 t))
$$

has the shape of the ∞ symbol. However, the following holds.
2.5 Theorem (local parametrizations) The set $M \subset \mathbb{R}^{n}$ is an m-dimensional submanifold of \mathbb{R}^{n} if and only if for every point $p \in M$ there exist open sets $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ and an immersion $f: U \rightarrow \mathbb{R}^{n}$ such that $p \in f(U)=M \cap V$ and $f: U \rightarrow M \cap V$ is a homeomorphism.

Then f is called a local parametrization, and $f^{-1}: M \cap V \rightarrow U$ a chart of M around p.

Proof:
2.6 Lemma (parameter transformation) Let $M \subset \mathbb{R}^{n}$ be an m-dimensional submanifold, and suppose that $f_{i}: U_{i} \rightarrow f\left(U_{i}\right) \subset M, i=1,2$, are two local parametrizations with $V:=f_{1}\left(U_{1}\right) \cap f_{2}\left(U_{2}\right) \neq \emptyset$. Then $\varphi:=f_{2}^{-1} \circ f_{1}: f_{1}^{-1}(V) \rightarrow$ $f_{2}^{-1}(V)$ is a C^{∞} diffeomorphism.

Proof:
2.7 Definition (tangent space, normal space) The tangent space $T M_{p}$ of an m dimensional submanifold $M \subset \mathbb{R}^{n}$ in the point $p \in M$ is defined as $T M_{p}:=$ $d f_{x}\left(\mathbb{R}^{m}\right) \subset \mathbb{R}^{n}$ for some (and hence any) local parametrization $f: U \rightarrow f(U) \subset M$ with $f(x)=p$. The orthogonal complement $T M_{p}^{\perp}$ of $T M_{p}$ in \mathbb{R}^{n} is the normal space of M in p.

The tangent space $T M_{p}$ is an m-dimensional linear subspace of \mathbb{R}^{n}, whereas the normal space $T M_{p}^{\perp}$ is a linear subspace of \mathbb{R}^{n} of dimension equal to the codimension $k:=n-m$ of M.
2.8 Definition (differentiable map, differential) A map $F: M \rightarrow \mathbb{R}^{l}$ from a submanifold $M \subset \mathbb{R}^{n}$ into \mathbb{R}^{l} is differentiable at the point $p \in M$ if for some (and hence any) local parametrization $f: U \rightarrow f(U) \subset M$ with $f(x)=p$ the composition $F \circ f: U \rightarrow \mathbb{R}^{l}$ is differentiable at $x \in U$. The differential of $F: M \rightarrow \mathbb{R}^{l}$ at p is then defined as the unique linear map $d F_{p}: T M_{p} \rightarrow \mathbb{R}^{l}$ for which the chain rule

$$
d(F \circ f)_{x}=d F_{p} \circ d f_{x}
$$

holds. For $1 \leq q \leq \infty$, mappings $F: M \rightarrow \mathbb{R}^{l}$ of class $C^{q}, F \in C^{q}\left(M, \mathbb{R}^{l}\right)$, are defined accordingly.

In order to determine $d F_{p}(v)$ it is often convenient to represent the vector $v \in T M_{p}$ as the velocity $c^{\prime}(0)$ of a differentiable curve $c:(-\epsilon, \epsilon) \rightarrow M \subset \mathbb{R}^{l}$ with $c(0)=p$; then

$$
d F_{p}\left(c^{\prime}(0)\right)=(F \circ c)^{\prime}(0)
$$

If $F: M \rightarrow \mathbb{R}^{l}$ takes values in a submanifold Q of \mathbb{R}^{l}, then it follows that $d F_{p}\left(T M_{p}\right) \subset T Q_{F(p)}$.

Orientability and the separation theorem

2.9 Definition (orientability) A submanifold $M \subset \mathbb{R}^{n}$ is orientable if there exists a system $\left\{f_{\alpha}: U_{\alpha} \rightarrow f_{\alpha}\left(U_{\alpha}\right) \subset M\right\}_{\alpha \in A}$ of local parametrizations of M such that $\bigcup_{\alpha \in A} f_{\alpha}\left(U_{\alpha}\right)=M$ and every parameter transformation $f_{\beta}^{-1} \circ f_{\alpha}$ with $\alpha, \beta \in A$ and $f_{\alpha}\left(U_{\alpha}\right) \cap f_{\beta}\left(U_{\beta}\right) \neq \emptyset$ satisfies $\operatorname{det}\left(d\left(f_{\beta}^{-1} \circ f_{\alpha}\right)_{x}\right)>0$ everywhere on its domain. A maximal such system is called an orientation of M, and every local parametrization belonging to it is then said to positively oriented.
2.10 Proposition (orientable hypersurfaces) A submanifold $M \subset \mathbb{R}^{m+1}$ of codimension one is orientable if and only if there exists a continuous unit normal vector field on M, that is, a continuous map $N: M \rightarrow S^{m}$ with $N(p) \in T M_{p}^{\perp}$ for all $p \in M$.

Such a map N is called a Gauss map of M.
Proof:
2.11 Theorem (separation theorem) Suppose that $\emptyset \neq M \subset \mathbb{R}^{m+1}$ is a compact and connected m-dimensional submanifold. Then $\mathbb{R}^{m+1} \backslash M$ has precisely two connected components, a bounded and an unbounded one, M is the boundary of each of them, and M is orientable.

Proof: Since M is a submanifold of codimension 1, it follows that for every point $p \in M$ there exist an open set $V \subset \mathbb{R}^{m+1}$ and a smooth curve $c:[-1,1] \rightarrow V$ with $c(0)=p$ and $c^{\prime}(0) \notin T M_{p}$ such that $V \backslash M$ has exactly two connected components
containing $c([-1,0))$ and $c((0,1])$, respectively (use a submanifold chart). We claim that $c(-1)$ and $c(1)$ lie in different connected components of $\mathbb{R}^{m+1} \backslash M$. Otherwise, there would exist a C^{∞}-closed curve $\bar{c}:[-1,2] \rightarrow \mathbb{R}^{m+1}$ with $\bar{c}(0)=p, \bar{c}^{\prime}(0) \notin T M_{p}$ and $\bar{c}(t) \notin M$ for $t \neq 0$; this would, however, contradict the homotopy invariance of the intersection number modulo 2, which we will prove later in Theorem 9.12 . Hence, every point $p \in M$ is a boundary point of two distinct connected components of $\mathbb{R}^{m+1} \backslash M$.

Now let $p \in M$ be fixed, an let $q \in M$ be any other point. Then $p \in \partial A \cap \partial B$ and $q \in \partial A_{q} \cap \partial B_{q}$ for some connected components $A \neq B$ and $A_{q} \neq B_{q}$ of $\mathbb{R}^{m+1} \backslash M$. Since M is connected and locally path connected, M is path connected, thus there exists a curve $c_{q}:[0,1] \rightarrow M$ from p to q. Let $N_{q}:[0,1] \rightarrow \mathbb{R}^{m+1}$ be a continuous unit vector field along c_{q} normal to M. For a sufficiently small $\epsilon>0$, the traces of the curves $c_{q}^{ \pm}: t \mapsto c_{q}(t) \pm \epsilon N_{q}(t)$ are in $\mathbb{R}^{m+1} \backslash M$. It follows that either $A_{q}=A$ and $B_{q}=B$, or $A_{q}=B$ and $B_{q}=A$. Since M is bounded, the assertions about the connected components of $\mathbb{R}^{m+1} \backslash M$ are now clear. Furthermore, M admits a Gauss map (pointing everywhere into A, for example), and thus M is orientable by Proposition 2.10

Theorem 2.11 holds more generally for the case that $\emptyset \neq M \subset \mathbb{R}^{m+1}$ is the image of a compact and connected m-dimensional topological manifold (Definition 8.1) under a continuous and injective map [Br1911b]. This is the Jordan-Brouwer separation theorem, which generalizes the Jordan curve theorem. In the latter, M is a Jordan curve in \mathbb{R}^{2}, that is, the image of a simply closed curve $c:[0,1] \rightarrow \mathbb{R}^{2}$.

3 Intrinsic geometry of surfaces

First fundamental form

3.1 Definition (first fundamental form) The first fundamental form g of a submanifold $M \subset \mathbb{R}^{n}$ assigns to each point $p \in M$ the inner product g_{p} on $T M_{p}$ defined by

$$
g_{p}(X, Y):=\langle X, Y\rangle
$$

for $X, Y \in T M_{p}$. (Thus g_{p} is just the restriction of the standard inner product $\langle\cdot, \cdot\rangle$ of \mathbb{R}^{n} to $T M_{p} \times T M_{p}$.) The first fundamental form g of an immersion $f: U \rightarrow \mathbb{R}^{n}$ of an open set $U \subset \mathbb{R}^{m}$ assigns to each $x \in U$ the inner product g_{x} on \mathbb{R}^{m} defined by

$$
g_{x}(\xi, \eta):=\left\langle d f_{x}(\xi), d f_{x}(\eta)\right\rangle
$$

for $\xi, \eta \in \mathbb{R}^{m}$.
The first fundamental form g is also called the (Riemannian) metric of M or f, respectively. The matrix $\left(g_{i j}(x)\right)$ of g_{x} with respect to the canonical basis $\left(e_{1}, \ldots, e_{m}\right)$ of \mathbb{R}^{m} is given by

$$
g_{i j}(x)=g_{x}\left(e_{i}, e_{j}\right)=\left\langle d f_{x}\left(e_{i}\right), d f_{x}\left(e_{j}\right)\right\rangle=\left\langle\frac{\partial f}{\partial x^{i}}(x), \frac{\partial f}{\partial x^{j}}(x)\right\rangle,
$$

where $g_{i j} \in C^{\infty}(U)$. We will often write this relation briefly as $g_{i j}=\left\langle f_{i}, f_{j}\right\rangle$.
Now let $M \subset \mathbb{R}^{n}$ be a submanifold, and suppose that $f: U \rightarrow f(U) \subset M$ is a local parametrization (in particular, an immersion). The first fundamental forms of f and M are related as follows: if $x \in U$ and $f(x)=p$, then $d f_{x}$ is an isometry of the Euclidean vector spaces $\left(\mathbb{R}^{m}, g_{x}\right)$ and $\left(T M_{p}, g_{p}\right)$. The set $U \subset \mathbb{R}^{m}$, equipped with the first fundamental form of f, constitutes a "model" for $f(U) \subset M$, in which all quantities belonging to the intrinsic geometry of $f(U) \subset M$ can be computed.

Examples

1. Norms and angles: for $X, Y \in T M_{p}, x:=f^{-1}(p)$, and the corresponding vectors $\xi:=\left(d f_{x}\right)^{-1}(X)$ and $\eta:=\left(d f_{x}\right)^{-1}(Y)$ in \mathbb{R}^{m},

$$
\begin{aligned}
& |X|=\sqrt{g_{p}(X, X)}=\sqrt{g_{x}(\xi, \xi)}=:|\xi|_{g_{x}} \\
& \cos \angle(X, Y)=\frac{g_{p}(X, Y)}{|X||Y|}=\frac{g_{x}(\xi, \eta)}{|\xi|_{g_{x}}|\eta|_{g_{x}}}
\end{aligned}
$$

2. Length of a C^{1} curve $c: I \rightarrow f(U) \subset M$: if $\gamma:=f^{-1} \circ c: I \rightarrow U$ is the corresponding curve in U, then $c^{\prime}(t)=d f_{\gamma(t)}\left(\gamma^{\prime}(t)\right)$ and hence

$$
L(c)=\int_{I}\left|c^{\prime}(t)\right| d t=\int_{I}\left|\gamma^{\prime}(t)\right|_{g_{\gamma(t)}} d t .
$$

3. The m-dimensional area of a Borel set $B \subset f(U) \subset M$ is computed as

$$
A(B):=\int_{f^{-1}(B)} \sqrt{\operatorname{det}\left(g_{i j}(x)\right)} d x \quad \in[0, \infty]
$$

recall that the Gram determinant

$$
\operatorname{det}\left(g_{i j}(x)\right)=\operatorname{det}\left(\left\langle f_{i}(x), f_{j}(x)\right\rangle\right)
$$

equals the square of the volume of the parallelepiped spanned by the vectors $f_{i}(x)=\frac{\partial f}{\partial x^{i}}(x)$ for $i=1, \ldots, m$. The area $A(B)$ is independent of the choice of f and is also denoted by $\int_{B} d A$.
In order to compute the m-dimensional area of a compact region $K \subset M$, one chooses finitely many local parametrizations $f_{\alpha}: U_{\alpha} \rightarrow f_{\alpha}\left(U_{\alpha}\right) \subset M$ and Borel sets $B_{\alpha} \subset f_{\alpha}\left(U_{\alpha}\right)$ such that $K=\bigcup_{\alpha} B_{\alpha}$ is a partition (that is, a decomposition into pairwise disjoint sets). The area

$$
A(K)=\sum_{\alpha} A\left(B_{\alpha}\right)=\sum_{\alpha} \int_{f_{\alpha}^{-1}\left(B_{\alpha}\right)} \sqrt{\operatorname{det}\left(g_{i j}^{\alpha}(x)\right)} d x
$$

turns out to be independent of the choices made. Here, g^{α} denotes the first fundamental form of f_{α}. For a continuous function $b: K \rightarrow \mathbb{R}$,

$$
\int_{K} b d A:=\sum_{\alpha} \int_{f_{\alpha}^{-1}\left(B_{\alpha}\right)} b \circ f_{\alpha}(x) \sqrt{\operatorname{det}\left(g_{i j}^{\alpha}(x)\right)} d x
$$

then defines the surface integral of b over K.
3.2 Definition (isometries) Two submanifolds $M \subset \mathbb{R}^{n}$ and $\tilde{M} \subset \mathbb{R}^{\tilde{n}}$ with first fundamental forms g and \tilde{g} are called isometric if there exists a diffeomorphism $F: M \rightarrow \tilde{M}$ such that

$$
g_{p}(X, Y)=\tilde{g}_{F(p)}\left(d F_{p}(X), d F_{p}(Y)\right)
$$

for all $p \in M$ and $X, Y \in T M_{p}$. For open sets $U, \tilde{U} \subset \mathbb{R}^{m}$, two immersions $f: U \rightarrow \mathbb{R}^{n}$ and $\tilde{f}: \tilde{U} \rightarrow \mathbb{R}^{\tilde{n}}$ with first fundamental forms g and \tilde{g} are called isometric if there exists a diffeomorphism $\psi: U \rightarrow \tilde{U}$ such that

$$
g_{x}(\xi, \eta)=\tilde{g}_{\psi(x)}\left(d \psi_{x}(\xi), d \psi_{x}(\eta)\right)
$$

for all $x \in U$ and $\xi, \eta \in \mathbb{R}^{m}$.
The above relations are briefly expressed as $g=F^{*} \bar{g}$ and $g=\psi^{*} \tilde{g}$, respectively; g equals the pull-back of \tilde{g} under the isometry. Note that $\psi^{*} \tilde{g}$ is just the first fundamental form of the immersion $\tilde{f} \circ \psi$, as

$$
\tilde{g}(d \psi(\xi), d \psi(\eta))=\langle d \tilde{f} \circ d \psi(\xi), d \tilde{f} \circ d \psi(\eta)\rangle=\langle d(\tilde{f} \circ \psi)(\xi), d(\tilde{f} \circ \psi)(\eta)\rangle
$$

In particular, if $f=\tilde{f} \circ \psi$ is a reparametrization of \tilde{f}, then f and \tilde{f} are isometric.

Covariant derivative

Let $f: U \rightarrow \mathbb{R}^{n}$ be an immersion of the open set $U \subset \mathbb{R}^{m}$. The vectors

$$
f_{k}(x)=\frac{\partial f}{\partial x^{k}}(x), \quad k=1, \ldots, m
$$

form a basis of the tangent space $d f_{x}\left(\mathbb{R}^{m}\right)$ of f at x. We now consider second derivatives

$$
f_{i j}(x):=\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}(x)
$$

of f, which need no longer be tangential. The tangential part has a unique representation

$$
\left(f_{i j}(x)\right)^{\mathrm{T}}=\sum_{k=1}^{m} \Gamma_{i j}^{k}(x) f_{k}(x)
$$

The C^{∞} functions $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}: U \rightarrow \mathbb{R}$ are the Christoffel symbols of f.
3.3 Lemma (Christoffel symbols) Let $f \in C^{\infty}\left(U, \mathbb{R}^{n}\right)$ be an immersion of the open set $U \subset \mathbb{R}^{m}$. Then

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{m} g^{k l}\left(\frac{\partial g_{j l}}{\partial x^{i}}+\frac{\partial g_{i l}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{l}}\right)
$$

where $\left(g^{k l}\right)$ denotes the matrix inverse to $\left(g_{i j}\right)$.
Proof: Since

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial x^{i}}\left\langle f_{j}, f_{l}\right\rangle & =\left\langle f_{j i}, f_{l}\right\rangle+\left\langle f_{j}, f_{l i}\right\rangle, \\
\frac{\partial}{\partial x^{j}}
\end{array} f_{i}, f_{l}\right\rangle=\left\langle f_{i j}, f_{l}\right\rangle+\left\langle f_{i}, f_{l j}\right\rangle, \quad, ~=\left\langle f_{i l}, f_{j}\right\rangle+\left\langle f_{i}, f_{j l}\right\rangle,
$$

it follows that

$$
\frac{1}{2}\left(\frac{\partial g_{j l}}{\partial x^{i}}+\frac{\partial g_{i l}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{l}}\right)=\left\langle f_{l}, f_{i j}\right\rangle=\left\langle f_{l},\left(f_{i j}\right)^{\mathrm{T}}\right\rangle=\sum_{k=1}^{m} \Gamma_{i j}^{k} g_{l k} .
$$

By solving this equation for $\Gamma_{i j}^{k}$ we get the result.
In the case $m=2$ the expression for $\Gamma_{i j}^{k}$ has a simpler form, as then always at least two of the indices i, j, l agree. If we use Gauss's notation

$$
E:=g_{11}, \quad F:=g_{12}=g_{21}, \quad G:=g_{22}
$$

and the abbreviations $D:=E G-F^{2}$ and $E_{i}:=\frac{\partial E}{\partial x^{i}}$, etc., then

$$
\left(\begin{array}{ccc}
\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1} \\
\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}
\end{array}\right)=\frac{1}{2 D}\left(\begin{array}{cc}
G & -F \\
-F & E
\end{array}\right)\left(\begin{array}{ccc}
E_{1} & E_{2} & 2 F_{2}-G_{1} \\
2 F_{1}-E_{2} & G_{1} & G_{2}
\end{array}\right)
$$

3.4 Definition (covariant derivative, parallel vector field) Let $M \subset \mathbb{R}^{n}$ be an m dimensional submanifold. Suppose that $c: I \rightarrow M$ is a curve and $X: I \rightarrow \mathbb{R}^{n}$ is a C^{1} tangent vector field of M along c, that is, $X(t) \in T M_{\mathcal{c}(t)}$ for all $t \in I$. The covariant derivative $\frac{D}{d t} X$ of X is the vector field along c defined by

$$
\frac{D}{d t} X(t):=\dot{X}(t)^{\mathrm{T}} \in T M_{c(t)}
$$

for $t \in I$. Then X is said to be parallel along c if, for all $t \in I, \frac{D}{d t} X(t)=0$, that is, $\dot{X}(t) \in T M_{c(t)}^{\perp}$.
3.5 Theorem (covariant derivative) Let M be an m-dimensional submanifold of \mathbb{R}^{n} with first fundamental form g. Suppose that $c: I \rightarrow M$ is a C^{1} curve, $X, Y: I \rightarrow$ \mathbb{R}^{n} are two C^{1} tangent vector fields of M along c, and $\lambda: I \rightarrow \mathbb{R}$ is a C^{1} function. Then:

$$
\begin{equation*}
\frac{D}{d t}(X+Y)=\frac{D}{d t} X+\frac{D}{d t} Y, \quad \frac{D}{d t}(\lambda X)=\dot{\lambda} X+\lambda \frac{D}{d t} X ; \tag{1}
\end{equation*}
$$

(2)

$$
\frac{d}{d t} g(X, Y)=g\left(\frac{D}{d t} X, Y\right)+g\left(X, \frac{D}{d t} Y\right)
$$

(3) if $c(I) \subset f(U)$ for some local parametrization $f: U \rightarrow f(U) \subset M$, and if $\gamma=\left(\gamma^{1}, \ldots, \gamma^{m}\right): I \rightarrow U$ and $\xi=\left(\xi^{1}, \ldots, \xi^{m}\right): I \rightarrow \mathbb{R}^{m}$ are the curve and vector field such that $c=f \circ \gamma$ and $X(t)=d f_{\gamma(t)}(\xi(t))$, then

$$
\frac{D}{d t} X=\sum_{k=1}^{m}\left(\dot{\xi}^{k}+\sum_{i, j=1}^{m} \xi^{i} \dot{\gamma}^{j} \Gamma_{i j}^{k} \circ \gamma\right) \frac{\partial f}{\partial x^{k}} \circ \gamma .
$$

Proof:
Item (3), together with Lemma 3.3, shows that the covariant derivative can be computed entirely in terms of the first fundamental form and is thus intrinsic. Note also that if X, Y are parallel along c, then $g_{c(t)}(X(t), Y(t))$ is constant, as

$$
\frac{d}{d t} g(X, Y)=g\left(\frac{D}{d t} X, Y\right)+g\left(X, \frac{D}{d t} Y\right)=0
$$

by property (2); in particular $|X|=\sqrt{g(X, X)}$ is constant.
3.6 Theorem (existence and uniqueness of parallel vector fields) Let $M \subset \mathbb{R}^{n}$ be a submanifold, and let $c: I \rightarrow M$ be a C^{1} curve with $0 \in I$. Then for every vector $X_{0} \in T M_{c(0)}$ there is a unique parallel tangent vector field $X: I \rightarrow \mathbb{R}^{n}$ of M along c with $X(0)=X_{0}$.

Proof:

Geodesics

3.7 Definition (geodesics) Let $M \subset \mathbb{R}^{n}$ be a submanifold. A smooth curve $c: I \rightarrow$ M is a geodesic in M if \dot{c} is parallel along c, that is, $\frac{D}{d t} \dot{c}=0$ on I; equivalently, $\ddot{c}(t) \in T M_{c(t)}^{\perp}$ for all $t \in I$.

Every geodesic $c: I \rightarrow M$ has constant speed $|\dot{c}|$, because

$$
\frac{d}{d t} g(\dot{c}, \dot{c})=2 g\left(\frac{D}{d t} \dot{c}, \dot{c}\right)=0 .
$$

If $f: U \rightarrow f(U) \subset M$ is a local parametrization and $\gamma=\left(\gamma^{1}, \ldots, \gamma^{m}\right): I \rightarrow U$ is a smooth curve, then $c:=f \circ \gamma: U \rightarrow M$ is a geodesic if and only if

$$
\ddot{\gamma}^{k}+\sum_{i, j=1}^{m} \dot{\gamma}^{i} \dot{\gamma}^{j} \Gamma_{i j}^{k} \circ \gamma=0
$$

on I for $k=1, \ldots, m$. Accordingly, we may also speak of a geodesic γ in U with respect to the metric g, or of a geodesic $c=f \circ \gamma$ relative to a general immersion $f: U \rightarrow \mathbb{R}^{n}$.
3.8 Theorem (existence and uniqueness of geodesics) Let $M \subset \mathbb{R}^{n}$ be a submanifold, and let $p \in M$ and $X \in T M_{p}$. Then there exist a unique geodesic $c: I \rightarrow M$ with $c(0)=p$ and $\dot{c}(0)=X$ defined on a maximal open interval I around 0 .

Proof:
3.9 Theorem (Clairaut's relation) Let $c: I \rightarrow M$ be a non-constant geodesic on a surface of revolution $M \subset \mathbb{R}^{3}$. For $t \in I$ let $r(t)>0$ be the distance of $c(t)$ to the axis of rotation, and let $\theta(t) \in[0, \pi]$ denote the angle between $\dot{c}(t)$ and the oriented parallel through $c(t)$ (that is, the circle generated by the rotation). Then $r(t) \cos \theta(t)$ is constant.

Proof:
3.10 Theorem (first variation of arc length) Let $M \subset \mathbb{R}^{n}$ be a submanifold, and let $c_{0}:[a, b] \rightarrow M$ be a smooth curve of constant speed $\left|\dot{c}_{0}\right|=\lambda>0$. If $c:(-\epsilon, \epsilon) \times$ $[a, b] \rightarrow M$ is a smooth variation of $c_{0}, c_{s}(t):=c(s, t)$, with variation vector field $V_{s}(t):=V(s, t):=\frac{\partial c}{\partial s}(s, t)$, then

$$
\left.\frac{d}{d s}\right|_{s=0} L\left(c_{s}\right)=\frac{1}{\lambda}\left(\left.g\left(V_{0}(t), \dot{c}_{0}(t)\right)\right|_{a} ^{b}-\int_{a}^{b} g\left(V_{0}(t), \frac{D}{d t} \dot{c}_{0}(t)\right) d t\right) .
$$

Proof:

The variation c of c_{0} is called proper if $c_{s}(a)=c_{0}(a)$ and $c_{s}(b)=c_{0}(b)$ for all $s \in(-\epsilon, \epsilon)$. It follows from Theorem 3.10 that a non-constant smooth curve $c_{0}:[a, b] \rightarrow M$ is a geodesic if and only if c_{0} is parametrized proportionally to arc length and $\left.\frac{d}{d s}\right|_{s=0} L\left(c_{s}\right)=0$ for every proper variation c of c_{0}. In particular, if a smooth curve $c_{0}:[a, b] \rightarrow M$ of constant speed has minimal length among all smooth curves from $p=c_{0}(a)$ to $q=c_{0}(b)$, then c_{0} is a geodesic.

4 Curvature of hypersurfaces

In this chapter we consider m-dimensional surfaces of codimension 1.

Second fundamental form

If $M \subset \mathbb{R}^{m+1}$ is an m-dimensional orientable submanifold, then a Gauss map N of M is a continuous map $N: M \rightarrow S^{m}$ such that $N(p) \in T M_{p}^{\perp}$ for all $p \in M$ (recall Proposition 2.10. If M is connected, then there are precisely two choices for N, and if M is compact in addition, we may speak of the inner or outer Gauss map according to Theorem 2.11. If $f: U \rightarrow \mathbb{R}^{m+1}$ is an immersion of an open set $U \subset \mathbb{R}^{m}$, then a Gauss map v of f is a continuous map $v: U \rightarrow S^{m}$ with $v(x) \in d f_{x}\left(\mathbb{R}^{m}\right)^{\perp}$ for all $x \in U$. For $m=2$, the standard choice is $v=\left(f_{1} \times f_{2}\right) /\left|f_{1} \times f_{2}\right|$ (vector product). Note that since M and f are smooth, so are the Gauss maps.

In the following, we tacitly assume that for M and f as above a Gauss map is chosen. We now consider the differential

$$
d N_{p}: T M_{p} \rightarrow T S_{N(p)}^{m}=T M_{p} \quad \text { or } \quad d v_{x}: \mathbb{R}^{m} \rightarrow T S_{v(x)}^{m}=d f_{x}\left(\mathbb{R}^{m}\right)
$$

for $p \in M$ or $x \in U$, respectively.
4.1 Definition (shape operator) For $p \in M$, the linear map

$$
L_{p}: T M_{p} \rightarrow T M_{p}, \quad L_{p}:=-d N_{p}
$$

is called the shape operator of M at p. For $x \in U$, the linear map

$$
L_{x}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, \quad L_{x}:=-\left(d f_{x}\right)^{-1} \circ d v_{x},
$$

is the shape operator of the immersion f at $x\left(\right.$ here $\left(d f_{x}\right)^{-1}: d f_{x}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{m}$ is the inverse of the differential viewed as a map $d f_{x}: \mathbb{R}^{m} \rightarrow d f_{x}\left(\mathbb{R}^{m}\right)$ onto its image). In either case, this is also called the Weingarten map.

Note that if f is a local parametrization of M with $f(x)=p$ and $v=N \circ f$, then the two shape operators are conjugate: $L_{x}=\left(d f_{x}\right)^{-1} \circ L_{p} \circ d f_{x}$.
4.2 Lemma (self-adjoint) For $p \in M$, the shape operator L_{p} is self-adjoint with respect to g_{p}, thus

$$
g_{p}\left(X, L_{p}(Y)\right)=g_{p}\left(L_{p}(X), Y\right)
$$

for all $X, Y \in T M_{p}$. For an immersion $f: U \rightarrow \mathbb{R}^{n}$ and $x \in U$, the shape operator L_{x} is self-adjoint with respect to g_{x}, thus

$$
g_{x}\left(\xi, L_{x}(\eta)\right)=g_{x}\left(L_{x}(\xi), \eta\right)
$$

for all $\xi, \eta \in \mathbb{R}^{m}$.

Proof: For $p \in M$, choose a local parametrization $f: U \rightarrow f(U) \subset M$ of M with $f(x)=p$. Put $v:=N \circ f$. Then $d v_{x}=d N_{p} \circ d f_{x}$, and the partial derivatives of f and v satisfy $d N_{p}\left(f_{j}(x)\right)=v_{j}(x)$, thus

$$
g_{p}\left(f_{i}(x), L_{p}\left(f_{j}(x)\right)\right)=-\left\langle f_{i}(x), v_{j}(x)\right\rangle
$$

Furthermore, $\left\langle f_{i j}, v\right\rangle+\left\langle f_{i}, v_{j}\right\rangle=\frac{\partial}{\partial x^{j}}\left\langle f_{i}, v\right\rangle=0$, thus

$$
g_{p}\left(f_{i}(x), L_{p}\left(f_{j}(x)\right)\right)=\left\langle f_{i j}(x), v(x)\right\rangle
$$

is symmetric in i and j. Since $f_{1}(x), \ldots, f_{m}(x)$ is a basis of $T M_{p}$, this shows that L_{p} is self-adjoint with respect to g_{p}.

Similarly, for an immersion $f: U \rightarrow \mathbb{R}^{n}$ and $x \in U$,

$$
g_{x}\left(e_{i}, L_{x}\left(e_{j}\right)\right)=-\left\langle f_{i}(x), v_{j}(x)\right\rangle=\left\langle f_{i j}(x), v(x)\right\rangle
$$

is symmetric in i and j.
4.3 Definition (second fundamental form) The second fundamental form h of a submanifold $M \subset \mathbb{R}^{m+1}$ assigns to every point $p \in M$ the symmetric bilinear form h_{p} on $T M_{p}$ defined by

$$
h_{p}(X, Y):=g_{p}\left(X, L_{p}(Y)\right)=-\left\langle X, d N_{p}(Y)\right\rangle
$$

for $X, Y \in T M_{p}$. The second fundamental form h of an immersion $f: U \rightarrow \mathbb{R}^{m+1}$ of an open set $U \subset \mathbb{R}^{m}$ assigns to every point $x \in U$ the symmetric bilinear form h_{x} on \mathbb{R}^{m} defined by

$$
h_{x}(\xi, \eta):=g_{x}\left(\xi, L_{x}(\eta)\right)=-\left\langle d f_{x}(\xi), d v_{x}(\eta)\right\rangle
$$

for $\xi, \eta \in \mathbb{R}^{m}$.

The matrix $\left(h_{i j}(x)\right)$ of h_{x} with respect to the canonical basis $\left(e_{1}, \ldots, e_{m}\right)$ of \mathbb{R}^{m} is given by

$$
h_{i j}(x)=-\left\langle f_{i}(x), v_{j}(x)\right\rangle=\left\langle f_{i j}(x), v(x)\right\rangle .
$$

We let $\left(h^{i}{ }_{k}(x)\right)$ denote the matrix of L_{x} with respect to $\left(e_{1}, \ldots, e_{m}\right)$; by the definitions, $\left(g_{i j}\right)\left(h^{j}{ }_{k}\right)=\left(h_{i k}\right)$ and hence $\left(h_{k}^{i}\right)=\left(g^{i j}\right)\left(h_{j k}\right)$, thus

$$
h_{k}^{i}=\sum_{j=1}^{m} g^{i j} h_{j k}
$$

Curvature of hypersurfaces

The following lemma yields a geometric interpretation of the second fundamental form.
4.4 Lemma (normal curvature) Suppose that $M \subset \mathbb{R}^{m+1}$ is an m-dimensional submanifold with Gauss map N, and $X \in T M_{p}$ is a unit vector. Then

$$
h_{p}(X, X)=\left\langle c^{\prime \prime}(0), N(p)\right\rangle
$$

for every smooth curve $c:(-\epsilon, \epsilon) \rightarrow M$ with $c(0)=p$ and $c^{\prime}(0)=X$.
The curve c can be chosen such that it parametrizes the intersection of M with the normal plane $p+\operatorname{span}(X, N(p))$ in a neighborhood of p. Then $h_{p}(X, X)=$ $\left\langle c^{\prime \prime}(0), N(p)\right\rangle$ equals the oriented curvature $\kappa_{\text {or }}(0)$ of c in this plane with positively oriented basis $(X, N(p))$. For this reason, $h_{p}(X, X)$ is called the normal curvature of M in direction X.

Proof: Note that

$$
h_{p}(X, X)=-\left\langle X, d N_{p}(X)\right\rangle=-\left\langle c^{\prime}(0),(N \circ c)^{\prime}(0)\right\rangle
$$

furthermore $\left\langle c^{\prime},(N \circ c)^{\prime}\right\rangle+\left\langle c^{\prime \prime}, N \circ c\right\rangle=\left\langle c^{\prime}, N \circ c\right\rangle^{\prime}=0$, thus

$$
h_{p}(X, X)=\left\langle c^{\prime \prime}(0),(N \circ c)(0)\right\rangle=\left\langle c^{\prime \prime}(0), N(p)\right\rangle
$$

as claimed.
Since the shape operator L_{p} is self-adjoint with respect to g_{p}, it possesses m real eigenvalues $\kappa_{1} \leq \ldots \leq \kappa_{m}$, and there exists an orthornormal basis $\left(X_{1}, \ldots, X_{m}\right)$ of $T M_{p}$ such that $L_{p}\left(X_{j}\right)=\kappa_{j} X_{j}$, thus

$$
h_{p}\left(X_{i}, X_{j}\right)=g_{p}\left(X_{i}, L_{p}\left(X_{j}\right)\right)=\kappa_{j} \delta_{i j}
$$

In particular, κ_{j} is the normal curvature of M in direction X_{j}.
4.5 Definition (principal curvatures) The m real eigenvalues $\kappa_{1} \leq \ldots \leq \kappa_{m}$ of L_{p} are called principal curvatures of M at p. Every eigenvector X of L_{p} with $|X|=1$ is called a principal curvature direction.

Analogously, for an immersion $f: U \rightarrow \mathbb{R}^{m+1}$ and a point $x \in U$, the shape operator L_{x} has m real eigenvalues $\kappa_{1} \leq \ldots \leq \kappa_{m}$, the principal curvatures of f, and there exists an orthonormal basis $\left(\xi_{1}, \ldots, \xi_{m}\right)$ of \mathbb{R}^{m} with respect to g_{x} such that $L_{x}\left(\xi_{j}\right)=\kappa_{j} \xi_{j}$ and $h_{x}\left(\xi_{i}, \xi_{j}\right)=\kappa_{j} \delta_{i j}$.

A point $x \in U$ is called an umbilical point of f if $\kappa_{1}(x)=\ldots=\kappa_{m}(x)=: \lambda$; equivalently, $L_{x}=\lambda \operatorname{id}_{\mathbb{R}^{m}}$.
4.6 Theorem (umbilical points) Let $f: U \rightarrow \mathbb{R}^{m+1}$ be an immersion of a connected open set $U \subset \mathbb{R}^{m}$ for $m \geq 2$. If every point $x \in U$ is an umbilical point of f, then the image $f(U)$ is contained in an m-plane or an m-sphere.

Proof:
4.7 Definition (Gauss curvature, mean curvature) Let $M \subset \mathbb{R}^{m+1}$ be an m dimensional submanifold. For $p \in M$,

$$
K(p):=\operatorname{det}\left(L_{p}\right)
$$

is called the Gauss-Kronecker curvature, in the case $m=2$ the Gauss curvature, of M at p, and

$$
H(p):=\frac{1}{m} \operatorname{trace}\left(L_{p}\right)
$$

is the mean curvature curvature of M at p.
For an immersion $f: U \rightarrow \mathbb{R}^{m+1}$ and a point $x \in U$, one defines analogously $K(x):=\operatorname{det}\left(L_{x}\right)$ and $H(x):=\frac{1}{m} \operatorname{trace}\left(L_{x}\right)$. Then

$$
\begin{aligned}
K & =\kappa_{1} \cdot \ldots \cdot \kappa_{m}=\operatorname{det}\left(h_{k}{ }_{k}\right)=\operatorname{det}\left(\left(g^{i j}\right)\left(h_{j k}\right)\right)=\frac{\operatorname{det}\left(h_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}, \\
m H & =\kappa_{1}+\ldots+\kappa_{m}=\operatorname{trace}\left(h_{k}^{i}\right)=\sum_{i} h_{i}^{i}=\sum_{i, j} g^{i j} h_{j i} .
\end{aligned}
$$

Gauss's theorema egregium

In the following we write again f_{i} for $\frac{\partial f}{\partial x^{i}}$ and $f_{i j}$ for $\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}$, etc.
4.8 Lemma (derivatives of Gauss frame) For an immersion $f: U \rightarrow \mathbb{R}^{m+1}$ of an open set $U \subset \mathbb{R}^{m}$ with Gauss map $v: U \rightarrow S^{m}$, the partial derivatives of f_{i} and v satisfy
(1) (Gauss formula)

$$
f_{i j}=\sum_{k=1}^{m} \Gamma_{i j}^{k} f_{k}+h_{i j} v \quad(i, j=1, \ldots, m),
$$

(2) (equation of Weingarten)

$$
v_{k}=-\sum_{i=1}^{m} h_{k}^{i} f_{i}=-\sum_{i, j=1}^{m} g^{i j} h_{j k} f_{i} \quad(k=1, \ldots, m) .
$$

Proof:

These equations correspond to the Frenet equations of curve theory. For example, when $m=2$, they can be written in matrix form as

$$
\frac{\partial}{\partial x^{k}}\left(\begin{array}{c}
f_{1} \\
f_{2} \\
v
\end{array}\right)=\left(\begin{array}{ccc}
\Gamma_{1 k}^{1} & \Gamma_{1 k}^{2} & h_{1 k} \\
\Gamma_{2 k}^{1} & \Gamma_{2 k}^{2} & h_{2 k} \\
-h_{k}^{1} & -h^{2}{ }_{k} & 0
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
v
\end{array}\right) .
$$

We will now consider second derivatives of the vector fields f_{k}. The identity $f_{k i j}=f_{k j i}$ results in the following equations in the coefficients of the first and second fundamental forms.
4.9 Theorem (integrability conditions) If $f: U \rightarrow \mathbb{R}^{m+1}$ is an immersion of an open set $U \subset \mathbb{R}^{m}$, then the following equations hold for all i, j, k :
(1) (Gauss equations)

$$
R^{s}{ }_{k i j}=h_{i}^{s} h_{k j}-h_{j}^{s} h_{k i}=\sum_{l=1}^{m} g^{s l}\left(h_{l i} h_{k j}-h_{l j} h_{k i}\right) \quad(s=1, \ldots, m),
$$

where

$$
R_{k i j}^{s}:=\frac{\partial}{\partial x^{i}} \Gamma_{k j}^{s}-\frac{\partial}{\partial x^{j}} \Gamma_{k i}^{s}+\sum_{r=1}^{m}\left(\Gamma_{k j}^{r} \Gamma_{r i}^{s}-\Gamma_{k i}^{r} \Gamma_{r j}^{s}\right),
$$

(2) (Codazzi-Mainardi equation)

$$
\frac{\partial}{\partial x^{i}} h_{k j}-\frac{\partial}{\partial x^{j}} h_{k i}+\sum_{r=1}^{m}\left(\Gamma_{k j}^{r} h_{r i}-\Gamma_{k i}^{r} h_{r j}\right)=0 .
$$

For fixed indices i, j, k, the system (1) is equivalent to

$$
R_{l k i j}:=\sum_{s=1}^{m} g_{l s} R_{k i j}^{s}=h_{l i} h_{k j}-h_{l j} h_{k i}=\operatorname{det}\left(\begin{array}{ll}
h_{l i} & h_{l j} \\
h_{k i} & h_{k j}
\end{array}\right) \quad(l=1, \ldots, m) .
$$

Proof:
The coefficients $R^{s}{ }_{k i j}$ or $R_{l k i j}$ are the components of the Riemann curvature tensor of f (see Differential Geometry II). The Gauss equations for $m=2$ readily imply the following fundamental result.
4.10 Theorem (Gauss's theorema egregium) Let $f: U \rightarrow \mathbb{R}^{3}$ be an immersion of an open set $U \subset \mathbb{R}^{2}$. Then the Gauss curvature of f is given by

$$
K=\frac{R_{1212}}{\operatorname{det}\left(g_{i j}\right)},
$$

in particular K is intrinsic, that is, computable entirely in terms of the first fundamental form.

Proof: By the definiton of K and the Gauss equations as stated after Theorem 4.9,

$$
K=\frac{\operatorname{det}\left(h_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}=\frac{R_{1212}}{\operatorname{det}\left(g_{i j}\right)},
$$

and R_{1212} is computable entirely in terms of g.
In his fundamental investigation [Ga1828], Gauss derived the completely explicit formula

$$
\begin{aligned}
K= & \frac{1}{4 D^{2}}\left(E\left(G_{1}^{2}-G_{2} A\right)+F\left(E_{1} G_{2}-2 E_{2} G_{1}+A B\right)+G\left(E_{2}^{2}-E_{1} B\right)\right) \\
& -\frac{1}{2 D}\left(E_{22}-2 F_{12}+G_{11}\right)
\end{aligned}
$$

Here we are using the same notation as after Lemma 3.3. together with the abbreviations $A:=2 F_{1}-E_{2}$ and $B:=2 F_{2}-G_{1}$.
4.11 Theorem (g and h determine f) Suppose that $U \subset \mathbb{R}^{m}$ is a connected open set and $f, \tilde{f}: U \rightarrow \mathbb{R}^{m+1}$ are two immersions with Gauss maps $v, \tilde{v}: U \rightarrow S^{m}$ such that $\left(f_{1}, \ldots, f_{m}, v\right)$ and $\left(\tilde{f}_{1}, \ldots, \tilde{f}_{m}, \tilde{v}\right)$ are positively oriented. If $g=\tilde{g}$ and $h=\tilde{h}$ on U, then f and \tilde{f} agree up to an orientation preserving Euclidean isometry $B: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m+1}$, that is, $\tilde{f}=B \circ f$.

Proof:
Given symmetric C^{∞} matrix functions $\left(g_{i j}(\cdot)\right)$ and $\left(h_{i j}(\cdot)\right)$ on an open set $U \subset$ \mathbb{R}^{m} such that $\left(g_{i j}(x)\right)$ is positive definite for every $x \in U$, does there exist an immersion with these fundamental forms? The fundamental theorem of local surface theory due to O . Bonnet asserts that if $\left(g_{i j}\right)$ and $\left(h_{i j}\right)$ satisfy the integrability conditions of Theorem 4.9 then for all $x_{0} \in U, p_{0} \in \mathbb{R}^{m+1}$, and $b_{1}, \ldots, b_{m} \in \mathbb{R}^{m+1}$ with $\left\langle b_{i}, b_{j}\right\rangle=g_{i j}\left(x_{0}\right)$ there exists a connected open neighborhood U^{\prime} of x_{0} in U and precisely one immersion $f: U^{\prime} \rightarrow \mathbb{R}^{m+1}$ such that $f\left(x_{0}\right)=p_{0}, f_{i}\left(x_{0}\right)=b_{i}$ for $i=1, \ldots, m,\left(g_{i j}\right)$ is the first fundamental form of f, and $\left(h_{i j}\right)$ is the second fundamental form of f with respect to the Gauss map $v: U^{\prime} \rightarrow S^{m}$ for which $\left(b_{1}, \ldots, b_{m}, v\left(x_{0}\right)\right)$ is positively oriented. (See $[\mathrm{Ku}]$ for a sketch of the proof.) Note that the uniqueness assertion follows from Theorem 4.11

5 Special classes of surfaces

Geodesic parallel coordinates

In the following we will denote points in $U \subset \mathbb{R}^{2}$ by (u, v) rather than $x=\left(x^{1}, x^{2}\right)$, and partial derivatives of functions on U by a respective subscript u or v.
5.1 Proposition (geodesic parallel coordinates, Fermi coordinates) Let $I, J \subset$ \mathbb{R} be two open intervals, and let f be an immersion of $U:=I \times J$ into \mathbb{R}^{3}. Then the following holds.
(1) The first fundamental form of f satisfies $g_{12}=g_{21}=0$ and $g_{22}=1$ if and only if the curves $v \mapsto f\left(u_{0}, v\right)$ (for fixed u_{0}) are unit speed geodesics that intersect the curves $u \mapsto f\left(u, v_{0}\right)$ (for fixed v_{0}) orthogonally.
(2) If $g_{11}=: E, g_{12}=g_{21}=0$ and $g_{22}=1$, then the Gauss curvature of f is given by

$$
K=-\frac{(\sqrt{E})_{v v}}{\sqrt{E}}=\frac{E_{v}^{2}}{4 E^{2}}-\frac{E_{v v}}{2 E}
$$

(3) If, in addition, $0 \in J$ and $u \mapsto f(u, 0)$ is a unit speed geodesic, then $E(u, 0)=$ $1, E_{u}(u, 0)=E_{v}(u, 0)=0$, and $\Gamma_{i j}^{k}(u, 0)=0$ for all i, j, k and $u \in I$.

Coordinates as in (1) and (2) or as in (3) are called geodesic parallel coordinates or Fermi coordinates, respectively. For example, if $v \mapsto(r(v), z(v))$ is a unit speed curve in \mathbb{R}^{2} with $r>0$, defined on some interval J, then the surface of revolution $f: \mathbb{R} \times J \rightarrow \mathbb{R}^{3}$ defined by

$$
f(u, v):=(r(v) \cos (u), r(v) \sin (u), z(v))
$$

is an immersion in geodesic parallel coordinates with $g_{11}=r^{2}$ and $K=-\frac{r^{\prime \prime}}{r}$.
Proof:
5.2 Theorem (existence of geodesic parallel coordinates) Suppose that $M \subset \mathbb{R}^{3}$ is a 2-dimensional submanifold and

$$
f:\left\{(u, 0) \in \mathbb{R}^{2}: u \in(-\epsilon, \epsilon)\right\} \rightarrow M
$$

is a regular C^{∞} curve. Then there exists a $\delta \in(0, \epsilon)$ such that f can be extended to a local parametrization f of M on $U:=(-\delta, \delta)^{2}$ with $g_{12}=g_{21}=0$ and $g_{22}=1$.

In particular, by choosing the initial curve $u \mapsto f(u, 0)$ to be a geodesic, we obtain local Fermi coordinates.

Proof:

Surfaces with constant Gauss curvature

For $\kappa \in \mathbb{R}$, we define the functions $\mathrm{cs}_{\kappa}, \mathrm{sn}_{\kappa}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \mathrm{cs}_{\kappa}(s):= \begin{cases}\cos (\sqrt{\kappa} s) & \text { if } \kappa>0, \\
1 & \text { if } \kappa=0, \\
\cosh (\sqrt{|\kappa|} s) & \text { if } \kappa<0,\end{cases} \\
& \operatorname{sn}_{\kappa}(s):= \begin{cases}\frac{1}{\sqrt{\kappa}} \sin (\sqrt{\kappa} s) & \text { if } \kappa>0, \\
s & \text { if } \kappa=0, \\
\frac{1}{\sqrt{|\kappa|}} \sinh (\sqrt{|\kappa|} s) & \text { if } \kappa<0 .\end{cases}
\end{aligned}
$$

This is a fundamental system of solutions of the equation $f^{\prime \prime}+\kappa f=0$ with $\mathrm{cs}_{\kappa}(0)=1, \mathrm{cs}_{\kappa}^{\prime}(0)=0$ and $\mathrm{sn}_{\kappa}(0)=0, \mathrm{sn}_{\kappa}^{\prime}(0)=1$.
5.3 Theorem (constant curvature in Fermi coordinates) If $f: U \rightarrow \mathbb{R}^{3}$ is an immersion of $U=I \times J$ in Fermi coordinates with constant Gauss curvature $K \equiv \kappa \in \mathbb{R}$, then $E(u, v)=g_{11}(u, v)=\mathrm{cs}_{\kappa}(v)^{2}$ for all $(u, v) \in U$.

Proof: By Proposition 5.1.

$$
(\sqrt{E})_{v v}+\kappa \sqrt{E}=0
$$

furthermore $\sqrt{E}(u, 0)=1$ and $(\sqrt{E})_{v}(u, 0)=E_{v}(u, 0) /(2 \sqrt{E(u, 0)})=0$. It follows that $\sqrt{E}(u, v)=\mathrm{cs}_{\kappa}(v)$ for all $(u, v) \in U$.
5.4 Theorem (constant Gauss curvature) Let $M, \bar{M} \subset \mathbb{R}^{3}$ be two surfaces with Gauss curvatures $K: M \rightarrow \mathbb{R}$ and $\bar{K}: \bar{M} \rightarrow \mathbb{R}$. Then the following are equivalent:
(1) $K \equiv k \equiv \bar{K}$ for some constant $k \in \mathbb{R}$;
(2) For every pair of points $p \in M$ and $\bar{p} \in \bar{M}$ there exist an open neighborhood $U \subset \mathbb{R}^{2}$ of 0 and local parametrizations $f: U \rightarrow f(U) \subset M$ and $\bar{f}: U \rightarrow$ $\bar{f}(U) \subset \bar{M}$ such that $f(0)=p, \bar{f}(0)=\bar{p}$, and $g=\bar{g}$ on U; that is, M and \bar{M} are everywhere locally isometric.

Proof:

Ruled surfaces

Suppose that $c: I \rightarrow \mathbb{R}^{3}$ is a C^{2} curve and $X: I \rightarrow \mathbb{R}^{3}$ is a nowhere vanishing C^{2} vector field, where $X(s)$ is viewed as a vector at the point $c(s)$. A map of the form

$$
f: I \times J \rightarrow \mathbb{R}^{3}, \quad f(s, t)=c(s)+t X(s),
$$

for some interval $J \subset \mathbb{R}$, is called a ruled surface, regardless of the fact that f is possibly not regular (immersive). The curve c is called a directrix of f, and the lines $f \circ \beta$ with $\beta(t):=\left(s_{0}, t\right)$ (for fixed $\left.s_{0}\right)$ are called the rulings of f. The latter are asymptotic curves of f, that is, $h(\dot{\beta}, \dot{\beta})=0$, because $h_{22}=\left\langle f_{22}, v\right\rangle=0$. Intuitively, f is a surface generated by the motion of a line in \mathbb{R}^{3}. In regions where f is immersive, the Gauss curvature satisfies

$$
K=\frac{\operatorname{det}\left(h_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}=\frac{-h_{12}^{2}}{\operatorname{det}\left(g_{i j}\right)} \leq 0
$$

with $K \equiv 0$ if and only if the Gauss map v is (locally) constant along the rulings: $h_{12}=-\left\langle f_{1}, v_{2}\right\rangle=0$ is equivalent to $v_{2}=0$, because $\left\langle v, v_{2}\right\rangle=0$ and $\left\langle f_{2}, v_{2}\right\rangle=$ $-h_{22}=0$.
5.5 Theorem (rulings in flat surfaces) Suppose that $V \subset \mathbb{R}^{2}$ is an open set, and $\tilde{f}: V \rightarrow \mathbb{R}^{3}$ is an immersion with vanishing Gauss curvature $\tilde{K} \equiv 0$ and without planar points (that is, points where both principal curvatures are zero). Then \tilde{f} can everywhere locally be reparametrized as a ruled surface.

The proof uses Lemma A. 5
Proof:

Minimal surfaces

An m-dimensional submanifold $M \subset \mathbb{R}^{m+1}$ or an immersion $f: U \rightarrow \mathbb{R}^{m+1}$ of an open set $U \subset \mathbb{R}^{m}$ is called minimal if its mean curvature H is identically zero.
5.6 Theorem (first variation of area) Let $U \subset \mathbb{R}^{m}$ be an open set, and let $f: U \rightarrow \mathbb{R}^{m+1}$ be an immersion with Gauss map $v: U \rightarrow S^{m}$ and finite m dimensional area

$$
A(f)=\int_{U} d A=\int_{U} \sqrt{\operatorname{det}\left(g_{i j}(x)\right)} d x<\infty
$$

If $\varphi: U \rightarrow \mathbb{R}$ is a smooth function with compact support, then

$$
\left.\frac{d}{d s}\right|_{s=0} A(f+s \varphi v)=-m \int_{U} \varphi H d A
$$

In particular, f is minimal if and only if $\left.\frac{d}{d s}\right|_{s=0} A(f+s \varphi v)=0$ for all such functions φ.

Proof:
A parametrized surface $f: U \rightarrow \mathbb{R}^{3}$ is called isothermal or conformal if $\left(g_{i j}\right)=$ $\lambda^{2}\left(\delta_{i j}\right)$ for some function $\lambda: U \rightarrow \mathbb{R}$; equivalently, f is angle preserving (exercise).
5.7 Proposition (isothermal minimal surface) Let $U \subset \mathbb{R}^{2}$ be an open set, and let $f: U \rightarrow \mathbb{R}^{3}$ be an immersion with Gauss map $v: U \rightarrow S^{2}$. If f is isothermal, $\left(g_{i j}\right)=\lambda^{2}\left(\delta_{i j}\right)$, then

$$
\Delta f:=f_{11}+f_{22}=2 \lambda^{2} H v
$$

thus f is minimal if and only if the coordinate functions f^{1}, f^{2}, f^{3} are harmonic.

Proof:

For the next result we use the following notation. Let $U \subset \mathbb{R}^{2}$ be an open set, and let $f \in C^{\infty}\left(U, \mathbb{R}^{3}\right), f(u, v)=\left(f^{1}(u, v), f^{2}(u, v), f^{3}(u, v)\right)$. We view U as a subset of \mathbb{C} and define $\varphi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right): U \rightarrow \mathbb{C}^{3}$ by

$$
\varphi^{k}(u+i v):=\frac{\partial f^{k}}{\partial u}(u, v)-i \frac{\partial f^{k}}{\partial v}(u, v)
$$

$k=1,2,3$. Here f is not assumed to be an immersion, nevertheless we may say that f is conformal or minimal (meaning that $H=0$ at points where f is immersive).
5.8 Theorem (complexification) With the above notation, the following holds.
(1) The map f is conformal if and only if $\sum_{k=1}^{3}\left(\varphi^{k}\right)^{2}=0$ on U.
(2) If f is conformal, then f is an immersion if and only if $\sum_{k=1}^{3}\left|\varphi^{k}\right|^{2}>0$ on U and f is minimal if and only if $\varphi^{1}, \varphi^{2}, \varphi^{3}$ are holomorphic.
(3) If $U \subset \mathbb{C}$ is a simply connected open set, and if $\varphi^{1}, \varphi^{2}, \varphi^{3}: U \rightarrow \mathbb{C}$ are holomorphic functions such that $\sum_{k=1}^{3}\left(\varphi^{k}\right)^{2}=0$ and $\sum_{k=1}^{3}\left|\varphi^{k}\right|^{2}>0$ on U, then the map $f=\left(f^{1}, f^{2}, f^{3}\right): U \rightarrow \mathbb{R}^{3}$ defined by

$$
f^{k}(u, v):=\operatorname{Re} \int_{z_{0}}^{u+i v} \varphi^{k}(z) d z
$$

for any $z_{0} \in U$ is a conformal and minimal immersion.
Proof:
How does one find such functions $\varphi^{1}, \varphi^{2}, \varphi^{3}$? Suppose that $F: U \rightarrow \mathbb{C}$ is holomorphic, $G: U \rightarrow \mathbb{C} \cup\{\infty\}$ is meromorphic, and $F G^{2}$ is holomorphic. Put

$$
\varphi^{1}:=\frac{1}{2} F\left(1-G^{2}\right), \quad \varphi^{2}:=\frac{i}{2} F\left(1+G^{2}\right), \quad \varphi^{3}:=F G ;
$$

then it follows that $\sum_{k=1}^{3}\left(\varphi^{k}\right)^{2}=0$, and $\varphi^{1}, \varphi^{2}, \varphi^{3}$ are holomorphic. By inserting these functions φ^{k} into the above definition of f^{k} one obtains the so-called Weierstrass representation of a minimal surface f. Every non-planar minimal surface can locally be written in this form.

Surfaces of constant mean curvature

5.9 Theorem (Alexandrov-Hopf) Suppose that $\emptyset \neq M \subset \mathbb{R}^{m+1}$ is a compact and connected m-dimensional submanifold with constant mean curvature H. Then M is a sphere of radius $1 /|H|$.

The theorem is no longer true for immersed surfaces in \mathbb{R}^{3}. This was shown by Wente We1986], who constructed an immersed torus of constant mean curvature.

Proof:

6 Global surface theory

The Gauss-Bonnet theorem

6.1 Definition (geodesic curvature) Suppose that $f: U \rightarrow \mathbb{R}^{3}$ is an immersion of an open set $U \subset \mathbb{R}^{2}$ and $\gamma: I \rightarrow U$ is a C^{2} curve such that $c:=f \circ \gamma$ is parametrized by arc length. Put $\bar{e}_{1}(s):=c^{\prime}(s)$ and choose $\bar{e}_{2}(s)$ such that $\left(\bar{e}_{1}(s), \bar{e}_{2}(s)\right)$ is a positively oriented orthonormal basis of $d f_{\gamma(s)}\left(\mathbb{R}^{2}\right)$ (equivalent to $\left.\left(f_{1} \circ \gamma(s), f_{2} \circ \gamma(s)\right)\right)$. Then

$$
\kappa_{\mathrm{g}}(s):=\left\langle\bar{e}_{1}^{\prime}(s), \bar{e}_{2}(s)\right\rangle=\left\langle\frac{D}{d s} c^{\prime}(s), \bar{e}_{2}(s)\right\rangle
$$

defines the geodesic curvature of c at s (relative to f).
If $v=\left(f_{1} \times f_{2}\right) /\left|f_{1} \times f_{2}\right|$ is the Gauss map of f, then there is a decomposition

$$
c^{\prime \prime}=\left\langle c^{\prime \prime}, \bar{e}_{1}\right\rangle \bar{e}_{1}+\left\langle c^{\prime \prime}, \bar{e}_{2}\right\rangle \bar{e}_{2}+\left\langle c^{\prime \prime}, v \circ \gamma\right\rangle v \circ \gamma
$$

where $\left\langle c^{\prime \prime}, \bar{e}_{1}\right\rangle=\left\langle c^{\prime \prime}, c^{\prime}\right\rangle=0$ and $\left\langle c^{\prime \prime}, v \circ \gamma\right\rangle=: \kappa_{\mathrm{n}}$ is the normal curvature of c relative to f (compare Lemma 4.4). Thus $c^{\prime \prime}=\kappa_{\mathrm{g}} \bar{e}_{2}+\kappa_{\mathrm{n}} v \circ \gamma$ and

$$
\kappa^{2}=\left|c^{\prime \prime}\right|^{2}=\kappa_{\mathrm{g}}^{2}+\kappa_{\mathrm{n}}^{2},
$$

where κ is the curvature of c as a space curve.
6.2 Lemma (geodesic curvature in geodesic parallel coordinates) Suppose that $f: U \rightarrow \mathbb{R}^{3}$ is an immersion with $g_{12}=g_{21}=0$ and $g_{22}=1, \gamma: I \rightarrow U$ is a C^{2} curve, and $c:=f \circ \gamma$ is parametrized by arc length. Write $\gamma(s)=(u(s), v(s))$, and let $\varphi: I \rightarrow \mathbb{R}$ be a continuous function such that

$$
\gamma^{\prime}(s)=\left(u^{\prime}(s), v^{\prime}(s)\right)=\left(\frac{\cos (\varphi(s))}{\sqrt{g_{11}(\gamma(s))}}, \sin (\varphi(s))\right)
$$

for all $s \in I$. Then

$$
\kappa_{\mathrm{g}}(s)=\varphi^{\prime}(s)-\frac{\partial \sqrt{g_{11}}}{\partial v}(\gamma(s)) u^{\prime}(s)
$$

for all $s \in I$.
Proof:
6.3 Theorem (Gauss-Bonnet, local version) Let $M \subset \mathbb{R}^{3}$ be a surface. Suppose that $\bar{D} \subset M$ is a compact set homeomorphic to a disk such that $\partial \bar{D}$ is the trace of a piecewise smooth, simple closed unit speed curve $c:[0, L] \rightarrow M$, with exterior angles $\alpha_{1}, \ldots, \alpha_{r} \in[-\pi, \pi]$ at the vertices of \bar{D}. Let $\kappa_{\mathrm{g}}(s)=\left\langle c^{\prime \prime}(s), \bar{e}_{2}(s)\right\rangle$ denote the geodesic curvature of c (where $c^{\prime \prime}(s)$ exists) with respect to the normal $\bar{e}_{2}(s)$ pointing to the interior of \bar{D}. Then

$$
\int_{\bar{D}} K d A+\int_{0}^{L} \kappa_{\mathrm{g}}(s) d s+\sum_{i=1}^{r} \alpha_{i}=2 \pi
$$

By definition, the exterior angle $\alpha_{i} \in[-\pi, \pi]$ at a vertex of \bar{D} is the complement $\alpha_{i}=\pi-\beta_{i}$ of the $[0,2 \pi]$ valued interior angle β_{i} of \bar{D}. If the boundary of \bar{D} is piecewise geodesic, then $\beta_{i} \in(0,2 \pi)$ and $\alpha_{i} \in(-\pi, \pi)$.

Proof:
6.4 Theorem (Gauss, theorema elegantissimum) For a geodesic triangle $\bar{D} \subset$ M with interior angles $\beta_{1}, \beta_{2}, \beta_{3} \in(0,2 \pi)$,

$$
\int_{\bar{D}} K d A=\beta_{1}+\beta_{2}+\beta_{3}-\pi .
$$

Proof: This is a direct corollary of Theorem 6.3, as $2 \pi-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)=$ $\beta_{1}+\beta_{2}+\beta_{3}-\pi$.

Now let $M \subset \mathbb{R}^{3}$ be a compact (and hence orientable) surface. A polygonal decomposition of M is a cover of M by finitely many compact subsets $\bar{D}_{j} \subset M$ homeomorphic to a disk, with piecewise smooth boundary $\partial \bar{D}_{j}$ (like \bar{D} in Theorem 6.3 , such that $\bar{D}_{j} \cap \bar{D}_{k}$ is either empty, or a singleton corresponding to a common vertex, or a common edge of \bar{D}_{j} and \bar{D}_{k} whenever $j \neq k$. If each \bar{D}_{j} is a (not necessarily geodesic) triangle, then the decomposition is called a triangulation of M. If V, E, F are the number of vertices, edges, and faces in a polygonal decomposition, respectively, then the integer

$$
\chi(M)=V-E+F
$$

is the Euler characteristic of M.
6.5 Theorem (Gauss-Bonnet, global version) If $M \subset \mathbb{R}^{3}$ is a compact surface, then

$$
\int_{M} K d A=2 \pi \chi(M) .
$$

Proof:

The Poincaré index theorem

We now discuss another interpretation of $\chi(M)$ in terms of vector fields.
First let $\xi: U \rightarrow \mathbb{R}^{2}$ be a continuous vector field on an open set $U \subset \mathbb{R}^{2}$. Suppose that x is an isolated zero of ξ, and pick a radius $r>0$ such that the closed disk $B(x, r) \subset U$ contains no other zeros of ξ. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be the parametrization of $\partial B(x, r)$ defined by $\gamma(t)=x+r(\cos (t) \sin (t))$, and let $\varphi:[0,2 \pi] \rightarrow \mathbb{R}$ be a continuous function such that $\xi(\gamma(t)) /|\xi(\gamma(t))|=(\cos (\varphi(t)), \sin (\varphi(t)))$ for all $t \in[0,2 \pi]$. Then $\varphi(2 \pi)-\varphi(0)=2 \pi I(x)$ for some integer $I(x)=I_{\xi}(x)$ called the index of ξ at x, which is independent of r by continuity. This number agrees with
the mapping degree $\operatorname{deg}(F)$ (discussed later in Section 9 for the case of smooth maps between manifolds) of the map

$$
F: S^{1} \rightarrow S^{1}, \quad F(e)=\frac{\xi(x+r e)}{|\xi(x+r e)|}
$$

This second definition of the index generalizes readily to higher dimensions.
If $\psi: U \rightarrow V$ is C^{1} diffeomorphism onto on open set $V \subset \mathbb{R}^{2}$, and if η is the continuous vector field on V such that $\eta(\psi(x))=d \psi_{x}(\xi(x))$ for all $x \in U$, then it can be shown that $I_{\eta}(\psi(x))=I_{\xi}(x)$ for every isolated zero x of ξ (see, for example, [Mi], pp. 33-35). For a surface $M \subset \mathbb{R}^{3}$ and a continuous (tangent) vector field $X: M \rightarrow \mathbb{R}^{3}$ with an isolated zero at $p \in M$, the index $I(p)=I_{X}(p)$ is then defined via a local parametrization f of M around p such that $I_{X}(p):=I_{\xi}\left(f^{-1}(p)\right)$ for the corresponding vector field ξ with $d f_{x}(\xi(x))=X(f(x))$.
6.6 Theorem (Poincaré index theorem) Let $M \subset \mathbb{R}^{3}$ be a compact C^{1} surface, and let X be a continuous vector field on M with only finitely many zeros p_{1}, \ldots, p_{k}. Then

$$
\sum_{i=1}^{k} I\left(p_{i}\right)=\chi(M)
$$

See [Po1885], Chapitre XIII. This was generalized to arbitrary dimensions by Hopf [Ho1927b].

Proof:

7 Hyperbolic space

Spacelike hypersurfaces in Lorentz space

We consider \mathbb{R}^{m+1} together with the non-degenerate symmetric bilinear form

$$
\langle x, y\rangle_{\mathrm{L}}:=\left(\sum_{i=1}^{m} x^{i} y^{i}\right)-x^{m+1} y^{m+1}
$$

called Lorentz product. The pair

$$
\mathbb{R}^{m, 1}:=\left(\mathbb{R}^{m+1},\langle\cdot, \cdot\rangle_{\mathrm{L}}\right)
$$

is called Minkowski space or Lorentz space. A vector $v \in \mathbb{R}^{m, 1}$ is spacelike if $\langle v, v\rangle_{\mathrm{L}}>0$ or $v=0$, timelike if $\langle v, v\rangle_{\mathrm{L}}<0$, and lightlike or a null vector if $\langle v, v\rangle_{\mathrm{L}}=0$ and $v \neq 0$. The set of all null vectors is the nullcone. A differentiable curve $c: I \rightarrow \mathbb{R}^{m, 1}$ is spacelike, timelike, or a null curve if all tangent vectors $c^{\prime}(t)$ have the respective character.

A submanifold $M \subset \mathbb{R}^{m, 1}$ is spacelike if each tangent space $T M_{p}$ is, that is, all vectors $v \in T M_{p}$ are spacelike; equivalently, the first fundamental form $g_{p}:=\left.\langle\cdot, \cdot\rangle_{\mathrm{L}}\right|_{T M_{p} \times T M_{p}}$ is positive definite.
7.1 Definition (hyperbolic space) The spacelike hypersurface

$$
H^{m}:=\left\{p \in \mathbb{R}^{m, 1}:\langle p, p\rangle_{\mathrm{L}}=-1, p^{m+1}>0\right\}
$$

together with its first fundamental form g, is called hyperbolic m-space.
The set H^{m} is the upper half of the two-sheeted hyperboloid given by the equation $\left(p^{m+1}\right)^{2}=1+\sum_{i=1}^{m}\left(p^{i}\right)^{2}$. For $p \in H^{m}$, the tangent space $T H_{p}^{m}$ equals the m-dimensional linear subspace of $\mathbb{R}^{m, 1}$ determined by the equation $\langle p, v\rangle_{\mathrm{L}}=0$, similarly as for the sphere $S^{m} \subset \mathbb{R}^{m+1}$.

We now consider an arbitrary spacelike hypersurface $M^{m} \subset \mathbb{R}^{m, 1}$. If $U \subset \mathbb{R}^{m}$ is an open set and $f: U \rightarrow f(U) \subset M$ is a local (or global) parametrization of M, then the first fundamental form of f is given by $g_{i j}=\left\langle f_{i}, f_{j}\right\rangle_{\mathrm{L}}$. All intrinsic concepts and formulae discussed earlier, involving solely the first fundamental form, remain valid and unchanged for M (or f): Christoffel symbols, covariant derivative, parallelism, geodesics, and the formula

$$
K=\frac{R_{1212}}{\operatorname{det}\left(g_{i j}\right)},
$$

which is now adopted as a definition of the Gauss curvature in the case $m=2$. Furthermore, there exists a well-defined Gauss map

$$
N: M^{m} \rightarrow H^{m}
$$

such that $\langle v, N(p)\rangle_{\mathrm{L}}=0$ whenever $v \in T M_{p}$. For f as above we put again $v:=N \circ f$. The shape operator and the second fundamental form h of M or f are then defined as in Section 4 Lemma 4.8 and Theorem 4.9 remain valid as well, except for two sign changes, due to the fact that $\langle v, v\rangle_{\mathrm{L}}=-1$:

$$
f_{i j}=\sum_{k=1}^{m} \Gamma_{i j}^{k} f_{k}-h_{i j} v
$$

for $i, j=1, \ldots, m$, and

$$
R_{k i j}^{s}=-\left(h_{i}^{s} h_{k j}-h_{j}^{s} h_{k i}\right)=-\sum_{l=1}^{m} g^{s l}\left(h_{l i} h_{k j}-h_{l j} h_{k i}\right)
$$

for $s=1, \ldots, m$, where the expression of $R_{k i j}$ in terms of the Christoffel symbols remains unchanged. For fixed i, j, k, this system is equivalent to

$$
R_{l k i j}:=\sum_{s=1}^{m} g_{l s} R_{k i j}^{s}=-\left(h_{l i} h_{k j}-h_{l j} h_{k i}\right)=-\operatorname{det}\left(\begin{array}{cc}
h_{l i} & h_{l j} \\
h_{k i} & h_{k j}
\end{array}\right)
$$

for $l=1, \ldots, m$.

Geometry of hyperbolic space

In the special case that $M=H^{2} \subset \mathbb{R}^{2,1}$, the Gauss map is just given by $N(p)=p$, thus $L_{p}=-d N_{p}=-\mathrm{id}_{T H_{p}^{2}}$ and $\operatorname{det}\left(L_{p}\right)=1$. It follows that the Gauss curvature of H^{2} is

$$
K=\frac{R_{1212}}{\operatorname{det}\left(g_{i j}\right)}=-\frac{\operatorname{det}\left(h_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}=-1
$$

The Lorentz group is defined by

$$
\mathrm{O}(m, 1):=\left\{A \in \mathrm{GL}(m+1, \mathbb{R}):\langle A x, A y\rangle_{\mathrm{L}}=\langle x, y\rangle_{\mathrm{L}}\right\}
$$

For $A \in \mathrm{O}(m, 1)$ and $p \in H^{m}, A p \in \pm H^{m}$. One puts

$$
\mathrm{O}(m, 1)_{+}:=\left\{A \in \mathrm{O}(m, 1): A\left(H^{m}\right)=H^{m}\right\} .
$$

Thus, for $A \in \mathrm{O}(m, 1)_{+}$, the restriction $\left.A\right|_{H^{m}}: H^{m} \rightarrow H^{m}$ is an isometry.
7.2 Theorem (homogeneity) Suppose that $p, q \in H^{m},\left(v_{1}, \ldots, v_{m}\right)$ is an orthonormal basis of $T H_{p}^{m}$, and $\left(w_{1}, \ldots, w_{m}\right)$ is an orthonormal basis of $T H_{q}^{m}$. Then there exists an $A \in \mathrm{O}(m, 1)_{+}$such that $A p=q$ and $A v_{i}=w_{i}$ for $i=1, \ldots, m$.

Proof:

Let $p \in H^{m}$, and let $v \in T H_{p}^{m}$ be such that $\langle v, v\rangle_{\mathrm{L}}=1$. The unit speed geodesic $c: \mathbb{R} \rightarrow H^{m}$ with $c(0)=p$ and $c^{\prime}(0)=v$ is given by

$$
c(s)=\cosh (s) p+\sinh (s) v
$$

the trace of c is the intersection of H^{m} with the linear plane spanned by p and v. The distance of two points p, q in H^{m} satisfies

$$
\cosh (d(p, q))=-\langle p, q\rangle_{\mathrm{L}}
$$

Models of hyperbolic space

In the following we let $U:=\left\{x \in \mathbb{R}^{m}:|x|<1\right\}$ denote the open unit ball in \mathbb{R}^{m}. The (Beltrami-)Klein model (U, \bar{g}) of H^{m} is obtained via the global parametrization

$$
\bar{f}: U \rightarrow H^{m}, \quad \bar{f}(\bar{x}):=\frac{1}{\sqrt{1-|\bar{x}|^{2}}}(\bar{x}, 1)
$$

\bar{f} is the inclusion map $U \rightarrow U \times\{1\} \subset \mathbb{R}^{m} \times \mathbb{R}$ followed by the radial projection to H^{m}. The first fundamental form of \bar{f} is given by

$$
\bar{g}_{i j}(\bar{x})=\left\langle\bar{f}_{i}(\bar{x}), \bar{f}_{j}(\bar{x})\right\rangle_{\mathrm{L}}=\frac{1}{1-|\bar{x}|^{2}} \delta_{i j}+\frac{1}{\left(1-|\bar{x}|^{2}\right)^{2}} \bar{x}^{i} \bar{x}^{j},
$$

and the distance between two points \bar{x}, \bar{y} in (U, \bar{g}) satisfies

$$
\cosh \left(d_{\bar{g}}(\bar{x}, \bar{y})\right)=\frac{1-\langle\bar{x}, \bar{y}\rangle}{\sqrt{1-|\bar{x}|^{2}} \sqrt{1-|\bar{y}|^{2}}}
$$

In this model, the trace of any non-constant geodesic $\gamma: \mathbb{R} \rightarrow(U, \bar{g})$ is simply a chord of U, because inward radial projection maps geodesic lines in H^{m} to chords in $U \times\{1\}$.

The Poincaré model (U, g) of H^{m} is obtained similarly via the "stereographic projection"

$$
f: U \rightarrow H^{m}, \quad f(x):=\frac{1}{1-|x|^{2}}\left(2 x, 1+|x|^{2}\right)
$$

the three points $(0,-1),(x, 0), f(x) \in \mathbb{R}^{m} \times \mathbb{R}$ are aligned. The first fundamental form of f is given by

$$
g_{i j}(x)=\left\langle f_{i}(x), f_{j}(x)\right\rangle_{\mathrm{L}}=\frac{4}{\left(1-|x|^{2}\right)^{2}} \delta_{i j},
$$

thus (U, g) is a conformal model. The distance between $x, y \in(U, g)$ satisfies

$$
\cosh \left(d_{g}(x, y)\right)=1+\frac{2|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}
$$

If $x, \bar{x} \in U$ are two points with the same images $f(x)=\bar{f}(\bar{x})$ in H^{m}, then a computation shows that the point $\sigma(\bar{x}):=\left(\bar{x}, \sqrt{1-|\bar{x}|^{2}}\right) \in S^{m} \subset \mathbb{R}^{m+1}$ lies on the line through $(0,-1)$ and $(x, 0)$. The map σ sends any chord of U to a semicircle orthogonal to ∂S_{+}^{m} in the upper hemisphere $S_{+}^{m} \subset S^{m}$, and the inward stereographic projection with respect to $(0,-1)$ maps this semicircle to an arc of a circle in $U \times\{0\}$ orthogonal to $\partial U \times\{0\}=\partial S_{+}^{m}$. Hence, geodesic lines in (U, g) are represented by arcs of circles orthogonal to ∂U.

Another conformal model of H^{m} is the halfspace model $\left(U^{+}, g^{+}\right)$, where $U^{+}:=$ $\left\{x \in \mathbb{R}^{m}: x^{m}>0\right\}$. Inversion in the sphere in \mathbb{R}^{m} with center $-e_{m}$ and radius $\sqrt{2}$, restricted to U^{+}, yields the diffeomorphism

$$
\psi: U^{+} \rightarrow U, \quad \psi(x)=\frac{2}{\left|x+e_{m}\right|^{2}}\left(x+e_{m}\right)-e_{m}
$$

Let g be the Riemannian metric of the Poincaré model as above. Then $g^{+}:=\psi^{*} g$ is given by

$$
g_{i j}^{+}(x)=\frac{1}{\left(x^{m}\right)^{2}} \delta_{i j}
$$

Now let $m=2$. Then, up to reparametrization, the unit speed geodesics $\gamma: \mathbb{R} \rightarrow$ $\left(U^{+}, g^{+}\right)$are of the form

$$
\gamma(s)=\left(a+r \tanh (s), \frac{r}{\cosh (s)}\right) \quad \text { or } \quad \gamma(s)=\left(a, e^{s}\right)
$$

for $a \in \mathbb{R}$ and $r>0$. In the first case, the trace of γ is a semicircle of Euclidean radius r orthogonal to ∂U^{+}. The group $\mathrm{GL}(2, \mathbb{R})$ acts on $U^{+} \subset \mathbb{C}$ as follows:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { acts as } \quad z \mapsto \frac{a z+b}{c z+d} \quad \text { or } \quad z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d}
$$

if the determinant $a d-b c$ is positive or negative, respectively. These are precisely the orientation preserving or reversing isometries of $\left(U^{+}, g\right)$, respectively. The kernel of the action is $\{\lambda I: \lambda \neq 0\}$, thus the isometry group of $\left(U^{+}, g\right)$ is isomorphic to $\operatorname{PGL}(2, \mathbb{R})=\operatorname{GL}(2, \mathbb{R}) /\{\lambda I: \lambda \neq 0\}$ (exercise).

Hilbert's theorem

We conclude this section with the following famous result [Hi1901].
7.3 Theorem (Hilbert) There is no isometric C^{3} immersion of the hyperbolic plane into \mathbb{R}^{3}, in particular there is no C^{3} submanifold in \mathbb{R}^{3} isometric to H^{2}.

By contrast, it follows from a theorem of Nash and Kuiper Ku1955] that H^{m} admits an isometric C^{1} embedding into \mathbb{R}^{m+1} !

Proof:

Differential Topology

8 Differentiable manifolds

Differentiable manifolds and maps

We start with a topological notion.
8.1 Definition (topological manifold) An m-dimensional topological manifold M is a Hausdorff topological space with countable basis (that is, M is second countable) and the property that for every point $p \in M$ there exists a homeomorphism $\varphi: U \rightarrow$ $\varphi(U)$ from an open neighborhood $U \subset M$ of p onto an open set $\varphi(U) \subset \mathbb{R}^{m}$. Then $\varphi=(\varphi, U)$ is called a chart or coordinate system of M.

A system of charts $\Phi=\left\{\left(\varphi_{\alpha}, U_{\alpha}\right)\right\}_{\alpha \in A}$ (where A is any index set) forms an atlas of the topological manifold M if $\cup_{\alpha \in A} U_{\alpha}=M$. For $\alpha, \beta \in A$, the (possibly empty) homeomorphism

$$
\varphi_{\beta \alpha}:=\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is called the coordinate change between φ_{α} and φ_{β}.
For $1 \leq r \leq \infty$, the atlas $\left\{\varphi_{\alpha}\right\}_{\alpha \in A}$ is a C^{r} atlas of M if every coordinate change $\varphi_{\beta \alpha}$ is a C^{r} map. Since $\left(\varphi_{\beta \alpha}\right)^{-1}=\varphi_{\alpha \beta}$, it then follows that every coordinate change is a C^{r} diffeomorphism. More generally, we call two charts $(\varphi, U),(\psi, V)$ of a topological manifold C^{r} compatible if $\psi \circ \varphi^{-1}: \varphi(U \cap V) \rightarrow \psi(U \cap V)$ is a C^{r} diffeomorphism.
8.2 Definition (differentiable manifold) For $1 \leq r \leq \infty$, a differentiable structure of class C^{r} or C^{r} structure on a topological manifold is a maximal C^{r} atlas, that is, a C^{r} atlas not contained in a bigger one. A differentiable manifold of class C^{r} or a C^{r} manifold is a topological manifold equipped with a C^{r} structure.

We use the word "smooth" as a synonym of C^{∞}. If we speak of a chart of a differentiable manifold M, then we always mean a chart belonging to the differentiable structure of M.

Every C^{r} atlas Φ of a topological manifold M is contained in a unique C^{r} structure $\bar{\Phi}$, namely the set of all charts of M that are C^{r} compatible with all charts
in Φ. However, there exist compact topological manifolds that do not admit any C^{1} structure [Ke1960]!

Now let $1 \leq r<s \leq \infty$. Then every C^{s} structure is a C^{r} atlas and is thus contained in a unique C^{r} structure; in this sense, every C^{s} manifold is also a C^{r} manifold. Conversely, every C^{r} structure contains a C^{s} structure, and this C^{s} structure is unique up to C^{s} diffeomorphism (see Definition 8.3 below and Theorem 2.9, Chapter 1, in [Hi] for the proof). In so far there is no essential difference between the classes C^{r} and C^{s} for $1 \leq r<s \leq \infty$.
8.3 Definition (differentiable map, diffeomorphism) Let M, N be two C^{r} manifolds, $1 \leq r \leq \infty$. A map $F: M \rightarrow N$ is r times continuously differentiable, briefly C^{r}, if for every point $p \in M$ there exist a chart (φ, U) of M with $p \in U$ and a chart (ψ, V) of N with $F(U) \subset V$ such that the map

$$
\psi \circ F \circ \varphi^{-1}: \varphi(U) \rightarrow \psi(V)
$$

is C^{r}. This composition is called a local representation of F around p. The map $F: M \rightarrow N$ is a C^{r} diffeomorphism if F is bijective and both F, F^{-1} are C^{r}.

Ist $F: M \rightarrow N$ is a C^{r} map, then clearly every local representation of F is C^{r}, because coordinate changes of M and N are C^{r}.

On \mathbb{R}^{m}, the atlas consisting solely of the identity map $\mathrm{id}_{\mathbb{R}^{m}}$ determines the usual smooth structure on \mathbb{R}^{m}. On \mathbb{R}, the atlases $\Phi=\left\{\operatorname{id}_{\mathbb{R}}\right\}$ and $\Psi=\{\psi\}$, where $\psi(x)=x^{3}$, determine different smooth structures $\bar{\Phi}$ and $\bar{\Psi}$ since $\mathrm{id}_{\mathbb{R}}$ and ψ are not C^{1} compatible; however, $F:=\psi^{-1}:(\mathbb{R}, \bar{\Psi}) \rightarrow(\mathbb{R}, \bar{\Phi})$ is a diffeomorphism since the representation $\psi \circ F \circ\left(\mathrm{id}_{\mathbb{R}}\right)^{-1}$ equals $\mathrm{id}_{\mathbb{R}}$. In fact, it is not difficult to show that any two differentiable structures on \mathbb{R} are diffeomorphic (exercise).

By contrast, there exist topological manifolds that admit different diffeomorphism classes of smooth structures! For example, there are precisely 28 such classes on the 7-dimensional sphere S^{7} [Mi1956], [Mi1959]. On \mathbb{R}^{m}, exotic smooth structures exist only for $m=4$.
8.4 Definition (tangent space) Let M be an m-dimensional C^{r} manifold, $1 \leq r \leq$ ∞, and let $p \in M$. On the set of all pairs (φ, ξ), where φ is a chart of M around p and $\xi \in \mathbb{R}^{m}$, we define an equivalence relation such that $(\varphi, \xi) \sim_{p}(\psi, \eta)$ if and only if

$$
d\left(\psi \circ \varphi^{-1}\right)_{\varphi(p)}(\xi)=\eta
$$

The tangent space $T M_{p}$ of M at p is the set of all equivalence classes. We write $[\varphi, \xi]_{p} \in T M_{p}$ for the class of (φ, ξ).

For a fixed chart φ around p we define the map

$$
d \varphi_{p}: T M_{p} \rightarrow \mathbb{R}^{m}, \quad d \varphi_{p}\left([\varphi, \xi]_{p}\right):=\xi
$$

Since $[\varphi, \xi]_{p}=[\varphi, \eta]_{p}$ if and only if $\xi=\eta$, this is a well-defined bijection, which thus induces the structure of an m-dimensional vector space on $T M_{p}$, such that $d \varphi_{p}$ is a linear isomorphism. If ψ is another chart around p and $(\varphi, \xi) \sim_{p}(\psi, \eta)$, then

$$
\begin{aligned}
d \psi_{p} \circ\left(d \varphi_{p}\right)^{-1}(\xi) & =d \psi_{p}\left([\varphi, \xi]_{p}\right)=d \psi_{p}\left([\psi, \eta]_{p}\right)=\eta \\
& =d\left(\psi \circ \varphi^{-1}\right)_{\varphi(p)}(\xi) .
\end{aligned}
$$

Since $d\left(\psi \circ \varphi^{-1}\right)_{\varphi(p)}$ is an isomorphism of \mathbb{R}^{m}, it follows that the linear structure of $T M_{p}$ is independent of the choice of the chart φ.

The tangent bundle of a C^{r} manifold M is the (disjoint) union

$$
T M:=\bigcup_{p \in M} T M_{p}
$$

together with the projection $\pi: T M \rightarrow M$ that maps every tangent vector $[\varphi, \xi]_{p}$ to its footpoint p. The set $T M$ has the structure of a $2 m$-dimensional C^{r-1} manifold. If (φ, U) is a chart of M, then

$$
\begin{aligned}
T \varphi: T U= & \bigcup_{p \in U} T M_{p}
\end{aligned} \rightarrow \varphi(U) \times \mathbb{R}^{m} \subset \mathbb{R}^{m} \times \mathbb{R}^{m}, ~(\varphi]_{p} \mapsto(\varphi(p), \xi)=\left(\varphi(p), d \varphi_{p}\left([\varphi, \xi]_{p}\right)\right)
$$

is a corresponding natural chart of $T M$. The coordinate change $T \psi \circ(T \varphi)^{-1}$ maps the pair $(x, \xi) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$ to $\left(\psi \circ \varphi^{-1}(x), d\left(\psi \circ \varphi^{-1}\right)_{x}(\xi)\right)$.

For a C^{1} map $F: M \rightarrow N$, the differential of F at $p \in M$ is the unique linear map

$$
d F_{p}: T M_{p} \rightarrow T N_{F(p)}
$$

such that for every local representation $H:=\psi \circ F \circ \varphi^{-1}$ of F around p the chain rule

$$
d F_{p}=\left(d \psi_{F(p)}\right)^{-1} \circ d H_{\varphi(p)} \circ d \varphi_{p}
$$

holds, that is, $d F_{p}\left([\varphi, \xi]_{p}\right)=\left[\psi, d H_{\varphi(p)}(\xi)\right]_{F(p)}$ for all $\xi \in \mathbb{R}^{m}$. Note that for $F=\varphi$ and $\psi=\operatorname{id}_{\mathbb{R}^{m}}$, this gives $d \varphi_{p}\left([\varphi, \xi]_{p}\right)=\left[\mathrm{id}_{\mathbb{R}^{m}}, \xi\right]_{\varphi(p)}=\xi$, where the second equality reflects the identification $T \mathbb{R}_{\varphi(p)}^{m}=\mathbb{R}^{m}$; thus our notation for the previously defined map $d \varphi_{p}$ is justified.

Partition of unity

Let again M be a C^{r} manifold, $0 \leq r \leq \infty$. A family of C^{r} functions $\lambda_{\alpha}: M \rightarrow[0,1]$ indexed by a set A is called a C^{r} partition of unity if every point $p \in M$ has a neighborhood in which all but finitely many λ_{α} are constantly zero and if

$$
\sum_{\alpha \in A} \lambda_{\alpha}(p)=1
$$

for all $p \in M$. Given a collection of open sets covering M, a partition of unity $\left\{\lambda_{\alpha}\right\}_{\alpha \in A}$ is subordinate to this open cover if for every $\alpha \in A$ the support $\operatorname{spt}\left(\lambda_{\alpha}\right)=$ $\overline{\left\{p \in M: \lambda_{\alpha}(p) \neq 0\right\}}$ of λ_{α} is contained entirely in one of the sets of the cover.
8.5 Theorem (partition of unity) For every open cover of a C^{r} manifold $M, 0 \leq$ $r \leq \infty$, there exists a subordinate C^{r} partition of unity.

Proof: Among the (open) sets of a countable basis of the topology of M, let E_{1}, E_{2}, \ldots be those with compact closure. Every point $p \in M$ has a compact neighborhood N, which is closed since M is Hausdorff, and there is a set E in the above basis such that $p \in E \subset N$; thus the closure of E is compact. This shows that $\bigcup_{j=1}^{\infty} E_{j}=M$. Now we define recursively a nested sequence of open subsets of M such that $D_{-1}:=\emptyset, D_{0}:=\emptyset, D_{1}:=E_{1}$, and for $i=1,2, \ldots, D_{i+1}$ is the union of E_{i+1} with finitely many of the sets E_{j} covering the (compact) closure $\overline{D_{i}}$. Then $\bigcup_{i=1}^{\infty} C_{i}=M$, where $C_{i}:=\overline{D_{i}} \backslash D_{i-1}$ is compact, and $W_{i}:=D_{i+1} \backslash \overline{D_{i-2}}$ is an open neighborhood of C_{i} intersecting at most two more of these compact sets.

Let now $\left\{V_{\beta}\right\}_{\beta \in B}$ be an open cover of M. For every point $p \in C_{i}$ there is a chart (φ, U) of M with $\varphi(p)=0 \in \mathbb{R}^{m}$ and $\varphi(U)=U(3)=\left\{x \in \mathbb{R}^{m}:|x|<3\right\}$ such that $U \subset V_{\beta} \cap W_{i}$ for some $\beta \in B$. Hence, there is a finite family $\left\{\left(\varphi_{\alpha}, U_{\alpha}\right)\right\}_{\alpha \in A_{i}}$ of such charts such that $\left\{\varphi_{\alpha}^{-1}(U(1))\right\}_{\alpha \in A_{i}}$ is an open cover of C_{i}. Repeating this construction for every index i, and assuming that $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$, we get an atlas $\left\{\left(\varphi_{\alpha}, U_{\alpha}\right)\right\}_{\alpha \in A}$ of M with $A=\bigcup_{i=1}^{\infty} A_{i}$ such that $\left\{U_{\alpha}\right\}_{\alpha \in A}$ is a locally finite open refinement of $\left\{V_{\beta}\right\}_{\beta \in B}$.

Finally, choose a C^{∞} function $\tau: U(3) \rightarrow[0,1]$ such that $\left.\tau\right|_{U(1)} \equiv 1$ and $\operatorname{spt}(\tau)=\overline{U(2)}$. For every index $\alpha \in A$, define the C^{r} function $\tilde{\lambda}_{\alpha}: M \rightarrow[0,1]$ such that $\tilde{\lambda}_{\alpha}=\tau \circ \varphi_{\alpha}$ on $U_{\alpha}=\varphi_{\alpha}^{-1}(U(3))$ and $\tilde{\lambda}_{\alpha} \equiv 0$ on $M \backslash U_{\alpha}$. Since $\left\{\varphi_{\alpha}^{-1}(U(1))\right\}_{\alpha \in A}$ covers M and $\left\{U_{\alpha}\right\}_{\alpha \in A}$ is locally finite, it follows that the sum $S:=\sum_{\alpha \in A} \tilde{\lambda}_{\alpha}$ is everywhere greater than or equal to 1 and finite. Now put $\lambda_{\alpha}:=\frac{1}{S} \tilde{\lambda}_{\alpha}$.

Submanifolds and embeddings

8.6 Definition (submanifold) Let N be an n-dimensional C^{∞} manifold. A subset $M \subset N$ is an m-dimensional submanifold of N if for every point $p \in M$ there is chart $\psi: V \rightarrow \psi(V) \subset \mathbb{R}^{n}=\mathbb{R}^{m} \times \mathbb{R}^{n-m}$ of N such that $p \in V$ and

$$
\psi(M \cap V)=\psi(V) \cap\left(\mathbb{R}^{m} \times\{0\}\right) .
$$

Such charts are called submanifold charts, and $k:=n-m$ is the codimension of M in N.

The restrictions $\left.\psi\right|_{M \cap V}$ of all submanifold charts (ψ, V) of M form a C^{∞} atlas of M, thus M is itself a C^{∞} manifold.

Let $F: N \rightarrow Q$ be a C^{1} map between two manifolds. A point $p \in N$ is a regular point of F if the differential $d F_{p}$ is surjective; otherwise p is a singular or critical point of F. A point $q \in Q$ is a regular value of F if all $p \in F^{-1}\{q\}$ are regular points of F, otherwise q is a singular or critical value of F.
8.7 Theorem (regular value theorem) Let $F: N^{n} \rightarrow Q^{k}$ be a C^{∞} map. If $q \in$ $F(N)$ is a regular value of F, then $M:=F^{-1}\{q\}$ is a submanifold of N of dimension $\operatorname{dim}(M)=n-k \geq 0$.

Proof:
A C^{∞} map $F: M \rightarrow N$ between two manifolds is an immersion or a submersion if, for all $p \in M$, the differential $d F_{p}$ is injective or surjective, respectively. An embedding $F: M \rightarrow N$ is an immersion with the property that $F: M \rightarrow F(M)$ is a homeomorphism.
8.8 Theorem (image of an embedding) If $F: M \rightarrow N$ is an embedding, then the image $F(M)$ is a submanifold, and $F: M \rightarrow F(M)$ is a diffeomorphism.

Conversely, if $M \subset N$ is a submanifold, then the inclusion map $i: M \rightarrow N$ is an embedding.

Proof:
8.9 Theorem (embedding theorem) For every compact C^{∞} manifold M^{m} there exist $n \in \mathbb{N}$ and an embedding $F: M \rightarrow \mathbb{R}^{n}$.

This theorem also holds for $n=2 m+1$, see [Hi], and even for $n=2 m$ and M possibly non-compact [Wh1944].

Proof: Since M is compact, there exists a finite atlas $\left\{\left(\varphi_{\alpha}, U_{\alpha}\right)\right\}_{\alpha=1, \ldots, l}$ such that $\varphi_{\alpha}\left(U_{\alpha}\right)=U(3)=\left\{x \in \mathbb{R}^{m}:|x|<3\right\}$ and $\cup_{\alpha} \varphi_{\alpha}^{-1}(U(1))=M$. Choose C^{∞} functions $\lambda_{\alpha}: M \rightarrow[0,1]$ with value 1 on $\varphi_{\alpha}^{-1}(U(1))$ and support $\left.\varphi_{\alpha}^{-1} \overline{(U(2)}\right)$ (compare the proof of Theorem 8.5]. Define $f_{\alpha}: M \rightarrow \mathbb{R}^{m}$ such that $f_{\alpha}=\lambda_{\alpha} \varphi_{\alpha}$ on U_{α} and $f_{\alpha} \equiv 0 \in \mathbb{R}^{m}$ otherwise. Now put $n:=l m+l$ and consider the C^{∞} map

$$
F: M \rightarrow \mathbb{R}^{n}, \quad F:=\left(f_{1}, \ldots, f_{l}, \lambda_{1}, \ldots, \lambda_{l}\right)
$$

To show that F is an immersion, let $p \in M$. There is an α such that $p \in$ $\varphi_{\alpha}^{-1}(U(1))$, thus $\lambda_{\alpha} \equiv 1$ and $f_{\alpha} \equiv \varphi_{\alpha}$ in a neighborhood of p. Then the Jacobi matrix of $F \circ \varphi_{\alpha}^{-1}$ at the point $\varphi_{\alpha}(p)$, the $n \times m$-matrix

$$
\left(\frac{\partial\left(F^{i} \circ \varphi_{\alpha}^{-1}\right)}{\partial x^{j}}\left(\varphi_{\alpha}(p)\right)\right)
$$

contains an I_{m} (identity matrix) block because $F^{(\alpha-1) m+k}=\varphi_{\alpha}^{k}$ for $k=1, \ldots, m$. Hence $d\left(F \circ \varphi_{\alpha}^{-1}\right)_{\varphi_{\alpha}(p)}$ has rank m is thus injective, and so is $d F_{p}$.

To show that $F: M \rightarrow F(M)$ is a homeomorphism, suppose first that $F(p)=$ $F(q)$ for some $p, q \in M$. Then there is an α such that $\lambda_{\alpha}(p)=\lambda_{\alpha}(q)=1$, in particular $p, q \in U_{\alpha}$, and

$$
\varphi_{\alpha}(p)=\lambda_{\alpha}(p) \varphi_{\alpha}(p)=f_{\alpha}(p)=f_{\alpha}(q)=\lambda_{\alpha}(q) \varphi_{\alpha}(q)=\varphi_{\alpha}(q)
$$

Thus $p=q$. Now F is a continuous bijective map from the compact space M onto the Hausdorff space $F(M) \subset \mathbb{R}^{m}$ and, hence, a homeomorphism.

Tangent vectors as derivations

Let M be a C^{∞} manifold and $p \in M$. A linear functional $X: C^{\infty}(M) \rightarrow \mathbb{R}$ on the algebra of real-valued smooth functions on M is called a derivation at p if for all $f, g \in C^{\infty}(M)$ the product rule (or Leibniz rule)

$$
X(f g)=X(f) g(p)+f(p) X(g)
$$

holds. It follows from this identity that $X(f)=X(\tilde{f})$ whenever $f \equiv \tilde{f}$ in a neighborhood of p : if $g:=f-\tilde{f}$ and $h \in C^{\infty}(M)$ is such that $h(p)=1$ and $\operatorname{spt}(h) \subset g^{-1}\{0\}$, then

$$
0=X(0)=X(g h)=X(g) h(p)+g(p) X(h)=X(g)=X(f)-X(\tilde{f})
$$

Hence every derivation X at p has a unique extension, still denoted by X, to the set of functions

$$
C^{\infty}(M)_{p}:=\left\{f \in C^{\infty}(U): U \subset M \text { an open neighborhood of } p\right\}
$$

such that $X(f)=X(\tilde{f})$ whenever $f, \tilde{f} \in C^{\infty}(M)_{p}$ agree in a neighborhood of p. For the constant function on M with value $c \in \mathbb{R}, X(c)=c X(1)=0$ since $X(1)=X(1 \cdot 1)=X(1) \cdot 1+1 \cdot X(1)$.

For any chart (φ, U) of M^{m} around p there are canonical derivations $\left.\frac{\partial}{\partial \varphi^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \varphi^{m}}\right|_{p}$ at p, defined by

$$
\left.\frac{\partial}{\partial \varphi^{j}}\right|_{p}(f):=\frac{\partial f}{\partial \varphi^{j}}(p):=\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{j}}(\varphi(p)) .
$$

8.10 Theorem (derivations) The set of all derivations at $p \in M^{m}$ is an mdimensional vector space. If φ is a chart around p, then the canonical derivations $\left.\frac{\partial}{\partial \varphi^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \varphi^{m}}\right|_{p}$ constitute a basis, and every derivation X at p satisfies

$$
X=\left.\sum_{j=1}^{m} X\left(\varphi^{j}\right) \frac{\partial}{\partial \varphi^{j}}\right|_{p}
$$

Proof:
For a C^{∞} manifold M^{m}, we now identify the tangent vector $X \in T M_{p}$ (Definition 8.4 with the derivation X at p defined by

$$
X(f):=d f_{p}(X) \in T \mathbb{R}_{f(p)}=\mathbb{R}
$$

It is not difficult to check that then for every chart φ around p and every $\xi=$ $\left(\xi^{1}, \ldots, \xi^{m}\right) \in \mathbb{R}^{m}$, the vector $X=[\varphi, \xi]_{p}$ corresponds to the derivation

$$
X=\left.\sum_{j=1}^{m} \xi^{j} \frac{\partial}{\partial \varphi^{j}}\right|_{p}
$$

9 Transversality

The Morse-Sard theorem

A cube $C \subset \mathbb{R}^{m}$ of edge length $s>0$ and volume $|C|=s^{m}$ is a set isometric to $[0, s]^{m}$. A set $A \subset \mathbb{R}^{m}$ has measure zero or is a nullset if for every $\epsilon>0$ there exists a sequence of cubes $C_{i} \subset \mathbb{R}^{m}$ such that $A \subset \bigcup_{i} C_{i}$ and $\sum_{i}\left|C_{i}\right|<\epsilon$. The union of countably many nullsets is a nullset.

If $V \subset \mathbb{R}^{m}$ is an open set and $F: V \rightarrow \mathbb{R}^{m}$ a C^{1} map, and if $A \subset V$ has measure zero, then $F(A)$ has measure zero. To prove this, note first that V is the union of countably many compact balls B_{k}. Then each set $A \cap B_{k}$ lies in the interior of some compact subset of V, on which F is Lipschitz continuous, and it follows easily that $F\left(A \cap B_{k}\right)$ has measure zero.
9.1 Definition (measure zero) A subset A of a differentiable manifold M^{m} has measure zero or is a nullset if for every chart (φ, U) of M the set $\varphi(A \cap U) \subset \mathbb{R}^{m}$ has measure zero.

It follows from the aforementioned properties that $A \subset M$ has measure zero if $\varphi(A \cap U)$ has measure zero for every chart (φ, U) from a fixed countable atlas of M.
9.2 Theorem (Morse-Sard) If $F: M^{m} \rightarrow N^{n}$ is a C^{r} map with $r>\max \{0, m-n\}$, then the set of singular values of F has measure zero in N.

See [Mo1939] $(n=1, r=m)$ and [Sa1942]. For example, the set of singular values of a C^{2} function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has measure zero (and thus $F^{-1}\{t\}$ is a 1 -dimensional submanifold for almost every $t \in \mathbb{R}$). The differentiability assumption seems stronger than necessary, but indeed Whitney [Wh1935] constructed an example of a C^{1} function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is non-constant on a compact connected set of singular points.

Note that if $n=0$, then there are no singular values in N by definition, whereas if $m=0$, then $F(M)$ is a countable set. In the general case, the theorem follows easily from the corresponding result for a C^{r} map F from on open set $U \subset \mathbb{R}^{m}$ to \mathbb{R}^{n}, because M and N have countable atlases. Then, in the case that $m<n$ and $r=1$, the proof is simple: $U \times\{0\} \subset \mathbb{R}^{m} \times \mathbb{R}^{n-m}$ is a nullset in $\mathbb{R}^{m} \times \mathbb{R}^{n-m}$, thus the C^{1} map $\tilde{F}: U \times \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{n}, \tilde{F}(p, x):=F(p)$, takes it to the nullset $\tilde{F}(U \times\{0\})=F(U)$ in \mathbb{R}^{n}.

We now prove the result for $m \geq n \geq 1$ and $r=\infty$.
Proof: It suffices to consider a C^{∞} map $F=\left(F^{1}, \ldots, F^{n}\right): U \rightarrow \mathbb{R}^{n}$ on an open set $U \subset \mathbb{R}^{m}$. Let $\Sigma \subset U$ be the set of singular points of F. Furthermore, for $l=1,2, \ldots$, let Z_{l} denote the set of all points $x \in U$ where all partial derivaties of F up to order l vanish, that is,

$$
F_{j_{1}, \ldots, j_{k}}^{i}(x):=\frac{\partial^{k} F^{i}}{\partial x^{j_{1}} \partial x^{j_{2}} \ldots \partial x^{j_{k}}}(x)=0
$$

for all $k \in\{1, \ldots, l\}, i \in\{1, \ldots, n\}$ and $j_{1}, \ldots, j_{k} \in\{1, \ldots, m\}$. This gives a sequence $\Sigma \supset Z_{1} \supset Z_{2} \supset \ldots$ of closed subsets of U. We now fix $l \geq 1$ as the smallest integer strictly bigger than $\frac{m}{n}-1$.

We show that $F\left(Z_{l}\right)$ has measure zero. Let $C \subset U$ be a cube of side length s. By virtue of Taylor's formula of order l and the compactness of C,

$$
F(y)=F(x)+R(x, y)
$$

for all $x \in C \cap Z_{l}$ and $y \in C$, where $|R(x, y)| \leq c|x-y|^{l+1}$ for some constant c depending only on F and C. Consider a subdivision of C into N^{m} cubes of side length s / N. If C^{\prime} is one of these cubes and x is a point in $C^{\prime} \cap Z_{l}$, then $F\left(C^{\prime}\right)$ lies in the closed ball with center $F(x)$ and radius $c(\sqrt{m} s / N)^{l+1}$. Hence $F\left(C \cap Z_{l}\right)$ can be covered by N^{m} cubes with total volume $N^{m}\left(2 c(\sqrt{m} s / N)^{l+1}\right)^{n}$. Since $n(l+1)>m$, this quantity tends to 0 as $N \rightarrow \infty$. It follows that $F\left(Z_{l}\right)$ has measure zero.

If $m=n=1$, then $\Sigma=Z_{1}=Z_{l}$, hence $F(\Sigma)$ has measure zero. We now proceed by induction and complete the argument for $m \geq 2, m \geq n \geq 1$ and $r=\infty$ assuming that the set of singular values of every C^{∞} map $G: M^{\prime} \rightarrow N^{\prime}$ between manifolds of dimension $\operatorname{dim}\left(M^{\prime}\right)=m-1 \geq \operatorname{dim}\left(N^{\prime}\right) \geq 1$ has measure zero.

First we consider $F\left(Z_{k} \backslash Z_{k+1}\right)$ for any $k \geq 1$. For every $x \in Z_{k} \backslash Z_{k+1}$, there exist a k-fold partial derivative $f:=F_{j_{1}, \ldots, j_{k}}^{i}: U \rightarrow \mathbb{R}$ and a further index $j \in\{1, \ldots, m\}$ such that $f_{j}(x):=\frac{\partial f}{\partial x^{j}}(x) \neq 0$. Then $f_{j}(y) \neq 0$ for all y in an open neighborhood $V \subset U \backslash Z_{k+1}$ of x. Thus the (smooth) function $\left.f\right|_{V}$ is everywhere regular, in particular the set $M^{\prime}:=f^{-1}\{0\} \cap V$, which contains $Z_{k} \cap V$, is an ($m-1$)-dimensional submanifold. Every point $y \in Z_{k} \cap V \subset \Sigma$ is also a singular point of $\left.F\right|_{M^{\prime}}$, hence $F\left(Z_{k} \cap V\right)$ has measure zero in \mathbb{R}^{n} by the induction hypothesis, or by the remark preceding the proof if $m-1<n$. It follows that $F\left(Z_{k} \backslash Z_{k+1}\right)$ has measure zero for every $k \geq 1$.

Since $F\left(Z_{1}\right)=F\left(Z_{l}\right) \cup \bigcup_{k=1}^{l-1} F\left(Z_{k} \backslash Z_{k+1}\right)$ has measure zero, it remains to consider the set $F\left(\Sigma \backslash Z_{1}\right)$. If $n=1$, then $\Sigma=Z_{1}$ and we are done. Now let $n \geq 2$. At every point $x \in \Sigma \backslash Z_{1}$ at least one partial derivative F_{j}^{i} is non-zero. To simplify the notation we assume that $F_{m}^{i}(x) \neq 0$. Then x is a regular point of the map

$$
\varphi: U \rightarrow \mathbb{R}^{m}, \quad \varphi(y):=\left(y^{1}, \ldots, y^{m-1}, F^{i}(y)\right) .
$$

Hence there exists an open neighborhood $V \subset U \backslash Z_{1}$ of x such that $\left.\varphi\right|_{V}$ is a diffeomorphism onto an open set $W \subset \mathbb{R}^{m}$, and there is a well-defined map $G: W \rightarrow$ \mathbb{R}^{n} such that $\left.F\right|_{V}=\left.G \circ \varphi\right|_{V}$. For all $y \in V$,

$$
G\left(y^{1}, \ldots, y^{m-1}, F^{i}(y)\right)=G(\varphi(y))=\left(F^{1}(y), \ldots, F^{n}(y)\right),
$$

thus G preserves some coordinate. Hence, if $y \in V \cap \Sigma$ is a singular point of F with $F^{i}(y)=t \in \mathbb{R}$, then $\varphi(y)=\left(y^{1}, \ldots, y^{m-1}, t\right)$ is a singular point of G as well as of the restriction of G to $M_{t}:=W \cap\left(\mathbb{R}^{m-1} \times\{t\}\right)$, and $F(y)=G(\varphi(y))$ is a singular
value of $\left.G\right|_{M_{t}}$. Therefore, by the induction hypothesis, the set $F(V \cap \Sigma) \cap\left\{z \in \mathbb{R}^{n}\right.$: $\left.z^{i}=t\right\}$ has ($n-1$)-dimensional (Lebesgue) measure zero. By Fubini's theorem, the measurable (in fact, σ-compact) set $F(V \cap \Sigma$) has n-dimensional measure zero. It follows that also $F\left(\Sigma \backslash Z_{1}\right)$ has measure zero.

Manifolds with boundary

Next we introduce manifolds with boundary.
A halfspace of \mathbb{R}^{m} is a set of the form

$$
H=\left\{x \in \mathbb{R}^{m}: \lambda(x) \geq 0\right\}
$$

for a linear function $\lambda: \mathbb{R}^{m} \rightarrow \mathbb{R}$. Note that, according to this definition, also $H=\mathbb{R}^{m}$ is a halfspace (take $\lambda \equiv 0$). The boundary ∂H of $H=\{\lambda \geq 0\}$ is the kernel of λ if $\lambda \not \equiv 0$ and empty otherwise.

An m-dimensional topological manifold M with boundary is a Hausdorff space with countable basis of the topology and the following property: for every point $p \in$ M there exist a homeomorphism $\varphi: U \rightarrow \varphi(U) \subset H$ from an open neighborhood U of p onto an open subset $\varphi(U)$ of a halfspace $H \subset \mathbb{R}^{m}$ (with the induced topolopy). Then $\varphi=(\varphi, U)$ is a chart of M. The notions of a C^{r} atlas, C^{r} structure and C^{r} manifold with boundary are then defined in analogy with the boundary-free case. Here, a coordinate change

$$
\varphi_{\beta \alpha}:=\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is a C^{r} map between open subsets in halfspaces of \mathbb{R}^{m}; this means that $\varphi_{\beta \alpha}$ admits an extension to a C^{r} map between open subsets of \mathbb{R}^{m}.

The boundary of M is the set

$$
\partial M:=\{p \in M: \varphi(p) \in \partial H \text { for some chart } \varphi: U \rightarrow \varphi(U) \subset H \text { around } p\} .
$$

It follows that if $p \in \partial M$, then $\varphi(p) \in \partial H$ for every chart $\varphi: U \rightarrow \varphi(U) \subset H$ around p. For topological manifolds with boundary this is a consequence of the theorem on invariance of the domain [Br1911a]: If $V \subset \mathbb{R}^{m}$ is open and $h: V \rightarrow \mathbb{R}^{m}$ is an injective continuous map, then $h(V) \subset \mathbb{R}^{m}$ is open. In the C^{r} case, $r \geq 1$, one may more easily use the inverse function theorem. The boundary ∂M of a C^{r} manifold M^{m} with boundary, $r \geq 0$, is in a natural way an ($m-1$)-dimensional C^{r} manifold (without boundary), and $M \backslash \partial M$ is a manifold as well. According to the above definition, every manifold M is also a manifold with boundary, where $\partial M=\emptyset$.

Example Suppose that N is a manifold, $f: N \rightarrow \mathbb{R}$ is a smooth function, and $y \in \mathbb{R}$ is a regular value of f. Then $M:=f^{-1}([y, \infty))$ is a manifold with boundary $\partial M=f^{-1}\{y\}$: by Theorem 8.7, $f^{-1}\{y\}$ is a submanifold of N of codimension 1, and the restriction of any submanifold chart $\psi: V \rightarrow \psi(V) \subset \mathbb{R}^{n}$ to $V \cap M$ is a chart for M around boundary points.

Let now M^{m} be a C^{r} manifold with boundary, $1 \leq r \leq \infty$. For $p \in M$, the tangent space $T M_{p}$ of M at p is defined as in Definition 8.4 (note that $d(\psi \circ$ $\left.\varphi^{-1}\right)_{\varphi(p)}$ is defined on all of \mathbb{R}^{m} also if $\left.p \in \partial M\right)$. For $p \in \partial M$, the tangent space $T(\partial M)_{p}$ of ∂M at p is in a canonical way an $(m-1)$-dimensional subspace of $T M_{p}$. Differentiable maps $F: M \rightarrow N$ between manifolds with boundary and the differential $d F_{p}: T M_{p} \rightarrow T N_{F(p)}$ are again defined as in the boundary-free case.

The following statement generalizes Theorem 8.7
9.3 Theorem (regular value theorem, manifolds with boundary) Let $F: N \rightarrow$ Q be a C^{∞} map, where N^{n} is a manifold with boundary and Q^{k} is a manifold. If $q \in F(N)$ is a regular value of $\left.F\right|_{N \backslash \partial N}$ as well as of $\left.F\right|_{\partial N}$, then $M:=F^{-1}\{q\}$ is a manifold with boundary, $\operatorname{dim}(M)=n-k \geq 0$, and $\partial M=M \cap \partial N$.

Note that the assumption on q is stronger than saying that $q \in F(N)$ is a regular value of F, because ∂N is only $(n-1)$-dimensional. The set $M \cap \partial N$ is non-empty if and only if $q \in F(\partial N)$; in this case, it follows from the assumption that $n-1 \geq k$ and hence $\operatorname{dim}(M) \geq 1$.

Proof:

A continuous map $F: M \rightarrow A$ from a topological space M to a subspace $A \subset M$ such that $F(p)=p$ for all $p \in A$ is called a retraction of M onto A.
9.4 Theorem (boundary is not a retract) Let M be a compact C^{∞} manifold with boundary. Then there is no smooth retraction of M onto ∂M.

In the proof of this result and subsequently we will make use of the classification of compact 1-dimensional manifolds with boundary: every such $\left(C^{\infty}\right)$ manifold is diffeomorphic to a disjoint union of finitely many circles S^{1} and intervals [0, 1]. For a proof of this intuitive fact we refer to the Appendix in [Mi].

Proof: Suppose to the contrary that there exists a smooth retraction $F: M \rightarrow \partial M$. By Theorem 9.2 there exists a regular value $q \in \partial M$ of $\left.F\right|_{M \backslash \partial M}$. Since F is a retraction, q is also a regular value of $\left.F\right|_{\partial M}=\mathrm{id}_{\partial M}$. It follows from Theorem 9.3 that $F^{-1}\{q\}$ is a compact 1-dimensional manifold with boundary $F^{-1}\{q\} \cap \partial M=\{q\}$. This contradicts the fact that by the aforementioned classification, such manifolds have an even number of boundary points.
9.5 Theorem (Brouwer fixed point theorem) Every continuous map $G: B^{m} \rightarrow$ $B^{m}=\left\{x \in \mathbb{R}^{m}:|x| \leq 1\right\}$ has a fixed point.

Proof:

Mapping degree

Let $F, G: M \rightarrow N$ be two C^{∞} maps. A C^{∞} map $H: M \times[0,1] \rightarrow N$ with $H(\cdot, 0)=F$ and $H(\cdot, 1)=G$ is called a smooth homotopy from F to G. We write $F \sim G$ and call F and G smoothly homotopic if such a map H exists. This defines an equivalence relation on $C^{\infty}(M, N)$. Transitivity is most easily shown using the following reparametrization trick: if H is a smooth homotopy from F to G, and $\tau:[0,1] \rightarrow[0,1]$ is a smooth function that is constantly 0 on $\left[0, \frac{1}{3}\right]$ and 1 on $\left[\frac{2}{3}, 1\right]$, then $\tilde{H}(p, t):=H(p, \tau(t))$ defines a smooth homotopy such that $\tilde{H}(\cdot, t)=F$ for $t \in\left[0, \frac{1}{3}\right]$ and $\tilde{H}(\cdot, t)=G$ for $t \in\left[\frac{2}{3}, 1\right]$.

A smooth homotopy $H: M \times[0,1] \rightarrow N$ from F to G with the additional property that $H(\cdot, t): M \rightarrow N$ is a C^{∞} diffeomorphism for all $t \in[0,1]$ is called a smooth smooth isotopy between (the diffeomorphisms) F and G.
9.6 Lemma (isotopies) If N is a connected manifold, then for every pair of points $q, q^{\prime} \in N$ there is a smooth isotopy $H: N \times[0,1] \rightarrow N$ with $H(\cdot, 0)=\operatorname{id}_{N}$ and $H(q, 1)=q^{\prime}$.

Proof:

Let now $F: M \rightarrow N$ be a C^{∞} map between two manifolds of the same dimension. If $q \in N$ is a regular value of F, then $F^{-1}\{q\}$ is a (possibly empty) 0 -dimensional submanifold of M, hence a discrete set. If M is compact, then the number $\# F^{-1}\{q\}$ of points in $F^{-1}\{q\}$ is finite.
9.7 Theorem (mapping degree modulo 2) Suppose that M, N are two manifolds of the same dimension, M is compact, and N is connected.
(1) If $F, G: M \rightarrow N$ are smoothly homotopic, and if $q \in N$ is a regular value of both F and G, then $\# F^{-1}\{q\} \equiv \# G^{-1}\{q\}(\bmod 2)$.
(2) If $F: M \rightarrow N$ is a C^{∞} map, and if $q, q^{\prime} \in N$ are two regular values of F, then $\# F^{-1}\{q\} \equiv \# F^{-1}\left\{q^{\prime}\right\}(\bmod 2)$.

The mapping degree modulo 2 of F is the number

$$
\operatorname{deg}_{2}(F):=\left(\# F^{-1}\{q\} \bmod 2\right) \in\{0,1\} ;
$$

by (2), it does not depend on the choice of the regular value q. Furthermore, by (1), it is invariant under smooth homotopies, that is, $\operatorname{deg}_{2}(F)=\operatorname{deg}_{2}(G)$ if $F \sim G$.

Proof:

If M and N are oriented manifolds of the same dimension, M compact and N connected, then the mapping degree $\operatorname{deg}(F) \in \mathbb{Z}$ of a smooth map $F: M \rightarrow N$ is defined as

$$
\operatorname{deg}(F):=\sum_{p \in F^{-1}\{q\}} \operatorname{sgn}\left(d F_{p}\right)
$$

for any regular value $q \in N$ of F, where

$$
\operatorname{sgn}\left(d F_{p}\right):= \begin{cases}+1 & \text { if } d F_{p} \text { is orientation preserving } \\ -1 & \text { otherwise }\end{cases}
$$

(note that for every regular point $p \in M$, the differential $d F_{p}: T M_{p} \rightarrow T N_{F(p)}$ is an isomorphism, since $\operatorname{dim}(M)=\operatorname{dim}(N)$). Similarly as for deg_{2} one can show that $\operatorname{deg}(F)$ does not depend on the choice of q and that $\operatorname{deg}(F)=\operatorname{deg}(G)$ if $F \sim G$.
9.8 Theorem (hairy ball theorem) The sphere S^{m} admits a nowhere vanishing tangent vector field if and only if m is odd.

Proof: Let $\alpha: S^{m} \rightarrow S^{m}$ be the antipodal map $p \mapsto-p$. We show first that $\operatorname{deg}(\alpha)=(-1)^{m+1}$. If $p \in S^{m}$ and $\left(v_{1}, \ldots, v_{m}\right)$ is a positively oriented basis of $T S_{p}^{m}$ (no matter how S^{m} is oriented), then $\left(v_{1}, \ldots, v_{m}\right)$ is negatively oriented as a basis of $T S_{-p}^{m}$, because $N(-p)=-N(p)$ for any Gauss map. Furthermore, $d \alpha_{p}\left(v_{i}\right)=-v_{i}$ (note that α is the restriction of a linear map). Thus $d \alpha_{p}$ preserves orientation if and only if m is odd. Since α is a diffeomorphism, it follows that $\operatorname{deg}(\alpha)=\operatorname{sgn}\left(d \alpha_{p}\right)=(-1)^{m+1}$.

Suppose now that X is a nowhere zero smooth tangent vector field on S^{m}. We can assume that $|X| \equiv 1$. Then

$$
H(p, s):=\cos (s) p+\sin (s) X(p)
$$

defines a smooth homotopy $H: S^{m} \times[0, \pi] \rightarrow S^{m}$ from id to α. By the homotopy invariance of the degree, $1=\operatorname{deg}(\mathrm{id})=\operatorname{deg}(\alpha)=(-1)^{m+1}$, so m is odd. Conversely, if $m=2 k-1$, then

$$
X(p):=\left(p^{2},-p^{1}, p^{4},-p^{3}, \ldots, p^{2 k}, p^{2 k-1}\right)
$$

defines a nowhere vanishing (unit) vector field on $S^{m} \subset \mathbb{R}^{2 k}$.

An important result about the mapping degree is the following theorem due to Hopf [Ho1927a]: for a compact, connected, oriented manifold M of dimension m, two maps $F, G: M \rightarrow S^{m}$ are homotopic if and only if $\operatorname{deg}(F)=\operatorname{deg}(G)$. For a non-orientable manifold M, an analogous result holds with deg_{2} instead of deg.

Transverse maps and intersection number

Let L^{l} and N^{n} be two manifolds, and let $M^{m} \subset N^{n}$ be a submanifold. A C^{∞} map $F: L \rightarrow N$ is said to be transverse to M if

$$
T M_{q}+d F_{p}\left(T L_{p}\right)=T N_{q}
$$

whenever $p \in L$ and $F(p)=: q \in M$.
Note that if $M=\{q\}$, then F is transverse to M if and only if q is a regular value of F. The following statement generalizes Theorem 9.3 further.
9.9 Theorem (transverse maps) Suppose that L^{l} is a manifold with boundary, N^{n} is a manifold, $M^{m} \subset N^{n}$ is a submanifold of codimension $k:=n-m$, and $F: L \rightarrow N$ is a C^{∞} map with $F(L) \cap M \neq \emptyset$. If $\left.F\right|_{L \backslash \partial L}$ and $\left.F\right|_{\partial L}$ are both transverse to M, then $F^{-1}(M)$ is manifold with boundary $F^{-1}(M) \cap \partial L$, and $\operatorname{dim}\left(F^{-1}(M)\right)=l-k \geq 0$.

Thus $F^{-1}(M)$ has the same codimension in L as M in N. The set $F^{-1}(M) \cap \partial L$ is non-empty if and only if $F(\partial L) \cap M \neq \emptyset$; then $l-1 \geq k$ by the assumption on $\left.F\right|_{\partial L}$, and hence $\operatorname{dim}\left(F^{-1}(M)\right) \geq 1$.

Proof:
9.10 Theorem (parametric transversality theorem) Suppose that L, V, N are manifolds, $M \subset N$ is a submanifold, and $H: L \times V \rightarrow N$ is a C^{∞} map transverse to M. Then, for almost every $v \in V$, the map

$$
H_{v}:=H(\cdot, v): L \rightarrow N
$$

is tranverse to M, that is, the set $\left\{v \in V: H_{v}\right.$ is not transverse to $\left.M\right\}$ has measure zero in V.

Furthermore, for fixed manifolds L, N and a submanifold $M \subset N$, the set of all C^{∞} maps $F: L \rightarrow N$ transverse to M is dense in $C^{\infty}(L, N)$ with respect to the compact-open ("weak") C^{∞} topology on $C^{\infty}(L, N)$, see Theorem 2.1, Chapter 3, in [Hi].

Proof:
9.11 Theorem (homotopy to a transverse map) If $F: L \rightarrow N$ is a C^{∞} map and $M \subset N$ is a submanifold, then there exists a smooth homotopy $H: L \times[0,1] \rightarrow N$ from $F=H(\cdot, 0)$ to a map $\tilde{F}=H(\cdot, 1)$ transverse to M.

Proof:
9.12 Theorem (intersection number modulo 2) Suppose that L^{l}, N^{n} are two manifolds, L is compact, and M^{m} is a submanifold and a closed subset of N such that $l+m=n$. If $F, G: L \rightarrow N$ are smoothly homotopic and both tranverse to M, then $\# F^{-1}(M) \equiv \# G^{-1}(M)(\bmod 2)$.

Note that since $l+m=n$ and $F^{-1}(M)$ is compact, the number $\# F^{-1}(M)$ is finite.

Proof:
Let again L, N and M be given as in Theorem 9.12, and let $F: L \rightarrow N$ be an arbitrary C^{∞} map. By Theorem 9.11 there exists a map $\tilde{F}: L \rightarrow N$ that is smoothly homotopic to F and transverse to M. By virtue of Theorem 9.12 , the number

$$
\#_{2}(F, M):=\left(\# \tilde{F}^{-1}(M) \bmod 2\right) \in\{0,1\}
$$

is independent of the choice of \tilde{F} and invariant under smooth homotopies of F; it is called the intersection number modulo 2 of F with M. An application is Theorem 2.11

10 Vector bundles, vector fields and flows

Vector bundles

10.1 Definition (smooth vector bundle) A (real, smooth) vector bundle with fiber dimension k, or briefly a k-plane bundle, is a triple (π, E, M) such that $\pi: E \rightarrow M$ is a smooth map between manifolds and
(1) for every point $p \in M$, the fiber $E_{p}:=\pi^{-1}\{p\}$ has the structure of a k dimensional (real) vector space;
(2) for every point $q \in M$ there exist an open neighborhood $U \subset M$ of q and a C^{∞} diffeomorphism $\psi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ such that $\left.\psi\right|_{E_{p}}: E_{p} \rightarrow\{p\} \times \mathbb{R}^{k}$ is a linear isomorphism for every $p \in U$.

One calls E the total space, M the base space, and π the bundle projection. Condition (2) is called the axiom of local triviality, and a pair (ψ, U) as above is called a bundle chart or a local trivialization around q.

Topological vector bundles are defined analogously, except that then the projection is merely a continuous map between topological spaces (not necessarily topological manifolds) and bundle charts are homeomorphisms.

A k-plane bundle (π, E, M) is called trivial if there exists a global bundle chart $\psi: E \rightarrow M \times \mathbb{R}^{k}$. For every manifold M there is the trivial \mathbb{R}^{k}-bundle $\pi: M \times \mathbb{R}^{k} \rightarrow M$ over M with $\pi(p, \xi)=p$ for all $(p, \xi) \in M \times \mathbb{R}^{k}$ (the identity map on $M \times \mathbb{R}^{k}$ is a global bundle chart).

A C^{∞} map $s: M \rightarrow E$ is called a section of the vector bundle $\pi: E \rightarrow M$ if $\pi \circ s=\operatorname{id}_{M}$, that is, $s(p) \in E_{p}$ for all $p \in M$. The set of all sections is denoted by $\Gamma(E)$ or $\Gamma^{\infty}(E)$, to emphasize that smooth maps are meant. Every vector bundle $\pi: E \rightarrow M$ admits the zero section with $s(p)=0 \in E_{p}$ for all $p \in M$. Note that if (ψ, U) is a bundle chart, then $\left.s\right|_{U}=\psi^{-1} \circ i$ for $i: U \rightarrow U \times \mathbb{R}^{k}, i(p)=(p, 0)$, thus s is indeed a smooth map.
10.2 Definition (bundle map) Let $\pi: E \rightarrow M$ and $\pi^{\prime}: E^{\prime} \rightarrow M^{\prime}$ be two vector bundles. A C^{∞} map $\tilde{F}: E \rightarrow E^{\prime}$ is called a bundle map if \tilde{F} maps fibers isomorphically onto fibers, that is, \tilde{F} induces a map $F: M \rightarrow M^{\prime}$ such that $F \circ \pi=\pi^{\prime} \circ \tilde{F}$ and $\left.\tilde{F}\right|_{E_{p}}: E_{p} \rightarrow E_{F(p)}^{\prime}$ is an isomorphism for all $p \in M$. If F is a diffeomorphism, then \tilde{F} is a bundle equivalence. If $M=M^{\prime}$ and $F=\operatorname{id}_{M}$, then \tilde{F} is a bundle isomorphism.

Note that the map $F: M \rightarrow M^{\prime}$ induced by a bundle map $\tilde{F}: E \rightarrow E^{\prime}$ is smooth as well, because $F=\pi^{\prime} \circ \tilde{F} \circ s$ for the zero section s of E.
10.3 Proposition (trivial vector bundle) A k-plane bundle $\pi: E \rightarrow M$ is trivial if and only if it admits k everywhere linearly independent sections.

Proof: Suppose first that there exist sections $s_{1}, \ldots, s_{k} \in \Gamma(E)$ such that $s_{1}(p), \ldots, s_{k}(p)$ are linearly independent for every $p \in M$. Let $\psi: E \rightarrow M \times \mathbb{R}^{k}$ be the map that sends every linear combination $\sum_{i=1}^{k} \xi^{i} s_{i}(p)$ to (p, ξ). Since the s_{i} are smooth, it follows that ψ^{-1} is smooth. Furthermore, since ψ^{-1} maps each fiber $\{p\} \times \mathbb{R}^{k}$ isomorphically onto E_{p}, all $(p, 0) \in M \times \mathbb{R}^{k}$ are regular points of ψ^{-1}, thus ψ^{-1} maps an open neighborhood of $M \times\{0\}$ diffeomorphically into E, and it then follows easily that ψ^{-1} and ψ are global diffeomorphisms.

Conversely, given a global bundle chart $\psi: E \rightarrow M \times \mathbb{R}^{k}$, the sections s_{1}, \ldots, s_{k} defined by $s_{i}(p):=\psi^{-1}\left(p, e_{i}\right)$ are everywhere linearly independent.

Let $\pi: E \rightarrow M$ be a k-plane bundle, and let $\left\{\left(\psi_{\alpha}, U_{\alpha}\right)\right\}_{\alpha \in A}$ be a bundle atlas, that is, a family of bundle charts such that $\bigcup_{\alpha \in A} U_{\alpha}=M$. Every chart is of the form $\psi_{\alpha}=\left(\left.\pi\right|_{\pi^{-1}\left(U_{\alpha}\right)}, g_{\alpha}\right)$ for a C^{∞} map $g_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow \mathbb{R}^{k}$, where $\left.g_{\alpha}\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}$ is a linear isomorphism for every $p \in U_{\alpha}$. Thus, for every pair of indices $\alpha, \beta \in A$ there is a C^{∞} map

$$
g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(k, \mathbb{R}), \quad g_{\beta \alpha}(p)=\left.g_{\beta}\right|_{E_{p}} \circ\left(g_{\alpha} \mid E_{p}\right)^{-1} .
$$

The family $\left\{g_{\beta \alpha}\right\}$ satisfies the so-called cocyle condition

$$
g_{\alpha \alpha}(p)=\operatorname{id}_{\mathbb{R}^{k}}, \quad g_{\gamma \beta}(p) \circ g_{\beta \alpha}(p)=g_{\gamma \alpha}(p) \quad\left(p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}\right) .
$$

If G is a subgroup of $\mathrm{GL}(k, \mathbb{R})$, and if E admits a bundle atlas with transition maps $g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \rightarrow G$, then E is called a vector bundle with structure group G. Conversely, given an open cover $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of M and a family $\left\{g_{\beta \alpha}\right\}$ of C^{∞} maps $g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(k, \mathbb{R})$ satisfying the above cocycle condition, one can construct a corresponding k-plane bundle over M from these data.

The cotangent bundle

Next we discuss the cotangent bundle $T M^{*}$ of an m-dimensional manifold M. The total space

$$
T M^{*}=\bigcup_{p \in M} T M_{p}^{*}
$$

is the (disjoint) union of the dual spaces

$$
T M_{p}^{*}=\left\{\lambda: T M_{p} \rightarrow \mathbb{R}: \lambda \text { is linear }\right\},
$$

and $\pi: T M^{*} \rightarrow M$ is given by $\pi(\lambda)=p$ for $\lambda \in T M_{p}^{*}$. If (φ, U) is a chart of M, then

$$
\psi(\lambda)=\left(\pi(\lambda), \sum_{i=1}^{m} \lambda\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{\pi(\lambda)}\right) e_{i}\right)
$$

defines a corresponding bundle chart $\psi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{m}$ of $T M^{*}$. For $p \in U$, the differentials $d \varphi_{p}^{1}, \ldots, d \varphi_{p}^{m}: T M_{p} \rightarrow \mathbb{R}$ constitute the basis of $T M_{p}^{*}$ dual to $\left.\frac{\partial}{\partial \varphi^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \varphi^{m}}\right|_{p}$, as

$$
d \varphi_{p}^{i}\left(\left.\frac{\partial}{\partial \varphi^{j}}\right|_{p}\right)=\frac{\partial \varphi^{i}}{\partial \varphi^{j}}(p)=\delta_{j}^{i} .
$$

The maps $d \varphi^{i}: p \mapsto d \varphi_{p}^{i}$ are sections of $T U^{*}$. A global section $\omega \in \Gamma\left(T M^{*}\right)$, $p \mapsto \omega_{p} \in T M_{p}^{*}$, is called a covector field or a 1 -form on M. With respect to the chart (φ, U), every such ω has a unique local representation

$$
\left.\omega\right|_{U}=\sum_{i=1}^{m} \omega_{i} d \varphi^{i}
$$

for the C^{∞} functions $\omega_{i}: U \rightarrow \mathbb{R}$ defined by $\omega_{i}(p)=\omega_{p}\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{p}\right)$. In particular, for any $f \in C^{\infty}(M)$, the differential $d f: p \mapsto d f_{p}$ is a 1 -form with local representation

$$
\left.d f\right|_{U}=\sum_{i=1}^{m} \frac{\partial f}{\partial \varphi^{i}} d \varphi^{i},
$$

since $d f_{p}\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{p}\right)=\frac{\partial f}{\partial \varphi^{i}}(p)$.

Constructions with vector bundles

10.4 Definition (pull-back bundle) Suppose that $\pi^{\prime}: E^{\prime} \rightarrow M^{\prime}$ is a k-plane bundle and $F: M \rightarrow M^{\prime}$ is a C^{∞} map from another manifold M into M^{\prime}. The k-plane bundle $\pi: F^{*} E^{\prime} \rightarrow M$ with total space

$$
F^{*} E^{\prime}:=\left\{(p, v) \in M \times E^{\prime}: \pi^{\prime}(v)=F(p)\right\}
$$

and projection $(p, v) \mapsto p$ is called the pull-back bundle of π^{\prime} and F or the bundle induced by π^{\prime} and F.

The map $\tilde{F}: F^{*} E^{\prime} \rightarrow E^{\prime}, \tilde{F}(p, v)=v \in E_{F(p)}^{\prime}$, is a bundle map over F. If ($\psi^{\prime}, U^{\prime}$) is a bundle chart for $E^{\prime}, \psi^{\prime}=\left(\pi^{\prime}, g^{\prime}\right)$, then

$$
\psi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}, \quad \psi(p, v)=\left(p, g^{\prime}(v)\right),
$$

is a corresponding bundle chart for $F^{*} E^{\prime}$ over $U:=F^{-1}\left(U^{\prime}\right)$. If $\left\{\left(\psi_{\alpha}^{\prime}, U_{\alpha}^{\prime}\right)\right\}$ is a bundle atlas of E^{\prime} with transition maps $g_{\beta \alpha}^{\prime}: U_{\alpha}^{\prime} \cap U_{\beta}^{\prime} \rightarrow \mathrm{GL}(k, \mathbb{R})$, then this gives a bundle atlas $\left\{\left(\psi_{\alpha}, U_{\alpha}\right)\right\}$ of E with transitions maps

$$
g_{\beta \alpha}=g_{\beta \alpha}^{\prime} \circ F: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(k, \mathbb{R})
$$

Note that if $E^{\prime}=T M^{\prime}$, then a section $s \in \Gamma\left(F^{*} T M^{\prime}\right), s(p)=(p, X(p))$, corresponds to a vector field along F, as $X(p) \in T M_{F(p)}^{\prime}$ for all $p \in M$.
10.5 Definition (Whitney sum) Suppose that $\pi: E \rightarrow M$ and $\pi^{\prime}: E^{\prime} \rightarrow M$ are vector bundles of rank k and k^{\prime}, respectively, over the same base space M. The Whitney sum or direct sum of π and π^{\prime} is the vector bundle $\bar{\pi}: E \oplus E^{\prime} \rightarrow M$ of rank $k+k^{\prime}$ with total space

$$
E \oplus E^{\prime}=\left\{\left(v, v^{\prime}\right) \in E \times E^{\prime}: \pi(v)=\pi^{\prime}\left(v^{\prime}\right)\right\}
$$

and projection $\left(v, v^{\prime}\right) \mapsto \pi(v)=\pi^{\prime}\left(v^{\prime}\right)$; that is, $\left(E \oplus E^{\prime}\right)_{p}=E_{p} \oplus E_{p}^{\prime}$.
If $\psi=(\pi, g)$ and $\psi^{\prime}=\left(\pi^{\prime}, g^{\prime}\right)$ are bundle charts of E and E^{\prime}, respectively, over the same open set $U \subset M$, then

$$
\bar{\psi}: \bar{\pi}^{-1}(U) \rightarrow U \times \mathbb{R}^{k+k^{\prime}}, \quad \bar{\psi}\left(v, v^{\prime}\right)=\left(\bar{\pi}\left(v, v^{\prime}\right), g(v), g^{\prime}\left(v^{\prime}\right)\right)
$$

is a bundle chart for $E \oplus E^{\prime}$. Transition maps satisfy

$$
\bar{g}_{\beta \alpha}(p)=g_{\beta \alpha}(p) \oplus g_{\beta \alpha}^{\prime}(p) \in \operatorname{GL}\left(k+k^{\prime}, \mathbb{R}\right)
$$

The bundles $E \oplus E^{\prime}$ and $E^{\prime} \oplus E$ are isomorphic, and

$$
\left(E \oplus E^{\prime}\right) \oplus E^{\prime \prime}=E \oplus\left(E^{\prime} \oplus E^{\prime \prime}\right)
$$

However, $E \oplus E^{\prime \prime} \cong E^{\prime} \oplus E^{\prime \prime}$ does in general not imply that $E \cong E^{\prime}$.
If $\pi: E \rightarrow M$ and $\pi^{\prime}: E^{\prime} \rightarrow M$ are again given as in Definition 10.5 then one may similarly form the tensor product $\bar{\pi}: E \otimes E^{\prime} \rightarrow M$ of π and π^{\prime} (of rank $k k^{\prime}$) with fibers $\left(E \otimes E^{\prime}\right)_{p}=E_{p} \otimes E_{p}^{\prime}$ and transitions maps satisfying

$$
\bar{g}_{\beta \alpha}(p)=g_{\beta \alpha}(p) \otimes g_{\beta \alpha}^{\prime}(p) \in \operatorname{GL}\left(k k^{\prime}, \mathbb{R}\right)
$$

(see Appendix C).
10.6 Definition (tensor bundle, tensor field) Let M be an m-dimensional manifold. The bundle

$$
T_{r, s} M:=\underbrace{T M \otimes \cdots \otimes T M}_{r} \otimes \underbrace{T M^{*} \otimes \cdots \otimes T M^{*}}_{s}
$$

of rank m^{r+s} with fibers $T_{r, s} M_{p}=\left(T M_{p}\right)_{r, s}$ is called the (r, s)-tensor bundle over M. An (r, s)-tensor field T on M is a section $T \in \Gamma\left(T_{r, s} M\right)$.

Note that $T_{1,0} M=T M$ and $T_{0,1} M=T M^{*}$. By convention, $T_{0,0} M=C^{\infty}(M)$. In a chart (φ, U) of M, the tensor field $T \in \Gamma\left(T_{r, s} M\right)$ has a unique representation

$$
\left.T\right|_{U}=\sum T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} \frac{\partial}{\partial \varphi^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial \varphi^{i_{r}}} \otimes d \varphi^{j_{1}} \otimes \cdots \otimes d \varphi^{j_{s}}
$$

for C^{∞} functions $T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}: U \rightarrow \mathbb{R}$.

Now let $T:(\Gamma(T M))^{s} \rightarrow \Gamma(T M)$ be a multilinear (s-linear) map. We say that T defines $a(1, s)$-tensor field if for all $p \in M$, the value of the vector field $T\left(X_{1}, \ldots, X_{S}\right)$ at p depends only on $X_{1}(p), \ldots, X_{S}(p)$; that is, we get an s-linear map $T_{p}:\left(T M_{p}\right)^{s} \rightarrow T M_{p}$ or, equivalently, an $(1+s)$-linear map

$$
T_{p}^{\prime}: T M_{p}^{*} \times\left(T M_{p}\right)^{s} \rightarrow \mathbb{R}, \quad T_{p}^{\prime}\left(\lambda, v_{1}, \ldots, v_{s}\right)=\lambda\left(T_{p}\left(v_{1}, \ldots, v_{s}\right)\right)
$$

hence a tensor $T_{p}^{\prime} \in T_{1, s} M_{p}$ over $T M_{p}$.
10.7 Theorem (tensor fields) An s-linear map $T:(\Gamma(T M))^{s} \rightarrow \Gamma(T M)$ defines a $(1, s)$-tensor field if and only if T is $C^{\infty}(M)$-homogeneous in every argument, that is,

$$
T\left(X_{1}, \ldots, X_{i-1}, f X_{i}, X_{i+1}, \ldots, X_{s}\right)=f T\left(X_{1}, \ldots, X_{s}\right)
$$

for any $f \in C^{\infty}(M)$.
The theorem also holds in the following form for (r, s)-tensor fields: An $(r+s)$ linear map $T:\left(\Gamma\left(T M^{*}\right)\right)^{r} \times(\Gamma(T M))^{s} \rightarrow C^{\infty}(M)$ defines an (r, s)-tensor field if and only if T is $C^{\infty}(M)$-homogeneous in every argument.

Proof:

Vector fields and flows

Let $X \in \Gamma(T M)$ be a vector field on a manifold M. A curve $c:(a, b) \rightarrow M$ is an integral curve of X if

$$
\dot{c}(t)=X_{c(t)}
$$

for all $t \in(a, b)$.
10.8 Theorem (local flow) For all $p \in M$ there exist an open neighborhood U of p and an $\epsilon>0$ such that for all $q \in U$ there is a unique integral curve $c_{q}:(-\epsilon, \epsilon) \rightarrow M$ of X with $c_{q}(0)=q$. The map $\Phi:(-\epsilon, \epsilon) \times U \rightarrow M, \Phi(t, q)=\Phi^{t}(q):=c_{q}(t)$, is C^{∞}.

Proof: Choose a chart (ψ, V) of M around p. A curve $c:(a, b) \rightarrow V$ is an integral curve of X if and only if $\gamma:=\psi \circ c$ is an integral curve of the vector field ξ on $\psi(V)$ defined by $\xi_{\psi(p)}:=d \psi_{p}\left(X_{p}\right)$, that is, $\dot{\gamma}(t)=\xi_{\gamma(t)}$ for all $t \in(a, b)$. Now the result follows from the theorem on existence, uniqueness, and smooth dependence on initial conditions of solutions to ordinary differential equations.

The map Φ is called a local flow of X around p. It follows from the uniqueness assertion in Theorem 10.8 that

$$
\Phi^{t}\left(\Phi^{s}(q)\right)=\Phi^{s+t}(q)
$$

whenever $s, t, s+t \in(-\epsilon, \epsilon)$ and $q, \Phi^{s}(q) \in U$. Then, for any open neighborhood $V \subset U$ of q with $\Phi^{s}(V) \subset U,\left.\Phi^{S}\right|_{V}$ is a C^{∞} diffeomorphism from V onto $\Phi^{s}(V)$, because $\left.\Phi^{-s} \circ \Phi^{s}\right|_{V}=\left.\Phi^{0}\right|_{V}=\mathrm{id}_{V}$.

A vector field X on M is completely integrable if for all $q \in M$ there exists an integral curve $c_{q}: \mathbb{R} \rightarrow M$ of X with $c_{q}(0)=q$. Then X induces a global flow $\Phi: \mathbb{R} \times M \rightarrow M$ and a corresponding 1-parameter family of diffeomorphisms $\left\{\Phi^{t}\right\}_{t \in \mathbb{R}}$.
10.9 Proposition (complete integrability) Every vector field $X \in \Gamma(T M)$ with compact support is completely integrable.

Proof: For all $p \in M$ there is a local flow $\Phi:\left(-\epsilon_{p}, \epsilon_{p}\right) \times U_{p} \rightarrow M$ of X. Then finitely many neighborhoods $U_{p_{1}}, \ldots, U_{p_{k}}$ cover the compact support of X. For $\epsilon:=\min \left\{\epsilon_{p_{i}}: i=1, \ldots, k\right\}$, it follows that Φ is defined on $(-\epsilon, \epsilon) \times M$, where $\Phi^{t}(p)=p$ for all t if $X(p)=0$. Writing any $t \in \mathbb{R}$ as $t=j \cdot \frac{\epsilon}{2}+r$ with $j \in \mathbb{Z}$ and $r \in\left[0, \frac{\epsilon}{2}\right)$, we conclude that $\Phi^{t}=\Phi^{r} \circ\left(\Phi^{\epsilon / 2}\right)^{j}$ is the time t flow of X.
10.10 Lemma (flow-box) If $X \in \Gamma(T M), p \in M$, and $X_{p} \neq 0$, then there exists a chart (φ, U) around p such that $\left.X\right|_{U}=\frac{\partial}{\partial \varphi^{1}}$.

Proof: This follows from the corresponding Euclidean result, Lemma A. 4 .

The Lie bracket

Let $X, Y \in \Gamma(T M)$. For $f \in C^{\infty}(M)$, the function $Y(f) \in C^{\infty}(M)$ maps $q \in M$ to $Y_{q}(f)=d f_{q}\left(Y_{q}\right) \in \mathbb{R}$. For all $p \in M$,

$$
[X, Y]_{p}(f):=X_{p}(Y(f))-Y_{p}(X(f)) \quad\left(f \in C^{\infty}(M)\right)
$$

defines a derivation at p. This yields a vector field $[X, Y] \in \Gamma(T M)$, called the Lie bracket of X and Y. Briefly, $[X, Y]=X Y-Y X$.
10.11 Theorem (Lie bracket) For $X, Y, Z \in \Gamma(T M)$ and $f, g \in C^{\infty}(M)$, the following properties hold:
(1) $[X, Y]$ is bilinear, and $[Y, X]=-[X, Y]$;
(2) $[f X, g Y]=f g[X, Y]+f X(g) Y-g Y(f) X$, in particular $[f X, Y]=f[X, Y]-$ $Y(f) X$ and $[X, g Y]=g[X, Y]+X(g) Y$,
(3) $[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0$ (Jacobi identity).

Proof:

For a chart (φ, U) and $f \in C^{\infty}(M)$,

$$
\frac{\partial}{\partial \varphi^{i}}\left(\frac{\partial}{\partial \varphi^{j}}(f)\right)=\frac{\partial}{\partial \varphi^{i}}\left(\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{j}} \circ \varphi\right)=\frac{\partial^{2}\left(f \circ \varphi^{-1}\right)}{\partial x^{i} \partial x^{j}} \circ \varphi,
$$

thus $\left[\frac{\partial}{\partial \varphi^{i}}, \frac{\partial}{\partial \varphi^{j}}\right]=0$. It follows from this fact and properties (1) and (2) above that if $\left.X\right|_{U}=\sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}$ and $\left.Y\right|_{U}=\sum_{j} Y^{j} \frac{\partial}{\partial \varphi^{j}}$, then

$$
\begin{aligned}
{\left.[X, Y]\right|_{U} } & =\sum_{i, j}\left(X^{i} \frac{\partial Y^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \varphi^{j}}-Y^{j} \frac{\partial X^{i}}{\partial \varphi^{j}} \frac{\partial}{\partial \varphi^{i}}\right) \\
& =\sum_{i}\left(\sum_{j} X^{j} \frac{\partial Y^{i}}{\partial \varphi^{j}}-Y^{j} \frac{\partial X^{i}}{\partial \varphi^{j}}\right) \frac{\partial}{\partial \varphi^{i}}
\end{aligned}
$$

The following results relates Lie brackets to flows.
10.12 Theorem (Lie derivative) If Φ is a local flow of X around p, then

$$
[X, Y]_{p}=\lim _{t \rightarrow 0} \frac{d\left(\Phi^{-t}\right)\left(Y_{\Phi^{t}(p)}\right)-Y_{p}}{t}=\left.\frac{d}{d t}\right|_{t=0} d\left(\Phi^{-t}\right)\left(Y_{\Phi^{t}(p)}\right)
$$

The right side of this identity is called the Lie derivative of Y in direction of X at the point p and is denoted by $\left(L_{X} Y\right)_{p}$; thus $[X, Y]=L_{X} Y$.

Proof:

Let N be an n-dimensional manifold. An m-dimensional C^{∞} distribution Δ on N assigns to each $p \in N$ an m-dimensional linear subspace $\Delta_{p} \subset T N_{p}$ such that for every point $p \in N$ there exist an open neighborhood $U \subset N$ of p and vector fields $X_{1}, \ldots, X_{m} \in \Gamma(T U)$ with $\Delta_{q}=\operatorname{span}\left(X_{1}(q), \ldots, X_{m}(q)\right)$ for all $q \in U$. The distribution Δ is called involutive or completely integrable if for all vector fields $X, Y \in \Gamma(T N)$ with $X_{p}, Y_{p} \in \Delta_{p}$ for all $p \in N$, also $[X, Y]_{p} \in \Delta_{p}$ for all $p \in N$. An injective immersion $I: M \rightarrow N$ of an m-dimensional manifold M is called an integral manifold of Δ if $d I_{p}\left(T M_{p}\right)=\Delta_{p}$ for all $p \in M$. The theorem of Frobenius says that for every $p \in N$ there exists an integral manifold of Δ through p if and only if Δ is involutive.

11 Differential forms

Basic definitions

Let M be a C^{∞} manifold of dimension m. For $p \in M, \Lambda_{s}\left(T M_{p}^{*}\right)$ denotes the vector space of alternating s-linear maps $\left(T M_{p}\right)^{s} \rightarrow \mathbb{R}$ (see Appendix \mathbb{C}), and

$$
\Lambda_{s}\left(T M^{*}\right):=\bigcup_{p \in M} \Lambda_{s}\left(T M_{p}^{*}\right)
$$

denotes the corresponding bundle.
11.1 Definition (differential form) A differential form of degree s or an s-form on M is a (smooth) section of $\Lambda_{s}\left(T M^{*}\right)$. We will denote the vector space of s-forms on M more briefly by $\Omega^{s}(M):=\Gamma\left(\Lambda_{s}\left(T M^{*}\right)\right)$.

By convention, $\Lambda_{0}\left(T M_{p}^{*}\right)=\mathbb{R}$, hence $\Omega^{0}(M)=C^{\infty}(M)$. Recall also that $\Lambda_{s}\left(T M_{p}^{*}\right)$ has dimension $\binom{m}{s}$, in particular $\Omega^{s}(M)=\{0\}$ for $s>m$.

For $\omega \in \Omega^{s}(M)$ and $\theta \in \Omega^{t}(M)$, the exterior product

$$
\omega \wedge \theta \in \Omega^{S+t}(M)
$$

is defined by $(\omega \wedge \theta)_{p}:=\omega_{p} \wedge \theta_{p}$ for all $p \in M$ (see DefinitionC.3). Note that

$$
\theta \wedge \omega=(-1)^{s t} \omega \wedge \theta
$$

in particular $\omega \wedge \omega=0$ if s is odd. The exterior product is bilinear and associative. For $f \in C^{\infty}(M)=\Omega^{0}(M)$ and $\omega \in \Omega^{s}(M), f \wedge \omega=f \omega$.

In a chart (φ, U), a form $\omega \in \Omega^{s}(M)$ has the representation

$$
\left.\omega\right|_{U}=\sum_{1 \leq i_{1}<\ldots<i_{s} \leq m} \omega_{i_{1} \ldots i_{s}} d \varphi^{i_{1}} \wedge \ldots \wedge d \varphi^{i_{s}}
$$

with components $\omega_{i_{1} \ldots i_{s}}=\omega\left(\frac{\partial}{\partial \varphi^{i_{1}}}, \ldots, \frac{\partial}{\partial \varphi^{i_{s}}}\right) \in C^{\infty}(U)$.
Recall that for $f \in C^{\infty}(M)$, the pointwise differential $p \mapsto d f_{p}$ is a 1-form $d f \in \Gamma\left(T M^{*}\right)=\Gamma\left(\Lambda_{1}\left(T M^{*}\right)\right)=\Omega^{1}(M)$.
11.2 Theorem (exterior derivative) There exists a unique sequence of linear operators

$$
d: \Omega^{s}(M) \rightarrow \Omega^{s+1}(M), \quad s=0,1, \ldots
$$

with the following properties:
(1) for $f \in \Omega^{0}(M)=C^{\infty}(M)$, df is the differential of f, thus $d f(X)=X(f)$ for $X \in \Gamma(T M) ;$
(2) $d \circ d=0$;
(3) $d(\omega \wedge \theta)=d \omega \wedge \theta+(-1)^{s} \omega \wedge d \theta$ for $\omega \in \Omega^{s}(M)$ and $\theta \in \Omega^{t}(M)$.

Proof:

The operators d are local, that is, $\left.(d \omega)\right|_{U}=d\left(\left.\omega\right|_{U}\right)$ whenever $\omega \in \Omega^{S}(M)$ and $U \subset \mathbb{R}^{m}$ is open. In a chart (φ, U),

$$
\left.d \omega\right|_{U}=\sum_{1 \leq i_{1}<\ldots<i_{s} \leq m} d \omega_{i_{1} \ldots i_{s}} \wedge d \varphi^{i_{1}} \wedge \ldots \wedge d \varphi^{i_{s}}
$$

11.3 Theorem (exterior derivative, coordinate-free) For a form $\omega \in \Omega^{s}(M)$ and vector fields $X_{1}, \ldots, X_{s+1} \in \Gamma(T M)$,

$$
\begin{aligned}
& d \omega\left(X_{1}, \ldots, X_{s+1}\right)=\sum_{i=1}^{s+1}(-1)^{i+1} X_{i}\left(\omega\left(X_{1}, \ldots, \widehat{X}_{i}, \ldots, X_{s+1}\right)\right) \\
& \quad+\sum_{1 \leq i<j \leq s+1}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{s+1}\right)
\end{aligned}
$$

here, \widehat{X}_{i} signifies that the entry X_{i} does not occur.
In particular, if $\omega \in \Omega^{1}(M)$, then

$$
d \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y])
$$

Proof:

For a C^{∞} map $F: N \rightarrow M$ and $\omega \in \Omega^{s}(M)$, the pull-back form $F^{*} \omega \in \Omega^{s}(N)$ is defined by

$$
\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{s}\right):=\omega_{F(p)}\left(d F_{p}\left(v_{1}\right), \ldots, d F_{p}\left(v_{s}\right)\right)
$$

for $p \in N$ and $v_{1}, \ldots, v_{s} \in T N_{p}$. If $f \in C^{\infty}(M)=\Omega^{0}(M)$, then $F^{*} f:=f \circ F$.
11.4 Proposition (pull-back of forms) For a C^{∞} map $F: N \rightarrow M$ and forms $\omega \in \Omega^{s}(M)$ and $\theta \in \Omega^{t}(M)$,
(1) $F^{*}(\omega \wedge \theta)=F^{*} \omega \wedge F^{*} \theta$,
(2) $F^{*}(d \omega)=d\left(F^{*} \omega\right)$.

Proof: Exercise.

Integration of forms

Let M be an oriented manifold of dimension m. A set $M^{\prime} \subset M$ is measurable if $\varphi\left(M^{\prime} \cap U\right) \subset \mathbb{R}^{m}$ is (Lebesgue) measurable for every chart (φ, U) of M. A measurable decomposition of M is a countable family $\left\{M_{\alpha}\right\}_{\alpha \in A}$ of measurable subsets of M such that
(1) $M \backslash \bigcup_{\alpha \in A} M_{\alpha}$ has measure zero (Definition 9.1), and
(2) $M_{\alpha} \cap M_{\beta}$ has measure zero whenever $\alpha \neq \beta$.

For every atlas of M there is a measurable decomposition $\left\{M_{\alpha}\right\}_{\alpha \in A}$ of M such that every set M_{α} is contained in the domain of some chart of the atlas.

Let now $\omega \in \Omega^{m}(M)$ be a form of degree $m=\operatorname{dim}(M)$, and let (φ, U) be a positively oriented chart of M. Then

$$
\left.\omega\right|_{U}=\omega^{\varphi} d \varphi^{1} \wedge \ldots \wedge d \varphi^{m}
$$

for $\omega^{\varphi}=\omega\left(\frac{\partial}{\partial \varphi^{1}}, \ldots, \frac{\partial}{\partial \varphi^{m}}\right) \in C^{\infty}(U)$. If (ψ, V) is another positively oriented chart and $H:=\psi \circ \varphi^{-1}: \varphi(U \cap V) \rightarrow \psi(U \cap V)$ is the change of coordinates, then by applying $\left.\omega\right|_{V}=\omega^{\psi} d \psi^{1} \wedge \ldots \wedge d \psi^{m}$ to $\frac{\partial}{\partial \varphi^{1}}, \ldots, \frac{\partial}{\partial \varphi^{m}}$ one gets that

$$
\omega^{\varphi}(p)=\omega^{\psi}(p) \operatorname{det}\left(\frac{\partial \psi^{i}}{\partial \varphi^{j}}(p)\right)=\omega^{\psi}(p) \operatorname{det} J_{H}(\varphi(p))
$$

for all $p \in U \cap V$, where the Jacobi determinant is positive.
Now let $M^{\prime} \subset U$ be a measurable set. The form ω is integrable over M^{\prime} if the integral of $\left|\omega^{\varphi} \circ \varphi^{-1}\right|$ over $\varphi\left(M^{\prime}\right)$ is finite; then

$$
\int_{M^{\prime}} \omega:=\int_{\varphi\left(M^{\prime}\right)} \omega^{\varphi} \circ \varphi^{-1} d x
$$

defines the integral of ω over M^{\prime}. If (ψ, V) is another positively oriented chart with $M^{\prime} \subset V$ and H is the change of coordinates, then it follows that

$$
\int_{\psi\left(M^{\prime}\right)} \omega^{\psi} \circ \psi^{-1} d y=\int_{\varphi\left(M^{\prime}\right)} \omega^{\psi} \circ \varphi^{-1}\left|\operatorname{det} J_{H}\right| d x=\int_{\varphi\left(M^{\prime}\right)} \omega^{\varphi} \circ \varphi^{-1} d x
$$

by the change of variables formula and the aforementioned transformation rule for the coefficients of ω.
11.5 Definition (integral of a form) The form $\omega \in \Omega^{m}(M)$ is integrable over M if there exist a measurable decomposition $\left\{M_{\alpha}\right\}_{\alpha \in A}$ and positively oriented charts $\left(\varphi_{\alpha}, U_{\alpha}\right)$ of M with $M_{\alpha} \subset U_{\alpha}$ such that

$$
\sum_{\alpha \in A} \int_{\varphi_{\alpha}\left(M_{\alpha}\right)}\left|\omega^{\varphi_{\alpha}} \circ \varphi_{\alpha}^{-1}\right| d x<\infty
$$

In this case,

$$
\int_{M} \omega:=\sum_{\alpha \in A} \int_{M_{\alpha}} \omega=\sum_{\alpha \in A} \int_{\varphi_{\alpha}\left(M_{\alpha}\right)} \omega^{\varphi_{\alpha}} \circ \varphi_{\alpha}^{-1} d x
$$

defines the integral of ω over M.
The integral is independent of the choices of $\left(\varphi_{\alpha}, U_{\alpha}\right)$ and M_{α}. Forms with compact support are integrable: this clearly holds if $\operatorname{spt}(\omega)$ lies in the domain of a single chart, and in the general case one may use a partition of unity to write ω as a sum of finitely many forms with this property.

If ω is integrable over M, and N is another oriented m-dimensional manifold and $F: N \rightarrow M$ is a diffeomorphism, then

$$
\int_{N} F^{*} \omega=\epsilon \int_{M} \omega
$$

where $\epsilon=1$ if F is orientation preserving and $\epsilon=-1$ otherwise. Furthermore, if N is compact and M is connected, and $F: N \rightarrow M$ is an arbitrary C^{∞} map, then one can show that $\int_{N} F^{*} \omega=\operatorname{deg}(F) \int_{M} \omega$.
11.6 Theorem (Stokes) Let M^{m} be an oriented manifold with (possibly empty) boundary ∂M, and let $\omega \in \Omega^{m-1}(M)$ be an $(m-1)$-form with compact support. Then

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

(precisely, $\int_{M} d \omega=\int_{\partial M} i^{*} \omega$ for the inclusion map $i: \partial M \rightarrow M$).
Here the boundary ∂M is equipped with the induced orientation: a basis $\left(v_{1}, \ldots, v_{m-1}\right)$ of $T(\partial M)_{p} \subset T M_{p}$ is positively oriented if and only if ($v, v_{1}, \ldots, v_{m-1}$) is positively oriented in $T M_{p}$ for every vector v in the "outer" connected component of $T M_{p} \backslash T(\partial M)_{p}$.

Proof:

A volume form ω on M^{m} is a nowhere vanishing m-form, that is, $\omega_{p} \neq 0 \in$ $\Lambda_{m}\left(T M_{p}^{*}\right)$ for all $p \in M$.
11.7 Theorem (volume form) There exists a volume form on M if and only if M is orientable.

Proof: Exercise.

Integration without orientation

If V is an m-dimensional (real) vector space and $0 \neq \omega \in \Lambda_{m}\left(V^{*}\right)$, then

$$
|\omega|: V \times \cdots \times V \rightarrow[0, \infty), \quad|\omega|\left(v_{1}, \ldots, v_{m}\right):=\left|\omega\left(v_{1}, \ldots, v_{m}\right)\right|
$$

is called a volume element on V. Now let M be an m-dimensional manifold. A $\left(C^{\infty}\right)$ volume element $d \mu$ on M assigns to every point $p \in M$ a volume element $d \mu_{p}$ on $T M_{p}$ such that, for every chart (φ, U) of M,

$$
\left.d \mu\right|_{U}=\varrho^{\varphi}\left|d \varphi^{1} \wedge \ldots \wedge d \varphi^{m}\right|
$$

for some C^{∞} density function $\varrho^{\varphi}: U \rightarrow(0, \infty)$. (The notation $d \mu$ stems from measure theory and is unrelated to the exterior derivative of differential forms.) If (ψ, V) is another chart and $H=\psi \circ \varphi^{-1}: \varphi(U \cap V) \rightarrow \psi(U \cap V)$ is the coordinate change, then

$$
\varrho^{\varphi}(p)=\varrho^{\psi}(p)\left|\operatorname{det} J_{H}(\varphi(p))\right|
$$

for all $p \in U \cap V$, similarly as for the coefficients of m-forms.
If $d \mu$ is a volume element on M and M is orientable, then there exists a volume form $\omega \in \Omega^{m}(M)$ with $d \mu=|\omega|$. For a non-orientable M, such a form exists only locally, due to Theorem 11.7

From a volume element $d \mu$ on M one obtains a measure μ on (the σ-algebra of measurable subsets of) M as follows: if $\left\{M_{\alpha}\right\}_{\alpha \in A}$ is a measurable decomposition of M such that for every α there is a chart $\left(\varphi_{\alpha}, U_{\alpha}\right)$ with $M_{\alpha} \subset U_{\alpha}$, then

$$
\mu(B):=\sum_{\alpha} \int_{\varphi_{\alpha}\left(B \cap M_{\alpha}\right)} \varrho^{\varphi_{\alpha}} \circ \varphi_{\alpha}^{-1} d x
$$

for every measurable set $B \subset M$. It follows from the change of variable formula and the above transformation rule for the densities that the measure is well-defined. Now, if $f: M \rightarrow \mathbb{R}$ is a measurable function, then the meaning of $\int_{M} f d \mu$ results from this measure. However, the integral can also be defined directly in terms of the volume element $d \mu: f$ is integrable if

$$
\int_{M}|f| d \mu:=\sum_{\alpha} \int_{\varphi_{\alpha}\left(M_{\alpha}\right)}\left(|f| \varrho^{\varphi_{\alpha}}\right) \circ \varphi_{\alpha}^{-1} d x<\infty
$$

the same formula with f in place of $|f|$ then defines the integral $\int_{M} f d \mu$.
For a Riemannian manifold $\left(M^{m}, g\right)$, the volume element $d \mu_{g}$ induced by g is given in a chart (φ, U) by

$$
\left.d \mu_{g}\right|_{U}:=\sqrt{\operatorname{det}\left(g_{i j}^{\varphi}\right)}\left|d \varphi^{1} \wedge \ldots \wedge d \varphi^{m}\right|
$$

where $\left.g\right|_{U}=\sum g_{i j}^{\varphi} d \varphi^{i} \otimes d \varphi^{j}$.

De Rham cohomology

A form $\omega \in \Omega^{S}(M)$ is closed if $d \omega=0$. The form ω is called exact if there exists a $\theta \in \Omega^{s-1}(M)$ such that $\omega=d \theta$; furthermore, by convention, $0 \in C^{\infty}(M)=\Omega^{0}(M)$ is the only exact 0 -form. Every m-form on an m-dimensional manifold M is closed, because $\Omega^{m+1}(M)=\{0\}$. Since $d \circ d=0$, every exact form is closed.
11.8 Definition (de Rham cohomology) For $s \geq 0$, the quotient vector space

$$
H_{\mathrm{dR}}^{s}(M):=\frac{\left\{\omega \in \Omega^{s}(M): \omega \text { is closed }\right\}}{\left\{\omega \in \Omega^{s}(M): \omega \text { is exact }\right\}}
$$

is called the de Rham cohomology of M in degree s. For a closed form $\omega \in \Omega^{s}(M)$,

$$
[\omega]:=\left\{\omega^{\prime} \in \Omega^{s}(M): \omega^{\prime}-\omega \text { is exact }\right\} \in H_{\mathrm{dR}}^{s}(M)
$$

denotes the cohomology class of ω. Two forms $\omega, \omega^{\prime} \in \Omega^{s}(M)$ are cohomologous if $[\omega]=\left[\omega^{\prime}\right]$.

The dimension $b_{s}(M):=\operatorname{dim} H_{\mathrm{dR}}^{s}(M)$ is called the s-th Betti number of M, and

$$
\chi(M):=\sum_{s=0}^{m}(-1)^{s} b_{s}(M)
$$

is the Euler characteristic of M. If every closed s-form is exact, then $H_{\mathrm{dR}}^{s}(M)$ is a trivial (one-point) vector space, which will be denoted by 0 . The subscript dR will often be omitted in the following.

Examples

1. $H^{0}(M)=\left\{f \in C^{\infty}(M): d f=0\right\}$ is the vector space of the locally constant functions on M. If M has a finite number k of connected components, then $H^{0}(M) \simeq \mathbb{R}^{k}$ (isomorphic).
2. On $M=\mathbb{R}^{2} \backslash\{(0,0)\}$,

$$
\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

defines a 1 -form that is closed but not exact; in particular, $H^{1}(M) \neq 0$. Locally, ω agrees with the differential $d \varphi$ of a polar angle φ with respect to the origin $(0,0)$, but φ cannot be defined continuously on all of M.

In the following, M, N are two manifolds and $F \in C^{\infty}(N, M)$. For $s \geq 0$, the pull-back operator $F^{*}: \Omega^{s}(M) \rightarrow \Omega^{s}(N)$ induces a well-defined linear map

$$
F^{*}: H^{s}(M) \rightarrow H^{s}(N), \quad F^{*}[\omega]=\left[F^{*} \omega\right] .
$$

If L is another manifold and $G \in C^{\infty}(M, L)$, then

$$
F^{*} \circ G^{*}=(G \circ F)^{*}: H^{s}(L) \rightarrow H^{s}(N)
$$

in particular, $H^{s}(M)$ and $H^{s}(N)$ are isomorphic if F is a diffeomorphism.
11.9 Theorem (Poincaré lemma) If $F, G \in C^{\infty}(N, M)$ are smoothly homotopic, $F \sim G$, then the induced maps $F^{*}, G^{*}: H^{s}(M) \rightarrow H^{s}(N)$ agree in every degree $s \geq 0$.

Proof:

Two manifolds M and \bar{M} are called (smoothly) homotopy equivalent if there exist smooth maps $\bar{F}: M \rightarrow \bar{M}$ and $F: \bar{M} \rightarrow M$ such that $F \circ \bar{F} \sim \mathrm{id}_{M}$ and $\bar{F} \circ F \sim \operatorname{id}_{\bar{M}}$; then F and \bar{F} are (smooth) homotopy equivalences inverse to each other. The manifold M is (smoothly) contractible if id_{M} is smoothly homotopic to a constant map $M \rightarrow\left\{p_{0}\right\} \subset M$; this is the case if and only if M is homotopy equivalent to a one-point space.
11.10 Corollary (1) If M and \bar{M} are homotopy equivalent, then $H^{s}(M) \simeq$ $H^{s}(\bar{M})$ for all $s \geq 0$.
(2) If M is contractible, then $H^{0}(M) \simeq \mathbb{R}$ and $H^{s}(M)=0$ for $s \geq 1$.

Proof:
If M is a manifold and $U, V \subset M$ are two open sets with $U \cup V=M$, then there exists a long exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}(M) \rightarrow H^{0}(U) \oplus H^{0}(V) \rightarrow H^{0}(U \cap V) \rightarrow \ldots \\
\ldots & \rightarrow H^{s}(M) \rightarrow H^{s}(U) \oplus H^{s}(V) \rightarrow H^{s}(U \cap V) \\
& \rightarrow H^{s+1}(M) \rightarrow H^{s+1}(U) \oplus H^{s+1}(V) \rightarrow H^{s+1}(U \cap V) \rightarrow \ldots
\end{aligned}
$$

(thus the image of each of these linear maps equals the kernel of the following one), the Mayer-Vietoris sequence, which constitutes a very useful tool to determine the de Rham cohomology.

Example The sphere $S^{m} \subset \mathbb{R}^{m+1}(m \geq 1)$ is covered by the two open sets $U:=S^{m} \backslash\left\{-e_{m+1}\right\}$ and $V:=S^{m} \backslash\left\{e_{m+1}\right\}$, both of which are contractible, and $U \cap V$ is homotopy equivalent to S^{m-1}. By Corollary 11.10, for all $s \geq 1$, both $H^{s}(U) \oplus H^{s}(V)$ and $H^{s+1}(U) \oplus H^{s+1}(V)$ are trivial, hence the map

$$
H^{s}\left(S^{m-1}\right) \simeq H^{s}(U \cap V) \rightarrow H^{s+1}(M)=H^{s+1}\left(S^{m}\right)
$$

in the Mayer-Vietoris sequence is injective as well as surjective. Hence, for $m, s \geq 1$, the recursion formula $H^{s+1}\left(S^{m}\right) \simeq H^{s}\left(S^{m-1}\right)$ holds. Furthermore, since $H^{0}\left(S^{m}\right) \simeq \mathbb{R}$ and $H^{0}(U) \oplus H^{0}(V) \simeq \mathbb{R}^{2}$, one obtains the exact sequence

$$
0 \rightarrow \mathbb{R} \rightarrow \mathbb{R}^{2} \rightarrow H^{0}(U \cap V) \rightarrow H^{1}\left(S^{m}\right) \rightarrow 0 .
$$

If $m=1$, then $H^{0}(U \cap V) \simeq \mathbb{R}^{2}$ and hence $H^{1}\left(S^{1}\right) \simeq \mathbb{R}$, and if $m \geq 2$, then $H^{0}(U \cap V) \simeq \mathbb{R}$ and thus $H^{1}\left(S^{m}\right)=0$. It follows that $H^{s}\left(S^{m}\right) \simeq \mathbb{R}$ for $s \in\{0, m\}$ and $H^{s}\left(S^{m}\right)=0$ otherwise.

We mention two other important results, in both of which M is a compact oriented manifold (without boundary) of dimension m, and $s \in\{0,1, \ldots, m\}$.

The Poincaré duality theorem says that the bilinear form

$$
(\cdot, \cdot): H^{s}(M) \times H^{m-s}(M) \rightarrow \mathbb{R}, \quad([\omega],[\theta]):=\int_{M} \omega \wedge \theta
$$

(which is well-defined by the theorem of Stokes), is non-degenerate. This yields an isomorphism $H^{s}(M) \simeq\left(H^{m-s}(M)\right)^{*}$, which assigns to $[\omega]$ the linear form $[\theta] \mapsto([\omega],[\theta])$. For example, if M is connected, then this implies that $H^{m}(M) \simeq$ $H^{0}(M) \simeq \mathbb{R}$.

Now we let $H_{s}^{(\infty)}(M, \mathbb{R})$ denote the smooth singular homology of M. An element $[\sigma]$ of the vector space $H_{s}^{(\infty)}(M, \mathbb{R})$ is a homology class $\left\{\sigma^{\prime}: \sigma^{\prime}-\sigma=\partial \tau\right\}$ of smooth singular s-chains σ^{\prime} with real coefficients and $\partial \sigma^{\prime}=0$. It can be shown that the bilinear form

$$
(\cdot, \cdot): H_{\mathrm{dR}}^{s}(M) \times H_{s}^{(\infty)}(M, \mathbb{R}) \rightarrow \mathbb{R}, \quad([\omega],[\sigma]):=\int_{\sigma} \omega,
$$

is non-degenerate. (It follows from the generalized theorem of Stokes for smooth singular s-chains that it is well-defined.) This yields a canonical isomorphism $H_{\mathrm{dR}}^{s}(M) \simeq\left(H_{s}^{(\infty)}(M, \mathbb{R})\right)^{*}$, sending $[\omega]$ to the linear form $[\sigma] \mapsto([\omega],[\sigma])$. Furthermore there are canonical isomorphisms $\left(H_{s}^{(\infty)}(M, \mathbb{R})\right)^{*} \simeq H_{(\infty)}^{s}(M, \mathbb{R}) \simeq H^{s}(M, \mathbb{R})$ to the smooth singular cohomology and the usual singular cohomology, respectively. In particular $H_{\mathrm{dR}}^{s}(M)$ and $H^{s}(M, \mathbb{R})$ are isomorphic; this is the theorem of de Rham.

12 Lie groups

Lie groups and Lie algebras

A topological group (G, \cdot) is a group endowed with a topology such that the map

$$
G \times G \rightarrow G, \quad(g, h) \mapsto g h^{-1}
$$

is continuous (equivalently, both the group multiplication $G \times G \rightarrow G$ and the map $G \rightarrow G$ sending each group element to its inverse are continuous).
12.1 Definition (Lie group) A Lie group (G, \cdot) is a group with the structure of a C^{∞} manifold such that the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$, is C^{∞}.

Examples

1. \mathbb{R}^{m} with vector addition;
2. $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ with complex multiplication;
3. $S^{1} \subset \mathbb{C}^{*}$.
4. If G, H are Lie groups, then the product manifold $G \times H$, equipped with the multiplication $(g, h)\left(g^{\prime}, h^{\prime}\right):=\left(g g^{\prime}, h h^{\prime}\right)$, is a Lie group.
5. $T^{m}=S^{1} \times \ldots \times S^{1}$ (m factors) .
6. $\operatorname{GL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det}(A) \neq 0\right\}$ with matrix multiplication; likewise, $\operatorname{GL}(n, \mathbb{C})$.
7. $\operatorname{GL}(n, \mathbb{R}) \times \mathbb{R}^{n}$, equipped with the multiplication

$$
(A, v)(B, w):=(A B, A w+v)
$$

is (isomorphic to) the Lie group of affine transformations $g_{A, v}: x \mapsto A x+v$ of \mathbb{R}^{n}.

Let G, G^{\prime} be two Lie groups. A Lie group homomorphism $F: G \rightarrow G^{\prime}$ is a C^{∞} group homomorphism; a Lie group isomorphism is, in addition, a $\left(C^{\infty}\right)$ diffeomorphism (and hence also a group isomorphism). A Lie group homomorphism $F: G \rightarrow G^{\prime}$ is also called a representation of G in G^{\prime}, in particular when G^{\prime} is $\mathrm{GL}(n, \mathbb{R})$ or $\mathrm{GL}(n, \mathbb{C})$.

In the following, (G, \cdot) denotes a Lie group with neutral element e. For every $g \in G$, the left multiplication

$$
L_{g}: G \rightarrow G, \quad L_{g}(h):=g h,
$$

is a diffeomorphism of G with inverse $\left(L_{g}\right)^{-1}=L_{g^{-1}}$. Likewise, the right multiplication $R_{g}: G \rightarrow G, R_{g}(h)=h g$, is a diffeomorphism.
12.2 Lemma Let (G, \cdot) be a connected Lie group, and let $U \subset G$ be a neighborhood of e. Then U generates G, that is, every $g \in G$ can be written as a product $g=g_{1} \ldots g_{k}$ of finitely many elements of U.

Proof: We assume that U is open. Then it follows inductively that $U^{k}=\left\{g_{1} \ldots g_{k}\right.$: $\left.g_{1}, \ldots, g_{k} \in U\right\}$ is open for every $k \geq 1$: if U^{k} is open, then so is $U^{k} g=R_{g}\left(U^{k}\right)$ for all $g \in U$, hence $U^{k+1}=\bigcup_{g \in U} U^{k} g$ is open. Therefore $V:=\bigcup_{k=1}^{\infty} U^{k+1}$ is open. On the other hand, if $g \in G \backslash V$, then $g h \in G \backslash V$ for all $h \in U$, for otherwise $g \in V h^{-1}=V$; so $g U=L_{g}(U)$ is an open neighborhood of g disjoint from V. Thus $G \backslash V$ is open as well. Since $e \in V$ and G is connected, it follows that $V=G$, that is, U generates G.

For a general Lie group G, the connected component containing the neutral element is usually denoted by G_{0}. For $g \in G$, the diffeomorphisms L_{g} and R_{g} map G_{0} onto the connected component of G containing g. Thus G_{0} is a normal subgroup of G whose cosets are the connected components of G. The quotient G / G_{0} is a countable group (and thus a 0-dimensional Lie group with the discrete topology).
12.3 Definition (Lie algebra) A Lie algebra V over \mathbb{R} is a vector space over \mathbb{R} together with a bilinear map $[\cdot, \cdot]: V \times V \rightarrow V$, the Lie bracket of V, such that for all $X, Y, Z \in V$,
(1) $[Y, X]=-[X, Y]$ (anti-commutativity);
(2) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (Jacobi identity).

Examples

1. Any vector space V (over \mathbb{R}) with the trivial bracket $[\cdot, \cdot] \equiv 0$ (abelian Lie algebra).
2. The vector space $\Gamma(T M)$ of C^{∞} vector fields on a manifold M with the Lie bracket $[X, Y](f):=X(Y(f))-Y(X(f))$.
3. $\mathbb{R}^{n \times n}$ with $[A, B]:=A B-B A$ (matrix multiplication).
4. \mathbb{R}^{3} with the vector product $[X, Y]:=X \times Y$.
5. Any 2-dimensional vector space with basis (X, Y) and the bracket defined by $[X, X]:=0,[Y, Y]:=0,-[Y, X]=[X, Y]:=Y$, and bilinear extension.

Let V, V^{\prime} be two Lie algebras. A Lie algebra homomorphism $L: V \rightarrow V^{\prime}$ is a linear map such that $L[X, Y]=[L X, L Y]$ for all $X, Y \in V$; a Lie algebra isomorphism is, in addition, a linear isomorphism.

A vector field X on a Lie group G is called left-invariant if

$$
L_{g *} X=X \circ L_{g}
$$

for all $g \in G$, that is, $L_{g *} X_{h}:=d\left(L_{g}\right)_{h}\left(X_{h}\right)=X_{g h}$ for all $g, h \in G$. For every vector $X_{0} \in T G_{e}$ there exists a unique left-invariant vector field X with $X_{e}=X_{0}$, defined by

$$
X_{g}:=L_{g *} X_{0}
$$

then $L_{g *} X_{h}=L_{g *} L_{h *} X_{0}=\left(L_{g} \circ L_{h}\right)_{*} X_{0}=L_{g h *} X_{0}=X_{g h}$ for all $h \in H$. Leftinvariant vector fields are C^{∞}, and if X, Y are left-invariant, then $[X, Y]$ is leftinvariant (exercise). Thus the left-invariant vector fields constitute a Lie subalgebra of $(\Gamma(T G),[\cdot, \cdot])$.
12.4 Definition (Lie algebra of a Lie group) The Lie algebra \underline{g} of a Lie group G is the vector space $T G_{e}$ with the bracket defined by

$$
\left[X_{0}, Y_{0}\right]:=[X, Y]_{e}
$$

for all $X_{0}, Y_{0} \in T G_{e}$, where X, Y denote the left-invariant vector fields on G such that $X_{e}=X_{0}$ and $Y_{e}=Y_{0}$.

Examples

1. The Lie algebra of $G=\mathrm{GL}(n, \mathbb{R})$ is the vector space $T G_{e}=\operatorname{gl}(n, \mathbb{R})=\mathbb{R}^{n \times n}$. If $A \in \operatorname{gl}(n, \mathbb{R})$, and if $c:(-\epsilon, \epsilon) \rightarrow \mathrm{GL}(n, \mathbb{R})$ is a smooth curve with $c(0)=e$ and $c^{\prime}(\overline{0})=A$, then

$$
L_{g *} A=L_{g *}\left(c^{\prime}(0)\right)=\left(L_{g} \circ c\right)^{\prime}(0)=g c^{\prime}(0)=g A \in T G_{g}
$$

for all $g \in \operatorname{GL}(n, \mathbb{R})$; hence $g \mapsto g A$ is the corresponding left-invariant vector field, viewed as a map from G to $\mathbb{R}^{n \times n}$. For $A, B \in \underline{\operatorname{gl}(n, \mathbb{R}) \text { and } X_{g}:=g A, ~\left(Y_{g}\right)}$ and $Y_{g}:=g B$, the Lie bracket is given by

$$
\left.[A, B]=[X, Y]_{e}=A B-B A \quad \text { (matrix product }\right)
$$

To see this, let $\varphi^{i k}: \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}$ denote the global coordinate function that assigns to g the matrix entry $g_{i k}$. The vector $Y_{g} \in T G_{g}$, applied as a derivation to $\varphi^{i k}$, returns the corresponding matrix entry of $Y_{g}=g B$, thus

$$
Y_{g}\left(\varphi^{i k}\right)=(g B)_{i k}=\sum_{j=1}^{n} g_{i j} b_{j k}=\sum_{j=1}^{n} b_{j k} \varphi^{i j}(g)
$$

Likewise, $X_{e}\left(\varphi^{i j}\right)=A\left(\varphi^{i j}\right)=a_{i j}$ and $(A B)\left(\varphi^{i k}\right)=(A B)_{i k}$, hence

$$
X_{e}\left(Y\left(\varphi^{i k}\right)\right)=\sum_{j=1}^{n} b_{j k} A\left(\varphi^{i j}\right)=\sum_{j=1}^{n} a_{i j} b_{j k}=(A B)\left(\varphi^{i k}\right)
$$

Since this holds for all $i, k \in\{1, \ldots, n\}$ and also with interchanged roles of A and B, this gives the result.
 bracket given by $[A, B]=A B-B A$ as above.
3. $\operatorname{SL}(n, \mathbb{R})=\{g \in \operatorname{GL}(n, \mathbb{R}): \operatorname{det}(g)=1\}$, dimension $n^{2}-1$,

$$
\underline{\mathrm{s}}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{trace}(A)=0\right\} .
$$

4. $\operatorname{SL}(n, \mathbb{C})=\{g \in \operatorname{GL}(n, \mathbb{C}): \operatorname{det}(g)=1\}$, dimension $2\left(n^{2}-1\right)$,

$$
\underline{\operatorname{sl}}(n, \mathbb{C})=\left\{A \in \mathbb{C}^{n \times n}: \operatorname{trace}(A)=0\right\} .
$$

5. $\mathrm{O}(n)=\left\{g \in \mathrm{GL}(n, \mathbb{R}): g g^{\mathrm{t}}=e\right\}, \mathrm{SO}(n)=\mathrm{O}(n) \cap \mathrm{SL}(n, \mathbb{R})$, dimension $\frac{1}{2} n(n-1)$,

$$
\underline{\mathrm{o}}(n)=\underline{\mathrm{so}}(n)=\left\{A \in \mathbb{R}^{n \times n}: A=-A^{\mathrm{t}}\right\} .
$$

6. $\mathrm{U}(n)=\left\{g \in \mathrm{GL}(n, \mathbb{C}): g \bar{g}^{\mathrm{t}}=e\right\}$, dimension n^{2},

$$
\underline{\mathbf{u}}(n)=\left\{A \in \mathbb{C}^{n \times n}: A=-\bar{A}^{\mathrm{t}}\right\} .
$$

$\mathrm{SU}(n)=\mathrm{U}(n) \cap \mathrm{SL}(n, \mathbb{C})$, dimension $n^{2}-1$,

$$
\underline{\operatorname{su}}(n)=\underline{\mathrm{u}}(n) \cap \underline{\mathrm{s}}(n, \mathbb{C}) .
$$

7. Affine group $G=\operatorname{GL}(n, \mathbb{R}) \times \mathbb{R}^{n},(g, v)(h, w)=(g h, g w+v)$,

$$
\underline{g}=\mathbb{R}^{n \times n} \times \mathbb{R}^{n}, \quad[(A, v),(B, w)]=(A B-B A, A w-B v) .
$$

8. The vector space $\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}$ of quaternions, whose non-commuting imaginary units i, j, k satisfy the relations $i^{2}=j^{2}=k^{2}=$ $i j k=-1$ and hence

$$
i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

forms a division algebra with norm $\|a+b i+c j+d k\|=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{1 / 2}$. The sphere $S^{3} \subset \mathbb{R}^{4}$ may be viewed as the set

$$
\{a+b i+c j+d k \in \mathbb{H}:\|a+b i+c j+d k\|=1\}
$$

of unit quaternions and thus inherits the structure of a Lie group. The corresponding Lie algebra \underline{s}^{3} is spanned by i, j, k, where

$$
[i, j]=i j-j i=2 k, \quad[j, k]=2 i, \quad[k, i]=2 j
$$

The quotient group $S^{3} /\{1,-1\}$ is a Lie group diffeomorphic to $\mathbb{R} P^{3}$.

If $F: G \rightarrow G^{\prime}$ is a Lie group homomorphism or isomorphism, then the differential $d F_{e}: T G_{e} \rightarrow T G_{e}^{\prime}$ is a Lie algebra homomorphism or isomorphism, respectively (exercise).

Example The Lie groups S^{3} and $\mathrm{SU}(2)$ are isomorphic, furthermore $S^{3} /\{1,-1\}$ is isomorphic zu $\mathrm{SO}(3)$. In particular, the Lie algebras $\underline{\mathrm{s}}^{3}$, $\underline{\mathrm{u}}(2)$, $\underline{\mathrm{so}}(3)$ are mutually isomorphic (exercise).

Let G be a Lie group. A pair (H, i), where H is a Lie group and $i: H \rightarrow G$ is a Lie group homomorphism and an injective immersion, is called a Lie subgroup of $G ; i(H)$ is a subgroup of G, but in general i is not a homeomorphism onto $i(H)$ with respect to the topology induced by G.

Example For $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, the map

$$
i:(\mathbb{R},+) \rightarrow\left(T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2},+\right), \quad t \mapsto(t, \alpha t) \bmod \mathbb{Z}^{2}
$$

is an injective immersion but not an embedding. In fact, $i(\mathbb{R})$ is dense in T^{2}.
Using the theorem of Frobenius (see page 58) and Lemma 12.2 one can show that if $\underline{h}^{\prime} \subset \underline{g}$ is a Lie subalgebra of the Lie algebra of a Lie group G, then there exists a connected Lie subgroup $i: H \rightarrow G$ with die $(\underline{h})=\underline{h^{\prime}}$, and every other connected Lie subgroup $\tilde{i}: \tilde{H} \rightarrow G$ with di$\tilde{i}_{e}(\underline{\tilde{h}})=\underline{h^{\prime}}$ is of the form $\tilde{i}=i \circ F$ for some Lie group isomorphism $F: \tilde{H} \rightarrow H$.

Exponential map

12.5 Proposition Left-invariant vector fields are completely integrable. The integral curves $c: \mathbb{R} \rightarrow G$ with $c(0)=e$ are precisely the Lie group homomorphisms $(\mathbb{R},+) \rightarrow G$.

Proof: Let X be a left-invariant vector field on G.
There exist an $\epsilon>0$ and an integral curve $c:(-\epsilon, \epsilon) \rightarrow G$ of X with $c(0)=e$. Then, for every $g \in G$, the left-translate $g c=L_{g} \circ c$ is an integral curve of X with $g c(0)=g$, because

$$
(g c)^{\prime}(t)=L_{g *} c^{\prime}(t)=L_{g *} X_{c(t)}=X_{g c(t)} \quad \text { for all } t \in(-\epsilon, \epsilon)
$$

by the product rule and the left-invariance of X. Thus the flow Φ of X is defined on $(-\epsilon, \epsilon) \times G$ by $\Phi^{t}(g)=g c(t)$, and it then follows as in the proof of Proposition 10.9 . that X is completely integrable.

Let now $c: \mathbb{R} \rightarrow G$ be the integral curve with $c(0)=e$, thus $\Phi^{t}(e)=c(t)$ for all $t \in \mathbb{R}$. Then, for $s \in \mathbb{R}$ and $g:=c(s)$,

$$
c(s) c(t)=g c(t)=\Phi^{t}(g)=\Phi^{t}\left(\Phi^{s}(e)\right)=\Phi^{s+t}(e)=c(s+t)
$$

so c is a homomorphism from $(\mathbb{R},+)$ into G. Conversely, suppose that $c:(\mathbb{R},+) \rightarrow$ G is a Lie group homomorphism with $c^{\prime}(0)=X_{e}$. Then $c(s+t)=c(s) c(t)=g c(t)$, and by taking the derivative at $t=0$ one gets that $c^{\prime}(s)=L_{g *} c^{\prime}(0)=X_{g}=X_{c(s)}$, showing that c is an integral curve.
12.6 Definition (exponential map) The exponential map of G is the map

$$
\exp : T G_{e} \rightarrow G, \quad \exp \left(X_{e}\right):=c(1)
$$

where $c: \mathbb{R} \rightarrow G$ is the integral curve of the left-invariant vector field X (or, equivalently, the Lie group homomorphism $(\mathbb{R},+) \rightarrow G)$ with $c^{\prime}(0)=X_{e}$.

Notice that then

$$
\exp \left(t X_{e}\right)=c(t) \quad \text { for all } t \in \mathbb{R},
$$

since the integral curve through e of the left-invariant vector field $\tilde{X}:=t X$ is given by $s \mapsto \tilde{c}(s):=c(t s)$, so that $\exp \left(t X_{e}\right)=\exp \left(\tilde{X}_{e}\right)=\tilde{c}(1)=c(t)$. It follows in particular that

$$
\exp \left(s X_{e}\right) \exp \left(t X_{e}\right)=c(s) c(t)=c(s+t)=\exp \left((s+t) X_{e}\right)
$$

and $\exp \left(t X_{e}\right)^{-1}=c(t)^{-1}=c(-t)=\exp \left(-t X_{e}\right)$.
Furthermore, \exp is smooth. To see this, consider the vector field V on $G \times T G_{e}$ defined by $V\left(g, X_{e}\right):=\left(g X_{e}, 0\right) \in T G_{g} \times T G_{e}$, whose integral curve through $\left(g, X_{e}\right)$ is $t \mapsto\left(g \exp \left(t X_{e}\right), X_{e}\right)$. Thus the flow of V satisfies $\Phi^{t}\left(g, X_{e}\right)=\left(g \exp \left(t X_{e}\right), X_{e}\right)$ for all $t \in \mathbb{R}$, and if $\pi: G \times T G_{e} \rightarrow G$ denotes the canonical projection, then $\exp \left(X_{e}\right)=\pi \circ \Phi^{1}\left(e, X_{e}\right)$, which depends smoothly on X_{e}.

The differential $d \exp _{0}: T\left(T G_{e}\right)_{0}=T G_{e} \rightarrow T G_{e}$ is the identity map, as $d \exp _{0}\left(X_{e}\right)=\left.\frac{d}{d t}\right|_{t=0} \exp \left(t X_{e}\right)=c^{\prime}(0)=X_{e}$. In particular, the restriction of exp to a suitable open neighborhood of 0 in $T G_{e}$ is a diffeomorphism onto an open neighborhood of e in G.

Let now $F: G \rightarrow G^{\prime}$ be a Lie group homomorphism. Then, as mentioned earlier, the differential $d F_{e}: T G_{e} \rightarrow T G_{e}^{\prime}$ is a Lie algebra homomorphism. Furthermore, the map $t \mapsto F \circ \exp ^{G}\left(t X_{e}\right)$ is a homomorphism $(\mathbb{R},+) \rightarrow G^{\prime}$ with initial vector $d F_{e}\left(X_{e}\right)$, hence it agrees with $t \mapsto \exp ^{G^{\prime}}\left(t d F_{e}\left(X_{e}\right)\right)$. For $t=1$, this shows that

$$
F \circ \exp ^{G}=\exp ^{G^{\prime}} \circ d F_{e}
$$

Next, consider $\operatorname{GL}(n, \mathbb{C})$ with the matrix exponential function

$$
A \mapsto e^{A}:=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

(1) $B e^{A} B^{-1}=e^{B A B^{-1}}$ for all $B \in \operatorname{GL}(n, \mathbb{C})$;
(2) $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{trace}(A)} \neq 0$, in particular $e^{A} \in \mathrm{GL}(n, \mathbb{C})$;
(3) if $A, B \in \mathbb{C}^{n \times n}$ and $[A, B]=A B-B A=0$, then $e^{A+B}=e^{A} e^{B}$.

Let $A \in \operatorname{gl}(n, \mathbb{C})$. Since $[s A, t A]=0$ for $s, t \in \mathbb{R}$, it follows from (2) and (3) that $c: t \mapsto e^{\overline{t A}}$ is a homomorphism from $(\mathbb{R},+)$ into G, and $c^{\prime}(0)=A$. Hence, the Lie group exponential map

$$
\exp : \operatorname{gl}(n, \mathbb{C}) \rightarrow \mathrm{GL}(n, \mathbb{C})
$$

agrees with the matrix exponential $A \mapsto \exp (A)=e^{A}$.
Let again G be an arbitrary Lie group. According to the Campbell-BakerHausdorff formula, for two vectors $X, Y \in T G_{e}$ in a sufficiently small neighborhood of 0 , the identity $\exp (X) \exp (Y)=\exp (S(X, Y))$ holds, where

$$
S(X, Y)=X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}[X,[X, Y]]+\frac{1}{12}[Y,[Y, X]]+\ldots
$$

is a convergent series of nested Lie brackets satisfying $S(Y, X)=-S(-X,-Y)$ (there is an explicit form due to Dynkin (1947)). The formula is particularly useful for nilpotent Lie groups, for which S terminates.

Appendix

A Analysis

In the following statements and proofs, all diffeomorphisms are of class C^{∞}.
A. 1 Theorem (inverse function theorem) Suppose that $W \subset \mathbb{R}^{n}$ is an open set, $F \in C^{\infty}\left(W, \mathbb{R}^{n}\right), p \in W, F(p)=0$, and $d F_{p}$ is bijective. Then there exist open neighborhoods $V \subset W$ of p and $U \subset \mathbb{R}^{n}$ of 0 such that $\left.F\right|_{V}$ is a diffeomorphism from V onto U.
A. 2 Theorem (implicit function theorem, surjective form) Suppose that $W \subset$ \mathbb{R}^{n} is an open set, $F \in C^{\infty}\left(W, \mathbb{R}^{k}\right), p \in W, F(p)=0$, and $d F_{p}$ is surjective. Then there exist open neighborhoods $U \subset \mathbb{R}^{n-k} \times \mathbb{R}^{k}$ of $(0,0)$ and $V \subset W$ of p and a diffeomorphism $\psi: U \rightarrow V$ such that $\psi(0,0)=p$ and

$$
(F \circ \psi)(x, y)=y
$$

for all $(x, y) \in U$ (canonical projection).
Proof: After a linear change of coordinates on \mathbb{R}^{n} we can assume that $d F_{p}$ maps the subspace $\{0\} \times \mathbb{R}^{k} \subset \mathbb{R}^{n}$ bijectively onto \mathbb{R}^{k}. Then, for $q=\left(q^{1}, \ldots, q^{n}\right) \in W$ and $q^{\prime}:=\left(q^{1}, \ldots, q^{n-k}\right)$, put $\tilde{F}(q):=\left(q^{\prime}, F(q)\right)$. This defines a map $\tilde{F} \in C^{\infty}\left(W, \mathbb{R}^{n-k} \times\right.$ \mathbb{R}^{k}), and $d \tilde{F}_{p}$ is bijective. By Theorem A.1 there exist open neighborhoods $V \subset W$ of p and $U \subset \mathbb{R}^{n-k} \times \mathbb{R}^{k}$ of $(0,0)$ such that $\left.\tilde{F}\right|_{V}$ is a diffeomorphism from V onto U. Let $\psi:=\left(\left.\tilde{F}\right|_{V}\right)^{-1}$. For $(x, y) \in U$ and $\psi(x, y)=: q,\left(q^{\prime}, F(q)\right)=\tilde{F}(q)=(x, y)$, in particular $(F \circ \psi)(x, y)=F(q)=y$.
A. 3 Theorem (implicit function theorem, injective form) Suppose that $U \subset$ \mathbb{R}^{m} is an open set, $f \in C^{\infty}\left(U, \mathbb{R}^{n}\right), 0 \in U, f(0)=p$, and df f_{0} is injective. Then there exist open neighborhoods $V \subset \mathbb{R}^{n}$ of p and $W \subset U \times \mathbb{R}^{n-m}$ of $(0,0)$ and a diffeomorphism $\varphi: V \rightarrow W$ such that $\varphi(p)=(0,0)$ and

$$
(\varphi \circ f)(x)=(x, 0)
$$

for all $(x, 0) \in W$ (canonical inclusion).

Proof: We can assume that the subspace $\{0\} \times \mathbb{R}^{n-m} \subset \mathbb{R}^{n}$ is complementary to the image of $d f_{0}$. Define $\tilde{f} \in C^{\infty}\left(U \times \mathbb{R}^{n-m}, \mathbb{R}^{n}\right)$ by $\tilde{f}(x, y):=f(x)+(0, y)$ for $(x, y) \in U \times \mathbb{R}^{n-m}$. The differential $d \tilde{f}_{0}$ is bijective. By Theorem A. 1 there exist open neighborhoods $W \subset U \times \mathbb{R}^{n-m}$ of $(0,0)$ and $V \subset \mathbb{R}^{n}$ of p such that $\left.\tilde{f}\right|_{W}$ is a diffeomorphism from W onto V. Let $\varphi:=\left(\left.\tilde{f}\right|_{W}\right)^{-1}$. For $(x, 0) \in W, f(x)=\tilde{f}(x, 0)$, hence $(\varphi \circ f)(x)=(x, 0)$.

We state two useful facts about smooth vector fields.
A. 4 Lemma (flow box) Suppose that $X: V \rightarrow \mathbb{R}^{m}$ is a vector field on a neighborhood V of 0 in \mathbb{R}^{m}, and $X(0) \neq 0$. Then there exist an open neighborhood $W \subset V$ of 0 and a diffeomorphism $\psi: W \rightarrow \psi(W) \subset \mathbb{R}^{m}$ such that $d \psi_{y}(X(y))=e_{1}$ for all $y \in W$.

Proof: We can assume that $X(0)=e_{1}$. There exist an open set V^{\prime} in $\{0\} \times \mathbb{R}^{m-1} \subset$ \mathbb{R}^{m} with $0 \in V^{\prime} \subset V$ and an $\epsilon>0$ such that for every $x \in V^{\prime}$ there is an integral curve $c_{x}:(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{m}$ of X with $c_{x}(0)=x$, and the map $(t, x) \mapsto c_{x}(t)$ on $(\epsilon, \epsilon) \times V^{\prime}$ is C^{∞} (compare Theorem 10.8). Then the map sending $x+t e_{1}$ to $c_{x}(t)$ for every $(t, x) \in(\epsilon, \epsilon) \times V^{\prime}$ is also C^{∞} and furthermore regular at 0 , because $\dot{c}_{0}(0)=X(0)=e_{1}$ and $c_{x}(0)=x$ for all $x \in V^{\prime}$. Hence the restriction of this map to a suitable neighborhood of 0 is a diffeomorphism whose inverse $\psi: W \rightarrow \psi(W)$ satisfies $\psi(y)=x+t e_{1}$ and $d \psi_{y}(X(y))=d \psi_{y}\left(\dot{c}_{x}(t)\right)=e_{1}$ for all $y=c_{x}(t) \in W$.
A. 5 Lemma (parametrization by flow lines) Suppose that $X_{1}, X_{2}: V \rightarrow \mathbb{R}^{2}$ are two vector fields on a neighborhood V of 0 in \mathbb{R}^{2}, and $X_{1}(0), X_{2}(0)$ are linearly independent. Then there exist an open set $U \subset \mathbb{R}^{2}$ and a diffeomorphism $\varphi: U \rightarrow$ $\varphi(U) \subset V$ with $0 \in \varphi(U)$ such that

$$
\frac{\partial \varphi}{\partial x^{i}}(x)=\lambda_{i}(x) X_{i}(\varphi(x))
$$

for all $x \in U$ and some functions $\lambda_{i}: U \rightarrow \mathbb{R}, i=1,2$.

Proof: Since $X_{i}(0) \neq 0$ for $i=1,2$, by Lemma A.4 there exist an open neighborhood $W \subset V$ of 0 and diffeomorphisms $\psi_{i}=\left(\psi_{i}^{1}, \psi_{i}^{2}\right): W \rightarrow \psi_{i}(W) \subset \mathbb{R}^{2}$ such that $d\left(\psi_{i}\right)_{y}\left(X_{i}(y)\right)=e_{i}$ for all $y \in W$. Then $h^{1}:=\psi_{2}^{1}$ and $h^{2}:=\psi_{1}^{2}$ are regular functions on W whose level curves are flow lines of X_{2} and X_{1}, respectively. Define $h:=\left(h^{1}, h^{2}\right): W \rightarrow \mathbb{R}^{2}$. Since $X_{1}(0), X_{2}(0)$ are linearly independent and h^{1}, h^{2} are regular at 0 , whereas $d\left(h^{1}\right)_{0}\left(X_{2}(0)\right)=0$ and $d\left(h^{2}\right)_{0}\left(X_{1}(0)\right)=0$, it follows that $d\left(h^{i}\right)_{0}\left(X_{i}(0)\right) \neq 0$ for $i=1,2$, thus h is regular at 0 . Hence, the restriction of h to a suitable neighborhood of 0 has an inverse φ as claimed, mapping horizontal and vertical lines to flow lines of X_{1} and X_{2}, respectively.

B General topology

B. 1 Definition (topology, topological space) Let M be a set. A topology on M is a collection of subsets of M, called open sets, with the following properties:
(1) \emptyset and M are open;
(2) the union of arbitrarily many open sets is open;
(3) the intersection of finitely many open sets is open.

A topological space is a set equipped with a topology.

Examples

1. Let (M, d) be a metric space. With respect to the topology induced by d, a set $U \subset M$ is open if and only if for all $p \in U$ there is an $r>0$ such that $B(p, r)=\{q \in M: d(p, q)<r\} \subset U$.
2. The usual topology on \mathbb{R}^{m} is induced by the standard metric $d(x, y)=|x-y|$.
3. The trivial topology on a set M consists only of \emptyset and M, whereas the discrete topology on M is the entire power set.

A subset A of a topological space M is called closed if the complement $M \backslash A$ is open; thus \emptyset and M are both open and closed.

A map $f: M \rightarrow N$ between two topological spaces is continuous if $f^{-1}(V) \subset M$ is open for every open set $V \subset N$. The map f is a homeomorphism if f is bijective and both f and f^{-1} are continuous.
B. 2 Definition (induced topology) Let N be a topological space, and let $M \subset N$ be a subset. The induced topology or subspace topology on M consists of all sets $U \subset M$ of the form $U=M \cap V$ where V is open in N.
B. 3 Definition (compactness) A topological space M is compact if every open cover of M has a finite subcover; that is, whenever $\bigcup_{\alpha \in A} U_{\alpha}=M$ for open sets $U_{\alpha} \subset M$ and an index set A, there exists a finite set $B \subset A$ such that $\bigcup_{\beta \in B} U_{\beta}=M$.

If M is compact and $f: M \rightarrow N$ is continuous, then $f(M)$ is a compact subspace of N. If M is compact and A is closed in M, then A is a compact subspace of M.

A set $U \subset M$ is called a neighborhood of a point $p \in M$ if there exists an open set V with $p \in V \subset U$.
B. 4 Definition (Hausdorff space) A topological space M is called a Hausdorff space if for every pair of distinct points $p, q \in M$ there exist disjoint neighborhoods U of p and V of q.

Every metric space is a Hausdorff space.
B.5 Lemma If M is a Hausdorff space and $A \subset M$ is a compact subspace, then A is closed in M.

It follows easily that every continuous bijective map $f: M \rightarrow N$ from a compact space M onto a Hausdorff space N is a homeomorphism.
B. 6 Definition (basis, subbasis) Let M be a topological space. A collection \mathcal{B} of open sets is called a basis of the topology if every open set can be written as a union of sets in \mathcal{B}. A collection \mathcal{S} of open sets is a subbasis of the topology if every open set is a union of sets that are intersections of finitely many sets in \mathcal{S}.

Examples

1. The set of all open balls forms a basis of the topology of a metric space.
2. The set of all open balls $B(x, r)$ with $x \in \mathbb{Q}^{m}$ and $r \in \mathbb{Q}, r>0$, is a countable basis of the usual topology on \mathbb{R}^{m}.
B. 7 Definition (product topology) Let M, N be two topological spaces. The product topology on $M \times N$ is the topology for which the sets of the form $U \times V$ where U is open in M and V is open in N constitute a basis.
B. 8 Definition (quotient topology) Suppose that M is a topological space, \sim is an equivalence relation on M, and $\pi: M \rightarrow M / \sim$ is the projection onto the set of equivalence classes. The quotient topology on M / \sim consists of all sets $V \subset M / \sim$ for which $\pi^{-1}(V)$ is open in M.

A topological space M is called connected if \emptyset and M are the only open and closed subsets of M. A topological space M is path connected if for every pair of points $p, q \in M$ there is a path from p to q (that is, a continuous map $c:[0,1] \rightarrow M$ with $c(0)=p$ and $c(1)=q$), and M is locally path connected if every point $p \in M$ has a neighborhood that is path connected in the induced topology. Every path connected space is connected. The subspace

$$
\{(x, \sin (1 / x)): x \in \mathbb{R}, x>0\} \cup\{(0, y): y \in[-1,1]\}
$$

of \mathbb{R}^{2} is connected but not path connected. Every connected and locally path connected space is (globally) path connected.

C Multilinear algebra

Let V, V_{1}, \ldots, V_{n} and W be vector spaces (over \mathbb{R}). We denote by $L(V ; W)$ the vector space of linear maps from V to W. A map

$$
f: V_{1} \times \ldots \times V_{n} \rightarrow W
$$

is multilinear or n-linear if for every index $i \in\{1, \ldots, n\}$ and for fixed vectors $v_{j} \in V_{j}, j \neq i$, the map

$$
v \mapsto f\left(v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{n}\right)
$$

from V_{i} to W is linear. We let $L\left(V_{1}, \ldots, V_{n} ; W\right)$ denote the vector space of all such n-linear maps.
C. 1 Theorem (tensor product) Given vector spaces V_{1}, \ldots, V_{n}, there exist a vector space \mathcal{T} and an n-linear map $\tau \in L\left(V_{1}, \ldots, V_{n} ; \mathcal{T}\right)$ with the following property: for every n-linear map $f \in L\left(V_{1}, \ldots, V_{n} ; W\right)$ into any vector space W there is a unique linear map $g \in L(\mathcal{T} ; W)$ such that $f=g \circ \tau$.

This property characterizes the pair (τ, \mathcal{T}) uniquely up to a linear isomorphism; (τ, \mathcal{T}) is called the tensor product of V_{1}, \ldots, V_{n}, and one writes

$$
V_{1} \otimes \ldots \otimes V_{n}:=\mathcal{T}, \quad v_{1} \otimes \ldots \otimes v_{n}:=\tau\left(v_{1}, \ldots, v_{n}\right)
$$

The unique assignment $f \mapsto g$ given by the theorem is a linear isomorphism

$$
L\left(V_{1}, \ldots, V_{n} ; W\right) \cong L\left(V_{1} \otimes \ldots \otimes V_{n} ; W\right)
$$

For every permutation σ of $\{1, \ldots, n\}$ there exists a linear isomorphism

$$
V_{1} \otimes \ldots \otimes V_{n} \cong V_{\sigma(1)} \otimes \ldots \otimes V_{\sigma(n)}
$$

mapping $v_{1} \otimes \ldots \otimes v_{n}$ to $v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}$. For $m<n$,

$$
\left(V_{1} \otimes \ldots \otimes V_{m}\right) \otimes\left(V_{m+1} \otimes \ldots \otimes V_{n}\right) \cong V_{1} \otimes \ldots \otimes V_{n}
$$

For every vector space V the scalar multiplication is a bilinear map $\mathbb{R} \times V \rightarrow V$; this induces an isomorphism

$$
\mathbb{R} \otimes V \cong V
$$

mapping $a \otimes v$ to $a v$. If $V \cong V_{1} \oplus V_{2}$ (direct sum), then

$$
V \otimes W \cong\left(V_{1} \otimes W\right) \oplus\left(V_{2} \otimes W\right)
$$

The construction of the tensor product is natural in the following sense: if linear maps $f_{j}: V_{j} \rightarrow V_{j}^{\prime}$ are given, $j=1, \ldots, n$, then there exists a unique linear map $f_{1} \otimes \ldots \otimes f_{n}: V_{1} \otimes \ldots \otimes V_{n} \rightarrow V_{1}^{\prime} \otimes \ldots \otimes V_{n}^{\prime}$ such that

$$
\left(f_{1} \otimes \ldots \otimes f_{n}\right)\left(v_{1} \otimes \ldots \otimes v_{n}\right)=f_{1}\left(v_{1}\right) \otimes \ldots \otimes f_{n}\left(v_{n}\right)
$$

whenever $v_{j} \in V_{j}$ for $j=1, \ldots, n$.
We now assume that the vector spaces V, V_{1}, \ldots, V_{n} are finite dimensional. If B_{j} is a basis of V_{j} for $j=1, \ldots, n$, then the products $b_{1} \otimes \ldots \otimes b_{n}$ with $b_{j} \in B_{j}$ constitute a basis of $V_{1} \otimes \ldots \otimes V_{n}$. In particular,

$$
\operatorname{dim}\left(V_{1} \otimes \ldots \otimes V_{n}\right)=\operatorname{dim}\left(V_{1}\right) \cdots \operatorname{dim}\left(V_{n}\right)
$$

We let $V^{*}:=L(V ; \mathbb{R})$ denote the dual space of V. The map $v \mapsto \tilde{v} \in\left(V^{*}\right)^{*}$, $\tilde{v}(\lambda):=\lambda(v)$, is a canonical isomorphism $V \cong V^{* *}$. If $\lambda_{j} \in V_{j}^{*}, j=1, \ldots, n$, then $\lambda_{1} \otimes \ldots \otimes \lambda_{n} \in V_{1}^{*} \otimes \ldots \otimes V_{n}^{*}$ may also be viewed as the tensor product

$$
\lambda_{1} \otimes \ldots \otimes \lambda_{n}: V_{1} \otimes \ldots \otimes V_{n} \rightarrow \mathbb{R} \otimes \ldots \otimes \mathbb{R} \cong \mathbb{R}
$$

of the linear maps $\lambda_{j}: V_{j} \rightarrow \mathbb{R}$ described above; this yields an isomorphism

$$
V_{1}^{*} \otimes \ldots \otimes V_{n}^{*} \cong\left(V_{1} \otimes \ldots \otimes V_{n}\right)^{*}
$$

Note that

$$
\left(\lambda_{1} \otimes \ldots \otimes \lambda_{n}\right)\left(v_{1} \otimes \ldots \otimes v_{n}\right)=\lambda_{1}\left(v_{1}\right) \cdots \lambda_{n}\left(v_{n}\right) .
$$

An (r, s)-tensor over V is an element of

$$
\begin{aligned}
V_{r, s} & :=\underbrace{V \otimes \ldots \otimes V}_{r} \otimes \underbrace{V^{*} \otimes \ldots \otimes V^{*}}_{s} \\
& \cong(\underbrace{V^{*} \otimes \ldots \otimes V^{*}}_{r} \otimes \underbrace{V \otimes \ldots \otimes V}_{s})^{*} \\
& \cong\{T: \underbrace{V^{*} \times \ldots \times V^{*}}_{r} \times \underbrace{V \times \ldots \times V}_{s} \rightarrow \mathbb{R}: T \text { ist }(r+s) \text {-linear }\} .
\end{aligned}
$$

Note that $\operatorname{dim}\left(V_{r, s}\right)=\operatorname{dim}(V)^{r+s}, V_{1,0}=V, V_{0,1}=V^{*}$, and one puts $V_{0,0}:=\mathbb{R}$. If $\left(e_{1}, \ldots, e_{m}\right)$ is a basis of V and $\left(\epsilon^{1}, \ldots, \epsilon^{m}\right)$ is the dual basis of $V^{*}, \epsilon^{i}\left(e_{j}\right)=\delta_{j}^{i}$, then $T \in V_{r, s}$ possesses the representation

$$
T=\sum_{j_{1}, \ldots, j_{r}, i_{1}, \ldots, i_{s}=1}^{m} T_{i_{1} \ldots i_{s}}^{j_{1} \ldots j_{r}} e_{j_{1}} \otimes \ldots \otimes e_{j_{r}} \otimes \epsilon^{i_{1}} \otimes \ldots \otimes \epsilon^{i_{s}}
$$

with components $T_{i_{1} \ldots i_{s}}^{j_{1} \ldots j_{r}} \in \mathbb{R}$.
In the following, $V_{0, s}$ will always be identified with the vector space $L(V, \ldots, V ; \mathbb{R})$ of s-linear maps $A: V \times \ldots \times V \rightarrow \mathbb{R}$. For $A \in V_{0, s}$ and $B \in V_{0, t}$, the tensor product $A \otimes B \in V_{0, s+t}$ is then given by the simple formula

$$
A \otimes B\left(v_{1}, \ldots, v_{s+t}\right)=A\left(v_{1}, \ldots, v_{s}\right) B\left(v_{s+1}, \ldots, v_{s+t}\right)
$$

for $v_{1}, \ldots, v_{s+t} \in V$.
C. 2 Theorem (alternating multilinear maps) For $A \in V_{0, s}$, the following properties are equivalent:
(1) A is alternating, that is, $A\left(v_{1}, \ldots, v_{s}\right)=0$ whenever $v_{i}=v_{j}$ for two indices $i \neq j$;
(2) A ist skew-symmetric, that is, $A\left(v_{\tau(1)}, \ldots, v_{\tau(s)}\right)=-A\left(v_{1}, \ldots, v_{s}\right)$ for every transposition τ of $\{1, \ldots, s\}$;
(3) $A\left(v_{1}, \ldots, v_{s}\right)=0$ whenever v_{1}, \ldots, v_{s} are linearly dependent;
(4) $A\left(v_{1}, \ldots, v_{s}\right)=\operatorname{det}\left(a_{j}^{i}\right) A\left(w_{1}, \ldots, w_{s}\right)$ if $v_{j}=\sum_{i=1}^{s} a_{j}^{i} w_{i}$ for $j=1, \ldots, s$.

We write $\Lambda_{s}\left(V^{*}\right)$ for the vector space of alternating $(0, s)$-tensors over V, and we put $\Lambda_{0}\left(V^{*}\right):=\mathbb{R}$. Note that $\Lambda_{s}\left(V^{*}\right)=\{0\}$ for $s>m=\operatorname{dim}(V)$.
C. 3 Definition (exterior product) For $A \in \Lambda_{s}\left(V^{*}\right)$ and $B \in \Lambda_{t}\left(V^{*}\right)$, the exterior product (or wedge product) $A \wedge B \in \Lambda_{s+t}\left(V^{*}\right)$ is defined by

$$
A \wedge B\left(v_{1}, \ldots, v_{s+t}\right):=\sum_{\sigma \in S_{s, t}} \operatorname{sgn}(\sigma) A\left(v_{\sigma(1)}, \ldots, v_{\sigma(s)}\right) B\left(v_{\sigma(s+1)}, \ldots, v_{\sigma(s+t)}\right)
$$

for $v_{1}, \ldots, v_{s+t} \in V$, where $S_{s, t}$ denotes the set of all permutations $\sigma \in S_{s+t}$ such that $\sigma(1)<\ldots<\sigma(s)$ and $\sigma(s+1)<\ldots<\sigma(s+t)$.

The map $\wedge: \Lambda_{s}\left(V^{*}\right) \times \Lambda_{t}\left(V^{*}\right) \rightarrow \Lambda_{s+t}\left(V^{*}\right)$ is bilinear, and

$$
B \wedge A=(-1)^{s t} A \wedge B
$$

in particular $A \wedge A=0$ if $A \in \Lambda_{s}\left(V^{*}\right)$ and s is odd. For $A \in \Lambda_{s}\left(V^{*}\right), B \in \Lambda_{t}\left(V^{*}\right)$, and $C \in \Lambda_{u}\left(V^{*}\right)$,

$$
(A \wedge B) \wedge C=A \wedge(B \wedge C)
$$

If $\lambda_{1}, \ldots, \lambda_{s} \in \Lambda_{1}\left(V^{*}\right)=V^{*}$, then $\lambda_{1} \wedge \ldots \wedge \lambda_{s} \in \Lambda_{s}\left(V^{*}\right)$ is given by

$$
\begin{aligned}
\left(\lambda_{1} \wedge \ldots \wedge \lambda_{s}\right)\left(v_{1}, \ldots, v_{s}\right) & =\sum_{\sigma \in S_{s}} \operatorname{sgn}(\sigma) \lambda_{1}\left(v_{\sigma(1)}\right) \cdots \lambda_{s}\left(v_{\sigma(s)}\right) \\
& =\operatorname{det}\left(\lambda_{i}\left(v_{j}\right)\right)
\end{aligned}
$$

for $v_{1}, \ldots, v_{s} \in V$.
Now let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis of V, and let $\left\{\epsilon^{1}, \ldots, \epsilon^{m}\right\}$ be the dual basis of V^{*}. For $1 \leq i_{1}<\ldots<i_{s} \leq m$ and $1 \leq j_{1}, \ldots, j_{s} \leq m$,

$$
\begin{aligned}
\left(\epsilon^{i_{1}} \wedge\right. & \left.\ldots \wedge \epsilon^{i_{s}}\right)\left(e_{j_{1}}, \ldots, e_{j_{s}}\right) \\
& =\sum_{\sigma \in S_{s}} \operatorname{sgn}(\sigma) \delta_{j_{\sigma(1)}}^{i_{1}} \cdots \delta_{j_{\sigma(s)}}^{i_{s}} \\
& = \begin{cases}\operatorname{sgn}(\sigma) & \text { if }\left(j_{\sigma(1)}, \ldots, j_{\sigma(s)}\right)=\left(i_{1}, \ldots, i_{s}\right), \\
0 & \text { if }\left\{j_{1}, \ldots, j_{s}\right\} \neq\left\{i_{1}, \ldots, i_{s}\right\}\end{cases}
\end{aligned}
$$

The set

$$
\left\{\epsilon^{i_{1}} \wedge \ldots \wedge \epsilon^{i_{s}}: 1 \leq i_{1}<\ldots<i_{s} \leq m\right\}
$$

forms a basis of $\Lambda_{s}\left(V^{*}\right)$, in particular $\operatorname{dim}\left(\Lambda_{s}\left(V^{*}\right)\right)=\binom{m}{s}$.

Bibliography

Monographs

[Ba] Werner Ballmann: Einführung in die Geometrie und Topologie, Springer 2015.
[Bä] Christian Bär: Elementare Differentialgeometrie, de Gruyter 2001.
[BaT] Dennis Barden, Charles Thomas: An Introduction to Differential Manifolds, Imperial College Press 2003.
[BrJ] Theodor Bröcker, Klaus Jänich: Einführung in die Differentialtopologie, Springer 1973, 1990.
[dC] Manfredo P. do Carmo: Differentialgeometrie von Kurven und Flächen, Vieweg 1983, 1998.
[GuP] Victor Guillemin, Alan Pollack: Differential Topology, Prentice-Hall 1974.
[Ho] Heinz Hopf: Differential Geometry in the Large, Lecture Notes in Math. No. 1000, Springer 1983, 1989.
[Hi] Morris W. Hirsch: Differential Topology, Springer 1976, 1991.
[Jä] Klaus Jänich: Topologie, Springer Lehrbuch 1990.
[Jo] Jürgen Jost: Differentialgeometrie und Minimalflächen, Springer 1994.
[Kl] Wilhelm Klingenberg: Eine Vorlesung über Differentialgeometrie, Springer 1973.
[Ku] Wolfgang Kühnel: Differentialgeometrie, Vieweg 1999, 2003.
[Mi] John W. Milnor: Topology from the Differentiable Viewpoint, Univ. Press of Virginia, Charlottesville 1965, 1990.
[MiS] John W. Milnor, James D. Stasheff: Characteristic Classes, Princeton Univ. Press 1974.
[Sp] Michael Spivak: A Comprehensive Introduction to Differential Geometry, Vol. I-V, Publish or Perish 1979.
[Wa] Frank W. Warner: Foundations of differentiable manifolds and Lie groups, Springer 1971, 1983.

Original works

[Bo1947] K. Borsuk: Sur la courbure totale des courbes fermées, Ann. Soc. Polon. Math. 20 (1947), 251-265 (1948).
[Br1911a] L. E. J. Brouwer: Beweis der Invarianz des n-dimensionalen Gebiets, Math. Ann. 71 (1911), 305-313.
[Br1911b] L. E. J. Brouwer: Beweis des Jordanschen Satzes für den ndimensionalen Raum, Math. Ann. 71 (1911), 314-319.
[Fa1949] I. Fáry: Sur la courbure totale d'une courbe gauche faisant un nœud, Bull. Soc. Math. France 77 (1949), 128-138.
[Fe1929] W. Fenchel: Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), 238-252.
[Ga1828] C. F. Gauss: Disquisitiones generales circa superficies curvas, Commentationes societatis regiae scientiarum Gottingensis recentiores, Vol. VI, Göttingen 1828, 99-146.
[Hi1901] D. Hilbert: Ueber Flächen von constanter Gaussscher Krümmung, Trans. Amer. Math. Soc. 2 (1901), 87-99.
[Ho1927a] H. Hopf: Abbildungsklassen n-dimensionaler Mannigfaltigkeiten, Math. Ann. 96 (1926), 209-224.
[Ho1927b] H. Hopf: Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann. 96 (1927), 225-249.
[Ho1935] H. Hopf: Über die Drehung der Tangenten und Sehnen ebener Kurven, Compositio Math. 2 (1935), 50-62.
[Ke1960] M. A. Kervaire: A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257-270.
[Ku1955] N. H. Kuiper: On C^{1}-isometric embeddings I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 545-556, 683-689.
[Mi1950] J. W. Milnor: On the total curvature of knots, Ann. of Math. 52 (1950), 248-257.
[Mi1956] J. W. Milnor: On manifolds homeomorphic to the 7-sphere, Ann. of Math. 64 (1956), 399-405.
[Mi1959] J. W. Milnor: Differentiable structures on spheres, Amer. J. Math. 81 (1959), 962-972.
[Mo1939] A. P. Morse: The behavior of a function on its critical set, Ann. of Math. 40 (1939), 62-70.
[Po1885] H. Poincaré: Sur les courbes définies par les équations différentielles III, J. Math. Pure Appl. 4ème série 1 (1885), 167-244.
[Sa1942] A. Sard: The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890.
[We1986] H. C. Wente: Counterexample to a conjecture of H. Hopf, Pacific J. Math. 121 (1986), 193-243.
[Wh1935] H. Whitney: A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517.
[Wh1944] H. Whitney: The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math. 45 (1944), 220-246.

