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Abstract

This is an expository note providing an elementary constructive proof of
the existence and uniqueness of a Haar integral on every locally compact and
Hausdorff topological group.

In the following, G denotes a locally compact and Hausdorff topological group,
and C.(G) denotes the vector space of continuous functions f: G — R with com-
pact support spt(f) := {x € G : f(x) # 0}. Fora € G, we denote by L,: G — G the
homeomorphism of G that maps x to ax, and whose inverse L;' is L,-1. A linear
functional A: C.(G) — R is called

e positive if A(f) = 0forall f € C{(G) :={f € Cc(G) : f > 0}; and
o [eft-invariant if A(f o L,) = A(f) forall f € C.(G)anda € G.

A left Haar integral A on G is a left-invariant, positive and non-trivial (that is, not
identically vanishing) linear functional A: C.(G) — R.

Theorem 1. There exists a left Haar integral A on G, unique up to multiplication
by a positive constant. It satisfies A(f) > 0 for every f € CI(G) \ {0}.

The existence of an essentially unique left Haar measure on G then follows
immediately from the Riesz Representation Theorem (cf. [5, 2.14] and [6, Theo-
rem 3.15]). Theorem 1 has its origins in [3] and is due to Weil [7], whose elegant
proof depended, for the existence part, on the axiom of choice. Cartan [2] then gave
a constructive existence proof inspired by Weil’s argument for the uniqueness. The
proof given below is another modification of Weil’s approach (compare also [1]],
(4], [6D.

We start with a basic uniform continuity result. In the sequel, % denotes the
collection of all open neighborhoods of the neutral element e in G.

Lemma 2. Let f € C(G). Then there exists a function ¢ € C{(G) with values in
[0, 1] such that spt(f) is contained in the interior of the set 0~'{1}, and for every
such o and every € > 0 there exists a neighborhood U € % such that f(x) <
fO) + g0(y) < f(y) + & whenever x,y € G and x 'y e U ory"'x € U.
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Proof. The existence of o follows from Urysohn’s Lemma (s. [S 2.12]). Now let
such a function o and a constant & > 0 be given. Let W denote the interior of o~ {1},
and put K := spt(f). For every a € K, since f is continuous at a, there is an open
neighborhood V, ¢ W of a such that |f(a)— f(b)| < &/2 for all b € V,. Furthermore,
since the map (x,y) +— axy is continuous at (e, e), there exists U, € % such that
aU,U, c V,. The collection of open sets al/, with a € K covers the compact
set K, thus there is a finite set A C K such that K C |Jyeq aUq. Put U’ := (Ve Ua
and U := U’ n(U’)"!, and note that U = U~! € %. Now let x,y € G be such
that x‘ly € U (or y‘lx = (x‘ly)‘1 € U). Suppose f(x) > 0. Then x € K, thus
there is an a € A such that x € aU, and hence y = x(x‘ly) € aU,U. It follows that
x,yeV,cW,and f(x) < fla) + /2 < f(y) + & = f(y) + €o(p). O

The proof of Theorem 1 examines certain functions /: C}(G) — [0, o). Such
a functional will be called

o left-invariant if I(f o L,) = I(f) for all f € C(G) and a € G;

e homogeneous if I(Af) = A(f) forall f € CI(G) and A > 0;

o subadditive if I(f + ') < I(f) + I(f’) for all £, f’ € C:(G); and
e monotonic if I(f) < I(g) whenever f,g € C:(G) and f < g.

We denote by .# the set of all functions I: C{(G) — [0, o) satisfying these four
properties, and by . the set of all functions /: C$(G) — [0, o) that are left-
invariant, homogeneous, and additive. Note that . c .%, forif I € £ and f < g,
then I(f) < I(f) + I(g — f) = I(g). The restriction of any left-invariant, positive
linear functional on C.(G) to C}(G) belongs to .. Conversely, given I € .Z, the
extension to C.(G) obtained by putting I(f) := I(f*)—I(f~) for f € C.(G)\C{(G)
is a left-invariant, positive linear functional.
For a neighborhood U € %, we put

PU) =g € CIG): g %0, spt(g) C U},

and we denote by &2, (U) the subset of all g € & (U) such that g(x’l) = g(x) for all
x € G. Note that Z(U) is non-empty by Urysohn’s Lemma, and if U = U~! € %
and g € Z(U), then x — max{g(x), g(x~1)} is an element of 2, (U).

Now we give the proof of Theorem 1, which is divided into five parts.

PartI. Let g € Z2(G). For every f € C{(G), we denote by I,(f) the infimum of all
s > 0 for which there exist a finite set A C G and constants ¢, > 0, for a € A, such
that

fgzcagoLgl and anSs. (1

acA acA

Due to the compactness of spt(f), the set of all such s is non-empty, so that I,(f)
is finite. For instance, if V is the non-empty open set where g > ||g||~ /2, then there
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is a finite set A C G such that spt(f) C (Jyea aV and hence f < 3 ,c4 cg o L, ! for
¢ := 2||fllo/lIglleo. Thus we have a function I,: C{(G) — [0, o), and it follows
directly from the definition that /, € .%. Furthermore, for any J € .7,

J(f) < I(f)J(g) forall f e CIH(G), 2)

as is easily seen by applying J to the first inequality in (I). For J = ||-|le, (2) shows
that I,(f) > O whenever f € Z2(G). It also follows that if J(f) > O for some
f € CI{(G), then J(g) > O for all g € F(G). This proves in particular the last
assertion of the theorem.

We note further that for every f € CZ(G) and every constant r > 1 there exist
f€CHG)and U € U such that f > f on spt(f), f(x) < f(y) whenever x,y € G
and x'ye Uory'xe U, and

J(f) <rd(f) forall] e Z. (3)

Suppose that f # 0, and choose o as in Lemma 2. Then let € > 0 be such that
1+&lf(0) < r,and put f := f+&0. Now the result follows from the lemma and the
fact that J(f) < J(f)+&J(0) < (1+&lf(0))J(f) by @). Note also that if f € 2.(G),
then by choosing 0 € Z.(G) one can arrange that f € 2.(G).

Part II. Next we show that for every finite collection of functions fi,...,f, €
C}(G) and every r > 1 there is a neighborhood V € % such that

Lo(f) + -+ L(fa) S rl(fi + -+ + fo)  forall g € P (V). 4

Put f := fi + -+ + f,. By (3) there is an f € C/(G) such that f > f on spt(f)
and J(f) < r'/2J(f) for all J € .Z. Then there exist functions o1,...,0, € C}(G)
so that f; = o, f and spt(o;) = spt(f;). Let & > 0 be such that 1 + ne < r'/2. By
Lemma 2 there exists V € % such that o;(y) < 0i(a) + £ whenever a~'y € V, for
i =1,...,n. Now let g € Z(V), and let s, A, ¢, be such that the inequalities (T
hold with f in place of f. Then (g o L;")(y) > 0 implies that 0;(y) < 0i(a) + &, s0

fi=oif < Z ca0ig o Ly < Z caloi(@) + )g o L'

acA acA

and therefore I,(f;) < ., ca(oi(a) + &). Since Si0if = f < f,wehave 3,0, <1,
thus it follows that

Zlg(f,-) <+ ns)an < rl/s.
i=1

acA

Taking the infimum over all such s we conclude that }; I,(f;) < rl/zlg( f). Since
L(f) < r'2I,(f), this yields (@).

Part III. Next we establish a counterpart to (2)): Given f € CI(G) and r > 1, there
exists U € % such that for every g € P.(U) there exists W € % such that

L(f)I() < rI(f) forallJ e LUl :he PW)). (5)
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By (@) there exist f € C}(G) and U € % such that f(x) < f(y) whenever x~'y € U,
and J(f) < r1/3J(f) whenever J € %. Let now g € £2,(U), as in the assertion.
Then, again by (3), there exist § € Z.(G) and V € % such that g(x"'y) < g(x"'a)
for x"'a)'(x7'y) = a”ly € V, and J(3) < r'/3J(g) for J € .Z. Since spt(f) is
compact, there exists a finite set A C G such that the collection of open sets aV with
a € A covers spt(f). Then f can be decomposed by means of a partition of unity
subordinate to this covering (cf. [3, 2.13]), thus f = 3,4 fu for some functions
fu € CH(G) with spt(f;) € aV. Now, for all x,y € G,

F@gy) < ) fue!y) < Y fu)ata x); (©6)
acA acA
the first inequality holds since g(x~'y) > 0 implies that f(x) < f(y) = X, (),
the second since f,(y) > 0 implies that g(x_ly) < g(x‘la) = g(a‘lx). By Part 11
there exists W € % such that 3, I,(£,) < r'3I,(f) for all h € Z(W). Let now
J e LU, : h e Z(W)}. Fix x for the moment and apply J to the functions of y
on the left and right of (). This yields

FI@) < Y Izt 0, (7)
acA
Then, applying I, to the functions of x on either side of (7), and noting that /,(g) <
r'BI,(g) < r'/3, we obtain I,(f)J(g) < r'/* ¥, J(f,). This sum is equal to J(f) if
J is additive and less than or equal to r1/3J(f) if J = I, with h € Z2(W). Since
J(f) < r'3J(f), this gives the result.

Part I'V. Now we fix once and for all a reference function ¢ € &?(G). Normalizing
the functionals /,, we note that, by (2),

A, :=——1, <1, forall g e Z(G). ®)
8 Ig(¢) 8 ¢ 8

Let f € C{(G) and r > 1. By (2) and Part III, there exists a neighborhood U,(f) €

% such that for each g € Z,.(U,(f)) there exists W € %/ such that the inequalities

J(f) < I,(f)J(g) < rJ(f) and J(¢) < Io(¢)J(g) < rJ(¢) hold simultaneously for

all J € L U{l : he £2(W)}. Then it follows that

) < 2D < oay(f) foralld e LU he POW)). )

J(@)
From (8) and (9) we conclude that for any two left Haar integrals A, A” on G the
quotients A(f)/A(¢) and A’(f)/ N’ (¢) agree. Thus A and A’ are constant multiples
of each other on C}(G) and hence also on C.(G). This proves the uniqueness
assertion of Theorem 1.

Part V. Finally, we construct a left Haar integral on G. Let again f € C}(G)
and r > 1. Denote by %4,(f) the set of all g € Z?(G) for which there exists a
neighborhood W € % such that

Ag(f) S rAp(f) forall h e Z2(W). (10)
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From the first inequality in (9) we know that ¢,(f) contains Z.(U,(f)). Clearly
Y (f oLy =%(f) =% Af) forall a € G and 1 > 0. Now put

A(f) == sup{A(f) : g € G()},

and note that this is finite by (§). The functional A: CHG) — [0,00) is left-
invariant and homogeneous. We claim that if f, f* € C{(G), then

rAE + ) < AP + A < PR+ f). (11)

For every g € 4.(f+ f’) there exists W € % such thatif h € Z(W)NY,.(/)NY,.(f"),
then r'Ay(f + f/) < Aw(f + ) < Au(f) + Au(f) < Ax(f) + A(f7). Hence
the first inequality holds. Conversely, given g € ¥,(f) and g’ € 9,.(f’), by the
definition of ¥4,(f) and ¥,(f’) and by Part II there exists W € % such that if
he PW)NG(f+f"), then Ag(f)+Ag () < r(Aw(f) + An(f)) < PAR(f+ ) <
r?A,(f + f/). This yields the second inequality in (TT).

Finally, if 1 < 7/ < r, then clearly 4. (f) C ¥,(f) and hence A, (f) < A(f).
Thus the limit

A(f) = lim R,(f)

exists. The resulting functional A: C7(G) — [0, o) is left-invariant and homoge-
neous. By virtue of (TT)), it is also additive, thus A belongs to . and extends to a
left-invariant, positive linear functional on C.(G). This functional is non-trivial, in
fact A(¢) = 1, as Ay(¢) = 1 for all g € Z(G).
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