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Differential Geometry in R"

1 Curves

1.1 Arc length and reparametrization

In the following, the symbol I will always denote an interval, that is, a connected
subset of R. A continuous map c: I — X into a topological space X is called a
(parametrized) curve in X. A curve defined on [0, 1] is also called a path.

Now let X = (X, d) be a metric space. The length L(c) € [0, co] of the curve
c: I — X is defined as

k
L(c) :=sup Z d(c(ti-1), (1)),
i=1

where the supremum is taken over all finite, non-decreasing sequences g < t; <
... < trin I. The curve c is rectifiable if L(c) < oo, and ¢ has constant speed or is
parametrized proportionally to arc length if there exists a constant A > 0, the speed
of ¢, such that for every subinterval [a, b] C I,

L(clia,p)) = A(b - a);

if A = 1, then ¢ has unit speed or is parametrized by arc length.

The curve ¢: I — X is a reparametrization of another curve ¢: I — X if there
exists a continuous, surjective, non-decreasing or non-increasing map ¢: I — I
(thus a < b implies ¢(a) < ¢(b) or p(a) = ¢(b), respectively) such that c = ¢ o .
Then clearly L(c) = L(¢). The following lemma shows that every curve of locally
finite length is a reparametrization of a unit speed curve.

1.1 Lemma (reparametrization) Suppose that ¢: I — (X, d) is a curve with
L(cl{a,p]) < o0 for every subinterval [a,b] C 1. Pick s € I, and define ¢: I — R
such that ¢(t) = L(c|(s,)) for t > s and ¢(t) = —L(c|[s5)) for t < s. Then
@ is continuous and non-decreasing, and there is a well-defined unit speed curve
¢: o(I) > X such that é(¢(t)) = c(t) forallt € I.

Proof: Whenever a,b € I and a < b, then

d(c(a),c(b)) < L(cliap) = ¢(b) —¢(a). (%)



Thus ¢ is non-decreasing. Moreover, given such a,b and € > 0, there exists a
sequence a =ty < f; < ... < tx = b such that

k
L(cliap) =€ < ) d(c(ti-1), c(t) < d(c(a), () + L(clirp)
i=1

for all r € (a,t;], and there is a § > 0 such that d(c(a),c(r)) < € for all
r € (a,a+9); thus L(c|{a,r]) = L(cl{a,p)) — L(cl[rp)) < 2€ for r > a close
enough to a. It follows that ¢ is right-continuous, and left-continuity is shown
analogously.

By (x) there is a well-defined 1-Lipschitz curve ¢: ¢(I) — X such that
¢(p(t)) = c(t) forall t € I. Then L(€|[y(a),o(b)]) = L(cla,p]) = @(b) — ¢(a) for
all [a, b] C I, hence ¢ is parametrized by arc length. O

We now turn to the target space X = R", endowed with the canonical inner
product

n
(x,y) = <(x1, XM, O .,y”)) = Zx’yl
i=1
and the Euclidean metric

d(x,y) :=lx =yl :==y{x-y,x—y).

In the following we will tacitly assume that the interior of the interval / is non-
empty. For g € {0} U {1,2,...} U {oo} we write as usual ¢ € C4(I,R") if
c is continuous or g times continuously differentiable or infinitely differentiable,
respectively. In the case that ¢ > 1 and [ is not open, this means that ¢ admits an
extension ¢ € C9(J,R"™) to an open interval J D I.

Suppose now that ¢ € C4(1,R") for some ¢ > 1. Then

b
mem:/|ﬂmm<w
a

for every subinterval [a, b] C I (exercise), and thus the function ¢ from Lemmafl.1
satisfies p(t) = /Sz |c’(r)| dr for all t € I. The curve c is called regular if ¢’ (¢) # 0
for all t € I, then ¢’ = |¢/| > 0 on I, and both ¢: I — ¢(I) and the inverse
o' @(I) — I are also of class C9, that is, ¢ is a C4 diffeomorphism. Note also
that ¢ € C'(I, R™) has constant speed A > 0 if and only if |¢’(f)| = A forall t € I.

1.2 Local theory of curves

The following notions go back to Jean Frédéric Frenet (1816-1900).

1.2 Definition (Frenet curve) The curve ¢ € C"(I,R") is called a Frenet curve if
for all t € I the vectors ¢’ (1), c”’(1),...,c" V() are linearly independent. The
corresponding Frenet frame (ey, ..., ey,), e;: I — R", is then characterized by the
following conditions:



(1) (eq(),...,en(t)) is a positively oriented orthonormal basis of R” for ¢ € I;

(2) span(ei(1),...,ei(t)) = span(c’(1),...,cD (1)) and (e; (1), ¢ (r)) > 0 for
i=1,...,n—1landt € l.

Condition (2) refers to the linear span. The vectors e(t),...,e,—1(f) are
obtained from ¢’(7),...,c™ D (¢) by means of the Gram—Schmidt process, and
en(t) is then determined by condition (1). Note that ¢; € C"/(I,R") for i =
1,...,n—1,in particular ey, . .., e, € C'(I,R").

1.3 Definition (Frenet curvatures) Let ¢ € C"(I,R") be a Frenet curve with
Frenet frame (eq,...,e,). Fori=1,...,n— 1, the function x;: I — R,

1
e’ (1)

is called the i-th Frenet curvature of c.

<ei,(t)’€i+l(t)>,

ki(t) ==

Note that k; € C"~*~1(I); in particular «1, . . ., k,_; are continuous.

Suppose now that ¢ = ¢ o ¢ for some curve & € C"(I, R") and a C" diffeomor-
phism ¢: I — I with ¢’ > 0. Fori = 1,...,n — 1, the i-th derivative ¢V (¢) is a
linear combination }; _, ax(?) ¢ R (@(1)) with a; (1) = (¢'(1))! > 0, thus

span(c’(7), ..., c (1)) = span((¢’ 0 @)(1),..., (¢ 0 9)(1)),

c is Frenet if and only if ¢ is Frenet, and the corresponding Frenet vector fields then
satisfy the relation e; = é; o . Likewise, for the Frenet curvatures,

1 ~ - -
ki = —=(e/,eiy1) = <(€,-/ °@)¢’, éis1 0 90> =Kiog.

|c’| ¢ o ell¢’|

Thus the curvatures are invariant under sense preserving reparametrization.

1.4 Proposition (Frenet equations) Let ¢ € C"(I,R") be a Frenet curve with

Frenet frame (ey, ..., e,) and Frenet curvatures ki, . . ., Kn—1. Thenky, ..., Kky_2 >
0, and
1 K1€n l'fi = 1,
lcllei' = —Ki_1€;_1 +Kiejy1 f2<i<n-1,
—Kn-1€n-1 ifi=n
Proof: Since (e((?),...,e,(t)) is orthonormal,

e/ (1) = ) (e (1).e;(1))e; (1)
=1

J



fori=1,...,n, and since {(e/,e;) + {e;, eJ’.) = (e;, ej)’ = 0, the coeflicient matrix
K(t) = ({e/(t),e;(t))) is skew-symmetric. Fori=1,...,n—1,
<€[,€i+1> = |c’|«;.

Now let i < n — 2, and recall condition (2) of Definition The vector e;(7) is

a 1jnear combination Z;;:] ai;?(t) ¢ (1) with a;(t) > 0, so e/(t) is of the form
e bk (2) c® (1) + a;; (1) ¢V (1), and it follows that

<ei,, €iv2) =...= <€i’, en) =0
and (e/,e;y1) = al-,-(c(i“), ei+1) > 0. This gives the result. O

In the case n = 2, a curve ¢ € C%(I,R?) is Frenet if and only if ¢ is regular.
Then the sole Frenet curvature

L,
Kor '= K1 = —(eq, e
or 1 /] ( 1 2)
is called the oriented curvature (or signed curvature) of c. Note that e; = ¢’/|c’|
and {c’, e2) = 0, thus

(c",ep) det(ey,c”) det(c’,c”)
Kor = = =
P e’ |2 le’|?

The Frenet equations may be written in matrix form as

)= S
lc’|\ e; —Kkor O er |’

The osculating circle (Schmiegkreis) of ¢ at a point ¢t with k. (z) # 0 is the circle
with center ¢(7) + (1/kor(?))ea(2) and radius 1/|kor(?)|, which approximates the
curve at ¢ up to second order (exercise).

In the case n = 3, ¢ € C3(1,R?) is a Frenet curve if and only if ¢’ and ¢’ are
everywhere linearly independent. The vectors e, and e3 = e X e; (vector product)
are called the normal and the binormal of c, respectively. The two Frenet curvatures

k=K1 = —(ef,e2) >0, T:i=ky=—(e;,e3)
le’] |c’]
are called curvature and torsion of c; the latter measures the rotation of the osculat-
ing plane (Schmiegebene) span{c’, ¢’} = span{ey, e»} about e¢;. Both « and 7 are
also invariant under sense reversing reparametrization, but T changes sign under
orientation reversing isometries of R*. The Frenet equations for curves in R> read

1 e/ 0 « 0\fe
| e |=| -« 0 7 e
3: 0 -7 0 es



If ¢ is parametrized by arc length, then 2{c’, c”") = (¢’,¢’)’ = 0 and hence e; =
c”’[lc”], thus k = (e[, e2) = |c”’|. For a general Frenet curve in R3, the formulae
B |C, X C//l _ det(c',c", o'
P T e xeP
hold (exercise).
1.5 Theorem (fundamental theorem of local curve theory) If n — 1 functions
Klyeorskno1 € C¥(I,R) with k1, ...,Kkn—2 > 0 are given, and if sg € I, xg € R",

and (by, ..., by) is a positively oriented orthonormal basis of R", then there exists
a unique Frenet curve ¢ € C*(1,R") of constant speed one such that

(1) c(s0) = xo;
(2) (b1,...,by,) is the Frenet frame of ¢ at sy;

(3) «i1,...,kn—1 are the Frenet curvatures of c.

The differentiability assumptions may be weakened.
Proof: Let K = (k; ;) € C* (I, R"™") be the matrix function with
ki,i+1 = _ki+1,i = K; fori = 1, N 1

and all other entries equal to zero, and let B = (bl.j ) € R™" be the matrix whose
ith row is b;. By the existence and uniqueness theorem for ordinary differential
equations, there exists a unique solution E = (el.j ) € C®(I,R™") of the Frenet
matrix equation
E'=KE

satisfying the initial condition E (sg) = B.

To show that the rows of E (s) form a possible Frenet frame for the sought curve,
we need to verify that E(s) € SO(n) forall s € I. In fact, since E(s9) = B € SO(n)
by assumption, it suffices to check that E(s) € O(n) for all s € I. Now

(EEY =E'E'+E(E')'=KEE'+EE'K",
and EE' = I, (identity matrix) is the unique solution of this equation with

(E EY(so) = I,, because K + K' = 0. So E(s) is orthogonal as desired.
Finally, setting

S
c(s) :=x0+/ el(t)dt forallsel,
)

we get a curve ¢ € C* (I, R") with ¢(s9) = xo and ¢’ = e;. An induction argument

using the Frenet equations shows thatfori = 2, ..., n—1, the ith derivative is a linear
combination ¢! = 22:1 ajrxer Witha;; = K1k ... ki—1 > 0. We conclude thatcisa
Frenet curve with frame (ey, . . ., e,) and curvatures (e}, e;+1) = (K;€i+1, €i+1) = Kj.

O

We now turn to some global results.



1.3 The rotation index of a plane curve

In the following it is assumed that a < b. A curve c¢: [a,b] — X in a topological
space X is called closed or a loop if c(a) = c(b), and c is said to be simple if c|[4,1)
is injective in addition. Now let again X = R". For g € {1,2,...} U {o0}, a closed
curve ¢ € C9([a, b],R™) will be called C?-closed if ¢ admits a (b — a)-periodic
extension ¢ € C4(R,R"™), thatis, ¢(t + b —a) = ¢(¢) for all € R.

Suppose now that c¢: [a,b] — R? is a C'-closed and regular plane curve.
Let S' ¢ R? denote the unit circle. The normalized velocity vector e(t) :=
c’(t)/]c’(t)] € S' of ¢ may be represented as

e(t) = (cos6(t),sin6(1))

for a continuous polar angle function 6: [a, b] — R, which is uniquely determined
up to addition of an integral multiple of 27. More precisely, 6 is a lifting of
e: [a,b] — S' with respect to the canonical covering

o:R - S, o(s) = (cos(s), sin(s));

that is, o o 6 = e. To show that such a function 6 exists, one may use the uniform
continuity of e on the compact interval [a, b] to find a subdivision a = ag < a; <
. < ax = b such that none of the subintervals [a;_1,a;] is mapped onto S'.
Then, for every choice of 8(a) with o(6(a)) = e(a), there are successive unique
extensions of 6 to the intervals [a,a;] fori=1,...,k.
Since e(a) = e(b), there is a unique integer o, independent of the choice of 6,
such that
0(b) —0(a) =2npc.

This number g, is called the rotation index (Umlaufzahl) of c. If ¢ is an orientation
preserving reparametrization of another C'-closed regular curve ¢, then o, = 0¢.

1.6 Theorem (Umlaufsatz) The rotation index of a simple C'-closed, regular
curve c: [a,b] — R? equals 1 or —1.

This probably goes back to Riemann. The following elegant argument is due to
H. Hopf [Ho1935]].

Proof: We assume that ¢ is parametrized by arc length and that [a, b] = [0, L].
Furthermore, we suppose that the image of ¢ lies in the upper half-plane R X [0, co)
and that ¢(0) = (0,0) and ¢’(0) = (1,0). We will show that o. = 1 under these
assumptions.

We consider the triangular domain D := {(s,f) € R? : 0 < s <t < L} and
assign to every point in D a unit vector as follows:

¢ (s) ifs=1,
e(s,1) = 1=c’(0) = (=1,0) if (s,1) = (0, L),
c(t)=c(s) otherwise.

le(t)—c(s)]



Note that this definition is possible since c is simple. The resulting map e: D — S!
is easily seen to be continuous.

It then follows from the homotopy lifting property in topology that there is a
continuous function #: D — R such that o 0 8 = e, where o: R — S! is the
canonical covering as above. For an alternative direct argument, note that by the
uniform continuity of e on the compact set D there is an integer k£ > 1 such that for
6 := L/(k + 1), none of the subsets

Dj;:=Dn([id,i+1)5] x[jo,(j+1)d]), j=0,....k, i=0,...,j,

is mapped onto S'. Clearly # may be defined on D ¢, and then there exist successive
unique extensions to D19, D11, D20, D21, D22, . . . (lexicographic order).

Now, since ¢ (0, f) lies in the upper half-plane for all r € [0, L], and ¢(0,0) =
(1,0) and (0, L) = (-1, 0), it follows that

6(0,L) = 6(0,0) + 7.

Similarly, e(s, L) is in the lower half-plane for all s € [0, L], and e(L, L) is again
equal to (1, 0), hence

O(L,L)=06(0,L)+m=6(0,0) + 2.
Since s — 6(s, s) is an angle function for s — e(s,s) = ¢’(s), this shows that
oc=1. O
1.4 Total curvature of closed curves

Now let c: [0, L] — R? (L > 0) be a C? curve of constant speed one with Frenet
frame (eq,e3). If 6: [0, L] — R is continuous and e;(s) = (cos 8(s), sinO(s)),
then 6 is continuously differentiable, and

e{(s) =6 (s)(—sind(s),cosH(s)) = 0" (s)eax(s).

On the other hand, e[(s) = kor(s)ea(s) by the first Frenet equation, thus " = k.
The ftotal curvature of c therefore satisfies

L L
/0 Kor(s8) ds = -/0 0'(s)ds =6(L) — 6(0).

If ¢ is C?-closed and simple, then Theoremasserts that |0(L) —6(0)| = 2, thus

L L
/0 Kor(s) ds > /0 kor(s) ds

Equality holds if and only if . does not change sign, that is, ko > 0 or kor < 0.
This in turn holds if and only if ¢ is convex, that is, the trace c([0, L]) is the
boundary of a convex set C C R? (exercise).

=2r.




We now turn to curves in R” for n > 3. If ¢ € C"(I,R") is a Frenet curve
parametrized by arc length, then x; = |c¢”’|. It is thus consistent to define the
curvature of an arbitrary unit speed curve ¢ € C2(I, R") by

K:=1c"|.
1.7 Theorem (Fenchel-Borsuk) Suppose that c: [0, L] — R" is a C*>-closed unit
speed curve whose trace is not contained in a 2-dimensional plane. Then

L
/ k(s)ds > 2m.
0

This is due to Fenchel [Fe1929] for n = 3 and to Borsuk [Bo1947] in the general
case. The proof below is from [Hor1971]].

Proof': It suffices to show the conclusion for n = 3,4, . . . under the assumption that
the trace of ¢ is not contained in an (n — 1)-dimensional plane.

The derivative of ¢, viewed as a (C') curve ¢’: [0,L] — S™! into the unit
sphere, is called the tangent indicatrix of c. Clearly

'/OL k(s)ds = ‘/OL |c"”"(s)|ds = L(c).

For every fixed unit vector e € sl

L
/0 (¢ (), ey ds = (c(L). ¢) — (c(0), &) =0,

and (c’,e) cannot be constantly zero, for then im(c) would be contained in a
hyperplane orthogonal to e; thus (c’, ¢) must change sign. This shows that no
closed hemisphere of §”~! contains the entire trace of the tangent indicatrix. It now
follows from the next result that L(c’) > 2. m|

1.8 Proposition If c: [a,b] — S~ ! ¢ R" is a closed curve whose trace is not
contained in a closed hemisphere, then L(c) > 2n.

Note that here ¢ is merely continuous. The proof uses a symmetry argument
together with the basic fact that the trace of any shortest curve in $”~! between two
points is an arc of a great circle of length at most 7 (exercise).

Proof: We assume that L(c) < oo. Suppose first that there exists az € (a, b) such
that ¢(¢) = —c(a). Then clearly L(c¢) > 2r, and equality holds only if ¢ runs on
arcs of great circles from c(a) to —c(a) and back, in which case im(c) would be
contained in a closed hemisphere. Thus L(c) > 2.

Suppose now that no image point of ¢ is antipodal to ¢(a). Choose ¢ € (a, b)
such that [ := L(c|{a,]) = L(cl[t,p1). Since c(t) # —c(a), there exists a unique



midpoint e € §”~! between c(a) and ¢(7). By the assumption, at least one of the
curves ¢4, and c|[; »] leaves the hemisphere H, = {v € s (e, v) > 0},
Suppose that c([a,t]) ¢ H.. Then there exists an s € (a,t) with {e,c(s)) = 0.
Consider the bigon consisting of the two arcs of great circles from c(s) to —c(s)
through c(a) and c(¢). By symmetry, c¢(a) and c¢(¢) subdivide the bigon into two
parts of length . In particular / > n, and equality would imply that ¢([a, t]) C H,.
Thus ! > wand L(c) =21 > 2. ]

Fary [Fa1949] and Milnor [Mi1950] showed independently that the total cur-
vature of a knotted curve in R3 is even > 4x, thus answering a question raised
by Borsuk. We refer to [PeS2024] for a recent survey of various proofs of the
Fary-Milnor Theorem.



2 Surfaces

2.1 Submanifolds and immersions

We now consider m-dimensional surfaces in R".

2.1 Definition (submanifold) A subset M c R” is a (smooth) m-dimensional
submanifold of R" if for every point p € M there exist an open neighborhood
V c R" of p and a C* diffeomorphism ¢: V — U onto an open set U C R" such
that (M NV) = (R" x {0}) nU.

The number k := n — m is called the codimension of M in R", and ¢ is a
submanifold chart (Schnittkarte) of M. Submanifolds of class C4, 1 < g < oo, are
defined analogously.

Now let W ¢ R” be an open set, and let F: W — RX be a differentiable map.
A point p € W is called a regular point of F if the differential dF), is surjective,
otherwise p is called a singular or critical point of F. A point x € R is a regular
value of F if all points p € F~!{x} are regular; otherwise, if F~!{x} contains a
singular point, x is a singular or critical value of F. Note that, according to this
definition, every x € R* \ F(W) is a regular value of F.

2.2 Theorem (regular value theorem) If W c R" is open and F € C*(W, R¥),
and if x € F(W) is a regular value of F, then M := F~'{x} is a submanifold of
R" of dimension m := n — k > 0 (thus the codimension of M equals k).

Proof: We assume that x = 0. Let p € M = F~'{0}. Since dF, is surjective, it
follows from Theorem (implicit function theorem, surjective form) that there
exist open neighborhoods U ¢ R"% x R* of (0,0) and V ¢ W of p and a C*
diffeomorphism ¢ : U — V such that (0, 0) = p and

(Foy)(x,y)=y forall (x,y) € U.

Then ¢ := ¢~': V — U is a submanifold chart of M around p: ¢(MNV) equals the
setofall (x,y) € Usuchthaty(x,y) € M = F~'{0} and thus y = (Foy)(x,y) = 0.
mi

The following alternative notion of surface extends the concept of a regular
(parametrized) curve to higher dimensions.

2.3 Definition (immersion) A map f € C*(U,R") from an open set U c R™
into R" is called an immersion if for all x € U the differential df, : R™ — R" is
injective.

2.4 Theorem (immersion theorem) Let f € C*(U,R") be an immersion of the
open set U C R™. Then, for every point x € U, there exists an open neighborhood
U, C U of x such that f(Uy) is an m-dimensional submanifold of R".

10



Proof: We suppose that x = 0 € U and f(0) = p. Since dfj is injective, it follows
from Theorem (implicit function theorem, injective form) that there exist open
neighborhoods V ¢ R" of pand W c UXR"™™ of (0, 0) and a C* diffeomorphism
@: V — W such that ¢(p) = (0,0) and

(oo f)(x) =(x,0) forall (x,0) € W.

PutUy:={x e U: (x,0) € W}and M := f(Uy). Then ¢ is a (global) submanifold
chart for M, since o(M NV) = ¢(f(Up)) = Uy x {0} = W N (R™ x {0}). ]

In general, even if an immersion is injective, its image need not be a submanifold.
For example, the trace of the injective regular curve

c: (0,27) —» R2,  ¢(t) = (sin(7), sin(2¢)),
has the shape of the co symbol. However, the following holds.

2.5 Theorem (local parametrizations) A subset M C R" is an m-dimensional
submanifold of R™ if and only if for every point p € M there exist open sets
UcR™andV c R" and an immersion f: U — R" such thatp € f(U)y=MNV
and f: U — M NV is a homeomorphism.

Then f is called a local parametrization, and f~': M NV — U is a chart of
M around p.

Proof: Suppose first that M c R" is a submanifold. Given a point p € M, let
p: Vo> U c R"=R™xR"™ be a submanifold chart around p, and put U :=
{x e R™: (x,0) € U’} and f(x) := ¢~ '(x,0) forallx € U. Then f is animmersion
of U into R” and a homeomorphism onto f(U) = ¢~ ' ((R™x{0})NU’) =M NV.

We prove the reverse implication. Let p € M, and suppose that f: U — R"
is an immersion of an open set U € R™ such that 0 € U, f(0) = p, and f is
a homeomorphism onto M NV for some open set V Cc R”. As in the previous
proof, since dfy is injective, we infer from Theorem that there exists a C*
diffeomorphism ¢: V' — W between open neighborhoods V' c V of p and
W c U x R" "™ of (0,0) such that ¢(p) = (0,0) and

(oo f)(x) =(x,0) forall (x,0) € W.

Furthermore, since f~!: M NV — U is continuous, there exists an open neighbor-
hood V" c V' ¢ V of p such that

Up:=f'MnV')yc{xeU: (x,0) € W}.

Now (M NV") = o(f(Upy)) = Uy x {0}, and this is the set of all (x,0) € W with
f(x) € V" and thus (x,0) = ¢(f(x)) € ¢(V"”). Hence, ¢|ly»: V" — (V") isa
submanifold chart of M around p. O
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2.6 Lemma (parameter transformation) Let M C R” be an m-dimensional sub-
manifold, and suppose that f;: U; — f(U;) ¢ M, i = 1,2, are two local
parametrizations with V := fi(Uy) N f>(Us) # 0. Then

o= fz_l o fi: f1_1(V) - fz_l(v)
is a C* diffeomorphism.

Proof: Suppose that f1(0) = p = f»(0). As in the proof of Theorem there
exists a C* diffeomorphism ¢ defined on an open neighorhood of p in R” such
that ¢(p) = (0,0) € R™ x R"™" and

o(f2(x)) = (x,0) forall (x,0) € im(¢p).

Let r: R™ x R"™™ — R™ denote the projection (x, y) — x. Then, in a neighbor-
hood of 0 € R™, we have ¢ = fz_l o fi =mogo fi. Thus ¢ is locally C* and
hence C*, and by symmetry the same holds for y~!. O

2.2 Tangent spaces and differentials

2.7 Definition (tangent space, normal space) The tangent space TM,, of an m-
dimensional submanifold M C R" at the point p € M is defined as TM,, :=
dfx(R™) c R™ for some (and hence any) local parametrization f: U — f(U) c M
with f(x) = p. The orthogonal complement M, of TM,, in R" is the normal
space of M at p.

The tangent space T M, is an m-dimensional linear subspace of R", whereas the
normal space TM ; is alinear subspace of R" of dimension equal to the codimension
k:=n—-mof M.

2.8 Definition (differentiable map, differential) A map F: M — R! from a sub-
manifold M ¢ R" into R’ is differentiable at the point p € M if for some (and hence
any) local parametrization f: U — f(U) ¢ M with f(x) = p the composition
F o f: U — R!is differentiable at x € U. The differential of F: M — R! at p is
then defined as the unique linear map dF,: TM, — R! for which the chain rule

d(Fof)x:deodfx

holds. For 1 < ¢ < co, mappings F: M — R! of class C4, F € C9(M,R!), are
defined accordingly.

In order to determine dF),(v) it is often convenient to represent the vector
v € TM,, as the velocity ¢’(0) of a differentiable curve ¢: (—€,€) — M C R" with
¢(0) = p; then
dF,(c’(0)) = (F oc)’(0).

If F: M — R! takes values in a submanifold Q of R/, then it follows that
de(TMp) C TQF(p).
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2.3 Orientability and the separation theorem

2.9 Definition (orientability) A submanifold M C R" is orientable if there exists
asystem {fo: Uy = fo(Uy) C M} qca of local parametrizations of M such that
Ugea fo(Uy) = M and every parameter transformation fﬁ‘ Yo f, withe, B € A and
faUa) N fp(Ug) # O satisfies det(a’(fﬁ‘1 o fo)x) > Oeverywhere on its domain. A
maximal such system is called an orientation of M, and every local parametrization
belonging to it is then said to be positively oriented.

2.10 Proposition (orientable hypersurfaces) A submanifold M ¢ R™! of codi-
mension one is orientable if and only if there exists a continuous unit normal vector
field on M, that is, a continuous map N: M — S™ with N(p) € TM; for all
pEM.

Such a map N is called a Gauss map of M.

Proof: Suppose first that M is orientable, and let {fy: Uy — fo(Ua) C M}aca
be an oriented system of local parametrizations with | ,c 4 fo(Ua) = M. We will
briefly write f, ; for the partial derivative d(f,)(e;). For every a € A there exists

a unique unit normal vector field v, : U, — S along f, (thus v,(x) € TM ]% (x))
such that (fo.1(x), ..., fa.m(X), va(x)) is a positively oriented basis of R™*! for

all x € U,. Since the f, ; are continuous, so is v,. In order to define N at p € M,
we want to prove that v, (x) = vg(y) whenever f,(x) = p = fg(y). In this case,

d(fa)x = d(fﬁ)y ° d(fﬁ_l © fa)xa

and since det(d(fﬁ‘] o fa)x) > 0, it follows that (fq.1(x),..., fe.m(x)) and
(fp,1(¥), .., fp,m(y)) are equally oriented bases of TM,,. Thus v, (x) = vg(y) as
desired.

Conversely, suppose that there exists a Gauss map N: M — S". Choose
a system of local parametrizations {fy: Uy — fo(Uy) C M}aea such that
UaeA fa(Ua) = M and (foz,l(x)’-- -,fa/,m(x)’N(f(t(x))) is a positively ori-
ented basis of R”*! forall @ € A and x € U,. If fo(x) = p = fg(y), then

(fa,1(x)s ..., fa,m(x)) and (fg,1(¥), ..., fg,m(y)) are equally oriented bases of
TM,, and by the same relation as above it follows that det(d( fﬁ_ o f)y) >0. O

2.11 Theorem (separation theorem) Suppose that 0 #+ M c R is a compact
and connected m-dimensional submanifold. Then R™' \ M has precisely two
connected components, a bounded and an unbounded one, M is the boundary of
each of them, and M is orientable.

Proof: Since M is a submanifold of codimension 1, it follows that for every point
p € M there exist an open set V ¢ R™*! and a smooth curve c: [-1,1] — V
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with ¢(0) = p and ¢’(0) ¢ TM,, such that V \ M has exactly two connected
components containing ¢([—1,0)) and ¢((0, 1]), respectively (use a submanifold
chart). We claim that ¢(—1) and c¢(1) lie in different connected components of
R™1\ M. Otherwise, there would exist a C*-closed curve ¢: [-1,2] — R+
with ¢(0) = p, ¢’(0) ¢ TM,, and ¢(t) ¢ M for t # 0O; this would, however,
contradict the homotopy invariance of the intersection number modulo 2, which we
will prove later in Theorem[9.12] Hence, every point p € M is a boundary point of
two distinct connected components of R+ \ M.

Now let p € M be fixed, an let ¢ € M be any other point. Then p € dANJB and
q € 0A,; N IB, for some connected components A # B and A, # B, of R™1\ M.
Since M is connected and locally path connected, M is path connected, thus there
existsacurvecy: [0,1] — M fromptog. LetN,: [0,1] — R™*! be a continuous
unit vector field along ¢, normal to M. For a sufficiently small € > 0, the traces of
the curves ¢ : 1 > ¢4 (1) £ €N,4(1) are in R™ 1\ M. It follows that either A, = A
and B, = B,or A; = B and B, = A. Since M is bounded, the assertions about
the connected components of R+ \ M are now clear. Furthermore, M admits a
Gauss map (pointing everywhere to A, for example), and thus M is orientable by
Proposition [2.10 O

Theoremholds more generally for the case that @ # M c R™*! is the image
of a compact and connected m-dimensional topological manifold (Definition
under a continuous and injective map [Brl1911b]. This is the Jordan—Brouwer
separation theorem, which generalizes the Jordan curve theorem. In the latter, M
is a Jordan curve in R2, that is, the image of a simple closed curve ¢: [0,1] — R2,
A firstrigorous proof of the Jordan curve theorem was provided by Veblen [Ve1903].
Another generalization of the Jordan curve theorem is Schonflies’ theorem: every
continuous injective map f: §' — R? extends to a homeomorphism f: R? — R?,
such that f|g1 = f [Sc1906]. Surprisingly, the analogue for maps f: S — R™*!
with m > 2 fails to be true. Alexander’s horned sphere in R3 has the property that
the exterior domain is not simply connected [Al11924]).

14



3 Intrinsic geometry of surfaces
3.1 First fundamental form

3.1 Definition (first fundamental form) The first fundamental form g of a sub-
manifold M C R" assigns to each point p € M the inner product g, on TM,
defined by
gp(X,Y) =(X.Y)

for X,Y € TM, (thus g, is just the restriction of the standard inner product (-, -)
of R" to TM, xTM,.) The first fundamental form g of an immersion f: U — R"
of an open set U € R™ assigns to each x € U the inner product g, on R™ defined
by

8x(&,m) = (dfx(§), dfx(n))
for &,n e R™,

The first fundamental form g is also called the (Riemannian) metric of M
or f, respectively. The matrix (g;;(x)) of g, with respect to the canonical basis
(e1,...,emn) of R™ is given by

of
oxt

(x), %@,

gij(x) = gx(ei, ej) = (dfx(ei), dfx(e})) = <

where g;; € C*(U). We will often write this relation briefly as g;; = (f;, fj)-
Now let M c R" be a submanifold, and suppose that f: U — f(U) c Misa
local parametrization (in particular, an immersion). The first fundamental forms of
f and M are related as follows: if x € U and f(x) = p, then df, is an isometry of
the Euclidean vector spaces (R™, g,) and (T'M,, g,,). The set U C R™, equipped
with the first fundamental form of f, constitutes a “model” for f(U) c M, in which
all quantities belonging to the intrinsic geometry of f(U) € M can be computed.

Examples

1. Norms and angles: for X,Y € TM,, x := £~ '(p), and the corresponding
vectors & = (df)”1(X) and 5 := (df) "' (Y) in R™,

1X] = \J2p (X, X) = Ver(£,8) =t €l

gP(X’ Y) — gx(‘f’ 77)
XYL [élg Inle,

cos /(X,Y) =

2. Lengthof aC' curve c: I — f(U) € M: ify := floc: I — U is the
corresponding curve in U, then ¢’ (t) = df, ;)(y’(¢)) and hence

L@ = [I1cwldr= [V O, dr.
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3. The m-dimensional area of a Borel set B ¢ f(U) C M is computed as

A(B) _/f " JJdet(gij(x)) dx [0, oo]

recall that the Gram determinant

det(g;;(x)) = det({fi(x), f;(x)))

equals the square of the volume of the parallelepiped spanned by the vectors
filx) = %(x) fori =1,...,m. The area A(B) is independent of the choice
of f and is also denoted by fB dA.

In order to compute the m-dimensional area of a compact region K ¢ M,
one chooses finitely many local parametrizations f,: Uy, — fo(Uy) C M
and Borel sets B, C fo(Uy) such that K = | J, B, is a partition (that is, a
decomposition into pairwise disjoint sets). The area

10 =Y am0=3 [ e ax

where g denotes the first fundamental form of f,,, turns out to be independent
of the choices made. For a continuous function b: K — R,

/bdA 2/1(3 bo fa(x) [det(g(x)) dx

then defines the surface integral of b over K.

3.2 Definition (isometries) Two submanifolds M c R” and M c R”" with first
fundamental forms g and g are called isometric if there exists a diffeomorphism
F: M — M such that

8p(X.Y) = &r(p)(dFp(X),dF,(Y))

for all p € M and X,Y € TM,. For open sets U,U c R™, two immersions
f:U — R" and f: U — R" with first fundamental forms g and § are called
isometric if there exists a diffeomorphism : U — U such that

gx(f’ 77) = gw(x) (d‘r//x(f)e dl//x(n))
forallx e U and &,7 € R™.

The above relations are briefly expressed as g = F*g and g = y* g, respectively;
g equals the pull-back of g under the isometry. Note that ¢*g is just the first
fundamental form of the immersion f o ¥, as

g(dy (&), dy () = (df o dy(é).df o dy(n))
= (d(foy)(é),d(f oy)(m).

In particular, if f = f oy is a reparametrization of f, then f and f are isometric.
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3.2 Covariant derivative

Let f: U — R" be an immersion of the open set U ¢ R". The vectors

0
fr(x) = 3_;:‘()6)’ k=1,...,m,

form a basis of the tangent space dfy(R™) of f at x. We now consider second
derivatives

2
iy = o)

of f, which need no longer be tangential. The tangential part has a unique repre-
sentation

(i ()" Zr () fi ().
S . k _1%k. .
The C* functions Fij = Fjl.. U — R are the Christoffel symbols of f.

3.3 Lemma (Christoffel symbols) Let f € C*(U,R") be an immersion of the
open set U C R™. Then

1 i (9851, 9ga _ 98ij
” 2 & oxi " Bx oxt )

where (g*) denotes the matrix inverse to (g; i)

Proof: Since
0
@(fpfl) = (fiji- f) + ), fii)s
0
@(fi,fﬂ = (fij. fo +{fi» fij)>
0
ﬁ<fi’fj> = (fu, fi) +{fir fin)

it follows that

1 (081 0gi agz
T * aur ~ aa | = i Sy = (e (D)) Zn]gm

By solving this equation for Ffj we get the result. ]

In the case m = 2 the expression for F{‘j has a simpler form, as then always at
least two of the indices i, j, [ agree. If we use Gauss’s notation
E:=gn, F:i=gn=g1 G:=g»

and the abbreviations D := EG — F? and E; etc., then

61,

rl, r, r,\_ 1(G -F E| E; 2F, -G
Iy, Iy, I3, ) 2D\-F E J\2Fi-E, G, G
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3.4 Definition (covariant derivative, parallel vector field) Let M c R" be an m-
dimensional submanifold. Suppose that c: I — M is acurve and X: I — R" is
a C! tangent vector field of M along c, that is, X(¢) € TM. forall t € I. The
covariant derivative %X of X is the vector field along ¢ defined by

D .
EX(z) =X(1)" € TM,,)

for t € I. Then X is said to be parallel along c if, for all ¢ € I, %X(t) = 0, that is,

X(1) e M},

3.5 Theorem (covariant derivative) Let M be an m-dimensional submanifold of
R™ with first fundamental form g. Suppose thatc: I — M isa C' curve, X,Y: I —
R"™ are two C! tangent vector fields of M along ¢, and A: 1 — R is a C' function.
Then:

(1)
D D

X+ b
dt dt

X;
dt

D(X+Y)— Y D(/lX)—/iX+/l
dt B Cdt B

/’l‘g ’ _g /Il ’ g ’ Yt ’

(3) if c(I) c f(U) for some local parametrization f: U — f(U) Cc M, and if
y=0. ..,y I > Uandé = (€',...,6™): I — R™ are the curve and
vector field such that ¢ = f oy and X(t) = dfy (1) (£(t)), then

BX: m(éfk+ N gi)‘,f[‘k,oy)a_foy
z l z : ij ko7
dt k=1 i,j=1 0x
Proof: O

Item (3), together with Lemma @ shows that the covariant derivative can be
computed entirely in terms of the first fundamental form and is thus intrinsic. Note
also that if X, Y are parallel along c, then g.(;)(X(¢),Y(¢)) is constant, as

d D D
Ze(X.¥) = g(=X,7) +g(X,=¥) =0
dtg( ) g(dt * g( dt

by property (2); in particular | X| = 4/g(X, X) is constant.

3.6 Theorem (existence and uniqueness of parallel vector fields) Let M c R"
be a submanifold, and let c: I — M be a C' curve with 0 € I. Then for every
vector Xo € TM_ o) there is a unique parallel tangent vector field X: I — R" of
M along c with X(0) = X.

Proof: O
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3.3 Geodesics

3.7 Definition (geodesics) Let M C R" be a submanifold. A smoothcurvec: I —
M is a geodesic in M if ¢ is parallel along c, that is, %é = 0 on /; equivalently,

é(r) € TMCL(t) forallt € 1.

Every geodesic c: I — M has constant speed |¢|, because

d D

—8(e.0) = 2g(ac',c') - 0.
If f: U — f(U) c M is alocal parametrization and y = (y',...,y™): I — U is
a smooth curve, then ¢ := foy: U — M is a geodesic if and only if

m
7+ > 79 They=0
i,j=1

on/ for k =1,...,m. Accordingly, we may also speak of a geodesic y in U with
respect to the metric g, or of a geodesic ¢ = f o 7y relative to a general immersion
f:U—R"

3.8 Theorem (existence and uniqueness of geodesics) Ler M C R”" be a sub-
manifold, and let p € M and X € TM,. Then there exist a unique geodesic
c: I - M with ¢(0) = p and ¢(0) = X defined on a maximal open interval 1
around 0.

Proof: O

3.9 Theorem (Clairaut’s relation) Let c: I — M be a non-constant geodesic on
a surface of revolution M c R3. Fort € I let r(t) > 0 be the distance of c(t) to
the axis of rotation, and let 0(t) € [0, ] denote the angle between ¢(t) and the
oriented parallel through c(t) (that is, the circle generated by the rotation). Then
r(t) cos 6(t) is constant.

Proof: O

3.10 Theorem (first variation of arc length) Let M C R" be a submanifold, and
let co: [a,b] — M be a smooth curve of constant speed |¢o| = 4 > 0. If
c: (—e,e)X[a,b] — M is a smooth variation of cy, cs(t) := c(s, t), with variation
vector field Vi (t) .= V(s,t) = %(s, t), then

4 ten =1 [eto.coo)]) - [ ol 2ewio) ar).

ds |s=0 a

Proof: O
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The variation ¢ of ¢ is called proper if cs(a) = co(a) and cs(b) = co(b) for
all s € (—¢,€). It follows from Theorem that a non-constant smooth curve
co: [a,b] — M is a geodesic if and only if cq is parametrized proportionally to
arc length and %L:OL(C s) = 0 for every proper variation ¢ of ¢g. In particular, if
a smooth curve cq: [a,b] — M of constant speed has minimal length among all
smooth curves from p = cg(a) to g = ¢o(b), then ¢q is a geodesic.
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4 Curvature of hypersurfaces

In this chapter we consider m-dimensional surfaces of codimension 1.

4.1 Second fundamental form

If M c R™*! is an m-dimensional orientable submanifold, then a Gauss map N of
M is a continuous map N: M — S™ such that N(p) € TM ; for all p € M (recall
Proposition[2.10)). If M is connected, then there are precisely two choices for N, and
if M is compact in addition, we may speak of the inner or outer Gauss map according
to Theorem If f: U — R™*!is an immersion of an open set U ¢ R™, then a
Gauss map v of f is a continuous map v: U — S™ with v(x) € dfy(R™)* for all
x € U. For m = 2, the standard choice is v = (f1 X f2)/|f1 X f2| (vector product).
Note that since M and f are smooth, so are the Gauss maps.

In the following, we tacitly assume that for M and f as above a Gauss map is
chosen. We now consider the differential

dNp: TM, - TS%  =TM, or dve:R™ —TS} = df(R")

for p € M or x € U, respectively.
4.1 Definition (shape operator) For p € M, the linear map
L,:TM, - TM,, L, :=-dN,,
is called the shape operator of M at p. For x € U, the linear map
Le:R™ > R™, Ly :=—(dfy)" odvy,

is the shape operator of the immersion f at x (here (dfy)~': dfx(R™) — R™ is the
inverse of the differential viewed as a map dfy: R™ — df(R™) onto its image).
In either case, this is also called the Weingarten map.

Note that if f is a local parametrization of M with f(x) = pand v = N o f,
then the two shape operators are conjugate: Ly = (dfy) ' o L podfx.

4.2 Lemma (self-adjoint) For p € M, the shape operator L, is self-adjoint with
respect to g, thus
8p(X,Lp(Y)) = gp(Lp(X),Y)

forall X,Y € TM,. For an immersion f: U — R" and x € U, the shape operator
L is self-adjoint with respect to g, thus

gx(&, Lx(m) = gx(Lx (&), 1)

forall £,n € R™,
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Proof: For p € M, choose a local parametrization f: U — f(U) ¢ M of M with
f(x)=p.Putv:=No f. Thendvy, = dN, o dfy, and the partial derivatives of f
and v satisfy dN, (f;(x)) = v;(x), thus

8p (fi(x), Lp(fi(x))) = =(fi(x), v;(x)).
Furthermore, (f;;,v) + (fi,v;) = %(ﬁ, v) =0, thus

8p (fi(x), Lp(f(x))) = {fi; (x), v(x))

is symmetric in i and j. Since fi(x),..., fin(x) is a basis of TM,, this shows that
L, is self-adjoint with respect to g,.
Similarly, for an immersion f: U — R" and x € U,

gx(eir Lx(ej)) = =(fi(x),v;(x)) = (fi; (x), v(x))

is symmetric in i and j. O

4.3 Definition (second fundamental form) The second fundamental form h of a
submanifold M c R™*! assigns to every point p € M the symmetric bilinear form
h, on TM,, defined by

for X,Y € TM,,. The second fundamental form h of an immersion f: U — R+

of an open set U C R™ assigns to every point x € U the symmetric bilinear form
h, on R™ defined by

hx(§,1) = gx(&, Lx(n)) = —(dfx(£), dvx(n))
for&,n € R™,

The matrix (h;;(x)) of h, with respect to the canonical basis (e, ...,e;) of
R™ is given by

hij(x) = =(fi(x),vj(x)) = {fi; (x), v(x)).

We let (hi;(x)) denote the matrix of L, with respect to (e, ...,e,); by the
definitions, (gij)(hfk) = (h;x) and hence (h'y) = (gij)(hjk), thus

m
h'y = Zgijhjk-
j=1
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4.2 Curvature of hypersurfaces

The following lemma yields a geometric interpretation of the second fundamental
form.

4.4 Lemma (normal curvature) Suppose that M ¢ R™*! is an m-dimensional
submanifold with Gauss map N, and X € TM, is a unit vector. Then

hP(X’ X) = <CN(O)7 N(p)>
for every smooth curve c: (—€,€) — M with ¢(0) = p and ¢’(0) = X.

The curve ¢ can be chosen such that it parametrizes the intersection of M with
the normal plane p + span(X, N(p)) in a neighborhood of p. Then &,(X, X) =
(c""(0), N(p)) equals the oriented curvature ko (0) of ¢ in this plane with positively
oriented basis (X, N(p)). For this reason, &, (X, X) is called the normal curvature
of M in direction X.

Proof: Note that
hp(X,X) = —=(X,dN, (X)) = =(c’(0), (N 2 ¢)"(0)),
furthermore (¢’ (N o ¢)’) + (¢”’, N o ¢) = (¢/,N o c¢)’ = 0, thus
hp(X,X) = (c"(0), (N o ¢c)(0)) =(c"(0), N(p))
as claimed. O

Since the shape operator L, is self-adjoint with respect to g ,, it possesses m real
eigenvalues x| < ... < ky,, and there exists an orthornormal basis (Xi, ..., X;;) of
TM,, such that L, (X;) = k;X;, thus

hp(Xi, Xj) = gp(Xi, Lp(X})) = k055
In particular, «; is the normal curvature of M in direction X .

4.5 Definition (principal curvatures) The m real eigenvalues «; < ... < k;, of

L, are called principal curvatures of M at p. Every eigenvector X of L, with
| X| = 1is called a principal curvature direction.

Analogously, for an immersion f: U — R™*! and a point x € U, the shape

operator L, has m real eigenvalues «; < ... < k,, the principal curvatures of f,
and there exists an orthonormal basis (£,...,&,) of R™ with respect to g, such
that Ly (&) = k;&; and hy(&:, &) = k;64j.

A point x € U is called an umbilical point of f if k1(x) = ... = kn(x) = 4;

equivalently, Ly = Aidgm.

23



4.6 Theorem (umbilical points) Let f: U — R™*! be an immersion of a con-
nected open set U C R™ for m > 2. If every point x € U is an umbilical point of
f, then the image f(U) is contained in an m-plane or an m-sphere.

Proof: O

4.7 Definition (Gauss curvature, mean curvature) Let M c R"*! be an m-
dimensional submanifold. For p € M,

K(p) :=det(L))

is called the Gauss—Kronecker curvature, in the case m = 2 the Gauss curvature,
of M at p, and

1
H(p) := —trace(L )
m
is the mean curvature curvature of M at p.

For an immersion f: U — R™*! and a point x € U, one defines analogously
K(x) :=det(Ly) and H(x) := % trace(Ly). Then
det(hl-j)
det(gi;)’
mH = K| + ...+ kpy = trace(h'y) = Z W= Zgijhﬂ.
i i)

K=Ky ... Kkp=det(h'y) =det((gV)(hjx)) =

4.3 Gauss’s theorema egregium
. . . of Pf
In the following we write again f; for 7 and f;; for 575, etc.

4.8 Lemma (derivatives of Gauss frame) For an immersion f: U — R™! of an
open set U C R with Gauss map v: U — S™, the partial derivatives of f; and v

satisfy
(1) (Gauss formula)

m
ﬁj:Zr{;thUv G,j=1,...,m),
k=1

(2) (equation of Weingarten)

m m
Vk = _Zhikﬁ‘ =7 Z g'hjifi (k=1.....m).
i=1

i,j=1
Proof: O
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These equations correspond to the Frenet equations of curve theory. For exam-
ple, when m = 2, they can be written in matrix form as
s [/ Fli X Fik hie \[ fi
M f2 = FQk F2k th f2
e AW

We will now consider second derivatives of the vector fields f;. The identity
fiij = fkji results in the following equations in the coefficients of the first and
second fundamental forms.

4.9 Theorem (integrability conditions) If f: U — R™*! is an immersion of an
open set U C R™, then the following equations hold for all i, j, k:
(1) (Gauss equations)
Rkij = h’ihij — 1 jhy = Zg‘ql(hzihkj —hjhi) (s=1,...,m),
=1
where

3
Ruji= 5513, - —rY Z Iy, 08, - Ty T)),

(2) (Codazzi—-Mainardi equation)
0 0 <
S = o + rz:;(r;jh” I7h, ;) = 0.
For fixed indices i, j, k, the system (1) is equivalent to

m

h;;  hy;

Rikij = ZglsRskij = hiihij — hijhi; = det( h:l h;l(jj ) (I=1,...,m).
s=1

Proof: O

The coefficients R*y;; or Ryy;; are the components of the Riemann curvature
tensor of f (see Differential Geometry II). The Gauss equations for m = 2 readily
imply the following fundamental result.

4.10 Theorem (Gauss’s theorema egregium) Let f: U — R3 be an immersion
of an open set U C R?. Then the Gauss curvature of f is given by

_ Ri212
det(gij) ’

in particular K is intrinsic, that is, computable entirely in terms of the first funda-
mental form.
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Proof: By the definiton of K and the Gauss equations as stated after Theorem |4.9]

_det(hi;)  Rpe
det(g;;)  det(gj)’

and Ry, is computable entirely in terms of g. O

In his fundamental investigation [[Gal828|], Gauss derived the completely ex-
plicit formula

1
K = E(E(Gf — G2A) + F(E|Gy - 2E>G + AB) + G(E} - E1B))

1
—=—=(Exn - 2F+G).
3 D< 22 12 1)
Here we are using the same notation as after Lemma together with the abbre-
viations A :=2F; — E; and B := 2F, — G;.

4.11 Theorem (g and / determine ) Suppose that U C R™ is a connected open
set and f, f: U — R™" are two immersions with Gauss maps v,v: U — S™
such that (fi, ..., fm,v) and (fi,. .., fm, V) are positively oriented. If g = § and
h=honU, then f and f agree up to an orientation preserving Euclidean isometry
B: R™1 — R™! thar is, fz Bo f.

Proof: O

Given symmetric C* matrix functions (g;;(-)) and (4;;(-)) on an open set
U c R™ such that (g;;(x)) is positive definite for every x € U, does there exist
an immersion with these fundamental forms? The fundamental theorem of local
surface theory due to O. Bonnet asserts that if (g; /) and (h; ;) satisfy the integrability
conditions ofTheoremE then for all xg € U, pg € R™! and by, ..., b, € R™!
with (b;, b;) = gij(xo) there exists a connected open neighborhood U’ of x¢ in U
and precisely one immersion f: U — R™! such that f(xo) = po, fi(x0) = b;
fori=1,...,m, (gij) is the first fundamental form of f, and (h;;) is the second
Sfundamental form of f with respect to the Gauss map v: U — S™ for which
(b1,...,bm,v(x0)) is positively oriented. (See [Kul] for a sketch of the proof.)
Note that the uniqueness assertion follows from Theorem §.11]
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S Special classes of surfaces

5.1 Geodesic parallel coordinates

In the following we will denote points in U ¢ R? by (u, v) rather than x = (x!, x?),
and partial derivatives of functions on U by a respective subscript u or v.

5.1 Proposition (geodesic parallel coordinates, Fermi coordinates) Let I,J C
R be two open intervals, and let f be an immersion of U = I x J into R>.
Then the following holds.

(1) The first fundamental form of f satisfies g12 = g21 = 0 and g2 = 1 if and
only if the curves v — f(uq,v) (for fixed uy) are unit speed geodesics that
intersect the curves u — f(u,vg) (for fixed vo) orthogonally.

(2) Ifgn = E, g12 = g21 = 0and g» =1, then the Gauss curvature of f is given
by

_(VE)w _E} En
VE  4E?2 2E°

(3) If, in addition, 0 € J and u — f(u,0) is a unit speed geodesic, then
E(u,0) =1, E,(u,0) = E,(1,0) =0, and Ffj(u,O) =0foralli,j, k and
uel

K =

Coordinates as in (1) and (2) or as in (3) are called geodesic parallel coordinates
or Fermi coordinates, respectively. For example, if v — (r(v), z(v)) is a unit speed
curve in R2 with r > 0, defined on some interval J, then the surface of revolution
f: R xJ — R3 defined by

f(u,v) :=(r(v)cos(u), r(v)sin(u), z(v))

r”

is an immersion in geodesic parallel coordinates with g1y = %> and K = -
Proof: O

5.2 Theorem (existence of geodesic parallel coordinates) Suppose that M c R3
is a 2-dimensional submanifold and

F{(u,0)eR>: ue(-ce}—>M

is a regular C* curve. Then there exists a § € (0, €) such that f can be extended to
a local parametrization f of M on U := (=6, 8)* with g1» = g21 = 0 and g» = 1.

In particular, by choosing the initial curve u — f(u,0) to be a geodesic, we
obtain local Fermi coordinates.

Proof: O
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5.2 Surfaces with constant Gauss curvature

For x € R, we define the functions cs,, sn,: R — R by

cos(vVks) if k >0,
cse(s) =141 if Kk =0,

cosh(\/WS) if Kk < 0;

%p sin(v/ks) if x >0,
sng(s) ;=4 ifk =0,

1 . .
——=sinh s) ifk <O.
7= sinh(Vixls)

This is a fundamental system of solutions of the equation f”’ + xf = 0 with
csx(0) =1, c¢s,.(0) =0 and sn,(0) =0, sn, (0) = 1.

5.3 Theorem (constant curvature in Fermi coordinates) If f: U — R3 is an

immersion of U = I X J in Fermi coordinates with constant Gauss curvature
K =k € R, then E(u,v) = g11(u,v) = cs,(v)? for all (u,v) € U.

Proof: By Proposition
(VE),, +« VE =0,

furthermore VE (1,0) = 1 and (VE),(u,0) = E,(u,0)/(2\E(u,0)) = 0. It
follows that VE (u, v) = cs,(v) for all (u,v) € U. O

5.4 Theorem (constant Gauss curvature) Ler M, M c R3 be two surfaces with
Gauss curvatures K: M — R and K: M — R. Then the following are equivalent:

(1) K = k = K for some constant k € R;

(2) For every pair of points p € M and p € M there exist an open neighborhood
U c R? of 0 and local parametrizations f: U — f(U) ¢ M and f: U —
f(U) € M such that £(0) = p, £(0) = p, and g = g on U; that is, M and M
are everywhere locally isometric.

Proof:

5.3 Ruled surfaces

Suppose that ¢: I — R?is a C? curve and X : I — R? is a nowhere vanishing C?
vector field, where X (s) is viewed as a vector at the point c(s). A map of the form

fiIxJ >R f(s, 1) =c(s) +1X(s),
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for some interval J C R, is called a ruled surface, regardless of the fact that f
is possibly not regular (immersive). The curve c is called a directrix of f, and
the lines f o B with B(t) := (s¢,?) (for fixed s¢) are called the rulings of f. The
latter are asymptotic curves of f, thatis, h(S, 8) = 0, because hx = (f»,v) = 0.
Intuitively, f is a surface generated by the motion of a line in R*. In regions where
f is immersive, the Gauss curvature satisfies

2
_ det(h,-j) _ _hlz <0,
det(gij)  det(gij)
with K = 0 if and only if the Gauss map v is (locally) constant along the rulings:

hip = —=(f1,v2) = 0 is equivalent to v, = 0, because (v,v;) = 0 and (f>,v2) =
—hzz =0.

5.5 Theorem (rulings in flat surfaces) Suppose that V c R? is an open set, and
f:V — R3 is an immersion with vanishing Gauss curvature K = 0 and without
planar points (that is, points where both principal curvatures are zero). Then f
can everywhere locally be reparametrized as a ruled surface.

The proof uses Lemma

Proof: O

5.4 Minimal surfaces

An m-dimensional submanifold M ¢ R”*! or an immersion f: U — R"™*! of an
open set U C R™ is called minimal if its mean curvature H is identically zero.

5.6 Theorem (first variation of area) LetU C R be anopen set, andlet f: U —
R™*! be an immersion with Gauss map v: U — S™ and finite m-dimensional area

A(f)=/UdA=‘/U,/det(g,-j(x))dx<oo.

If o: U — R is a smooth function with compact support, then

d

| A(f+s¢pv)=—m/tpHdA.
ds ls=0 U

In particular, f is minimal if and only if % o A(f +s¢v) = 0 for all such

functions .
Proof: O

A parametrized surface f: U — R? is called isothermal or conformal if (g; j) =
A2(6; ) for some function A: U — R; equivalently, f is angle preserving (exercise).
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5.7 Proposition (isothermal minimal surface) Ler U C R2 be an open set, and
let f: U — R3 be an immersion with Gauss map v: U — S°. If f is isothermal,
(8ij) = A*(8i;), then

Af = fit + fo =22%H v;

thus f is minimal if and only if the coordinate functions f', f2, f> are harmonic.
Proof: O

For the next result we use the following notation. Let U C R? be an open set,
and let f € C*(U,R3), f(u,v) = (f'(u,v), f>(u,v), f*(u,v)). We view U as a
subset of C and define ¢ = (¢', ¢?, ¢): U — C3 by

art
ou

k
(u,v) — iai(u, V),

k N
e (u+iv) = 5

k =1,2,3. Here f is not assumed to be an immersion, nevertheless we may say that
f is conformal or minimal (meaning that H = 0 at points where f is immersive).

5.8 Theorem (complexification) With the above notation, the following holds.
(1) The map f is conformal if and only if Zi:] (¢¥)?=00nU.

(2) If f is conformal, then f is an immersion if and only if Zi:l %> > 00n U
and f is minimal if and only if @', %, ¢ are holomorphic.

(3) If U c C is a simply connected open set, and if ¢', 9% ¢>: U — C are
holomorphic functions such that Zzzl(gok)z =0 and 22:1 o> > 00n U,
then the map f = (f', f2, f3): U — R? defined by

Fru,v) = Re/u+w " (2) dz

for any zo € U is a conformal and minimal immersion.
Proof: O

How does one find such functions ¢!, ¢?, ¢3? Suppose that F: U — C is
holomorphic, G: U — C U {oo} is meromorphic, and FG? is holomorphic. Put

1 .
oli=sF(1-G), ¢ = %F(l +G?), ¢ =FG;

then it follows that Zizl(gok)z =0, and ¢', ¢?, ¢* are holomorphic. By inserting

these functions ¢* into the above definition of f* one obtains the so-called Weier-

strass representation of a minimal surface f. Every non-planar minimal surface

can locally be written in this form.
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5.5 Surfaces of constant mean curvature

5.9 Theorem (Alexandrov—Hopf) Suppose that 0 #+ M c R™*! is a compact and
connected m-dimensional submanifold with constant mean curvature H. Then M
is a sphere of radius 1/|H|.

The theorem is no longer true for immersed surfaces in R®. This was shown by
Wente [Wel986], who constructed an immersed torus of constant mean curvature.

Proof: O
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6 Global surface theory
6.1 The Gauss—Bonnet theorem

6.1 Definition (geodesic curvature) Suppose that f: U — R3 is an immersion
of an open set U ¢ R? and y: I — U is a C? curve such that ¢ := f oy
is parametrized by arc length. Put &(s) := ¢’(s) and choose é,(s) such that
(é1(s),e2(s)) is a positively oriented orthonormal basis of df, (s) (R?) (equivalent

to (fi 0 y(s), f22¥(s))). Then
(s) = (](5),22(5)) = (5 (5). (5))
defines the geodesic curvature of c at s (relative to f).
Ifv=(f1 X f2)/|f1 X f2| is the Gauss map of f, then there is a decomposition
" =(c",e1)e +{c",e)er+ (", voy)voy

where {(¢”,e1) = {(¢”,¢’) = 0and {(¢”,v o y) =: ky is the normal curvature of ¢
relative to f* (compare Lemma|.4). Thus ¢’ = kg &3 + kv 0 y and
//|2

2 2 2
K =17 = kg + Ky

where « is the curvature of ¢ as a space curve.
6.2 Lemma (geodesic curvature in geodesic parallel coordinates) Suppose that
f: U — R? is an immersion with g5 = g21 = 0and g3 = 1, y: I — U is a C?

curve, and ¢ := f oy is parametrized by arc length. Write y(s) = (u(s),v(s)), and
let ¢: I — R be a continuous function such that

cos(¢(s))

Y (s) = (' (5),v'(s)) = NCTE) sin(p(s))
forall s € I. Then
Kg(s) = ¢'(s) - %(7@)) u'(s)
foralls €I
Proof: O

6.3 Theorem (Gauss—Bonnet, local version) Let M c R> be a surface. Suppose
that D € M is a compact set homeomorphic to a disk such that dD is the trace of
a piecewise smooth, simple closed unit speed curve c: [0, L] — M, with exterior
angles a1, ..., a, € [-m, nt] at the vertices of D. Let ky(s) = (¢”’(s), €2(s)) denote
the geodesic curvature of ¢ (where c”’ (s) exists) with respect to the normal é;(s)
pointing to the interior of D. Then

L r
KdA+/ ko(s)ds+ > a; =2nm.
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By definition, the exterior angle ; € [—r, 7] at a vertex of D is the complement
a; = m — B; of the [0,2n] valued interior angle 3; of D. If the boundary of D is
piecewise geodesic, then B; € (0,2n) and @; € (—n, 7).

Proof: O

6.4 Theorem (Gauss, theorema elegantissimum) For a geodesic triangle D C
M with interior angles B1, B2, 83 € (0, 2x),

‘/KdA=,31+ﬁ2+,33—7T.

D

Proof: This is a direct corollary of Theorem as 2 — () + ap + @3) =
Bi+p2+p3—m. O

Now let M < R? be a compact (and hence orientable) surface. A poly-
gonal decomposition of M is a cover of M by finitely many compact subsets
D; ¢ M homeomorphic to a disk, with piecewise smooth boundary 4D ; (like D
in Theorem [6.3), such that D; N Dy is either empty, or a singleton corresponding
to a common vertex, or a common edge of D; and Dy whenever j # k. If each
D; is a (not necessarily geodesic) triangle, then the decomposition is called a
triangulation of M. If V,E, F are the number of vertices, edges, and faces in a
polygonal decomposition, respectively, then the integer

xM)=V—-E+F
is the Euler characteristic of M.

6.5 Theorem (Gauss—Bonnet, global version) If M c R3 is a compact surface,
then

/ KdA =2n y(M).
M
Proof: O

6.2 The Poincaré index theorem

We now discuss another interpretation of y (M) in terms of vector fields.

First let £: U — R? be a continuous vector field on an open set U ¢ R?. Sup-
pose that x is an isolated zero of &, and pick a radius r > 0 such that the closed disk
B(x,r) c U contains no other zeros of &. Lety: [0,27] — R? be the parametriza-
tion of dB(x, r) defined by y(¢) = x + r(cos(z),sin(t)), and let ¢: [0,27] — R be
a continuous function such that £(y(¢))/|£(y(¢))| = (cos(¢(t)), sin(p(t))) for all
t € [0,2x]. Then ¢(27) — ¢(0) = 271 (x) for some integer I(x) = I#(x) called the
index of & at x, which is independent of r by continuity. This number agrees with
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the mapping degree deg(F) (discussed later in Section [9] for the case of smooth
maps between manifolds) of the map

E(x+re)

|€(x +re)l”

This second definition of the index generalizes readily to higher dimensions.

If y: U — Vis C' diffeomorphism onto on open set V ¢ R?, and if 7 is the
continuous vector field on V such that (¥ (x)) = dy,(£(x)) for all x € U, then it
can be shown that /,, (¥ (x)) = I¢(x) for every isolated zero x of ¢ (see, for example,
[Mil], pp. 33-35). For a surface M c R? and a continuous (tangent) vector field
X: M — R3 with anisolated zero at p € M, the index I(p) = Ix(p) is then defined
via a local parametrization f of M around p such that Ix(p) := I+(f~(p)) for the
corresponding vector field & with dfy (£(x)) = X(f(x)).

F:8' 58" F(e)=

6.6 Theorem (Poincaré index theorem) Let M c R3 be a compact C' surface,

and let X be a continuous vector field on M with only finitely many zeros p1, . . . , P.
Then
k
D 1(p) = x(M).

i=1

See [Po1885]], Chapitre XIII. This was generalized to arbitrary dimensions by
Hopf [Ho1927b].

Proof: O
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7 Hyperbolic space

7.1 Spacelike hypersurfaces in Lorentz space

We consider R™*! together with the non-degenerate symmetric bilinear form

m

<x’y>L = (Z xiyi) —Xm+1ym+l,

i=1
called Lorentz product. The pair
Rm’l = (Rm+19 < R >L)

is called Minkowski space or Lorentz space. A vector v € R™! is spacelike if
(v,v)L > 0 or v = 0, timelike if (v,v)y < 0, and lightlike or a null vector if
(v,v)L = 0and v # 0. The set of all null vectors is the nullcone. A differentiable
curve ¢: I — R™!is spacelike, timelike, or a null curve if all tangent vectors ¢’ (¢)
have the respective character.

A submanifold M c R™! is spacelike if each tangent space TM p 18, that
is, all vectors v € TM,, are spacelike; equivalently, the first fundamental form

gp = (> )LIrm, xTM, is positive definite.

7.1 Definition (hyperbolic space) The spacelike hypersurface
H™:={p e R™ : (p,p) = -1, p"*! > 0},

together with its first fundamental form g, is called hyperbolic m-space.

The set H" is the upper half of the two-sheeted hyperboloid given by the
equation (p™1)2 =1+ 3" (p")2. For p € H™, the tangent space TH}) equals the
m-dimensional linear subspace of R”! determined by the equation {p,v); = 0,
similarly as for the sphere §™ c R™*!,

We now consider an arbitrary spacelike hypersurface M ¢ R™!. If U ¢ R™
is an open set and f: U — f(U) C M is a local (or global) parametrization of
M, then the first fundamental form of f is given by g;; = (f;, fj)r.. All intrinsic
concepts and formulae discussed earlier, involving solely the first fundamental form,
remain valid and unchanged for M (or f): Christoffel symbols, covariant derivative,
parallelism, geodesics, and the formula

_ Ri212
det(gij)’

which is now adopted as a definition of the Gauss curvature in the case m = 2.
Furthermore, there exists a well-defined Gauss map

N: M"™ — H™
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such that (v, N(p))L = O whenever v € TM,. For f as above we put again
v := N o f. The shape operator and the second fundamental form h of M or f are
then defined as in Section 4] Lemma [4.8] and Theorem [4.9] remain valid as well,
except for two sign changes, due to the fact that (v, v); = —1:

m
fij = ng}fk — hijv
k=1
fori,j=1,...,m,and

Rpij = —(hihy; — h* jhy) = - Z & (hiihij — hijhi)
=1

fors = 1,...,m, where the expression of R®;; in terms of the Christoffel symbols
remains unchanged. For fixed i, j, k, this system is equivalent to
m
hii hij
Riij = ZglsRskij = —(hiihij = hijhi) = —det( N ' N J )
por ki Nk

forl=1,...,m.

7.2  Geometry of hyperbolic space

In the special case that M = H> ¢ R>!, the Gauss map is just given by N(p) = p,
thus L, = —dN,, = _idTle, and det(L,) = 1. It follows that the Gauss curvature

of H? is
Ripp  det(hij)

 det(giy) _det(gij) T

The Lorentz group is defined by

O(m,1) ={A e GL(m+ 1,R) : {(Ax, Ay),, = {x, y)L}.
For A € O(m, 1) and p € H™, Ap € £H™. One puts
O(m, 1)y :={A€0O(m,1): A(H™) = H"}.
Thus, for A € O(m, 1), the restriction A|gm : H™ — H™ is an isometry.

7.2 Theorem (homogeneity) Suppose that p,q € H™, (vi,...,Vn) is an or-
thonormal basis of TH"', and (wi,...,w,,) is an orthonormal basis of THJ.
Then there exists an A € O(m, 1), such that Ap = q and Av; = w; fori =1,...,m.
Proof: O
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Let p € H™, and letv € TH}) be such that (v, v)r, = 1. The unit speed geodesic
c¢: R — H™ with ¢(0) = p and ¢’(0) = v is given by

c(s) = cosh(s) p + sinh(s) v;

the trace of c¢ is the intersection of H™ with the linear plane spanned by p and v.
The distance of two points p, g in H™ satisfies

cosh(d(p,q)) = —{p, q)L.

7.3 Models of hyperbolic space

In the following we let U := {x € R™ : |x| < 1} denote the open unit ball in R™,
The (Beltrami—)Klein model (U, g) of H™ is obtained via the global parametrization

- - 1
f:U—-H", f(¥)=—=(x1)
V1 - %2
f is the inclusion map U — U x {1} c R™ x R followed by the radial projection
to H™. The first fundamental form of f is given by

= = 1 1 .
gij(f) = <fl(x),f](i)>L = 1— |X|25ij + X'/,

(-2

and the distance between two points X, y in (U, g) satisfies
1-(x,5)
VI [E2Y1 - 512

In this model, the trace of any non-constant geodesic y: R — (U, g) is simply a
chord of U, because inward radial projection maps geodesic lines in H™ to chords
inU x {1}.

The Poincaré model (U, g) of H™ is obtained similarly via the “stereographic
projection”

cosh(dz(%,y)) =

f:U—H™, f(x):= (2x, 1+ |x]?);

1= |x|?
the three points (0, —1), (x,0), f(x) € R™ X R are aligned. The first fundamental
form of f is given by

4

gij(x) = (fi(x), fi(x))L = mézj,

thus (U, g) is a conformal model. The distance between x, y € (U, g) satisfies

2)x — y|?

cosh(dg (v, ) = 1+ =5y
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If x,x € U are two points with the same images f(x) = f(x) in H™, then a
computation shows that the point o (¥) := (¥, V1 — |%|2) € S c R™*! lies on the
line through (0, —1) and (x,0). The map o sends any chord of U to a semicircle
orthogonal to dSY" in the upper hemisphere S7* c §™, and the inward stereographic
projection with respect to (0, —1) maps this semicircle to an arc of a circle in U x {0}
orthogonal to AU x {0} = dS7". Hence, geodesic lines in (U, g) are represented by
arcs of circles orthogonal to dU.
Another conformal model of H™ is the halfspace model (U*, g*), where U* :=
{x € R™ : x™ > 0}. Inversion in the sphere in R with center —e,, and radius V2,
restricted to U™, yields the diffeomorphism
U > U, ¥x) =

XxX+e — €m.
|x + em |2 ( m) m
Let g be the Riemannian metric of the Poincaré model as above. Then g* := g

is given by
1

(xm)?
Now let m = 2. Then, up to reparametrization, the unit speed geodesics y: R —
(U™, g*) are of the form

g:—,(x) = 6ij-

v(s) = (a + r tanh(s), or y(s)=(a,e’)

r
cosh(s)
fora € R and » > 0. In the first case, the trace of y is a semicircle of Euclidean
radius r orthogonal to JU*. The group GL(2,R) acts on U* c C as follows:
az+b az+b

or 7z —
cz+d cz+d

a b acts as —
c d ¢

if the determinant ad — bc is positive or negative, respectively. These are precisely
the orientation preserving or reversing isometries of (U*,g), respectively. The
kernel of the action is {47 : A # 0}, thus the isometry group of (U™, g) is isomorphic
to PGL(2,R) = GL(2,R)/{Al : A # 0} (exercise).

7.4 Hilbert’s theorem

We conclude this section with the following famous result [Hi1901].

7.3 Theorem (Hilbert) There is no isometric C3 immersion of the hyperbolic plane
into R3, in particular there is no C3 submanifold in R3 isometric to H>.

By contrast, it follows from a theorem of Nash and Kuiper [Kul955] that H™
admits an isometric C! embedding into R™*!!

Proof: O
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Differential Topology

8 Differentiable manifolds

8.1 Differentiable manifolds and maps

We start with a topological notion.

8.1 Definition (topological manifold) An m-dimensional topological manifold M
is a Hausdorft topological space with countable basis (that is, M is second countable)
and the property that for every point p € M there exists a homeomorphism ¢: U —
¢ (U) from an open neighborhood U € M of p onto an open set ¢(U) € R™. Then
¢ = (¢, U) is called a chart or coordinate system of M.

A system of charts @ = {(¢q,Uq)}aca (Where A is any index set) forms an
atlas of the topological manifold M if | J,c4 Uy = M. For @, 8 € A, the (possibly
empty) homeomorphism

PBa = Pp ° 90;1 . Sp(x(Ua/ N U,B) - SO,B(U(Z N U,B)

is called the coordinate change between ¢, and @g.

For1 < r < oo, the atlas {¢q, } oeca isa C” atlas of M if every coordinate change
¢pa is a C" map. Since (¢pa)”" = @ap, it then follows that every coordinate
change is a C" diffeomorphism. More generally, we call two charts (¢, U), (¥, V)
of a topological manifold C” compatible if o o™': @(UNV) = y(UNV)isa
C" diffeomorphism.

8.2 Definition (differentiable manifold) For 1 < r < oo, adifferentiable structure
of class C" or C" structure on a topological manifold is a maximal C” atlas, that is,
a C" atlas not contained in a bigger one. A differentiable manifold of class C" or a
C”" manifold is a topological manifold equipped with a C” structure.

We use the word “smooth” as a synonym of C®. If we speak of a chart
of a differentiable manifold M, then we always mean a chart belonging to the
differentiable structure of M.

Every C" atlas @ of a topological manifold M is contained in a unique C”
structure @, namely the set of all charts of M that are C” compatible with all charts
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in ®. However, there exist compact topological manifolds that do not admit any C'!
structure [Ke1960]!

Now let 1 < r < s < oco. Then every C* structure is a C” atlas and is thus
contained in a unique C” structure; in this sense, every C* manifold is also a
C” manifold. Conversely, every C” structure contains a C*® structure, and this
C* structure is unique up to C* diffeomorphism (see Definition below and
Theorem 2.9, Chapter 1, in [Hi] for the proof). In so far there is no essential
difference between the classes C" and C* for 1 <r < s < co.

8.3 Definition (differentiable map, diffeomorphism) Let M, N be two C” mani-
folds, 1 <r < oco. Amap F: M — N is r times continuously differentiable, briefly
C”, if for every point p € M there exist a chart (¢, U) of M with p € U and a chart
(¢, V) of N with F(U) c V such that the map

YoFop ') —y(V)

is C". This composition is called a local representation of F around p. The map
F: M — NisaC" diffeomorphism if F is bijective and both F, F~! are C”.

Ist F: M — N is a C" map, then clearly every local representation of F is C”,
because coordinate changes of M and N are C".

On R™, the atlas consisting solely of the identity map idr= determines the
usual smooth structure on R”. On R, the atlases ® = {idg } and ¥ = {i}, where
¥ (x) = x3, determine different smooth structures ® and ¥ since idr and y are not
C! compatible; however, F := y~!: (R,¥) — (R, ®) is a diffeomorphism since
the representation y o F o (idg)~! equals idg. In fact, it is not difficult to show that
any two differentiable structures on R are diffeomorphic (exercise).

By contrast, there exist topological manifolds that admit different diffeomor-
phism classes of smooth structures! For example, there are precisely 28 such classes
on the 7-dimensional sphere §7 [Mil956]], [Mil959]. On R™, exotic smooth struc-
tures exist only for m = 4.

8.4 Definition (tangent space) Let M be an m-dimensional C” manifold, 1 < r <
oo, and let p € M. On the set of all pairs (¢, &), where ¢ is a chart of M around
p and £ € R™, we define an equivalence relation such that (¢, &) ~, (¥,n) if and
only if

d(W oo™ p(p) (&) =1
The tangent space TM,, of M at p is the set of all equivalence classes. We write
[, &], € TM), for the class of (¢, &).

For a fixed chart ¢ around p we define the map
dSop: TMP - Rm’ d¢p([¢a§]p) = é‘:
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Since [¢, &], = [¢.n]p if and only if & = 7, this is a well-defined bijection, which
thus induces the structure of an m-dimensional vector space on T M ,, such that dg,
is a linear isomorphism. If i is another chart around p and (¢, ) ~, (¥, 1), then

dy, o (de,) (&) = dyp (e, €]p) = Ay, ([w.mlp) =1
= d(‘// © Qo_l)w(p)(f)-

Since d (¢ o 90_1)<p( p) 1s an isomorphism of R™, it follows that the linear structure
of TM,, is independent of the choice of the chart ¢.
The tangent bundle of a C" manifold M is the (disjoint) union

™ = | | ™,
pPEM

together with the projection 7: TM — M that maps every tangent vector [¢, £],, to
its footpoint p. The set TM has the structure of a 2m-dimensional C"~! manifold.
If (¢, U) is a chart of M, then

Te: TU = | ] TM, — p(U) xR™ c R" x R™
peU

[, €]p = (0(p), &) = (0(p),dep ([0, €]p))

is a corresponding natural chart of TM. The coordinate change Ty o (T¢) ™' maps
the pair (x,£) € R™ X R™ to ( 0 ¢! (x),d( 0 ¢™")x ().
Fora C! map F: M — N, the differential of F at p € M is the unique linear
map
dF,:TM, — TNFpp)

such that for every local representation H := i o F o ¢~ ! of F around p the chain
rule
dFp = (dYr(p)~" 0 dHy(p) 0 dgp

holds, that is, dF, ([¢,&],) = (Y, dH () (§)]F(p) for all & € R™. Note that for
F = ¢ and ¢ = idrm, this gives dy,([¢,€]p) = [idrm, ] 4 (p) = &, where the
second equality reflects the identification TIR':;(p )= R"; thus our notation for the
previously defined map dy), is justified.

8.2 Partition of unity

Let again M be a C" manifold, 0 < r < co. A family of C" functions 4,: M —
[0, 1] indexed by a set A is called a C" partition of unity if every point p € M has
a neighborhood in which all but finitely many A, are constantly zero and if

Z da(p) =1

acA
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for all p € M. Given a collection of open sets covering M, a partition of unity
{Aa}aca is subordinate to this open cover if for every @ € A the support spt(d,) =
{p e M:2,(p) # 0} of A, is contained entirely in one of the sets of the cover.

8.5 Theorem (partition of unity) For every open cover of a C" manifold M, 0 <
r < oo, there exists a subordinate C" partition of unity.

Proof: Among the (open) sets of a countable basis of the topology of M, let
E1, E,, ... be those with compact closure. Every point p € M has a compact
neighborhood N, which is closed since M is Hausdorff, and there is a set E in the
above basis such that p € E C N; thus the closure of E is compact. This shows
that U‘f:l E; = M. Now we define recursively a nested sequence of open subsets
of M suchthat D_; :=0, D¢y :=0,D; := E;,andfori =1,2,..., D;; is the union
of E;;1 with finitely many of the sets E; covering the (compact) closure D;. Then
U2, Ci = M, where C; = D; \ D;_y is compact, and W; := D;;; \ D;_> is an open
neighborhood of C; intersecting at most two more of these compact sets.

Let now {Vg}gecp be an open cover of M. For every point p € C; there is a chart
(¢, U) of M with ¢(p) =0 € R™ and ¢(U) = U(3) = {x € R™ : |x|] < 3} such
that U C Vg N W; for some B € B. Hence, there is a finite family {(¢q,Uq)}aca;
of such charts such that {¢;'(U(1))}aea, is an open cover of C;. Repeating this
construction for every index i, and assuming that A; N A; = ) whenever i # j, we
get an atlas {(@q, Uqa)}aca of M with A = (J72, A; such that {U,} gea is a locally
finite open refinement of {Vg}gep.

Finally, choose a C* function 7: U(3) — [0, 1] such that 7|y ) = 1 and
spt(t) = U(2). For every index @ € A, define the C” function 1,: M — [0, 1]
such that 1, = 70 ¢, on U, = ¢, (U(3)) and 1, = 0 on M \ U,. Since
{go;l(U (1)) }aea covers M and {U,}qca is locally finite, it follows that the sum
S = Y,eada is everywhere greater than or equal to 1 and finite. Now put
Ag = %/ia. |

8.3 Submanifolds and embeddings

8.6 Definition (submanifold) Let N be an n-dimensional C* manifold. A subset
M C N is an m-dimensional submanifold of N if for every point p € M there is
charty: V — ¢ (V) c R" = R™ x R"™™ of N such that p € V and

Y(M V) =y V)N (R"x{0}).

Such charts are called submanifold charts, and k := n — m is the codimension of M
in N.

The restrictions | asny of all submanifold charts (¥, V) of M form a C* atlas
of M, thus M is itself a C* manifold.
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Let F: N — Q bea C! map between two manifolds. A point p € N is a regular
point of F if the differential dF), is surjective; otherwise p is a singular or critical
point of F. A point g € Q is a regular value of F if all p € F~'{g} are regular
points of F, otherwise q is a singular or critical value of F.

8.7 Theorem (regular value theorem) Let F: N" — QX be a C® map. If q €
F(N) is a regular value of F, then M := F~'{q} is a submanifold of N of dimension
dm(M) =n-k > 0.

Proof: O

A C®map F: M — N between two manifolds is an immersion or a submersion
if, for all p € M, the differential dF), is injective or surjective, respectively. An
embedding F: M — N is an immersion with the property that F: M — F(M) is
a homeomorphism.

8.8 Theorem (image of an embedding) If F: M — N is an embedding, then the
image F(M) is a submanifold, and F: M — F (M) is a diffeomorphism.

Conversely, if M C N is a submanifold, then the inclusion map i: M — N is
an embedding.

Proof: O

8.9 Theorem (embedding theorem) For every compact C* manifold M there
exist n € N and an embedding F: M — R".

This theorem also holds for n = 2m + 1, see [Hi], and even for n = 2m and M
possibly non-compact [Wh1944].

Proof: Since M is compact, there exists a finite atlas {(¢q, Uqa)}a=1.....1 such that
0a(Uq) = UQB) = {x € R™ : |x| < 3} and U, ¢5'(U(1)) = M. Choose C*
functions 1,: M — [0,1] with value 1 on ¢! (U(1)) and support ¢! (U(2))
(compare the proof of Theorem [8.5). Define f,: M — R™ such that f, = 1,9,
on U, and f, = 0 € R™ otherwise. Now put n := [m + [ and consider the C* map

FZM—)R", Fiz(fl,...,fl,/ll,...,/ll).

To show that F is an immersion, let p € M. There is an « such that p €
@5 (U(1)), thus 1, = 1 and f, = ¢, in a neighborhood of p. Then the Jacobi
matrix of F o ¢! at the point ¢, (p), the n x m-matrix

d(F'o 5"

o (PaP))).
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contains an I, (identity matrix) block because F (@-Dm+k — © (’i fork=1,...,m.
Hence d(F o ')y, (p) has rank m and is therefore injective, and so is dF,.

To show that F: M — F(M) is a homeomorphism, suppose first that F(p) =
F(g) for some p,g € M. Then there is an « such that 1,(p) = 1,(g) = 1, in
particular p,q € U,, and

va(p) =1a(P) pa(P) = fa(P) = fa(q) = 1a(q) pa(q) = va(q).

Thus p = g. Now F is a continuous bijective map from the compact space M onto
the Hausdorff space F(M) c R™ and, hence, a homeomorphism. O

8.4 Tangent vectors as derivations

Let M be a C* manifold and p € M. A linear functional X: C*°(M) — R on the
algebra of real-valued smooth functions on M is called a derivation at p if for all
f,g € C®(M) the product rule (or Leibniz rule)

X(fg) =X(Hgp)+f(p)X(g)

holds. It follows from this identity that X(f) = X(f) whenever f = f in a
neighborhood of p: if g :== f — f and h € C®(M) is such that #(p) = 1 and
spt(h) c g~'1{0}, then

0= X(0) = X(gh) = X(g)h(p) +g(P)X(h) = X(g) = X(f) - X(/).

Hence every derivation X at p has a unique extension, still denoted by X, to the set
of functions

C*(M)p, :={f € C*(U) : U c M an open neighborhood of p}

such that X(f) = X(f) whenever f, f € C*(M) p agree in a neighborhood of
p. For the constant function on M with value ¢ € R, X(c) = ¢ X(1) = 0 since
X(H)=XA-H)=X(1)-1+1-X(1).

For any chart (¢,U) of M™ around p there are canonical derivations

a%l e &,l%lp at p, defined by
8 3 8 f¢) -1
5l (0= 550 = A2 D o),

8.10 Theorem (derivations) The set of all derivations at p € M™ is an m-
dimensional vector space. If ¢ is a chart around p, then the canonical derivations
2 constitute a basis, and every derivation X at p satisfies

ol
a(plp"'-,a(pmp
m 8
X=§ X(¢')=—

j=1 ((p)a‘pjp
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Proof: O

For a C* manifold M™, we now identify the tangent vector X € TM,, (Defini-
tion with the derivation X at p defined by

X(f) = dfp(X) € TRf(p) =R.

It is not difficult to check that then for every chart ¢ around p and every ¢ =

(&1,...,€™) € R™, the vector X = [¢, £], corresponds to the derivation
X = )9
o¢’1p
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9 Transversality

9.1 The Morse-Sard theorem

A cube C c R™ of edge length s > 0 and volume |C| = s is a set isometric to
[0,s]™. A set A Cc R™ has measure zero or is a nullset if for every € > 0 there
exists a sequence of cubes C; ¢ R™ such that A c |J; C; and }; |C;| < €. The
union of countably many nullsets is a nullset.

IfV c R™isanopensetand F: V — R™ a C' map, and if A C V has measure
zero, then F'(A) has measure zero. To prove this, note first that V is the union of
countably many compact balls By. Then each set A N By, lies in the interior of some
compact subset of V, on which F is Lipschitz continuous, and it follows easily that
F (A N By) has measure zero.

9.1 Definition (measure zero) A subset A of a differentiable manifold M™ has
measure zero or is a nullset if for every chart (¢, U) of M the set (AN U) c R™
has measure zero.

It follows from the aforementioned properties that A ¢ M has measure zero if
¢(A N U) has measure zero for every chart (¢, U) from a fixed countable atlas of
M.

9.2 Theorem (Morse-Sard) IfF: M™ — N"isa C” map withr > max{0, m—n},
then the set of singular values of F has measure zero in N.

See [Mo1939] (n = 1, r = m) and [Sal942]]. For example, the set of singu-
lar values of a C? function F: R?> — R has measure zero (and thus F~!{t} is a
1-dimensional submanifold for almost every ¢ € R). The differentiability assump-
tion seems stronger than necessary, but indeed Whitney [Wh1935|] constructed an
example of a C! function F: R? — R that is non-constant on a compact connected
set of singular points.

Note that if n = 0, then there are no singular values in N by definition, whereas
if m = 0, then F(M) is a countable set. In the general case, the theorem follows
easily from the corresponding result for a C" map F from on open set U c R™ to
R", because M and N have countable atlases. Then, in the case that m < n and
r = 1, the proof is simple: U X {0} ¢ R™ x R"™" is a nullset in R™ x R"~",
thus the C' map F: U x R*™™ — R", F(p,x) := F(p), takes it to the nullset
F(U % {0}) = F(U) in R".

We now prove the result form > n > 1 and r = 0.

Proof: Tt suffices to consider a C*® map F = (F!,...,F"): U — R" on an open

set U ¢ R™. Let X C U be the set of singular points of F. Furthermore, for
[=1,2,...,let Z; denote the set of all points x € U where all partial derivaties of
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F up to order [ vanish, that is,

. AkF!
1 o—
Fjl ..... jk(x) T OxNOxT2 .. Ok

(x) =0

forall k € {1,...,1},i e {l,...,n}and jy,..., jr € {l,...,m}. This gives a
sequence £ D Z; D Zy D ... of closed subsets of U. We now fix [ > 1 as the
smallest integer strictly bigger than 7 — 1.

We show that F(Z;) has measure zero. Let C C U be a cube of side length s.
By virtue of Taylor’s formula of order / and the compactness of C,

F(y) = F(x) + R(x,y)

forallx € CNZ and y € C, where |R(x,y)| < c|x — y|™*! for some constant ¢
depending only on F and C. Consider a subdivision of C into N cubes of side
length s/N. If C’ is one of these cubes and x is a point in C’ N Z;, then F(C’) lies in
the closed ball with center F(x) and radius c(+/ms/N)**!. Hence F(C N Z;) can be
covered by N™ cubes with total volume N (2¢(+/ms/N)*!)". Since n(l+1) > m,
this quantity tends to 0 as N — oo. It follows that F'(Z;) has measure zero.

If m =n =1, then £ = Z; = Z;, hence F(X) has measure zero. We now
proceed by induction and complete the argument form > 2, m > n > 1 and r =
assuming that the set of singular values of every C* map G: M’ — N’ between
manifolds of dimension dim(M’) =m — 1 > dim(N’) > 1 has measure zero.

First we consider F(Zy \ Zy4+1) for any k& > 1. For every x € Zi \ Zi+1,

there exist a k-fold partial derivative f := F ;1 _____ it U — R and a further index
J €{1,...,m} such that f;(x) := %(x) # 0. Then f;(y) # 0 for all y in an open

neighborhood V C U \ Zy4; of x. Thus the (smooth) function f|y is everywhere
regular, in particular the set M’ := f~'{0} NV, which contains Z; NV, is an
(m — 1)-dimensional submanifold. Every point y € Z; NV C X is also a singular
point of F |-, hence F(Z; NV) has measure zero in R” by the induction hypothesis,
or by the remark preceding the proof if m — 1 < n. It follows that F(Zy \ Z+1) has
measure zero for every k > 1.

Since F(Z,) = F(Z;) U Uf{‘:ll F(Zy \ Zi+1) has measure zero, it remains to
consider the set F(X \ Zy). If n = 1, then £ = Z; and we are done. Now let n > 2.
At every point x € X\ Z; at least one partial derivative FJ’: is non-zero. To simplify
the notation we assume that F’, (x) # 0. Then x is a regular point of the map

e:U—-R™, o) =0 ... y" L F'(y»).

Hence there exists an open neighborhood V c U \ Z; of x such that ¢|y is a
diffeomorphism onto an openset W ¢ R™, and there is a well-definedmap G : W —
R such that F|y = G o ¢|y. Forally e V,

GO\ yTLF () = Gle()) = (F' ()., F" (),
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thus G preserves some coordinate. Hence, if y € VN X is a singular point of F with
Fi(y) =t € R, then ¢(y) = (y',...,y™ !, 1) is a singular point of G as well as of
the restriction of G to M, :== W N (R™~! x {t}), and F(y) = G(¢(y)) is a singular
value of G|y, . Therefore, by the induction hypothesis, the set F(VNX)N{z € R" :
7' = t} has (n — 1)-dimensional (Lebesgue) measure zero. By Fubini’s theorem,
the measurable (in fact, o--compact) set F(V N X) has n-dimensional measure zero.
It follows that also F(Z \ Z;) has measure zero. m|

9.2 Manifolds with boundary

Next we introduce manifolds with boundary.
A halfspace of R™ is a set of the form

H={xeR™: A(x) = 0}

for a linear function A: R™ — R. Note that, according to this definition, also
H = R™ is a halfspace (take 4 = 0). The boundary dH of H = {1 > 0} is the
kernel of 4 if 1 # 0 and empty otherwise.

An m-dimensional topological manifold M with boundary is a Hausdorff space
with countable basis of the topology and the following property: for every point p €
M there exist ahomeomorphism ¢: U — ¢(U) C H from an open neighborhood U
of p onto an open subset ¢(U) of a halfspace H ¢ R™ (with the induced topolopy).
Then ¢ = (¢, U) is a chart of M. The notions of a C” atlas, C" structure and C”
manifold with boundary are then defined in analogy with the boundary-free case.
Here, a coordinate change

PBa = P o 90(;1 : ()DKZ(U(Z N Uﬁ) - QDﬁ(U(, N Ub’)

is a C" map between open subsets in halfspaces of R™; this means that g, admits
an extension to a C" map between open subsets of R".
The boundary of M is the set

OM :={peM: ¢(p) € 0H for some chart ¢: U — ¢(U) C H around p}.

It follows that if p € dM, then ¢(p) € dH for every chart ¢: U — ¢(U) c H
around p. For topological manifolds with boundary this is a consequence of
the theorem on invariance of the domain [Br1911all: If V c R™ is open and
h: V. — R™ is an injective continuous map, then h(V) C R™ is open. In the
C" case, r > 1, one may more easily use the inverse function theorem. The
boundary dM of a C" manifold M'™ with boundary, r > 0, is in a natural way an
(m — 1)-dimensional C” manifold (without boundary), and M \ dM is a manifold
as well. According to the above definition, every manifold M is also a manifold

with boundary, where M = 0.
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Example Suppose that N is a manifold, f: N — R is a smooth function, and
y € R is aregular value of f. Then M := f~!([y, c0)) is a manifold with boundary
oM = f~y}: by Theorem £~ {y} is a submanifold of N of codimension 1,
and the restriction of any submanifold chart : V — (V) c R"to VN M is a
chart for M around boundary points.

Let now M™ be a C" manifold with boundary, 1 < r < co. For p € M,
the rangent space TM, of M at p is defined as in Definition (note that d(y o
go_l)‘p(p) is defined on all of R also if p € dM). For p € M, the tangent space
T(0M), of OM at p is in a canonical way an (m — 1)-dimensional subspace of
TM,. Differentiable maps F': M — N between manifolds with boundary and the
differential dF,: TM,, — TNF ) are again defined as in the boundary-free case.

The following statement generalizes Theorem

9.3 Theorem (regular value theorem, manifolds with boundary) Let F: N —
Q be a C* map, where N" is a manifold with boundary and Q* is a manifold. If
q € F(N) is a regular value of F\n\gn as well as of Flan, then M := F~1{q} is a
manifold with boundary, dim(M) =n—-k >0, and 9M = M N dN.

Note that the assumption on ¢ is stronger than saying that g € F(N) is a regular
value of F, because dN is only (n — 1)-dimensional. The set M NN is non-empty
if and only if ¢ € F(AN); in this case, it follows from the assumption thatn—1 > k
and hence dim(M) > 1.

Proof: O

A continuous map F: M — A from a topological space M to a subspace
A C M such that F'(p) = p for all p € A is called a retraction of M onto A.

9.4 Theorem (boundary is not a retract) Let M be a compact C* manifold with
boundary. Then there is no smooth retraction of M onto OM.

In the proof of this result and subsequently we will make use of the classification
of compact 1-dimensional manifolds with boundary: every such (C*) manifold is
diffeomorphic to a disjoint union of finitely many circles S! and intervals [0, 1].
For a proof of this intuitive fact we refer to the Appendix in [Mi].

Proof: Suppose to the contrary that there exists a smooth retraction F': M — oM.
By Theorem there exists a regular value g € M of F|pnap. Since F is a re-
traction, ¢ is also a regular value of F|sps = idgps. It follows from Theoremthat
F~'{q} is a compact 1-dimensional manifold with boundary F~'{g} n oM = {q}.
This contradicts the fact that by the aforementioned classification, such manifolds
have an even number of boundary points. O
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9.5 Theorem (Brouwer fixed point theorem) Every continuous map G: B™ —
B™ = {x € R™ : |x| < 1} has a fixed point.

Proof: O

9.3 Mapping degree

Let F,G: M — N be two C* maps. A C* map H: M x [0,1] — N with
H(-,0) = Fand H(-,1) = G is called a smooth homotopy from F to G. We write
F ~ G and call F and G smoothly homotopic if such a map H exists. This defines
an equivalence relation on C* (M, N). Transitivity is most easily shown using the
following reparametrization trick: if H is a smooth homotopy from F to G, and
7: [0,1] — [0, 1] is a smooth function that is constantly O on [0, %] and 1 on [%, 1],
then H(p,t) := H(p, 7(t)) defines a smooth homotopy such that H(-,t) = F for
te[0,4]and H(-,t) =G fort € [, 1].

A smooth homotopy H: M X [0,1] — N from F to G with the additional
property that H(-,¢): M — N is a C* diffeomorphism for all # € [0, 1] is called a
smooth smooth isotopy between (the diffeomorphisms) F and G.

9.6 Lemma (isotopies) If N is a connected manifold, then for every pair of points
q,q’ € N there is a smooth isotopy H: N x [0,1] — N with H(-,0) = idy and
H(q,1)=¢".

Proof: O

Let now F: M — N be a C™ map between two manifolds of the same di-
mension. If ¢ € N is a regular value of F, then F~!{q} is a (possibly empty)
0-dimensional submanifold of M, hence a discrete set. If M is compact, then the
number #F ' {g} of points in F~!{g} is finite.

9.7 Theorem (mapping degree modulo 2) Suppose that M, N are two manifolds
of the same dimension, M is compact, and N is connected.

(1) If F,G: M — N are smoothly homotopic, and if ¢ € N is a regular value of
both F and G, then #F~'{q} = #G~'{gq} (mod 2).

) If F: M — N is a C® map, and if q,q" € N are two regular values of F,
then #F~'{q} = #F~'{q’} (mod 2).

The mapping degree modulo 2 of F is the number
deg, (F) := (#F ' {q} mod 2) € {0, 1};

by (2), it does not depend on the choice of the regular value g. Furthermore, by (1),
it is invariant under smooth homotopies, that is, deg, (F) = deg,(G) if F ~ G.
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Proof: O

If M and N are oriented manifolds of the same dimension, M compact and N
connected, then the mapping degree deg(F) € Z of a smooth map F: M — N is
defined as

deg(F) := Z sgn(dFp)
peF~Yq}

for any regular value g € N of F, where

+1  if dF), is orientation preserving,

—1 otherwise

sgn(dF,) := {

(note that for every regular point p € M, the differential dF,: TM;, — TNp(p) is
an isomorphism, since dim(M) = dim(N)). Similarly as for deg, one can show that
deg(F) does not depend on the choice of ¢ and that deg(F) = deg(G) if F ~ G.

9.8 Theorem (hairy ball theorem) The sphere S™ admits a nowhere vanishing
tangent vector field if and only if m is odd.

Proof: Let @: S — S§™ be the antipodal map p — —p. We show first that
deg(a) = (=1)™!'. If p € §™ and (vi,...,v,,) is a positively oriented basis
of TSI’f (no matter how S§™ is oriented), then (vy,...,Vv,,) is negatively oriented
as a basis of 7S™,,, because N(—p) = —N(p) for any Gauss map. Furthermore,
da,(v;) = —v; (note that a is the restriction of a linear map). Thus da,, preserves
orientation if and only if m is odd. Since « is a diffeomorphism, it follows that
deg(a) = sgn(da)) = (=1)m,

Suppose now that X is a nowhere zero smooth tangent vector field on . We
can assume that | X| = 1. Then

H(p,s) :=cos(s) p +sin(s) X(p)

defines a smooth homotopy H: S X [0,7] — S§" from id to a. By the homo-
topy invariance of the degree, 1 = deg(id) = deg(a) = (=1)"*!, so m is odd.
Conversely, if m = 2k — 1, then

X(p) = (p*-p'.p*-p ... p?)
defines a nowhere vanishing (unit) vector field on §” ¢ R, O

An important result about the mapping degree is the following theorem due to
Hopf [Ho1927all: for a compact, connected, oriented manifold M of dimension m,
two maps F,G: M — S™ are homotopic if and only if deg(F) = deg(G). For a
non-orientable manifold M, an analogous result holds with deg, instead of deg.
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9.4 Transverse maps and intersection number

Let L! and N" be two manifolds, and let M™ c N be a submanifold. A C® map
F: L — N is said to be transverse to M if

TM, +dF,(TL,) =TN,

whenever p € L and F(p) =: g € M.
Note that if M = {q}, then F is transverse to M if and only if ¢ is a regular
value of F. The following statement generalizes Theorem [9.3|further.

9.9 Theorem (transverse maps) Suppose that L' is a manifold with boundary,
N" is a manifold, M™ C N" is a submanifold of codimension k = n — m, and
F:L — Nisa C® map with F(LYNM # 0. If Flp\or and F|s1 are both
transverse to M, then F~'(M) is manifold with boundary F~'(M) N dL, and
dim(F~'(M))=1-k > 0.

Thus F~! (M) has the same codimension in L as M in N. The set F~'(M)NJL
is non-empty if and only if F(OL) N M # 0; then [ — 1 > k by the assumption on
F|s1., and hence dim(F~'(M)) > 1.

Proof: O

9.10 Theorem (parametric transversality theorem) Suppose that L,V,N are
manifolds, M C N is a submanifold, and H: L XV — N is a C* map trans-
verse to M. Then, for almost every v € V, the map

H, =H(-,v):L—> N

is tranverse to M, that is, the set {v € V : H, is not transverse to M’} has measure
zeroin'V.

Furthermore, for fixed manifolds L, N and a submanifold M C N, the set of
all C* maps F: L — N transverse to M is dense in C*(L, N) with respect to the
compact-open (“weak”) C* topology on C*(L, N), see Theorem 2.1, Chapter 3,
in [Hill.

Proof: O
9.11 Theorem (homotopy to a transverse map) If F: L — N is a C™ map and
M C N is a submanifold, then there exists a smooth homotopy H: L X [0,1] — N
from F = H(-,0) toamap F = H(-, 1) transverse to M.

Proof: O
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9.12 Theorem (intersection number modulo 2) Suppose that L', N" are two
manifolds, L is compact, and M'™ is a submanifold and a closed subset of N
such thatl + m =n. If F,G: L — N are smoothly homotopic and both tranverse
to M, then #F~' (M) = #G~" (M) (mod 2).

Note that since [ + m = n and F~!(M) is compact, the number #F~' (M) is
finite.

Proof: O

Let again L, N and M be given as in Theorem [9.12] and let F': L — N be an
arbitrary C* map. By Theorem there exists amap F: L — N that is smoothly
homotopic to F and transverse to M. By virtue of Theorem [9.12] the number

#(F, M) := (#F (M) mod 2) € {0, 1}

is independent of the choice of £ and invariant under smooth homotopies of F;
it is called the intersection number modulo 2 of F with M. An application is
Theorem
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10 Vector bundles, vector fields and flows

10.1 Vector bundles

10.1 Definition (smooth vector bundle) A (real, smooth) vector bundle with fiber
dimension k, or briefly a k-plane bundle, is a triple (r, E, M) suchthat 7: E — M
is a smooth map between manifolds and

(1) for every point p € M, the fiber E,, := n~'p} has the structure of a k-
dimensional (real) vector space;

(2) for every point g € M there exist an open neighborhood U ¢ M of g and a
C* diffeomorphism  : 771 (U) — U x R* such that Yle,: Ep — {p}x Rk
is a linear isomorphism for every p € U.

One calls E the total space, M the base space, and & the bundle projection.
Condition (2) is called the axiom of local triviality, and a pair (¥, U) as above is
called a bundle chart or a local trivialization around q.

Topological vector bundles are defined analogously, except that then the pro-
jection is merely a continuous map between topological spaces (not necessarily
topological manifolds) and bundle charts are homeomorphisms.

A k-plane bundle (x, E, M) is called trivial if there exists a global bundle
chart y: E — M x R¥. For every manifold M there is the trivial R*-bundle
n: M x R* — M over M with n(p,&) = p for all (p,€&) € M x RF (the identity
map on M x R¥ is a global bundle chart).

A C®” map s: M — E is called a section of the vector bundle 7: £ — M if
mos =idy, thatis, s(p) € E, for all p € M. The set of all sections is denoted by
I['(E) or ' (E), to emphasize that smooth maps are meant. Every vector bundle
n: E — M admits the zero section with s(p) = 0 € E,, for all p € M. Note that if
(¥, U) is abundle chart, then s|yy = ¢~ ' oifori: U — U xRX,i(p) = (p,0), thus
s is indeed a smooth map.

10.2 Definition (bundle map) Let 7: E — M and n’: E/ — M’ be two vector
bundles. A C® map F: E — E’ is called a bundle map if F maps fibers isomorphi-
cally onto fibers, that is, F induces amap F: M — M’ such that Foxr = n’ o F and
F"|Ep: E, — E;_(p) is an isomorphism for all p € M. If F is a diffeomorphism,
then F is a bundle equivalence. If M = M’ and F = idyy, then F is a bundle

isomorphism.

Note that the map F: M — M’ induced by abundle map F: E — E’ is smooth
as well, because F = i’ o F o s for the zero section s of E.

10.3 Proposition (trivial vector bundle) A k-plane bundle n: E — M is trivial
if and only if it admits k everywhere linearly independent sections.
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Proof: Suppose first that there exist sections si,...,sx € ['(E) such that
s1(p),...,sk(p) are linearly independent for every p € M. Lety: E — M x R¥
be the map that sends every linear combination Zf.‘:] Esi(p) to (p, &). Since the s;
are smooth, it follows that ¢ ~! is smooth. Furthermore, since ¢ ~' maps each fiber
{p} x R¥ isomorphically onto E p-all (p,0) € M x R* are regular points of ¢!,
thus ¢ ~! maps an open neighborhood of M x {0} diffeomorphically into E, and it
then follows easily that ~! and y are global diffeomorphisms.

Conversely, given a global bundle charty : E — MxRX, the sections 51, . . ., sk
defined by s;(p) := ¥~ (p, e;) are everywhere linearly independent. ]

Let 7: E — M be a k-plane bundle, and let { (¢, Uy) }aca be a bundle atlas,
that is, a family of bundle charts such that | J ,c 4 Us = M. Every chart is of the form
Vo= (7l i-1(1,) 8a) foraCmap go: 7' (Uy) — RX, where golg, : Ep, — R
is a linear isomorphism for every p € U,. Thus, for every pair of indices @, 8 € A
there is a C* map

gpa: Ua NUg = GL(k,R),  gpa(p) = gslE, © (8ale,) ™.

The family {gg.} satisfies the so-called cocyle condition

Zaa(p) =idpr,  &yg(P) 0 8a(P) = 8&ya(p) (p €U NUgNU,).

If G is a subgroup of GL(k, R), and if E admits a bundle atlas with transition maps
gga: Ua NUg — G, then E is called a vector bundle with structure group G.
Conversely, given an open cover {Uy}qeca of M and a family {gg,} of C* maps
gga: Ua N'Ug — GL(k, R) satisfying the above cocycle condition, one can con-
struct a corresponding k-plane bundle over M from these data.

10.2 The cotangent bundle

Next we discuss the cotangent bundle T M* of an m-dimensional manifold M. The
total space

T™M* = U ™,
PEM

is the (disjoint) union of the dual spaces

TM, ={A: TM),, — R : Ais linear},

and r: TM* — M is given by n(1) = p for A € TM,. If (¢, U) is a chart of M,

then
ﬂ(/l))ei)

W) = (nw, S C{;i
i=1

55



defines a corresponding bundle chart y: 771 (U) — U x R™ of TM*. For p € U,

the differentials d<p},, oo, del TM, — R constitute the basis of TM), dual to
9 9

a—(plp,...,a‘pm|p,as

i

8901'p =9

d’pp(aij ) - i

The maps dg': p > dg!, are sections of TU*. A global section w € ['(TM*),
p — wp € TMy, is called a covector field or a 1-form on M. With respect to the
chart (¢, U), every such w has a unique local representation

m
wly = Z w;dy'
p

for the C* functions w;: U — R defined by w;(p) = w, (a%i p). In particular, for

any f € C*(M), the differential df : p + df), is a 1-form with local representation
i f
i=1 d¢
. i)
since dfp(a%;i|p) = a—j;(p).

10.3 Constructions with vector bundles

10.4 Definition (pull-back bundle) Suppose that 7’: E’ — M’ is a k-plane bun-
dle and F: M — M’ is a C* map from another manifold M into M’. The k-plane
bundle 7: F*E’ — M with total space

FE' :={(p,v) e MXE': '(v) = F(p)}

and projection (p, v) + p is called the pull-back bundle of n’ and F or the bundle
induced by n’ and F .

The map F: F'E’ — E’, F(p,v) =v € E;,(p), is a bundle map over F. If
(y',U’) is a bundle chart for E’, y' = (7', g’), then

y:x'(U) - UxRY, y(p,v) = (p,g'(v),

is a corresponding bundle chart for F*E’ over U := F~'(U"). If {(y,,U’)} is a
bundle atlas of E’ with transition maps gba :U,NU [’; — GL(k, R), then this gives
a bundle atlas {(¥ o, Uy)} of E with transitions maps

8pa = 834 © F: Ua NUp — GL(K,R).

Note that if E/ = TM’, then a section s € F(F*TM’), s(p) = (p, X(p)), corre-

sponds to a vector field along F, as X(p) € TM F( ) forall p e M.
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10.5 Definition (Whitney sum) Suppose that 7: E — M and n’: E’ — M are
vector bundles of rank k and k’, respectively, over the same base space M. The
Whitney sum or direct sum of w and i’ is the vector bundle 7: E & E’ — M of rank
k + k’ with total space

E®E ={(v,v)e EXE :n(v)=n"(v')}
and projection (v,v’) — n(v) = x’(v'); thatis, (E® E"), = E, ® E,.

Ify = (m,g) andy’ = (n’, g’) are bundle charts of E and E’, respectively, over
the same open set U C M, then

g7 (U) - UXRME,g(v,v) = (R(v,v), 2(0), 8 (V)
is a bundle chart for £ @ E’. Transition maps satisfy
8pa(P) = 8pa(P) ® g5, (p) € GL(k + k', R).
The bundles E & E’ and E’ & E are isomorphic, and
(E®@EYoE"=E®(E'®E").

However, E @ E”” = E’ & E” does in general not imply that £ = E’.

Ifr: E— M and n’: E’ — M are again given as in Definition [10.5] then one
may similarly form the tensor product 7: E ® E’ — M of 7 and n” (of rank kk”)
with fibers (E ® E"),, = E;, ® E, and transitions maps satisfying

8pa(p) = 8pa(P) ® g5,(p) € GL(kK',R)
(see Appendix [C).

10.6 Definition (tensor bundle, tensor field) Let M be an m-dimensional mani-
fold. The bundle

T, M=TMQ®---TMQTM*" Q@ ---®TM"

r A

of rank m"** with fibers T, M, = (TM,), s is called the (7, 5)-tensor bundle over
M. An (r, s)-tensor field T on M is a section T € I'(T, sM).

Note that 71 oM = TM and Ty 1M = TM*. By convention, Tp oM = C*(M).
In a chart (¢, U) of M, the tensor field T € I'(7, ;M) has a unique representation

9 o . .
- Leedlyr _ 7 J1 Js
Ty =) T 557 & @ gon Odel @0 dy
for C* functions T;I‘Z U — R.
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Now let T: (I'(TM))* — I'(TM) be a multilinear (s-linear) map. We say
that T defines a (1, s)-tensor field if for all p € M, the value of the vector field
T(Xi,...,X,) at p depends only on X;(p),...,Xs(p); that is, we get an s-linear
map Tp,: (TM,)* — TM,, or, equivalently, an (1 + s)-linear map

TI',: TM;F7 x(TM,)* - R, T;,(/LV], cevs) = AT (v, vs)s
hence a tensor T;, €Ty M, overTM,.

10.7 Theorem (tensor fields) An s-linearmap T: (I'(TM))* — I'(TM) defines a
(1, s)-tensor field if and only if T is C*(M)-homogeneous in every argument, that
is,

T(X1,. . Xio1, f X Xivts oo Xs) = fT(X1, ..., Xs)
forany f € C*(M).

The theorem also holds in the following form for (r, s)-tensor fields: An (r +s)-
linear map T: (I'(TM*))" x (I'(TM))* — C*(M) defines an (r, s)-tensor field if
and only if T is C*(M)-homogeneous in every argument.

Proof: O

10.4 Vector fields and flows

Let X € T'(TM) be a vector field on a manifold M. A curve c¢: (a,b) — M is an
integral curve of X if

é(t) = Xe(r)
forallz € (a, b).

10.8 Theorem (local flow) Forall p € M there exist an open neighborhood U of p
and an € > 0 such that for all q € U there is a unique integral curve c,: (—€,€) —
M of X with c¢4(0) = q. The map ®: (—€,€) xU — M, ®(t,q) = D' (q) = c4(1),
is C*™.

Proof: Choose a chart (i, V) of M around p. A curve c: (a,b) — V is an integral
curve of X if and only if y := ¢ o c is an integral curve of the vector field £ on
W (V) defined by £y () = df, (X)), thatis, y(t) = &, forall ¢ € (a, b). Now the
result follows from the theorem on existence, uniqueness, and smooth dependence
on initial conditions of solutions to ordinary differential equations. O

The map @ is called a local flow of X around p. It follows from the uniqueness
assertion in Theorem that

(D% (q)) = D™ (q)
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whenever 5,7, s +t € (—¢, €) and ¢, ®*(g) € U. Then, for any open neighborhood
V c U of g with ®*(V) c U, ®°|y is a C* diffeomorphism from V onto ®*(V),
because @5 o |y = ®|y = idy.

A vector field X on M is completely integrable if for all g € M there exists
an integral curve ¢,: R — M of X with ¢4(0) = g. Then X induces a global
flow ®: R X M — M and a corresponding [-parameter family of diffeomorphisms

{q)t}te[R'

10.9 Proposition (complete integrability) Every vector field X € T'(TM) with
compact support is completely integrable.

Proof: For all p € M there is a local flow ®: (—€p,€,) X U, — M of X. Then
finitely many neighborhoods U, ...,U,, cover the compact support of X. For
€ :=min{e,, : i = 1,...,k}, it follows that ® is defined on (—¢, €) X M, where
®'(p) = p forall ¢t if X(p) = 0. Writingany r € Ras¢ = j - 5 +r with j € Z and
r € [0, §), we conclude that ®' = @” o (d€/2)J is the time ¢ flow of X. O

10.10 Lemma (flow-box) If X € I'(TM), p € M, and X, # 0, then there exists a
chart (¢, U) around p such that X |y = 6%;1'

Proof: This follows from the corresponding Euclidean result, Lemma|A.4 O

10.5 The Lie bracket

Let X,Y e I'(TM). For f € C*(M), the function Y(f) € C*(M) maps g € M to
Y,(f)=df,(Yy) e R. Forallp e M,

[X.Y]p(f) = Xp(Y () - Yp(X(f)) (f €C®(M))

defines a derivation at p. This yields a vector field [X, Y] € ['(TM), called the Lie
bracket of X and Y. Briefly, [X,Y] = XY - Y X.

10.11 Theorem (Lie bracket) For X,Y,Z € I'(TM) and f,g € C*(M), the
following properties hold.:

(1) [X,Y] is bilinear, and [Y,X] = —[X,Y];

2) [fX,gY] = felX.Y]+fX(g)Y-gY(f)X, inparticular [fX,Y] = f[X,Y]-
Y(f)X and [X,gY] = g[X, Y]+ X(g)Y,

3) [X,[Y,Z]]+1Z,[X,Y]] +[Y,[Z, X]] = 0 (Jacobi identity).
Proof: O

59



For a chart (¢, U) and f € C*(M),

0wl 20f 601
D) () e

dpi\ O R OxJ o OxtoxJ SD’
thus [aigoi’ aitpj] = 0. It follows from this fact and properties (1) and (2) above that
if X|y =2, Xia%i and Y|y = Zijai‘pj,then

0Y) 0 0X' 9
_ 12 _yJ
[X.Y]ly = E} (X agagi ¥ Ww)

oY 0X'\ 0
=Z(ZX10W_YJ@W')0¢”

J

The following results relates Lie brackets to flows.

10.12 Theorem (Lie derivative) If @ is a local flow of X around p, then

d( @) Yo (p)) - Y, d
X,Y], =1 - =
X, ]p tgr(l) t dt =0

d(@7") (Yor (p))-

The right side of this identity is called the Lie derivative of Y in direction of X
at the point p and is denoted by (LxY),; thus [X,Y] = LxY.

Proof: O

Let N be an n-dimensional manifold. An m-dimensional C* distribution A on
N assigns to each p € N an m-dimensional linear subspace A, C TN, such that
for every point p € N there exist an open neighborhood U C N of p and vector
fields X1, ..., X,, € ['(TU) with A, = span(X;(q), ..., X;u(g)) forallg € U. The
distribution A is called involutive or completely integrable if for all vector fields
X,Y e I'(TN) with X,,,Y, € A, forall p € N, also [X,Y], € A, forall p € N.
An injective immersion /: M — N of an m-dimensional manifold M is called an
integral manifold of Aif dI,(TM,) = A, for all p € M. The theorem of Frobenius
says that for every p € N there exists an integral manifold of A through p if and
only if A is involutive.
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11 Differential forms

11.1 Basic definitions

Let M be a C* manifold of dimension m. For p € M, A;(TM,,) denotes the vector
space of alternating s-linear maps (TM,)* — R (see Appendix , and

A (TM*) = U AS(TM3)
PEM

denotes the corresponding bundle.

11.1 Definition (differential form) A differential form of degree s or an s-form on
M is a (smooth) section of Ag(TM™*). We will denote the vector space of s-forms
on M more briefly by Q% (M) := ['(A;(TM?¥)).

By convention, Ao(TM},) = R, hence QY(M) = C*(M). Recall also that
As(T M) has dimension ('7), in particular Q° (M) = {0} for s > m.
For w € Q°(M) and 0 € Q' (M), the exterior product

wA e QT (M)
is defined by (w A 6)), := w), A 8, for all p € M (see Definition |C.3). Note that
OAw=(-1)"wAb,

in particular w A w = 0 if s is odd. The exterior product is bilinear and associative.
For f € C®°(M) =Q°(M) and w € Q*(M), f Aw = fow.
In a chart (¢, U), a form w € Q°(M) has the representation

a)|U = Z Wi ... d(pil Ao A d(,DiS
1<) <..<ig<m
1 - [el 9 00
with components w;,__;, = w(m, e W) e C>(U).

Recall that for f € C*(M), the pointwise differential p +— df), is a 1-form
df e T(TM*) = T(A(TM*)) = Q' (M).

11.2 Theorem (exterior derivative) There exists a unique sequence of linear op-

erators
d: Q5(M) - Q*'\(M), s=0,1,...,

with the following properties:

(1) for f € QM) = C*(M), df is the differential of f, thus df (X) = X(f) for
X e (TM);

(2) dod=0;
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(3) dlwAB)=dw A0+ (-1)w A dbfor w e Q° (M) and 6 € Q' (M).
Proof: O

The operators d are local, that is, (dw)|y = d(w|y) whenever w € Q°(M) and
U c R™ is open. In a chart (¢, U),

do|y = Z dwj, . i, N dgoi‘ A A dgais.

1<ij<...<ig<m

11.3 Theorem (exterior derivative, coordinate-free) Foraformw € Q°(M) and
vector fields X1, ..., X1 € T'(TM),

s+1

da)(X17 L] XS+1) = Z(_l)l+1Xl (w(Xls cees X\lv cees XS+1))
i=1

+ Z (D™ o((X X1, X1, Xir o X Xon1)s

1<i<j<s+l
here, X; signifies that the entry X; does not occur.

In particular, if w € Q!(M), then
dw(X,Y) = X(w(Y)) - Y(w(X)) - o([X,Y]).
Proof: O

ForaC® map F: N —» M and w € Q°(M), the pull-back form F*w € Q°(N)
is defined by

(Frw)p(vVis...,vs) = wpp) (dFp(v1),...,dF,(vy))

forpe Nandvy,...,vs € TN,. If f € C®(M) = Q°(M), then F*f := fo F.

11.4 Proposition (pull-back of forms) For a C* map F: N — M and forms
w € Q(M) and 0 € Q' (M),

(1) Ff(wAB)=FwAF*0,
2) F*(dw) = d(F*w).
Proof: Exercise. O
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11.2 Integration of forms

Let M be an oriented manifold of dimension m. A set M’ C M is measurable
if p(M’ NU) c R™ is (Lebesgue) measurable for every chart (¢,U) of M. A
measurable decomposition of M is a countable family {M,},ca of measurable
subsets of M such that

(1) M\ Ugea M, has measure zero (Definition [9.1]), and
(2) M, N Mg has measure zero whenever a # .

For every atlas of M there is a measurable decomposition {M } 44 of M such that
every set M, is contained in the domain of some chart of the atlas.

Let now w € Q™(M) be a form of degree m = dim(M), and let (¢,U) be a
positively oriented chart of M. Then

m

wly =w?de' A. .. Ndp

for w¥ = “)(a%:l’ ey 6"%) € C*(U). If (y, V) is another positively oriented chart

and H := o ¢~ o(UNV) — (U NYV) is the change of coordinates, then by

applying wly = w¥ dy' A ... A dy™ to 22 2 one gets that

(9_901"”’6‘,0’"

W (p) = w” (p) det( oy (p>): 0" (p) det 11 (o(p))

ol

for all p € U NV, where the Jacobi determinant is positive.
Now let M’ C U be a measurable set. The form w is integrable over M’ if the
integral of |w¥ o (p_1| over ¢(M’) is finite; then

/ wzzf w? ol dx
’ e (M)

defines the integral of w over M. 1f (¥, V) is another positively oriented chart with
M’ c V and H is the change of coordinates, then it follows that

/ wwolp—]dy:/ w‘/’ogo—l |detJH| dX:/ wkpogo—]dx
¥ (M) (M) o(M”)

by the change of variables formula and the aforementioned transformation rule for
the coefficients of w.

11.5 Definition (integral of a form) The form w € Q™ (M) is integrable over M
if there exist a measurable decomposition {M, } 4c4 and positively oriented charts
(¢q,Ugq) of M with M, C U, such that

Z / |w# o 90;1| dx < oo.

acA Ya(Mo)
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In this case,

/w2=Z/ w=Z/ w¥ o ! dx
M a€cA Mo a€A Sotl/(Ma)

defines the integral of w over M.

The integral is independent of the choices of (¢4, U,) and M,. Forms with
compact support are integrable: this clearly holds if spt(w) lies in the domain of a
single chart, and in the general case one may use a partition of unity to write w as
a sum of finitely many forms with this property.

If w is integrable over M, and N is another oriented m-dimensional manifold
and F: N — M is a diffeomorphism, then

/F*w=e/w
N M

where € = 1 if F is orientation preserving and € = —1 otherwise. Furthermore, if
N is compact and M is connected, and F': N — M is an arbitrary C* map, then
one can show that fN F*w = deg(F) fM w.

11.6 Theorem (Stokes) Let M™ be an oriented manifold with (possibly empty)
boundary M, and let w € Q" V(M) be an (m — 1)-form with compact support.

Then
/dw:/ w
M oM

(precisely, fM dw = faM i*w for the inclusion mapi: OM — M).
Here the boundary dM is equipped with the induced orientation: a ba-
sis (Vi,...,Vm-1) of T(OM), < TM, is positively oriented if and only if

(v,vi,...,Vm-1) is positively oriented in TM,, for every vector v in the “outer”
connected component of TM, \ T(0M),,.

Proof: O

A volume form w on M™ is a nowhere vanishing m-form, that is, w, # 0 €
Am(TM},) forall p € M.

11.7 Theorem (volume form) There exists a volume form on M if and only if M
is orientable.

Proof: Exercise. O
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11.3 Integration without orientation

If V is an m-dimensional (real) vector space and 0 # w € A,,,(V*), then
lw|: VXXV —[0,00), |0|(Vi,--erVm) =0V, ., vm)l,

is called a volume element on V. Now let M be an m-dimensional manifold. A
(C*) volume element du on M assigns to every point p € M a volume element du ,
on TM,, such that, for every chart (¢, U) of M,

duly = 0¥ |d¢,01 A dgom|

for some C* density function p¥: U — (0, 00). (The notation du stems from
measure theory and is unrelated to the exterior derivative of differential forms.) If
(¢, V) is another chart and H = 0 ¢~ !: (U NV) — (U NV) is the coordinate
change, then

0%(p) = 0% (p) ldet Ju (¢(p))|

for all p € U NV, similarly as for the coefficients of m-forms.

If du is a volume element on M and M is orientable, then there exists a volume
form w € Q™ (M) with du = |w|. For a non-orientable M, such a form exists only
locally, due to Theorem|11.7

From a volume element du on M one obtains a measure u on (the o--algebra of
measurable subsets of) M as follows: if {M,}qeca is @ measurable decomposition
of M such that for every a there is a chart (¢4, U,) with M, C U, then

p(B) := Z/ 0% 0 ¢, dx

a(BNMg)

for every measurable set B ¢ M. It follows from the change of variable formula
and the above transformation rule for the densities that the measure is well-defined.
Now, if f: M — R is a measurable function, then the meaning of fM f du results
from this measure. However, the integral can also be defined directly in terms of
the volume element du: f is integrable if

[irtae=Y [ driemoe! dv<o
M a a(Mq)

the same formula with f in place of | f| then defines the integral f v S
For a Riemannian manifold (M™, g), the volume element dyig induced by g is
given in a chart (¢, U) by
dugly = yJdet(g) lde' A ... Ade™|,
where gly = 3, g;’;. de' ® dy’ .
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11.4 De Rham cohomology

A form w € Q¥ (M) is closed if dw = 0. The form w is called exact if there exists a
6 € Q1 (M) such that w = d@; furthermore, by convention, 0 € C®(M) = Q°(M)
is the only exact O-form. Every m-form on an m-dimensional manifold M is closed,
because Q"+ (M) = {0}. Since d o d = 0, every exact form is closed.

11.8 Definition (de Rham cohomology) For s > 0, the quotient vector space

s {w € Q5(M) : wis closed}
H. (M) =
ar (M) {w e Q5(M) : wis exact}

is called the de Rham cohomology of M in degree s. For a closed form w € Q% (M),
[w] = {w € Q*(M) : v — wis exact} € Hi (M)

denotes the cohomology class of w. Two forms w, w’ € Q5 (M) are cohomologous

if [w] = [&'].

The dimension by(M) := dim Hj, (M) is called the s-th Betti number of M,
and

X(M) := > (=1)* by(M)
s=0

is the Euler characteristic of M. If every closed s-form is exact, then Hj, (M) is a
trivial (one-point) vector space, which will be denoted by 0. The subscript dR will
often be omitted in the following.

Examples

1. HO(M) = {f € C®(M) : df = 0} is the vector space of the locally constant
functions on M. If M has a finite number k of connected components, then
H°(M) ~ Rk (isomorphic).

2. On M =R?\ {(0,0)},

-y

X
w = dx + d
242 2y

defines a 1-form that is closed but not exact; in particular, H' (M) # 0.
Locally, w agrees with the differential dy of a polar angle ¢ with respect to
the origin (0, 0), but ¢ cannot be defined continuously on all of M.

In the following, M, N are two manifolds and F € C*°(N, M). For s > 0, the
pull-back operator F*: Q¥ (M) — Q°(N) induces a well-defined linear map

F*: H*(M) —» H°(N), F'low]=[Fw].
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If L is another manifold and G € C*(M, L), then
F*oG"=(GoF)": H (L) — H*(N);
in particular, H* (M) and H® (N) are isomorphic if F' is a diffeomorphism.

11.9 Theorem (Poincaré lemma) If F,G € C*(N, M) are smoothly homotopic,
F ~ G, then the induced maps F*,G*: H*(M) — H*(N) agree in every degree
s > 0.

Proof: O

Two manifolds M and M are called (smoothly) homotopy equivalent if there
exist smooth maps F: M — M and F: M — M such that F o F ~ idy; and
F o F ~ id,;; then F and F are (smooth) homotopy equivalences inverse to each
other. The manifold M is (smoothly) contractible if idp; is smoothly homotopic
to a constant map M — {pg} C M; this is the case if and only if M is homotopy
equivalent to a one-point space.

11.10 Corollary (1) If M and M are homotopy equivalent, then H*(M) =~
HS(M) forall s > 0.

(2) If M is contractible, then H*(M) ~ R and H*(M) =0 for s > 1.
Proof: O

If M is a manifold and U,V C M are two open sets with U UV = M, then there
exists a long exact sequence

0—H'(M) - H* (U)o H (V) - HO(UNV) — ...
. >H(M) > H'(U)® H* (V) - H*(UNV)
SHY Y (M) - HSY'(U) e HSY'(V) > HSTY(UNV) - ...

(thus the image of each of these linear maps equals the kernel of the following one),
the Mayer—Vietoris sequence, which constitutes a very useful tool to determine the
de Rham cohomology.

Example The sphere S ¢ R™! (m > 1) is covered by the two open sets
U:=8"\{-ens+1} and V := 8™\ {e,u+1}, both of which are contractible, and
U NV is homotopy equivalent to $”~!. By Corollary [11.10} for all s > 1, both
HS(U) ® H*(V) and H**'(U) ® H**' (V) are trivial, hence the map

HS(Sm—l) ~ HS(UﬂV) — HS+I(M) — Hs+1(Sm)
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in the Mayer—Vietoris sequence is injective as well as surjective. Hence, for
m,s > 1, the recursion formula H**'(§™) =~ H%(§™ ') holds. Furthermore,
since H°(S™) ~ R and H*(U) ® H°(V) =~ R?, one obtains the exact sequence

0->R->R?>> HWUNV) > H' (S - 0.

If m = 1, then HO(U N V) ~ R? and hence H'(S') ~ R, and if m > 2, then
H°(UNV) ~ R and thus H'(§™) = 0. It follows that H*(5™) ~ R for s € {0,m}
and H*(S™) = 0 otherwise.

We mention two other important results, in both of which M is a compact
oriented manifold (without boundary) of dimension m, and s € {0, 1,...,m}.
The Poincaré duality theorem says that the bilinear form

(-, ): H¥(M) x H" (M) — R, ([w],[@])::'/Ma)/\H

(which is well-defined by the theorem of Stokes), is non-degenerate. This yields
an isomorphism H* (M) ~ (H™ S(M))*, which assigns to [w] the linear form
[6] — ([w], [6]). For example, if M is connected, then this implies that H" (M) =~
HO(M) ~ R.

Now we let HA§°°)(M ,R) denote the smooth singular homology of M. An
element [0 | of the vector space HS(OO) (M, R)isahomologyclass {o”’ : 0’—0 = d7}
of smooth singular s-chains ¢’ with real coefficients and do’ = 0. It can be shown
that the bilinear form

(o) Hig(M) x H (MR) > R, (], [o]) ::/w,

is non-degenerate. (It follows from the generalized theorem of Stokes for smooth
singular s-chains that it is well-defined.) This yields a canonical isomorphism
Hip (M) ~ (H§°°)(M, R))*, sending [w] to the linear form [o] — ([w], [0]).
Furthermore there are canonical isomorphisms (H S(OO) (M,R))* ~ Hfoo)(M ,R) =~
H* (M, R) to the smooth singular cohomology and the usual singular cohomology,
respectively. In particular Hj, (M) and H*(M,R) are isomorphic; this is the
theorem of de Rham.
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12 Lie groups

12.1 Lie groups and Lie algebras

A topological group (G, -) is a group endowed with a topology such that the map
GxG—G, (g.h)mghl,

is continuous (equivalently, both the group multiplication G X G — G and the map
G — G sending each group element to its inverse are continuous).

12.1 Definition (Lie group) A Lie group (G, -) is a group with the structure of a
C* manifold such that the map G x G — G, (g, h) — gh™',is C*.

Examples
1. R with vector addition;
2. C* =C\ {0} with complex multiplication;
3. stcce
4. If G, H are Lie groups, then the product manifold G X H, equipped with the
multiplication (g, h)(g’, k') := (gg’, hh’), is a Lie group.
5. 7™ =S"x...xS' (m factors).

6. GL(n,R) = {A € R™" : det(A) # 0} with matrix multiplication; likewise,
GL(n,C).

7. GL(n,R) x R", equipped with the multiplication
(A,v)(B,w) := (AB, Aw +v),

is (isomorphic to) the Lie group of affine transformations g4,,: x — Ax +v
of R™.

Let G, G’ be two Lie groups. A Lie group homomorphism F: G — G’ is a
C®* group homomorphism; a Lie group isomorphism is, in addition, a (C*) dif-
feomorphism (and hence also a group isomorphism). A Lie group homomorphism
F: G — G’ is also called a representation of G in G’, in particular when G’ is
GL(n,R) or GL(n, C).

In the following, (G, -) denotes a Lie group with neutral element e. For every
g € G, the left multiplication

Ly: G— G, Lg(h):=gh,

is a diffeomorphism of G with inverse (Lg)‘1 = Lg-1. Likewise, the right multi-
plication Ry: G — G, Ry(h) = hg, is a diffeomorphism.
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12.2 Lemma Let (G, -) be a connected Lie group, and let U C G be a neighborhood
of e. Then U generates G, that is, every g € G can be written as a product
g =g1...8k of finitely many elements of U.

Proof: We assume that U is open. Then it follows inductively that U* = {g| ... gy :
gi,...,8k € U} is open for every k > 1: if U is open, then so is UXg = Rg(Uk)
forall g € U, hence U*! = Ugeu Uk g is open. Therefore V := (J52, U**! is open.
On the other hand, if g € G\ V, then gh € G\ V for all & € U, for otherwise
geVhl1=V;soglU = Lg4(U) is an open neighborhood of g disjoint from V. Thus
G \ V is open as well. Since e € V and G is connected, it follows that V = G, that
is, U generates G. O

For a general Lie group G, the connected component containing the neutral
element is usually denoted by Go. For g € G, the diffeomorphisms L, and R,
map Gg onto the connected component of G containing g. Thus G is a normal
subgroup of G whose cosets are the connected components of G. The quotient
G /Gy is a countable group (and thus a O-dimensional Lie group with the discrete

topology).

12.3 Definition (Lie algebra) A Lie algebra V over R is a vector space over R
together with a bilinear map [ -,-]: VXV — V, the Lie bracket of V, such that for
all X,Y,Z eV,

(1) 1Y, X] =—[X,Y] (anti-commutativity);

Q) [X,[Y,Z]]+1Y,[Z,X]]+[Z,[X,Y]] = 0 (Jacobi identity).

Examples

1. Any vector space V (over R) with the trivial bracket [ -, -] = 0 (abelian Lie
algebra).

2. The vector space I'(TM) of C* vector fields on a manifold M with the Lie
bracket [ X, Y](f) :== X(Y(f)) - Y(X(f)).

3. R™" with [A, B] := AB — BA (matrix multiplication).
4. R3 with the vector product [X,Y] := X X Y.

5. Any 2-dimensional vector space with basis (X, Y) and the bracket defined by
[X,X]:=0,[Y,Y] :=0,-[Y,X] =[X,Y] :=Y, and bilinear extension.

Let V,V’ be two Lie algebras. A Lie algebra homomorphism L: V — V'

is a linear map such that L[X,Y] = [LX, LY] for all X,Y € V; a Lie algebra
isomorphism is, in addition, a linear isomorphism.
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A vector field X on a Lie group G is called left-invariant if
Lg*X =Xo Lg

for all g € G, thatis, Lg. Xy, := d(Lg)n(Xy) = Xgp for all g,h € G. For every
vector Xg € TG, there exists a unique left-invariant vector field X with X, = Xo,
defined by

Xg = Lg*Xo;
then Lg*Xh = Lg*Lh*X() = (Lg oLp)Xy = Lgh*X() = Xgh for all h € H. Left-
invariant vector fields are C*, and if X,Y are left-invariant, then [X,Y] is left-

invariant (exercise). Thus the left-invariant vector fields constitute a Lie subalgebra

12.4 Definition (Lie algebra of a Lie group) The Lie algebra g of a Lie group G
is the vector space TG, with the bracket defined by

[X(), Y()] = [X, Y]e
for all Xy,Yy € TG,., where X, Y denote the left-invariant vector fields on G such
that X, = Xy and Y, = Y).
Examples

1. The Lie algebra of G = GL(n, R) is the vector space TG, = gl(n, R) = R™*",
If A € gl(n,R), and if ¢: (—¢,¢) — GL(n,R) is a smooth curve with
c(0) = e and ¢’(0) = A, then

LgiA = Lg.(c'(0)) =(Lgoc)'(0) =gc’(0) =gA e TG,

for all g € GL(n,R); hence g — gA is the corresponding left-invariant
vector field, viewed as a map from G to R™*", For A, B € gl(n,R) and
X, := gA and Y, := gB, the Lie bracket is given by

[A,B] =[X,Y].=AB - BA (matrix product).

To see this, let ¢'*: GL(n,R) — R denote the global coordinate function
that assigns to g the matrix entry g;x. The vector Y, € TG,, applied as a
derivation to ¢'*, returns the corresponding matrix entry of Y, = gB, thus

Ye(9™) = (eB)ix = ). gijhji = ) bjx ¢ (2).
= =

Likewise, X, (¢') = A(¢") = a;j and (AB)(¢'*) = (AB);x, hence
n

X (Y (™) = > bk A(p") = > aijbji = (AB)(¢™).
J=1 '

Jj=1

Since this holds for all i, k € {1,...,n} and also with interchanged roles of
A and B, this gives the result.
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. The Lie algebra of GL(n, C) is the vector space gl(n,C) = C"*" with the
bracket given by [A, B] = AB — BA as above.

. SL(n,R) = {g € GL(n,R) : det(g) = 1}, dimension n* — 1,

sl(n,R) = {A € R™" : trace(A) = 0}.

. SL(n,C) = {g € GL(n,C) : det(g) = 1}, dimension 2(n* — 1),

sl(n,C) = {A € C"™" : trace(A) = 0}.

. O(n) = {g € GL(n,R) : gg' = e}, SO(n) = O(n) N SL(n, R), dimension
%n(n -1,
o(n) =so(n) ={A e R™": A=-A"}.
. U(n) = {g € GL(n,C) : gg"' = e}, dimension n?,
u(n)={AeC”":A=-A"}.
SU(n) = U(n) N SL(n, C), dimension n® — 1,

su(n) = u(n) N sl(n, ©).

. Affine group G = GL(n, R) X R", (g,v)(h,w) = (gh,gw + V),

g=R""xR", [(A,v),(B,w)] = (AB - BA,Aw - Bv).

. The vector space H = {a + bi + cj + dk : a,b,c,d € R} of quaternions,
whose non-commuting imaginary units 7, j, k satisfy the relations i> = j2 =
k* = ijk = —1 and hence

ij=—ji=k, jk=-kj=i, ki=-ik=],

forms a division algebra with norm ||a + bi+cj +dk|| = (a®+b*+c*+d?)'/2.
The sphere S ¢ R* may be viewed as the set

{a+bi+cj+dkeH:|la+bi+cj+dk| =1}

of unit quaternions and thus inherits the structure of a Lie group. The
corresponding Lie algebra s° is spanned by i, j, k, where

[i,j1=ij — ji=2k, [j.k]=2i, [k,i]=2].
The quotient group S3/{1, -1} is a Lie group diffeomorphic to RP>.
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If F: G — G’ is a Lie group homomorphism or isomorphism, then the dif-
ferential dF,: TG, — TG/, is a Lie algebra homomorphism or isomorphism,
respectively (exercise).

Example The Lie groups S° and SU(2) are isomorphic, furthermore §3/{1, -1} is
isomorphic zu SO(3). In particular, the Lie algebras s*, su(2), so(3) are mutually
isomorphic (exercise).

Let G be a Lie group. A pair (H,i), where H is a Lie groupandi: H — G is
a Lie group homomorphism and an injective immersion, is called a Lie subgroup
of G; i(H) is a subgroup of G, but in general i is not a homeomorphism onto i(H)
with respect to the topology induced by G.

Example For @ € R\ Q, the map
i (R,+) - (T =R?*/Z%,+), t+~ (t,at) mod Z2,
is an injective immersion but not an embedding. In fact, i(R) is dense in T2.

Using the theorem of Frobenius (see page [60) and Lemma one can show
that if b’ C g is a Lie subalgebra of the Lie algebra of a Lie group G, then there
exists a connected Lie subgroup i: H — G with di.(h) = k', and every other
connected Lie subgroup i: H — G with di,(h) = h' is of the formi =i o F for
some Lie group isomorphism F: H — H.

12.2 Exponential map

12.5 Proposition Left-invariant vector fields are completely integrable. The inte-
gral curves c: R — G with ¢(0) = e are precisely the Lie group homomorphisms
(R,+) —» G.

Proof: Let X be a left-invariant vector field on G.

There exist an € > 0 and an integral curve c¢: (—€,€) — G of X with ¢(0) = e.
Then, for every g € G, the left-translate gc = L, o ¢ is an integral curve of X with
gc(0) = g, because

(gc)'(t) = Lguc'(t) = LguXc(r) = Xgery forallt € (—¢€,€)

by the product rule and the left-invariance of X. Thus the flow @ of X is defined on
(—€,€)XG by ®(g) = gc(t), and it then follows as in the proof of Proposition
that X is completely integrable.

Let now ¢: R — G be the integral curve with ¢(0) = e, thus @ (e) = ¢(z) for
allr € R. Then, for s € R and g := c(s),

c(s)c(t) = ge(r) = @'(g) = D' (D% (e)) = D™ (e) = c(s +1),
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so ¢ is ahomomorphism from (R, +) into G. Conversely, suppose thatc: (R, +) —
G is a Lie group homomorphism with ¢’ (0) = X.. Then c¢(s+1) = c(s)c(t) = gc(1),
and by taking the derivative at ¢t = 0 one gets that ¢’(s) = Lg.c’(0) = Xg = Xc(5),
showing that c is an integral curve. O

12.6 Definition (exponential map) The exponential map of G is the map
exp: TG, — G, exp(X.) :=c(1),

where ¢c: R — G is the integral curve of the left-invariant vector field X (or,
equivalently, the Lie group homomorphism (R, +) — G) with ¢’ (0) = X,.

Notice that then
exp(tX,) =c(t) forallt e R,

since the integral curve through e of the left-invariant vector field X := ¢X is given
by s > é(s) = c(ts), so that exp(tX,) = exp(X,) = &(1) = c(t). It follows in
particular that

exp(sX,) exp(tX.) = c(s)c(t) =c(s+1) =exp((s+1)X,)

and exp(tX,) ™! = c(t)7! = ¢(~1) = exp(~tX,).

Furthermore, exp is smooth. To see this, consider the vector field V on
G X TG, defined by V(g,X.) = (gX.,0) € TGg x TG., whose integral
curve through (g, X.) is t — (gexp(tX.),X.). Thus the flow of V satisfies
D' (g,X,) = (gexp(tX,),X,) forallr € R, and if 7: G X TG, — G denotes the
canonical projection, then exp(X,) = 7 o ®!(e, X,), which depends smoothly on
X,.

The differential dexp,: T(TG.)o = TG, — TG, is the identity map, as
dexpy(Xe) = %| =0 €XP(tX,) = ¢’(0) = X. In particular, the restriction of exp
to a suitable open neighborhood of 0 in TG, is a diffeomorphism onto an open
neighborhood of e in G.

Let now F: G — G’ be a Lie group homomorphism. Then, as mentioned
earlier, the differential dF,: TG, — TG, is a Lie algebra homomorphism. Fur-
thermore, the map ¢ — F o exp®(tX,) is a homomorphism (R,+) — G’ with
initial vector dF, (X,), hence it agrees with r — exp%’ (¢t dF,(X,)). For t = 1, this
shows that

Foexp® = expG' odF,.

Next, consider GL(n, C) with the matrix exponential function

S
A|—>eA:=ZFAk
k=0 "’

on C™*" = gl(n, C). The following properties hold:
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(1) BeAB~! = ¢BAB™ forall B € GL(n, C);
(2) det(e?) = e"e(4) £ 0, in particular e4 € GL(n, C);
(3) if A,B € C™" and [A, B] = AB — BA =0, then ¢4*8 = ¢4¢5B.

Let A € gl(n,C). Since [sA,tA] =0 for s,¢ € R, it follows from (2) and (3) that
c: t > e is ahomomorphism from (R, +) into G, and ¢’(0) = A. Hence, the Lie

group exponential map
exp: gl(n,C) — GL(n,C)

agrees with the matrix exponential A — exp(A) = e4.

Let again G be an arbitrary Lie group. According to the Campbell-Baker—
Hausdorff formula, for two vectors X,Y € TG, in a sufficiently small neighborhood
of 0, the identity exp(X) exp(Y) = exp(S(X,Y)) holds, where

1 1 1
SX,Y)=X+Y+Z[X, Y]+ =[X,[X. Y]]+ <[V, [V, X]] +...
2 12 12
is a convergent series of nested Lie brackets satisfying S(Y,X) = —-S(-X,-Y)
(there is an explicit form due to Dynkin (1947)). The formula is particularly useful
for nilpotent Lie groups, for which S terminates.
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Appendix

A Analysis
In the following statements and proofs, all diffeomorphisms are of class C™.

A.1 Theorem (inverse function theorem) Suppose that W c R" is an open set,
F e C¥(W,R"), p € W, F(p) =0, and dF, is bijective. Then there exist open
neighborhoods V.C W of p and U C R" of 0 such that F|y is a diffeomorphism
JromV onto U.

A.2 Theorem (implicit function theorem, surjective form) Suppose that W C
R"™ is an open set, F € C*(W,R¥), p € W, F(p) = 0, and dF, is surjective.
Then there exist open neighborhoods U ¢ R"™* x R¥ of (0,0) and V. c W of p
and a diffeomorphism . U — V such that ¢ (0,0) = p and

(Foy)(x,y) =y
forall (x,y) € U (canonical projection).

Proof: After a linear change of coordinates on R" we can assume that dF,, maps
the subspace {0} x R* c R" bijectively onto R¥. Then, for g = (¢',...,¢") € W
and ¢’ := (q',...,¢"%), put F(q) := (¢’,F(q)). This defines a map F €
C*®(W,R"k x R¥), and dF), is bijective. By Theorem there exist open
neighborhoods V. W of p and U ¢ R" ¥ x R¥ of (0,0) such that F|y is a
diffeomorphism from V onto U. Lety := (F|V)_1. For (x,y) € Uand ¢ (x,y) =: q,

(¢, F(q)) = F(q) = (x,y), in particular (F o /) (x,y) = F(q) = y. O

A.3 Theorem (implicit function theorem, injective form) Suppose that U C
R™ is an open set, f € C®(U,R™), 0 € U, f(0) = p, and dfy is injective.
Then there exist open neighborhoods V.C R" of p and W c U X R"*™" of (0, 0)
and a diffeomorphism ¢: V — W such that ¢(p) = (0,0) and

(po f)(x) = (x,0)

for all (x,0) € W (canonical inclusion).
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Proof: We can assume that the subspace {0} x R"™ < R”" is complementary
to the image of dfy. Define f € C*(U x R*™™ R™) by f(x,y) := f(x) + (0,y)
for (x,y) € U x R*™. The differential d f; is bijective. By Theorem |A.1| there
exist open neighborhoods W c U x R"™™ of (0,0) and V c R”" of p such that
flw is a diffeomorphism from W onto V. Let ¢ := (le)_l. For (x,0) € W,
f(x) = f(x,0), hence (¢ o f)(x) = (x,0). O

We state two useful facts about smooth vector fields.

A.4 Lemma (flow box) Suppose that X: V — R™ is a vector field on a neighbor-
hood V of 0in R™, and X(0) # 0. Then there exist an open neighborhood W C V
of 0 and a diffeomorphism yr: W — (W) C R™ such that dyr,(X(y)) = ej for all
yeWw.

Proof: We can assume that X (0) = e;. There exist an open set V/ in {0} x R"™~! ¢
R™ with 0 € V' c V and an € > 0 such that for every x € V’ there is an integral
curve cy: (—€,€) — R™ of X with ¢,(0) = x, and the map (z,x) — c(f) on
(e,€) x V" is C* (compare Theorem [I0.8). Then the map sending x + e to ¢ (7)
for every (¢,x) € (€,€) X V' is also C* and furthermore regular at 0, because
¢p(0) = X(0) = e; and ¢, (0) = x for all x € V’. Hence the restriction of this map
to a suitable neighborhood of 0 is a diffeomorphism whose inverse y: W — (W)
satisfies ¥ (y) = x +tey and dyr, (X(y)) = dy(¢x(1)) = ej forall y = ¢, (1) € W.

O

A.5 Lemma (parametrization by flow lines) Suppose that X|,X,: V — R? are
two vector fields on a neighborhood V of 0 in R?, and X;(0), X»(0) are linearly
independent. Then there exist an open set U € R? and a diffeomorphism ¢: U —
p(U) c Vwith 0 € o(U) such that

0
L@ =40 Xi(p()
X
for all x € U and some functions 1;: U - R, i =1,2.

Proof: Since X;(0) # 0 fori = 1,2, by Lemma|A.4] there exist an open neighbor-
hood W c V of 0 and diffeomorphisms ¢; = (1#1.1,&1.2): W — y;(W) c R? such
that d(¢;)y(X;(y)) = e; forall y € W. Then h' := ¢} and h? := y? are regular
functions on W whose level curves are flow lines of X; and X, respectively. Define
h = (h',h?): W — R2. Since X;(0), X»(0) are linearly independent and h', h?
are regular at 0, whereas d(h')o(X>(0)) = 0 and d(h?)o(X1(0)) = 0, it follows that
d(h')o(X;(0)) # 0 fori = 1,2, thus A is regular at 0. Hence, the restriction of & to
a suitable neighborhood of 0 has an inverse ¢ as claimed, mapping horizontal and
vertical lines to flow lines of X; and X», respectively. O
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B General topology

B.1 Definition (topology, topological space) Let M be a set. A fopology on M is
a collection of subsets of M, called open sets, with the following properties:

(1) 0 and M are open;
(2) the union of arbitrarily many open sets is open;
(3) the intersection of finitely many open sets is open.

A topological space is a set equipped with a topology.

Examples

1. Let (M, d) be a metric space. With respect to the fopology induced by d, a
set U ¢ M is open if and only if for all p € U there is an r > 0 such that
B(p.r)={qeM:d(p.q) <r}cU.

2. The usual topology on R is induced by the standard metric d(x, y) = |x—y]|.

3. The trivial topology on a set M consists only of () and M, whereas the discrete
topology on M is the entire power set.

A subset A of a topological space M is called closed if the complement M \ A
is open; thus ) and M are both open and closed.

A map f: M — N between two topological spaces is continuous if f~1(V) c
M 1is open for every open set V. C N. The map f is a homeomorphism if f is
bijective and both f and f~! are continuous.

B.2 Definition (induced topology) Let N be a topological space, and let M c N
be a subset. The induced topology or subspace topology on M consists of all sets
U c M of the form U = M NV where V is open in N.

B.3 Definition (compactness) A topological space M is compact if every open
cover of M has a finite subcover; that is, whenever | J,c4 Uy = M for open sets
U, C M and an index set A, there exists a finite set B C A such that | J gepUp = M.

If M is compact and f: M — N is continuous, then f(M) is a compact
subspace of N. If M is compact and A is closed in M, then A is a compact subspace
of M.

A set U C M is called a neighborhood of a point p € M if there exists an open
setVwithpeV cU.

B.4 Definition (Hausdorff space) A topological space M is called a Hausdor{f
space if for every pair of distinct points p, g € M there exist disjoint neighborhoods
Uof pandV of g.
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Every metric space is a Hausdorff space.

B.5 Lemma If M is a Hausdorff space and A C M is a compact subspace, then A
is closed in M.

It follows easily that every continuous bijective map f: M — N from a compact
space M onto a Hausdorff space N is a homeomorphism.

B.6 Definition (basis, subbasis) Let M be a topological space. A collection B of
open sets is called a basis of the topology if every open set can be written as a union
of sets in B. A collection S of open sets is a subbasis of the topology if every open
set is a union of sets that are intersections of finitely many sets in S.

Examples
1. The set of all open balls forms a basis of the topology of a metric space.

2. The set of all open balls B(x, r) withx € Q" and r € Q, r > 0, is a countable
basis of the usual topology on R™.

B.7 Definition (product topology) Let M, N be two topological spaces. The prod-
uct topology on M X N is the topology for which the sets of the form U X V where
U is open in M and V is open in N constitute a basis.

B.8 Definition (quotient topology) Suppose that M is a topological space, ~ is
an equivalence relation on M, and 7: M — M /~ is the projection onto the set of
equivalence classes. The quotient topology on M /~ consists of all sets V C M /~
for which 7=!(V) is open in M.

A topological space M is called connected if () and M are the only open and
closed subsets of M. A topological space M is path connected if for every pair of
points p, g € M there is a path from p to g (thatis, a continuous mapc: [0,1] - M
with ¢(0) = p and ¢(1) = q), and M is locally path connected if every point p € M
has a neighborhood that is path connected in the induced topology. Every path
connected space is connected. The subspace

{(x,sin(1/x)) :x e R, x>0} U{(0,y) :y e [-1,1]}

of R? is connected but not path connected. Every connected and locally path
connected space is (globally) path connected.
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C Multilinear algebra

Let V,Vi,...,V, and W be vector spaces (over R). We denote by L(V;W) the
vector space of linear maps from V to W. A map

f:Vix...xV, > W

is multilinear or n-linear if for every index i € {1,...,n} and for fixed vectors
v; €V, j #1i, the map

V'_>f(Vla---avi—l’V’VHla---’Vn)

from V; to W is linear. We let L(V1, ..., V,; W) denote the vector space of all such
n-linear maps.

C.1 Theorem (tensor product) Given vector spaces V1, ..., V,, there exist a vec-
tor space T and an n-linearmap v € L(Vy, ..., Vy; T) with the following property:
for every n-linear map f € L(Vy,...,V,; W) into any vector space W there is a
unique linear map g € L(T ;W) such that f = g o 1.

This property characterizes the pair (7, 7) uniquely up to a linear isomorphism;
(1, T) is called the tensor product of V1, ..., V,, and one writes

Viw...oV, =T, vi®...0v, =17(vi,...,v,).
The unique assignment f — g given by the theorem is a linear isomorphism
LVi,...,VyuW) = L(V1 ®...9V,;; W).
For every permutation o of {1, ..., n} there exists a linear isomorphism
Vi®...0Vh2Ve)®...® Vo
mapping vi ® ... ® v t0 V(1) ® ... ® V(). Form < n,
Vi®..oV,) (Vs 1®...0V,) =V ®...0V,.

For every vector space V the scalar multiplication is a bilinear map R XV — V;
this induces an isomorphism
ReVz=V

mapping a @ v to av. If V = V| @ V, (direct sum), then
VeoaWs=(VieW)e (V, @ W).

The construction of the tensor product is natural in the following sense: if linear
maps f;: V; — VJ’. are given, j = 1,...,n, then there exists a unique linear map
fi®...8fh:Vi®...0V, > V/®...®V, such that

(i®...9 ) (Vi®...0v,) = fi(v1)®...® fu(vn)
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wheneverv; € V; forj=1,...,n.

We now assume that the vector spaces V, V1, ..., V, are finite dimensional. If
Bj isabasis of V; for j = 1,...,n, then the products b1 ® ... ® b, with b; € B;
constitute a basis of V| ® ... ® V,,. In particular,

dim(V; ® ...®V,) =dim(Vy) - - - dim(V,,).

We let V* := L(V;R) denote the dual space of V. The map v — ¥ € (V*)*,
7(A) := A(v), is a canonical isomorphism V = V**. If 4; € V;.‘, j=1,...,n,then
1®...81, €V{®...®V, may also be viewed as the tensor product

U®..04,:ViI®..9V, 2 R®..R =R
of the linear maps 4;: V; — R described above; this yields an isomorphism
Vie..eV,=2(Vi®...0V,)".

Note that
11®...084,)(vi®...0v,) =A1(v) - Au(vy).

An (r, s)-tensor over V is an element of

Vis=V®...0VeV'®...0V"

r A

=(V'®..9V'eV®...0V)"

r )

= {T: V'X...XV"XVx...xV —> R :Tist(r+s)-linear}.

r s

Note that dim(V, ) = dim(V)"™**, Vi o =V, Vy,1 = V*, and one puts Vo := R. If
(e1,...,em) is a basis of V and (!, ..., €™) is the dual basis of V*, €'(e;) = 6;
then T € V, s possesses the representation

m

T = > T/ e ®.. . @, 0" ®... 06"

g
jl ~~~~~ jr>i1 ~~~~~ iszl

with components lel e R.
iy

In the following, Vp s will always be identified with the vector space
L(V,...,V;R) of s-linear maps A: Vx...xV — R. For A € Vy y and B € Vy,,
the tensor product A ® B € Vj ¢4 is then given by the simple formula

A®B(Wi,y....Vssr) =A(W1,...,Vs) B(Wsi1y ...y Vsir)

forvy,...,vey € V.
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C.2 Theorem (alternating multilinear maps) For A € Vg, the following prop-
erties are equivalent:

(1) A s alternating, that is, A(vi,...,vs) = 0 whenever v; = v; for two indices
L # ]

(2) Aistskew-symmetric, thatis, A(Vz(1), ..., Vz(s)) = —A(V1,...,Vvs) forevery
transposition T of {1, ...,s};

(3) A(vy,...,vs) =0 whenevervy,...,vs are linearly dependent,

@) A(vi,...,vg) = det(az.)A(wl, W) V=20 a;.wiforj =1,...,s.
We write A;(V*) for the vector space of alternating (0, s)-tensors over V, and

we put Ag(V*) := R. Note that A;(V*) = {0} for s > m = dim(V).

C.3 Definition (exterior product) For A € A;(V*) and B € A,(V*), the exterior
product (or wedge product) A A B € Ay (V*) is defined by

AANB(Vi,...,Veyr) i= Z sgn(o-) A(Vo-(l), ce va(s)) B(VO-(S+1), cee Vo-(s+t))

o€Ss

for vi,..., v € V, where S ; denotes the set of all permutations o € Sy, such
thato(l) <...<o(s)ando(s+1) <...<o(s+1).

The map A: Ag(V*) X Ay (V*) — Agir (V) is bilinear, and
BAA=(-1)*"AAB,

in particular AA A =0if A € Ag(V*) and s is odd. For A € A;(V*), B € A,(V¥),
and C € A, (V¥),
(AAB)AC=ANAN(BAC).

IfAy,...,s € A{(V*) =V* thenA; A ... A A; € Ag(V7) is given by

A ALY v) = D sen(@) Aem) - As(Vo(s)

oSy
= det(2;(v;))
forvy,...,vgy €V.
Now let {ei,...,e,} be a basis of V, and let {€!, ..., €™} be the dual basis
of V. Forl <ij<...<ig<mand 1< ji,...,js <m,
(e" /\.../\ei“)(ejl,...,ejs)
= Z Sgn(o-) 6;10'(1) 6‘1;0'0)
ogeSg
_ sgn(o) if (jo(1)s---sJo(s)) = (5. -sis),
0 if {ji,...,js} # {i1,...,is}.
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The set
{e"A.. A€ 1 <ip<...<iy <m}

forms a basis of Ay(V*), in particular dim(As(V*)) = (7).
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