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Abstract

This is an expository note providing an elementary constructive proof of
the existence and uniqueness of a Haar integral on every locally compact and
Hausdorff topological group.

In the following, G denotes a locally compact and Hausdorff topological group,
and Cc(G) denotes the vector space of continuous functions f : G → R with com-
pact support spt( f ) := {x ∈ G : f (x) , 0}. For a ∈ G, we denote by La : G → G the
homeomorphism of G that maps x to ax, and whose inverse L−1

a is La−1 . A linear
functional Λ : Cc(G)→ R is called

• positive if Λ( f ) ≥ 0 for all f ∈ C+
c (G) := { f ∈ Cc(G) : f ≥ 0}; and

• left-invariant if Λ( f ◦ La) = Λ( f ) for all f ∈ Cc(G) and a ∈ G.

A left Haar integral Λ on G is a left-invariant, positive and non-trivial (that is, not
identically vanishing) linear functional Λ : Cc(G)→ R.

Theorem 1. There exists a left Haar integral Λ on G, unique up to multiplication
by a positive constant. It satisfies Λ( f ) > 0 for every f ∈ C+

c (G) \ {0}.

The existence of an essentially unique left Haar measure on G then follows
immediately from the Riesz Representation Theorem (cf. [5, 2.14] and [6, Theo-
rem 3.15]). Theorem 1 has its origins in [3] and is due to Weil [7], whose elegant
proof depended, for the existence part, on the axiom of choice. Cartan [2] then gave
a constructive existence proof inspired by Weil’s argument for the uniqueness. The
proof given below is another modification of Weil’s approach (compare also [1],
[4], [6]).

We start with a basic uniform continuity result. In the sequel, U denotes the
collection of all open neighborhoods of the neutral element e in G.

Lemma 2. Let f ∈ C+
c (G). Then there exists a function % ∈ C+

c (G) with values in
[0, 1] such that spt( f ) is contained in the interior of the set %−1{1}, and for every
such % and every ε > 0 there exists a neighborhood U ∈ U such that f (x) ≤
f (y) + ε%(y) ≤ f (y) + ε whenever x, y ∈ G and x−1y ∈ U or y−1x ∈ U.
∗Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland; lang@math.ethz.ch

1



2 U. Lang

Proof. The existence of % follows from Urysohn’s Lemma (s. [5, 2.12]). Now let
such a function % and a constant ε > 0 be given. Let W denote the interior of %−1{1},
and put K := spt( f ). For every a ∈ K, since f is continuous at a, there is an open
neighborhood Va ⊂ W of a such that | f (a)− f (b)| < ε/2 for all b ∈ Va. Furthermore,
since the map (x, y) 7→ axy is continuous at (e, e), there exists Ua ∈ U such that
aUaUa ⊂ Va. The collection of open sets aUa with a ∈ K covers the compact
set K, thus there is a finite set A ⊂ K such that K ⊂

⋃
a∈A aUa. Put U′ :=

⋂
a∈A Ua

and U := U′ ∩ (U′)−1, and note that U = U−1 ∈ U . Now let x, y ∈ G be such
that x−1y ∈ U (or y−1x = (x−1y)−1 ∈ U). Suppose f (x) > 0. Then x ∈ K, thus
there is an a ∈ A such that x ∈ aUa and hence y = x(x−1y) ∈ aUaU. It follows that
x, y ∈ Va ⊂ W, and f (x) ≤ f (a) + ε/2 ≤ f (y) + ε = f (y) + ε%(y). �

The proof of Theorem 1 examines certain functions I : C+
c (G) → [0,∞). Such

a functional will be called

• left-invariant if I( f ◦ La) = I( f ) for all f ∈ C+
c (G) and a ∈ G;

• homogeneous if I(λ f ) = λI( f ) for all f ∈ C+
c (G) and λ ≥ 0;

• subadditive if I( f + f ′) ≤ I( f ) + I( f ′) for all f , f ′ ∈ C+
c (G); and

• monotonic if I( f ) ≤ I(g) whenever f , g ∈ C+
c (G) and f ≤ g.

We denote by F the set of all functions I : C+
c (G) → [0,∞) satisfying these four

properties, and by L the set of all functions I : C+
c (G) → [0,∞) that are left-

invariant, homogeneous, and additive. Note that L ⊂ F , for if I ∈ L and f ≤ g,
then I( f ) ≤ I( f ) + I(g − f ) = I(g). The restriction of any left-invariant, positive
linear functional on Cc(G) to C+

c (G) belongs to L . Conversely, given I ∈ L , the
extension to Cc(G) obtained by putting I( f ) := I( f +)− I( f −) for f ∈ Cc(G)\C+

c (G)
is a left-invariant, positive linear functional.

For a neighborhood U ∈ U , we put

P(U) :=
{
g ∈ C+

c (G) : g . 0, spt(g) ⊂ U
}
,

and we denote by P∗(U) the subset of all g ∈P(U) such that g(x−1) = g(x) for all
x ∈ G. Note that P(U) is non-empty by Urysohn’s Lemma, and if U = U−1 ∈ U
and g ∈P(U), then x 7→ max{g(x), g(x−1)} is an element of P∗(U).

Now we give the proof of Theorem 1, which is divided into five parts.

Part I. Let g ∈P(G). For every f ∈ C+
c (G), we denote by Ig( f ) the infimum of all

s ≥ 0 for which there exist a finite set A ⊂ G and constants ca ≥ 0, for a ∈ A, such
that

f ≤
∑
a∈A

cag ◦ L−1
a and

∑
a∈A

ca ≤ s. (1)

Due to the compactness of spt( f ), the set of all such s is non-empty, so that Ig( f )
is finite. For instance, if V is the non-empty open set where g > ‖g‖∞/2, then there
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is a finite set A ⊂ G such that spt( f ) ⊂
⋃

a∈A aV and hence f ≤
∑

a∈A cg ◦ L−1
a for

c := 2‖ f ‖∞/‖g‖∞. Thus we have a function Ig : C+
c (G) → [0,∞), and it follows

directly from the definition that Ig ∈ F . Furthermore, for any J ∈ F ,

J( f ) ≤ Ig( f )J(g) for all f ∈ C+
c (G), (2)

as is easily seen by applying J to the first inequality in (1). For J = ‖ ·‖∞, (2) shows
that Ig( f ) > 0 whenever f ∈ P(G). It also follows that if J( f ) > 0 for some
f ∈ C+

c (G), then J(g) > 0 for all g ∈ P(G). This proves in particular the last
assertion of the theorem.

We note further that for every f ∈ C+
c (G) and every constant r > 1 there exist

f̄ ∈ C+
c (G) and U ∈ U such that f̄ > f on spt( f ), f (x) ≤ f̄ (y) whenever x, y ∈ G

and x−1y ∈ U or y−1x ∈ U, and

J( f̄ ) ≤ rJ( f ) for all J ∈ F . (3)

Suppose that f . 0, and choose % as in Lemma 2. Then let ε > 0 be such that
1 +εI f (%) ≤ r, and put f̄ := f +ε%. Now the result follows from the lemma and the
fact that J( f̄ ) ≤ J( f )+εJ(%) ≤ (1+εI f (%))J( f ) by (2). Note also that if f ∈P∗(G),
then by choosing % ∈P∗(G) one can arrange that f̄ ∈P∗(G).

Part II. Next we show that for every finite collection of functions f1, . . . , fn ∈
C+

c (G) and every r > 1 there is a neighborhood V ∈ U such that

Ig( f1) + · · · + Ig( fn) ≤ rIg( f1 + · · · + fn) for all g ∈P(V). (4)

Put f := f1 + · · · + fn. By (3) there is an f̄ ∈ C+
c (G) such that f̄ > f on spt( f )

and J( f̄ ) ≤ r1/2J( f ) for all J ∈ F . Then there exist functions %1, . . . , %n ∈ C+
c (G)

so that fi = %i f̄ and spt(%i) = spt( fi). Let ε > 0 be such that 1 + nε ≤ r1/2. By
Lemma 2 there exists V ∈ U such that %i(y) ≤ %i(a) + ε whenever a−1y ∈ V , for
i = 1, . . . , n. Now let g ∈ P(V), and let s, A, ca be such that the inequalities (1)
hold with f̄ in place of f . Then (g ◦ L−1

a )(y) > 0 implies that %i(y) ≤ %i(a) + ε, so

fi = %i f̄ ≤
∑
a∈A

ca%ig ◦ L−1
a ≤

∑
a∈A

ca(%i(a) + ε)g ◦ L−1
a

and therefore Ig( fi) ≤
∑

a ca(%i(a) + ε). Since
∑

i %i f̄ = f ≤ f̄ , we have
∑

i %i ≤ 1,
thus it follows that

n∑
i=1

Ig( fi) ≤ (1 + nε)
∑
a∈A

ca ≤ r1/2s.

Taking the infimum over all such s we conclude that
∑

i Ig( fi) ≤ r1/2Ig( f̄ ). Since
Ig( f̄ ) ≤ r1/2Ig( f ), this yields (4).

Part III. Next we establish a counterpart to (2): Given f ∈ C+
c (G) and r > 1, there

exists U ∈ U such that for every g ∈P∗(U) there exists W ∈ U such that

Ig( f )J(g) ≤ rJ( f ) for all J ∈ L ∪ {Ih : h ∈P(W)}. (5)
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By (3) there exist f̄ ∈ C+
c (G) and U ∈ U such that f (x) ≤ f̄ (y) whenever x−1y ∈ U,

and J( f̄ ) ≤ r1/3J( f ) whenever J ∈ F . Let now g ∈ P∗(U), as in the assertion.
Then, again by (3), there exist ḡ ∈P∗(G) and V ∈ U such that g(x−1y) ≤ ḡ(x−1a)
for (x−1a)−1(x−1y) = a−1y ∈ V , and J(ḡ) ≤ r1/3J(g) for J ∈ F . Since spt( f̄ ) is
compact, there exists a finite set A ⊂ G such that the collection of open sets aV with
a ∈ A covers spt( f̄ ). Then f̄ can be decomposed by means of a partition of unity
subordinate to this covering (cf. [5, 2.13]), thus f̄ =

∑
a∈A f̄a for some functions

f̄a ∈ C+
c (G) with spt( f̄a) ⊂ aV . Now, for all x, y ∈ G,

f (x)g(x−1y) ≤
∑
a∈A

f̄a(y)g(x−1y) ≤
∑
a∈A

f̄a(y)ḡ(a−1x); (6)

the first inequality holds since g(x−1y) > 0 implies that f (x) ≤ f̄ (y) =
∑

a f̄a(y),
the second since f̄a(y) > 0 implies that g(x−1y) ≤ ḡ(x−1a) = ḡ(a−1x). By Part II
there exists W ∈ U such that

∑
a Ih( f̄a) ≤ r1/3Ih( f̄ ) for all h ∈ P(W). Let now

J ∈ L ∪ {Ih : h ∈P(W)}. Fix x for the moment and apply J to the functions of y
on the left and right of (6). This yields

f (x)J(g) ≤
∑
a∈A

J( f̄a)ḡ(a−1x). (7)

Then, applying Ig to the functions of x on either side of (7), and noting that Ig(ḡ) ≤
r1/3Ig(g) ≤ r1/3, we obtain Ig( f )J(g) ≤ r1/3 ∑

a J( f̄a). This sum is equal to J( f̄ ) if
J is additive and less than or equal to r1/3J( f̄ ) if J = Ih with h ∈ P(W). Since
J( f̄ ) ≤ r1/3J( f ), this gives the result.

Part IV. Now we fix once and for all a reference function φ ∈P(G). Normalizing
the functionals Ig, we note that, by (2),

Λg :=
1

Ig(φ)
Ig ≤ Iφ for all g ∈P(G). (8)

Let f ∈ C+
c (G) and r > 1. By (2) and Part III, there exists a neighborhood Ur( f ) ∈

U such that for each g ∈P∗(Ur( f )) there exists W ∈ U such that the inequalities
J( f ) ≤ Ig( f )J(g) ≤ rJ( f ) and J(φ) ≤ Ig(φ)J(g) ≤ rJ(φ) hold simultaneously for
all J ∈ L ∪ {Ih : h ∈P(W)}. Then it follows that

r−1Λg( f ) ≤
J( f )
J(φ)

≤ rΛg( f ) for all J ∈ L ∪ {Ih : h ∈P(W)}. (9)

From (8) and (9) we conclude that for any two left Haar integrals Λ,Λ′ on G the
quotients Λ( f )/Λ(φ) and Λ′( f )/Λ′(φ) agree. Thus Λ and Λ′ are constant multiples
of each other on C+

c (G) and hence also on Cc(G). This proves the uniqueness
assertion of Theorem 1.

Part V. Finally, we construct a left Haar integral on G. Let again f ∈ C+
c (G)

and r > 1. Denote by Gr( f ) the set of all g ∈ P(G) for which there exists a
neighborhood W ∈ U such that

Λg( f ) ≤ rΛh( f ) for all h ∈P(W). (10)
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From the first inequality in (9) we know that Gr( f ) contains P∗(Ur( f )). Clearly
Gr( f ◦ La) = Gr( f ) = Gr(λ f ) for all a ∈ G and λ > 0. Now put

Λ̄r( f ) := sup{Λg( f ) : g ∈ Gr( f )},

and note that this is finite by (8). The functional Λ̄r : C+
c (G) → [0,∞) is left-

invariant and homogeneous. We claim that if f , f ′ ∈ C+
c (G), then

r−1Λ̄r( f + f ′) ≤ Λ̄r( f ) + Λ̄r( f ′) ≤ r2Λ̄r( f + f ′). (11)

For every g ∈ Gr( f + f ′) there exists W ∈ U such that if h ∈P(W)∩Gr( f )∩Gr( f ′),
then r−1Λg( f + f ′) ≤ Λh( f + f ′) ≤ Λh( f ) + Λh( f ′) ≤ Λ̄r( f ) + Λ̄r( f ′). Hence
the first inequality holds. Conversely, given g ∈ Gr( f ) and g′ ∈ Gr( f ′), by the
definition of Gr( f ) and Gr( f ′) and by Part II there exists W ∈ U such that if
h ∈P(W)∩Gr( f + f ′), then Λg( f )+Λg′( f ′) ≤ r(Λh( f )+Λh( f ′)) ≤ r2Λh( f + f ′) ≤
r2Λ̄r( f + f ′). This yields the second inequality in (11).

Finally, if 1 < r′ < r, then clearly Gr′( f ) ⊂ Gr( f ) and hence Λ̄r′( f ) ≤ Λ̄r( f ).
Thus the limit

Λ( f ) := lim
r→1+

Λ̄r( f )

exists. The resulting functional Λ : C+
c (G) → [0,∞) is left-invariant and homoge-

neous. By virtue of (11), it is also additive, thus Λ belongs to L and extends to a
left-invariant, positive linear functional on Cc(G). This functional is non-trivial, in
fact Λ(φ) = 1, as Λg(φ) = 1 for all g ∈P(G).
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