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Differential Geometry in R𝑛

1 Curves

1.1 Arc length and reparametrization

In the following, the symbol 𝐼 will always denote an interval, that is, a connected
subset of R. A continuous map 𝑐 : 𝐼 → 𝑋 into a topological space 𝑋 is called a
(parametrized) curve in 𝑋 . A curve defined on [0, 1] is also called a path.

Now let 𝑋 = (𝑋, 𝑑) be a metric space. The length 𝐿 (𝑐) ∈ [0,∞] of the curve
𝑐 : 𝐼 → 𝑋 is defined as

𝐿 (𝑐) := sup
𝑘∑︁
𝑖=1

𝑑 (𝑐(𝑡𝑖−1), 𝑐(𝑡𝑖)),

where the supremum is taken over all finite, non-decreasing sequences 𝑡0 ≤ 𝑡1 ≤
. . . ≤ 𝑡𝑘 in 𝐼. The curve 𝑐 is rectifiable if 𝐿 (𝑐) < ∞, and 𝑐 has constant speed or is
parametrized proportionally to arc length if there exists a constant 𝜆 ≥ 0, the speed
of 𝑐, such that for every subinterval [𝑎, 𝑏] ⊂ 𝐼,

𝐿 (𝑐 | [𝑎,𝑏]) = 𝜆(𝑏 − 𝑎);

if 𝜆 = 1, then 𝑐 has unit speed or is parametrized by arc length.
The curve 𝑐 : 𝐼 → 𝑋 is a reparametrization of another curve 𝑐 : 𝐼 → 𝑋 if there

exists a continuous, surjective, non-decreasing or non-increasing map 𝜑 : 𝐼 → 𝐼

(thus 𝑎 < 𝑏 implies 𝜑(𝑎) ≤ 𝜑(𝑏) or 𝜑(𝑎) ≥ 𝜑(𝑏), respectively) such that 𝑐 = 𝑐 ◦𝜑.
Then clearly 𝐿 (𝑐) = 𝐿 (𝑐). The following lemma shows that every curve of locally
finite length is a reparametrization of a unit speed curve.

1.1 Lemma (reparametrization) Suppose that 𝑐 : 𝐼 → (𝑋, 𝑑) is a curve with
𝐿 (𝑐 | [𝑎,𝑏]) < ∞ for every subinterval [𝑎, 𝑏] ⊂ 𝐼. Pick 𝑠 ∈ 𝐼, and define 𝜑 : 𝐼 → R

such that 𝜑(𝑡) = 𝐿 (𝑐 | [𝑠,𝑡 ]) for 𝑡 ≥ 𝑠 and 𝜑(𝑡) = −𝐿 (𝑐 | [𝑡 ,𝑠]) for 𝑡 < 𝑠. Then
𝜑 is continuous and non-decreasing, and there is a well-defined unit speed curve
𝑐 : 𝜑(𝐼) → 𝑋 such that 𝑐(𝜑(𝑡)) = 𝑐(𝑡) for all 𝑡 ∈ 𝐼.

Proof : Whenever 𝑎, 𝑏 ∈ 𝐼 and 𝑎 < 𝑏, then

𝑑 (𝑐(𝑎), 𝑐(𝑏)) ≤ 𝐿 (𝑐 | [𝑎,𝑏]) = 𝜑(𝑏) − 𝜑(𝑎). (∗)
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Thus 𝜑 is non-decreasing. Moreover, given such 𝑎, 𝑏 and 𝜖 > 0, there exists a
sequence 𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 = 𝑏 such that

𝐿 (𝑐 | [𝑎,𝑏]) − 𝜖 ≤
𝑘∑︁
𝑖=1

𝑑 (𝑐(𝑡𝑖−1), 𝑐(𝑡𝑖)) ≤ 𝑑 (𝑐(𝑎), 𝑐(𝑟)) + 𝐿 (𝑐 | [𝑟 ,𝑏])

for all 𝑟 ∈ (𝑎, 𝑡1], and there is a 𝛿 > 0 such that 𝑑 (𝑐(𝑎), 𝑐(𝑟)) < 𝜖 for all
𝑟 ∈ (𝑎, 𝑎 + 𝛿); thus 𝐿 (𝑐 | [𝑎,𝑟 ]) = 𝐿 (𝑐 | [𝑎,𝑏]) − 𝐿 (𝑐 | [𝑟 ,𝑏]) < 2𝜖 for 𝑟 > 𝑎 close
enough to 𝑎. It follows that 𝜑 is right-continuous, and left-continuity is shown
analogously.

By (∗) there is a well-defined 1-Lipschitz curve 𝑐 : 𝜑(𝐼) → 𝑋 such that
𝑐(𝜑(𝑡)) = 𝑐(𝑡) for all 𝑡 ∈ 𝐼. Then 𝐿 (𝑐 | [𝜑 (𝑎) ,𝜑 (𝑏) ]) = 𝐿 (𝑐 | [𝑎,𝑏]) = 𝜑(𝑏) − 𝜑(𝑎) for
all [𝑎, 𝑏] ⊂ 𝐼, hence 𝑐 is parametrized by arc length. □

We now turn to the target space 𝑋 = R𝑛, endowed with the canonical inner
product

⟨𝑥, 𝑦⟩ =
〈
(𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛)

〉
:=

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

and the Euclidean metric

𝑑 (𝑥, 𝑦) := |𝑥 − 𝑦 | :=
√︁
⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩.

In the following we will tacitly assume that the interior of the interval 𝐼 is non-
empty. For 𝑞 ∈ {0} ∪ {1, 2, . . . } ∪ {∞} we write as usual 𝑐 ∈ 𝐶𝑞 (𝐼,R𝑛) if
𝑐 is continuous or 𝑞 times continuously differentiable or infinitely differentiable,
respectively. In the case that 𝑞 ≥ 1 and 𝐼 is not open, this means that 𝑐 admits an
extension 𝑐 ∈ 𝐶𝑞 (𝐽,R𝑛) to an open interval 𝐽 ⊃ 𝐼.

Suppose now that 𝑐 ∈ 𝐶𝑞 (𝐼,R𝑛) for some 𝑞 ≥ 1. Then

𝐿 (𝑐 | [𝑎,𝑏]) =
∫ 𝑏

𝑎

|𝑐′(𝑡) | 𝑑𝑡 < ∞

for every subinterval [𝑎, 𝑏] ⊂ 𝐼 (exercise), and thus the function 𝜑 from Lemma 1.1
satisfies 𝜑(𝑡) =

∫ 𝑡

𝑠
|𝑐′(𝑟) | 𝑑𝑟 for all 𝑡 ∈ 𝐼. The curve 𝑐 is called regular if 𝑐′(𝑡) ≠ 0

for all 𝑡 ∈ 𝐼; then 𝜑′ = |𝑐′ | > 0 on 𝐼, and both 𝜑 : 𝐼 → 𝜑(𝐼) and the inverse
𝜑−1 : 𝜑(𝐼) → 𝐼 are also of class 𝐶𝑞, that is, 𝜑 is a 𝐶𝑞 diffeomorphism. Note also
that 𝑐 ∈ 𝐶1(𝐼,R𝑛) has constant speed 𝜆 ≥ 0 if and only if |𝑐′(𝑡) | = 𝜆 for all 𝑡 ∈ 𝐼.

1.2 Local theory of curves

The following notions go back to Jean Frédéric Frenet (1816–1900).

1.2 Definition (Frenet curve) The curve 𝑐 ∈ 𝐶𝑛 (𝐼,R𝑛) is called a Frenet curve if
for all 𝑡 ∈ 𝐼 the vectors 𝑐′(𝑡), 𝑐′′(𝑡), . . . , 𝑐 (𝑛−1) (𝑡) are linearly independent. The
corresponding Frenet frame (𝑒1, . . . , 𝑒𝑛), 𝑒𝑖 : 𝐼 → R𝑛, is then characterized by the
following conditions:
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(1) (𝑒1(𝑡), . . . , 𝑒𝑛 (𝑡)) is a positively oriented orthonormal basis of R𝑛 for 𝑡 ∈ 𝐼;

(2) span(𝑒1(𝑡), . . . , 𝑒𝑖 (𝑡)) = span(𝑐′(𝑡), . . . , 𝑐 (𝑖) (𝑡)) and ⟨𝑒𝑖 (𝑡), 𝑐 (𝑖) (𝑡)⟩ > 0 for
𝑖 = 1, . . . , 𝑛 − 1 and 𝑡 ∈ 𝐼.

Condition (2) refers to the linear span. The vectors 𝑒1(𝑡), . . . , 𝑒𝑛−1(𝑡) are
obtained from 𝑐′(𝑡), . . . , 𝑐 (𝑛−1) (𝑡) by means of the Gram–Schmidt process, and
𝑒𝑛 (𝑡) is then determined by condition (1). Note that 𝑒𝑖 ∈ 𝐶𝑛−𝑖 (𝐼,R𝑛) for 𝑖 =
1, . . . , 𝑛 − 1, in particular 𝑒1, . . . , 𝑒𝑛 ∈ 𝐶1(𝐼,R𝑛).

1.3 Definition (Frenet curvatures) Let 𝑐 ∈ 𝐶𝑛 (𝐼,R𝑛) be a Frenet curve with
Frenet frame (𝑒1, . . . , 𝑒𝑛). For 𝑖 = 1, . . . , 𝑛 − 1, the function 𝜅𝑖 : 𝐼 → R,

𝜅𝑖 (𝑡) :=
1

|𝑐′(𝑡) | ⟨𝑒
′
𝑖 (𝑡), 𝑒𝑖+1(𝑡)⟩,

is called the 𝑖-th Frenet curvature of 𝑐.

Note that 𝜅𝑖 ∈ 𝐶𝑛−𝑖−1(𝐼); in particular 𝜅1, . . . , 𝜅𝑛−1 are continuous.
Suppose now that 𝑐 = 𝑐 ◦ 𝜑 for some curve 𝑐 ∈ 𝐶𝑛 (𝐼,R𝑛) and a 𝐶𝑛 diffeomor-

phism 𝜑 : 𝐼 → 𝐼 with 𝜑′ > 0. For 𝑖 = 1, . . . , 𝑛 − 1, the 𝑖-th derivative 𝑐 (𝑖) (𝑡) is a
linear combination

∑𝑖
𝑘=1 𝑎𝑘 (𝑡) 𝑐 (𝑘 ) (𝜑(𝑡)) with 𝑎𝑖 (𝑡) = (𝜑′(𝑡))𝑖 > 0, thus

span
(
𝑐′(𝑡), . . . , 𝑐 (𝑖) (𝑡)

)
= span

(
(𝑐 ′ ◦ 𝜑) (𝑡), . . . , (𝑐 (𝑖) ◦ 𝜑) (𝑡)

)
,

𝑐 is Frenet if and only if 𝑐 is Frenet, and the corresponding Frenet vector fields then
satisfy the relation 𝑒𝑖 = 𝑒𝑖 ◦ 𝜑. Likewise, for the Frenet curvatures,

𝜅𝑖 =
1
|𝑐′ | ⟨𝑒

′
𝑖 , 𝑒𝑖+1⟩ =

1
|𝑐 ′ ◦ 𝜑 | |𝜑′ |

〈
(𝑒 ′𝑖 ◦ 𝜑)𝜑′, 𝑒𝑖+1 ◦ 𝜑

〉
= 𝜅𝑖 ◦ 𝜑.

Thus the curvatures are invariant under sense preserving reparametrization.

1.4 Proposition (Frenet equations) Let 𝑐 ∈ 𝐶𝑛 (𝐼,R𝑛) be a Frenet curve with
Frenet frame (𝑒1, . . . , 𝑒𝑛) and Frenet curvatures 𝜅1, . . . , 𝜅𝑛−1. Then 𝜅1, . . . , 𝜅𝑛−2 >

0, and

1
|𝑐′ | 𝑒

′
𝑖 =


𝜅1𝑒2 if 𝑖 = 1,
−𝜅𝑖−1𝑒𝑖−1 + 𝜅𝑖𝑒𝑖+1 if 2 ≤ 𝑖 ≤ 𝑛 − 1,
−𝜅𝑛−1𝑒𝑛−1 if 𝑖 = 𝑛.

Proof : Since (𝑒1(𝑡), . . . , 𝑒𝑛 (𝑡)) is orthonormal,

𝑒 ′𝑖 (𝑡) =
𝑛∑︁
𝑗=1

⟨𝑒 ′𝑖 (𝑡), 𝑒 𝑗 (𝑡)⟩𝑒 𝑗 (𝑡)
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for 𝑖 = 1, . . . , 𝑛, and since ⟨𝑒 ′
𝑖
, 𝑒 𝑗⟩ + ⟨𝑒𝑖 , 𝑒 ′𝑗⟩ = ⟨𝑒𝑖 , 𝑒 𝑗⟩′ = 0, the coefficient matrix

𝐾 (𝑡) = (⟨𝑒 ′
𝑖
(𝑡), 𝑒 𝑗 (𝑡)⟩) is skew-symmetric. For 𝑖 = 1, . . . , 𝑛 − 1,

⟨𝑒 ′𝑖 , 𝑒𝑖+1⟩ = |𝑐′ |𝜅𝑖 .

Now let 𝑖 ≤ 𝑛 − 2, and recall condition (2) of Definition 1.2. The vector 𝑒𝑖 (𝑡) is
a linear combination

∑𝑖
𝑘=1 𝑎𝑖𝑘 (𝑡) 𝑐 (𝑘 ) (𝑡) with 𝑎𝑖𝑖 (𝑡) > 0, so 𝑒 ′

𝑖
(𝑡) is of the form∑𝑖

𝑘=1 𝑏𝑖𝑘 (𝑡) 𝑐 (𝑘 ) (𝑡) + 𝑎𝑖𝑖 (𝑡) 𝑐 (𝑖+1) (𝑡), and it follows that

⟨𝑒 ′𝑖 , 𝑒𝑖+2⟩ = . . . = ⟨𝑒 ′𝑖 , 𝑒𝑛⟩ = 0

and ⟨𝑒 ′
𝑖
, 𝑒𝑖+1⟩ = 𝑎𝑖𝑖 ⟨𝑐 (𝑖+1) , 𝑒𝑖+1⟩ > 0. This gives the result. □

In the case 𝑛 = 2, a curve 𝑐 ∈ 𝐶2(𝐼,R2) is Frenet if and only if 𝑐 is regular.
Then the sole Frenet curvature

𝜅or := 𝜅1 =
1
|𝑐′ | ⟨𝑒

′
1, 𝑒2⟩

is called the oriented curvature (or signed curvature) of 𝑐. Note that 𝑒1 = 𝑐′/|𝑐′ |
and ⟨𝑐′, 𝑒2⟩ = 0, thus

𝜅or =
⟨𝑐′′, 𝑒2⟩
|𝑐′ |2

=
det(𝑒1, 𝑐

′′)
|𝑐′ |2

=
det(𝑐′, 𝑐′′)

|𝑐′ |3
.

The Frenet equations may be written in matrix form as

1
|𝑐′ |

(
𝑒 ′1
𝑒 ′2

)
=

(
0 𝜅or

−𝜅or 0

) (
𝑒1
𝑒2

)
.

The osculating circle (Schmiegkreis) of 𝑐 at a point 𝑡 with 𝜅or(𝑡) ≠ 0 is the circle
with center 𝑐(𝑡) + (1/𝜅or(𝑡))𝑒2(𝑡) and radius 1/|𝜅or(𝑡) |, which approximates the
curve at 𝑡 up to second order (exercise).

In the case 𝑛 = 3, 𝑐 ∈ 𝐶3(𝐼,R3) is a Frenet curve if and only if 𝑐′ and 𝑐′′ are
everywhere linearly independent. The vectors 𝑒2 and 𝑒3 = 𝑒1 × 𝑒2 (vector product)
are called the normal and the binormal of 𝑐, respectively. The two Frenet curvatures

𝜅 := 𝜅1 =
1
|𝑐′ | ⟨𝑒

′
1, 𝑒2⟩ > 0, 𝜏 := 𝜅2 =

1
|𝑐′ | ⟨𝑒

′
2, 𝑒3⟩

are called curvature and torsion of 𝑐; the latter measures the rotation of the osculat-
ing plane (Schmiegebene) span{𝑐′, 𝑐′′} = span{𝑒1, 𝑒2} about 𝑒1. Both 𝜅 and 𝜏 are
also invariant under sense reversing reparametrization, but 𝜏 changes sign under
orientation reversing isometries of R3. The Frenet equations for curves in R3 read

1
|𝑐′ |

©«
𝑒 ′1
𝑒 ′2
𝑒 ′3

ª®®¬ =
©«

0 𝜅 0
−𝜅 0 𝜏

0 −𝜏 0

ª®®¬
©«
𝑒1
𝑒2
𝑒3

ª®®¬ .
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If 𝑐 is parametrized by arc length, then 2⟨𝑐′, 𝑐′′⟩ = ⟨𝑐′, 𝑐′⟩′ = 0 and hence 𝑒2 =

𝑐′′/|𝑐′′ |, thus 𝜅 = ⟨𝑒 ′1, 𝑒2⟩ = |𝑐′′ |. For a general Frenet curve in R3, the formulae

𝜅 =
|𝑐′ × 𝑐′′ |
|𝑐′ |3

, 𝜏 =
det(𝑐′, 𝑐′′, 𝑐′′′)

|𝑐′ × 𝑐′′ |2

hold (exercise).

1.5 Theorem (fundamental theorem of local curve theory) If 𝑛 − 1 functions
𝜅1, . . . , 𝜅𝑛−1 ∈ 𝐶∞(𝐼,R) with 𝜅1, . . . , 𝜅𝑛−2 > 0 are given, and if 𝑠0 ∈ 𝐼, 𝑥0 ∈ R𝑛,
and (𝑏1, . . . , 𝑏𝑛) is a positively oriented orthonormal basis of R𝑛, then there exists
a unique Frenet curve 𝑐 ∈ 𝐶∞(𝐼,R𝑛) of constant speed one such that

(1) 𝑐(𝑠0) = 𝑥0;

(2) (𝑏1, . . . , 𝑏𝑛) is the Frenet frame of 𝑐 at 𝑠0;

(3) 𝜅1, . . . , 𝜅𝑛−1 are the Frenet curvatures of 𝑐.

The differentiability assumptions may be weakened.

Proof : Let 𝐾 = (𝑘𝑖, 𝑗) ∈ 𝐶∞(𝐼,R𝑛×𝑛) be the matrix function with

𝑘𝑖,𝑖+1 = −𝑘𝑖+1,𝑖 = 𝜅𝑖 for 𝑖 = 1, . . . , 𝑛 − 1

and all other entries equal to zero, and let 𝐵 = (𝑏 𝑗

𝑖
) ∈ R𝑛×𝑛 be the matrix whose 𝑖th

row is 𝑏𝑖 . By the existence and uniqueness theorem for linear ordinary differential
equations, there exists a unique solution 𝐸 = (𝑒 𝑗

𝑖
) ∈ 𝐶∞(𝐼,R𝑛×𝑛) of the Frenet

matrix equation
𝐸 ′ = 𝐾 𝐸

satisfying the initial condition 𝐸 (𝑠0) = 𝐵.
To show that the rows of 𝐸 (𝑠) form a possible Frenet frame for the sought curve,

we need to verify that 𝐸 (𝑠) ∈ SO(𝑛) for all 𝑠 ∈ 𝐼. Note that

(𝐸 𝐸 t)′ = 𝐸 ′𝐸 t + 𝐸 (𝐸 ′) t = 𝐾 𝐸 𝐸 t + 𝐸 𝐸 t𝐾 t,

and 𝐸 𝐸 t = 𝐼𝑛 (identity matrix) is the unique solution of this equation with
(𝐸 𝐸 t) (𝑠0) = 𝐼𝑛, because 𝐾 + 𝐾 t = 0. This shows that 𝐸 (𝑠) ∈ O(𝑛), and since
𝐸 (𝑠0) = 𝐵 ∈ SO(𝑛), we have 𝐸 (𝑠) ∈ SO(𝑛) by continuity of the determinant.

Finally, setting

𝑐(𝑠) := 𝑥0 +
∫ 𝑠

𝑠0

𝑒1(𝑡) 𝑑𝑡 for all 𝑠 ∈ 𝐼,

we get a curve 𝑐 ∈ 𝐶∞(𝐼,R𝑛) with 𝑐(𝑠0) = 𝑥0 and 𝑐′ = 𝑒1. An induction argument
using the Frenet equations shows that for 𝑖 = 2, . . . , 𝑛−1, the 𝑖th derivative is a linear
combination 𝑐 (𝑖) =

∑𝑖
𝑘=1 𝑎𝑖𝑘𝑒𝑘 with 𝑎𝑖𝑖 = 𝜅1𝜅2 . . . 𝜅𝑖−1 > 0. We conclude that 𝑐 is a

Frenet curve with frame (𝑒1, . . . , 𝑒𝑛) and curvatures ⟨𝑒′
𝑖
, 𝑒𝑖+1⟩ = ⟨𝜅𝑖𝑒𝑖+1, 𝑒𝑖+1⟩ = 𝜅𝑖 .

□

We now turn to some global results.
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1.3 The rotation index of a plane curve

In the following it is assumed that 𝑎 < 𝑏. A curve 𝑐 : [𝑎, 𝑏] → 𝑋 in a topological
space 𝑋 is called closed or a loop if 𝑐(𝑎) = 𝑐(𝑏), and 𝑐 is said to be simple if 𝑐 | [𝑎,𝑏)
is injective in addition. Now let again 𝑋 = R𝑛. For 𝑞 ∈ {1, 2, . . . } ∪ {∞}, a closed
curve 𝑐 ∈ 𝐶𝑞 ( [𝑎, 𝑏],R𝑛) will be called 𝐶𝑞-closed if 𝑐 admits a (𝑏 − 𝑎)-periodic
extension 𝑐 ∈ 𝐶𝑞 (R,R𝑛), that is, 𝑐(𝑡 + 𝑏 − 𝑎) = 𝑐(𝑡) for all 𝑡 ∈ R.

Suppose now that 𝑐 : [𝑎, 𝑏] → R2 is a 𝐶1-closed and regular plane curve.
Let 𝑆1 ⊂ R2 denote the unit circle. The normalized velocity vector 𝑒(𝑡) :=
𝑐′(𝑡)/|𝑐′(𝑡) | ∈ 𝑆1 of 𝑐 may be represented as

𝑒(𝑡) = (cos 𝜃 (𝑡), sin 𝜃 (𝑡))

for a continuous polar angle function 𝜃 : [𝑎, 𝑏] → R, which is uniquely determined
up to addition of an integral multiple of 2𝜋. More precisely, 𝜃 is a lifting of
𝑒 : [𝑎, 𝑏] → 𝑆1 with respect to the canonical covering

𝜎 : R → 𝑆1, 𝜎(𝑠) := (cos(𝑠), sin(𝑠));

that is, 𝜎 ◦ 𝜃 = 𝑒. To show that such a function 𝜃 exists, one may use the uniform
continuity of 𝑒 on the compact interval [𝑎, 𝑏] to find a subdivision 𝑎 = 𝑎0 < 𝑎1 <

. . . < 𝑎𝑘 = 𝑏 such that none of the subintervals [𝑎𝑖−1, 𝑎𝑖] is mapped onto 𝑆1.
Then, for every choice of 𝜃 (𝑎) with 𝜎(𝜃 (𝑎)) = 𝑒(𝑎), there are successive unique
extensions of 𝜃 to the intervals [𝑎, 𝑎𝑖] for 𝑖 = 1, . . . , 𝑘 .

Since 𝑒(𝑎) = 𝑒(𝑏), there is a unique integer 𝜚𝑐, independent of the choice of 𝜃,
such that

𝜃 (𝑏) − 𝜃 (𝑎) = 2𝜋𝜚𝑐 .
This number 𝜚𝑐 is called the rotation index (Umlaufzahl) of 𝑐. If 𝑐 is an orientation
preserving reparametrization of another 𝐶1-closed regular curve 𝑐, then 𝜚𝑐 = 𝜚�̃�.

1.6 Theorem (theorem of turning tangents, Umlaufsatz) The rotation index of
a simple 𝐶1-closed, regular curve 𝑐 : [𝑎, 𝑏] → R2 equals 1 or −1.

This probably goes back to Riemann. The following elegant argument is due to
H. Hopf [Ho1935].

Proof : We assume that 𝑐 is parametrized by arc length and that [𝑎, 𝑏] = [0, 𝐿].
Furthermore, we suppose that the image of 𝑐 lies in the upper half-plane R× [0,∞)
and that 𝑐(0) = (0, 0) and 𝑐′(0) = (1, 0). We will show that 𝜚𝑐 = 1 under these
assumptions.

We consider the triangular domain 𝐷 := {(𝑠, 𝑡) ∈ R2 : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝐿} and
assign to every point in 𝐷 a unit vector as follows:

𝑒(𝑠, 𝑡) :=


𝑐′(𝑠) if 𝑠 = 𝑡,
−𝑐′(0) = (−1, 0) if (𝑠, 𝑡) = (0, 𝐿),
𝑐 (𝑡 )−𝑐 (𝑠)
|𝑐 (𝑡 )−𝑐 (𝑠) | otherwise.
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Note that this definition is possible since 𝑐 is simple. The resulting map 𝑒 : 𝐷 → 𝑆1

is easily seen to be continuous.
It then follows from the homotopy lifting property in topology that there is a

continuous function 𝜃 : 𝐷 → R such that 𝜎 ◦ 𝜃 = 𝑒, where 𝜎 : R → 𝑆1 is the
canonical covering as above. For an alternative direct argument, note that by the
uniform continuity of 𝑒 on the compact set 𝐷 there is an integer 𝑘 ≥ 1 such that for
𝛿 := 𝐿/(𝑘 + 1), none of the subsets

𝐷 𝑗 ,𝑖 := 𝐷 ∩ ([𝑖𝛿, (𝑖 + 1)𝛿] × [ 𝑗𝛿, ( 𝑗 + 1)𝛿]) ( 𝑗 = 0, . . . , 𝑘, 𝑖 = 0, . . . , 𝑗)

is mapped onto 𝑆1. Clearly 𝜃 may be defined on𝐷0,0, and then there exist successive
unique extensions to 𝐷1,0, 𝐷1,1, 𝐷2,0, 𝐷2,1, 𝐷2,2, . . . (lexicographic order).

Now, since 𝑒(0, 𝑡) lies in the upper half-plane for all 𝑡 ∈ [0, 𝐿], and 𝑒(0, 0) =
(1, 0) and 𝑒(0, 𝐿) = (−1, 0), it follows that

𝜃 (0, 𝐿) = 𝜃 (0, 0) + 𝜋.

Similarly, 𝑒(𝑠, 𝐿) is in the lower half-plane for all 𝑠 ∈ [0, 𝐿], and 𝑒(𝐿, 𝐿) is again
equal to (1, 0), hence

𝜃 (𝐿, 𝐿) = 𝜃 (0, 𝐿) + 𝜋 = 𝜃 (0, 0) + 2𝜋.

Since 𝑠 ↦→ 𝜃 (𝑠, 𝑠) is an angle function for 𝑠 ↦→ 𝑒(𝑠, 𝑠) = 𝑐′(𝑠), this shows that
𝜚𝑐 = 1. □

1.4 Total curvature of closed curves

Now let 𝑐 : [0, 𝐿] → R2 (𝐿 > 0) be a 𝐶2 curve of constant speed one with Frenet
frame (𝑒1, 𝑒2). If 𝜃 : [0, 𝐿] → R is continuous and 𝑒1(𝑠) = (cos 𝜃 (𝑠), sin 𝜃 (𝑠)),
then 𝜃 is continuously differentiable, and

𝑒 ′1 (𝑠) = 𝜃
′(𝑠) (− sin 𝜃 (𝑠), cos 𝜃 (𝑠)) = 𝜃′(𝑠)𝑒2(𝑠).

On the other hand, 𝑒 ′1 (𝑠) = 𝜅or(𝑠)𝑒2(𝑠) by the first Frenet equation, thus 𝜃′ = 𝜅or.
The total curvature of 𝑐 therefore satisfies∫ 𝐿

0
𝜅or(𝑠) 𝑑𝑠 =

∫ 𝐿

0
𝜃′(𝑠) 𝑑𝑠 = 𝜃 (𝐿) − 𝜃 (0).

If 𝑐 is𝐶2-closed and simple, then Theorem 1.6 asserts that |𝜃 (𝐿) − 𝜃 (0) | = 2𝜋, thus∫ 𝐿

0
|𝜅or(𝑠) | 𝑑𝑠 ≥

����∫ 𝐿

0
𝜅or(𝑠) 𝑑𝑠

���� = 2𝜋.

Equality holds if and only if 𝜅or does not change sign, that is, 𝜅or ≥ 0 or 𝜅or ≤ 0.
This in turn holds if and only if 𝑐 is convex, that is, the trace 𝑐( [0, 𝐿]) is the
boundary of a convex set 𝐶 ⊂ R2 (exercise).
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We now turn to curves in R𝑛 for 𝑛 ≥ 3. If 𝑐 ∈ 𝐶𝑛 (𝐼,R𝑛) is a Frenet curve
parametrized by arc length, then 𝜅1 = |𝑐′′ |. It is thus consistent to define the
curvature of an arbitrary unit speed curve 𝑐 ∈ 𝐶2(𝐼,R𝑛) by

𝜅 := |𝑐′′ |.

1.7 Theorem (Fenchel–Borsuk) Suppose that 𝑐 : [0, 𝐿] → R𝑛 is a𝐶2-closed unit
speed curve whose trace is not contained in a 2-dimensional plane. Then∫ 𝐿

0
𝜅(𝑠) 𝑑𝑠 > 2𝜋.

This is due to Fenchel [Fe1929] for 𝑛 = 3 and to Borsuk [Bo1947] in the general
case. The proof below is from [Hor1971].

Proof : It suffices to show the conclusion for 𝑛 = 3, 4, . . . under the assumption that
the trace of 𝑐 is not contained in an (𝑛 − 1)-dimensional plane.

The derivative of 𝑐, viewed as a (𝐶1) curve 𝑐′ : [0, 𝐿] → 𝑆𝑛−1 into the unit
sphere, is called the tangent indicatrix of 𝑐. Clearly∫ 𝐿

0
𝜅(𝑠) 𝑑𝑠 =

∫ 𝐿

0
|𝑐′′(𝑠) | 𝑑𝑠 = 𝐿 (𝑐′).

For every fixed unit vector 𝑒 ∈ 𝑆𝑛−1,∫ 𝐿

0
⟨𝑐′(𝑠), 𝑒⟩ 𝑑𝑠 = ⟨𝑐(𝐿), 𝑒⟩ − ⟨𝑐(0), 𝑒⟩ = 0,

and ⟨𝑐′, 𝑒⟩ cannot be constantly zero, for then im(𝑐) would be contained in a
hyperplane orthogonal to 𝑒; thus ⟨𝑐′, 𝑒⟩ must change sign. This shows that no
closed hemisphere of 𝑆𝑛−1 contains the entire trace of the tangent indicatrix. It now
follows from the next result that 𝐿 (𝑐′) > 2𝜋. □

1.8 Proposition If 𝑐 : [𝑎, 𝑏] → 𝑆𝑛−1 ⊂ R𝑛 is a closed curve whose trace is not
contained in a closed hemisphere, then 𝐿 (𝑐) > 2𝜋.

Note that here 𝑐 is merely continuous. The proof uses a symmetry argument
together with the basic fact that the trace of any shortest curve in 𝑆𝑛−1 between two
points is an arc of a great circle of length at most 𝜋 (exercise).

Proof : We assume that 𝐿 (𝑐) < ∞. Suppose first that there exists a 𝑡 ∈ (𝑎, 𝑏) such
that 𝑐(𝑡) = −𝑐(𝑎). Then clearly 𝐿 (𝑐) ≥ 2𝜋, and equality holds only if 𝑐 runs on
arcs of great circles from 𝑐(𝑎) to −𝑐(𝑎) and back, in which case im(𝑐) would be
contained in a closed hemisphere. Thus 𝐿 (𝑐) > 2𝜋.

Suppose now that no image point of 𝑐 is antipodal to 𝑐(𝑎). Choose 𝑡 ∈ (𝑎, 𝑏)
such that 𝑙 := 𝐿 (𝑐 | [𝑎,𝑡 ]) = 𝐿 (𝑐 | [𝑡 ,𝑏]). Since 𝑐(𝑡) ≠ −𝑐(𝑎), there exists a unique
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midpoint 𝑒 ∈ 𝑆𝑛−1 between 𝑐(𝑎) and 𝑐(𝑡). By the assumption, at least one of the
curves 𝑐 | [𝑎,𝑡 ] and 𝑐 | [𝑡 ,𝑏] leaves the hemisphere 𝐻𝑒 := {𝑣 ∈ 𝑆𝑛−1 : ⟨𝑒, 𝑣⟩ ≥ 0}.
Suppose that 𝑐( [𝑎, 𝑡]) ̸⊂ 𝐻𝑒. Then there exists an 𝑠 ∈ (𝑎, 𝑡) with ⟨𝑒, 𝑐(𝑠)⟩ = 0.
Consider the bigon consisting of the two arcs of great circles from 𝑐(𝑠) to −𝑐(𝑠)
through 𝑐(𝑎) and 𝑐(𝑡). By symmetry, 𝑐(𝑎) and 𝑐(𝑡) subdivide the bigon into two
parts of length 𝜋. In particular 𝑙 ≥ 𝜋, and equality would imply that 𝑐( [𝑎, 𝑡]) ⊂ 𝐻𝑒.
Thus 𝑙 > 𝜋 and 𝐿 (𝑐) = 2𝑙 > 2𝜋. □

Fáry [Fa1949] and Milnor [Mi1950] showed independently that the total cur-
vature of a knotted curve in R3 is even > 4𝜋, thus answering a question raised
by Borsuk. We refer to [PeS2024] for a recent survey of various proofs of the
Fáry–Milnor theorem.
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2 Surfaces

2.1 Submanifolds and immersions

We now consider 𝑚-dimensional surfaces in R𝑛.

2.1 Definition (submanifold) A subset 𝑀 ⊂ R𝑛 is a (smooth) 𝑚-dimensional
submanifold of R𝑛 if for every point 𝑝 ∈ 𝑀 there exist an open neighborhood
𝑉 ⊂ R𝑛 of 𝑝 and a 𝐶∞ diffeomorphism 𝜑 : 𝑉 → 𝑈 onto an open set 𝑈 ⊂ R𝑛 such
that 𝜑(𝑀 ∩𝑉) = (R𝑚 × {0}) ∩𝑈.

The number 𝑘 := 𝑛 − 𝑚 is called the codimension of 𝑀 in R𝑛, and 𝜑 is a
submanifold chart (Schnittkarte) of 𝑀 . Submanifolds of class 𝐶𝑞, 1 ≤ 𝑞 ≤ ∞, are
defined analogously.

Now let 𝑊 ⊂ R𝑛 be an open set, and let 𝐹 : 𝑊 → R𝑘 be a differentiable map.
A point 𝑝 ∈ 𝑊 is called a regular point of 𝐹 if the differential 𝑑𝐹𝑝 is surjective,
otherwise 𝑝 is called a singular or critical point of 𝐹. A point 𝑥 ∈ R𝑘 is a regular
value of 𝐹 if all points 𝑝 ∈ 𝐹−1{𝑥} are regular; otherwise, if 𝐹−1{𝑥} contains a
singular point, 𝑥 is a singular or critical value of 𝐹. Note that, according to this
definition, every 𝑥 ∈ R𝑘 \ 𝐹 (𝑊) is a regular value of 𝐹.

2.2 Theorem (regular value theorem) If 𝑊 ⊂ R𝑛 is open and 𝐹 ∈ 𝐶∞(𝑊,R𝑘),
and if 𝑥 ∈ 𝐹 (𝑊) is a regular value of 𝐹, then 𝑀 := 𝐹−1{𝑥} is a submanifold of
R𝑛 of dimension 𝑚 := 𝑛 − 𝑘 ≥ 0 (thus the codimension of 𝑀 equals 𝑘).

Proof : We assume that 𝑥 = 0. Let 𝑝 ∈ 𝑀 = 𝐹−1{0}. Since 𝑑𝐹𝑝 is surjective, it
follows from Theorem A.2 (implicit function theorem, surjective form) that there
exist open neighborhoods 𝑈 ⊂ R𝑛−𝑘 × R𝑘 of (0, 0) and 𝑉 ⊂ 𝑊 of 𝑝 and a 𝐶∞

diffeomorphism 𝜓 : 𝑈 → 𝑉 such that 𝜓(0, 0) = 𝑝 and

(𝐹 ◦ 𝜓) (𝑥, 𝑦) = 𝑦 for all (𝑥, 𝑦) ∈ 𝑈.

Then 𝜑 := 𝜓−1 : 𝑉 → 𝑈 is a submanifold chart of 𝑀 around 𝑝: 𝜑(𝑀∩𝑉) equals the
set of all (𝑥, 𝑦) ∈ 𝑈 such that𝜓(𝑥, 𝑦) ∈ 𝑀 = 𝐹−1{0} and thus 𝑦 = (𝐹◦𝜓) (𝑥, 𝑦) = 0.

□

The following alternative notion of surface extends the concept of a regular
(parametrized) curve to higher dimensions.

2.3 Definition (immersion) A map 𝑓 ∈ 𝐶∞(𝑈,R𝑛) from an open set 𝑈 ⊂ R𝑚

into R𝑛 is called an immersion if for all 𝑥 ∈ 𝑈 the differential 𝑑𝑓𝑥 : R𝑚 → R𝑛 is
injective.

2.4 Theorem (immersion theorem) Let 𝑓 ∈ 𝐶∞(𝑈,R𝑛) be an immersion of the
open set 𝑈 ⊂ R𝑚. Then, for every point 𝑥 ∈ 𝑈, there exists an open neighborhood
𝑈𝑥 ⊂ 𝑈 of 𝑥 such that 𝑓 (𝑈𝑥) is an 𝑚-dimensional submanifold of R𝑛.
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Proof : We suppose that 𝑥 = 0 ∈ 𝑈 and 𝑓 (0) = 𝑝. Since 𝑑𝑓0 is injective, it follows
from Theorem A.2 (implicit function theorem, injective form) that there exist open
neighborhoods𝑉 ⊂ R𝑛 of 𝑝 and𝑊 ⊂ 𝑈×R𝑛−𝑚 of (0, 0) and a𝐶∞ diffeomorphism
𝜑 : 𝑉 → 𝑊 such that 𝜑(𝑝) = (0, 0) and

(𝜑 ◦ 𝑓 ) (𝑥) = (𝑥, 0) for all (𝑥, 0) ∈ 𝑊 .

Put𝑈0 := {𝑥 ∈ 𝑈 : (𝑥, 0) ∈ 𝑊} and 𝑀 := 𝑓 (𝑈0). Then 𝜑 is a (global) submanifold
chart for 𝑀 , since 𝜑(𝑀 ∩𝑉) = 𝜑( 𝑓 (𝑈0)) = 𝑈0 × {0} = 𝑊 ∩ (R𝑚 × {0}). □

In general, even if an immersion is injective, its image need not be a submanifold.
For example, the trace of the injective regular curve

𝑐 : (0, 2𝜋) → R2, 𝑐(𝑡) = (sin(𝑡), sin(2𝑡)),

has the shape of the ∞ symbol. However, the following holds.

2.5 Theorem (local parametrizations) A subset 𝑀 ⊂ R𝑛 is an 𝑚-dimensional
submanifold of R𝑛 if and only if for every point 𝑝 ∈ 𝑀 there exist open sets
𝑈 ⊂ R𝑚 and 𝑉 ⊂ R𝑛 and an immersion 𝑓 : 𝑈 → R𝑛 such that 𝑝 ∈ 𝑓 (𝑈) = 𝑀 ∩𝑉
and 𝑓 : 𝑈 → 𝑀 ∩𝑉 is a homeomorphism.

Then 𝑓 is called a local parametrization, and 𝑓 −1 : 𝑀 ∩ 𝑉 → 𝑈 is a chart of
𝑀 around 𝑝.

Proof : Suppose first that 𝑀 ⊂ R𝑛 is a submanifold. Given a point 𝑝 ∈ 𝑀 , let
𝜑 : 𝑉 → 𝑈′ ⊂ R𝑛 = R𝑚 × R𝑛−𝑚 be a submanifold chart around 𝑝, and put 𝑈 :=
{𝑥 ∈ R𝑚 : (𝑥, 0) ∈ 𝑈′} and 𝑓 (𝑥) := 𝜑−1(𝑥, 0) for all 𝑥 ∈ 𝑈. Then 𝑓 is an immersion
of𝑈 into R𝑛 and a homeomorphism onto 𝑓 (𝑈) = 𝜑−1((R𝑚 × {0}) ∩𝑈′) = 𝑀 ∩𝑉 .

We prove the reverse implication. Let 𝑝 ∈ 𝑀 , and suppose that 𝑓 : 𝑈 → R𝑛

is an immersion of an open set 𝑈 ⊂ R𝑚 such that 0 ∈ 𝑈, 𝑓 (0) = 𝑝, and 𝑓 is
a homeomorphism onto 𝑀 ∩ 𝑉 for some open set 𝑉 ⊂ R𝑛. As in the previous
proof, since 𝑑𝑓0 is injective, we infer from Theorem A.2 that there exists a 𝐶∞

diffeomorphism 𝜑 : 𝑉 ′ → 𝑊 between open neighborhoods 𝑉 ′ ⊂ 𝑉 of 𝑝 and
𝑊 ⊂ 𝑈 ×R𝑛−𝑚 of (0, 0) such that 𝜑(𝑝) = (0, 0) and

(𝜑 ◦ 𝑓 ) (𝑥) = (𝑥, 0) for all (𝑥, 0) ∈ 𝑊 .

Furthermore, since 𝑓 −1 : 𝑀 ∩𝑉 → 𝑈 is continuous, there exists an open neighbor-
hood 𝑉 ′′ ⊂ 𝑉 ′ ⊂ 𝑉 of 𝑝 such that

𝑈0 := 𝑓 −1(𝑀 ∩𝑉 ′′) ⊂ {𝑥 ∈ 𝑈 : (𝑥, 0) ∈ 𝑊}.

Now 𝜑(𝑀 ∩𝑉 ′′) = 𝜑( 𝑓 (𝑈0)) = 𝑈0 × {0}, and this is the set of all (𝑥, 0) ∈ 𝑊 with
𝑓 (𝑥) ∈ 𝑉 ′′ and thus (𝑥, 0) = 𝜑( 𝑓 (𝑥)) ∈ 𝜑(𝑉 ′′). Hence, 𝜑 |𝑉 ′′ : 𝑉 ′′ → 𝜑(𝑉 ′′) is a
submanifold chart of 𝑀 around 𝑝. □
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2.6 Lemma (parameter transformation) Let 𝑀 ⊂ R𝑛 be an 𝑚-dimensional sub-
manifold, and suppose that 𝑓𝑖 : 𝑈𝑖 → 𝑓 (𝑈𝑖) ⊂ 𝑀 , 𝑖 = 1, 2, are two local
parametrizations with 𝑉 := 𝑓1(𝑈1) ∩ 𝑓2(𝑈2) ≠ ∅. Then

𝜓 := 𝑓 −1
2 ◦ 𝑓1 : 𝑓 −1

1 (𝑉) → 𝑓 −1
2 (𝑉)

is a 𝐶∞ diffeomorphism.

Proof : Suppose that 𝑓1(0) = 𝑝 = 𝑓2(0). As in the proof of Theorem 2.4, there
exists a 𝐶∞ diffeomorphism 𝜑 defined on an open neighorhood of 𝑝 in R𝑛 such
that 𝜑(𝑝) = (0, 0) ∈ R𝑚 ×R𝑛−𝑚 and

𝜑( 𝑓2(𝑥)) = (𝑥, 0) for all (𝑥, 0) ∈ im(𝜑).

Let 𝜋 : R𝑚 × R𝑛−𝑚 → R𝑚 denote the projection (𝑥, 𝑦) ↦→ 𝑥. Then, in a neighbor-
hood of 0 ∈ R𝑚, we have 𝜓 = 𝑓 −1

2 ◦ 𝑓1 = 𝜋 ◦ 𝜑 ◦ 𝑓1. Thus 𝜓 is locally 𝐶∞ and
hence 𝐶∞, and by symmetry the same holds for 𝜓−1. □

2.2 Tangent spaces and differentials

2.7 Definition (tangent space, normal space) The tangent space 𝑇𝑀𝑝 of an 𝑚-
dimensional submanifold 𝑀 ⊂ R𝑛 at the point 𝑝 ∈ 𝑀 is defined as 𝑇𝑀𝑝 :=
𝑑𝑓𝑥 (R𝑚) ⊂ R𝑛 for some (and hence any) local parametrization 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀

with 𝑓 (𝑥) = 𝑝. The orthogonal complement 𝑇𝑀⊥
𝑝 of 𝑇𝑀𝑝 in R𝑛 is the normal

space of 𝑀 at 𝑝.

The tangent space𝑇𝑀𝑝 is an𝑚-dimensional linear subspace ofR𝑛, whereas the
normal space𝑇𝑀⊥

𝑝 is a linear subspace ofR𝑛 of dimension equal to the codimension
𝑘 := 𝑛 − 𝑚 of 𝑀 .

2.8 Definition (differentiable map, differential) A map 𝐹 : 𝑀 → R𝑙 from a sub-
manifold 𝑀 ⊂ R𝑛 intoR𝑙 is differentiable at the point 𝑝 ∈ 𝑀 if for some (and hence
any) local parametrization 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 with 𝑓 (𝑥) = 𝑝 the composition
𝐹 ◦ 𝑓 : 𝑈 → R𝑙 is differentiable at 𝑥 ∈ 𝑈. The differential of 𝐹 : 𝑀 → R𝑙 at 𝑝 is
then defined as the unique linear map 𝑑𝐹𝑝 : 𝑇𝑀𝑝 → R𝑙 for which the chain rule

𝑑 (𝐹 ◦ 𝑓 )𝑥 = 𝑑𝐹𝑝 ◦ 𝑑𝑓𝑥

holds. For 1 ≤ 𝑞 ≤ ∞, mappings 𝐹 : 𝑀 → R𝑙 of class 𝐶𝑞, 𝐹 ∈ 𝐶𝑞 (𝑀,R𝑙), are
defined accordingly.

In order to determine 𝑑𝐹𝑝 (𝑣) it is often convenient to represent the vector
𝑣 ∈ 𝑇𝑀𝑝 as the velocity 𝑐′(0) of a differentiable curve 𝑐 : (−𝜖, 𝜖) → 𝑀 ⊂ R𝑛 with
𝑐(0) = 𝑝; then

𝑑𝐹𝑝 (𝑐′(0)) = (𝐹 ◦ 𝑐) ′(0).
If 𝐹 : 𝑀 → R𝑙 takes values in a submanifold 𝑄 of R𝑙, then it follows that
𝑑𝐹𝑝 (𝑇𝑀𝑝) ⊂ 𝑇𝑄𝐹 (𝑝) .
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2.3 Orientability and the separation theorem

2.9 Definition (orientability) A submanifold 𝑀 ⊂ R𝑛 is orientable if there exists
a system { 𝑓𝛼 : 𝑈𝛼 → 𝑓𝛼 (𝑈𝛼) ⊂ 𝑀}𝛼∈𝐴 of local parametrizations of 𝑀 such that⋃

𝛼∈𝐴 𝑓𝛼 (𝑈𝛼) = 𝑀 and every parameter transformation 𝑓 −1
𝛽

◦ 𝑓𝛼 with 𝛼, 𝛽 ∈ 𝐴 and
𝑓𝛼 (𝑈𝛼)∩ 𝑓𝛽 (𝑈𝛽) ≠ ∅ satisfies det(𝑑 ( 𝑓 −1

𝛽
◦ 𝑓𝛼)𝑥) > 0 everywhere on its domain. A

maximal such system is called an orientation of 𝑀 , and every local parametrization
belonging to it is then said to be positively oriented.

2.10 Proposition (orientable hypersurfaces) A submanifold 𝑀 ⊂ R𝑚+1 of codi-
mension one is orientable if and only if there exists a continuous unit normal vector
field on 𝑀 , that is, a continuous map 𝑁 : 𝑀 → 𝑆𝑚 with 𝑁 (𝑝) ∈ 𝑇𝑀⊥

𝑝 for all
𝑝 ∈ 𝑀 .

Such a map 𝑁 is called a Gauss map of 𝑀 .

Proof : Suppose first that 𝑀 is orientable, and let { 𝑓𝛼 : 𝑈𝛼 → 𝑓𝛼 (𝑈𝛼) ⊂ 𝑀}𝛼∈𝐴
be an oriented system of local parametrizations with

⋃
𝛼∈𝐴 𝑓𝛼 (𝑈𝛼) = 𝑀 . We will

briefly write 𝑓𝛼,𝑖 for the partial derivative 𝑑 ( 𝑓𝛼) (𝑒𝑖). For every 𝛼 ∈ 𝐴 there exists
a unique unit normal vector field 𝜈𝛼 : 𝑈𝛼 → 𝑆𝑚 along 𝑓𝛼 (thus 𝜈𝛼 (𝑥) ∈ 𝑇𝑀⊥

𝑓𝛼 (𝑥 ) )
such that ( 𝑓𝛼,1(𝑥), . . . , 𝑓𝛼,𝑚(𝑥), 𝜈𝛼 (𝑥)) is a positively oriented basis of R𝑚+1 for
all 𝑥 ∈ 𝑈𝛼. Since the 𝑓𝛼,𝑖 are continuous, so is 𝜈𝛼. In order to define 𝑁 at 𝑝 ∈ 𝑀 ,
we want to prove that 𝜈𝛼 (𝑥) = 𝜈𝛽 (𝑦) whenever 𝑓𝛼 (𝑥) = 𝑝 = 𝑓𝛽 (𝑦). In this case,

𝑑 ( 𝑓𝛼)𝑥 = 𝑑 ( 𝑓𝛽)𝑦 ◦ 𝑑 ( 𝑓 −1
𝛽 ◦ 𝑓𝛼)𝑥 ,

and since det(𝑑 ( 𝑓 −1
𝛽

◦ 𝑓𝛼)𝑥) > 0, it follows that ( 𝑓𝛼,1(𝑥), . . . , 𝑓𝛼,𝑚(𝑥)) and
( 𝑓𝛽,1(𝑦), . . . , 𝑓𝛽,𝑚(𝑦)) are equally oriented bases of 𝑇𝑀𝑝. Thus 𝜈𝛼 (𝑥) = 𝜈𝛽 (𝑦) as
desired.

Conversely, suppose that there exists a Gauss map 𝑁 : 𝑀 → 𝑆𝑚. Choose
a system of local parametrizations { 𝑓𝛼 : 𝑈𝛼 → 𝑓𝛼 (𝑈𝛼) ⊂ 𝑀}𝛼∈𝐴 such that⋃

𝛼∈𝐴 𝑓𝛼 (𝑈𝛼) = 𝑀 and ( 𝑓𝛼,1(𝑥), . . . , 𝑓𝛼,𝑚(𝑥), 𝑁 ( 𝑓𝛼 (𝑥))) is a positively ori-
ented basis of R𝑚+1 for all 𝛼 ∈ 𝐴 and 𝑥 ∈ 𝑈𝛼. If 𝑓𝛼 (𝑥) = 𝑝 = 𝑓𝛽 (𝑦), then
( 𝑓𝛼,1(𝑥), . . . , 𝑓𝛼,𝑚(𝑥)) and ( 𝑓𝛽,1(𝑦), . . . , 𝑓𝛽,𝑚(𝑦)) are equally oriented bases of
𝑇𝑀𝑝, and by the same relation as above it follows that det(𝑑 ( 𝑓 −1

𝛽
◦ 𝑓𝛼)𝑥) > 0. □

2.11 Theorem (separation theorem) Suppose that ∅ ≠ 𝑀 ⊂ R𝑚+1 is a compact
and connected 𝑚-dimensional submanifold. Then R𝑚+1 \ 𝑀 has precisely two
connected components, a bounded and an unbounded one, 𝑀 is the boundary of
each of them, and 𝑀 is orientable.

Proof : Since 𝑀 is a submanifold of codimension 1, it follows that for every point
𝑝 ∈ 𝑀 there exist an open set 𝑉 ⊂ R𝑚+1 and a smooth curve 𝑐 : [−1, 1] → 𝑉
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with 𝑐(0) = 𝑝 and 𝑐′(0) ∉ 𝑇𝑀𝑝 such that 𝑉 \ 𝑀 has exactly two connected
components containing 𝑐( [−1, 0)) and 𝑐((0, 1]), respectively (use a submanifold
chart). We claim that 𝑐(−1) and 𝑐(1) lie in different connected components of
R𝑚+1 \ 𝑀 . Otherwise, there would exist a 𝐶∞-closed curve 𝑐 : [−1, 2] → R𝑚+1

with 𝑐(0) = 𝑝, 𝑐 ′(0) ∉ 𝑇𝑀𝑝 and 𝑐(𝑡) ∉ 𝑀 for 𝑡 ≠ 0; this would, however,
contradict the homotopy invariance of the intersection number modulo 2, which we
will prove later in Theorem 9.12. Hence, every point 𝑝 ∈ 𝑀 is a boundary point of
two distinct connected components of R𝑚+1 \ 𝑀 .

Now let 𝑝 ∈ 𝑀 be fixed, an let 𝑞 ∈ 𝑀 be any other point. Then 𝑝 ∈ 𝜕𝐴∩𝜕𝐵 and
𝑞 ∈ 𝜕𝐴𝑞 ∩ 𝜕𝐵𝑞 for some connected components 𝐴 ≠ 𝐵 and 𝐴𝑞 ≠ 𝐵𝑞 of R𝑚+1 \𝑀 .
Since 𝑀 is connected and locally path connected, 𝑀 is path connected, thus there
exists a curve 𝑐𝑞 : [0, 1] → 𝑀 from 𝑝 to 𝑞. Let 𝑁𝑞 : [0, 1] → R𝑚+1 be a continuous
unit vector field along 𝑐𝑞 normal to 𝑀 . For a sufficiently small 𝜖 > 0, the traces of
the curves 𝑐±𝑞 : 𝑡 ↦→ 𝑐𝑞 (𝑡) ± 𝜖𝑁𝑞 (𝑡) are in R𝑚+1 \ 𝑀 . It follows that either 𝐴𝑞 = 𝐴

and 𝐵𝑞 = 𝐵, or 𝐴𝑞 = 𝐵 and 𝐵𝑞 = 𝐴. Since 𝑀 is bounded, the assertions about
the connected components of R𝑚+1 \ 𝑀 are now clear. Furthermore, 𝑀 admits a
Gauss map (pointing everywhere to 𝐴, for example), and thus 𝑀 is orientable by
Proposition 2.10. □

Theorem 2.11 holds more generally for the case that ∅ ≠ 𝑀 ⊂ R𝑚+1 is the image
of a compact and connected 𝑚-dimensional topological manifold (Definition 8.1)
under a continuous and injective map [Br1911b]. This is the Jordan–Brouwer
separation theorem, which generalizes the Jordan curve theorem. In the latter, 𝑀
is a Jordan curve in R2, that is, the image of a simple closed curve 𝑐 : [0, 1] → R2.
A first rigorous proof of the Jordan curve theorem was provided by Veblen [Ve1905].
Another generalization of the Jordan curve theorem is Schönflies’ theorem [Sc1906]:

Every continuous injective map 𝑓 : 𝑆1 → R2 extends to a homeomor-
phism 𝑓 : R2 → R2, such that 𝑓 |𝑆1 = 𝑓 .

Surprisingly, the analogue for maps 𝑓 : 𝑆𝑚 → R𝑚+1 with 𝑚 ≥ 2 fails to be true.
Alexander’s horned sphere in R3 has the property that the exterior domain is not
simply connected [Al1924].
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3 Intrinsic geometry of surfaces

3.1 First fundamental form

3.1 Definition (first fundamental form) The first fundamental form 𝑔 of a sub-
manifold 𝑀 ⊂ R𝑛 assigns to each point 𝑝 ∈ 𝑀 the inner product 𝑔𝑝 on 𝑇𝑀𝑝

defined by
𝑔𝑝 (𝑋,𝑌 ) := ⟨𝑋,𝑌⟩

for 𝑋,𝑌 ∈ 𝑇𝑀𝑝 (thus 𝑔𝑝 is just the restriction of the standard inner product ⟨· , ·⟩
of R𝑛 to 𝑇𝑀𝑝 ×𝑇𝑀𝑝.) The first fundamental form 𝑔 of an immersion 𝑓 : 𝑈 → R𝑛

of an open set 𝑈 ⊂ R𝑚 assigns to each 𝑥 ∈ 𝑈 the inner product 𝑔𝑥 on R𝑚 defined
by

𝑔𝑥 (𝜉, 𝜂) := ⟨𝑑𝑓𝑥 (𝜉), 𝑑𝑓𝑥 (𝜂)⟩

for 𝜉, 𝜂 ∈ R𝑚.

The first fundamental form 𝑔 is also called the (Riemannian) metric of 𝑀
or 𝑓 , respectively. The matrix (𝑔𝑖 𝑗 (𝑥)) of 𝑔𝑥 with respect to the canonical basis
(𝑒1, . . . , 𝑒𝑚) of R𝑚 is given by

𝑔𝑖 𝑗 (𝑥) = 𝑔𝑥 (𝑒𝑖 , 𝑒 𝑗) = ⟨𝑑𝑓𝑥 (𝑒𝑖), 𝑑𝑓𝑥 (𝑒 𝑗)⟩ =
〈
𝜕 𝑓

𝜕𝑥𝑖
(𝑥), 𝜕 𝑓

𝜕𝑥 𝑗
(𝑥)

〉
,

where 𝑔𝑖 𝑗 ∈ 𝐶∞(𝑈). We will often write this relation briefly as 𝑔𝑖 𝑗 = ⟨ 𝑓𝑖 , 𝑓 𝑗⟩.
Now let 𝑀 ⊂ R𝑛 be a submanifold, and suppose that 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 is a

local parametrization (in particular, an immersion). The first fundamental forms of
𝑓 and 𝑀 are related as follows: if 𝑥 ∈ 𝑈 and 𝑓 (𝑥) = 𝑝, then 𝑑𝑓𝑥 is an isometry of
the Euclidean vector spaces (R𝑚, 𝑔𝑥) and (𝑇𝑀𝑝, 𝑔𝑝). The set 𝑈 ⊂ R𝑚, equipped
with the first fundamental form of 𝑓 , constitutes a “model” for 𝑓 (𝑈) ⊂ 𝑀 , in which
all quantities belonging to the intrinsic geometry of 𝑓 (𝑈) ⊂ 𝑀 can be computed.

Examples

1. Norms and angles: for 𝑋,𝑌 ∈ 𝑇𝑀𝑝, 𝑥 := 𝑓 −1(𝑝), and the corresponding
vectors 𝜉 := (𝑑𝑓𝑥)−1(𝑋) and 𝜂 := (𝑑𝑓𝑥)−1(𝑌 ) in R𝑚,

|𝑋 | =
√︃
𝑔𝑝 (𝑋, 𝑋) =

√︁
𝑔𝑥 (𝜉, 𝜉) =: |𝜉 |𝑔𝑥

,

cos ∠(𝑋,𝑌 ) =
𝑔𝑝 (𝑋,𝑌 )
|𝑋 | |𝑌 | =

𝑔𝑥 (𝜉, 𝜂)
|𝜉 |𝑔𝑥

|𝜂 |𝑔𝑥

.

2. Length of a 𝐶1 curve 𝑐 : 𝐼 → 𝑓 (𝑈) ⊂ 𝑀: if 𝛾 := 𝑓 −1 ◦ 𝑐 : 𝐼 → 𝑈 is the
corresponding curve in𝑈, then 𝑐′(𝑡) = 𝑑𝑓𝛾 (𝑡 ) (𝛾′(𝑡)) and hence

𝐿 (𝑐) =
∫
𝐼

|𝑐′(𝑡) | 𝑑𝑡 =
∫
𝐼

|𝛾′(𝑡) |𝑔𝛾 (𝑡 ) 𝑑𝑡.
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3. The 𝑚-dimensional area of a Borel set 𝐵 ⊂ 𝑓 (𝑈) ⊂ 𝑀 is computed as

𝐴(𝐵) :=
∫
𝑓 −1 (𝐵)

√︃
det(𝑔𝑖 𝑗 (𝑥)) 𝑑𝑥 ∈ [0,∞];

recall that the Gram determinant

det(𝑔𝑖 𝑗 (𝑥)) = det
(
⟨ 𝑓𝑖 (𝑥), 𝑓 𝑗 (𝑥)⟩

)
equals the square of the volume of the parallelepiped spanned by the vectors
𝑓𝑖 (𝑥) = 𝜕 𝑓

𝜕𝑥𝑖
(𝑥) for 𝑖 = 1, . . . , 𝑚. The area 𝐴(𝐵) is independent of the choice

of 𝑓 and is also denoted by
∫
𝐵
𝑑𝐴.

In order to compute the 𝑚-dimensional area of a compact region 𝐶 ⊂ 𝑀 ,
one chooses finitely many local parametrizations 𝑓𝛼 : 𝑈𝛼 → 𝑓𝛼 (𝑈𝛼) ⊂ 𝑀

and Borel sets 𝐵𝛼 ⊂ 𝑓𝛼 (𝑈𝛼) such that 𝐶 =
⋃

𝛼 𝐵𝛼 is a partition (that is, a
decomposition into pairwise disjoint sets). The area

𝐴(𝐶) =
∑︁
𝛼

𝐴(𝐵𝛼) =
∑︁
𝛼

∫
𝑓 −1
𝛼 (𝐵𝛼 )

√︃
det(𝑔𝛼

𝑖 𝑗
(𝑥)) 𝑑𝑥,

where 𝑔𝛼 denotes the first fundamental form of 𝑓𝛼, turns out to be independent
of the choices made. For a continuous function 𝑏 : 𝐶 → R,∫

𝐶

𝑏 𝑑𝐴 :=
∑︁
𝛼

∫
𝑓 −1
𝛼 (𝐵𝛼 )

𝑏 ◦ 𝑓𝛼 (𝑥)
√︃

det(𝑔𝛼
𝑖 𝑗
(𝑥)) 𝑑𝑥

then defines the surface integral of 𝑏 over 𝐶.

3.2 Definition (isometries) Two submanifolds 𝑀 ⊂ R𝑛 and �̃� ⊂ R�̃� with first
fundamental forms 𝑔 and �̃� are called isometric if there exists a diffeomorphism
𝐹 : 𝑀 → �̃� such that

𝑔𝑝 (𝑋,𝑌 ) = �̃�𝐹 (𝑝) (𝑑𝐹𝑝 (𝑋), 𝑑𝐹𝑝 (𝑌 ))

for all 𝑝 ∈ 𝑀 and 𝑋,𝑌 ∈ 𝑇𝑀𝑝. For open sets 𝑈, �̃� ⊂ R𝑚, two immersions
𝑓 : 𝑈 → R𝑛 and 𝑓 : �̃� → R�̃� with first fundamental forms 𝑔 and �̃� are called
isometric if there exists a diffeomorphism 𝜓 : 𝑈 → �̃� such that

𝑔𝑥 (𝜉, 𝜂) = �̃�𝜓 (𝑥 ) (𝑑𝜓𝑥 (𝜉), 𝑑𝜓𝑥 (𝜂))

for all 𝑥 ∈ 𝑈 and 𝜉, 𝜂 ∈ R𝑚.

The above relations are briefly expressed as 𝑔 = 𝐹∗�̄� and 𝑔 = 𝜓∗�̃�, respectively;
𝑔 equals the pull-back of �̃� under the isometry. Note that 𝜓∗�̃� is just the first
fundamental form of the immersion 𝑓 ◦ 𝜓, as

�̃�(𝑑𝜓(𝜉), 𝑑𝜓(𝜂)) = ⟨𝑑 𝑓 ◦ 𝑑𝜓(𝜉), 𝑑 𝑓 ◦ 𝑑𝜓(𝜂)⟩
= ⟨𝑑 ( 𝑓 ◦ 𝜓) (𝜉), 𝑑 ( 𝑓 ◦ 𝜓) (𝜂)⟩.

In particular, if 𝑓 = 𝑓 ◦ 𝜓 is a reparametrization of 𝑓 , then 𝑓 and 𝑓 are isometric.
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3.2 Covariant derivative

Let 𝑓 : 𝑈 → R𝑛 be an immersion of the open set𝑈 ⊂ R𝑚. The vectors

𝑓𝑘 (𝑥) =
𝜕 𝑓

𝜕𝑥𝑘
(𝑥) (𝑘 = 1, . . . , 𝑚)

form a basis of the tangent space 𝑑𝑓𝑥 (R𝑚) of 𝑓 at 𝑥. We now consider second
derivatives

𝑓𝑖 𝑗 (𝑥) :=
𝜕2 𝑓

𝜕𝑥 𝑗𝜕𝑥𝑖
(𝑥)

of 𝑓 , which need no longer be tangential. The tangential part has a unique repre-
sentation (

𝑓𝑖 𝑗 (𝑥)
)T

=

𝑚∑︁
𝑘=1

Γ𝑘
𝑖 𝑗 (𝑥) 𝑓𝑘 (𝑥).

The 𝐶∞ coefficient functions Γ𝑘
𝑖 𝑗
= Γ𝑘

𝑗𝑖
: 𝑈 → R defined by this relation are called

the Christoffel symbols of 𝑓 .

3.3 Lemma (Christoffel symbols) Let 𝑓 ∈ 𝐶∞(𝑈,R𝑛) be an immersion of the
open set𝑈 ⊂ R𝑚. Then

Γ𝑘
𝑖 𝑗 =

1
2

𝑚∑︁
𝑙=1

𝑔𝑘𝑙
(
𝜕𝑔 𝑗𝑙

𝜕𝑥𝑖
+ 𝜕𝑔𝑖𝑙
𝜕𝑥 𝑗

−
𝜕𝑔𝑖 𝑗

𝜕𝑥𝑙

)
,

where (𝑔𝑘𝑙) denotes the matrix inverse to (𝑔𝑖 𝑗).

Proof : Since
𝜕

𝜕𝑥𝑖
⟨ 𝑓 𝑗 , 𝑓𝑙⟩ = ⟨ 𝑓 𝑗𝑖 , 𝑓𝑙⟩ + ⟨ 𝑓 𝑗 , 𝑓𝑙𝑖⟩,

𝜕

𝜕𝑥 𝑗
⟨ 𝑓𝑖 , 𝑓𝑙⟩ = ⟨ 𝑓𝑖 𝑗 , 𝑓𝑙⟩ + ⟨ 𝑓𝑖 , 𝑓𝑙 𝑗⟩,

𝜕

𝜕𝑥𝑙
⟨ 𝑓𝑖 , 𝑓 𝑗⟩ = ⟨ 𝑓𝑖𝑙 , 𝑓 𝑗⟩ + ⟨ 𝑓𝑖 , 𝑓 𝑗𝑙⟩,

it follows that
1
2

(
𝜕𝑔 𝑗𝑙

𝜕𝑥𝑖
+ 𝜕𝑔𝑖𝑙
𝜕𝑥 𝑗

−
𝜕𝑔𝑖 𝑗

𝜕𝑥𝑙

)
= ⟨ 𝑓𝑙, 𝑓𝑖 𝑗⟩ =

〈
𝑓𝑙, ( 𝑓𝑖 𝑗)T〉 = 𝑚∑︁

𝑘=1
Γ𝑘
𝑖 𝑗𝑔𝑙𝑘 .

By solving this equation for Γ𝑘
𝑖 𝑗

we get the result. □

In the case 𝑚 = 2 the expression for Γ𝑘
𝑖 𝑗

has a simpler form, as then always at
least two of the indices 𝑖, 𝑗 , 𝑙 agree. If we use Gauss’s notation

𝐸 := 𝑔11, 𝐹 := 𝑔12 = 𝑔21, 𝐺 := 𝑔22

and the abbreviations 𝐷 := 𝐸𝐺 − 𝐹2 and 𝐸𝑖 := 𝜕𝐸
𝜕𝑥𝑖

, etc., then(
Γ1

11 Γ1
12 Γ1

22
Γ2

11 Γ2
12 Γ2

22

)
=

1
2𝐷

(
𝐺 −𝐹
−𝐹 𝐸

) (
𝐸1 𝐸2 2𝐹2 − 𝐺1

2𝐹1 − 𝐸2 𝐺1 𝐺2

)
.
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3.4 Definition (covariant derivative, parallel vector field) Let 𝑀 ⊂ R𝑛 be an𝑚-
dimensional submanifold. Suppose that 𝑐 : 𝐼 → 𝑀 is a curve and 𝑋 : 𝐼 → R𝑛 is
a 𝐶1 tangent vector field of 𝑀 along 𝑐, that is, 𝑋 (𝑡) ∈ 𝑇𝑀𝑐 (𝑡 ) for all 𝑡 ∈ 𝐼. The
covariant derivative 𝐷

𝑑𝑡
𝑋 of 𝑋 is the vector field along 𝑐 defined by

𝐷

𝑑𝑡
𝑋 (𝑡) :=

(
𝑑

𝑑𝑡
𝑋 (𝑡)

)T
= ¤𝑋 (𝑡)T ∈ 𝑇𝑀𝑐 (𝑡 )

(tangential part) for 𝑡 ∈ 𝐼. Then 𝑋 is said to be parallel along 𝑐 if, for all 𝑡 ∈ 𝐼,
𝐷
𝑑𝑡
𝑋 (𝑡) = 0, that is, ¤𝑋 (𝑡) ∈ 𝑇𝑀⊥

𝑐 (𝑡 ) .

3.5 Theorem (covariant derivative) Let 𝑀 be an 𝑚-dimensional submanifold of
R𝑛 with first fundamental form 𝑔. Suppose that 𝑐 : 𝐼 → 𝑀 is a𝐶1 curve, 𝑋,𝑌 : 𝐼 →
R𝑛 are two 𝐶1 tangent vector fields of 𝑀 along 𝑐, and 𝜆 : 𝐼 → R is a 𝐶1 function.
Then:

(1)
𝐷

𝑑𝑡
(𝑋 + 𝑌 ) = 𝐷

𝑑𝑡
𝑋 + 𝐷

𝑑𝑡
𝑌,

𝐷

𝑑𝑡
(𝜆 𝑋) = ¤𝜆 𝑋 + 𝜆 𝐷

𝑑𝑡
𝑋;

(2)
𝑑

𝑑𝑡
𝑔(𝑋,𝑌 ) = 𝑔

(𝐷
𝑑𝑡
𝑋,𝑌

)
+ 𝑔

(
𝑋,
𝐷

𝑑𝑡
𝑌

)
;

(3) if 𝑐(𝐼) ⊂ 𝑓 (𝑈) for some local parametrization 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 , and if
𝛾 = (𝛾1, . . . , 𝛾𝑚) : 𝐼 → 𝑈 and 𝜉 = (𝜉1, . . . , 𝜉𝑚) : 𝐼 → R𝑚 are the curve and
vector field such that 𝑐 = 𝑓 ◦ 𝛾 and 𝑋 (𝑡) = 𝑑𝑓𝛾 (𝑡 ) (𝜉 (𝑡)), then

𝐷

𝑑𝑡
𝑋 =

𝑚∑︁
𝑘=1

(
¤𝜉𝑘 +

𝑚∑︁
𝑖, 𝑗=1

𝜉𝑖 ¤𝛾 𝑗 Γ𝑘
𝑖 𝑗 ◦ 𝛾

)
𝜕 𝑓

𝜕𝑥𝑘
◦ 𝛾.

Proof : (1) is clear. For (2), note that

𝑑

𝑑𝑡
⟨𝑋,𝑌⟩ = ⟨ ¤𝑋,𝑌⟩ + ⟨𝑋, ¤𝑌⟩ =

〈 ¤𝑋T, 𝑌
〉
+
〈
𝑋, ¤𝑌T〉

since 𝑌 and 𝑋 are tangential. To prove (3), we use again the shorthand 𝑓𝑖 and 𝑓𝑖 𝑗

for the partial derivatives up to second order. We have 𝑋 =
∑𝑚

𝑖=1 𝜉
𝑖 ( 𝑓𝑖 ◦ 𝛾), and

𝑑

𝑑𝑡

(
𝜉𝑖 ( 𝑓𝑖 ◦ 𝛾)

)
= ¤𝜉𝑖 ( 𝑓𝑖 ◦ 𝛾) + 𝜉𝑖

𝑚∑︁
𝑗=1

( 𝑓𝑖 𝑗 ◦ 𝛾) ¤𝛾 𝑗 .

The tangential part is

𝐷

𝑑𝑡
(𝜉𝑖 ( 𝑓𝑖 ◦ 𝛾)) = ¤𝜉𝑖 ( 𝑓𝑖 ◦ 𝛾) + 𝜉𝑖

𝑚∑︁
𝑗 ,𝑘=1

¤𝛾 𝑗 (Γ𝑘
𝑖 𝑗 𝑓𝑘) ◦ 𝛾,

and the result follows upon summation over 𝑖. □
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Item (3), together with Lemma 3.3, shows that the covariant derivative can be
computed entirely in terms of the first fundamental form and is thus intrinsic. Note
also that if 𝑋,𝑌 are parallel along 𝑐, then 𝑔𝑐 (𝑡 ) (𝑋 (𝑡), 𝑌 (𝑡)) is constant, as

𝑑

𝑑𝑡
𝑔(𝑋,𝑌 ) = 𝑔

(𝐷
𝑑𝑡
𝑋,𝑌

)
+ 𝑔

(
𝑋,
𝐷

𝑑𝑡
𝑌

)
= 0

by property (2); in particular |𝑋 | =
√︁
𝑔(𝑋, 𝑋) is constant.

3.6 Theorem (existence and uniqueness of parallel vector fields) Let 𝑀 ⊂ R𝑛

be a submanifold, and let 𝑐 : 𝐼 → 𝑀 be a 𝐶1 curve with 0 ∈ 𝐼. Then for every
vector 𝑋0 ∈ 𝑇𝑀𝑐 (0) there is a unique parallel tangent vector field 𝑋 : 𝐼 → R𝑛 of
𝑀 along 𝑐 with 𝑋 (0) = 𝑋0.

Proof : We may assume that 𝑐 = 𝑓 ◦ 𝛾 for some local parametrization 𝑓 : 𝑈 →
𝑓 (𝑈) ⊂ 𝑀 . By Theorem 3.5, the vector field 𝑋 =

∑𝑚
𝑖=1 𝜉

𝑖 ( 𝑓𝑖 ◦ 𝛾) is parallel along
𝑐 if and only if the function 𝜉 = (𝜉1, . . . , 𝜉𝑚) : 𝐼 → R𝑚 satisfies the system of
linear ordinary differential equations

¤𝜉𝑘 +
𝑚∑︁

𝑖, 𝑗=1
𝜉𝑖 ¤𝛾 𝑗 Γ𝑘

𝑖 𝑗 ◦ 𝛾 = 0 (𝑘 = 1, . . . , 𝑚).

The (given) coefficient functions ¤𝛾 𝑗 Γ𝑘
𝑖 𝑗
◦𝛾 are continuous and in particular bounded

on compact subsets of 𝐼. It follows from the existence and uniqueness theorem for
linear differential equations that for any vector 𝑋0 =

∑𝑚
𝑖=1 𝜉

𝑖
0 𝑓𝑖 (𝛾(0)) ∈ 𝑇𝑀𝑐 (0)

there exists a unique solution 𝜉 : 𝐼 → R𝑚 satisfying the initial condition 𝜉 (0) = 𝜉0.
□

3.3 Geodesics

3.7 Definition (geodesics) Let 𝑀 ⊂ R𝑛 be a submanifold. A smooth curve 𝑐 : 𝐼 →
𝑀 is a geodesic in 𝑀 if ¤𝑐 is parallel along 𝑐, that is, 𝐷

𝑑𝑡
¤𝑐 = 0 on 𝐼; equivalently,

¥𝑐(𝑡) ∈ 𝑇𝑀⊥
𝑐 (𝑡 ) for all 𝑡 ∈ 𝐼.

Every geodesic 𝑐 : 𝐼 → 𝑀 has constant speed | ¤𝑐 |, because

𝑑

𝑑𝑡
𝑔( ¤𝑐, ¤𝑐) = 2𝑔

(𝐷
𝑑𝑡

¤𝑐, ¤𝑐
)
= 0.

If 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 is a local parametrization and 𝛾 = (𝛾1, . . . , 𝛾𝑚) : 𝐼 → 𝑈 is
a smooth curve, then 𝑐 := 𝑓 ◦ 𝛾 : 𝑈 → 𝑀 is a geodesic if and only if 𝛾 satisfies the
system of second order ordinary differential equations

¥𝛾𝑘 +
𝑚∑︁

𝑖, 𝑗=1
¤𝛾𝑖 ¤𝛾 𝑗 Γ𝑘

𝑖 𝑗 ◦ 𝛾 = 0 (𝑘 = 1, . . . , 𝑚);
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just put 𝜉 := ¤𝛾 in Theorem 3.5. Accordingly, we may also speak of a geodesic 𝛾
in 𝑈 with respect to the metric 𝑔, or of a geodesic 𝑐 = 𝑓 ◦ 𝛾 relative to a general
immersion 𝑓 : 𝑈 → R𝑛.

3.8 Theorem (existence and uniqueness of geodesics) Let 𝑀 ⊂ R𝑛 be a sub-
manifold, and let 𝑝 ∈ 𝑀 and 𝑋 ∈ 𝑇𝑀𝑝. Then there exist a unique geodesic
𝑐 : 𝐼 → 𝑀 with 𝑐(0) = 𝑝 and ¤𝑐(0) = 𝑋 defined on a maximal open interval 𝐼
around 0.

Proof : This follows from the existence and uniqueness theorem for solutions of
ordinary differential equations. □

We now consider a more concrete instance.

3.9 Theorem (Clairaut’s relation) Let 𝑐 : 𝐼 → 𝑀 be a non-constant geodesic on
a surface of revolution 𝑀 ⊂ R3. For 𝑡 ∈ 𝐼 let 𝑟 (𝑡) > 0 be the distance of 𝑐(𝑡) to
the axis of rotation, and let 𝜃 (𝑡) ∈ [0, 𝜋] denote the angle between ¤𝑐(𝑡) and the
oriented parallel through 𝑐(𝑡) (that is, the circle generated by the rotation). Then
𝑟 (𝑡) cos 𝜃 (𝑡) is constant.

Proof : We assume that 𝑀 is rotationally symmetric around the third coordinate
axis in R3. Then, for a local parametrization 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 of the form

𝑓 (𝑢, 𝑣) = (𝑟 (𝑣) cos(𝑢), 𝑟 (𝑣) sin(𝑢), 𝑧(𝑣)),

where 𝑟 (𝑣) > 0, the first fundamental form is diagonal with 𝑔11(𝑢, 𝑣) = 𝑟 (𝑣)2 and
𝑔22(𝑢, 𝑣) = 𝑟 ′(𝑣)2 + 𝑧′(𝑣)2 (thus 𝑔22 = 1 if the meridians are parametrized by arc
length), and the Christoffel symbols are

Γ1
11 = 0, Γ1

12 = Γ1
21 =

𝑟 ′

𝑟
, Γ1

22 = 0,

Γ2
11 = − 𝑟𝑟 ′

(𝑟 ′)2 + (𝑧′)2 , Γ2
12 = Γ2

21 = 0, Γ1
22 =

𝑟 ′𝑟 ′′ + 𝑧′𝑧′′
(𝑟 ′)2 + (𝑧′)2 .

Hence, every geodesic 𝑐 = 𝑓 ◦ 𝛾, where 𝛾 : 𝐼 → 𝑈, 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)), satisfies
the differential equations

¥𝑢 + 2
𝑟 ′

𝑟
¤𝑢 ¤𝑣 = 0 and ¥𝑣 − 𝑟𝑟 ′

(𝑟 ′)2 + (𝑧′)2 ¤𝑢2 + 𝑟 ′𝑟 ′′ + 𝑧′𝑧′′
(𝑟 ′)2 + (𝑧′)2 ¤𝑣2 = 0.

The first equation can be rewritten as

𝑑

𝑑𝑡
(𝑟2 ¤𝑢) = 𝑟2 ¥𝑢 + 2𝑟𝑟 ′ ¤𝑢 ¤𝑣 = 0;
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note that here 𝑟 stands briefly for 𝑟 ◦ 𝑣, thus ¤𝑟 (𝑡) = 𝑟 ′(𝑣(𝑡)) ¤𝑣(𝑡). This shows that
𝑟2 ¤𝑢 is constant. Since 𝑟2 = 𝑔11, we have

𝑟 (𝑣(𝑡))2 ¤𝑢(𝑡) = 𝑔𝛾 (𝑡 ) ( ¤𝛾(𝑡), 𝑒1) = ⟨ ¤𝑐, 𝑓1(𝛾(𝑡))⟩
= | ¤𝑐 | | 𝑓1(𝛾(𝑡)) | cos(𝜃 (𝑡)),

where | ¤𝑐 | is constant and | 𝑓1(𝛾(𝑡)) | =
√︁
𝑔11(𝛾(𝑡)) = 𝑟 (𝑡). □

3.10 Theorem (first variation of arc length) Let 𝑀 ⊂ R𝑛 be a submanifold, and
let 𝑐0 : [𝑎, 𝑏] → 𝑀 be a smooth curve of constant speed | ¤𝑐0 | = 𝜆 > 0. If
𝑐 : (−𝜖, 𝜖) × [𝑎, 𝑏] → 𝑀 is a smooth variation of 𝑐0, 𝑐𝑠 (𝑡) := 𝑐(𝑠, 𝑡), with variation
vector field 𝑉𝑠 (𝑡) := 𝑉 (𝑠, 𝑡) := 𝜕𝑐

𝜕𝑠
(𝑠, 𝑡), then

𝑑

𝑑𝑠

���
𝑠=0
𝐿 (𝑐𝑠) =

1
𝜆

(
𝑔
(
𝑉0(𝑡), ¤𝑐0(𝑡)

) ���𝑏
𝑎
−
∫ 𝑏

𝑎

𝑔

(
𝑉0(𝑡),

𝐷

𝑑𝑡
¤𝑐0(𝑡)

)
𝑑𝑡

)
.

Proof : For all 𝑠 ∈ (−𝜖, 𝜖) and 𝑡 ∈ [𝑎, 𝑏],

𝜕

𝜕𝑠
| ¤𝑐𝑠 (𝑡) | =

1
2| ¤𝑐𝑠 (𝑡) |

𝜕

𝜕𝑠
⟨ ¤𝑐𝑠 (𝑡), ¤𝑐𝑠 (𝑡)⟩ =

1
| ¤𝑐𝑠 (𝑡) |

〈 𝜕
𝜕𝑠

¤𝑐𝑠 (𝑡), ¤𝑐𝑠 (𝑡)
〉
,

where 𝜕
𝜕𝑠

¤𝑐𝑠 (𝑡) = 𝜕2

𝜕𝑡 𝜕𝑠
𝑐𝑠 (𝑡) = 𝜕

𝜕𝑡
𝑉𝑠 (𝑡). Hence,

𝜕

𝜕𝑠

���
𝑠=0
𝐿 (𝑐𝑠) =

1
𝜆

∫ 𝑏

𝑎

〈 𝑑
𝑑𝑡
𝑉0(𝑡), ¤𝑐0(𝑡)

〉
𝑑𝑡.

The integrand equals 𝑑
𝑑𝑡
⟨𝑉0(𝑡), ¤𝑐0(𝑡)⟩ −

〈
𝑉0(𝑡), 𝑑

𝑑𝑡
¤𝑐0(𝑡)

〉
, and the result follows. □

The variation 𝑐 of 𝑐0 is called a proper variation if 𝑐𝑠 (𝑎) = 𝑐0(𝑎) and 𝑐𝑠 (𝑏) =
𝑐0(𝑏) for all 𝑠 ∈ (−𝜖, 𝜖). It follows from Theorem 3.10 that a non-constant smooth
curve 𝑐0 : [𝑎, 𝑏] → 𝑀 is a geodesic if and only if 𝑐0 is parametrized proportionally
to arc length and 𝑑

𝑑𝑠

��
𝑠=0𝐿 (𝑐𝑠) = 0 for every proper variation 𝑐 of 𝑐0. In particular,

if a smooth curve 𝑐0 : [𝑎, 𝑏] → 𝑀 of constant speed has minimal length among all
smooth curves from 𝑝 = 𝑐0(𝑎) to 𝑞 = 𝑐0(𝑏), then 𝑐0 is a geodesic.

21



4 Curvature of hypersurfaces

In this chapter we consider 𝑚-dimensional surfaces of codimension 1.

4.1 Second fundamental form

If 𝑀 ⊂ R𝑚+1 is an 𝑚-dimensional orientable submanifold, then a Gauss map 𝑁 of
𝑀 is a continuous map 𝑁 : 𝑀 → 𝑆𝑚 such that 𝑁 (𝑝) ∈ 𝑇𝑀⊥

𝑝 for all 𝑝 ∈ 𝑀 (recall
Proposition 2.10). If 𝑀 is connected, then there are precisely two choices for 𝑁 , and
if𝑀 is compact in addition, we may speak of the inner or outer Gauss map according
to Theorem 2.11. If 𝑓 : 𝑈 → R𝑚+1 is an immersion of an open set𝑈 ⊂ R𝑚, then a
Gauss map 𝜈 of 𝑓 is a continuous map 𝜈 : 𝑈 → 𝑆𝑚 with 𝜈(𝑥) ∈ 𝑑𝑓𝑥 (R𝑚)⊥ for all
𝑥 ∈ 𝑈. For 𝑚 = 2, the standard choice is 𝜈 = ( 𝑓1 × 𝑓2)/| 𝑓1 × 𝑓2 | (vector product).
Note that since 𝑀 and 𝑓 are smooth, so are the Gauss maps.

In the following, we tacitly assume that for 𝑀 and 𝑓 as above a Gauss map is
chosen. We now consider the differential

𝑑𝑁𝑝 : 𝑇𝑀𝑝 → 𝑇𝑆𝑚
𝑁 (𝑝) = 𝑇𝑀𝑝 or 𝑑𝜈𝑥 : R𝑚 → 𝑇𝑆𝑚

𝜈 (𝑥 ) = 𝑑𝑓𝑥 (R
𝑚)

for 𝑝 ∈ 𝑀 or 𝑥 ∈ 𝑈, respectively.

4.1 Definition (shape operator) For 𝑝 ∈ 𝑀 , the linear map

𝐿𝑝 : 𝑇𝑀𝑝 → 𝑇𝑀𝑝, 𝐿𝑝 := −𝑑𝑁𝑝,

is called the shape operator of 𝑀 at 𝑝. For 𝑥 ∈ 𝑈, the linear map

𝐿𝑥 : R𝑚 → R𝑚, 𝐿𝑥 := −(𝑑𝑓𝑥)−1 ◦ 𝑑𝜈𝑥 ,

is the shape operator of the immersion 𝑓 at 𝑥 (here (𝑑𝑓𝑥)−1 : 𝑑𝑓𝑥 (R𝑚) → R𝑚 is the
inverse of the differential viewed as a map 𝑑𝑓𝑥 : R𝑚 → 𝑑𝑓𝑥 (R𝑚) onto its image).
In either case, this is also called the Weingarten map.

Note that if 𝑓 is a local parametrization of 𝑀 with 𝑓 (𝑥) = 𝑝 and 𝜈 = 𝑁 ◦ 𝑓 ,
then the two shape operators are conjugate: 𝐿𝑥 = (𝑑𝑓𝑥)−1 ◦ 𝐿𝑝 ◦ 𝑑𝑓𝑥 .

4.2 Lemma (self-adjoint) For 𝑝 ∈ 𝑀 , the shape operator 𝐿𝑝 is self-adjoint with
respect to 𝑔𝑝, thus

𝑔𝑝 (𝑋, 𝐿𝑝 (𝑌 )) = 𝑔𝑝 (𝐿𝑝 (𝑋), 𝑌 )

for all 𝑋,𝑌 ∈ 𝑇𝑀𝑝. For an immersion 𝑓 : 𝑈 → R𝑛 and 𝑥 ∈ 𝑈, the shape operator
𝐿𝑥 is self-adjoint with respect to 𝑔𝑥 , thus

𝑔𝑥 (𝜉, 𝐿𝑥 (𝜂)) = 𝑔𝑥 (𝐿𝑥 (𝜉), 𝜂)

for all 𝜉, 𝜂 ∈ R𝑚.
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Proof : For 𝑝 ∈ 𝑀 , choose a local parametrization 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 of 𝑀 with
𝑓 (𝑥) = 𝑝. Put 𝜈 := 𝑁 ◦ 𝑓 . Then 𝑑𝜈𝑥 = 𝑑𝑁𝑝 ◦ 𝑑𝑓𝑥 , and the partial derivatives of 𝑓
and 𝜈 satisfy 𝑑𝑁𝑝 ( 𝑓 𝑗 (𝑥)) = 𝜈 𝑗 (𝑥), thus

𝑔𝑝
(
𝑓𝑖 (𝑥), 𝐿𝑝 ( 𝑓 𝑗 (𝑥))

)
= −⟨ 𝑓𝑖 (𝑥), 𝜈 𝑗 (𝑥)⟩.

Furthermore, ⟨ 𝑓𝑖 𝑗 , 𝜈⟩ + ⟨ 𝑓𝑖 , 𝜈 𝑗⟩ = 𝜕
𝜕𝑥 𝑗 ⟨ 𝑓𝑖 , 𝜈⟩ = 0, hence

𝑔𝑝
(
𝑓𝑖 (𝑥), 𝐿𝑝 ( 𝑓 𝑗 (𝑥))

)
= ⟨ 𝑓𝑖 𝑗 (𝑥), 𝜈(𝑥)⟩

is symmetric in 𝑖 and 𝑗 . Since 𝑓1(𝑥), . . . , 𝑓𝑚(𝑥) is a basis of 𝑇𝑀𝑝, this shows that
𝐿𝑝 is self-adjoint with respect to 𝑔𝑝.

Similarly, for an immersion 𝑓 : 𝑈 → R𝑛 and 𝑥 ∈ 𝑈,

𝑔𝑥 (𝑒𝑖 , 𝐿𝑥 (𝑒 𝑗)) = −⟨ 𝑓𝑖 (𝑥), 𝜈 𝑗 (𝑥)⟩ = ⟨ 𝑓𝑖 𝑗 (𝑥), 𝜈(𝑥)⟩

is symmetric in 𝑖 and 𝑗 . □

4.3 Definition (second fundamental form) The second fundamental form ℎ of a
submanifold 𝑀 ⊂ R𝑚+1 assigns to every point 𝑝 ∈ 𝑀 the symmetric bilinear form
ℎ𝑝 on 𝑇𝑀𝑝 defined by

ℎ𝑝 (𝑋,𝑌 ) := 𝑔𝑝 (𝑋, 𝐿𝑝 (𝑌 )) = −⟨𝑋, 𝑑𝑁𝑝 (𝑌 )⟩

for 𝑋,𝑌 ∈ 𝑇𝑀𝑝. The second fundamental form ℎ of an immersion 𝑓 : 𝑈 → R𝑚+1

of an open set 𝑈 ⊂ R𝑚 assigns to every point 𝑥 ∈ 𝑈 the symmetric bilinear form
ℎ𝑥 on R𝑚 defined by

ℎ𝑥 (𝜉, 𝜂) := 𝑔𝑥 (𝜉, 𝐿𝑥 (𝜂)) = −⟨𝑑𝑓𝑥 (𝜉), 𝑑𝜈𝑥 (𝜂)⟩

for 𝜉, 𝜂 ∈ R𝑚.

The matrix (ℎ𝑖 𝑗 (𝑥)) of ℎ𝑥 with respect to the canonical basis (𝑒1, . . . , 𝑒𝑚) of
R𝑚 is given by

ℎ𝑖 𝑗 (𝑥) = −⟨ 𝑓𝑖 (𝑥), 𝜈 𝑗 (𝑥)⟩ = ⟨ 𝑓𝑖 𝑗 (𝑥), 𝜈(𝑥)⟩.

We let (ℎ𝑖 𝑘 (𝑥)) denote the matrix of 𝐿𝑥 with respect to (𝑒1, . . . , 𝑒𝑚); by the
definitions, (𝑔𝑖 𝑗) (ℎ 𝑗

𝑘) = (ℎ𝑖𝑘) and hence (ℎ𝑖 𝑘) = (𝑔𝑖 𝑗) (ℎ 𝑗𝑘), thus

ℎ𝑖 𝑘 =

𝑚∑︁
𝑗=1
𝑔𝑖 𝑗ℎ 𝑗𝑘 .
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4.2 Curvature of hypersurfaces

The following lemma yields a geometric interpretation of the second fundamental
form.

4.4 Lemma (normal curvature) Suppose that 𝑀 ⊂ R𝑚+1 is an 𝑚-dimensional
submanifold with Gauss map 𝑁 , and 𝑋 ∈ 𝑇𝑀𝑝 is a unit vector. Then

ℎ𝑝 (𝑋, 𝑋) = ⟨𝑐′′(0), 𝑁 (𝑝)⟩

for every smooth curve 𝑐 : (−𝜖, 𝜖) → 𝑀 with 𝑐(0) = 𝑝 and 𝑐′(0) = 𝑋 .

The curve 𝑐 can be chosen such that it parametrizes the intersection of 𝑀 with
the normal plane 𝑝 + span(𝑋, 𝑁 (𝑝)) in a neighborhood of 𝑝. Then ℎ𝑝 (𝑋, 𝑋) =

⟨𝑐′′(0), 𝑁 (𝑝)⟩ equals the oriented curvature 𝜅or(0) of 𝑐 in this plane with positively
oriented basis (𝑋, 𝑁 (𝑝)). For this reason, ℎ𝑝 (𝑋, 𝑋) is called the normal curvature
of 𝑀 in direction 𝑋 .

Proof : Note that

ℎ𝑝 (𝑋, 𝑋) = −⟨𝑋, 𝑑𝑁𝑝 (𝑋)⟩ = −⟨𝑐′(0), (𝑁 ◦ 𝑐)′(0)⟩,

furthermore ⟨𝑐′, (𝑁 ◦ 𝑐)′⟩ + ⟨𝑐′′, 𝑁 ◦ 𝑐⟩ = ⟨𝑐′, 𝑁 ◦ 𝑐⟩′ = 0, thus

ℎ𝑝 (𝑋, 𝑋) = ⟨𝑐′′(0), (𝑁 ◦ 𝑐) (0)⟩ = ⟨𝑐′′(0), 𝑁 (𝑝)⟩

as claimed. □

Since the shape operator 𝐿𝑝 is self-adjoint with respect to 𝑔𝑝, it possesses𝑚 real
eigenvalues 𝜅1 ≤ . . . ≤ 𝜅𝑚, and there exists an orthornormal basis (𝑋1, . . . , 𝑋𝑚) of
𝑇𝑀𝑝 such that 𝐿𝑝 (𝑋 𝑗) = 𝜅 𝑗𝑋 𝑗 , thus

ℎ𝑝 (𝑋𝑖 , 𝑋 𝑗) = 𝑔𝑝 (𝑋𝑖 , 𝐿𝑝 (𝑋 𝑗)) = 𝜅 𝑗𝛿𝑖 𝑗 .

In particular, 𝜅 𝑗 is the normal curvature of 𝑀 in direction 𝑋 𝑗 .

4.5 Definition (principal curvatures) The 𝑚 real eigenvalues 𝜅1 ≤ . . . ≤ 𝜅𝑚 of
𝐿𝑝 are called principal curvatures of 𝑀 at 𝑝. Every eigenvector 𝑋 of 𝐿𝑝 with
|𝑋 | = 1 is called a principal curvature direction.

Analogously, for an immersion 𝑓 : 𝑈 → R𝑚+1 and a point 𝑥 ∈ 𝑈, the shape
operator 𝐿𝑥 has 𝑚 real eigenvalues 𝜅1 ≤ . . . ≤ 𝜅𝑚, the principal curvatures of 𝑓 ,
and there exists an orthonormal basis (𝜉1, . . . , 𝜉𝑚) of R𝑚 with respect to 𝑔𝑥 such
that 𝐿𝑥 (𝜉 𝑗) = 𝜅 𝑗𝜉 𝑗 and ℎ𝑥 (𝜉𝑖 , 𝜉 𝑗) = 𝜅 𝑗𝛿𝑖 𝑗 .

A point 𝑥 ∈ 𝑈 is called an umbilical point of 𝑓 if 𝜅1(𝑥) = . . . = 𝜅𝑚(𝑥) =: 𝜆;
equivalently, 𝐿𝑥 = 𝜆 idR𝑚 .
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4.6 Theorem (umbilical points) Let 𝑓 : 𝑈 → R𝑚+1 be an immersion of a con-
nected open set𝑈 ⊂ R𝑚 for 𝑚 ≥ 2. If every point 𝑥 ∈ 𝑈 is an umbilical point of 𝑓 ,
then the image 𝑓 (𝑈) is contained in an 𝑚-plane or an 𝑚-sphere.

Proof : We first show that the function 𝜆 : 𝑈 → R defined by 𝜆(𝑥) := 𝜅1(𝑥) = . . . =
𝜅𝑚(𝑥) is constant. Since

−𝑑𝜈𝑥 = 𝑑𝑓𝑥 ◦ 𝐿𝑥 = 𝜆(𝑥) 𝑑𝑓𝑥 ,

we have −𝜈𝑖 = 𝜆 𝑓𝑖 and −𝜈𝑖 𝑗 = 𝜆 𝑗 𝑓𝑖 + 𝜆 𝑓𝑖 𝑗 , hence 0 = 𝜈 𝑗𝑖 − 𝜈𝑖 𝑗 = 𝜆 𝑗 𝑓𝑖 − 𝜆𝑖 𝑓 𝑗 .
Since 𝑓1, . . . , 𝑓𝑚 are everywhere linearly independent, it follows that 𝑓𝑖 = 0 on 𝑈
for 𝑖 = 1, . . . , 𝑚. As𝑈 is connected, 𝜆 is constant as desired.

Now if 𝜆 = 0, then 𝑑𝜈𝑥 = 0 for all 𝑥 ∈ 𝑈, thus 𝜈 is constant. We conclude that
𝜕
𝜕𝑥𝑖

⟨ 𝑓 , 𝜈⟩ = ⟨ 𝑓𝑖 , 𝜈⟩ = 0, so ⟨ 𝑓 , 𝜈⟩ is constant, and 𝑓 (𝑈) is contained in an 𝑚-plane
perpendicular to 𝜈.

If 𝜆 ≠ 0, put 𝑧(𝑥) := 𝑓 (𝑥) + 1
𝜆
𝜈(𝑥) for all 𝑥 ∈ 𝑈. Then 𝑑𝑧𝑥 = 𝑑𝑓𝑥 + 1

𝜆
𝑑𝜈𝑥 = 0,

thus 𝑧 is constant, and | 𝑓 (𝑥) − 𝑧 | =
�� 1
𝜆

��. This shows that 𝑓 (𝑈) is contained in an
𝑚-sphere around 𝑧. □

4.7 Definition (Gauss curvature, mean curvature) Let 𝑀 ⊂ R𝑚+1 be an 𝑚-
dimensional submanifold. For 𝑝 ∈ 𝑀 ,

𝐾 (𝑝) := det(𝐿𝑝)

is called the Gauss–Kronecker curvature, in the case 𝑚 = 2 the Gauss curvature,
of 𝑀 at 𝑝, and

𝐻 (𝑝) :=
1
𝑚

trace(𝐿𝑝)

is the mean curvature curvature of 𝑀 at 𝑝.

For an immersion 𝑓 : 𝑈 → R𝑚+1 and a point 𝑥 ∈ 𝑈, one defines analogously
𝐾 (𝑥) := det(𝐿𝑥) and 𝐻 (𝑥) := 1

𝑚
trace(𝐿𝑥). Then

𝐾 = 𝜅1 · . . . · 𝜅𝑚 = det(ℎ𝑖 𝑘) = det((𝑔𝑖 𝑗) (ℎ 𝑗𝑘)) =
det(ℎ𝑖 𝑗)
det(𝑔𝑖 𝑗)

,

𝑚𝐻 = 𝜅1 + . . . + 𝜅𝑚 = trace(ℎ𝑖 𝑘) =
∑︁
𝑖

ℎ𝑖 𝑖 =
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗ℎ 𝑗𝑖 .

4.3 Gauss’s theorema egregium

In the following we write again 𝑓𝑖 for 𝜕 𝑓

𝜕𝑥𝑖
and 𝑓𝑖 𝑗 for 𝜕2 𝑓

𝜕𝑥 𝑗𝜕𝑥𝑖
, etc.

4.8 Lemma (derivatives of Gauss frame) Let 𝑈 ⊂ R𝑚 be an open set. For an
immersion 𝑓 : 𝑈 → R𝑚+1 with Gauss map 𝜈 : 𝑈 → 𝑆𝑚, the partial derivatives of
𝑓𝑖 and 𝜈 satisfy
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(1) (equations of Gauss)

𝑓𝑖 𝑗 =

𝑚∑︁
𝑘=1

Γ𝑘
𝑖 𝑗 𝑓𝑘 + ℎ𝑖 𝑗𝜈 (𝑖, 𝑗 = 1, . . . , 𝑚),

(2) (equations of Weingarten)

𝜈𝑘 = −
𝑚∑︁
𝑖=1

ℎ𝑖 𝑘 𝑓𝑖 = −
𝑚∑︁

𝑖, 𝑗=1
𝑔𝑖 𝑗ℎ 𝑗𝑘 𝑓𝑖 (𝑘 = 1, . . . , 𝑚).

Proof : Since 𝑓𝑖 𝑗 = ( 𝑓𝑖 𝑗)T + ⟨ 𝑓𝑖 𝑗 , 𝜈⟩ 𝜈, the definitions yield (1). For all 𝑥 ∈ 𝑈,

𝑑𝜈𝑥 (𝑒𝑘) = −𝑑𝑓𝑥 (𝐿𝑥 (𝑒𝑘)) = −𝑑𝑓𝑥
( 𝑚∑︁
𝑖=1

ℎ𝑖 𝑘 (𝑥)𝑒𝑖
)
= −

𝑚∑︁
𝑖=1

ℎ𝑖 𝑘 (𝑥) 𝑓𝑖 (𝑥),

which shows (2). □

These equations correspond to the Frenet equations of curve theory. For exam-
ple, when 𝑚 = 2, they can be written in matrix form as

𝜕

𝜕𝑥𝑘

©«
𝑓1
𝑓2
𝜈

ª®®¬ =
©«

Γ1
1𝑘 Γ2

1𝑘 ℎ1𝑘
Γ1

2𝑘 Γ2
2𝑘 ℎ2𝑘

−ℎ1
𝑘 −ℎ2

𝑘 0

ª®®¬
©«
𝑓1
𝑓2
𝜈

ª®®¬ .
We will now consider second derivatives of the vector fields 𝑓𝑘 . The identity

𝑓𝑘𝑖 𝑗 = 𝑓𝑘 𝑗𝑖 results in the following equations in the coefficients of the first and
second fundamental forms.

4.9 Theorem (integrability conditions) If 𝑓 : 𝑈 → R𝑚+1 is an immersion of an
open set𝑈 ⊂ R𝑚, then the following equations hold for all 𝑖, 𝑗 , 𝑘:

(1) (Gauss equations)

𝑅𝑠
𝑘𝑖 𝑗 = ℎ

𝑠
𝑖ℎ𝑘 𝑗 − ℎ𝑠 𝑗ℎ𝑘𝑖 =

𝑚∑︁
𝑙=1

𝑔𝑠𝑙
(
ℎ𝑙𝑖ℎ𝑘 𝑗 − ℎ𝑙 𝑗ℎ𝑘𝑖

)
(𝑠 = 1, . . . , 𝑚),

where

𝑅𝑠
𝑘𝑖 𝑗 :=

𝜕

𝜕𝑥𝑖
Γ𝑠
𝑘 𝑗 −

𝜕

𝜕𝑥 𝑗
Γ𝑠
𝑘𝑖 +

𝑚∑︁
𝑟=1

(
Γ𝑟
𝑘 𝑗Γ

𝑠
𝑟𝑖 − Γ𝑟

𝑘𝑖Γ
𝑠
𝑟 𝑗

)
,

(2) (Codazzi–Mainardi equation)

𝜕

𝜕𝑥𝑖
ℎ𝑘 𝑗 −

𝜕

𝜕𝑥 𝑗
ℎ𝑘𝑖 +

𝑚∑︁
𝑟=1

(
Γ𝑟
𝑘 𝑗ℎ𝑟𝑖 − Γ𝑟

𝑘𝑖ℎ𝑟 𝑗
)
= 0.
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For fixed indices 𝑖, 𝑗 , 𝑘 , the system (1) is equivalent to

𝑅𝑙𝑘𝑖 𝑗 :=
𝑚∑︁
𝑠=1

𝑔𝑙𝑠𝑅
𝑠
𝑘𝑖 𝑗 = ℎ𝑙𝑖ℎ𝑘 𝑗 − ℎ𝑙 𝑗ℎ𝑘𝑖 = det

(
ℎ𝑙𝑖 ℎ𝑙 𝑗

ℎ𝑘𝑖 ℎ𝑘 𝑗

)
(𝑙 = 1, . . . , 𝑚).

Proof : To simplify the notation, we will suppress the sum symbols and use the
convention that products containing the same index twice are summed over that
index from 1 to 𝑚.

Using Lemma 4.8, we get that 𝑓𝑘 𝑗 = Γ𝑟
𝑘 𝑗
𝑓𝑟 + ℎ𝑘 𝑗 𝜈 and

𝑓𝑘 𝑗𝑖 =
(
Γ𝑟
𝑘 𝑗 𝑓𝑟𝑖 + Γ𝑟

𝑘 𝑗,𝑖 𝑓𝑟
)
+
(
ℎ𝑘 𝑗 𝜈𝑖 + ℎ𝑘 𝑗,𝑖 𝜈

)
= Γ𝑟

𝑘 𝑗

(
Γ𝑠
𝑟𝑖 𝑓𝑠 + ℎ𝑟𝑖 𝜈

)
+ Γ𝑟

𝑘 𝑗,𝑖 𝑓𝑟 + ℎ𝑘 𝑗 (−ℎ
𝑠
𝑖 𝑓𝑠) + ℎ𝑘 𝑗,𝑖 𝜈.

We split this into the tangential and normal parts:

( 𝑓𝑘 𝑗𝑖)T =
(
Γ𝑟
𝑘 𝑗 Γ

𝑠
𝑟𝑖 + Γ𝑠

𝑘 𝑗,𝑖 − ℎ𝑘 𝑗 ℎ
𝑠
𝑖

)
𝑓𝑠,

( 𝑓𝑘 𝑗𝑖)⊥ =
(
Γ𝑟
𝑘 𝑗 ℎ𝑟𝑖 + ℎ𝑘 𝑗,𝑖

)
𝜈.

Now the relation ( 𝑓𝑘 𝑗𝑖)T−( 𝑓𝑘𝑖 𝑗)T = 0 is equivalent to (1), and ( 𝑓𝑘 𝑗𝑖)⊥−( 𝑓𝑘𝑖 𝑗)⊥ = 0
is equivalent to (2). □

The coefficients 𝑅𝑠
𝑘𝑖 𝑗 or 𝑅𝑙𝑘𝑖 𝑗 are the components of the Riemann curvature

tensor of 𝑓 (see Differential Geometry II). The Gauss equations for 𝑚 = 2 readily
imply the following fundamental result.

4.10 Theorem (Gauss’s theorema egregium) Let 𝑓 : 𝑈 → R3 be an immersion
of an open set𝑈 ⊂ R2. Then the Gauss curvature of 𝑓 is given by

𝐾 =
𝑅1212

det(𝑔𝑖 𝑗)
,

in particular 𝐾 is intrinsic, that is, computable entirely in terms of the first funda-
mental form.

Proof : By the definiton of 𝐾 and the Gauss equations as stated after Theorem 4.9,

𝐾 =
det(ℎ𝑖 𝑗)
det(𝑔𝑖 𝑗)

=
𝑅1212

det(𝑔𝑖 𝑗)
,

and 𝑅1212 is computable entirely in terms of 𝑔. □

In his fundamental investigation [Ga1828], Gauss derived the completely ex-
plicit formula

𝐾 =
1

4𝐷2
(
𝐸 (𝐺 2

1 − 𝐺2𝐴) + 𝐹 (𝐸1𝐺2 − 2𝐸2𝐺1 + 𝐴𝐵) + 𝐺 (𝐸 2
2 − 𝐸1𝐵)

)
− 1

2𝐷
(
𝐸22 − 2𝐹12 + 𝐺11

)
.

Here we are using the same notation as after Lemma 3.3, together with the abbre-
viations 𝐴 := 2𝐹1 − 𝐸2 and 𝐵 := 2𝐹2 − 𝐺1.
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4.11 Theorem (𝑔 and ℎ determine 𝑓 ) Suppose that𝑈 ⊂ R𝑚 is a connected open
set and 𝑓 , 𝑓 : 𝑈 → R𝑚+1 are two immersions with Gauss maps 𝜈, �̃� : 𝑈 → 𝑆𝑚

such that ( 𝑓1, . . . , 𝑓𝑚, 𝜈) and ( 𝑓1, . . . , 𝑓𝑚, �̃�) are positively oriented. If 𝑔 = �̃� and
ℎ = ℎ̃ on𝑈, then 𝑓 and 𝑓 agree up to an orientation preserving Euclidean isometry
𝐵 : R𝑚+1 → R𝑚+1, that is, 𝑓 = 𝐵 ◦ 𝑓 .

Proof : Let 𝐴 : 𝑈 → R (𝑚+1)×(𝑚+1) be the matrix function such that 𝐴(𝑥) 𝑓𝑖 (𝑥) =
𝑓𝑖 (𝑥) (𝑖 = 1, . . . , 𝑚) and 𝐴(𝑥) 𝜈(𝑥) = �̃�(𝑥) for all 𝑥 ∈ 𝑈. Note that

⟨𝐴 𝑓𝑖 , 𝐴 𝑓 𝑗⟩ = ⟨ 𝑓𝑖 , 𝑓 𝑗⟩ = �̃�𝑖 𝑗 = 𝑔𝑖 𝑗 = ⟨ 𝑓𝑖 , 𝑓 𝑗⟩,
⟨𝐴 𝑓𝑖 , 𝐴𝜈⟩ = ⟨ 𝑓𝑖 , �̃�⟩ = 0 = ⟨ 𝑓𝑖 , 𝜈⟩,
⟨𝐴𝜈, 𝐴𝜈⟩ = ⟨�̃�, �̃�⟩ = 1 = ⟨𝜈, 𝜈⟩,

and furthermore det(𝐴(𝑥)) > 0; thus 𝐴(𝑥) ∈ SO(𝑚 + 1) for all 𝑥 ∈ 𝑈. We want to
show that 𝐴 is constant. Since 𝑔 = �̃� and ℎ = ℎ̃, it follows from Lemma 4.8 that

𝑓𝑖 𝑗 =

𝑚∑︁
𝑘=1

Γ̃𝑘
𝑖 𝑗 𝑓𝑘 + ℎ̃𝑖 𝑗 �̃� =

𝑚∑︁
𝑘=1

Γ𝑘
𝑖 𝑗𝐴 𝑓𝑘 + ℎ𝑖 𝑗𝐴𝜈 = 𝐴 𝑓𝑖 𝑗 ,

�̃�𝑘 = −
𝑚∑︁

𝑖, 𝑗=1
�̃�𝑖 𝑗 ℎ̃ 𝑗𝑘 𝑓𝑖 = −

𝑚∑︁
𝑖, 𝑗=1

𝑔𝑖 𝑗ℎ 𝑗𝑘𝐴 𝑓𝑖 = 𝐴𝜈𝑘 .

On the other hand, 𝑓𝑖 𝑗 = (𝐴 𝑓𝑖) 𝑗 = 𝐴 𝑗 𝑓𝑖 + 𝐴 𝑓𝑖 𝑗 and �̃�𝑘 = (𝐴𝜈)𝑘 = 𝐴𝑘𝜈 + 𝐴𝜈𝑘
for all 𝑖, 𝑗 , 𝑘 . It follows that 𝐴𝑖 = 0 on 𝑈 for 𝑖 = 1, . . . , 𝑚, and since 𝑈 is
connnected, 𝐴 is constant as desired. Furthermore, 𝑓 − 𝐴 𝑓 is constant as well
because ( 𝑓 − 𝐴 𝑓 )𝑖 = 𝑓𝑖 − 𝐴 𝑓𝑖 = 0, and so 𝑓 = 𝐴 𝑓 + 𝑏 for some 𝑏 ∈ R𝑚+1. □

Given symmetric 𝐶∞ matrix functions (𝑔𝑖 𝑗 (·)) and (ℎ𝑖 𝑗 (·)) on an open set
𝑈 ⊂ R𝑚 such that (𝑔𝑖 𝑗 (𝑥)) is positive definite for every 𝑥 ∈ 𝑈, does there exist
an immersion with these fundamental forms? By the fundamental theorem of local
surface theory due to O. Bonnet, the following holds:

If (𝑔𝑖 𝑗) and (ℎ𝑖 𝑗) satisfy the integrability conditions of Theorem 4.9,
then for all 𝑥0 ∈ 𝑈, 𝑝0 ∈ R𝑚+1, and 𝑏1, . . . , 𝑏𝑚 ∈ R𝑚+1 with ⟨𝑏𝑖 , 𝑏 𝑗⟩ =
𝑔𝑖 𝑗 (𝑥0) there exists a connected open neighborhood 𝑈′ of 𝑥0 in 𝑈
and precisely one immersion 𝑓 : 𝑈′ → R𝑚+1 such that 𝑓 (𝑥0) = 𝑝0,
𝑓𝑖 (𝑥0) = 𝑏𝑖 for 𝑖 = 1, . . . , 𝑚, (𝑔𝑖 𝑗) is the first fundamental form of
𝑓 , and (ℎ𝑖 𝑗) is the second fundamental form of 𝑓 with respect to the
Gauss map 𝜈 : 𝑈′ → 𝑆𝑚 for which (𝑏1, . . . , 𝑏𝑚, 𝜈(𝑥0)) is positively
oriented.

(See [Ku] for a sketch of the proof.) Note that the uniqueness assertion follows
from Theorem 4.11.
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5 Special classes of surfaces

5.1 Geodesic parallel coordinates

In the following we will denote points in𝑈 ⊂ R2 by (𝑢, 𝑣) rather than 𝑥 = (𝑥1, 𝑥2),
and partial derivatives of functions on𝑈 by a respective subscript 𝑢 or 𝑣.

5.1 Proposition (geodesic parallel coordinates, Fermi coordinates) Let 𝐼, 𝐽 ⊂
R be two open intervals, and let 𝑓 be an immersion of 𝑈 := 𝐼 × 𝐽 into R3.
Then the following holds.

(1) The first fundamental form of 𝑓 satisfies 𝑔12 = 𝑔21 = 0 and 𝑔22 = 1 if and
only if the curves 𝑣 ↦→ 𝑓 (𝑢0, 𝑣) (for fixed 𝑢0) are unit speed geodesics that
intersect the curves 𝑢 ↦→ 𝑓 (𝑢, 𝑣0) (for fixed 𝑣0) orthogonally.

(2) If 𝐸 := 𝑔11, 𝑔12 = 𝑔21 = 0 and 𝑔22 = 1, then the Gauss curvature of 𝑓 is
given by

𝐾 = −
(√
𝐸
)
𝑣𝑣√
𝐸

=
𝐸 2
𝑣

4𝐸2 − 𝐸𝑣𝑣

2𝐸
.

(3) If, in addition, 0 ∈ 𝐽 and 𝑢 ↦→ 𝑓 (𝑢, 0) is a unit speed geodesic, then
𝐸 (𝑢, 0) = 1, 𝐸𝑢 (𝑢, 0) = 𝐸𝑣 (𝑢, 0) = 0, and Γ𝑘

𝑖 𝑗
(𝑢, 0) = 0 for all 𝑖, 𝑗 , 𝑘 and

𝑢 ∈ 𝐼.

Coordinates as in (1) and (2) or as in (3) are called geodesic parallel coordinates
or Fermi coordinates, respectively. For example, if 𝑣 ↦→ (𝑟 (𝑣), 𝑧(𝑣)) is a unit speed
curve in R2 with 𝑟 > 0, defined on some interval 𝐽, then the surface of revolution
𝑓 : R × 𝐽 → R3 defined by

𝑓 (𝑢, 𝑣) := (𝑟 (𝑣) cos(𝑢), 𝑟 (𝑣) sin(𝑢), 𝑧(𝑣))

is an immersion in geodesic parallel coordinates with 𝑔11 = 𝑟2 and 𝐾 = − 𝑟 ′′

𝑟
.

Proof : Evidently, 𝑔12 = 𝑔21 = 0 if and only the parameter lines intersect orthogo-
nally, and 𝑔22 = 1 if and only if the curves 𝑣 ↦→ 𝑓 (𝑢0, 𝑣) have unit speed. Thus,
for (1), it remains to show that every such curve 𝑐 : 𝑣 ↦→ 𝑓 (𝑢0, 𝑣) is a geodesic.
Let 𝛽 : [𝑎, 𝑏] → 𝑈, 𝛽(𝑡) = (𝑢(𝑡), 𝑣(𝑡)), be a smooth curve from 𝛽(𝑎) = (𝑢0, 𝑎) to
𝛽(𝑏) = (𝑢0, 𝑏), for any interval [𝑎, 𝑏] ⊂ 𝐽. Then

𝐿𝑔 (𝛽) =
∫ 𝑏

𝑎

√︃
𝑔11 ¤𝑢2 + ¤𝑣2 𝑑𝑡 ≥

∫ 𝑏

𝑎

¤𝑣 𝑑𝑡 = 𝑣(𝑏) − 𝑣(𝑎) = 𝑏 − 𝑎,

and so 𝐿 ( 𝑓 ◦ 𝛽) ≥ 𝐿 (𝑐 | [𝑎,𝑏]). Since this holds for all such curves 𝛽, it follows from
Theorem 3.10 that 𝑐 is a geodesic.
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If 𝐸 := 𝑔11, 𝑔12 = 𝑔21 = 0 and 𝑔22 = 1, then the only non-vanishing Christoffel
symbols are

Γ1
11 =

𝐸𝑢

2𝐸
, Γ1

12 = Γ1
21 =

𝐸𝑣

2𝐸
, Γ2

11 = −𝐸𝑣

2
.

Using Theorem 4.10 and the expression for 𝑅1
212 from Theorem 4.9, we get

𝐾 =
𝑅1212
𝐸

=
1
𝐸

2∑︁
𝑠=1

𝑔1𝑠𝑅
𝑠

212 = 𝑅1
212 = −

(
Γ1

12
)
𝑣
−
(
Γ1

12
)2

=
𝐸 2
𝑣

4𝐸2 − 𝐸𝑣𝑣

2𝐸
= −

(√
𝐸
)
𝑣𝑣√
𝐸

,

showing (2).
As for (3), if 𝑢 ↦→ 𝑓 (𝑢, 0) is a unit speed geodesic, then 𝐸 (𝑢, 0) = 1 and, by

the geodesic equation, Γ𝑘
11(𝑢, 0) = 0 for 𝑘 = 1, 2. In view of the above list of the

Christoffel symbols, the result follows. □

5.2 Theorem (existence of geodesic parallel coordinates) Suppose that 𝑀 ⊂ R3

is a 2-dimensional submanifold and 𝑧 : (−𝜖, 𝜖) → 𝑀 is a regular smooth curve.
Then there exist 𝛿 ∈ (0, 𝜖) and a local parametrization 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀

on 𝑈 := (−𝛿, 𝛿)2 such that 𝑔12 = 𝑔21 = 0, 𝑔22 = 1, and 𝑓 (𝑢, 0) = 𝑧(𝑢) for all
𝑢 ∈ (−𝛿, 𝛿).

In particular, by choosing the initial curve 𝑧 to be a geodesic, we obtain local
Fermi coordinates.

Proof : Choose a smooth unit vector field 𝑋 : (−𝜖, 𝜖) → R3 such that 𝑋 (𝑢) ∈
𝑇𝑀𝑧 (𝑢) and ⟨𝑧′(𝑢), 𝑋 (𝑢)⟩ = 0. For every 𝑢 ∈ (−𝜖, 𝜖), let 𝑐𝑢 : 𝐼𝑢 → 𝑀 be the
maximal geodesic with 𝑐𝑢 (0) = 𝑧(𝑢) and ¤𝑐𝑢 (0) = 𝑋 (𝑢) (Theorem 3.8). Put
𝑓 (𝑢, 𝑣) := 𝑐𝑢 (𝑣) for all (𝑢, 𝑣) with 𝑢 ∈ (−𝜖, 𝜖) and 𝑣 ∈ 𝐼𝑢. Since the geodesics
𝑐𝑢 depend smoothly on their initial conditions, 𝑓 is defined and smooth in an open
neighborhood �̂� of (0, 0). Furthermore, 𝑑 𝑓(0,0) is injective, hence there exists
𝑈 = (−𝛿, 𝛿)2 ⊂ �̂� such that 𝑓 := 𝑓 |𝑈 is a local parametrization of 𝑀 (compare
Theorem 2.4).

By construction, 𝑔22 = 1 on 𝑈 and 𝑔12(𝑢, 0) = ⟨𝑧′(𝑢), 𝑋 (𝑢)⟩ = 0 for all
𝑢 ∈ (−𝛿, 𝛿). For a fixed 𝑣 ∈ (0, 𝛿), the geodesics 𝑐𝑢 | [0,𝑣 ] have constant length 𝑣, so
it follows from Theorem 3.10 that 𝑔12(𝑢, 𝑣) =

〈 𝜕 𝑓

𝜕𝑢
(𝑢, 𝑣), ¤𝑐𝑢 (𝑣)

〉
= 0 for all 𝑢, and

an analogous argument applies if 𝑣 ∈ (−𝛿, 0). □
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5.2 Surfaces with constant Gauss curvature

For 𝜅 ∈ R, we define the functions cs𝜅 , sn𝜅 : R → R by

cs𝜅 (𝑠) :=


cos(

√
𝜅𝑠) if 𝜅 > 0,

1 if 𝜅 = 0,
cosh(

√︁
|𝜅 |𝑠) if 𝜅 < 0;

sn𝜅 (𝑠) :=


1√
𝜅

sin(
√
𝜅𝑠) if 𝜅 > 0,

𝑠 if 𝜅 = 0,
1√
|𝜅 |

sinh(
√︁
|𝜅 |𝑠) if 𝜅 < 0.

This is a fundamental system of solutions of the equation 𝑓 ′′ + 𝜅 𝑓 = 0 with
cs𝜅 (0) = 1, cs ′𝜅 (0) = 0 and sn𝜅 (0) = 0, sn ′

𝜅 (0) = 1.

5.3 Proposition (constant curvature in Fermi coordinates) If 𝑓 : 𝑈 → R3 is an
immersion of 𝑈 = 𝐼 × 𝐽 in Fermi coordinates with constant Gauss curvature
𝐾 ≡ 𝜅 ∈ R, then 𝐸 (𝑢, 𝑣) = 𝑔11(𝑢, 𝑣) = cs𝜅 (𝑣)2 for all (𝑢, 𝑣) ∈ 𝑈.

Proof : By Proposition 5.1, (√
𝐸
)
𝑣𝑣

+ 𝜅
√
𝐸 = 0,

furthermore
√
𝐸 (𝑢, 0) = 1 and

(√
𝐸
)
𝑣
(𝑢, 0) = 𝐸𝑣 (𝑢, 0)/

(
2
√︁
𝐸 (𝑢, 0)

)
= 0. It

follows that
√
𝐸 (𝑢, 𝑣) = cs𝜅 (𝑣) for all (𝑢, 𝑣) ∈ 𝑈. □

5.4 Theorem (constant Gauss curvature) Let 𝑀, �̄� ⊂ R3 be two surfaces with
Gauss curvatures 𝐾 : 𝑀 → R and �̄� : �̄� → R. Then the following are equivalent:

(1) 𝐾 ≡ 𝑘 ≡ �̄� for some constant 𝑘 ∈ R;

(2) For every pair of points 𝑝 ∈ 𝑀 and 𝑝 ∈ �̄� there exist an open neighborhood
𝑈 ⊂ R2 of 0 and local parametrizations 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 and 𝑓 : 𝑈 →
𝑓 (𝑈) ⊂ �̄� such that 𝑓 (0) = 𝑝, 𝑓 (0) = 𝑝, and 𝑔 = �̄� on𝑈; that is, 𝑀 and �̄�
are everywhere locally isometric.

Proof : For (1) ⇒ (2), introduce local Fermi coordinates around 𝑝 and 𝑝 according
to Theorem 5.2. By Proposition 5.3, 𝑔 = �̄�.

Conversely, if 𝑔 = �̄� for local parametrizations around 𝑝 and 𝑝, then 𝐾 (𝑝) =
�̄� (𝑝) by Theorem 4.10. As 𝑝 ∈ 𝑀 and 𝑝 ∈ �̄� are arbitrary, (1) follows. □
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5.3 Ruled surfaces

Suppose that 𝑐 : 𝐼 → R3 is a 𝐶2 curve and 𝑋 : 𝐼 → R3 is a nowhere vanishing 𝐶2

vector field, where 𝑋 (𝑠) is viewed as a vector at the point 𝑐(𝑠). A map of the form

𝑓 : 𝐼 × 𝐽 → R3, 𝑓 (𝑠, 𝑡) = 𝑐(𝑠) + 𝑡𝑋 (𝑠),

for some interval 𝐽 ⊂ R, is called a ruled surface, regardless of the fact that 𝑓 is
possibly not regular (immersive). The curve 𝑐 is called a directrix of 𝑓 , and the
lines 𝑡 ↦→ 𝑓 (𝑠0, 𝑡) (for fixed 𝑠0) are called the rulings of 𝑓 . Intuitively, 𝑓 is a surface
generated by the motion of a line or line segment in R3. In regions where 𝑓 is
immersive, the Gauss curvature satisfies

𝐾 =
det(ℎ𝑖 𝑗)
det(𝑔𝑖 𝑗)

=
−ℎ2

12
det(𝑔𝑖 𝑗)

≤ 0,

with 𝐾 ≡ 0 if and only if the Gauss map 𝜈 is (locally) constant along the rulings:
ℎ12 = −⟨ 𝑓1, 𝜈2⟩ = 0 is equivalent to 𝜈2 = 0, because ⟨𝜈, 𝜈2⟩ = 0 and ⟨ 𝑓2, 𝜈2⟩ =

−⟨ 𝑓22, 𝜈⟩ = 0.

5.5 Theorem (rulings in flat surfaces) Suppose that 𝑉 ⊂ R2 is an open set, and
𝑓 : 𝑉 → R3 is an immersion with vanishing Gauss curvature �̃� ≡ 0 and without
planar points (that is, points where both principal curvatures are zero). Then 𝑓

can everywhere locally be reparametrized as a ruled surface.

The proof uses Lemma A.5.

Proof : Since �̃� ≡ 0 and 𝑓 has no planar points, there are precisely two orthogonal
principal curvature directions at every 𝑦 ∈ 𝑉 , up to choice of signs. Thus, given
a point 𝑦0 ∈ 𝑉 , in a neighborhood of 𝑦0 there exist vector fields 𝑋1, 𝑋2 with
�̃�(𝑋1, 𝑋2) = 0 such that �̃�(𝑋𝑖 , 𝑋𝑖) = 1 and ℎ̃(𝑋𝑖 , 𝑋𝑖) = 𝜅𝑖 for 𝑖 = 1, 2, where
𝜅1 ≠ 0 = 𝜅2. By Lemma A.5 there exists a diffeomorphism

𝜑 : 𝑈 = (−𝜖, 𝜖)2 → 𝜑(𝑈) ⊂ 𝑉

with 𝜑(0, 0) = 𝑦0 such that the immersion 𝑓 = 𝑓 ◦ 𝜑 satisfies 𝐿 (𝑠,𝑡 )𝑒𝑖 = 𝜅𝑖𝑒𝑖 for all
(𝑠, 𝑡) ∈ 𝑈 (a parametrization by lines of curvature), where 𝜅1 ≠ 0 = 𝜅2. Assume
in addition that the curve 𝑡 ↦→ 𝑓 (0, 𝑡) has unit speed (precompose 𝜑 with a suitable
map, sending horizontal segments to horizontal segments.) We want to show that
𝑓22 = 0 everywhere on𝑈. Notice first that

⟨ 𝑓22, 𝜈⟩ = ℎ22 = 𝑔(𝑒2, 𝜅2𝑒2) = 0.

Furthermore, by construction, 𝜈1 = −𝜅1 𝑓1 and 𝜈2 = 0, hence 𝜈12 = 𝜈21 = 0 and

𝜅1⟨ 𝑓22, 𝑓1⟩ = ⟨ 𝑓2, 𝜅1 𝑓1⟩2 + ⟨ 𝑓2, 𝜈12⟩ = 0.
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In particular, ⟨ 𝑓2, 𝑓2⟩1 = 2⟨ 𝑓2, 𝑓12⟩ = 2⟨ 𝑓2, 𝑓1⟩2 − 2⟨ 𝑓22, 𝑓1⟩ = 0. Since ⟨ 𝑓2, 𝑓2⟩ = 1
along the 𝑡-axis, it follows that ⟨ 𝑓2, 𝑓2⟩ = 1 on𝑈, and

2⟨ 𝑓22, 𝑓2⟩ = ⟨ 𝑓2, 𝑓2⟩2 = 0.

This shows that 𝑓22 = 0 on 𝑈 as desired. Hence, 𝑓 (𝑠, 𝑡) = 𝑓 (𝑠, 0) + 𝑡 𝑓2(𝑠, 0) =

𝑐(𝑠) + 𝑡𝑋 (𝑠). □

5.4 Minimal surfaces

An 𝑚-dimensional submanifold 𝑀 ⊂ R𝑚+1 or an immersion 𝑓 : 𝑈 → R𝑚+1 of an
open set𝑈 ⊂ R𝑚 is called minimal if its mean curvature 𝐻 is identically zero.

5.6 Theorem (first variation of area) Let𝑈 ⊂ R𝑚 be an open set, and let 𝑓 : 𝑈 →
R𝑚+1 be an immersion with Gauss map 𝜈 : 𝑈 → 𝑆𝑚 and finite 𝑚-dimensional area

𝐴( 𝑓 ) =
∫
𝑈

𝑑𝐴 =

∫
𝑈

√︃
det(𝑔𝑖 𝑗 (𝑥)) 𝑑𝑥 < ∞.

If 𝜑 : 𝑈 → R is a smooth function with compact support, then
𝑑

𝑑𝑠

���
𝑠=0
𝐴( 𝑓 + 𝑠 𝜑 𝜈) = −𝑚

∫
𝑈

𝜑 𝐻 𝑑𝐴.

In particular, 𝑓 is minimal if and only if 𝑑
𝑑𝑠

��
𝑠=0 𝐴( 𝑓 + 𝑠 𝜑 𝜈) = 0 for all such

functions 𝜑.

Proof : We write 𝑓 𝑠 := 𝑓 + 𝑠 𝜑 𝜈 and 𝑔𝑠
𝑗𝑘

:= ⟨ 𝑓 𝑠
𝑗
, 𝑓 𝑠

𝑘
⟩. Then

𝑔𝑠𝑗𝑘 =
〈
𝑓 𝑗 + 𝑠 𝜑 𝜈 𝑗 + 𝑠 𝜑 𝑗 𝜈, 𝑓𝑘 + 𝑠 𝜑 𝜈𝑘 + 𝑠 𝜑𝑘 𝜈

〉
= 𝑔 𝑗𝑘 − 2𝑠 𝜑 ℎ 𝑗𝑘 +𝑂 (𝑠2),

in particular 𝑓 𝑠 is an immersion for 𝑠 small enough. Furthermore,
𝑚∑︁
𝑗=1
𝑔𝑖 𝑗𝑔𝑠𝑗𝑘 = 𝛿𝑖 𝑘 − 2𝑠 𝜑 ℎ𝑖 𝑘 +𝑂 (𝑠2).

Using the identity 𝑑
𝑑𝑠

��
𝑠=0 det(𝐼 + 𝑠𝐻) = trace(𝐻) for the matrix 𝐻 = (ℎ𝑖 𝑘), we get

det(𝑔𝑖 𝑗) 𝑑
𝑑𝑠

���
𝑠=0

det
(
𝑔𝑠𝑗𝑘

)
=
𝑑

𝑑𝑠

���
𝑠=0

det
(
𝛿𝑖 𝑘 − 2𝑠 𝜑 ℎ𝑖 𝑘

)
= −2𝜑 trace(ℎ𝑖 𝑘) = −2𝑚 𝜑 𝐻.

Differentiating under the integral, we conclude that
𝑑

𝑑𝑠

���
𝑠=0
𝐴( 𝑓 𝑠) = 𝑑

𝑑𝑠

���
𝑠=0

∫
𝑈

√︃
det

(
𝑔𝑠
𝑗𝑘

)
𝑑𝑥

=

∫
𝑈

det(𝑔𝑖 𝑗)
2
√︁

det(𝑔 𝑗𝑘)
(−2𝑚 𝜑 𝐻) 𝑑𝑥 = −𝑚

∫
𝑈

𝜑 𝐻 𝑑𝐴

as claimed. □
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An immersion 𝑓 : 𝑈 → R3 is called isothermal or conformal if (𝑔𝑖 𝑗) = 𝜆2(𝛿𝑖 𝑗)
for some function 𝜆 : 𝑈 → R; equivalently, 𝑓 is angle preserving (exercise).

5.7 Proposition (isothermal minimal surface) Let 𝑈 ⊂ R2 be an open set, and
let 𝑓 : 𝑈 → R3 be an immersion with Gauss map 𝜈 : 𝑈 → 𝑆2. If 𝑓 is isothermal,
(𝑔𝑖 𝑗) = 𝜆2(𝛿𝑖 𝑗), then

Δ 𝑓 := 𝑓11 + 𝑓22 = 2𝜆2𝐻 𝜈;

thus 𝑓 is minimal if and only if the coordinate functions 𝑓 1, 𝑓 2, 𝑓 3 are harmonic.

Proof : Differentiating the relations ⟨ 𝑓1, 𝑓1⟩ = ⟨ 𝑓2, 𝑓2⟩ and ⟨ 𝑓1, 𝑓2⟩ = 0 we get

⟨ 𝑓11, 𝑓1⟩ = ⟨ 𝑓21, 𝑓2⟩ = ⟨ 𝑓12, 𝑓2⟩ = −⟨ 𝑓1, 𝑓22⟩.

Thus ⟨ 𝑓11 + 𝑓22, 𝑓1⟩ = 0 and likewise ⟨ 𝑓11 + 𝑓22, 𝑓2⟩ = 0, which shows that 𝑓11 + 𝑓22
is normal. Since

𝐻 =
1
2

2∑︁
𝑖, 𝑗=1

𝑔𝑖 𝑗ℎ 𝑗𝑖 =
1

2𝜆2 (ℎ11 + ℎ22) =
1

2𝜆2 ⟨ 𝑓11 + 𝑓22, 𝜈⟩,

it follows that 2𝜆2𝐻 𝜈 = ( 𝑓11 + 𝑓22)⊥ = 𝑓11 + 𝑓22. □

For the next result we use the following notation. Let 𝑈 ⊂ R2 be an open set,
and let 𝑓 ∈ 𝐶∞(𝑈,R3), 𝑓 (𝑢, 𝑣) = ( 𝑓 1(𝑢, 𝑣), 𝑓 2(𝑢, 𝑣), 𝑓 3(𝑢, 𝑣)). We view 𝑈 as a
subset of C and define 𝜑 = (𝜑1, 𝜑2, 𝜑3) : 𝑈 → C3 by

𝜑𝑘 (𝑢 + 𝑖𝑣) :=
𝜕 𝑓 𝑘

𝜕𝑢
(𝑢, 𝑣) − 𝑖 𝜕 𝑓

𝑘

𝜕𝑣
(𝑢, 𝑣),

𝑘 = 1, 2, 3. Here 𝑓 is not assumed to be an immersion, nevertheless we may say that
𝑓 is conformal or minimal (meaning that 𝐻 = 0 at points where 𝑓 is immersive).

5.8 Theorem (complexification) With the above notation, the following holds.

(1) The map 𝑓 is conformal if and only if
∑3

𝑘=1(𝜑𝑘)2 = 0 on𝑈.

(2) If 𝑓 is conformal, then 𝑓 is an immersion if and only if
∑3

𝑘=1 |𝜑𝑘 |2 > 0 on𝑈
and 𝑓 is minimal if and only if 𝜑1, 𝜑2, 𝜑3 are holomorphic.

(3) If 𝑈 ⊂ C is a simply connected open set, and if 𝜑1, 𝜑2, 𝜑3 : 𝑈 → C are
holomorphic functions such that

∑3
𝑘=1(𝜑𝑘)2 = 0 and

∑3
𝑘=1 |𝜑𝑘 |2 > 0 on 𝑈,

then the map 𝑓 = ( 𝑓 1, 𝑓 2, 𝑓 3) : 𝑈 → R3 defined by

𝑓 𝑘 (𝑢, 𝑣) := Re
∫ 𝑢+𝑖𝑣

𝑧0

𝜑𝑘 (𝑧) 𝑑𝑧

for any 𝑧0 ∈ 𝑈 is a conformal and minimal immersion.
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Proof : □

Triples of holomorphic functions as above can be found as follows. Suppose
that 𝐹 : 𝑈 → C is holomorphic, 𝐺 : 𝑈 → C ∪ {∞} is meromorphic, and 𝐹𝐺2 is
holomorphic. Put

𝜑1 :=
1
2
𝐹 (1 − 𝐺2), 𝜑2 :=

𝑖

2
𝐹 (1 + 𝐺2), 𝜑3 := 𝐹𝐺;

then it follows that
∑3

𝑘=1(𝜑𝑘)2 = 0, and 𝜑1, 𝜑2, 𝜑3 are holomorphic. By inserting
these functions 𝜑𝑘 into the above definition of 𝑓 𝑘 one obtains the so-called Weier-
strass representation of a minimal surface 𝑓 . Every non-planar minimal surface
can locally be written in this form.

5.5 Surfaces of constant mean curvature

5.9 Theorem (Alexandrov–Hopf) Suppose that ∅ ≠ 𝑀 ⊂ R𝑚+1 is a compact and
connected 𝑚-dimensional submanifold with constant mean curvature 𝐻. Then 𝑀
is a sphere of radius 1/|𝐻 |.

The theorem is no longer true for immersed surfaces in R3. This was shown by
Wente [We1986], who constructed an immersed torus of constant mean curvature.

Proof (sketch): Fix a direction 𝑣 ∈ 𝑆𝑚. For 𝑟 ∈ R, let 𝑀𝑟 be the image of 𝑀 under
the reflection of R𝑚+1 with respect to the affine hyperplane 𝐸𝑟 := {𝑥 ∈ R𝑚+1 :
⟨𝑥, 𝑣⟩ = 𝑟}. Let 𝐶 denote the union of 𝑀 with its interior domain, and define
𝑀+

𝑟 := 𝑀𝑟 ∩ {⟨𝑥, 𝑣⟩ ≥ 𝑟}. Put 𝑠 := max{𝑟 : 𝑀+
𝑟 ⊂ 𝐶}. Then there exists a point

𝑝 ∈ 𝑀 ∩ 𝑀+
𝑠 with 𝑇𝑀𝑝 = 𝑇 (𝑀+

𝑠 )𝑝. In a neighborhood of 𝑝, 𝑀 and 𝑀+
𝑠 may be

represented as graphs over 𝑝 + 𝑇𝑀𝑝. This gives functions 𝑓 , 𝑓 : 𝑈 → R on some
open neighborhood 𝑈 ⊂ R𝑚 of 0 such that 𝑓 (0) = 𝑓 (0), ∇ 𝑓 (0) = ∇ 𝑓 (0) = 0, and
𝑓 ≥ 𝑓 , as 𝑀+

𝑠 ⊂ 𝐶. (It could happen that 𝑝 ∈ 𝐸𝑠. Then 𝑓 ≥ 𝑓 possibly only on a
half-space of R𝑚, and additional arguments are required.) Notice that

div
(

∇ 𝑓√︁
1 + |∇ 𝑓 |2

)
= 𝑚𝐻 = div

(
∇ 𝑓√︁

1 + |∇ 𝑓 |2

)
on 𝑈. Since 𝑓 ≥ 𝑓 , it follows from the maximum principle for elliptic PDEs that
𝑓 = 𝑓 . This shows that the set of contact points 𝑀 ∩ 𝑀+

𝑠 is open in 𝑀+
𝑠 , and

obviously also closed. Hence, the connected component of 𝑀+
𝑠 that contains 𝑝

belongs to 𝑀 . Since 𝑀 is connected, 𝑀𝑠 = 𝑀 .
This argument applies to every 𝑣 ∈ 𝑆𝑚 and shows that there exists an 𝑠 = 𝑠(𝑣) ∈

R such that 𝑀 is symmetric with respect to the hyperplane 𝐸𝑣,𝑠 := {𝑥 ∈ R𝑚+1 :
⟨𝑥, 𝑣⟩ = 𝑠}. Now it is an exercise to conclude that 𝑀 is a sphere. □

35



6 Global surface theory

6.1 The Gauss–Bonnet theorem

6.1 Definition (geodesic curvature) Suppose that 𝑓 : 𝑈 → R3 is an immersion
of an open set 𝑈 ⊂ R2 and 𝛾 : 𝐼 → 𝑈 is a 𝐶2 curve such that 𝑐 := 𝑓 ◦ 𝛾
is parametrized by arc length. Put 𝑒1(𝑠) := 𝑐′(𝑠) and choose 𝑒2(𝑠) such that
(𝑒1(𝑠), 𝑒2(𝑠)) is a positively oriented orthonormal basis of 𝑑𝑓𝛾 (𝑠) (R2) (equivalent
to ( 𝑓1 ◦ 𝛾(𝑠), 𝑓2 ◦ 𝛾(𝑠))). Then

𝜅g(𝑠) := ⟨𝑒 ′1 (𝑠), 𝑒2(𝑠)⟩ =
〈 𝐷
𝑑𝑠
𝑐′(𝑠), 𝑒2(𝑠)

〉
defines the geodesic curvature of 𝑐 at 𝑠 (relative to 𝑓 ).

If 𝜈 = ( 𝑓1 × 𝑓2)/| 𝑓1 × 𝑓2 | is the Gauss map of 𝑓 , then there is a decomposition

𝑐′′ = ⟨𝑐′′, 𝑒1⟩ 𝑒1 + ⟨𝑐′′, 𝑒2⟩ 𝑒2 + ⟨𝑐′′, 𝜈 ◦ 𝛾⟩ 𝜈 ◦ 𝛾,

where ⟨𝑐′′, 𝑒1⟩ = ⟨𝑐′′, 𝑐′⟩ = 0 and ⟨𝑐′′, 𝜈 ◦ 𝛾⟩ =: 𝜅n is the normal curvature of 𝑐
relative to 𝑓 (compare Lemma 4.4). Thus 𝑐′′ = 𝜅g 𝑒2 + 𝜅n 𝜈 ◦ 𝛾 and

𝜅2 = |𝑐′′ |2 = 𝜅 2
g + 𝜅 2

n ,

where 𝜅 is the curvature of 𝑐 as a space curve.

6.2 Lemma (geodesic curvature in geodesic parallel coordinates) Suppose that
𝑓 : 𝑈 → R3 is an immersion with 𝐸 := 𝑔11, 𝑔12 = 𝑔21 = 0 and 𝑔22 = 1, and
𝛾 : 𝐼 → 𝑈 is a 𝐶2 curve such that 𝑐 := 𝑓 ◦ 𝛾 is parametrized by arc length. Write
𝛾(𝑠) = (𝑢(𝑠), 𝑣(𝑠)), and let 𝜑 : 𝐼 → R be a continuous function such that

𝛾′(𝑠) = (𝑢′(𝑠), 𝑣′(𝑠)) =
(

cos(𝜑(𝑠))√︁
𝐸 (𝛾(𝑠))

, sin(𝜑(𝑠))
)

for all 𝑠 ∈ 𝐼 (note that |𝛾′(𝑠) |𝑔 = 1). Then

𝜅g(𝑠) = 𝜑′(𝑠) −
(√
𝐸
)
𝑣
(𝛾(𝑠)) 𝑢′(𝑠)

for all 𝑠 ∈ 𝐼.

Proof : For every 𝑠 ∈ 𝐼, we introduce the orthonormal basis

(𝑋1(𝑠), 𝑋2(𝑠)) :=
(
𝑓1(𝛾(𝑠))√︁
𝐸 (𝛾(𝑠))

, 𝑓2(𝛾(𝑠))
)

of the tangent space 𝑑𝑓𝛾 (𝑠) (R2). The rotated frame (𝑒1(𝑠), 𝑒2(𝑠)) with 𝑒1(𝑠) = 𝑐′(𝑠)
is then given by

𝑒1 = cos(𝜑) 𝑋1 + sin(𝜑) 𝑋2, 𝑒2 = − sin(𝜑) 𝑋1 + cos(𝜑) 𝑋2;
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furthermore 𝑐′′ = 𝜑′ 𝑒2 + cos(𝜑) 𝑋 ′
1 + sin(𝜑) 𝑋 ′

2 . Using that ⟨𝑋𝑖 , 𝑋 ′
𝑖
⟩ = 0 and

⟨𝑋 ′
1 , 𝑋2⟩ + ⟨𝑋 ′

2 , 𝑋1⟩ = ⟨𝑋1, 𝑋2⟩′ = 0, we obtain

𝜅g = ⟨𝑐′′, 𝑒2⟩ = 𝜑′ + cos(𝜑)2 ⟨𝑋 ′
1 , 𝑋2⟩ − sin(𝜑)2 ⟨𝑋 ′

2 , 𝑋1⟩

= 𝜑′ − ⟨𝑋1, 𝑋
′

2 ⟩ = 𝜑
′ −

〈
𝑋1,

𝐷

𝑑𝑠
𝑋2

〉
.

From the proof of Proposition 5.1 we know that Γ1
21 = 𝐸𝑣/(2𝐸) and Γ1

22 = 0, so
Theorem 3.5 gives〈

𝑋1,
𝐷

𝑑𝑠
𝑋2

〉
=

〈
𝑋1, 𝑢

′ (Γ1
21 ◦ 𝛾) ( 𝑓1 ◦ 𝛾)

〉
=

〈
𝑋1, 𝑢

′
(
𝐸𝑣

2
√
𝐸

◦ 𝛾
)
𝑋1

〉
,

and the result follows. □

6.3 Theorem (Gauss–Bonnet, local version) Let 𝑀 ⊂ R3 be a surface. Suppose
that �̄� ⊂ 𝑀 is a compact set homeomorphic to a disc such that 𝜕�̄� is the trace of
a piecewise smooth, simple closed unit speed curve 𝑐 : [0, 𝐿] → 𝑀 , with exterior
angles 𝛼1, . . . , 𝛼𝑟 ∈ [−𝜋, 𝜋] at the vertices of �̄�. Let 𝜅g(𝑠) = ⟨𝑐′′(𝑠), 𝑒2(𝑠)⟩ denote
the geodesic curvature of 𝑐 (where 𝑐′′(𝑠) exists) with respect to the normal 𝑒2(𝑠)
pointing to the interior of �̄�. Then∫

�̄�

𝐾 𝑑𝐴 +
∫ 𝐿

0
𝜅g(𝑠) 𝑑𝑠 +

𝑟∑︁
𝑖=1

𝛼𝑖 = 2𝜋.

By definition, the exterior angle 𝛼𝑖 ∈ [−𝜋, 𝜋] at a vertex of �̄� is the complement
𝛼𝑖 = 𝜋 − 𝛽𝑖 of the [0, 2𝜋] valued interior angle 𝛽𝑖 of �̄�. If the boundary of �̄� is
piecewise geodesic, then 𝛽𝑖 ∈ (0, 2𝜋) and 𝛼𝑖 ∈ (−𝜋, 𝜋).

Proof : Part I. Suppose first that �̄� is contained in the image of some local
parametrization 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 in geodesic parallel coordinates. Put 𝐷 :=
𝑓 −1(�̄�) and 𝛾 := 𝑓 −1 ◦ 𝑐, and suppose further that 𝛾 is positively oriented with
respect to 𝐷. We write again (𝑢, 𝑣) for points in 𝑈, and 𝛾(𝑠) = (𝑢(𝑠), 𝑣(𝑠)) for
all 𝑠 ∈ [0, 𝐿]. Let 0 < 𝑠1 < . . . < 𝑠𝑟 < 𝐿 be the parameter values of the vertices
𝑐(𝑠𝑖) of �̄� (without loss of generality, 𝑐 is smoothly closed at 𝑐(0) = 𝑐(𝐿)). Since
det(𝑔𝑖 𝑗) = 𝐸 , and by Proposition 5.1, we get∫

�̄�

𝐾 𝑑𝐴 =

∫
𝐷

𝐾
√
𝐸 𝑑 (𝑢, 𝑣) =

∫
𝐷

−
(√
𝐸
)
𝑣𝑣
𝑑 (𝑢, 𝑣).

The last integrand equals the rotation of the planar vector field
( (√

𝐸
)
𝑣
, 0
)
. Thus,

using Green’s formula and Lemma 6.2, we conclude further that∫
�̄�

𝐾 𝑑𝐴 =

∫ 𝐿

0

(√
𝐸
)
𝑣
(𝛾(𝑠)) 𝑢′(𝑠) 𝑑𝑠 =

∫ 𝐿

0
𝜑′(𝑠) − 𝜅g(𝑠) 𝑑𝑠
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for any continuous angle function 𝜑 : [0, 𝐿] \ {𝑠1, . . . , 𝑠𝑟 } → R for 𝛾′ as in the
lemma. This function can be chosen such that

𝛼𝑖 = lim
𝑠→𝑠𝑖+

𝜑(𝑠) − lim
𝑠→𝑠𝑖−

𝜑(𝑠)

for 𝑖 = 1, . . . , 𝑟 . Then it follows that∫ 𝐿

0
𝜑′(𝑠) 𝑑𝑠 +

𝑟∑︁
𝑖=1

𝛼𝑖 = 𝜑(𝐿) − 𝜑(0) = 2𝜋 𝑛

for some integer 𝑛, and it remains to show that 𝑛 = 1. In the case 𝑔11 = 1, when
𝑔 is the Euclidean metric ⟨· , ·⟩, this is just Theorem 1.6, generalized to piecewise
smooth curves. In the general case, consider the interpolating family of metrics
𝑔𝑡 = (1 − 𝑡)⟨· , ·⟩ + 𝑡𝑔 on 𝑈 for 𝑡 ∈ [0, 1]. With respect to every 𝑔𝑡 , it follows
as above that the right side of the desired identity equals 2𝜋 𝑛(𝑡) for some integer
𝑛(𝑡). Clearly 𝑛(𝑡) is continuous in 𝑡, and 𝑛(0) = 1, so 𝑛 = 𝑛(1) = 1 as well. This
proves the result under the assumption that �̄� is contained in the image of some
local parametrization in geodesic parallel coordinates.

Part II. For the general case, we write �̄� as a union of finitely many sets
�̄�1, . . . , �̄�𝐹 with pairwise disjoint interiors, such that the result of the first part
holds for each �̄� 𝑗 . (Compare the paragraph before Theorem 6.5 below.) Thus∫

�̄� 𝑗

𝐾 𝑑𝐴 +
∫
𝜕�̄� 𝑗

𝜅g(𝑠) 𝑑𝑠 = 2𝜋 −
𝑉𝑗∑︁
𝑖=1

(𝜋 − 𝛽 𝑗𝑖),

where 𝑉 𝑗 is the number of vertices of �̄� 𝑗 and the 𝛽 𝑗𝑖 ∈ [0, 2𝜋] are the interior
angles of �̄� 𝑗 . Let 𝑉 and 𝐸 be the total number of vertices and edges, respectively,
in the decomposition of �̄�. By Euler’s formula, 𝑉 − 𝐸 + 𝐹 = 1. Let 𝑉 ′ be the
number of vertices lying in 𝜕�̄�, and let 𝛾1, . . . , 𝛾𝑉 ′ ∈ [0, 2𝜋] be the respective
interior angles of �̄� (possibly 𝑉 ′ exceeds the number of original vertices of �̄�, and
then 𝛾𝑖 = 𝜋 at the respective subdivision points). Taking the sum of the above
identities for 𝑗 = 1, . . . , 𝐹, and adding up the 𝛽 𝑗𝑖 , we get∫

�̄�

𝐾 𝑑𝐴 +
∫
𝜕�̄�

𝜅g(𝑠) 𝑑𝑠 = 2𝜋 𝐹 −
𝐹∑︁
𝑗=1

𝑉𝑗∑︁
𝑖=1

(𝜋 − 𝛽 𝑗𝑖)

= 2𝜋 𝐹 − 𝜋
𝐹∑︁
𝑗=1
𝑉 𝑗 + 2𝜋(𝑉 −𝑉 ′) +

𝑉 ′∑︁
𝑖=1

𝛾𝑖;

on the left, the integrals of 𝜅g over interior edges cancel in pairs. Since every �̄� 𝑗

has 𝑉 𝑗 edges,
∑𝐹

𝑗=1𝑉 𝑗 equals 2𝐸 minus the number 𝑉 ′ of boundary edges. Hence,
the right side simplifies to

2𝜋(𝐹 − 𝐸 +𝑉) − 𝜋𝑉 ′ +
𝑉 ′∑︁
𝑖=1

𝛾𝑖 = 2𝜋 −
𝑉 ′∑︁
𝑖=1

(𝜋 − 𝛾𝑖),
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where the 𝜋 − 𝛾𝑖 (if non-zero) are the exterior angles of �̄�. □

6.4 Theorem (Gauss, theorema elegantissimum) For a geodesic triangle �̄� ⊂
𝑀 with interior angles 𝛽1, 𝛽2, 𝛽3 ∈ (0, 2𝜋),∫

�̄�

𝐾 𝑑𝐴 = 𝛽1 + 𝛽2 + 𝛽3 − 𝜋.

Proof : If 𝛼1, 𝛼2, 𝛼3 are the corresponding exterior angles, then

2𝜋 − (𝛼1 + 𝛼2 + 𝛼3) = 𝛽1 + 𝛽2 + 𝛽3 − 𝜋.

Hence, as the integral of the geodesic curvature along 𝜕�̄� is zero, the result follows
directly from Theorem 6.3. □

Now let 𝑀 ⊂ R3 be a compact (and hence orientable) surface. A poly-
gonal decomposition of 𝑀 is a cover of 𝑀 by finitely many compact subsets
�̄� 𝑗 ⊂ 𝑀 homeomorphic to a disc, with piecewise smooth boundary 𝜕�̄� 𝑗 (like �̄�
in Theorem 6.3), such that �̄� 𝑗 ∩ �̄�𝑘 is either empty, or a singleton corresponding
to a common vertex, or a common edge of �̄� 𝑗 and �̄�𝑘 whenever 𝑗 ≠ 𝑘 . If each
�̄� 𝑗 is a (not necessarily geodesic) triangle, then the decomposition is called a
triangulation of 𝑀 . If 𝑉, 𝐸, 𝐹 are the number of vertices, edges, and faces in a
polygonal decomposition of 𝑀 , then the integer

𝜒(𝑀) = 𝑉 − 𝐸 + 𝐹

is the Euler characteristic of 𝑀 .

6.5 Theorem (Gauss–Bonnet, global version) If 𝑀 ⊂ R3 is a compact surface,
then ∫

𝑀

𝐾 𝑑𝐴 = 2𝜋 𝜒(𝑀).

Proof : Choose a polygonal decomposition 𝑀 =
⋃𝐹

𝑗=1 �̄� 𝑗 of 𝑀 , apply Theorem 6.3
to each �̄� 𝑗 , and take the sum of these identities, similarly as in the second part of
the proof of the local result. □

6.2 The Poincaré index theorem

We now discuss another interpretation of 𝜒(𝑀) in terms of vector fields.
First let 𝜉 : 𝑈 → R2 be a continuous vector field on an open set 𝑈 ⊂ R2. Sup-

pose that 𝑥 is an isolated zero of 𝜉, and pick a radius 𝑟 > 0 such that the closed disc
𝐵(𝑥, 𝑟) ⊂ 𝑈 contains no other zeros of 𝜉. Let 𝛾 : [0, 2𝜋] → R2 be the parametriza-
tion of 𝜕𝐵(𝑥, 𝑟) defined by 𝛾(𝑡) = 𝑥 + 𝑟 (cos(𝑡), sin(𝑡)), and let 𝜑 : [0, 2𝜋] → R be
a continuous function such that 𝜉 (𝛾(𝑡))/|𝜉 (𝛾(𝑡)) | = (cos(𝜑(𝑡)), sin(𝜑(𝑡))) for all
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𝑡 ∈ [0, 2𝜋]. Then 𝜑(2𝜋) − 𝜑(0) = 2𝜋𝐼 (𝑥) for some integer 𝐼 (𝑥) = 𝐼𝜉 (𝑥) called the
index of 𝜉 at 𝑥, which is independent of 𝑟 by continuity. This number agrees with
the mapping degree deg(𝐹) (discussed later in Section 9 for the case of smooth
maps between manifolds) of the map

𝐹 : 𝑆1 → 𝑆1, 𝐹 (𝑒) = 𝜉 (𝑥 + 𝑟𝑒)
|𝜉 (𝑥 + 𝑟𝑒) | .

This second definition of the index generalizes readily to higher dimensions.
If 𝜓 : 𝑈 → 𝑉 is 𝐶1 diffeomorphism onto on open set 𝑉 ⊂ R2, and if 𝜂 is the

continuous vector field on 𝑉 such that 𝜂(𝜓(𝑥)) = 𝑑𝜓𝑥 (𝜉 (𝑥)) for all 𝑥 ∈ 𝑈, then it
can be shown that 𝐼𝜂 (𝜓(𝑥)) = 𝐼𝜉 (𝑥) for every isolated zero 𝑥 of 𝜉 (see, for example,
[Mi], pp. 33–35). For a surface 𝑀 ⊂ R3 and a continuous (tangent) vector field
𝑋 : 𝑀 → R3 with an isolated zero at 𝑝 ∈ 𝑀 , the index 𝐼 (𝑝) = 𝐼𝑋 (𝑝) is then defined
via a local parametrization 𝑓 of 𝑀 around 𝑝 such that 𝐼𝑋 (𝑝) := 𝐼𝜉 ( 𝑓 −1(𝑝)) for the
corresponding vector field 𝜉 with 𝑑𝑓𝑥 (𝜉 (𝑥)) = 𝑋 ( 𝑓 (𝑥)).

6.6 Theorem (Poincaré index theorem) Let 𝑀 ⊂ R3 be a compact 𝐶1 surface,
and let 𝑋 be a continuous vector field on 𝑀 with only finitely many zeros 𝑝1, . . . , 𝑝𝑘 .
Then

𝑘∑︁
𝑗=1

𝐼 (𝑝 𝑗) = 𝜒(𝑀).

See [Po1885], Chapitre XIII. This was generalized to arbitrary dimensions by
H. Hopf [Ho1927b]. The following argument for the two-dimensional case is also
due to Hopf.

Proof : We first show that if 𝑋1, 𝑋2 are two vector fields on 𝑀 with finitely many
zeros, then the respective index sums agree. Triangulate 𝑀 such that there are no
zeros on edges, no triangle �̄� 𝑗 contains two or more zeros of the same vector field,
and each �̄� 𝑗 is contained in the image of some positively oriented local parametriza-
tion of 𝑀 . Fix 𝑗 for the moment, and let 𝑓 be such a local parametrization for �̄� 𝑗 .
Define 𝑋 (𝑝) := 𝑓1( 𝑓 −1(𝑝)), and let 𝑐 : [0, 𝐿 𝑗] → 𝑀 be a positively oriented unit
speed parametrization of 𝜕�̄� 𝑗 starting and ending at a vertex. Let 𝐼𝑖, 𝑗 denote the
index of the only zero of 𝑋𝑖 in �̄� 𝑗 , or put 𝐼𝑖, 𝑗 = 0 if 𝑋𝑖 has no zero in �̄� 𝑗 . There
exist continuous functions 𝜑𝑖 : [0, 𝐿 𝑗] → R such that 𝜑𝑖 (𝑠) is the oriented angle
from 𝑋 (𝑐(𝑠)) to 𝑋𝑖 (𝑐(𝑠)) and 2𝜋 𝐼𝑖, 𝑗 = 𝜑𝑖 (𝐿 𝑗) − 𝜑𝑖 (0). Let 𝜑(𝑠) be the angle from
𝑋1(𝑠) to 𝑋2(𝑠), so that 𝜑(𝑠) = 𝜑2(𝑠) − 𝜑1(𝑠). Then

2𝜋(𝐼2, 𝑗 − 𝐼1, 𝑗) = 𝜑2(𝐿 𝑗) − 𝜑2(0) − 𝜑1(𝐿 𝑗) + 𝜑1(0) = 𝜑(𝐿 𝑗) − 𝜑(0),

which is independent of 𝑋 . Now, for each triangle �̄� 𝑗 , write 𝜑(𝐿 𝑗) − 𝜑(0) as
the sum (𝜑(𝐿 𝑗) − 𝜑(𝑏 𝑗)) + (𝜑(𝑏 𝑗) − 𝜑(𝑎 𝑗)) + (𝜑(𝑎 𝑗) − 𝜑(0)) of three differences
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corresponding to the sides of �̄� 𝑗 . Then it follows that∑︁
𝑗

2𝜋(𝐼2, 𝑗 − 𝐼1, 𝑗) = 0,

because the two contributions of a common edge of two adjacent triangles cancel,
due to opposite orientation. Thus the two index sums agree, as desired.

By this result, it now suffices to find a specific vector field 𝑋 with index sum∑
𝑗 𝐼 (𝑝 𝑗) = 𝜒(𝑀). For this, one can take an arbitrary triangulation of 𝑀 and

construct 𝑋 such that there is a unique zero of index
1 at every vertex,
−1 in the relative interior of every edge,
1 in the interior of every face.

This yields
∑

𝑗 𝐼 (𝑝 𝑗) = 𝑉 − 𝐸 + 𝐹 = 𝜒(𝑀). □
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7 Hyperbolic space

7.1 Spacelike hypersurfaces in Lorentz space

We consider R𝑚+1 together with the non-degenerate symmetric bilinear form

⟨𝑥, 𝑦⟩L :=
( 𝑚∑︁
𝑖=1

𝑥𝑖𝑦𝑖
)
− 𝑥𝑚+1𝑦𝑚+1,

called Lorentz product. The pair

R𝑚,1 := (R𝑚+1, ⟨ · , · ⟩L)

is called Minkowski space or Lorentz space. A vector 𝑣 ∈ R𝑚,1 is spacelike if
⟨𝑣, 𝑣⟩L > 0 or 𝑣 = 0, timelike if ⟨𝑣, 𝑣⟩L < 0, and lightlike or a null vector if
⟨𝑣, 𝑣⟩L = 0 and 𝑣 ≠ 0. The set of all null vectors is the nullcone. A differentiable
curve 𝑐 : 𝐼 → R𝑚,1 is spacelike, timelike, or a null curve if all tangent vectors 𝑐′(𝑡)
have the respective character.

A submanifold 𝑀 ⊂ R𝑚,1 is spacelike if each tangent space 𝑇𝑀𝑝 is, that
is, all vectors 𝑣 ∈ 𝑇𝑀𝑝 are spacelike; equivalently, the first fundamental form
𝑔𝑝 := ⟨ · , · ⟩L |𝑇𝑀𝑝×𝑇𝑀𝑝

is positive definite.

7.1 Definition (hyperbolic space) The spacelike hypersurface

𝐻𝑚 := {𝑝 ∈ R𝑚,1 : ⟨𝑝, 𝑝⟩L = −1, 𝑝𝑚+1 > 0},

together with its first fundamental form 𝑔, is called hyperbolic 𝑚-space.

The set 𝐻𝑚 is the upper half of the two-sheeted hyperboloid given by the
equation (𝑝𝑚+1)2 = 1 +∑𝑚

𝑖=1(𝑝𝑖)2. For 𝑝 ∈ 𝐻𝑚, the tangent space 𝑇𝐻𝑚
𝑝 equals the

𝑚-dimensional linear subspace of R𝑚,1 determined by the equation ⟨𝑝, 𝑣⟩L = 0,
similarly as for the sphere 𝑆𝑚 ⊂ R𝑚+1.

We now consider an arbitrary spacelike hypersurface 𝑀𝑚 ⊂ R𝑚,1. If 𝑈 ⊂ R𝑚

is an open set and 𝑓 : 𝑈 → 𝑓 (𝑈) ⊂ 𝑀 is a local (or global) parametrization of
𝑀 , then the first fundamental form of 𝑓 is given by 𝑔𝑖 𝑗 = ⟨ 𝑓𝑖 , 𝑓 𝑗⟩L. All intrinsic
concepts and formulae discussed earlier, involving solely the first fundamental form,
remain valid and unchanged for 𝑀 (or 𝑓 ): Christoffel symbols, covariant derivative,
parallelism, geodesics, and the formula

𝐾 =
𝑅1212

det(𝑔𝑖 𝑗)
,

which is now adopted as a definition of the Gauss curvature in the case 𝑚 = 2.
Furthermore, there exists a well-defined Gauss map

𝑁 : 𝑀𝑚 → 𝐻𝑚
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such that ⟨𝑣, 𝑁 (𝑝)⟩L = 0 whenever 𝑣 ∈ 𝑇𝑀𝑝. For 𝑓 as above we put again
𝜈 := 𝑁 ◦ 𝑓 . The shape operator and the second fundamental form ℎ of 𝑀 or 𝑓 are
then defined as in Section 4. Lemma 4.8 and Theorem 4.9 remain valid as well,
except for two sign changes, due to the fact that ⟨𝜈, 𝜈⟩L = −1:

𝑓𝑖 𝑗 =

𝑚∑︁
𝑘=1

Γ𝑘
𝑖 𝑗 𝑓𝑘 − ℎ𝑖 𝑗𝜈

for 𝑖, 𝑗 = 1, . . . , 𝑚, and

𝑅𝑠
𝑘𝑖 𝑗 = −(ℎ𝑠𝑖ℎ𝑘 𝑗 − ℎ𝑠 𝑗ℎ𝑘𝑖) = −

𝑚∑︁
𝑙=1

𝑔𝑠𝑙
(
ℎ𝑙𝑖ℎ𝑘 𝑗 − ℎ𝑙 𝑗ℎ𝑘𝑖

)
for 𝑠 = 1, . . . , 𝑚, where the expression of 𝑅𝑠

𝑘𝑖 𝑗 in terms of the Christoffel symbols
remains unchanged. For fixed 𝑖, 𝑗 , 𝑘 , this system is equivalent to

𝑅𝑙𝑘𝑖 𝑗 :=
𝑚∑︁
𝑠=1

𝑔𝑙𝑠𝑅
𝑠
𝑘𝑖 𝑗 = −(ℎ𝑙𝑖ℎ𝑘 𝑗 − ℎ𝑙 𝑗ℎ𝑘𝑖) = − det

(
ℎ𝑙𝑖 ℎ𝑙 𝑗

ℎ𝑘𝑖 ℎ𝑘 𝑗

)
for 𝑙 = 1, . . . , 𝑚.

7.2 Geometry of hyperbolic space

In the special case that 𝑀 = 𝐻2 ⊂ R2,1, the Gauss map is just given by 𝑁 (𝑝) = 𝑝,
thus 𝐿𝑝 = −𝑑𝑁𝑝 = − id𝑇𝐻2

𝑝
and det(𝐿𝑝) = 1. It follows that the Gauss curvature

of 𝐻2 is
𝐾 =

𝑅1212
det(𝑔𝑖 𝑗)

= −
det(ℎ𝑖 𝑗)
det(𝑔𝑖 𝑗)

= −1.

The Lorentz group is defined by

O(𝑚, 1) :=
{
𝐴 ∈ GL(𝑚 + 1,R) : ⟨𝐴𝑥, 𝐴𝑦⟩L = ⟨𝑥, 𝑦⟩L

}
.

For 𝐴 ∈ O(𝑚, 1) and 𝑝 ∈ 𝐻𝑚, 𝐴𝑝 ∈ ±𝐻𝑚. One puts

O(𝑚, 1)+ :=
{
𝐴 ∈ O(𝑚, 1) : 𝐴(𝐻𝑚) = 𝐻𝑚

}
.

Thus, for 𝐴 ∈ O(𝑚, 1)+, the restriction 𝐴|𝐻𝑚 : 𝐻𝑚 → 𝐻𝑚 is an isometry.

7.2 Theorem (homogeneity) Suppose that 𝑝, 𝑞 ∈ 𝐻𝑚, (𝑣1, . . . , 𝑣𝑚) is an or-
thonormal basis of 𝑇𝐻𝑚

𝑝 , and (𝑤1, . . . , 𝑤𝑚) is an orthonormal basis of 𝑇𝐻𝑚
𝑞 .

Then there exists an 𝐴 ∈ O(𝑚, 1)+ such that 𝐴𝑝 = 𝑞 and 𝐴𝑣𝑖 = 𝑤𝑖 for 𝑖 = 1, . . . , 𝑚.

Proof : It suffices to consider the case 𝑝 = 𝑒𝑚+1. Since matrices of the form(
𝐵 0
0 1

)
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with 𝐵 ∈ O(𝑚) are in O(𝑚, 1)+, the claim is easily reduced to showing that for every
point in 𝐻𝑚 of the form 𝑞 = (𝑞1, 0, . . . , 0, 𝑞𝑚+1) there exists 𝐴 ∈ O(𝑚, 1)+ with
𝐴𝑒𝑚+1 = 𝑞. As (𝑞1)2 − (𝑞𝑚+1)2 = −1, there exists 𝑠 ∈ R such that 𝑞1 = sinh(𝑠)
and 𝑞𝑚+1 = cosh(𝑠), and one can easily check that

𝐴 =

©«

cosh(𝑠) sinh(𝑠)
1

. . .

1
sinh(𝑠) cosh(𝑠)

ª®®®®®®®¬
belongs to O(𝑚, 1)+, and 𝐴𝑒𝑚+1 = 𝑞. □

Let 𝑝 ∈ 𝐻𝑚, and let 𝑣 ∈ 𝑇𝐻𝑚
𝑝 be such that ⟨𝑣, 𝑣⟩L = 1. The unit speed geodesic

𝑐 : R → 𝐻𝑚 with 𝑐(0) = 𝑝 and 𝑐′(0) = 𝑣 is given by

𝑐(𝑠) = cosh(𝑠) 𝑝 + sinh(𝑠) 𝑣;

the trace of 𝑐 is the intersection of 𝐻𝑚 with the linear plane spanned by 𝑝 and 𝑣.
The distance of two points 𝑝, 𝑞 in 𝐻𝑚 satisfies

cosh(𝑑 (𝑝, 𝑞)) = −⟨𝑝, 𝑞⟩L.

7.3 Models of hyperbolic space

In the following we let 𝑈 := {𝑥 ∈ R𝑚 : |𝑥 | < 1} denote the open unit ball in R𝑚.
The (Beltrami–)Klein model (𝑈, �̄�) of𝐻𝑚 is obtained via the global parametrization

𝑓 : 𝑈 → 𝐻𝑚, 𝑓 (𝑥) :=
1√︁

1 − |𝑥 |2
(𝑥, 1);

𝑓 is the inclusion map 𝑈 → 𝑈 × {1} ⊂ R𝑚 × R followed by the radial projection
to 𝐻𝑚. The first fundamental form of 𝑓 is given by

�̄�𝑖 𝑗 (𝑥) =
〈
𝑓𝑖 (𝑥), 𝑓 𝑗 (𝑥)

〉
L =

1
1 − |𝑥 |2

𝛿𝑖 𝑗 +
1

(1 − |𝑥 |2)2 𝑥
𝑖𝑥 𝑗 ,

and the distance between two points 𝑥, �̄� in (𝑈, �̄�) satisfies

cosh(𝑑�̄� (𝑥, �̄�)) =
1 − ⟨𝑥, �̄�⟩√︁

1 − |𝑥 |2
√︁

1 − | �̄� |2
.

In this model, the trace of any non-constant geodesic 𝛾 : R → (𝑈, �̄�) is simply a
chord of 𝑈, because inward radial projection maps geodesic lines in 𝐻𝑚 to chords
in𝑈 × {1}.
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The Poincaré model (𝑈, 𝑔) of 𝐻𝑚 is obtained similarly via the “stereographic
projection”

𝑓 : 𝑈 → 𝐻𝑚, 𝑓 (𝑥) :=
1

1 − |𝑥 |2
(2𝑥, 1 + |𝑥 |2);

the three points (0,−1), (𝑥, 0), 𝑓 (𝑥) ∈ R𝑚 × R are aligned. The first fundamental
form of 𝑓 is given by

𝑔𝑖 𝑗 (𝑥) = ⟨ 𝑓𝑖 (𝑥), 𝑓 𝑗 (𝑥)⟩L =
4

(1 − |𝑥 |2)2 𝛿𝑖 𝑗 ,

thus (𝑈, 𝑔) is a conformal model. The distance between 𝑥, 𝑦 ∈ (𝑈, 𝑔) satisfies

cosh(𝑑𝑔 (𝑥, 𝑦)) = 1 + 2|𝑥 − 𝑦 |2
(1 − |𝑥 |2) (1 − |𝑦 |2)

.

If 𝑥, 𝑥 ∈ 𝑈 are two points with the same images 𝑓 (𝑥) = 𝑓 (𝑥) in 𝐻𝑚, then a
computation shows that the point 𝜎(𝑥) := (𝑥,

√︁
1 − |𝑥 |2) ∈ 𝑆𝑚 ⊂ R𝑚+1 lies on the

line through (0,−1) and (𝑥, 0). The map 𝜎 sends any chord of 𝑈 to a semicircle
orthogonal to 𝜕𝑆𝑚+ in the upper hemisphere 𝑆𝑚+ ⊂ 𝑆𝑚, and the inward stereographic
projection with respect to (0,−1) maps this semicircle to an arc of a circle in𝑈×{0}
orthogonal to 𝜕𝑈 × {0} = 𝜕𝑆𝑚+ . Hence, geodesic lines in (𝑈, 𝑔) are represented by
arcs of circles orthogonal to 𝜕𝑈.

Another conformal model of 𝐻𝑚 is the halfspace model (𝑈+, 𝑔+), where𝑈+ :=
{𝑥 ∈ R𝑚 : 𝑥𝑚 > 0}. Inversion in the sphere in R𝑚 with center −𝑒𝑚 and radius

√
2,

restricted to𝑈+, yields the diffeomorphism

𝜓 : 𝑈+ → 𝑈, 𝜓(𝑥) = 2
|𝑥 + 𝑒𝑚 |2

(𝑥 + 𝑒𝑚) − 𝑒𝑚.

Let 𝑔 be the Riemannian metric of the Poincaré model as above. Then 𝑔+ := 𝜓∗𝑔

is given by
𝑔+𝑖 𝑗 (𝑥) =

1
(𝑥𝑚)2 𝛿𝑖 𝑗 .

Now let 𝑚 = 2. Then, up to reparametrization, the unit speed geodesics 𝛾 : R →
(𝑈+, 𝑔+) are of the form

𝛾(𝑠) =
(
𝑎 + 𝑟 tanh(𝑠), 𝑟

cosh(𝑠)

)
or 𝛾(𝑠) = (𝑎, 𝑒𝑠)

for 𝑎 ∈ R and 𝑟 > 0. In the first case, the trace of 𝛾 is a semicircle of Euclidean
radius 𝑟 orthogonal to 𝜕𝑈+. The group GL(2,R) acts on𝑈+ ⊂ C as follows:(

𝑎 𝑏

𝑐 𝑑

)
acts as 𝑧 ↦→ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑 or 𝑧 ↦→ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

if the determinant 𝑎𝑑 − 𝑏𝑐 is positive or negative, respectively. These are precisely
the orientation preserving or reversing isometries of (𝑈+, 𝑔), respectively. The
kernel of the action is {𝜆𝐼 : 𝜆 ≠ 0}, thus the isometry group of (𝑈+, 𝑔) is isomorphic
to PGL(2,R) = GL(2,R)/{𝜆𝐼 : 𝜆 ≠ 0} (exercise).
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7.4 Hilbert’s theorem

We conclude this section with the following famous result [Hi1901].

7.3 Theorem (Hilbert) There is no isometric𝐶3 immersion of the hyperbolic plane
into R3, in particular there is no 𝐶3 submanifold in R3 isometric to 𝐻2.

By contrast, it follows from a theorem of Nash and Kuiper [Ku1955] that 𝐻𝑚

admits an isometric 𝐶1 embedding into R𝑚+1!

Proof (sketch): The proof is indirect. We suppose that there exists an immersion
𝑓 : 𝑉 → R3 of an open set 𝑉 ⊂ R2, with first fundamental form �̃�, such that (𝑉, �̃�)
is isometric to 𝐻2.

Part I. Since the Gauss curvature of 𝑓 is negative, it follows that for every 𝑦 ∈ 𝑉
there exist exactly four asymptotic directions ±𝑋1(𝑦),±𝑋2(𝑦) (with |𝑋𝑖 (𝑦) |�̃� = 1),
that is, ℎ̃(±𝑋𝑖 (𝑦),±𝑋𝑖 (𝑦)) = 0. As 𝑉 is diffeomorphic to a disc, one can choose
𝑋1, 𝑋2 continuous on𝑉 . Let 𝑦0 ∈ 𝑉 . By Lemma A.5 there exists a diffeomorphism

𝜓 : 𝑈 = (−𝜖, 𝜖)2 → 𝜓(𝑈) ⊂ 𝑉

such that 𝜓(0, 0) = 𝑦0 and the 𝑥𝑖-parameter lines of 𝜓 are everywhere tangent to
𝑋𝑖 . Putting 𝑓 := 𝑓 ◦ 𝜓, we thus get an immersion with 𝐾 = −1 whose parameter
lines are asymptotic curves, with ℎ𝑖𝑖 = ℎ(𝑒𝑖 , 𝑒𝑖) = 0.

We first show that the first fundamental form of 𝑓 satisfies 𝑔11,2 = 0 and
𝑔22,1 = 0. For every 𝑥 ∈ 𝑈,

1 = |𝐾 (𝑥) | = | det(𝐿𝑥) | =
|𝜈1(𝑥) × 𝜈2(𝑥) |
| 𝑓1(𝑥) × 𝑓2(𝑥) |

,

in particular 𝜈𝑖 ≠ 0. We have ⟨ 𝑓𝑖 , 𝜈⟩ = 0, ⟨𝜈𝑖 , 𝜈⟩ = 0, and ⟨ 𝑓𝑖 , 𝜈𝑖⟩ = −ℎ𝑖𝑖 = 0. Thus
𝑓𝑖 = 𝜆𝑖 𝜈 × 𝜈𝑖 for some functions 𝜆𝑖 ≠ 0, for 𝑖 = 1, 2. Now

| 𝑓1 × 𝑓2 | = |𝜆1𝜆2 | | (𝜈 × 𝜈1) × (𝜈 × 𝜈2) |,

and (𝜈 × 𝜈1) × (𝜈 × 𝜈2) = 𝜈1 × 𝜈2, hence |𝜆1𝜆2 | = 1. Furthermore, since

−ℎ12 = ⟨ 𝑓1, 𝜈2⟩ = 𝜆1 det(𝜈, 𝜈1, 𝜈2)

is symmetric in the two indices, whereas the determinant changes the sign,𝜆1 = −𝜆2.
It follows that 𝜆1, 𝜆2 are constant (1 or −1), and so

2 𝑓12 = 𝑓12 + 𝑓21 = 𝜆1(𝜈2 × 𝜈1 + 𝜈 × 𝜈12) + 𝜆2(𝜈1 × 𝜈2 + 𝜈 × 𝜈21)
= 2𝜆1 𝜈2 × 𝜈1.

We conclude that 𝑓12 is normal, and hence 𝑔11,2 = ⟨ 𝑓1, 𝑓1⟩2 = 2⟨ 𝑓1, 𝑓12⟩ = 0 and
𝑔22,1 = 0 as desired.

46



This shows that 𝑔11 depends only on 𝑥1 and 𝑔22 depends only 𝑥2, which allows
to simultaneously reparametrize all parameter lines of 𝑓 by arc length (precompose
𝜓 with a suitable product map, whose first and second components depend only
on the respective variable). After this modification, we have 𝜓𝑖 (𝑥) = 𝑋𝑖 (𝜓(𝑥)),
that is, the parameter lines of 𝜓 are integral curves of the vector fields 𝑋1, 𝑋2 with
|𝑋𝑖 |�̃� = 1. Hence, the first fundamental form of 𝑓 now satisfies

𝑔11 = 𝑔22 = 1, 𝑔12 = ⟨ 𝑓1, 𝑓2⟩ = cos(𝜔),

where 𝜔 = ∠𝑔 ( 𝑓1(𝑥), 𝑓2(𝑥)) ∈ (0, 𝜋). Coordinates of this form are called a
Chebyshev net. The result is thus that the given immersion 𝑓 : 𝑉 → R3 can
everywhere locally be reparametrized as a Chebyshev net.

Part II. Show that there exists a global diffeomorphism 𝜓 : R2 → 𝑉 such that
𝑓 := 𝑓 ◦ 𝜓 : R2 → R3 has first fundamental form

(𝑔𝑖 𝑗) =
(

1 cos𝜔
cos𝜔 1

)
with 𝜔 ∈ (0, 𝜋) (a global Chebyshev net).

Part III. In such coordinates, 𝐾 = −𝜔12/sin(𝜔), and since 𝐾 = −1,√︃
det(𝑔𝑖 𝑗) = sin(𝜔) = 𝜔12.

Hence, for the 𝑔-area of a rectangle 𝑅 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] ⊂ R2, we have

𝐴𝑔 (𝑅) =
∫ 𝑏1

𝑎1

∫ 𝑏2

𝑎2

𝜔12 𝑑𝑥
2 𝑑𝑥1

=

∫ 𝑏1

𝑎1

𝜔1(𝑥1, 𝑏2) − 𝜔1(𝑥1, 𝑎2) 𝑑𝑥1

= 𝜔(𝑏1, 𝑏2) − 𝜔(𝑎1, 𝑏2) − 𝜔(𝑏1, 𝑎2) + 𝜔(𝑎1, 𝑎2).

As 𝜔 ∈ (0, 𝜋), this yields the uniform bound 𝐴𝑔 (𝑅) < 2𝜋 for all rectangles, which
contradicts the fact that the hyperbolic plane has infinite area. □
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Differential Topology

8 Differentiable manifolds

8.1 Differentiable manifolds and maps

We start with a topological notion.

8.1 Definition (topological manifold) An𝑚-dimensional topological manifold 𝑀
is a Hausdorff topological space with countable basis (that is,𝑀 is second countable)
and the property that for every point 𝑝 ∈ 𝑀 there exists a homeomorphism 𝜑 : 𝑈 →
𝜑(𝑈) from an open neighborhood𝑈 ⊂ 𝑀 of 𝑝 onto an open set 𝜑(𝑈) ⊂ R𝑚. Then
𝜑 = (𝜑,𝑈) is called a chart or coordinate system of 𝑀 .

A system of charts Φ = {(𝜑𝛼,𝑈𝛼)}𝛼∈𝐴 (where 𝐴 is any index set) forms an
atlas of the topological manifold 𝑀 if

⋃
𝛼∈𝐴𝑈𝛼 = 𝑀 . For 𝛼, 𝛽 ∈ 𝐴, the (possibly

empty) homeomorphism

𝜑𝛽𝛼 := 𝜑𝛽 ◦ 𝜑−1
𝛼 : 𝜑𝛼 (𝑈𝛼 ∩𝑈𝛽) → 𝜑𝛽 (𝑈𝛼 ∩𝑈𝛽)

is called the coordinate change between 𝜑𝛼 and 𝜑𝛽 .
For 1 ≤ 𝑟 ≤ ∞, the atlas {𝜑𝛼}𝛼∈𝐴 is a𝐶𝑟 atlas of 𝑀 if every coordinate change

𝜑𝛽𝛼 is a 𝐶𝑟 map. Since (𝜑𝛽𝛼)−1 = 𝜑𝛼𝛽, it then follows that every coordinate
change is a 𝐶𝑟 diffeomorphism. More generally, we call two charts (𝜑,𝑈), (𝜓,𝑉)
of a topological manifold 𝐶𝑟 compatible if 𝜓 ◦ 𝜑−1 : 𝜑(𝑈 ∩ 𝑉) → 𝜓(𝑈 ∩ 𝑉) is a
𝐶𝑟 diffeomorphism.

8.2 Definition (differentiable manifold) For 1 ≤ 𝑟 ≤ ∞, a differentiable structure
of class 𝐶𝑟 or 𝐶𝑟 structure on a topological manifold is a maximal 𝐶𝑟 atlas, that is,
a 𝐶𝑟 atlas not contained in a bigger one. A differentiable manifold of class 𝐶𝑟 or a
𝐶𝑟 manifold is a topological manifold equipped with a 𝐶𝑟 structure.

We use the word “smooth” as a synonym of 𝐶∞. If we speak of a chart
of a differentiable manifold 𝑀 , then we always mean a chart belonging to the
differentiable structure of 𝑀 .

Every 𝐶𝑟 atlas Φ of a topological manifold 𝑀 is contained in a unique 𝐶𝑟

structure Φ̄, namely the set of all charts of 𝑀 that are 𝐶𝑟 compatible with all charts
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in Φ. However, there exist compact topological manifolds that do not admit any 𝐶1

structure [Ke1960]!
Now let 1 ≤ 𝑟 < 𝑠 ≤ ∞. Then every 𝐶𝑠 structure is a 𝐶𝑟 atlas and is thus

contained in a unique 𝐶𝑟 structure; in this sense, every 𝐶𝑠 manifold is also a
𝐶𝑟 manifold. Conversely, every 𝐶𝑟 structure contains a 𝐶𝑠 structure, and this
𝐶𝑠 structure is unique up to 𝐶𝑠 diffeomorphism (see Definition 8.3 below and
Theorem 2.9 in [Hi, Chapter 2] for the proof). In so far there is no essential
difference between the classes 𝐶𝑟 and 𝐶𝑠 for 1 ≤ 𝑟 < 𝑠 ≤ ∞.

8.3 Definition (differentiable map, diffeomorphism) Let 𝑀, 𝑁 be two 𝐶𝑟 mani-
folds, 1 ≤ 𝑟 ≤ ∞. A map 𝐹 : 𝑀 → 𝑁 is 𝑟 times continuously differentiable, briefly
𝐶𝑟 , if for every point 𝑝 ∈ 𝑀 there exist a chart (𝜑,𝑈) of 𝑀 with 𝑝 ∈ 𝑈 and a chart
(𝜓,𝑉) of 𝑁 with 𝐹 (𝑈) ⊂ 𝑉 such that the map

𝜓 ◦ 𝐹 ◦ 𝜑−1 : 𝜑(𝑈) → 𝜓(𝑉)

is 𝐶𝑟 . This composition is called a local representation of 𝐹 around 𝑝. The map
𝐹 : 𝑀 → 𝑁 is a 𝐶𝑟 diffeomorphism if 𝐹 is bijective and both 𝐹, 𝐹−1 are 𝐶𝑟 .

Ist 𝐹 : 𝑀 → 𝑁 is a 𝐶𝑟 map, then clearly every local representation of 𝐹 is 𝐶𝑟 ,
because coordinate changes of 𝑀 and 𝑁 are 𝐶𝑟 .

On R𝑚, the atlas consisting solely of the identity map idR𝑚 determines the
usual smooth structure on R𝑚. On R, the atlases Φ = {idR} and Ψ = {𝜓}, where
𝜓(𝑥) = 𝑥3, determine different smooth structures Φ̄ and Ψ̄ since idR and 𝜓 are
not 𝐶1 compatible; however, 𝐹 := 𝜓−1 : (R, Φ̄) → (R, Ψ̄) is a diffeomorphism
since the representation 𝜓 ◦ 𝐹 ◦ (idR)−1 equals idR. In fact, any two differentiable
structures on R are diffeomorphic (exercise).

By contrast, there exist topological manifolds that admit different diffeomor-
phism classes of smooth structures! For example, there are precisely 28 such classes
on the 7-dimensional sphere 𝑆7 [Mi1956], [Mi1959]. On R𝑚, exotic smooth struc-
tures exist only for 𝑚 = 4.

8.4 Definition (tangent space) Let 𝑀 be an 𝑚-dimensional 𝐶𝑟 manifold, 1 ≤ 𝑟 ≤
∞, and let 𝑝 ∈ 𝑀 . On the set of all pairs (𝜑, 𝜉), where 𝜑 is a chart of 𝑀 around
𝑝 and 𝜉 ∈ R𝑚, we define an equivalence relation such that (𝜑, 𝜉) ∼𝑝 (𝜓, 𝜂) if and
only if

𝑑 (𝜓 ◦ 𝜑−1)𝜑 (𝑝) (𝜉) = 𝜂.

The tangent space 𝑇𝑀𝑝 of 𝑀 at 𝑝 is the set of all equivalence classes. We write
[𝜑, 𝜉] 𝑝 ∈ 𝑇𝑀𝑝 for the class of (𝜑, 𝜉).

For a fixed chart 𝜑 around 𝑝 we define the map

𝑑𝜑𝑝 : 𝑇𝑀𝑝 → R𝑚, 𝑑𝜑𝑝 ( [𝜑, 𝜉] 𝑝) := 𝜉.
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Since [𝜑, 𝜉] 𝑝 = [𝜑, 𝜂] 𝑝 if and only if 𝜉 = 𝜂, this is a well-defined bijection, which
thus induces the structure of an𝑚-dimensional vector space on𝑇𝑀𝑝, such that 𝑑𝜑𝑝

is a linear isomorphism. If 𝜓 is another chart around 𝑝 and (𝜑, 𝜉) ∼𝑝 (𝜓, 𝜂), then

𝑑𝜓𝑝 ◦ (𝑑𝜑𝑝)−1(𝜉) = 𝑑𝜓𝑝 ( [𝜑, 𝜉] 𝑝) = 𝑑𝜓𝑝 ( [𝜓, 𝜂] 𝑝) = 𝜂
= 𝑑 (𝜓 ◦ 𝜑−1)𝜑 (𝑝) (𝜉).

Since 𝑑 (𝜓 ◦ 𝜑−1)𝜑 (𝑝) is an isomorphism of R𝑚, it follows that the linear structure
of 𝑇𝑀𝑝 is independent of the choice of the chart 𝜑.

The tangent bundle of a 𝐶𝑟 manifold 𝑀 is the (disjoint) union

𝑇𝑀 :=
⋃
𝑝∈𝑀

𝑇𝑀𝑝

together with the projection 𝜋 : 𝑇𝑀 → 𝑀 that maps every tangent vector [𝜑, 𝜉] 𝑝 to
its footpoint 𝑝. The set 𝑇𝑀 has the structure of a 2𝑚-dimensional 𝐶𝑟−1 manifold.
If (𝜑,𝑈) is a chart of 𝑀 , then

𝑇𝜑 : 𝑇𝑈 =
⋃
𝑝∈𝑈

𝑇𝑀𝑝 → 𝜑(𝑈) ×R𝑚 ⊂ R𝑚 ×R𝑚

[𝜑, 𝜉] 𝑝 ↦→ (𝜑(𝑝), 𝜉) = (𝜑(𝑝), 𝑑𝜑𝑝 ( [𝜑, 𝜉] 𝑝))

is a corresponding natural chart of 𝑇𝑀 . The coordinate change 𝑇𝜓 ◦ (𝑇𝜑)−1 maps
the pair (𝑥, 𝜉) ∈ R𝑚 ×R𝑚 to (𝜓 ◦ 𝜑−1(𝑥), 𝑑 (𝜓 ◦ 𝜑−1)𝑥 (𝜉)).

For a 𝐶1 map 𝐹 : 𝑀 → 𝑁 , the differential of 𝐹 at 𝑝 ∈ 𝑀 is the unique linear
map

𝑑𝐹𝑝 : 𝑇𝑀𝑝 → 𝑇𝑁𝐹 (𝑝)

such that for every local representation 𝐻 := 𝜓 ◦ 𝐹 ◦ 𝜑−1 of 𝐹 around 𝑝 the chain
rule

𝑑𝐹𝑝 = (𝑑𝜓𝐹 (𝑝) )−1 ◦ 𝑑𝐻𝜑 (𝑝) ◦ 𝑑𝜑𝑝

holds, that is, 𝑑𝐹𝑝 ( [𝜑, 𝜉] 𝑝) = [𝜓, 𝑑𝐻𝜑 (𝑝) (𝜉)]𝐹 (𝑝) for all 𝜉 ∈ R𝑚. Note that for
𝐹 = 𝜑 and 𝜓 = idR𝑚 , this gives 𝑑𝜑𝑝 ( [𝜑, 𝜉] 𝑝) = [idR𝑚 , 𝜉]𝜑 (𝑝) = 𝜉, where the
second equality reflects the identification 𝑇R𝑚

𝜑 (𝑝) = R𝑚; thus our notation for the
previously defined map 𝑑𝜑𝑝 is justified.

8.2 Partition of unity

Let again 𝑀 be a 𝐶𝑟 manifold, 0 ≤ 𝑟 ≤ ∞. A family of 𝐶𝑟 functions 𝜆𝛼 : 𝑀 →
[0, 1] indexed by a set 𝐴 is called a 𝐶𝑟 partition of unity if every point 𝑝 ∈ 𝑀 has
a neighborhood in which all but finitely many 𝜆𝛼 are constantly zero and if∑︁

𝛼∈𝐴
𝜆𝛼 (𝑝) = 1
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for all 𝑝 ∈ 𝑀 . Given a collection of open sets covering 𝑀 , a partition of unity
{𝜆𝛼}𝛼∈𝐴 is subordinate to this open cover if for every 𝛼 ∈ 𝐴 the support spt(𝜆𝛼) =
{𝑝 ∈ 𝑀 : 𝜆𝛼 (𝑝) ≠ 0} of 𝜆𝛼 is contained entirely in one of the sets of the cover.

8.5 Theorem (partition of unity) For every open cover of a 𝐶𝑟 manifold 𝑀 , 0 ≤
𝑟 ≤ ∞, there exists a subordinate 𝐶𝑟 partition of unity.

Proof : Among the (open) sets of a countable basis of the topology of 𝑀 , let
𝐸1, 𝐸2, . . . be those with compact closure. Every point 𝑝 ∈ 𝑀 has a compact
neighborhood 𝑁 , which is closed since 𝑀 is Hausdorff, and there is a set 𝐸 in the
above basis such that 𝑝 ∈ 𝐸 ⊂ 𝑁; thus the closure of 𝐸 is compact. This shows
that

⋃∞
𝑗=1 𝐸 𝑗 = 𝑀 . Now we define recursively a nested sequence of open subsets

of 𝑀 such that 𝐷−1 := ∅, 𝐷0 := ∅, 𝐷1 := 𝐸1, and for 𝑖 = 1, 2, . . ., 𝐷𝑖+1 is the union
of 𝐸𝑖+1 with finitely many of the sets 𝐸 𝑗 covering the (compact) closure 𝐷𝑖 . Then⋃∞

𝑖=1𝐶𝑖 = 𝑀 , where 𝐶𝑖 := 𝐷𝑖 \𝐷𝑖−1 is compact, and𝑊𝑖 := 𝐷𝑖+1 \𝐷𝑖−2 is an open
neighborhood of 𝐶𝑖 intersecting at most two more of these compact sets.

Let now {𝑉𝛽}𝛽∈𝐵 be an open cover of 𝑀 . For every point 𝑝 ∈ 𝐶𝑖 there is a chart
(𝜑,𝑈) of 𝑀 with 𝜑(𝑝) = 0 ∈ R𝑚 and 𝜑(𝑈) = 𝑈 (3) = {𝑥 ∈ R𝑚 : |𝑥 | < 3} such
that 𝑈 ⊂ 𝑉𝛽 ∩𝑊𝑖 for some 𝛽 ∈ 𝐵. Hence, there is a finite family {(𝜑𝛼,𝑈𝛼)}𝛼∈𝐴𝑖

of such charts such that {𝜑−1
𝛼 (𝑈 (1))}𝛼∈𝐴𝑖

is an open cover of 𝐶𝑖 . Repeating this
construction for every index 𝑖, and assuming that 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ whenever 𝑖 ≠ 𝑗 , we
get an atlas {(𝜑𝛼,𝑈𝛼)}𝛼∈𝐴 of 𝑀 with 𝐴 =

⋃∞
𝑖=1 𝐴𝑖 such that {𝑈𝛼}𝛼∈𝐴 is a locally

finite open refinement of {𝑉𝛽}𝛽∈𝐵.
Finally, choose a 𝐶∞ function 𝜏 : 𝑈 (3) → [0, 1] such that 𝜏 |𝑈 (1) ≡ 1 and

spt(𝜏) = 𝑈 (2). For every index 𝛼 ∈ 𝐴, define the 𝐶𝑟 function �̃�𝛼 : 𝑀 → [0, 1]
such that �̃�𝛼 = 𝜏 ◦ 𝜑𝛼 on 𝑈𝛼 = 𝜑−1

𝛼 (𝑈 (3)) and �̃�𝛼 ≡ 0 on 𝑀 \ 𝑈𝛼. Since
{𝜑−1

𝛼 (𝑈 (1))}𝛼∈𝐴 covers 𝑀 and {𝑈𝛼}𝛼∈𝐴 is locally finite, it follows that the sum
𝑆 :=

∑
𝛼∈𝐴 �̃�𝛼 is everywhere greater than or equal to 1 and finite. Now put

𝜆𝛼 := 1
𝑆
�̃�𝛼. □

8.3 Submanifolds and embeddings

8.6 Definition (submanifold) Let 𝑁 be an 𝑛-dimensional 𝐶∞ manifold. A subset
𝑀 ⊂ 𝑁 is an 𝑚-dimensional submanifold of 𝑁 if for every point 𝑝 ∈ 𝑀 there is
chart 𝜓 : 𝑉 → 𝜓(𝑉) ⊂ R𝑛 = R𝑚 ×R𝑛−𝑚 of 𝑁 such that 𝑝 ∈ 𝑉 and

𝜓(𝑀 ∩𝑉) = 𝜓(𝑉) ∩ (R𝑚 × {0}).

Such charts are called submanifold charts, and 𝑘 := 𝑛 −𝑚 is the codimension of 𝑀
in 𝑁 .

The restrictions 𝜓 |𝑀∩𝑉 of all submanifold charts (𝜓,𝑉) of 𝑀 form a 𝐶∞ atlas
of 𝑀 , thus 𝑀 is itself a 𝐶∞ manifold.
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Let 𝐹 : 𝑁 → 𝑄 be a𝐶1 map between two manifolds. A point 𝑝 ∈ 𝑁 is a regular
point of 𝐹 if the differential 𝑑𝐹𝑝 is surjective; otherwise 𝑝 is a singular or critical
point of 𝐹. A point 𝑞 ∈ 𝑄 is a regular value of 𝐹 if all 𝑝 ∈ 𝐹−1{𝑞} are regular
points of 𝐹, otherwise 𝑞 is a singular or critical value of 𝐹.

8.7 Theorem (regular value theorem) Let 𝐹 : 𝑁𝑛 → 𝑄𝑘 be a 𝐶∞ map. If 𝑞 ∈
𝐹 (𝑁) is a regular value of 𝐹, then 𝑀 := 𝐹−1{𝑞} is a submanifold of 𝑁 of dimension
dim(𝑀) = 𝑛 − 𝑘 ≥ 0.

Proof : □

A𝐶∞ map 𝐹 : 𝑀 → 𝑁 between two manifolds is an immersion or a submersion
if, for all 𝑝 ∈ 𝑀 , the differential 𝑑𝐹𝑝 is injective or surjective, respectively. An
embedding 𝐹 : 𝑀 → 𝑁 is an immersion with the property that 𝐹 : 𝑀 → 𝐹 (𝑀) is
a homeomorphism.

8.8 Theorem (image of an embedding) If 𝐹 : 𝑀 → 𝑁 is an embedding, then the
image 𝐹 (𝑀) is a submanifold, and 𝐹 : 𝑀 → 𝐹 (𝑀) is a diffeomorphism.

Conversely, if 𝑀 ⊂ 𝑁 is a submanifold, then the inclusion map 𝑖 : 𝑀 → 𝑁 is
an embedding.

Proof : □

8.9 Theorem (embedding theorem) For every compact 𝐶∞ manifold 𝑀𝑚 there
exist 𝑛 ∈ N and an embedding 𝐹 : 𝑀 → R𝑛.

This theorem also holds for 𝑛 = 2𝑚 + 1, see [Hi], and even for 𝑛 = 2𝑚 and 𝑀
possibly non-compact [Wh1944].

Proof : Since 𝑀 is compact, there exists a finite atlas {(𝜑𝛼,𝑈𝛼)}𝛼=1,...,𝑙 such that
𝜑𝛼 (𝑈𝛼) = 𝑈 (3) = {𝑥 ∈ R𝑚 : |𝑥 | < 3} and

⋃
𝛼 𝜑

−1
𝛼 (𝑈 (1)) = 𝑀 . Choose 𝐶∞

functions 𝜆𝛼 : 𝑀 → [0, 1] with value 1 on 𝜑−1
𝛼 (𝑈 (1)) and support 𝜑−1

𝛼 (𝑈 (2))
(compare the proof of Theorem 8.5). Define 𝑓𝛼 : 𝑀 → R𝑚 such that 𝑓𝛼 = 𝜆𝛼𝜑𝛼

on𝑈𝛼 and 𝑓𝛼 ≡ 0 ∈ R𝑚 otherwise. Now put 𝑛 := 𝑙𝑚 + 𝑙 and consider the 𝐶∞ map

𝐹 : 𝑀 → R𝑛, 𝐹 := ( 𝑓1, . . . , 𝑓𝑙, 𝜆1, . . . , 𝜆𝑙).

To show that 𝐹 is an immersion, let 𝑝 ∈ 𝑀 . There is an 𝛼 such that 𝑝 ∈
𝜑−1
𝛼 (𝑈 (1)), thus 𝜆𝛼 ≡ 1 and 𝑓𝛼 ≡ 𝜑𝛼 in a neighborhood of 𝑝. Then the Jacobi

matrix of 𝐹 ◦ 𝜑−1
𝛼 at the point 𝜑𝛼 (𝑝), the 𝑛 × 𝑚-matrix(

𝜕 (𝐹𝑖 ◦ 𝜑−1
𝛼 )

𝜕𝑥 𝑗
(𝜑𝛼 (𝑝))

)
,
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contains an 𝐼𝑚 (identity matrix) block because 𝐹 (𝛼−1)𝑚+𝑘 = 𝜑 𝑘
𝛼 for 𝑘 = 1, . . . , 𝑚.

Hence 𝑑 (𝐹 ◦ 𝜑−1
𝛼 )𝜑𝛼 (𝑝) has rank 𝑚 and is therefore injective, and so is 𝑑𝐹𝑝.

To show that 𝐹 : 𝑀 → 𝐹 (𝑀) is a homeomorphism, suppose first that 𝐹 (𝑝) =
𝐹 (𝑞) for some 𝑝, 𝑞 ∈ 𝑀 . Then there is an 𝛼 such that 𝜆𝛼 (𝑝) = 𝜆𝛼 (𝑞) = 1, in
particular 𝑝, 𝑞 ∈ 𝑈𝛼, and

𝜑𝛼 (𝑝) = 𝜆𝛼 (𝑝) 𝜑𝛼 (𝑝) = 𝑓𝛼 (𝑝) = 𝑓𝛼 (𝑞) = 𝜆𝛼 (𝑞) 𝜑𝛼 (𝑞) = 𝜑𝛼 (𝑞).

Thus 𝑝 = 𝑞. Now 𝐹 is a continuous bijective map from the compact space 𝑀 onto
the Hausdorff space 𝐹 (𝑀) ⊂ R𝑚 and, hence, a homeomorphism. □

8.4 Tangent vectors as derivations

Let 𝑀 be a 𝐶∞ manifold and 𝑝 ∈ 𝑀 . A linear functional 𝑋 : 𝐶∞(𝑀) → R on the
algebra of real-valued smooth functions on 𝑀 is called a derivation at 𝑝 if for all
𝑓 , 𝑔 ∈ 𝐶∞(𝑀) the product rule (or Leibniz rule)

𝑋 ( 𝑓 𝑔) = 𝑋 ( 𝑓 )𝑔(𝑝) + 𝑓 (𝑝)𝑋 (𝑔)

holds. It follows from this identity that 𝑋 ( 𝑓 ) = 𝑋 ( 𝑓 ) whenever 𝑓 ≡ 𝑓 in a
neighborhood of 𝑝: if 𝑔 := 𝑓 − 𝑓 and ℎ ∈ 𝐶∞(𝑀) is such that ℎ(𝑝) = 1 and
spt(ℎ) ⊂ 𝑔−1{0}, then

0 = 𝑋 (0) = 𝑋 (𝑔ℎ) = 𝑋 (𝑔)ℎ(𝑝) + 𝑔(𝑝)𝑋 (ℎ) = 𝑋 (𝑔) = 𝑋 ( 𝑓 ) − 𝑋 ( 𝑓 ).

Hence every derivation 𝑋 at 𝑝 has a unique extension, still denoted by 𝑋 , to the set
of functions

𝐶∞(𝑀)𝑝 := { 𝑓 ∈ 𝐶∞(𝑈) : 𝑈 ⊂ 𝑀 an open neighborhood of 𝑝}

such that 𝑋 ( 𝑓 ) = 𝑋 ( 𝑓 ) whenever 𝑓 , 𝑓 ∈ 𝐶∞(𝑀)𝑝 agree in a neighborhood of
𝑝. For the constant function on 𝑀 with value 𝑐 ∈ R, 𝑋 (𝑐) = 𝑐 𝑋 (1) = 0 since
𝑋 (1) = 𝑋 (1 · 1) = 𝑋 (1) · 1 + 1 · 𝑋 (1).

For any chart (𝜑,𝑈) of 𝑀𝑚 around 𝑝 there are canonical derivations
𝜕

𝜕𝜑1

��
𝑝
, . . . , 𝜕

𝜕𝜑𝑚

��
𝑝

at 𝑝, defined by

𝜕

𝜕𝜑 𝑗

���
𝑝
( 𝑓 ) :=

𝜕 𝑓

𝜕𝜑 𝑗
(𝑝) :=

𝜕 ( 𝑓 ◦ 𝜑−1)
𝜕𝑥 𝑗

(𝜑(𝑝)).

8.10 Theorem (derivations) The set of all derivations at 𝑝 ∈ 𝑀𝑚 is an 𝑚-
dimensional vector space. If 𝜑 is a chart around 𝑝, then the canonical derivations
𝜕

𝜕𝜑1

��
𝑝
, . . . , 𝜕

𝜕𝜑𝑚

��
𝑝

constitute a basis, and every derivation 𝑋 at 𝑝 satisfies

𝑋 =

𝑚∑︁
𝑗=1

𝑋 (𝜑 𝑗) 𝜕

𝜕𝜑 𝑗

���
𝑝
.
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Proof : □

For a 𝐶∞ manifold 𝑀𝑚, we now identify the tangent vector 𝑋 ∈ 𝑇𝑀𝑝 (Defini-
tion 8.4) with the derivation 𝑋 at 𝑝 defined by

𝑋 ( 𝑓 ) := 𝑑𝑓𝑝 (𝑋) ∈ 𝑇R 𝑓 (𝑝) = R.

It is not difficult to check that then for every chart 𝜑 around 𝑝 and every 𝜉 =

(𝜉1, . . . , 𝜉𝑚) ∈ R𝑚, the vector 𝑋 = [𝜑, 𝜉] 𝑝 corresponds to the derivation

𝑋 =

𝑚∑︁
𝑗=1
𝜉 𝑗

𝜕

𝜕𝜑 𝑗

���
𝑝
.
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9 Transversality

9.1 The Morse–Sard theorem

A cube 𝐶 ⊂ R𝑚 of edge length 𝑠 > 0 and volume |𝐶 | = 𝑠𝑚 is a set isometric to
[0, 𝑠]𝑚. A set 𝐴 ⊂ R𝑚 has measure zero or is a nullset if for every 𝜖 > 0 there
exists a sequence of cubes 𝐶𝑖 ⊂ R𝑚 such that 𝐴 ⊂ ⋃

𝑖 𝐶𝑖 and
∑

𝑖 |𝐶𝑖 | < 𝜖 . The
union of countably many nullsets is a nullset.

If𝑉 ⊂ R𝑚 is an open set and 𝐹 : 𝑉 → R𝑚 a𝐶1 map, and if 𝐴 ⊂ 𝑉 has measure
zero, then 𝐹 (𝐴) has measure zero. To prove this, note first that 𝑉 is the union of
countably many compact balls 𝐵𝑘 . Then each set 𝐴∩𝐵𝑘 lies in the interior of some
compact subset of 𝑉 , on which 𝐹 is Lipschitz continuous, and it follows easily that
𝐹 (𝐴 ∩ 𝐵𝑘) has measure zero.

9.1 Definition (measure zero) A subset 𝐴 of a differentiable manifold 𝑀𝑚 has
measure zero or is a nullset if for every chart (𝜑,𝑈) of 𝑀 the set 𝜑(𝐴 ∩𝑈) ⊂ R𝑚

has measure zero.

It follows from the aforementioned properties that 𝐴 ⊂ 𝑀 has measure zero if
𝜑(𝐴 ∩𝑈) has measure zero for every chart (𝜑,𝑈) from a fixed countable atlas of
𝑀 .

9.2 Theorem (Morse–Sard) If 𝐹 : 𝑀𝑚 → 𝑁𝑛 is a𝐶𝑟 map with 𝑟 > max{0, 𝑚−𝑛},
then the set of singular values of 𝐹 has measure zero in 𝑁 .

See [Mo1939] (𝑛 = 1, 𝑟 = 𝑚) and [Sa1942]. For example, the set of singu-
lar values of a 𝐶2 function 𝐹 : R2 → R has measure zero (and thus 𝐹−1{𝑡} is a
1-dimensional submanifold for almost every 𝑡 ∈ R). The differentiability assump-
tion seems stronger than necessary, but indeed Whitney [Wh1935] constructed an
example of a 𝐶1 function 𝐹 : R2 → R that is non-constant on a compact connected
set of singular points.

Note that if 𝑛 = 0, then there are no singular values in 𝑁 by definition, whereas
if 𝑚 = 0, then 𝐹 (𝑀) is a countable set. In the general case, the theorem follows
easily from the corresponding result for a 𝐶𝑟 map 𝐹 from on open set 𝑈 ⊂ R𝑚 to
R𝑛, because 𝑀 and 𝑁 have countable atlases. Then, in the case that 𝑚 < 𝑛 and
𝑟 = 1, the proof is simple: 𝑈 × {0} ⊂ R𝑚 × R𝑛−𝑚 is a nullset in R𝑚 × R𝑛−𝑚,
thus the 𝐶1 map �̃� : 𝑈 × R𝑛−𝑚 → R𝑛, �̃� (𝑝, 𝑥) := 𝐹 (𝑝), takes it to the nullset
�̃� (𝑈 × {0}) = 𝐹 (𝑈) in R𝑛.

We now prove the result for 𝑚 ≥ 𝑛 ≥ 1 and 𝑟 = ∞.

Proof : It suffices to consider a 𝐶∞ map 𝐹 = (𝐹1, . . . , 𝐹𝑛) : 𝑈 → R𝑛 on an open
set 𝑈 ⊂ R𝑚. Let Σ ⊂ 𝑈 be the set of singular points of 𝐹. Furthermore, for
𝑙 = 1, 2, . . . , let 𝑍𝑙 denote the set of all points 𝑥 ∈ 𝑈 where all partial derivaties of
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𝐹 up to order 𝑙 vanish, that is,

𝐹𝑖
𝑗1,..., 𝑗𝑘

(𝑥) :=
𝜕𝑘𝐹𝑖

𝜕𝑥 𝑗1𝜕𝑥 𝑗2 . . . 𝜕𝑥 𝑗𝑘
(𝑥) = 0

for all 𝑘 ∈ {1, . . . , 𝑙}, 𝑖 ∈ {1, . . . , 𝑛} and 𝑗1, . . . , 𝑗𝑘 ∈ {1, . . . , 𝑚}. This gives a
sequence Σ ⊃ 𝑍1 ⊃ 𝑍2 ⊃ . . . of closed subsets of 𝑈. We now fix 𝑙 ≥ 1 as the
smallest integer strictly bigger than 𝑚

𝑛
− 1.

We show that 𝐹 (𝑍𝑙) has measure zero. Let 𝐶 ⊂ 𝑈 be a cube of side length 𝑠.
By virtue of Taylor’s formula of order 𝑙 and the compactness of 𝐶,

𝐹 (𝑦) = 𝐹 (𝑥) + 𝑅(𝑥, 𝑦)

for all 𝑥 ∈ 𝐶 ∩ 𝑍𝑙 and 𝑦 ∈ 𝐶, where |𝑅(𝑥, 𝑦) | ≤ 𝑐 |𝑥 − 𝑦 |𝑙+1 for some constant 𝑐
depending only on 𝐹 and 𝐶. Consider a subdivision of 𝐶 into 𝑁𝑚 cubes of side
length 𝑠/𝑁 . If𝐶′ is one of these cubes and 𝑥 is a point in𝐶′∩𝑍𝑙, then 𝐹 (𝐶′) lies in
the closed ball with center 𝐹 (𝑥) and radius 𝑐(

√
𝑚𝑠/𝑁)𝑙+1. Hence 𝐹 (𝐶 ∩ 𝑍𝑙) can be

covered by 𝑁𝑚 cubes with total volume 𝑁𝑚
(
2𝑐(

√
𝑚𝑠/𝑁)𝑙+1)𝑛. Since 𝑛(𝑙 +1) > 𝑚,

this quantity tends to 0 as 𝑁 → ∞. It follows that 𝐹 (𝑍𝑙) has measure zero.
If 𝑚 = 𝑛 = 1, then Σ = 𝑍1 = 𝑍𝑙, hence 𝐹 (Σ) has measure zero. We now

proceed by induction and complete the argument for 𝑚 ≥ 2, 𝑚 ≥ 𝑛 ≥ 1 and 𝑟 = ∞
assuming that the set of singular values of every 𝐶∞ map 𝐺 : 𝑀 ′ → 𝑁 ′ between
manifolds of dimension dim(𝑀 ′) = 𝑚 − 1 ≥ dim(𝑁 ′) ≥ 1 has measure zero.

First we consider 𝐹 (𝑍𝑘 \ 𝑍𝑘+1) for any 𝑘 ≥ 1. For every 𝑥 ∈ 𝑍𝑘 \ 𝑍𝑘+1,
there exist a 𝑘-fold partial derivative 𝑓 := 𝐹𝑖

𝑗1,..., 𝑗𝑘
: 𝑈 → R and a further index

𝑗 ∈ {1, . . . , 𝑚} such that 𝑓 𝑗 (𝑥) := 𝜕 𝑓

𝜕𝑥 𝑗 (𝑥) ≠ 0. Then 𝑓 𝑗 (𝑦) ≠ 0 for all 𝑦 in an open
neighborhood 𝑉 ⊂ 𝑈 \ 𝑍𝑘+1 of 𝑥. Thus the (smooth) function 𝑓 |𝑉 is everywhere
regular, in particular the set 𝑀 ′ := 𝑓 −1{0} ∩ 𝑉 , which contains 𝑍𝑘 ∩ 𝑉 , is an
(𝑚 − 1)-dimensional submanifold. Every point 𝑦 ∈ 𝑍𝑘 ∩ 𝑉 ⊂ Σ is also a singular
point of 𝐹 |𝑀′ , hence 𝐹 (𝑍𝑘∩𝑉) has measure zero inR𝑛 by the induction hypothesis,
or by the remark preceding the proof if 𝑚 − 1 < 𝑛. It follows that 𝐹 (𝑍𝑘 \ 𝑍𝑘+1) has
measure zero for every 𝑘 ≥ 1.

Since 𝐹 (𝑍1) = 𝐹 (𝑍𝑙) ∪
⋃𝑙−1

𝑘=1 𝐹 (𝑍𝑘 \ 𝑍𝑘+1) has measure zero, it remains to
consider the set 𝐹 (Σ \ 𝑍1). If 𝑛 = 1, then Σ = 𝑍1 and we are done. Now let 𝑛 ≥ 2.
At every point 𝑥 ∈ Σ \ 𝑍1 at least one partial derivative 𝐹𝑖

𝑗
is non-zero. To simplify

the notation we assume that 𝐹𝑖
𝑚(𝑥) ≠ 0. Then 𝑥 is a regular point of the map

𝜑 : 𝑈 → R𝑚, 𝜑(𝑦) := (𝑦1, . . . , 𝑦𝑚−1, 𝐹𝑖 (𝑦)).

Hence there exists an open neighborhood 𝑉 ⊂ 𝑈 \ 𝑍1 of 𝑥 such that 𝜑 |𝑉 is a
diffeomorphism onto an open set𝑊 ⊂ R𝑚, and there is a well-defined map𝐺 : 𝑊 →
R𝑛 such that 𝐹 |𝑉 = 𝐺 ◦ 𝜑 |𝑉 . For all 𝑦 ∈ 𝑉 ,

𝐺 (𝑦1, . . . , 𝑦𝑚−1, 𝐹𝑖 (𝑦)) = 𝐺 (𝜑(𝑦)) = (𝐹1(𝑦), . . . , 𝐹𝑛 (𝑦)),
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thus𝐺 preserves some coordinate. Hence, if 𝑦 ∈ 𝑉 ∩Σ is a singular point of 𝐹 with
𝐹𝑖 (𝑦) = 𝑡 ∈ R, then 𝜑(𝑦) = (𝑦1, . . . , 𝑦𝑚−1, 𝑡) is a singular point of 𝐺, as well as of
the restriction of 𝐺 to 𝑀𝑡 := 𝑊 ∩ (R𝑚−1 × {𝑡}), and 𝐹 (𝑦) = 𝐺 (𝜑(𝑦)) is a singular
value of𝐺 |𝑀𝑡

. Therefore, by the induction hypothesis, the set 𝐹 (𝑉 ∩Σ) ∩{𝑧 ∈ R𝑛 :
𝑧𝑖 = 𝑡} has (𝑛 − 1)-dimensional (Lebesgue) measure zero. By Fubini’s theorem,
the measurable (in fact, 𝜎-compact) set 𝐹 (𝑉 ∩Σ) has 𝑛-dimensional measure zero.
It follows that also 𝐹 (Σ \ 𝑍1) has measure zero. □

9.2 Manifolds with boundary

Next we introduce manifolds with boundary.
A halfspace of R𝑚 is a set of the form

𝐻 = {𝑥 ∈ R𝑚 : 𝜆(𝑥) ≥ 0}

for a linear function 𝜆 : R𝑚 → R. Note that, according to this definition, also
𝐻 = R𝑚 is a halfspace (take 𝜆 ≡ 0). The boundary 𝜕𝐻 of 𝐻 = {𝜆 ≥ 0} is the
kernel of 𝜆 if 𝜆 . 0 and empty otherwise.

An 𝑚-dimensional topological manifold 𝑀 with boundary is a Hausdorff space
with countable basis of the topology and the following property: for every point 𝑝 ∈
𝑀 there exist a homeomorphism 𝜑 : 𝑈 → 𝜑(𝑈) ⊂ 𝐻 from an open neighborhood𝑈
of 𝑝 onto an open subset 𝜑(𝑈) of a halfspace 𝐻 ⊂ R𝑚 (with the induced topolopy).
Then 𝜑 = (𝜑,𝑈) is a chart of 𝑀 . The notions of 𝐶𝑟 atlas, 𝐶𝑟 structure, and
𝐶𝑟 manifold with boundary are then defined in analogy with the boundary-free
case. Here, a coordinate change

𝜑𝛽𝛼 := 𝜑𝛽 ◦ 𝜑−1
𝛼 : 𝜑𝛼 (𝑈𝛼 ∩𝑈𝛽) → 𝜑𝛽 (𝑈𝛼 ∩𝑈𝛽)

is a 𝐶𝑟 map between open subsets in halfspaces of R𝑚; this means that 𝜑𝛽𝛼 admits
an extension to a 𝐶𝑟 map between open subsets of R𝑚.

The boundary of 𝑀 is the set

𝜕𝑀 := {𝑝 ∈ 𝑀 : 𝜑(𝑝) ∈ 𝜕𝐻 for some chart 𝜑 : 𝑈 → 𝜑(𝑈) ⊂ 𝐻 around 𝑝}.

It follows that if 𝑝 ∈ 𝜕𝑀 , then 𝜑(𝑝) ∈ 𝜕𝐻 for every chart 𝜑 : 𝑈 → 𝜑(𝑈) ⊂ 𝐻

around 𝑝. For topological manifolds with boundary this is a consequence of the
theorem on invariance of the domain [Br1911a]:

If 𝑉 ⊂ R𝑚 is open and ℎ : 𝑉 → R𝑚 is an injective continuous map,
then ℎ(𝑉) ⊂ R𝑚 is open.

In the 𝐶𝑟 case, 𝑟 ≥ 1, one may more easily use the inverse function theorem. The
boundary 𝜕𝑀 of a 𝐶𝑟 manifold 𝑀𝑚 with boundary, 𝑟 ≥ 0, is in a natural way an
(𝑚 − 1)-dimensional 𝐶𝑟 manifold (without boundary), and 𝑀 \ 𝜕𝑀 is a manifold
as well. According to the above definition, every manifold 𝑀 is also a manifold
with boundary, where 𝜕𝑀 = ∅.
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Example Suppose that 𝑁 is a manifold, 𝑓 : 𝑁 → R is a smooth function, and
𝑦 ∈ R is a regular value of 𝑓 . Then 𝑀 := 𝑓 −1( [𝑦,∞)) is a manifold with boundary
𝜕𝑀 = 𝑓 −1{𝑦}: by Theorem 8.7, 𝑓 −1{𝑦} is a submanifold of 𝑁 of codimension 1,
and the restriction of any submanifold chart 𝜓 : 𝑉 → 𝜓(𝑉) ⊂ R𝑛 to 𝑉 ∩ 𝑀 is a
chart for 𝑀 around boundary points.

Let now 𝑀𝑚 be a 𝐶𝑟 manifold with boundary, 1 ≤ 𝑟 ≤ ∞. For 𝑝 ∈ 𝑀 , the
tangent space𝑇𝑀𝑝 of𝑀 at 𝑝 is defined as in Definition 8.4 (note that the differential
𝑑 (𝜓 ◦ 𝜑−1)𝜑 (𝑝) is uniquely defined also if 𝑝 ∈ 𝜕𝑀). The tangent space 𝑇 (𝜕𝑀)𝑝
of 𝜕𝑀 at a boundary 𝑝 is in a canonical way an (𝑚 − 1)-dimensional subspace of
𝑇𝑀𝑝. Differentiable maps 𝐹 : 𝑀 → 𝑁 between manifolds with boundary and the
differential 𝑑𝐹𝑝 : 𝑇𝑀𝑝 → 𝑇𝑁𝐹 (𝑝) are again defined as in the boundary-free case.

The following statement generalizes Theorem 8.7.

9.3 Theorem (regular value theorem, manifolds with boundary) Let 𝐹 : 𝑁 →
𝑄 be a 𝐶∞ map, where 𝑁𝑛 is a manifold with boundary and 𝑄𝑘 is a manifold. If
𝑞 ∈ 𝐹 (𝑁) is a regular value of 𝐹 |𝑁\𝜕𝑁 as well as of 𝐹 |𝜕𝑁 , then 𝑀 := 𝐹−1{𝑞} is a
manifold with boundary, dim(𝑀) = 𝑛 − 𝑘 ≥ 0, and 𝜕𝑀 = 𝑀 ∩ 𝜕𝑁 .

Note that the assumption on 𝑞 is stronger than saying that 𝑞 ∈ 𝐹 (𝑁) is a regular
value of 𝐹, because 𝜕𝑁 is only (𝑛− 1)-dimensional. The set 𝑀 ∩ 𝜕𝑁 is non-empty
if and only if 𝑞 ∈ 𝐹 (𝜕𝑁); in this case, it follows from the assumption that 𝑛−1 ≥ 𝑘

and hence dim(𝑀) ≥ 1.

Proof : □

A continuous map 𝐹 : 𝑀 → 𝐴 from a topological space 𝑀 to a subspace
𝐴 ⊂ 𝑀 such that 𝐹 (𝑝) = 𝑝 for all 𝑝 ∈ 𝐴 is called a retraction of 𝑀 onto 𝐴.

9.4 Theorem (boundary is not a retract) Let 𝑀 be a compact 𝐶∞ manifold with
boundary. Then there is no smooth retraction of 𝑀 onto 𝜕𝑀 .

In the proof of this result and subsequently we will make use of the classification
of compact 1-dimensional manifolds with boundary:

Every smooth, compact 1-dimensional manifold with boundary is dif-
feomorphic to a disjoint union of finitely many circles 𝑆1 and intervals
[0, 1].

For a proof of this intuitive fact we refer to [Mi, Appendix].

Proof : Suppose to the contrary that there exists a smooth retraction 𝐹 : 𝑀 → 𝜕𝑀 .
By Theorem 9.2 there exists a regular value 𝑞 ∈ 𝜕𝑀 of 𝐹 |𝑀\𝜕𝑀 . Since 𝐹 is a re-
traction, 𝑞 is also a regular value of 𝐹 |𝜕𝑀 = id𝜕𝑀 . It follows from Theorem 9.3 that
𝐹−1{𝑞} is a compact 1-dimensional manifold with boundary 𝐹−1{𝑞} ∩ 𝜕𝑀 = {𝑞}.
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This contradicts the fact that by the aforementioned classification, such manifolds
have an even number of boundary points. □

9.5 Theorem (Brouwer fixed point theorem) Every continuous map 𝐺 : 𝐵𝑚 →
𝐵𝑚 = {𝑥 ∈ R𝑚 : |𝑥 | ≤ 1} has a fixed point.

Proof : □

9.3 Mapping degree

Let 𝐹, 𝐺 : 𝑀 → 𝑁 be two 𝐶∞ maps. A 𝐶∞ map 𝐻 : 𝑀 × [0, 1] → 𝑁 with
𝐻 (·, 0) = 𝐹 and 𝐻 (·, 1) = 𝐺 is called a smooth homotopy from 𝐹 to 𝐺. We write
𝐹 ∼ 𝐺 and call 𝐹 and 𝐺 smoothly homotopic if such a map 𝐻 exists. This defines
an equivalence relation on 𝐶∞(𝑀, 𝑁). Transitivity is most easily shown using the
following reparametrization trick: if 𝐻 is a smooth homotopy from 𝐹 to 𝐺, and
𝜏 : [0, 1] → [0, 1] is a smooth function that is constantly 0 on [0, 1

3 ] and 1 on [ 2
3 , 1],

then �̃� (𝑝, 𝑡) := 𝐻 (𝑝, 𝜏(𝑡)) defines a smooth homotopy such that �̃� (· , 𝑡) = 𝐹 for
𝑡 ∈ [0, 1

3 ] and �̃� (· , 𝑡) = 𝐺 for 𝑡 ∈ [ 2
3 , 1].

A smooth homotopy 𝐻 : 𝑀 × [0, 1] → 𝑁 from 𝐹 to 𝐺 with the additional
property that 𝐻 (· , 𝑡) : 𝑀 → 𝑁 is a 𝐶∞ diffeomorphism for all 𝑡 ∈ [0, 1] is called a
smooth smooth isotopy between (the diffeomorphisms) 𝐹 and 𝐺.

9.6 Lemma (isotopies) If 𝑁 is a connected manifold, then for every pair of points
𝑞, 𝑞′ ∈ 𝑁 there is a smooth isotopy 𝐻 : 𝑁 × [0, 1] → 𝑁 with 𝐻 (·, 0) = id𝑁 and
𝐻 (𝑞, 1) = 𝑞′.

Proof : □

Let now 𝐹 : 𝑀 → 𝑁 be a 𝐶∞ map between two manifolds of the same di-
mension. If 𝑞 ∈ 𝑁 is a regular value of 𝐹, then 𝐹−1{𝑞} is a (possibly empty)
0-dimensional submanifold of 𝑀 , hence a discrete set. If 𝑀 is compact, then the
number #𝐹−1{𝑞} of points in 𝐹−1{𝑞} is finite.

9.7 Theorem (mapping degree modulo 2) Suppose that 𝑀, 𝑁 are two manifolds
of the same dimension, 𝑀 is compact, and 𝑁 is connected.

(1) If 𝐹, 𝐺 : 𝑀 → 𝑁 are smoothly homotopic, and if 𝑞 ∈ 𝑁 is a regular value of
both 𝐹 and 𝐺, then #𝐹−1{𝑞} ≡ #𝐺−1{𝑞} (mod 2).

(2) If 𝐹 : 𝑀 → 𝑁 is a 𝐶∞ map, and if 𝑞, 𝑞′ ∈ 𝑁 are two regular values of 𝐹,
then #𝐹−1{𝑞} ≡ #𝐹−1{𝑞′} (mod 2).

The mapping degree modulo 2 of 𝐹 is the number

deg2(𝐹) := (#𝐹−1{𝑞} mod 2) ∈ {0, 1};
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by (2), it does not depend on the choice of the regular value 𝑞. Furthermore, by (1),
it is invariant under smooth homotopies, that is, deg2(𝐹) = deg2(𝐺) if 𝐹 ∼ 𝐺.

Proof : □

If 𝑀 and 𝑁 are oriented manifolds of the same dimension, 𝑀 compact and 𝑁
connected, then the mapping degree deg(𝐹) ∈ Z of a smooth map 𝐹 : 𝑀 → 𝑁 is
defined as

deg(𝐹) :=
∑︁

𝑝∈𝐹−1{𝑞}
sgn(𝑑𝐹𝑝)

for any regular value 𝑞 ∈ 𝑁 of 𝐹, where

sgn(𝑑𝐹𝑝) :=

{
+1 if 𝑑𝐹𝑝 is orientation preserving,
−1 otherwise

(note that for every regular point 𝑝 ∈ 𝑀 , the differential 𝑑𝐹𝑝 : 𝑇𝑀𝑝 → 𝑇𝑁𝐹 (𝑝) is
an isomorphism, since dim(𝑀) = dim(𝑁)). Similarly as for deg2 one can show that
deg(𝐹) does not depend on the choice of 𝑞 and that deg(𝐹) = deg(𝐺) if 𝐹 ∼ 𝐺.

9.8 Theorem (hairy ball theorem) The sphere 𝑆𝑚 admits a nowhere vanishing
tangent vector field if and only if 𝑚 is odd.

Proof : Let 𝛼 : 𝑆𝑚 → 𝑆𝑚 be the antipodal map 𝑝 ↦→ −𝑝. We show first that
deg(𝛼) = (−1)𝑚+1. If 𝑝 ∈ 𝑆𝑚 and (𝑣1, . . . , 𝑣𝑚) is a positively oriented basis
of 𝑇𝑆𝑚𝑝 (no matter how 𝑆𝑚 is oriented), then (𝑣1, . . . , 𝑣𝑚) is negatively oriented
as a basis of 𝑇𝑆𝑚−𝑝, because 𝑁 (−𝑝) = −𝑁 (𝑝) for any Gauss map. Furthermore,
𝑑𝛼𝑝 (𝑣𝑖) = −𝑣𝑖 (note that 𝛼 is the restriction of a linear map). Thus 𝑑𝛼𝑝 preserves
orientation if and only if 𝑚 is odd. Since 𝛼 is a diffeomorphism, it follows that
deg(𝛼) = sgn(𝑑𝛼𝑝) = (−1)𝑚+1.

Suppose now that 𝑋 is a nowhere zero smooth tangent vector field on 𝑆𝑚. We
can assume that |𝑋 | ≡ 1. Then

𝐻 (𝑝, 𝑠) := cos(𝑠) 𝑝 + sin(𝑠) 𝑋 (𝑝)

defines a smooth homotopy 𝐻 : 𝑆𝑚 × [0, 𝜋] → 𝑆𝑚 from id to 𝛼. By the homo-
topy invariance of the degree, 1 = deg(id) = deg(𝛼) = (−1)𝑚+1, so 𝑚 is odd.
Conversely, if 𝑚 = 2𝑘 − 1, then

𝑋 (𝑝) := (𝑝2,−𝑝1, 𝑝4,−𝑝3, . . . , 𝑝2𝑘 , 𝑝2𝑘−1)

defines a nowhere vanishing (unit) vector field on 𝑆𝑚 ⊂ R2𝑘 . □

An important result about the mapping degree is the following theorem due to
Hopf [Ho1927a]:
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For a compact, connected, oriented manifold 𝑀 of dimension 𝑚, two
maps 𝐹, 𝐺 : 𝑀 → 𝑆𝑚 are homotopic if and only if deg(𝐹) = deg(𝐺).

For a non-orientable manifold 𝑀 , an analogous result holds with deg2 instead
of deg.

9.4 Transverse maps and intersection number

Let 𝐿𝑙 and 𝑁𝑛 be two manifolds, and let 𝑀𝑚 ⊂ 𝑁𝑛 be a submanifold. A 𝐶∞ map
𝐹 : 𝐿 → 𝑁 is said to be transverse to 𝑀 if

𝑇𝑀𝑞 + 𝑑𝐹𝑝 (𝑇𝐿𝑝) = 𝑇𝑁𝑞

whenever 𝑝 ∈ 𝐿 and 𝐹 (𝑝) =: 𝑞 ∈ 𝑀 .
Note that if 𝑀 = {𝑞}, then 𝐹 is transverse to 𝑀 if and only if 𝑞 is a regular

value of 𝐹. The following statement generalizes Theorem 9.3 further.

9.9 Theorem (transverse maps) Suppose that 𝐿𝑙 is a manifold with boundary,
𝑁𝑛 is a manifold, 𝑀𝑚 ⊂ 𝑁𝑛 is a submanifold of codimension 𝑘 := 𝑛 − 𝑚, and
𝐹 : 𝐿 → 𝑁 is a 𝐶∞ map with 𝐹 (𝐿) ∩ 𝑀 ≠ ∅. If 𝐹 |𝐿\𝜕𝐿 and 𝐹 |𝜕𝐿 are both
transverse to 𝑀 , then 𝐹−1(𝑀) is manifold with boundary 𝐹−1(𝑀) ∩ 𝜕𝐿, and
dim(𝐹−1(𝑀)) = 𝑙 − 𝑘 ≥ 0.

Thus 𝐹−1(𝑀) has the same codimension in 𝐿 as 𝑀 in 𝑁 . The set 𝐹−1(𝑀) ∩𝜕𝐿
is non-empty if and only if 𝐹 (𝜕𝐿) ∩ 𝑀 ≠ ∅; then 𝑙 − 1 ≥ 𝑘 by the assumption on
𝐹 |𝜕𝐿 , and hence dim(𝐹−1(𝑀)) ≥ 1.

Proof : □

9.10 Theorem (parametric transversality theorem) Suppose that 𝐿,𝑉, 𝑁 are
manifolds, 𝑀 ⊂ 𝑁 is a submanifold, and 𝐻 : 𝐿 × 𝑉 → 𝑁 is a 𝐶∞ map trans-
verse to 𝑀 . Then, for almost every 𝑣 ∈ 𝑉 , the map

𝐻𝑣 := 𝐻 (· , 𝑣) : 𝐿 → 𝑁

is tranverse to 𝑀 , that is, the set {𝑣 ∈ 𝑉 : 𝐻𝑣 is not transverse to 𝑀} has measure
zero in 𝑉 .

Furthermore, for fixed manifolds 𝐿, 𝑁 and a submanifold 𝑀 ⊂ 𝑁 , the set of
all 𝐶∞ maps 𝐹 : 𝐿 → 𝑁 transverse to 𝑀 is dense in 𝐶∞(𝐿, 𝑁) with respect to the
compact-open (“weak”) 𝐶∞ topology on 𝐶∞(𝐿, 𝑁), see Theorem 2.1, Chapter 3,
in [Hi].

Proof : □
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9.11 Theorem (homotopy to a transverse map) If 𝐹 : 𝐿 → 𝑁 is a 𝐶∞ map and
𝑀 ⊂ 𝑁 is a submanifold, then there exists a smooth homotopy 𝐻 : 𝐿 × [0, 1] → 𝑁

from 𝐹 = 𝐻 (· , 0) to a map �̃� = 𝐻 (· , 1) transverse to 𝑀 .

Proof : □

9.12 Theorem (intersection number modulo 2) Suppose that 𝐿𝑙, 𝑁𝑛 are two
manifolds, 𝐿 is compact, and 𝑀𝑚 is a submanifold and a closed subset of 𝑁
such that 𝑙 + 𝑚 = 𝑛. If 𝐹, 𝐺 : 𝐿 → 𝑁 are smoothly homotopic and both tranverse
to 𝑀 , then #𝐹−1(𝑀) ≡ #𝐺−1(𝑀) (mod 2).

Note that since 𝑙 + 𝑚 = 𝑛 and 𝐹−1(𝑀) is compact, the number #𝐹−1(𝑀) is
finite.

Proof : □

Let again 𝐿, 𝑁 and 𝑀 be given as in Theorem 9.12, and let 𝐹 : 𝐿 → 𝑁 be an
arbitrary𝐶∞ map. By Theorem 9.11 there exists a map �̃� : 𝐿 → 𝑁 that is smoothly
homotopic to 𝐹 and transverse to 𝑀 . By virtue of Theorem 9.12, the number

#2(𝐹, 𝑀) := (#�̃�−1(𝑀) mod 2) ∈ {0, 1}

is independent of the choice of �̃� and invariant under smooth homotopies of 𝐹;
it is called the intersection number modulo 2 of 𝐹 with 𝑀 . An application is
Theorem 2.11.
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10 Vector bundles, vector fields and flows

10.1 Vector bundles

10.1 Definition (smooth vector bundle) A (real, smooth) vector bundle with fiber
dimension 𝑘 , or briefly a 𝑘-plane bundle, is a triple (𝜋, 𝐸, 𝑀) such that 𝜋 : 𝐸 → 𝑀

is a smooth map between manifolds and

(1) for every point 𝑝 ∈ 𝑀 , the fiber 𝐸𝑝 := 𝜋−1{𝑝} has the structure of a 𝑘-
dimensional (real) vector space;

(2) for every point 𝑞 ∈ 𝑀 there exist an open neighborhood 𝑈 ⊂ 𝑀 of 𝑞 and a
𝐶∞ diffeomorphism 𝜓 : 𝜋−1(𝑈) → 𝑈 ×R𝑘 such that 𝜓 |𝐸𝑝

: 𝐸𝑝 → {𝑝} ×R𝑘

is a linear isomorphism for every 𝑝 ∈ 𝑈.

One calls 𝐸 the total space, 𝑀 the base space, and 𝜋 the bundle projection.
Condition (2) is called the axiom of local triviality, and a pair (𝜓,𝑈) as above is
called a bundle chart or a local trivialization around 𝑞.

Topological vector bundles are defined analogously, except that then the pro-
jection is merely a continuous map between topological spaces (not necessarily
topological manifolds) and bundle charts are homeomorphisms.

A 𝑘-plane bundle (𝜋, 𝐸, 𝑀) is called trivial if there exists a global bundle
chart 𝜓 : 𝐸 → 𝑀 × R𝑘 . For every manifold 𝑀 there is the trivial R𝑘-bundle
𝜋 : 𝑀 × R𝑘 → 𝑀 over 𝑀 with 𝜋(𝑝, 𝜉) = 𝑝 for all (𝑝, 𝜉) ∈ 𝑀 × R𝑘 (the identity
map on 𝑀 ×R𝑘 is a global bundle chart).

A 𝐶∞ map 𝑠 : 𝑀 → 𝐸 is called a section of the vector bundle 𝜋 : 𝐸 → 𝑀 if
𝜋 ◦ 𝑠 = id𝑀 , that is, 𝑠(𝑝) ∈ 𝐸𝑝 for all 𝑝 ∈ 𝑀 . The set of all sections is denoted by
Γ(𝐸) or Γ∞(𝐸), to emphasize that smooth maps are meant. Every vector bundle
𝜋 : 𝐸 → 𝑀 admits the zero section with 𝑠(𝑝) = 0 ∈ 𝐸𝑝 for all 𝑝 ∈ 𝑀 . Note that if
(𝜓,𝑈) is a bundle chart, then 𝑠 |𝑈 = 𝜓−1 ◦ 𝑖 for 𝑖 : 𝑈 → 𝑈 ×R𝑘 , 𝑖(𝑝) = (𝑝, 0), thus
𝑠 is indeed a smooth map.

10.2 Definition (bundle map) Let 𝜋 : 𝐸 → 𝑀 and 𝜋′ : 𝐸 ′ → 𝑀 ′ be two vector
bundles. A𝐶∞ map �̃� : 𝐸 → 𝐸 ′ is called a bundle map if �̃� maps fibers isomorphi-
cally onto fibers, that is, �̃� induces a map 𝐹 : 𝑀 → 𝑀 ′ such that 𝐹 ◦ 𝜋 = 𝜋′ ◦ �̃� and
�̃� |𝐸𝑝

: 𝐸𝑝 → 𝐸 ′
𝐹 (𝑝) is an isomorphism for all 𝑝 ∈ 𝑀 . If 𝐹 is a diffeomorphism,

then �̃� is a bundle equivalence. If 𝑀 = 𝑀 ′ and 𝐹 = id𝑀 , then �̃� is a bundle
isomorphism.

Note that the map 𝐹 : 𝑀 → 𝑀 ′ induced by a bundle map �̃� : 𝐸 → 𝐸 ′ is smooth
as well, because 𝐹 = 𝜋′ ◦ �̃� ◦ 𝑠 for the zero section 𝑠 of 𝐸 .

10.3 Proposition (trivial vector bundle) A 𝑘-plane bundle 𝜋 : 𝐸 → 𝑀 is trivial
if and only if it admits 𝑘 everywhere linearly independent sections.
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Proof : Suppose first that there exist sections 𝑠1, . . . , 𝑠𝑘 ∈ Γ(𝐸) such that
𝑠1(𝑝), . . . , 𝑠𝑘 (𝑝) are linearly independent for every 𝑝 ∈ 𝑀 . Let 𝜓 : 𝐸 → 𝑀 × R𝑘

be the map that sends every linear combination
∑𝑘

𝑖=1 𝜉
𝑖𝑠𝑖 (𝑝) to (𝑝, 𝜉). Since the 𝑠𝑖

are smooth, it follows that 𝜓−1 is smooth. Furthermore, since 𝜓−1 maps each fiber
{𝑝} × R𝑘 isomorphically onto 𝐸𝑝, all (𝑝, 0) ∈ 𝑀 × R𝑘 are regular points of 𝜓−1,
thus 𝜓−1 maps an open neighborhood of 𝑀 × {0} diffeomorphically into 𝐸 , and it
then follows easily that 𝜓−1 and 𝜓 are global diffeomorphisms.

Conversely, given a global bundle chart𝜓 : 𝐸 → 𝑀×R𝑘 , the sections 𝑠1, . . . , 𝑠𝑘
defined by 𝑠𝑖 (𝑝) := 𝜓−1(𝑝, 𝑒𝑖) are everywhere linearly independent. □

Let 𝜋 : 𝐸 → 𝑀 be a 𝑘-plane bundle, and let {(𝜓𝛼,𝑈𝛼)}𝛼∈𝐴 be a bundle atlas,
that is, a family of bundle charts such that

⋃
𝛼∈𝐴𝑈𝛼 = 𝑀 . Every chart is of the form

𝜓𝛼 = (𝜋 |𝜋−1 (𝑈𝛼 ) , 𝑔𝛼) for a𝐶∞ map 𝑔𝛼 : 𝜋−1(𝑈𝛼) → R𝑘 , where 𝑔𝛼 |𝐸𝑝
: 𝐸𝑝 → R𝑘

is a linear isomorphism for every 𝑝 ∈ 𝑈𝛼. Thus, for every pair of indices 𝛼, 𝛽 ∈ 𝐴,
there exists a 𝐶∞ map

𝑔𝛽𝛼 : 𝑈𝛼 ∩𝑈𝛽 → GL(𝑘,R), 𝑔𝛽𝛼 (𝑝) = 𝑔𝛽 |𝐸𝑝
◦ (𝑔𝛼 |𝐸𝑝

)−1.

The family {𝑔𝛽𝛼} satisfies the so-called cocyle condition

𝑔𝛼𝛼 (𝑝) = idR𝑘 , 𝑔𝛾𝛽 (𝑝) ◦ 𝑔𝛽𝛼 (𝑝) = 𝑔𝛾𝛼 (𝑝) (𝑝 ∈ 𝑈𝛼 ∩𝑈𝛽 ∩𝑈𝛾).

If𝐺 is a subgroup of GL(𝑘,R), and if 𝐸 admits a bundle atlas with transition maps
𝑔𝛽𝛼 : 𝑈𝛼 ∩ 𝑈𝛽 → 𝐺, then 𝐸 is called a vector bundle with structure group 𝐺.
Conversely, given an open cover {𝑈𝛼}𝛼∈𝐴 of 𝑀 and a family {𝑔𝛽𝛼} of 𝐶∞ maps
𝑔𝛽𝛼 : 𝑈𝛼 ∩𝑈𝛽 → GL(𝑘,R) satisfying the above cocycle condition, one can con-
struct a corresponding 𝑘-plane bundle over 𝑀 from these data.

10.2 The cotangent bundle

Next we discuss the cotangent bundle 𝑇𝑀∗ of an 𝑚-dimensional manifold 𝑀 . The
total space

𝑇𝑀∗ =
⋃
𝑝∈𝑀

𝑇𝑀∗
𝑝

is the (disjoint) union of the dual spaces

𝑇𝑀∗
𝑝 = {𝜆 : 𝑇𝑀𝑝 → R : 𝜆 is linear},

and 𝜋 : 𝑇𝑀∗ → 𝑀 is given by 𝜋(𝜆) = 𝑝 for 𝜆 ∈ 𝑇𝑀∗
𝑝. If (𝜑,𝑈) is a chart of 𝑀 ,

then

𝜓(𝜆) =
(
𝜋(𝜆),

𝑚∑︁
𝑖=1

𝜆

( 𝜕

𝜕𝜑𝑖

���
𝜋 (𝜆)

)
𝑒𝑖

)
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defines a corresponding bundle chart 𝜓 : 𝜋−1(𝑈) → 𝑈 × R𝑚 of 𝑇𝑀∗. For 𝑝 ∈ 𝑈,
the differentials 𝑑𝜑1

𝑝, . . . , 𝑑𝜑
𝑚
𝑝 : 𝑇𝑀𝑝 → R constitute the basis of 𝑇𝑀∗

𝑝 dual to
𝜕

𝜕𝜑1

��
𝑝
, . . . , 𝜕

𝜕𝜑𝑚

��
𝑝
, as

𝑑𝜑𝑖𝑝

( 𝜕

𝜕𝜑 𝑗

���
𝑝

)
=
𝜕𝜑𝑖

𝜕𝜑 𝑗
(𝑝) = 𝛿𝑖𝑗 .

The maps 𝑑𝜑𝑖 : 𝑝 ↦→ 𝑑𝜑𝑖𝑝 are sections of 𝑇𝑈∗. A global section 𝜔 ∈ Γ(𝑇𝑀∗),
𝑝 ↦→ 𝜔𝑝 ∈ 𝑇𝑀∗

𝑝, is called a covector field or a 1-form on 𝑀 . With respect to the
chart (𝜑,𝑈), every such 𝜔 has a unique local representation

𝜔 |𝑈 =

𝑚∑︁
𝑖=1

𝜔𝑖 𝑑𝜑
𝑖

for the 𝐶∞ functions 𝜔𝑖 : 𝑈 → R defined by 𝜔𝑖 (𝑝) = 𝜔𝑝

(
𝜕

𝜕𝜑𝑖

��
𝑝

)
. In particular, for

any 𝑓 ∈ 𝐶∞(𝑀), the differential 𝑑𝑓 : 𝑝 ↦→ 𝑑𝑓𝑝 is a 1-form with local representation

𝑑𝑓 |𝑈 =

𝑚∑︁
𝑖=1

𝜕 𝑓

𝜕𝜑𝑖
𝑑𝜑𝑖 ,

since 𝑑𝑓𝑝
(

𝜕
𝜕𝜑𝑖

��
𝑝

)
=

𝜕 𝑓

𝜕𝜑𝑖 (𝑝).

10.3 Constructions with vector bundles

10.4 Definition (pull-back bundle) Suppose that 𝜋′ : 𝐸 ′ → 𝑀 ′ is a 𝑘-plane bun-
dle and 𝐹 : 𝑀 → 𝑀 ′ is a 𝐶∞ map from another manifold 𝑀 into 𝑀 ′. The 𝑘-plane
bundle 𝜋 : 𝐹∗𝐸 ′ → 𝑀 with total space

𝐹∗𝐸 ′ := {(𝑝, 𝑣) ∈ 𝑀 × 𝐸 ′ : 𝜋′(𝑣) = 𝐹 (𝑝)}

and projection (𝑝, 𝑣) ↦→ 𝑝 is called the pull-back bundle of 𝜋′ and 𝐹 or the bundle
induced by 𝜋′ and 𝐹.

The map �̃� : 𝐹∗𝐸 ′ → 𝐸 ′, �̃� (𝑝, 𝑣) = 𝑣 ∈ 𝐸 ′
𝐹 (𝑝) , is a bundle map over 𝐹. If

(𝜓′,𝑈′) is a bundle chart for 𝐸 ′, 𝜓′ = (𝜋′, 𝑔′), then

𝜓 : 𝜋−1(𝑈) → 𝑈 ×R𝑘 , 𝜓(𝑝, 𝑣) = (𝑝, 𝑔′(𝑣)),

is a corresponding bundle chart for 𝐹∗𝐸 ′ over 𝑈 := 𝐹−1(𝑈′). If {(𝜓′
𝛼,𝑈

′
𝛼)} is a

bundle atlas of 𝐸 ′ with transition maps 𝑔′
𝛽𝛼

: 𝑈′
𝛼∩𝑈′

𝛽
→ GL(𝑘,R), then this gives

a bundle atlas {(𝜓𝛼,𝑈𝛼)} of 𝐸 with transitions maps

𝑔𝛽𝛼 = 𝑔′𝛽𝛼 ◦ 𝐹 : 𝑈𝛼 ∩𝑈𝛽 → GL(𝑘,R).

Note that if 𝐸 ′ = 𝑇𝑀 ′, then a section 𝑠 ∈ Γ(𝐹∗𝑇𝑀 ′), 𝑠(𝑝) = (𝑝, 𝑋 (𝑝)), corre-
sponds to a vector field along 𝐹, as 𝑋 (𝑝) ∈ 𝑇𝑀 ′

𝐹 (𝑝) for all 𝑝 ∈ 𝑀 .
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10.5 Definition (Whitney sum) Suppose that 𝜋 : 𝐸 → 𝑀 and 𝜋′ : 𝐸 ′ → 𝑀 are
vector bundles of rank 𝑘 and 𝑘 ′, respectively, over the same base space 𝑀 . The
Whitney sum or direct sum of 𝜋 and 𝜋′ is the vector bundle �̄� : 𝐸 ⊕ 𝐸 ′ → 𝑀 of rank
𝑘 + 𝑘 ′ with total space

𝐸 ⊕ 𝐸 ′ = {(𝑣, 𝑣′) ∈ 𝐸 × 𝐸 ′ : 𝜋(𝑣) = 𝜋′(𝑣′)}

and projection (𝑣, 𝑣′) ↦→ 𝜋(𝑣) = 𝜋′(𝑣′); that is, (𝐸 ⊕ 𝐸 ′)𝑝 = 𝐸𝑝 ⊕ 𝐸 ′
𝑝.

If 𝜓 = (𝜋, 𝑔) and 𝜓′ = (𝜋′, 𝑔′) are bundle charts of 𝐸 and 𝐸 ′, respectively, over
the same open set𝑈 ⊂ 𝑀 , then

�̄� : �̄�−1(𝑈) → 𝑈 ×R𝑘+𝑘′ , �̄�(𝑣, 𝑣′) = (�̄�(𝑣, 𝑣′), 𝑔(𝑣), 𝑔′(𝑣′)),

is a bundle chart for 𝐸 ⊕ 𝐸 ′. Transition maps satisfy

�̄�𝛽𝛼 (𝑝) = 𝑔𝛽𝛼 (𝑝) ⊕ 𝑔′𝛽𝛼 (𝑝) ∈ GL(𝑘 + 𝑘 ′,R).

The bundles 𝐸 ⊕ 𝐸 ′ and 𝐸 ′ ⊕ 𝐸 are isomorphic, and

(𝐸 ⊕ 𝐸 ′) ⊕ 𝐸 ′′ = 𝐸 ⊕ (𝐸 ′ ⊕ 𝐸 ′′).

However, 𝐸 ⊕ 𝐸 ′′ � 𝐸 ′ ⊕ 𝐸 ′′ does in general not imply that 𝐸 � 𝐸 ′.

If 𝜋 : 𝐸 → 𝑀 and 𝜋′ : 𝐸 ′ → 𝑀 are again given as in Definition 10.5, then one
may similarly form the tensor product �̄� : 𝐸 ⊗ 𝐸 ′ → 𝑀 of 𝜋 and 𝜋′ (of rank 𝑘𝑘 ′)
with fibers (𝐸 ⊗ 𝐸 ′)𝑝 = 𝐸𝑝 ⊗ 𝐸 ′

𝑝 and transitions maps satisfying

�̄�𝛽𝛼 (𝑝) = 𝑔𝛽𝛼 (𝑝) ⊗ 𝑔′𝛽𝛼 (𝑝) ∈ GL(𝑘𝑘 ′,R)

(see Appendix C).

10.6 Definition (tensor bundle, tensor field) Let 𝑀 be an 𝑚-dimensional mani-
fold. The bundle

𝑇𝑟 ,𝑠𝑀 := 𝑇𝑀 ⊗ · · · ⊗ 𝑇𝑀︸              ︷︷              ︸
𝑟

⊗𝑇𝑀∗ ⊗ · · · ⊗ 𝑇𝑀∗︸                 ︷︷                 ︸
𝑠

of rank 𝑚𝑟+𝑠 with fibers 𝑇𝑟 ,𝑠𝑀𝑝 = (𝑇𝑀𝑝)𝑟 ,𝑠 is called the (𝑟, 𝑠)-tensor bundle over
𝑀 . An (𝑟, 𝑠)-tensor field 𝑇 on 𝑀 is a section 𝑇 ∈ Γ(𝑇𝑟 ,𝑠𝑀).

Note that 𝑇1,0𝑀 = 𝑇𝑀 and 𝑇0,1𝑀 = 𝑇𝑀∗. By convention, 𝑇0,0𝑀 = 𝐶∞(𝑀).
In a chart (𝜑,𝑈) of 𝑀 , the tensor field 𝑇 ∈ Γ(𝑇𝑟 ,𝑠𝑀) has a unique representation

𝑇 |𝑈 =
∑︁

𝑇
𝑖1...𝑖𝑟
𝑗1... 𝑗𝑠

𝜕

𝜕𝜑𝑖1
⊗ · · · ⊗ 𝜕

𝜕𝜑𝑖𝑟
⊗ 𝑑𝜑 𝑗1 ⊗ · · · ⊗ 𝑑𝜑 𝑗𝑠

for 𝐶∞ functions 𝑇 𝑖1...𝑖𝑟
𝑗1... 𝑗𝑠

: 𝑈 → R.
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Now let 𝑇 : (Γ(𝑇𝑀))𝑠 → Γ(𝑇𝑀) be a multilinear (𝑠-linear) map. We say
that 𝑇 defines a (1, 𝑠)-tensor field if for all 𝑝 ∈ 𝑀 , the value of the vector field
𝑇 (𝑋1, . . . , 𝑋𝑠) at 𝑝 depends only on 𝑋1(𝑝), . . . , 𝑋𝑠 (𝑝); that is, we get an 𝑠-linear
map 𝑇𝑝 : (𝑇𝑀𝑝)𝑠 → 𝑇𝑀𝑝 or, equivalently, an (1 + 𝑠)-linear map

𝑇 ′
𝑝 : 𝑇𝑀∗

𝑝 × (𝑇𝑀𝑝)𝑠 → R, 𝑇 ′
𝑝 (𝜆, 𝑣1, . . . , 𝑣𝑠) = 𝜆(𝑇𝑝 (𝑣1, . . . , 𝑣𝑠)),

hence a tensor 𝑇 ′
𝑝 ∈ 𝑇1,𝑠𝑀𝑝 over 𝑇𝑀𝑝.

10.7 Theorem (tensor fields) An 𝑠-linear map 𝑇 : (Γ(𝑇𝑀))𝑠 → Γ(𝑇𝑀) defines a
(1, 𝑠)-tensor field if and only if 𝑇 is 𝐶∞(𝑀)-homogeneous in every argument, that
is,

𝑇 (𝑋1, . . . , 𝑋𝑖−1, 𝑓 𝑋𝑖 , 𝑋𝑖+1, . . . , 𝑋𝑠) = 𝑓 𝑇 (𝑋1, . . . , 𝑋𝑠)

for any 𝑓 ∈ 𝐶∞(𝑀).

The theorem also holds in the following form for (𝑟, 𝑠)-tensor fields: An (𝑟 + 𝑠)-
linear map 𝑇 : (Γ(𝑇𝑀∗))𝑟 × (Γ(𝑇𝑀))𝑠 → 𝐶∞(𝑀) defines an (𝑟, 𝑠)-tensor field if
and only if 𝑇 is 𝐶∞(𝑀)-homogeneous in every argument.

Proof : □

10.4 Vector fields and flows

Let 𝑋 ∈ Γ(𝑇𝑀) be a vector field on a manifold 𝑀 . A curve 𝑐 : (𝑎, 𝑏) → 𝑀 is an
integral curve of 𝑋 if

¤𝑐(𝑡) = 𝑋𝑐 (𝑡 )

for all 𝑡 ∈ (𝑎, 𝑏).

10.8 Theorem (local flow) For all 𝑝 ∈ 𝑀 there exist an open neighborhood𝑈 of 𝑝
and an 𝜖 > 0 such that for all 𝑞 ∈ 𝑈 there is a unique integral curve 𝑐𝑞 : (−𝜖, 𝜖) →
𝑀 of 𝑋 with 𝑐𝑞 (0) = 𝑞. The map Φ : (−𝜖, 𝜖) ×𝑈 → 𝑀 , Φ(𝑡, 𝑞) = Φ𝑡 (𝑞) := 𝑐𝑞 (𝑡),
is 𝐶∞.

Proof : Choose a chart (𝜓,𝑉) of 𝑀 around 𝑝. A curve 𝑐 : (𝑎, 𝑏) → 𝑉 is an integral
curve of 𝑋 if and only if 𝛾 := 𝜓 ◦ 𝑐 is an integral curve of the vector field 𝜉 on
𝜓(𝑉) defined by 𝜉𝜓 (𝑝) := 𝑑𝜓𝑝 (𝑋𝑝), that is, ¤𝛾(𝑡) = 𝜉𝛾 (𝑡 ) for all 𝑡 ∈ (𝑎, 𝑏). Now the
result follows from the theorem on existence, uniqueness, and smooth dependence
on initial conditions of solutions to ordinary differential equations. □

The map Φ is called a local flow of 𝑋 around 𝑝. It follows from the uniqueness
assertion in Theorem 10.8 that

Φ𝑡 (Φ𝑠 (𝑞)) = Φ𝑠+𝑡 (𝑞)
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whenever 𝑠, 𝑡, 𝑠 + 𝑡 ∈ (−𝜖, 𝜖) and 𝑞,Φ𝑠 (𝑞) ∈ 𝑈. Then, for any open neighborhood
𝑉 ⊂ 𝑈 of 𝑞 with Φ𝑠 (𝑉) ⊂ 𝑈, Φ𝑠 |𝑉 is a 𝐶∞ diffeomorphism from 𝑉 onto Φ𝑠 (𝑉),
because Φ−𝑠 ◦Φ𝑠 |𝑉 = Φ0 |𝑉 = id𝑉 .

A vector field 𝑋 on 𝑀 is completely integrable if for all 𝑞 ∈ 𝑀 there exists
an integral curve 𝑐𝑞 : R → 𝑀 of 𝑋 with 𝑐𝑞 (0) = 𝑞. Then 𝑋 induces a global
flow Φ : R × 𝑀 → 𝑀 and a corresponding 1-parameter family of diffeomorphisms
{Φ𝑡 }𝑡∈R.

10.9 Proposition (complete integrability) Every vector field 𝑋 ∈ Γ(𝑇𝑀) with
compact support is completely integrable.

Proof : For all 𝑝 ∈ 𝑀 there is a local flow Φ : (−𝜖𝑝, 𝜖𝑝) ×𝑈𝑝 → 𝑀 of 𝑋 . Then
finitely many neighborhoods 𝑈𝑝1 , . . . ,𝑈𝑝𝑘 cover the compact support of 𝑋 . For
𝜖 := min{𝜖𝑝𝑖 : 𝑖 = 1, . . . , 𝑘}, it follows that Φ is defined on (−𝜖, 𝜖) × 𝑀 , where
Φ𝑡 (𝑝) = 𝑝 for all 𝑡 if 𝑋 (𝑝) = 0. Writing any 𝑡 ∈ R as 𝑡 = 𝑗 · 𝜖

2 + 𝑟 with 𝑗 ∈ Z and
𝑟 ∈ [0, 𝜖2 ), we conclude that Φ𝑡 = Φ𝑟 ◦ (Φ𝜖 /2) 𝑗 is the time 𝑡 flow of 𝑋 . □

10.10 Lemma (flow-box) If 𝑋 ∈ Γ(𝑇𝑀), 𝑝 ∈ 𝑀 , and 𝑋𝑝 ≠ 0, then there exists a
chart (𝜑,𝑈) around 𝑝 such that 𝑋 |𝑈 = 𝜕

𝜕𝜑1 .

Proof : This follows from the corresponding Euclidean result, Lemma A.4. □

10.5 The Lie bracket

Let 𝑋,𝑌 ∈ Γ(𝑇𝑀). For 𝑓 ∈ 𝐶∞(𝑀), the function 𝑌 ( 𝑓 ) ∈ 𝐶∞(𝑀) maps 𝑞 ∈ 𝑀 to
𝑌𝑞 ( 𝑓 ) = 𝑑𝑓𝑞 (𝑌𝑞) ∈ R. For all 𝑝 ∈ 𝑀 ,

[𝑋,𝑌 ] 𝑝 ( 𝑓 ) := 𝑋𝑝 (𝑌 ( 𝑓 )) − 𝑌𝑝 (𝑋 ( 𝑓 )) ( 𝑓 ∈ 𝐶∞(𝑀))

defines a derivation at 𝑝. This yields a vector field [𝑋,𝑌 ] ∈ Γ(𝑇𝑀), called the Lie
bracket of 𝑋 and 𝑌 . Briefly, [𝑋,𝑌 ] = 𝑋𝑌 − 𝑌𝑋 .

10.11 Theorem (Lie bracket) For 𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀) and 𝑓 , 𝑔 ∈ 𝐶∞(𝑀), the
following properties hold:

(1) [𝑋,𝑌 ] is bilinear, and [𝑌, 𝑋] = −[𝑋,𝑌 ];

(2) [ 𝑓 𝑋, 𝑔𝑌 ] = 𝑓 𝑔[𝑋,𝑌 ]+ 𝑓 𝑋 (𝑔)𝑌−𝑔𝑌 ( 𝑓 )𝑋 , in particular [ 𝑓 𝑋,𝑌 ] = 𝑓 [𝑋,𝑌 ]−
𝑌 ( 𝑓 )𝑋 and [𝑋, 𝑔𝑌 ] = 𝑔[𝑋,𝑌 ] + 𝑋 (𝑔)𝑌 ,

(3) [𝑋, [𝑌, 𝑍]] + [𝑍, [𝑋,𝑌 ]] + [𝑌, [𝑍, 𝑋]] = 0 (Jacobi identity).

Proof : □
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For a chart (𝜑,𝑈) and 𝑓 ∈ 𝐶∞(𝑀),

𝜕

𝜕𝜑𝑖

(
𝜕

𝜕𝜑 𝑗
( 𝑓 )

)
=

𝜕

𝜕𝜑𝑖

(
𝜕 ( 𝑓 ◦ 𝜑−1)

𝜕𝑥 𝑗
◦ 𝜑

)
=
𝜕2( 𝑓 ◦ 𝜑−1)
𝜕𝑥𝑖 𝜕𝑥 𝑗

◦ 𝜑,

thus
[

𝜕
𝜕𝜑𝑖 ,

𝜕
𝜕𝜑 𝑗

]
= 0. It follows from this fact and properties (1) and (2) above that

if 𝑋 |𝑈 =
∑

𝑖 𝑋
𝑖 𝜕
𝜕𝜑𝑖 and 𝑌 |𝑈 =

∑
𝑗 𝑌

𝑗 𝜕
𝜕𝜑 𝑗 , then

[𝑋,𝑌 ] |𝑈 =
∑︁
𝑖, 𝑗

(
𝑋 𝑖 𝜕𝑌

𝑗

𝜕𝜑𝑖
𝜕

𝜕𝜑 𝑗
− 𝑌 𝑗 𝜕𝑋

𝑖

𝜕𝜑 𝑗

𝜕

𝜕𝜑𝑖

)
=
∑︁
𝑖

(∑︁
𝑗

𝑋 𝑗 𝜕𝑌
𝑖

𝜕𝜑 𝑗
− 𝑌 𝑗 𝜕𝑋

𝑖

𝜕𝜑 𝑗

)
𝜕

𝜕𝜑𝑖
.

The following results relates Lie brackets to flows.

10.12 Theorem (Lie derivative) If Φ is a local flow of 𝑋 around 𝑝, then

[𝑋,𝑌 ] 𝑝 = lim
𝑡→0

𝑑 (Φ−𝑡 ) (𝑌Φ𝑡 (𝑝) ) − 𝑌𝑝
𝑡

=
𝑑

𝑑𝑡

���
𝑡=0
𝑑 (Φ−𝑡 ) (𝑌Φ𝑡 (𝑝) ).

The right side of this identity is called the Lie derivative of 𝑌 in direction of 𝑋
at the point 𝑝 and is denoted by (𝐿𝑋𝑌 )𝑝; thus [𝑋,𝑌 ] = 𝐿𝑋𝑌 .

Proof : □

Let 𝑁 be an 𝑛-dimensional manifold. An 𝑚-dimensional 𝐶∞ distribution Δ on
𝑁 assigns to each 𝑝 ∈ 𝑁 an 𝑚-dimensional linear subspace Δ𝑝 ⊂ 𝑇𝑁𝑝 such that
for every point 𝑝 ∈ 𝑁 there exist an open neighborhood 𝑈 ⊂ 𝑁 of 𝑝 and vector
fields 𝑋1, . . . , 𝑋𝑚 ∈ Γ(𝑇𝑈) with Δ𝑞 = span(𝑋1(𝑞), . . . , 𝑋𝑚(𝑞)) for all 𝑞 ∈ 𝑈. The
distribution Δ is called involutive or completely integrable if for all vector fields
𝑋,𝑌 ∈ Γ(𝑇𝑁) with 𝑋𝑝, 𝑌𝑝 ∈ Δ𝑝 for all 𝑝 ∈ 𝑁 , also [𝑋,𝑌 ] 𝑝 ∈ Δ𝑝 for all 𝑝 ∈ 𝑁 .
An injective immersion 𝐼 : 𝑀 → 𝑁 of an 𝑚-dimensional manifold 𝑀 is called an
integral manifold of Δ if 𝑑𝐼𝑝 (𝑇𝑀𝑝) = Δ𝑝 for all 𝑝 ∈ 𝑀 . The theorem of Frobenius
says:

For every 𝑝 ∈ 𝑁 there exists an integral manifold of Δ through 𝑝 if and
only if Δ is involutive.
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11 Differential forms

11.1 Basic definitions

Let 𝑀 be a 𝐶∞ manifold of dimension 𝑚. For 𝑝 ∈ 𝑀 , Λ𝑠 (𝑇𝑀∗
𝑝) denotes the vector

space of alternating 𝑠-linear maps (𝑇𝑀𝑝)𝑠 → R (see Appendix C), and

Λ𝑠 (𝑇𝑀∗) :=
⋃
𝑝∈𝑀

Λ𝑠 (𝑇𝑀∗
𝑝)

denotes the corresponding bundle.

11.1 Definition (differential form) A differential form of degree 𝑠 or an 𝑠-form on
𝑀 is a (smooth) section of Λ𝑠 (𝑇𝑀∗). We will denote the vector space of 𝑠-forms
on 𝑀 more briefly by Ω𝑠 (𝑀) := Γ(Λ𝑠 (𝑇𝑀∗)).

By convention, Λ0(𝑇𝑀∗
𝑝) = R, hence Ω0(𝑀) = 𝐶∞(𝑀). Recall also that

Λ𝑠 (𝑇𝑀∗
𝑝) has dimension

(𝑚
𝑠

)
, in particular Ω𝑠 (𝑀) = {0} for 𝑠 > 𝑚.

For 𝜔 ∈ Ω𝑠 (𝑀) and 𝜃 ∈ Ω𝑡 (𝑀), the exterior product

𝜔 ∧ 𝜃 ∈ Ω𝑠+𝑡 (𝑀)

is defined by (𝜔 ∧ 𝜃)𝑝 := 𝜔𝑝 ∧ 𝜃𝑝 for all 𝑝 ∈ 𝑀 (see Definition C.3). Note that

𝜃 ∧ 𝜔 = (−1)𝑠𝑡𝜔 ∧ 𝜃,

in particular 𝜔 ∧𝜔 = 0 if 𝑠 is odd. The exterior product is bilinear and associative.
For 𝑓 ∈ 𝐶∞(𝑀) = Ω0(𝑀) and 𝜔 ∈ Ω𝑠 (𝑀), 𝑓 ∧ 𝜔 = 𝑓 𝜔.

In a chart (𝜑,𝑈), a form 𝜔 ∈ Ω𝑠 (𝑀) has the representation

𝜔|𝑈 =
∑︁

1≤𝑖1<...<𝑖𝑠≤𝑚
𝜔𝑖1...𝑖𝑠 𝑑𝜑

𝑖1 ∧ . . . ∧ 𝑑𝜑𝑖𝑠

with components 𝜔𝑖1...𝑖𝑠 = 𝜔
(

𝜕

𝜕𝜑𝑖1 , . . . ,
𝜕

𝜕𝜑𝑖𝑠

)
∈ 𝐶∞(𝑈).

Recall that for 𝑓 ∈ 𝐶∞(𝑀), the pointwise differential 𝑝 ↦→ 𝑑𝑓𝑝 is a 1-form
𝑑𝑓 ∈ Γ(𝑇𝑀∗) = Γ(Λ1(𝑇𝑀∗)) = Ω1(𝑀).

11.2 Theorem (exterior derivative) There exists a unique sequence of linear op-
erators

𝑑 : Ω𝑠 (𝑀) → Ω𝑠+1(𝑀), 𝑠 = 0, 1, . . . ,

with the following properties:

(1) for 𝑓 ∈ Ω0(𝑀) = 𝐶∞(𝑀), 𝑑𝑓 is the differential of 𝑓 , thus 𝑑𝑓 (𝑋) = 𝑋 ( 𝑓 ) for
𝑋 ∈ Γ(𝑇𝑀);

(2) 𝑑 ◦ 𝑑 = 0;
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(3) 𝑑 (𝜔 ∧ 𝜃) = 𝑑𝜔 ∧ 𝜃 + (−1)𝑠𝜔 ∧ 𝑑𝜃 for 𝜔 ∈ Ω𝑠 (𝑀) and 𝜃 ∈ Ω𝑡 (𝑀).

Proof : □

The operators 𝑑 are local, that is, (𝑑𝜔) |𝑈 = 𝑑 (𝜔 |𝑈) whenever 𝜔 ∈ Ω𝑠 (𝑀) and
𝑈 ⊂ R𝑚 is open. In a chart (𝜑,𝑈),

𝑑𝜔 |𝑈 =
∑︁

1≤𝑖1<...<𝑖𝑠≤𝑚
𝑑𝜔𝑖1...𝑖𝑠 ∧ 𝑑𝜑𝑖1 ∧ . . . ∧ 𝑑𝜑𝑖𝑠 .

11.3 Theorem (exterior derivative, coordinate-free) For a form𝜔 ∈ Ω𝑠 (𝑀) and
vector fields 𝑋1, . . . , 𝑋𝑠+1 ∈ Γ(𝑇𝑀),

𝑑𝜔(𝑋1, . . . , 𝑋𝑠+1) =
𝑠+1∑︁
𝑖=1

(−1)𝑖+1𝑋𝑖
(
𝜔(𝑋1, . . . , 𝑋𝑖 , . . . , 𝑋𝑠+1)

)
+

∑︁
1≤𝑖< 𝑗≤𝑠+1

(−1)𝑖+ 𝑗𝜔
(
[𝑋𝑖 , 𝑋 𝑗], 𝑋1, . . . , 𝑋𝑖 , . . . , 𝑋 𝑗 , . . . , 𝑋𝑠+1

)
;

here, 𝑋𝑖 signifies that the entry 𝑋𝑖 does not occur.

In particular, if 𝜔 ∈ Ω1(𝑀), then

𝑑𝜔(𝑋,𝑌 ) = 𝑋 (𝜔(𝑌 )) − 𝑌 (𝜔(𝑋)) − 𝜔( [𝑋,𝑌 ]).

Proof : □

For a 𝐶∞ map 𝐹 : 𝑁 → 𝑀 and 𝜔 ∈ Ω𝑠 (𝑀), the pull-back form 𝐹∗𝜔 ∈ Ω𝑠 (𝑁)
is defined by

(𝐹∗𝜔)𝑝
(
𝑣1, . . . , 𝑣𝑠

)
:= 𝜔𝐹 (𝑝)

(
𝑑𝐹𝑝 (𝑣1), . . . , 𝑑𝐹𝑝 (𝑣𝑠)

)
for 𝑝 ∈ 𝑁 and 𝑣1, . . . , 𝑣𝑠 ∈ 𝑇𝑁𝑝. If 𝑓 ∈ 𝐶∞(𝑀) = Ω0(𝑀), then 𝐹∗ 𝑓 := 𝑓 ◦ 𝐹.

11.4 Proposition (pull-back of forms) For a 𝐶∞ map 𝐹 : 𝑁 → 𝑀 and forms
𝜔 ∈ Ω𝑠 (𝑀) and 𝜃 ∈ Ω𝑡 (𝑀),

(1) 𝐹∗(𝜔 ∧ 𝜃) = 𝐹∗𝜔 ∧ 𝐹∗𝜃,

(2) 𝐹∗(𝑑𝜔) = 𝑑 (𝐹∗𝜔).

Proof : Exercise. □
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11.2 Integration of forms

Let 𝑀 be an oriented manifold of dimension 𝑚. A set 𝑀 ′ ⊂ 𝑀 is measurable
if 𝜑(𝑀 ′ ∩ 𝑈) ⊂ R𝑚 is (Lebesgue) measurable for every chart (𝜑,𝑈) of 𝑀 . A
measurable decomposition of 𝑀 is a countable family {𝑀𝛼}𝛼∈𝐴 of measurable
subsets of 𝑀 such that

(1) 𝑀 \⋃𝛼∈𝐴𝑀𝛼 has measure zero (Definition 9.1), and

(2) 𝑀𝛼 ∩ 𝑀𝛽 has measure zero whenever 𝛼 ≠ 𝛽.

For every atlas of 𝑀 there is a measurable decomposition {𝑀𝛼}𝛼∈𝐴 of 𝑀 such that
every set 𝑀𝛼 is contained in the domain of some chart of the atlas.

Let now 𝜔 ∈ Ω𝑚(𝑀) be a form of degree 𝑚 = dim(𝑀), and let (𝜑,𝑈) be a
positively oriented chart of 𝑀 . Then

𝜔 |𝑈 = 𝜔𝜑 𝑑𝜑1 ∧ . . . ∧ 𝑑𝜑𝑚

for 𝜔𝜑 = 𝜔
(

𝜕

𝜕𝜑1 , . . . ,
𝜕

𝜕𝜑𝑚

)
∈ 𝐶∞(𝑈). If (𝜓,𝑉) is another positively oriented chart

and 𝐻 := 𝜓 ◦ 𝜑−1 : 𝜑(𝑈 ∩ 𝑉) → 𝜓(𝑈 ∩ 𝑉) is the change of coordinates, then by
applying 𝜔 |𝑉 = 𝜔𝜓 𝑑𝜓1 ∧ . . . ∧ 𝑑𝜓𝑚 to 𝜕

𝜕𝜑1 , . . . ,
𝜕

𝜕𝜑𝑚 one gets that

𝜔𝜑 (𝑝) = 𝜔𝜓 (𝑝) det
(
𝜕𝜓𝑖

𝜕𝜑 𝑗
(𝑝)

)
= 𝜔𝜓 (𝑝) det 𝐽𝐻 (𝜑(𝑝))

for all 𝑝 ∈ 𝑈 ∩𝑉 , where the Jacobi determinant is positive.
Now let 𝑀 ′ ⊂ 𝑈 be a measurable set. The form 𝜔 is integrable over 𝑀 ′ if the

integral of
��𝜔𝜑 ◦ 𝜑−1

�� over 𝜑(𝑀 ′) is finite; then∫
𝑀′
𝜔 :=

∫
𝜑 (𝑀′ )

𝜔𝜑 ◦ 𝜑−1 𝑑𝑥

defines the integral of 𝜔 over 𝑀 ′. If (𝜓,𝑉) is another positively oriented chart with
𝑀 ′ ⊂ 𝑉 and 𝐻 is the change of coordinates, then it follows that∫

𝜓 (𝑀′ )
𝜔𝜓 ◦ 𝜓−1 𝑑𝑦 =

∫
𝜑 (𝑀′ )

𝜔𝜓 ◦ 𝜑−1 |det 𝐽𝐻 | 𝑑𝑥 =
∫
𝜑 (𝑀′ )

𝜔𝜑 ◦ 𝜑−1 𝑑𝑥

by the change of variables formula and the aforementioned transformation rule for
the coefficients of 𝜔.

11.5 Definition (integral of a form) The form 𝜔 ∈ Ω𝑚(𝑀) is integrable over 𝑀
if there exist a measurable decomposition {𝑀𝛼}𝛼∈𝐴 and positively oriented charts
(𝜑𝛼,𝑈𝛼) of 𝑀 with 𝑀𝛼 ⊂ 𝑈𝛼 such that∑︁

𝛼∈𝐴

∫
𝜑𝛼 (𝑀𝛼 )

��𝜔𝜑𝛼 ◦ 𝜑−1
𝛼

�� 𝑑𝑥 < ∞.
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In this case, ∫
𝑀

𝜔 :=
∑︁
𝛼∈𝐴

∫
𝑀𝛼

𝜔 =
∑︁
𝛼∈𝐴

∫
𝜑𝛼 (𝑀𝛼 )

𝜔𝜑𝛼 ◦ 𝜑−1
𝛼 𝑑𝑥

defines the integral of 𝜔 over 𝑀 .

The integral is independent of the choices of (𝜑𝛼,𝑈𝛼) and 𝑀𝛼. Forms with
compact support are integrable: this clearly holds if spt(𝜔) lies in the domain of a
single chart, and in the general case one may use a partition of unity to write 𝜔 as
a sum of finitely many forms with this property.

If 𝜔 is integrable over 𝑀 , and 𝑁 is another oriented 𝑚-dimensional manifold
and 𝐹 : 𝑁 → 𝑀 is a diffeomorphism, then∫

𝑁

𝐹∗𝜔 = 𝜖

∫
𝑀

𝜔

where 𝜖 = 1 if 𝐹 is orientation preserving and 𝜖 = −1 otherwise. Furthermore, if
𝑁 is compact and 𝑀 is connected, and 𝐹 : 𝑁 → 𝑀 is an arbitrary 𝐶∞ map, then
one can show that

∫
𝑁
𝐹∗𝜔 = deg(𝐹)

∫
𝑀
𝜔.

11.6 Theorem (Stokes) Let 𝑀𝑚 be an oriented manifold with (possibly empty)
boundary 𝜕𝑀 , and let 𝜔 ∈ Ω𝑚−1(𝑀) be an (𝑚 − 1)-form with compact support.
Then ∫

𝑀

𝑑𝜔 =

∫
𝜕𝑀

𝜔

(precisely,
∫
𝑀
𝑑𝜔 =

∫
𝜕𝑀

𝑖∗𝜔 for the inclusion map 𝑖 : 𝜕𝑀 → 𝑀).

Here the boundary 𝜕𝑀 is equipped with the induced orientation: a ba-
sis (𝑣1, . . . , 𝑣𝑚−1) of 𝑇 (𝜕𝑀)𝑝 ⊂ 𝑇𝑀𝑝 is positively oriented if and only if
(𝑣, 𝑣1, . . . , 𝑣𝑚−1) is positively oriented in 𝑇𝑀𝑝 for every vector 𝑣 in the “outer”
connected component of 𝑇𝑀𝑝 \ 𝑇 (𝜕𝑀)𝑝.

Proof : □

A volume form 𝜔 on 𝑀𝑚 is a nowhere vanishing 𝑚-form, that is, 𝜔𝑝 ≠ 0 ∈
Λ𝑚(𝑇𝑀∗

𝑝) for all 𝑝 ∈ 𝑀 .

11.7 Theorem (volume form) There exists a volume form on 𝑀 if and only if 𝑀
is orientable.

Proof : Exercise. □
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11.3 Integration without orientation

If 𝑉 is an 𝑚-dimensional (real) vector space and 0 ≠ 𝜔 ∈ Λ𝑚(𝑉∗), then

|𝜔 | : 𝑉 × · · · ×𝑉 → [0,∞), |𝜔| (𝑣1, . . . , 𝑣𝑚) := |𝜔(𝑣1, . . . , 𝑣𝑚) |,

is called a volume element on 𝑉 . Now let 𝑀 be an 𝑚-dimensional manifold. A
(𝐶∞) volume element 𝑑𝜇 on 𝑀 assigns to every point 𝑝 ∈ 𝑀 a volume element 𝑑𝜇𝑝

on 𝑇𝑀𝑝 such that, for every chart (𝜑,𝑈) of 𝑀 ,

𝑑𝜇 |𝑈 = 𝜚𝜑
��𝑑𝜑1 ∧ . . . ∧ 𝑑𝜑𝑚

��
for some 𝐶∞ density function 𝜚𝜑 : 𝑈 → (0,∞). (The notation 𝑑𝜇 stems from
measure theory and is unrelated to the exterior derivative of differential forms.) If
(𝜓,𝑉) is another chart and 𝐻 = 𝜓 ◦ 𝜑−1 : 𝜑(𝑈 ∩𝑉) → 𝜓(𝑈 ∩𝑉) is the coordinate
change, then

𝜚𝜑 (𝑝) = 𝜚𝜓 (𝑝) |det 𝐽𝐻 (𝜑(𝑝)) |

for all 𝑝 ∈ 𝑈 ∩𝑉 , similarly as for the coefficients of 𝑚-forms.
If 𝑑𝜇 is a volume element on 𝑀 and 𝑀 is orientable, then there exists a volume

form 𝜔 ∈ Ω𝑚(𝑀) with 𝑑𝜇 = |𝜔 |. For a non-orientable 𝑀 , such a form exists only
locally, due to Theorem 11.7.

From a volume element 𝑑𝜇 on 𝑀 one obtains a measure 𝜇 on (the 𝜎-algebra of
measurable subsets of) 𝑀 as follows: if {𝑀𝛼}𝛼∈𝐴 is a measurable decomposition
of 𝑀 such that for every 𝛼 there is a chart (𝜑𝛼,𝑈𝛼) with 𝑀𝛼 ⊂ 𝑈𝛼, then

𝜇(𝐵) :=
∑︁
𝛼

∫
𝜑𝛼 (𝐵∩𝑀𝛼 )

𝜚𝜑𝛼 ◦ 𝜑−1
𝛼 𝑑𝑥

for every measurable set 𝐵 ⊂ 𝑀 . It follows from the change of variable formula
and the above transformation rule for the densities that the measure is well-defined.
Now, if 𝑓 : 𝑀 → R is a measurable function, then the meaning of

∫
𝑀
𝑓 𝑑𝜇 results

from this measure. However, the integral can also be defined directly in terms of
the volume element 𝑑𝜇: 𝑓 is integrable if∫

𝑀

| 𝑓 | 𝑑𝜇 :=
∑︁
𝛼

∫
𝜑𝛼 (𝑀𝛼 )

( | 𝑓 | 𝜚𝜑𝛼) ◦ 𝜑−1
𝛼 𝑑𝑥 < ∞;

the same formula with 𝑓 in place of | 𝑓 | then defines the integral
∫
𝑀
𝑓 𝑑𝜇.

For a Riemannian manifold (𝑀𝑚, 𝑔), the volume element 𝑑𝜇𝑔 induced by 𝑔 is
given in a chart (𝜑,𝑈) by

𝑑𝜇𝑔 |𝑈 :=
√︃

det(𝑔𝜑
𝑖 𝑗
) |𝑑𝜑1 ∧ . . . ∧ 𝑑𝜑𝑚 |,

where 𝑔 |𝑈 =
∑
𝑔
𝜑

𝑖 𝑗
𝑑𝜑𝑖 ⊗ 𝑑𝜑 𝑗 .
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11.4 De Rham cohomology

A form 𝜔 ∈ Ω𝑠 (𝑀) is closed if 𝑑𝜔 = 0. The form 𝜔 is called exact if there exists a
𝜃 ∈ Ω𝑠−1(𝑀) such that𝜔 = 𝑑𝜃; furthermore, by convention, 0 ∈ 𝐶∞(𝑀) = Ω0(𝑀)
is the only exact 0-form. Every𝑚-form on an𝑚-dimensional manifold 𝑀 is closed,
because Ω𝑚+1(𝑀) = {0}. Since 𝑑 ◦ 𝑑 = 0, every exact form is closed.

11.8 Definition (de Rham cohomology) For 𝑠 ≥ 0, the quotient vector space

𝐻𝑠
dR(𝑀) :=

{𝜔 ∈ Ω𝑠 (𝑀) : 𝜔 is closed}
{𝜔 ∈ Ω𝑠 (𝑀) : 𝜔 is exact}

is called the de Rham cohomology of 𝑀 in degree 𝑠. For a closed form𝜔 ∈ Ω𝑠 (𝑀),

[𝜔] := {𝜔′ ∈ Ω𝑠 (𝑀) : 𝜔′ − 𝜔 is exact} ∈ 𝐻𝑠
dR(𝑀)

denotes the cohomology class of 𝜔. Two forms 𝜔, 𝜔′ ∈ Ω𝑠 (𝑀) are cohomologous
if [𝜔] = [𝜔′].

The dimension 𝑏𝑠 (𝑀) := dim𝐻𝑠
dR(𝑀) is called the 𝑠-th Betti number of 𝑀 ,

and

𝜒(𝑀) :=
𝑚∑︁
𝑠=0

(−1)𝑠 𝑏𝑠 (𝑀)

is the Euler characteristic of 𝑀 . If every closed 𝑠-form is exact, then 𝐻𝑠
dR(𝑀) is a

trivial (one-point) vector space, which will be denoted by 0. The subscript dR will
often be omitted in the following.

Examples

1. 𝐻0(𝑀) = { 𝑓 ∈ 𝐶∞(𝑀) : 𝑑𝑓 = 0} is the vector space of the locally constant
functions on 𝑀 . If 𝑀 has a finite number 𝑘 of connected components, then
𝐻0(𝑀) ≃ R𝑘 (isomorphic).

2. On 𝑀 = R2 \ {(0, 0)},

𝜔 =
−𝑦

𝑥2 + 𝑦2 𝑑𝑥 +
𝑥

𝑥2 + 𝑦2 𝑑𝑦

defines a 1-form that is closed but not exact; in particular, 𝐻1(𝑀) ≠ 0.
Locally, 𝜔 agrees with the differential 𝑑𝜑 of a polar angle 𝜑 with respect to
the origin (0, 0), but 𝜑 cannot be defined continuously on all of 𝑀 .

In the following, 𝑀, 𝑁 are two manifolds and 𝐹 ∈ 𝐶∞(𝑁, 𝑀). For 𝑠 ≥ 0, the
pull-back operator 𝐹∗ : Ω𝑠 (𝑀) → Ω𝑠 (𝑁) induces a well-defined linear map

𝐹∗ : 𝐻𝑠 (𝑀) → 𝐻𝑠 (𝑁), 𝐹∗ [𝜔] = [𝐹∗𝜔] .
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If 𝐿 is another manifold and 𝐺 ∈ 𝐶∞(𝑀, 𝐿), then

𝐹∗ ◦ 𝐺∗ = (𝐺 ◦ 𝐹)∗ : 𝐻𝑠 (𝐿) → 𝐻𝑠 (𝑁);

in particular, 𝐻𝑠 (𝑀) and 𝐻𝑠 (𝑁) are isomorphic if 𝐹 is a diffeomorphism.

11.9 Theorem (Poincaré lemma) If 𝐹, 𝐺 ∈ 𝐶∞(𝑁, 𝑀) are smoothly homotopic,
𝐹 ∼ 𝐺, then the induced maps 𝐹∗, 𝐺∗ : 𝐻𝑠 (𝑀) → 𝐻𝑠 (𝑁) agree in every degree
𝑠 ≥ 0.

Proof : □

Two manifolds 𝑀 and �̄� are called (smoothly) homotopy equivalent if there
exist smooth maps �̄� : 𝑀 → �̄� and 𝐹 : �̄� → 𝑀 such that 𝐹 ◦ �̄� ∼ id𝑀 and
�̄� ◦ 𝐹 ∼ id�̄� ; then 𝐹 and �̄� are (smooth) homotopy equivalences inverse to each
other. The manifold 𝑀 is (smoothly) contractible if id𝑀 is smoothly homotopic
to a constant map 𝑀 → {𝑝0} ⊂ 𝑀; this is the case if and only if 𝑀 is homotopy
equivalent to a one-point space.

11.10 Corollary (1) If 𝑀 and �̄� are homotopy equivalent, then 𝐻𝑠 (𝑀) ≃
𝐻𝑠 (�̄�) for all 𝑠 ≥ 0.

(2) If 𝑀 is contractible, then 𝐻0(𝑀) ≃ R and 𝐻𝑠 (𝑀) = 0 for 𝑠 ≥ 1.

Proof : □

If 𝑀 is a manifold and𝑈,𝑉 ⊂ 𝑀 are two open sets with𝑈 ∪𝑉 = 𝑀 , then there
exists a long exact sequence

0 →𝐻0(𝑀) → 𝐻0(𝑈) ⊕ 𝐻0(𝑉) → 𝐻0(𝑈 ∩𝑉) → . . .

. . . →𝐻𝑠 (𝑀) → 𝐻𝑠 (𝑈) ⊕ 𝐻𝑠 (𝑉) → 𝐻𝑠 (𝑈 ∩𝑉)
→𝐻𝑠+1(𝑀) → 𝐻𝑠+1(𝑈) ⊕ 𝐻𝑠+1(𝑉) → 𝐻𝑠+1(𝑈 ∩𝑉) → . . .

(thus the image of each of these linear maps equals the kernel of the following one),
the Mayer–Vietoris sequence, which constitutes a very useful tool to determine the
de Rham cohomology.

Example The sphere 𝑆𝑚 ⊂ R𝑚+1 (𝑚 ≥ 1) is covered by the two open sets
𝑈 := 𝑆𝑚 \ {−𝑒𝑚+1} and 𝑉 := 𝑆𝑚 \ {𝑒𝑚+1}, both of which are contractible, and
𝑈 ∩ 𝑉 is homotopy equivalent to 𝑆𝑚−1. By Corollary 11.10, for all 𝑠 ≥ 1, both
𝐻𝑠 (𝑈) ⊕ 𝐻𝑠 (𝑉) and 𝐻𝑠+1(𝑈) ⊕ 𝐻𝑠+1(𝑉) are trivial, hence the map

𝐻𝑠 (𝑆𝑚−1) ≃ 𝐻𝑠 (𝑈 ∩𝑉) → 𝐻𝑠+1(𝑀) = 𝐻𝑠+1(𝑆𝑚)
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in the Mayer–Vietoris sequence is injective as well as surjective. Hence, for
𝑚, 𝑠 ≥ 1, the recursion formula 𝐻𝑠+1(𝑆𝑚) ≃ 𝐻𝑠 (𝑆𝑚−1) holds. Furthermore,
since 𝐻0(𝑆𝑚) ≃ R and 𝐻0(𝑈) ⊕ 𝐻0(𝑉) ≃ R2, one obtains the exact sequence

0 → R → R2 → 𝐻0(𝑈 ∩𝑉) → 𝐻1(𝑆𝑚) → 0.

If 𝑚 = 1, then 𝐻0(𝑈 ∩ 𝑉) ≃ R2 and hence 𝐻1(𝑆1) ≃ R, and if 𝑚 ≥ 2, then
𝐻0(𝑈 ∩ 𝑉) ≃ R and thus 𝐻1(𝑆𝑚) = 0. It follows that 𝐻𝑠 (𝑆𝑚) ≃ R for 𝑠 ∈ {0, 𝑚}
and 𝐻𝑠 (𝑆𝑚) = 0 otherwise.

We mention two other important results, in both of which 𝑀 is a compact
oriented manifold (without boundary) of dimension 𝑚, and 𝑠 ∈ {0, 1, . . . , 𝑚}.

The Poincaré duality theorem says that the bilinear form

( · , · ) : 𝐻𝑠 (𝑀) × 𝐻𝑚−𝑠 (𝑀) → R, ( [𝜔], [𝜃]) :=
∫
𝑀

𝜔 ∧ 𝜃

(which is well-defined by the theorem of Stokes), is non-degenerate. This yields
an isomorphism 𝐻𝑠 (𝑀) ≃ (𝐻𝑚−𝑠 (𝑀))∗, which assigns to [𝜔] the linear form
[𝜃] ↦→ ([𝜔], [𝜃]). For example, if 𝑀 is connected, then this implies that 𝐻𝑚(𝑀) ≃
𝐻0(𝑀) ≃ R.

Now we let 𝐻 (∞)
𝑠 (𝑀,R) denote the smooth singular homology of 𝑀 . An

element [𝜎] of the vector space𝐻 (∞)
𝑠 (𝑀,R) is a homology class {𝜎′ : 𝜎′−𝜎 = 𝜕𝜏}

of smooth singular 𝑠-chains 𝜎′ with real coefficients and 𝜕𝜎′ = 0. It can be shown
that the bilinear form

( · , · ) : 𝐻𝑠
dR(𝑀) × 𝐻 (∞)

𝑠 (𝑀,R) → R, ( [𝜔], [𝜎]) :=
∫
𝜎

𝜔,

is non-degenerate. (It follows from the generalized theorem of Stokes for smooth
singular 𝑠-chains that it is well-defined.) This yields a canonical isomorphism

𝐻𝑠
dR(𝑀) ≃ (𝐻 (∞)

𝑠 (𝑀,R))∗,

sending [𝜔] to the linear form [𝜎] ↦→ ([𝜔], [𝜎]). Furthermore there are canonical
isomorphisms

(𝐻 (∞)
𝑠 (𝑀,R))∗ ≃ 𝐻𝑠

(∞) (𝑀,R) ≃ 𝐻𝑠 (𝑀,R)

to the smooth singular cohomology and the usual singular cohomology, respectively.
In particular𝐻𝑠

dR(𝑀) and𝐻𝑠 (𝑀,R) are isomorphic; this is the theorem of de Rham.
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12 Lie groups

12.1 Lie groups and Lie algebras

A topological group (𝐺, ·) is a group endowed with a topology such that the map

𝐺 × 𝐺 → 𝐺, (𝑔, ℎ) ↦→ 𝑔ℎ−1,

is continuous (equivalently, both the group multiplication 𝐺 ×𝐺 → 𝐺 and the map
𝐺 → 𝐺 sending each group element to its inverse are continuous).

12.1 Definition (Lie group) A Lie group (𝐺, ·) is a group with the structure of a
𝐶∞ manifold such that the map 𝐺 × 𝐺 → 𝐺, (𝑔, ℎ) ↦→ 𝑔ℎ−1, is 𝐶∞.

Examples

1. R𝑚 with vector addition;

2. C∗ = C \ {0} with complex multiplication;

3. 𝑆1 ⊂ C∗.

4. If 𝐺, 𝐻 are Lie groups, then the product manifold 𝐺 × 𝐻, equipped with the
multiplication (𝑔, ℎ) (𝑔′, ℎ′) := (𝑔𝑔′, ℎℎ′), is a Lie group.

5. 𝑇𝑚 = 𝑆1 × . . . × 𝑆1 (𝑚 factors).

6. GL(𝑛,R) = {𝐴 ∈ R𝑛×𝑛 : det(𝐴) ≠ 0} with matrix multiplication; likewise,
GL(𝑛,C).

7. GL(𝑛,R) ×R𝑛, equipped with the multiplication

(𝐴, 𝑣) (𝐵, 𝑤) := (𝐴𝐵, 𝐴𝑤 + 𝑣),

is (isomorphic to) the Lie group of affine transformations 𝑔𝐴,𝑣 : 𝑥 ↦→ 𝐴𝑥 + 𝑣
of R𝑛.

Let 𝐺,𝐺′ be two Lie groups. A Lie group homomorphism 𝐹 : 𝐺 → 𝐺′ is a
𝐶∞ group homomorphism; a Lie group isomorphism is, in addition, a (𝐶∞) dif-
feomorphism (and hence also a group isomorphism). A Lie group homomorphism
𝐹 : 𝐺 → 𝐺′ is also called a representation of 𝐺 in 𝐺′, in particular when 𝐺′ is
GL(𝑛,R) or GL(𝑛,C).

In the following, (𝐺, ·) denotes a Lie group with neutral element 𝑒. For every
𝑔 ∈ 𝐺, the left multiplication

𝐿𝑔 : 𝐺 → 𝐺, 𝐿𝑔 (ℎ) := 𝑔ℎ,

is a diffeomorphism of 𝐺 with inverse (𝐿𝑔)−1 = 𝐿𝑔−1 . Likewise, the right multi-
plication 𝑅𝑔 : 𝐺 → 𝐺, 𝑅𝑔 (ℎ) = ℎ𝑔, is a diffeomorphism.
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12.2 Lemma Let (𝐺, ·) be a connected Lie group, and let𝑈 ⊂ 𝐺 be a neighborhood
of 𝑒. Then 𝑈 generates 𝐺, that is, every 𝑔 ∈ 𝐺 can be written as a product
𝑔 = 𝑔1 . . . 𝑔𝑘 of finitely many elements of𝑈.

Proof : We assume that𝑈 is open. Then it follows inductively that𝑈𝑘 = {𝑔1 . . . 𝑔𝑘 :
𝑔1, . . . , 𝑔𝑘 ∈ 𝑈} is open for every 𝑘 ≥ 1: if 𝑈𝑘 is open, then so is 𝑈𝑘𝑔 = 𝑅𝑔 (𝑈𝑘)
for all 𝑔 ∈ 𝑈, hence𝑈𝑘+1 =

⋃
𝑔∈𝑈𝑈

𝑘𝑔 is open. Therefore𝑉 :=
⋃∞

𝑘=1𝑈
𝑘+1 is open.

On the other hand, if 𝑔 ∈ 𝐺 \ 𝑉 , then 𝑔ℎ ∈ 𝐺 \ 𝑉 for all ℎ ∈ 𝑈, for otherwise
𝑔 ∈ 𝑉ℎ−1 = 𝑉 ; so 𝑔𝑈 = 𝐿𝑔 (𝑈) is an open neighborhood of 𝑔 disjoint from𝑉 . Thus
𝐺 \ 𝑉 is open as well. Since 𝑒 ∈ 𝑉 and 𝐺 is connected, it follows that 𝑉 = 𝐺, that
is,𝑈 generates 𝐺. □

For a general Lie group 𝐺, the connected component containing the neutral
element is usually denoted by 𝐺0. For 𝑔 ∈ 𝐺, the diffeomorphisms 𝐿𝑔 and 𝑅𝑔

map 𝐺0 onto the connected component of 𝐺 containing 𝑔. Thus 𝐺0 is a normal
subgroup of 𝐺 whose cosets are the connected components of 𝐺. The quotient
𝐺/𝐺0 is a countable group (and thus a 0-dimensional Lie group with the discrete
topology).

12.3 Definition (Lie algebra) A Lie algebra 𝑉 over R is a vector space over R

together with a bilinear map [ · , · ] : 𝑉 ×𝑉 → 𝑉 , the Lie bracket of 𝑉 , such that for
all 𝑋,𝑌, 𝑍 ∈ 𝑉 ,

(1) [𝑌, 𝑋] = −[𝑋,𝑌 ] (anti-commutativity);

(2) [𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋,𝑌 ]] = 0 (Jacobi identity).

Examples

1. Any vector space 𝑉 (over R) with the trivial bracket [ · , · ] ≡ 0 (abelian Lie
algebra).

2. The vector space Γ(𝑇𝑀) of 𝐶∞ vector fields on a manifold 𝑀 with the Lie
bracket [𝑋,𝑌 ] ( 𝑓 ) := 𝑋 (𝑌 ( 𝑓 )) − 𝑌 (𝑋 ( 𝑓 )).

3. R𝑛×𝑛 with [𝐴, 𝐵] := 𝐴𝐵 − 𝐵𝐴 (matrix multiplication).

4. R3 with the vector product [𝑋,𝑌 ] := 𝑋 × 𝑌 .

5. Any 2-dimensional vector space with basis (𝑋,𝑌 ) and the bracket defined by
[𝑋, 𝑋] := 0, [𝑌,𝑌 ] := 0, −[𝑌, 𝑋] = [𝑋,𝑌 ] := 𝑌 , and bilinear extension.

Let 𝑉,𝑉 ′ be two Lie algebras. A Lie algebra homomorphism 𝐿 : 𝑉 → 𝑉 ′

is a linear map such that 𝐿 [𝑋,𝑌 ] = [𝐿𝑋, 𝐿𝑌 ] for all 𝑋,𝑌 ∈ 𝑉 ; a Lie algebra
isomorphism is, in addition, a linear isomorphism.
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A vector field 𝑋 on a Lie group 𝐺 is called left-invariant if

𝐿𝑔∗𝑋 = 𝑋 ◦ 𝐿𝑔
for all 𝑔 ∈ 𝐺, that is, 𝐿𝑔∗𝑋ℎ := 𝑑 (𝐿𝑔)ℎ (𝑋ℎ) = 𝑋𝑔ℎ for all 𝑔, ℎ ∈ 𝐺. For every
vector 𝑋0 ∈ 𝑇𝐺𝑒 there exists a unique left-invariant vector field 𝑋 with 𝑋𝑒 = 𝑋0,
defined by

𝑋𝑔 := 𝐿𝑔∗𝑋0;

then 𝐿𝑔∗𝑋ℎ = 𝐿𝑔∗𝐿ℎ∗𝑋0 = (𝐿𝑔 ◦ 𝐿ℎ)∗𝑋0 = 𝐿𝑔ℎ∗𝑋0 = 𝑋𝑔ℎ for all ℎ ∈ 𝐻. Left-
invariant vector fields are 𝐶∞, and if 𝑋,𝑌 are left-invariant, then [𝑋,𝑌 ] is left-
invariant (exercise). Thus the left-invariant vector fields constitute a Lie subalgebra
of (Γ(𝑇𝐺), [ · , · ]).

12.4 Definition (Lie algebra of a Lie group) The Lie algebra 𝑔 of a Lie group 𝐺
is the vector space 𝑇𝐺𝑒 with the bracket defined by

[𝑋0, 𝑌0] := [𝑋,𝑌 ]𝑒
for all 𝑋0, 𝑌0 ∈ 𝑇𝐺𝑒, where 𝑋,𝑌 denote the left-invariant vector fields on 𝐺 such
that 𝑋𝑒 = 𝑋0 and 𝑌𝑒 = 𝑌0.

Examples

1. The Lie algebra of𝐺 = GL(𝑛,R) is the vector space𝑇𝐺𝑒 = gl(𝑛,R) = R𝑛×𝑛.
If 𝐴 ∈ gl(𝑛,R), and if 𝑐 : (−𝜖, 𝜖) → GL(𝑛,R) is a smooth curve with
𝑐(0) = 𝑒 and 𝑐′(0) = 𝐴, then

𝐿𝑔∗𝐴 = 𝐿𝑔∗(𝑐′(0)) = (𝐿𝑔 ◦ 𝑐)′(0) = 𝑔𝑐′(0) = 𝑔𝐴 ∈ 𝑇𝐺𝑔

for all 𝑔 ∈ GL(𝑛,R); hence 𝑔 ↦→ 𝑔𝐴 is the corresponding left-invariant
vector field, viewed as a map from 𝐺 to R𝑛×𝑛. For 𝐴, 𝐵 ∈ gl(𝑛,R) and
𝑋𝑔 := 𝑔𝐴 and 𝑌𝑔 := 𝑔𝐵, the Lie bracket is given by

[𝐴, 𝐵] = [𝑋,𝑌 ]𝑒 = 𝐴𝐵 − 𝐵𝐴 (matrix product).

To see this, let 𝜑𝑖𝑘 : GL(𝑛,R) → R denote the global coordinate function
that assigns to 𝑔 the matrix entry 𝑔𝑖𝑘 . The vector 𝑌𝑔 ∈ 𝑇𝐺𝑔, applied as a
derivation to 𝜑𝑖𝑘 , returns the corresponding matrix entry of 𝑌𝑔 = 𝑔𝐵, thus

𝑌𝑔 (𝜑𝑖𝑘) = (𝑔𝐵)𝑖𝑘 =

𝑛∑︁
𝑗=1
𝑔𝑖 𝑗𝑏 𝑗𝑘 =

𝑛∑︁
𝑗=1

𝑏 𝑗𝑘 𝜑
𝑖 𝑗 (𝑔).

Likewise, 𝑋𝑒 (𝜑𝑖 𝑗) = 𝐴(𝜑𝑖 𝑗) = 𝑎𝑖 𝑗 and (𝐴𝐵) (𝜑𝑖𝑘) = (𝐴𝐵)𝑖𝑘 , hence

𝑋𝑒 (𝑌 (𝜑𝑖𝑘)) =
𝑛∑︁
𝑗=1

𝑏 𝑗𝑘 𝐴(𝜑𝑖 𝑗) =
𝑛∑︁
𝑗=1
𝑎𝑖 𝑗𝑏 𝑗𝑘 = (𝐴𝐵) (𝜑𝑖𝑘).

Since this holds for all 𝑖, 𝑘 ∈ {1, . . . , 𝑛} and also with interchanged roles of
𝐴 and 𝐵, this gives the result.
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2. The Lie algebra of GL(𝑛,C) is the vector space gl(𝑛,C) = C𝑛×𝑛 with the
bracket given by [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 as above.

3. SL(𝑛,R) = {𝑔 ∈ GL(𝑛,R) : det(𝑔) = 1}, dimension 𝑛2 − 1,

sl(𝑛,R) = {𝐴 ∈ R𝑛×𝑛 : trace(𝐴) = 0}.

4. SL(𝑛,C) = {𝑔 ∈ GL(𝑛,C) : det(𝑔) = 1}, dimension 2(𝑛2 − 1),

sl(𝑛,C) = {𝐴 ∈ C𝑛×𝑛 : trace(𝐴) = 0}.

5. O(𝑛) = {𝑔 ∈ GL(𝑛,R) : 𝑔𝑔 t = 𝑒}, SO(𝑛) = O(𝑛) ∩ SL(𝑛,R), dimension
1
2𝑛(𝑛 − 1),

o(𝑛) = so(𝑛) = {𝐴 ∈ R𝑛×𝑛 : 𝐴 = −𝐴 t}.

6. U(𝑛) = {𝑔 ∈ GL(𝑛,C) : 𝑔�̄� t = 𝑒}, dimension 𝑛2,

u(𝑛) = {𝐴 ∈ C𝑛×𝑛 : 𝐴 = −�̄� t}.

SU(𝑛) = U(𝑛) ∩ SL(𝑛,C), dimension 𝑛2 − 1,

su(𝑛) = u(𝑛) ∩ sl(𝑛,C).

7. Affine group 𝐺 = GL(𝑛,R) ×R𝑛, (𝑔, 𝑣) (ℎ, 𝑤) = (𝑔ℎ, 𝑔𝑤 + 𝑣),

𝑔 = R𝑛×𝑛 ×R𝑛, [(𝐴, 𝑣), (𝐵, 𝑤)] = (𝐴𝐵 − 𝐵𝐴, 𝐴𝑤 − 𝐵𝑣).

8. The vector space H = {𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ R} of quaternions,
whose non-commuting imaginary units 𝑖, 𝑗 , 𝑘 satisfy the relations 𝑖2 = 𝑗2 =

𝑘2 = 𝑖 𝑗 𝑘 = −1 and hence

𝑖 𝑗 = − 𝑗𝑖 = 𝑘, 𝑗 𝑘 = −𝑘 𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗 ,

forms a division algebra with norm ∥𝑎+𝑏𝑖+𝑐 𝑗 +𝑑𝑘 ∥ = (𝑎2+𝑏2+𝑐2+𝑑2)1/2.
The sphere 𝑆3 ⊂ R4 may be viewed as the set

{𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘 ∈ H : ∥𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘 ∥ = 1}

of unit quaternions and thus inherits the structure of a Lie group. The
corresponding Lie algebra s3 is spanned by 𝑖, 𝑗 , 𝑘 , where

[𝑖, 𝑗] = 𝑖 𝑗 − 𝑗𝑖 = 2𝑘, [ 𝑗 , 𝑘] = 2𝑖, [𝑘, 𝑖] = 2 𝑗 .

The quotient group 𝑆3/{1,−1} is a Lie group diffeomorphic to R𝑃3.
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If 𝐹 : 𝐺 → 𝐺′ is a Lie group homomorphism or isomorphism, then the dif-
ferential 𝑑𝐹𝑒 : 𝑇𝐺𝑒 → 𝑇𝐺′

𝑒 is a Lie algebra homomorphism or isomorphism,
respectively (exercise).

Example The Lie groups 𝑆3 and SU(2) are isomorphic, furthermore 𝑆3/{1,−1} is
isomorphic zu SO(3). In particular, the Lie algebras s3, su(2), so(3) are mutually
isomorphic (exercise).

Let 𝐺 be a Lie group. A pair (𝐻, 𝑖), where 𝐻 is a Lie group and 𝑖 : 𝐻 → 𝐺 is
a Lie group homomorphism and an injective immersion, is called a Lie subgroup
of 𝐺; 𝑖(𝐻) is a subgroup of 𝐺, but in general 𝑖 is not a homeomorphism onto 𝑖(𝐻)
with respect to the topology induced by 𝐺.

Example For 𝛼 ∈ R \Q, the map

𝑖 : (R, +) → (𝑇2 = R2/Z2, +), 𝑡 ↦→ (𝑡, 𝛼𝑡) mod Z2,

is an injective immersion but not an embedding. In fact, 𝑖(R) is dense in 𝑇2.

Using the theorem of Frobenius (see page 70) and Lemma 12.2 one can show
that if ℎ′ ⊂ 𝑔 is a Lie subalgebra of the Lie algebra of a Lie group 𝐺, then there
exists a connected Lie subgroup 𝑖 : 𝐻 → 𝐺 with 𝑑𝑖𝑒 (ℎ) = ℎ′, and every other
connected Lie subgroup 𝑖 : �̃� → 𝐺 with 𝑑𝑖𝑒 ( ℎ̃) = ℎ′ is of the form 𝑖 = 𝑖 ◦ 𝐹 for
some Lie group isomorphism 𝐹 : �̃� → 𝐻.

12.2 Exponential map

12.5 Proposition Left-invariant vector fields are completely integrable. The inte-
gral curves 𝑐 : R → 𝐺 with 𝑐(0) = 𝑒 are precisely the Lie group homomorphisms
(R, +) → 𝐺.

Proof : Let 𝑋 be a left-invariant vector field on 𝐺.
There exist an 𝜖 > 0 and an integral curve 𝑐 : (−𝜖, 𝜖) → 𝐺 of 𝑋 with 𝑐(0) = 𝑒.

Then, for every 𝑔 ∈ 𝐺, the left-translate 𝑔𝑐 = 𝐿𝑔 ◦ 𝑐 is an integral curve of 𝑋 with
𝑔𝑐(0) = 𝑔, because

(𝑔𝑐)′(𝑡) = 𝐿𝑔∗𝑐′(𝑡) = 𝐿𝑔∗𝑋𝑐 (𝑡 ) = 𝑋𝑔𝑐 (𝑡 ) for all 𝑡 ∈ (−𝜖, 𝜖)

by the product rule and the left-invariance of 𝑋 . Thus the flow Φ of 𝑋 is defined on
(−𝜖, 𝜖)×𝐺 byΦ𝑡 (𝑔) = 𝑔𝑐(𝑡), and it then follows as in the proof of Proposition 10.9.
that 𝑋 is completely integrable.

Let now 𝑐 : R → 𝐺 be the integral curve with 𝑐(0) = 𝑒, thus Φ𝑡 (𝑒) = 𝑐(𝑡) for
all 𝑡 ∈ R. Then, for 𝑠 ∈ R and 𝑔 := 𝑐(𝑠),

𝑐(𝑠)𝑐(𝑡) = 𝑔𝑐(𝑡) = Φ𝑡 (𝑔) = Φ𝑡 (Φ𝑠 (𝑒)) = Φ𝑠+𝑡 (𝑒) = 𝑐(𝑠 + 𝑡),
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so 𝑐 is a homomorphism from (R, +) into𝐺. Conversely, suppose that 𝑐 : (R, +) →
𝐺 is a Lie group homomorphism with 𝑐′(0) = 𝑋𝑒. Then 𝑐(𝑠+𝑡) = 𝑐(𝑠)𝑐(𝑡) = 𝑔𝑐(𝑡),
and by taking the derivative at 𝑡 = 0 one gets that 𝑐′(𝑠) = 𝐿𝑔∗𝑐′(0) = 𝑋𝑔 = 𝑋𝑐 (𝑠) ,
showing that 𝑐 is an integral curve. □

12.6 Definition (exponential map) The exponential map of 𝐺 is the map

exp: 𝑇𝐺𝑒 → 𝐺, exp(𝑋𝑒) := 𝑐(1),

where 𝑐 : R → 𝐺 is the integral curve of the left-invariant vector field 𝑋 (or,
equivalently, the Lie group homomorphism (R, +) → 𝐺) with 𝑐′(0) = 𝑋𝑒.

Notice that then
exp(𝑡𝑋𝑒) = 𝑐(𝑡) for all 𝑡 ∈ R,

since the integral curve through 𝑒 of the left-invariant vector field �̃� := 𝑡𝑋 is given
by 𝑠 ↦→ 𝑐(𝑠) := 𝑐(𝑡𝑠), so that exp(𝑡𝑋𝑒) = exp( �̃�𝑒) = 𝑐(1) = 𝑐(𝑡). It follows in
particular that

exp(𝑠𝑋𝑒) exp(𝑡𝑋𝑒) = 𝑐(𝑠)𝑐(𝑡) = 𝑐(𝑠 + 𝑡) = exp((𝑠 + 𝑡)𝑋𝑒)

and exp(𝑡𝑋𝑒)−1 = 𝑐(𝑡)−1 = 𝑐(−𝑡) = exp(−𝑡𝑋𝑒).
Furthermore, exp is smooth. To see this, consider the vector field 𝑉 on

𝐺 × 𝑇𝐺𝑒 defined by 𝑉 (𝑔, 𝑋𝑒) := (𝑔𝑋𝑒, 0) ∈ 𝑇𝐺𝑔 × 𝑇𝐺𝑒, whose integral
curve through (𝑔, 𝑋𝑒) is 𝑡 ↦→ (𝑔 exp(𝑡𝑋𝑒), 𝑋𝑒). Thus the flow of 𝑉 satisfies
Φ𝑡 (𝑔, 𝑋𝑒) = (𝑔 exp(𝑡𝑋𝑒), 𝑋𝑒) for all 𝑡 ∈ R, and if 𝜋 : 𝐺 × 𝑇𝐺𝑒 → 𝐺 denotes the
canonical projection, then exp(𝑋𝑒) = 𝜋 ◦ Φ1(𝑒, 𝑋𝑒), which depends smoothly on
𝑋𝑒.

The differential 𝑑 exp0 : 𝑇 (𝑇𝐺𝑒)0 = 𝑇𝐺𝑒 → 𝑇𝐺𝑒 is the identity map, as
𝑑 exp0(𝑋𝑒) = 𝑑

𝑑𝑡

��
𝑡=0 exp(𝑡𝑋𝑒) = 𝑐′(0) = 𝑋𝑒. In particular, the restriction of exp

to a suitable open neighborhood of 0 in 𝑇𝐺𝑒 is a diffeomorphism onto an open
neighborhood of 𝑒 in 𝐺.

Let now 𝐹 : 𝐺 → 𝐺′ be a Lie group homomorphism. Then, as mentioned
earlier, the differential 𝑑𝐹𝑒 : 𝑇𝐺𝑒 → 𝑇𝐺′

𝑒 is a Lie algebra homomorphism. Fur-
thermore, the map 𝑡 ↦→ 𝐹 ◦ exp𝐺 (𝑡𝑋𝑒) is a homomorphism (R, +) → 𝐺′ with
initial vector 𝑑𝐹𝑒 (𝑋𝑒), hence it agrees with 𝑡 ↦→ exp𝐺′ (𝑡 𝑑𝐹𝑒 (𝑋𝑒)). For 𝑡 = 1, this
shows that

𝐹 ◦ exp𝐺 = exp𝐺
′ ◦ 𝑑𝐹𝑒 .

Next, consider GL(𝑛,C) with the matrix exponential function

𝐴 ↦→ 𝑒𝐴 :=
∞∑︁
𝑘=0

1
𝑘!
𝐴𝑘

on C𝑛×𝑛 = gl(𝑛,C). The following properties hold:
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(1) 𝐵𝑒𝐴𝐵−1 = 𝑒𝐵𝐴𝐵−1 for all 𝐵 ∈ GL(𝑛,C);

(2) det(𝑒𝐴) = 𝑒trace(𝐴) ≠ 0, in particular 𝑒𝐴 ∈ GL(𝑛,C);

(3) if 𝐴, 𝐵 ∈ C𝑛×𝑛 and [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 = 0, then 𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵.

Let 𝐴 ∈ gl(𝑛,C). Since [𝑠𝐴, 𝑡𝐴] = 0 for 𝑠, 𝑡 ∈ R, it follows from (2) and (3) that
𝑐 : 𝑡 ↦→ 𝑒𝑡 𝐴 is a homomorphism from (R, +) into 𝐺, and 𝑐′(0) = 𝐴. Hence, the Lie
group exponential map

exp: gl(𝑛,C) → GL(𝑛,C)

agrees with the matrix exponential 𝐴 ↦→ exp(𝐴) = 𝑒𝐴.
Let again 𝐺 be an arbitrary Lie group. According to the Campbell–Baker–

Hausdorff formula, for two vectors 𝑋,𝑌 ∈ 𝑇𝐺𝑒 in a sufficiently small neighborhood
of 0, the identity exp(𝑋) exp(𝑌 ) = exp(𝑆(𝑋,𝑌 )) holds, where

𝑆(𝑋,𝑌 ) = 𝑋 + 𝑌 + 1
2
[𝑋,𝑌 ] + 1

12
[𝑋, [𝑋,𝑌 ]] + 1

12
[𝑌, [𝑌, 𝑋]] + . . .

is a convergent series of nested Lie brackets satisfying 𝑆(𝑌, 𝑋) = −𝑆(−𝑋,−𝑌 )
(there is an explicit form due to Dynkin (1947)). The formula is particularly useful
for nilpotent Lie groups, for which 𝑆 terminates.
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Appendix

A Analysis

In the following statements and proofs, all diffeomorphisms are of class 𝐶∞.

A.1 Theorem (inverse function theorem) Suppose that 𝑊 ⊂ R𝑛 is an open set,
𝐹 ∈ 𝐶∞(𝑊,R𝑛), 𝑝 ∈ 𝑊 , 𝐹 (𝑝) = 0, and 𝑑𝐹𝑝 is bijective. Then there exist open
neighborhoods 𝑉 ⊂ 𝑊 of 𝑝 and 𝑈 ⊂ R𝑛 of 0 such that 𝐹 |𝑉 is a diffeomorphism
from 𝑉 onto𝑈.

A.2 Theorem (implicit function theorem, surjective form) Suppose that 𝑊 ⊂
R𝑛 is an open set, 𝐹 ∈ 𝐶∞(𝑊,R𝑘), 𝑝 ∈ 𝑊 , 𝐹 (𝑝) = 0, and 𝑑𝐹𝑝 is surjective.
Then there exist open neighborhoods 𝑈 ⊂ R𝑛−𝑘 × R𝑘 of (0, 0) and 𝑉 ⊂ 𝑊 of 𝑝
and a diffeomorphism 𝜓 : 𝑈 → 𝑉 such that 𝜓(0, 0) = 𝑝 and

(𝐹 ◦ 𝜓) (𝑥, 𝑦) = 𝑦

for all (𝑥, 𝑦) ∈ 𝑈 (canonical projection).

Proof : After a linear change of coordinates on R𝑛 we can assume that 𝑑𝐹𝑝 maps
the subspace {0} × R𝑘 ⊂ R𝑛 bijectively onto R𝑘 . Then, for 𝑞 = (𝑞1, . . . , 𝑞𝑛) ∈ 𝑊
and 𝑞′ := (𝑞1, . . . , 𝑞𝑛−𝑘), put �̃� (𝑞) := (𝑞′, 𝐹 (𝑞)). This defines a map �̃� ∈
𝐶∞(𝑊,R𝑛−𝑘 × R𝑘), and 𝑑�̃�𝑝 is bijective. By Theorem A.1 there exist open
neighborhoods 𝑉 ⊂ 𝑊 of 𝑝 and 𝑈 ⊂ R𝑛−𝑘 × R𝑘 of (0, 0) such that �̃� |𝑉 is a
diffeomorphism from𝑉 onto𝑈. Let𝜓 :=

(
�̃� |𝑉

)−1. For (𝑥, 𝑦) ∈ 𝑈 and𝜓(𝑥, 𝑦) =: 𝑞,
(𝑞′, 𝐹 (𝑞)) = �̃� (𝑞) = (𝑥, 𝑦), in particular (𝐹 ◦ 𝜓) (𝑥, 𝑦) = 𝐹 (𝑞) = 𝑦. □

A.3 Theorem (implicit function theorem, injective form) Suppose that 𝑈 ⊂
R𝑚 is an open set, 𝑓 ∈ 𝐶∞(𝑈,R𝑛), 0 ∈ 𝑈, 𝑓 (0) = 𝑝, and 𝑑𝑓0 is injective.
Then there exist open neighborhoods 𝑉 ⊂ R𝑛 of 𝑝 and 𝑊 ⊂ 𝑈 × R𝑛−𝑚 of (0, 0)
and a diffeomorphism 𝜑 : 𝑉 → 𝑊 such that 𝜑(𝑝) = (0, 0) and

(𝜑 ◦ 𝑓 ) (𝑥) = (𝑥, 0)

for all (𝑥, 0) ∈ 𝑊 (canonical inclusion).
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Proof : We can assume that the subspace {0} × R𝑛−𝑚 ⊂ R𝑛 is complementary
to the image of 𝑑𝑓0. Define 𝑓 ∈ 𝐶∞(𝑈 × R𝑛−𝑚,R𝑛) by 𝑓 (𝑥, 𝑦) := 𝑓 (𝑥) + (0, 𝑦)
for (𝑥, 𝑦) ∈ 𝑈 × R𝑛−𝑚. The differential 𝑑 𝑓0 is bijective. By Theorem A.1 there
exist open neighborhoods 𝑊 ⊂ 𝑈 × R𝑛−𝑚 of (0, 0) and 𝑉 ⊂ R𝑛 of 𝑝 such that
𝑓 |𝑊 is a diffeomorphism from 𝑊 onto 𝑉 . Let 𝜑 :=

(
𝑓 |𝑊

)−1. For (𝑥, 0) ∈ 𝑊 ,
𝑓 (𝑥) = 𝑓 (𝑥, 0), hence (𝜑 ◦ 𝑓 ) (𝑥) = (𝑥, 0). □

We state two useful facts about smooth vector fields.

A.4 Lemma (flow box) Suppose that 𝑋 : 𝑉 → R𝑚 is a vector field on a neighbor-
hood 𝑉 of 0 in R𝑚, and 𝑋 (0) ≠ 0. Then there exist an open neighborhood𝑊 ⊂ 𝑉
of 0 and a diffeomorphism 𝜓 : 𝑊 → 𝜓(𝑊) ⊂ R𝑚 such that 𝑑𝜓𝑦 (𝑋 (𝑦)) = 𝑒1 for
all 𝑦 ∈ 𝑊 .

Proof : We can assume that 𝑋 (0) = 𝑒1. There exist an open set𝑉 ′ in {0} ×R𝑚−1 ⊂
R𝑚 with 0 ∈ 𝑉 ′ ⊂ 𝑉 and an 𝜖 > 0 such that for every 𝑥 ∈ 𝑉 ′ there is an integral
curve 𝑐𝑥 : (−𝜖, 𝜖) → R𝑚 of 𝑋 with 𝑐𝑥 (0) = 𝑥, and the map (𝑡, 𝑥) ↦→ 𝑐𝑥 (𝑡) on
(𝜖, 𝜖) ×𝑉 ′ is 𝐶∞ (compare Theorem 10.8). Then the map sending 𝑥 + 𝑡𝑒1 to 𝑐𝑥 (𝑡)
for every (𝑡, 𝑥) ∈ (𝜖, 𝜖) × 𝑉 ′ is also 𝐶∞ and furthermore regular at 0, because
¤𝑐0(0) = 𝑋 (0) = 𝑒1 and 𝑐𝑥 (0) = 𝑥 for all 𝑥 ∈ 𝑉 ′. Hence the restriction of this map
to a suitable neighborhood of 0 is a diffeomorphism whose inverse 𝜓 : 𝑊 → 𝜓(𝑊)
satisfies 𝜓(𝑦) = 𝑥 + 𝑡𝑒1 and 𝑑𝜓𝑦 (𝑋 (𝑦)) = 𝑑𝜓𝑦 ( ¤𝑐𝑥 (𝑡)) = 𝑒1 for all 𝑦 = 𝑐𝑥 (𝑡) ∈ 𝑊 .

□

A.5 Lemma (parametrization by flow lines) Suppose that 𝑋1, 𝑋2 : 𝑉 → R2 are
two vector fields on a neighborhood 𝑉 of 0 in R2, and 𝑋1(0), 𝑋2(0) are linearly
independent. Then there exist an open set 𝑈 ⊂ R2 and a diffeomorphism 𝜑 : 𝑈 →
𝜑(𝑈) ⊂ 𝑉 with 0 ∈ 𝜑(𝑈) such that

𝜕𝜑

𝜕𝑥𝑖
(𝑥) = 𝜆𝑖 (𝑥) 𝑋𝑖 (𝜑(𝑥))

for all 𝑥 ∈ 𝑈 and some functions 𝜆𝑖 : 𝑈 → R, 𝑖 = 1, 2.

Proof : Since 𝑋𝑖 (0) ≠ 0 for 𝑖 = 1, 2, by Lemma A.4 there exist an open neighbor-
hood 𝑊 ⊂ 𝑉 of 0 and diffeomorphisms 𝜓𝑖 = (𝜓1

𝑖
, 𝜓2

𝑖
) : 𝑊 → 𝜓𝑖 (𝑊) ⊂ R2 such

that 𝑑 (𝜓𝑖)𝑦 (𝑋𝑖 (𝑦)) = 𝑒𝑖 for all 𝑦 ∈ 𝑊 . Then ℎ1 := 𝜓1
2 and ℎ2 := 𝜓2

1 are regular
functions on𝑊 whose level curves are flow lines of 𝑋2 and 𝑋1, respectively. Define
ℎ := (ℎ1, ℎ2) : 𝑊 → R2. Since 𝑋1(0), 𝑋2(0) are linearly independent and ℎ1, ℎ2

are regular at 0, whereas 𝑑 (ℎ1)0(𝑋2(0)) = 0 and 𝑑 (ℎ2)0(𝑋1(0)) = 0, it follows that
𝑑 (ℎ𝑖)0(𝑋𝑖 (0)) ≠ 0 for 𝑖 = 1, 2, thus ℎ is regular at 0. Hence, the restriction of ℎ to
a suitable neighborhood of 0 has an inverse 𝜑 as claimed, mapping horizontal and
vertical lines to flow lines of 𝑋1 and 𝑋2, respectively. □
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B General topology

B.1 Definition (topology, topological space) Let 𝑀 be a set. A topology on 𝑀 is
a collection of subsets of 𝑀 , called open sets, with the following properties:

(1) ∅ and 𝑀 are open;

(2) the union of arbitrarily many open sets is open;

(3) the intersection of finitely many open sets is open.

A topological space is a set equipped with a topology.

Examples

1. Let (𝑀, 𝑑) be a metric space. With respect to the topology induced by 𝑑, a
set 𝑈 ⊂ 𝑀 is open if and only if for all 𝑝 ∈ 𝑈 there is an 𝑟 > 0 such that
𝐵(𝑝, 𝑟) = {𝑞 ∈ 𝑀 : 𝑑 (𝑝, 𝑞) < 𝑟} ⊂ 𝑈.

2. The usual topology on R𝑚 is induced by the standard metric 𝑑 (𝑥, 𝑦) = |𝑥− 𝑦 |.

3. The trivial topology on a set 𝑀 consists only of ∅ and 𝑀 , whereas the discrete
topology on 𝑀 is the entire power set.

A subset 𝐴 of a topological space 𝑀 is called closed if the complement 𝑀 \ 𝐴
is open; thus ∅ and 𝑀 are both open and closed.

A map 𝑓 : 𝑀 → 𝑁 between two topological spaces is continuous if 𝑓 −1(𝑉) ⊂
𝑀 is open for every open set 𝑉 ⊂ 𝑁 . The map 𝑓 is a homeomorphism if 𝑓 is
bijective and both 𝑓 and 𝑓 −1 are continuous.

B.2 Definition (induced topology) Let 𝑁 be a topological space, and let 𝑀 ⊂ 𝑁

be a subset. The induced topology or subspace topology on 𝑀 consists of all sets
𝑈 ⊂ 𝑀 of the form𝑈 = 𝑀 ∩𝑉 where 𝑉 is open in 𝑁 .

B.3 Definition (compactness) A topological space 𝑀 is compact if every open
cover of 𝑀 has a finite subcover; that is, whenever

⋃
𝛼∈𝐴𝑈𝛼 = 𝑀 for open sets

𝑈𝛼 ⊂ 𝑀 and an index set 𝐴, there exists a finite set 𝐵 ⊂ 𝐴 such that
⋃

𝛽∈𝐵𝑈𝛽 = 𝑀 .

If 𝑀 is compact and 𝑓 : 𝑀 → 𝑁 is continuous, then 𝑓 (𝑀) is a compact
subspace of 𝑁 . If 𝑀 is compact and 𝐴 is closed in 𝑀 , then 𝐴 is a compact subspace
of 𝑀 .

A set𝑈 ⊂ 𝑀 is called a neighborhood of a point 𝑝 ∈ 𝑀 if there exists an open
set 𝑉 with 𝑝 ∈ 𝑉 ⊂ 𝑈.

B.4 Definition (Hausdorff space) A topological space 𝑀 is called a Hausdorff
space if for every pair of distinct points 𝑝, 𝑞 ∈ 𝑀 there exist disjoint neighborhoods
𝑈 of 𝑝 and 𝑉 of 𝑞.
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Every metric space is a Hausdorff space.

B.5 Lemma If 𝑀 is a Hausdorff space and 𝐴 ⊂ 𝑀 is a compact subspace, then 𝐴
is closed in 𝑀 .

It follows easily that every continuous bijective map 𝑓 : 𝑀 → 𝑁 from a compact
space 𝑀 onto a Hausdorff space 𝑁 is a homeomorphism.

B.6 Definition (basis, subbasis) Let 𝑀 be a topological space. A collection B of
open sets is called a basis of the topology if every open set can be written as a union
of sets in B. A collection S of open sets is a subbasis of the topology if every open
set is a union of sets that are intersections of finitely many sets in S.

Examples

1. The set of all open balls forms a basis of the topology of a metric space.

2. The set of all open balls 𝐵(𝑥, 𝑟) with 𝑥 ∈ Q𝑚 and 𝑟 ∈ Q, 𝑟 > 0, is a countable
basis of the usual topology on R𝑚.

B.7 Definition (product topology) Let𝑀, 𝑁 be two topological spaces. The prod-
uct topology on 𝑀 × 𝑁 is the topology for which the sets of the form𝑈 ×𝑉 where
𝑈 is open in 𝑀 and 𝑉 is open in 𝑁 constitute a basis.

B.8 Definition (quotient topology) Suppose that 𝑀 is a topological space, ∼ is
an equivalence relation on 𝑀 , and 𝜋 : 𝑀 → 𝑀/∼ is the projection onto the set of
equivalence classes. The quotient topology on 𝑀/∼ consists of all sets 𝑉 ⊂ 𝑀/∼
for which 𝜋−1(𝑉) is open in 𝑀 .

A topological space 𝑀 is called connected if ∅ and 𝑀 are the only open and
closed subsets of 𝑀 . A topological space 𝑀 is path connected if for every pair of
points 𝑝, 𝑞 ∈ 𝑀 there is a path from 𝑝 to 𝑞 (that is, a continuous map 𝑐 : [0, 1] → 𝑀

with 𝑐(0) = 𝑝 and 𝑐(1) = 𝑞), and 𝑀 is locally path connected if every point 𝑝 ∈ 𝑀
has a neighborhood that is path connected in the induced topology. Every path
connected space is connected. The subspace

{(𝑥, sin(1/𝑥)) : 𝑥 ∈ R, 𝑥 > 0} ∪ {(0, 𝑦) : 𝑦 ∈ [−1, 1]}

of R2 is connected but not path connected. Every connected and locally path
connected space is (globally) path connected.
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C Multilinear algebra

Let 𝑉,𝑉1, . . . , 𝑉𝑛 and 𝑊 be vector spaces (over R). We denote by 𝐿 (𝑉 ;𝑊) the
vector space of linear maps from 𝑉 to𝑊 . A map

𝑓 : 𝑉1 × . . . ×𝑉𝑛 → 𝑊

is multilinear or 𝑛-linear if for every index 𝑖 ∈ {1, . . . , 𝑛} and for fixed vectors
𝑣 𝑗 ∈ 𝑉 𝑗 , 𝑗 ≠ 𝑖, the map

𝑣 ↦→ 𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣, 𝑣𝑖+1, . . . , 𝑣𝑛)

from 𝑉𝑖 to𝑊 is linear. We let 𝐿 (𝑉1, . . . , 𝑉𝑛;𝑊) denote the vector space of all such
𝑛-linear maps.

C.1 Theorem (tensor product) Given vector spaces 𝑉1, . . . , 𝑉𝑛, there exist a vec-
tor space T and an 𝑛-linear map 𝜏 ∈ 𝐿 (𝑉1, . . . , 𝑉𝑛;T) with the following property:
for every 𝑛-linear map 𝑓 ∈ 𝐿 (𝑉1, . . . , 𝑉𝑛;𝑊) into any vector space 𝑊 there is a
unique linear map 𝑔 ∈ 𝐿 (T ;𝑊) such that 𝑓 = 𝑔 ◦ 𝜏.

This property characterizes the pair (𝜏,T) uniquely up to a linear isomorphism;
(𝜏,T) is called the tensor product of 𝑉1, . . . , 𝑉𝑛, and one writes

𝑉1 ⊗ . . . ⊗ 𝑉𝑛 := T , 𝑣1 ⊗ . . . ⊗ 𝑣𝑛 := 𝜏(𝑣1, . . . , 𝑣𝑛).

The unique assignment 𝑓 ↦→ 𝑔 given by the theorem is a linear isomorphism

𝐿 (𝑉1, . . . , 𝑉𝑛;𝑊) � 𝐿 (𝑉1 ⊗ . . . ⊗ 𝑉𝑛;𝑊).

For every permutation 𝜎 of {1, . . . , 𝑛} there exists a linear isomorphism

𝑉1 ⊗ . . . ⊗ 𝑉𝑛 � 𝑉𝜎 (1) ⊗ . . . ⊗ 𝑉𝜎 (𝑛)

mapping 𝑣1 ⊗ . . . ⊗ 𝑣𝑛 to 𝑣𝜎 (1) ⊗ . . . ⊗ 𝑣𝜎 (𝑛) . For 𝑚 < 𝑛,

(𝑉1 ⊗ . . . ⊗ 𝑉𝑚) ⊗ (𝑉𝑚+1 ⊗ . . . ⊗ 𝑉𝑛) � 𝑉1 ⊗ . . . ⊗ 𝑉𝑛.

For every vector space 𝑉 the scalar multiplication is a bilinear map R × 𝑉 → 𝑉 ;
this induces an isomorphism

R ⊗ 𝑉 � 𝑉
mapping 𝑎 ⊗ 𝑣 to 𝑎𝑣. If 𝑉 � 𝑉1 ⊕ 𝑉2 (direct sum), then

𝑉 ⊗𝑊 � (𝑉1 ⊗𝑊) ⊕ (𝑉2 ⊗𝑊).

The construction of the tensor product is natural in the following sense: if linear
maps 𝑓 𝑗 : 𝑉 𝑗 → 𝑉 ′

𝑗
are given, 𝑗 = 1, . . . , 𝑛, then there exists a unique linear map

𝑓1 ⊗ . . . ⊗ 𝑓𝑛 : 𝑉1 ⊗ . . . ⊗ 𝑉𝑛 → 𝑉 ′
1 ⊗ . . . ⊗ 𝑉 ′

𝑛 such that

( 𝑓1 ⊗ . . . ⊗ 𝑓𝑛) (𝑣1 ⊗ . . . ⊗ 𝑣𝑛) = 𝑓1(𝑣1) ⊗ . . . ⊗ 𝑓𝑛 (𝑣𝑛)
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whenever 𝑣 𝑗 ∈ 𝑉 𝑗 for 𝑗 = 1, . . . , 𝑛.
We now assume that the vector spaces 𝑉,𝑉1, . . . , 𝑉𝑛 are finite dimensional. If

𝐵 𝑗 is a basis of 𝑉 𝑗 for 𝑗 = 1, . . . , 𝑛, then the products 𝑏1 ⊗ . . . ⊗ 𝑏𝑛 with 𝑏 𝑗 ∈ 𝐵 𝑗

constitute a basis of 𝑉1 ⊗ . . . ⊗ 𝑉𝑛. In particular,

dim(𝑉1 ⊗ . . . ⊗ 𝑉𝑛) = dim(𝑉1) · · · dim(𝑉𝑛).

We let 𝑉∗ := 𝐿 (𝑉 ;R) denote the dual space of 𝑉 . The map 𝑣 ↦→ �̃� ∈ (𝑉∗)∗,
�̃�(𝜆) := 𝜆(𝑣), is a canonical isomorphism 𝑉 � 𝑉∗∗. If 𝜆 𝑗 ∈ 𝑉∗

𝑗
, 𝑗 = 1, . . . , 𝑛, then

𝜆1 ⊗ . . . ⊗ 𝜆𝑛 ∈ 𝑉∗
1 ⊗ . . . ⊗ 𝑉∗

𝑛 may also be viewed as the tensor product

𝜆1 ⊗ . . . ⊗ 𝜆𝑛 : 𝑉1 ⊗ . . . ⊗ 𝑉𝑛 → R ⊗ . . . ⊗ R � R

of the linear maps 𝜆 𝑗 : 𝑉 𝑗 → R described above; this yields an isomorphism

𝑉∗
1 ⊗ . . . ⊗ 𝑉∗

𝑛 � (𝑉1 ⊗ . . . ⊗ 𝑉𝑛)∗.

Note that
(𝜆1 ⊗ . . . ⊗ 𝜆𝑛) (𝑣1 ⊗ . . . ⊗ 𝑣𝑛) = 𝜆1(𝑣1) · · · 𝜆𝑛 (𝑣𝑛).

An (𝑟, 𝑠)-tensor over 𝑉 is an element of

𝑉𝑟 ,𝑠 := 𝑉 ⊗ . . . ⊗ 𝑉︸        ︷︷        ︸
𝑟

⊗𝑉∗ ⊗ . . . ⊗ 𝑉∗︸           ︷︷           ︸
𝑠

� (𝑉∗ ⊗ . . . ⊗ 𝑉∗︸           ︷︷           ︸
𝑟

⊗𝑉 ⊗ . . . ⊗ 𝑉︸        ︷︷        ︸
𝑠

)∗

� {𝑇 : 𝑉∗ × . . . ×𝑉∗︸           ︷︷           ︸
𝑟

×𝑉 × . . . ×𝑉︸        ︷︷        ︸
𝑠

→ R : 𝑇 ist (𝑟 + 𝑠)-linear}.

Note that dim(𝑉𝑟 ,𝑠) = dim(𝑉)𝑟+𝑠, 𝑉1,0 = 𝑉 , 𝑉0,1 = 𝑉∗, and one puts 𝑉0,0 := R. If
(𝑒1, . . . , 𝑒𝑚) is a basis of 𝑉 and (𝜖1, . . . , 𝜖𝑚) is the dual basis of 𝑉∗, 𝜖 𝑖 (𝑒 𝑗) = 𝛿𝑖𝑗 ,
then 𝑇 ∈ 𝑉𝑟 ,𝑠 possesses the representation

𝑇 =

𝑚∑︁
𝑗1,..., 𝑗𝑟 ,𝑖1,...,𝑖𝑠=1

𝑇
𝑗1... 𝑗𝑟
𝑖1...𝑖𝑠

𝑒 𝑗1 ⊗ . . . ⊗ 𝑒 𝑗𝑟 ⊗ 𝜖 𝑖1 ⊗ . . . ⊗ 𝜖 𝑖𝑠

with components 𝑇 𝑗1... 𝑗𝑟
𝑖1...𝑖𝑠

∈ R.

In the following, 𝑉0,𝑠 will always be identified with the vector space
𝐿 (𝑉, . . . , 𝑉 ;R) of 𝑠-linear maps 𝐴 : 𝑉 × . . . × 𝑉 → R. For 𝐴 ∈ 𝑉0,𝑠 and 𝐵 ∈ 𝑉0,𝑡 ,
the tensor product 𝐴 ⊗ 𝐵 ∈ 𝑉0,𝑠+𝑡 is then given by the simple formula

𝐴 ⊗ 𝐵 (𝑣1, . . . , 𝑣𝑠+𝑡 ) = 𝐴(𝑣1, . . . , 𝑣𝑠) 𝐵(𝑣𝑠+1, . . . , 𝑣𝑠+𝑡 )

for 𝑣1, . . . , 𝑣𝑠+𝑡 ∈ 𝑉 .
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C.2 Theorem (alternating multilinear maps) For 𝐴 ∈ 𝑉0,𝑠, the following prop-
erties are equivalent:

(1) 𝐴 is alternating, that is, 𝐴(𝑣1, . . . , 𝑣𝑠) = 0 whenever 𝑣𝑖 = 𝑣 𝑗 for two indices
𝑖 ≠ 𝑗 ;

(2) 𝐴 ist skew-symmetric, that is, 𝐴(𝑣𝜏 (1) , . . . , 𝑣𝜏 (𝑠) ) = −𝐴(𝑣1, . . . , 𝑣𝑠) for every
transposition 𝜏 of {1, . . . , 𝑠};

(3) 𝐴(𝑣1, . . . , 𝑣𝑠) = 0 whenever 𝑣1, . . . , 𝑣𝑠 are linearly dependent;

(4) 𝐴(𝑣1, . . . , 𝑣𝑠) = det(𝑎𝑖
𝑗
) 𝐴(𝑤1, . . . , 𝑤𝑠) if 𝑣 𝑗 =

∑𝑠
𝑖=1 𝑎

𝑖
𝑗
𝑤𝑖 for 𝑗 = 1, . . . , 𝑠.

We write Λ𝑠 (𝑉∗) for the vector space of alternating (0, 𝑠)-tensors over 𝑉 , and
we put Λ0(𝑉∗) := R. Note that Λ𝑠 (𝑉∗) = {0} for 𝑠 > 𝑚 = dim(𝑉).

C.3 Definition (exterior product) For 𝐴 ∈ Λ𝑠 (𝑉∗) and 𝐵 ∈ Λ𝑡 (𝑉∗), the exterior
product (or wedge product) 𝐴 ∧ 𝐵 ∈ Λ𝑠+𝑡 (𝑉∗) is defined by

𝐴∧𝐵(𝑣1, . . . , 𝑣𝑠+𝑡 ) :=
∑︁

𝜎∈𝑆𝑠,𝑡
sgn(𝜎) 𝐴(𝑣𝜎 (1) , . . . , 𝑣𝜎 (𝑠) ) 𝐵(𝑣𝜎 (𝑠+1) , . . . , 𝑣𝜎 (𝑠+𝑡 ) )

for 𝑣1, . . . , 𝑣𝑠+𝑡 ∈ 𝑉 , where 𝑆𝑠,𝑡 denotes the set of all permutations 𝜎 ∈ 𝑆𝑠+𝑡 such
that 𝜎(1) < . . . < 𝜎(𝑠) and 𝜎(𝑠 + 1) < . . . < 𝜎(𝑠 + 𝑡).

The map ∧ : Λ𝑠 (𝑉∗) × Λ𝑡 (𝑉∗) → Λ𝑠+𝑡 (𝑉∗) is bilinear, and

𝐵 ∧ 𝐴 = (−1)𝑠𝑡𝐴 ∧ 𝐵,

in particular 𝐴 ∧ 𝐴 = 0 if 𝐴 ∈ Λ𝑠 (𝑉∗) and 𝑠 is odd. For 𝐴 ∈ Λ𝑠 (𝑉∗), 𝐵 ∈ Λ𝑡 (𝑉∗),
and 𝐶 ∈ Λ𝑢 (𝑉∗),

(𝐴 ∧ 𝐵) ∧ 𝐶 = 𝐴 ∧ (𝐵 ∧ 𝐶).
If 𝜆1, . . . , 𝜆𝑠 ∈ Λ1(𝑉∗) = 𝑉∗, then 𝜆1 ∧ . . . ∧ 𝜆𝑠 ∈ Λ𝑠 (𝑉∗) is given by

(𝜆1 ∧ . . . ∧ 𝜆𝑠) (𝑣1, . . . , 𝑣𝑠) =
∑︁
𝜎∈𝑆𝑠

sgn(𝜎) 𝜆1(𝑣𝜎 (1) ) · · · 𝜆𝑠 (𝑣𝜎 (𝑠) )

= det(𝜆𝑖 (𝑣 𝑗))

for 𝑣1, . . . , 𝑣𝑠 ∈ 𝑉 .
Now let {𝑒1, . . . , 𝑒𝑚} be a basis of 𝑉 , and let {𝜖1, . . . , 𝜖𝑚} be the dual basis

of 𝑉∗. For 1 ≤ 𝑖1 < . . . < 𝑖𝑠 ≤ 𝑚 and 1 ≤ 𝑗1, . . . , 𝑗𝑠 ≤ 𝑚,

(𝜖 𝑖1 ∧ . . . ∧ 𝜖 𝑖𝑠 ) (𝑒 𝑗1 , . . . , 𝑒 𝑗𝑠 )

=
∑︁
𝜎∈𝑆𝑠

sgn(𝜎) 𝛿𝑖1
𝑗𝜎 (1)

· · · 𝛿𝑖𝑠
𝑗𝜎 (𝑠)

=

{
sgn(𝜎) if ( 𝑗𝜎 (1) , . . . , 𝑗𝜎 (𝑠) ) = (𝑖1, . . . , 𝑖𝑠),
0 if { 𝑗1, . . . , 𝑗𝑠} ≠ {𝑖1, . . . , 𝑖𝑠}.
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The set
{𝜖 𝑖1 ∧ . . . ∧ 𝜖 𝑖𝑠 : 1 ≤ 𝑖1 < . . . < 𝑖𝑠 ≤ 𝑚}

forms a basis of Λ𝑠 (𝑉∗), in particular dim(Λ𝑠 (𝑉∗)) =
(𝑚
𝑠

)
.
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gie, Springer 1973, 1990.

[dC] Manfredo P. do Carmo: Differentialgeometrie von Kurven und Flächen,
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