Existence and uniqueness of Haar integrals

Urs Lang*

January 14, 2015

Abstract

This is an expository note providing an elementary constructive proof of the existence and uniqueness of a Haar integral on every locally compact and Hausdorff topological group.

In the following, *G* denotes a locally compact and Hausdorff topological group, and $C_c(G)$ denotes the vector space of continuous functions $f: G \to \mathbb{R}$ with compact support spt $(f) := \{x \in G : f(x) \neq 0\}$. For $a \in G$, we denote by $L_a: G \to G$ the homeomorphism of *G* that maps *x* to *ax*, and whose inverse L_a^{-1} is $L_{a^{-1}}$. A linear functional $\Lambda: C_c(G) \to \mathbb{R}$ is called

- *positive* if $\Lambda(f) \ge 0$ for all $f \in C_c^+(G) := \{f \in C_c(G) : f \ge 0\}$; and
- *left-invariant* if $\Lambda(f \circ L_a) = \Lambda(f)$ for all $f \in C_c(G)$ and $a \in G$.

A *left Haar integral* Λ on *G* is a left-invariant, positive and non-trivial (that is, not identically vanishing) linear functional $\Lambda : C_c(G) \to \mathbb{R}$.

Theorem 1. There exists a left Haar integral Λ on G, unique up to multiplication by a positive constant. It satisfies $\Lambda(f) > 0$ for every $f \in C_c^+(G) \setminus \{0\}$.

The existence of an essentially unique left Haar *measure* on *G* then follows immediately from the Riesz Representation Theorem (cf. [5, 2.14] and [6, Theorem 3.15]). Theorem 1 has its origins in [3] and is due to Weil [7], whose elegant proof depended, for the existence part, on the axiom of choice. Cartan [2] then gave a constructive existence proof inspired by Weil's argument for the uniqueness. The proof given below is another modification of Weil's approach (compare also [1], [4], [6]).

We start with a basic uniform continuity result. In the sequel, \mathscr{U} denotes the collection of all open neighborhoods of the neutral element *e* in *G*.

Lemma 2. Let $f \in C_c^+(G)$. Then there exists a function $\varrho \in C_c^+(G)$ with values in [0,1] such that $\operatorname{spt}(f)$ is contained in the interior of the set $\varrho^{-1}\{1\}$, and for every such ϱ and every $\varepsilon > 0$ there exists a neighborhood $U \in \mathscr{U}$ such that $f(x) \leq f(y) + \varepsilon \varrho(y) \leq f(y) + \varepsilon$ whenever $x, y \in G$ and $x^{-1}y \in U$ or $y^{-1}x \in U$.

^{*}Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland; lang@math.ethz.ch

Proof. The existence of ϱ follows from Urysohn's Lemma (s. [5, 2.12]). Now let such a function ϱ and a constant $\varepsilon > 0$ be given. Let W denote the interior of $\varrho^{-1}\{1\}$, and put $K := \operatorname{spt}(f)$. For every $a \in K$, since f is continuous at a, there is an open neighborhood $V_a \subset W$ of a such that $|f(a) - f(b)| < \varepsilon/2$ for all $b \in V_a$. Furthermore, since the map $(x, y) \mapsto axy$ is continuous at (e, e), there exists $U_a \in \mathscr{U}$ such that $aU_aU_a \subset V_a$. The collection of open sets aU_a with $a \in K$ covers the compact set K, thus there is a finite set $A \subset K$ such that $K \subset \bigcup_{a \in A} aU_a$. Put $U' := \bigcap_{a \in A} U_a$ and $U := U' \cap (U')^{-1}$, and note that $U = U^{-1} \in \mathscr{U}$. Now let $x, y \in G$ be such that $x^{-1}y \in U$ (or $y^{-1}x = (x^{-1}y)^{-1} \in U$). Suppose f(x) > 0. Then $x \in K$, thus there is an $a \in A$ such that $x \in aU_a$ and hence $y = x(x^{-1}y) \in aU_aU$. It follows that $x, y \in V_a \subset W$, and $f(x) \le f(a) + \varepsilon/2 \le f(y) + \varepsilon = f(y) + \varepsilon \varrho(y)$.

The proof of Theorem 1 examines certain functions $I: C_c^+(G) \to [0, \infty)$. Such a functional will be called

- *left-invariant* if $I(f \circ L_a) = I(f)$ for all $f \in C_c^+(G)$ and $a \in G$;
- *homogeneous* if $I(\lambda f) = \lambda I(f)$ for all $f \in C_{c}^{+}(G)$ and $\lambda \geq 0$;
- subadditive if $I(f + f') \le I(f) + I(f')$ for all $f, f' \in C_c^+(G)$; and
- *monotonic* if $I(f) \le I(g)$ whenever $f, g \in C_c^+(G)$ and $f \le g$.

We denote by \mathscr{F} the set of all functions $I: C_c^+(G) \to [0, \infty)$ satisfying these four properties, and by \mathscr{L} the set of all functions $I: C_c^+(G) \to [0, \infty)$ that are leftinvariant, homogeneous, and additive. Note that $\mathscr{L} \subset \mathscr{F}$, for if $I \in \mathscr{L}$ and $f \leq g$, then $I(f) \leq I(f) + I(g - f) = I(g)$. The restriction of any left-invariant, positive linear functional on $C_c(G)$ to $C_c^+(G)$ belongs to \mathscr{L} . Conversely, given $I \in \mathscr{L}$, the extension to $C_c(G)$ obtained by putting $I(f) := I(f^+) - I(f^-)$ for $f \in C_c(G) \setminus C_c^+(G)$ is a left-invariant, positive linear functional.

For a neighborhood $U \in \mathcal{U}$, we put

$$\mathscr{P}(U) := \{ g \in C_{c}^{+}(G) : g \neq 0, \, \operatorname{spt}(g) \subset U \},\$$

and we denote by $\mathscr{P}_*(U)$ the subset of all $g \in \mathscr{P}(U)$ such that $g(x^{-1}) = g(x)$ for all $x \in G$. Note that $\mathscr{P}(U)$ is non-empty by Urysohn's Lemma, and if $U = U^{-1} \in \mathscr{U}$ and $g \in \mathscr{P}(U)$, then $x \mapsto \max\{g(x), g(x^{-1})\}$ is an element of $\mathscr{P}_*(U)$.

Now we give the proof of Theorem 1, which is divided into five parts.

Part I. Let $g \in \mathscr{P}(G)$. For every $f \in C_c^+(G)$, we denote by $I_g(f)$ the infimum of all $s \ge 0$ for which there exist a finite set $A \subset G$ and constants $c_a \ge 0$, for $a \in A$, such that

$$f \le \sum_{a \in A} c_a g \circ L_a^{-1}$$
 and $\sum_{a \in A} c_a \le s.$ (1)

Due to the compactness of spt(*f*), the set of all such *s* is non-empty, so that $I_g(f)$ is finite. For instance, if *V* is the non-empty open set where $g > ||g||_{\infty}/2$, then there

is a finite set $A \subset G$ such that $\operatorname{spt}(f) \subset \bigcup_{a \in A} aV$ and hence $f \leq \sum_{a \in A} cg \circ L_a^{-1}$ for $c := 2||f||_{\infty}/||g||_{\infty}$. Thus we have a function $I_g \colon C_c^+(G) \to [0, \infty)$, and it follows directly from the definition that $I_g \in \mathscr{F}$. Furthermore, for any $J \in \mathscr{F}$,

$$J(f) \le I_g(f)J(g) \quad \text{for all } f \in C_c^+(G), \tag{2}$$

as is easily seen by applying *J* to the first inequality in (1). For $J = \|\cdot\|_{\infty}$, (2) shows that $I_g(f) > 0$ whenever $f \in \mathscr{P}(G)$. It also follows that if J(f) > 0 for some $f \in C_c^+(G)$, then J(g) > 0 for all $g \in \mathscr{P}(G)$. This proves in particular the last assertion of the theorem.

We note further that for every $f \in C_c^+(G)$ and every constant r > 1 there exist $\overline{f} \in C_c^+(G)$ and $U \in \mathcal{U}$ such that $\overline{f} > f$ on $\operatorname{spt}(f)$, $f(x) \leq \overline{f}(y)$ whenever $x, y \in G$ and $x^{-1}y \in U$ or $y^{-1}x \in U$, and

$$J(\bar{f}) \le r J(f) \quad \text{for all } J \in \mathscr{F}.$$
(3)

Suppose that $f \neq 0$, and choose ρ as in Lemma 2. Then let $\varepsilon > 0$ be such that $1 + \varepsilon I_f(\rho) \leq r$, and put $\overline{f} := f + \varepsilon \rho$. Now the result follows from the lemma and the fact that $J(\overline{f}) \leq J(f) + \varepsilon J(\rho) \leq (1 + \varepsilon I_f(\rho))J(f)$ by (2). Note also that if $f \in \mathscr{P}_*(G)$, then by choosing $\rho \in \mathscr{P}_*(G)$ one can arrange that $\overline{f} \in \mathscr{P}_*(G)$.

Part II. Next we show that for every finite collection of functions $f_1, \ldots, f_n \in C_c^+(G)$ and every r > 1 there is a neighborhood $V \in \mathcal{U}$ such that

$$I_g(f_1) + \dots + I_g(f_n) \le rI_g(f_1 + \dots + f_n) \quad \text{for all } g \in \mathscr{P}(V).$$
(4)

Put $f := f_1 + \cdots + f_n$. By (3) there is an $\overline{f} \in C_c^+(G)$ such that $\overline{f} > f$ on spt(f)and $J(\overline{f}) \le r^{1/2}J(f)$ for all $J \in \mathscr{F}$. Then there exist functions $\varrho_1, \ldots, \varrho_n \in C_c^+(G)$ so that $f_i = \varrho_i \overline{f}$ and spt $(\varrho_i) =$ spt (f_i) . Let $\varepsilon > 0$ be such that $1 + n\varepsilon \le r^{1/2}$. By Lemma 2 there exists $V \in \mathscr{U}$ such that $\varrho_i(y) \le \varrho_i(a) + \varepsilon$ whenever $a^{-1}y \in V$, for $i = 1, \ldots, n$. Now let $g \in \mathscr{P}(V)$, and let s, A, c_a be such that the inequalities (1) hold with \overline{f} in place of f. Then $(g \circ L_a^{-1})(y) > 0$ implies that $\varrho_i(y) \le \varrho_i(a) + \varepsilon$, so

$$f_i = \varrho_i \bar{f} \le \sum_{a \in A} c_a \varrho_i g \circ L_a^{-1} \le \sum_{a \in A} c_a (\varrho_i(a) + \varepsilon) g \circ L_a^{-1}$$

and therefore $I_g(f_i) \leq \sum_a c_a(\varrho_i(a) + \varepsilon)$. Since $\sum_i \varrho_i \bar{f} = f \leq \bar{f}$, we have $\sum_i \varrho_i \leq 1$, thus it follows that

$$\sum_{i=1}^{n} I_g(f_i) \le (1+n\varepsilon) \sum_{a \in A} c_a \le r^{1/2} s.$$

Taking the infimum over all such *s* we conclude that $\sum_i I_g(f_i) \leq r^{1/2} I_g(\bar{f})$. Since $I_g(\bar{f}) \leq r^{1/2} I_g(f)$, this yields (4).

Part III. Next we establish a counterpart to (2): Given $f \in C_c^+(G)$ and r > 1, there exists $U \in \mathcal{U}$ such that for every $g \in \mathscr{P}_*(U)$ there exists $W \in \mathcal{U}$ such that

$$I_g(f)J(g) \le rJ(f) \quad \text{for all } J \in \mathscr{L} \cup \{I_h : h \in \mathscr{P}(W)\}.$$
(5)

By (3) there exist $\overline{f} \in C_c^+(G)$ and $U \in \mathscr{U}$ such that $f(x) \leq \overline{f}(y)$ whenever $x^{-1}y \in U$, and $J(\overline{f}) \leq r^{1/3}J(f)$ whenever $J \in \mathscr{F}$. Let now $g \in \mathscr{P}_*(U)$, as in the assertion. Then, again by (3), there exist $\overline{g} \in \mathscr{P}_*(G)$ and $V \in \mathscr{U}$ such that $g(x^{-1}y) \leq \overline{g}(x^{-1}a)$ for $(x^{-1}a)^{-1}(x^{-1}y) = a^{-1}y \in V$, and $J(\overline{g}) \leq r^{1/3}J(g)$ for $J \in \mathscr{F}$. Since spt (\overline{f}) is compact, there exists a finite set $A \subset G$ such that the collection of open sets aV with $a \in A$ covers spt (\overline{f}) . Then \overline{f} can be decomposed by means of a partition of unity subordinate to this covering (cf. [5, 2.13]), thus $\overline{f} = \sum_{a \in A} \overline{f_a}$ for some functions $\overline{f_a} \in C_c^+(G)$ with spt $(\overline{f_a}) \subset aV$. Now, for all $x, y \in G$,

$$f(x)g(x^{-1}y) \le \sum_{a \in A} \bar{f}_a(y)g(x^{-1}y) \le \sum_{a \in A} \bar{f}_a(y)\bar{g}(a^{-1}x);$$
(6)

the first inequality holds since $g(x^{-1}y) > 0$ implies that $f(x) \le \overline{f}(y) = \sum_a \overline{f}_a(y)$, the second since $\overline{f}_a(y) > 0$ implies that $g(x^{-1}y) \le \overline{g}(x^{-1}a) = \overline{g}(a^{-1}x)$. By Part II there exists $W \in \mathcal{U}$ such that $\sum_a I_h(\overline{f}_a) \le r^{1/3}I_h(\overline{f})$ for all $h \in \mathcal{P}(W)$. Let now $J \in \mathcal{L} \cup \{I_h : h \in \mathcal{P}(W)\}$. Fix *x* for the moment and apply *J* to the functions of *y* on the left and right of (6). This yields

$$f(x)J(g) \le \sum_{a \in A} J(\bar{f}_a)\bar{g}(a^{-1}x).$$

$$\tag{7}$$

Then, applying I_g to the functions of x on either side of (7), and noting that $I_g(\bar{g}) \leq r^{1/3}I_g(g) \leq r^{1/3}$, we obtain $I_g(f)J(g) \leq r^{1/3}\sum_a J(\bar{f}_a)$. This sum is equal to $J(\bar{f})$ if J is additive and less than or equal to $r^{1/3}J(\bar{f})$ if $J = I_h$ with $h \in \mathscr{P}(W)$. Since $J(\bar{f}) \leq r^{1/3}J(f)$, this gives the result.

Part IV. Now we fix once and for all a reference function $\phi \in \mathscr{P}(G)$. Normalizing the functionals I_g , we note that, by (2),

$$\Lambda_g := \frac{1}{I_g(\phi)} I_g \le I_\phi \quad \text{for all } g \in \mathscr{P}(G).$$
(8)

Let $f \in C_c^+(G)$ and r > 1. By (2) and Part III, there exists a neighborhood $U_r(f) \in \mathcal{U}$ such that for each $g \in \mathscr{P}_*(U_r(f))$ there exists $W \in \mathcal{U}$ such that the inequalities $J(f) \leq I_g(f)J(g) \leq rJ(f)$ and $J(\phi) \leq I_g(\phi)J(g) \leq rJ(\phi)$ hold simultaneously for all $J \in \mathscr{L} \cup \{I_h : h \in \mathscr{P}(W)\}$. Then it follows that

$$r^{-1}\Lambda_g(f) \le \frac{J(f)}{J(\phi)} \le r\Lambda_g(f) \quad \text{for all } J \in \mathscr{L} \cup \{I_h : h \in \mathscr{P}(W)\}.$$
(9)

From (8) and (9) we conclude that for any two left Haar integrals Λ, Λ' on *G* the quotients $\Lambda(f)/\Lambda(\phi)$ and $\Lambda'(f)/\Lambda'(\phi)$ agree. Thus Λ and Λ' are constant multiples of each other on $C_c^+(G)$ and hence also on $C_c(G)$. This proves the uniqueness assertion of Theorem 1.

Part V. Finally, we construct a left Haar integral on G. Let again $f \in C_c^+(G)$ and r > 1. Denote by $\mathscr{G}_r(f)$ the set of all $g \in \mathscr{P}(G)$ for which there exists a neighborhood $W \in \mathscr{U}$ such that

$$\Lambda_g(f) \le r\Lambda_h(f) \quad \text{for all } h \in \mathscr{P}(W). \tag{10}$$

From the first inequality in (9) we know that $\mathscr{G}_r(f)$ contains $\mathscr{P}_*(U_r(f))$. Clearly $\mathscr{G}_r(f \circ L_a) = \mathscr{G}_r(f) = \mathscr{G}_r(\lambda f)$ for all $a \in G$ and $\lambda > 0$. Now put

$$\overline{\Lambda}_r(f) := \sup\{\Lambda_g(f) : g \in \mathscr{G}_r(f)\},\$$

and note that this is finite by (8). The functional $\bar{\Lambda}_r: C_c^+(G) \to [0, \infty)$ is left-invariant and homogeneous. We claim that if $f, f' \in C_c^+(G)$, then

$$r^{-1}\bar{\Lambda}_r(f+f') \le \bar{\Lambda}_r(f) + \bar{\Lambda}_r(f') \le r^2\bar{\Lambda}_r(f+f').$$
(11)

For every $g \in \mathscr{G}_r(f+f')$ there exists $W \in \mathscr{U}$ such that if $h \in \mathscr{P}(W) \cap \mathscr{G}_r(f) \cap \mathscr{G}_r(f')$, then $r^{-1}\Lambda_g(f+f') \leq \Lambda_h(f+f') \leq \Lambda_h(f) + \Lambda_h(f') \leq \bar{\Lambda}_r(f) + \bar{\Lambda}_r(f')$. Hence the first inequality holds. Conversely, given $g \in \mathscr{G}_r(f)$ and $g' \in \mathscr{G}_r(f')$, by the definition of $\mathscr{G}_r(f)$ and $\mathscr{G}_r(f')$ and by Part II there exists $W \in \mathscr{U}$ such that if $h \in \mathscr{P}(W) \cap \mathscr{G}_r(f+f')$, then $\Lambda_g(f) + \Lambda_{g'}(f') \leq r(\Lambda_h(f) + \Lambda_h(f')) \leq r^2 \Lambda_h(f+f') \leq r^2 \bar{\Lambda}_r(f+f')$. This yields the second inequality in (11).

Finally, if 1 < r' < r, then clearly $\mathscr{G}_{r'}(f) \subset \mathscr{G}_{r}(f)$ and hence $\overline{\Lambda}_{r'}(f) \leq \overline{\Lambda}_{r}(f)$. Thus the limit

$$\Lambda(f) := \lim_{r \to 1^+} \bar{\Lambda}_r(f)$$

exists. The resulting functional $\Lambda: C_c^+(G) \to [0, \infty)$ is left-invariant and homogeneous. By virtue of (11), it is also additive, thus Λ belongs to \mathscr{L} and extends to a left-invariant, positive linear functional on $C_c(G)$. This functional is non-trivial, in fact $\Lambda(\phi) = 1$, as $\Lambda_g(\phi) = 1$ for all $g \in \mathscr{P}(G)$.

References

- [1] E. M. Alfsen, A simplified constructive proof of the existence and uniqueness of Haar measure, Math. Scandinavica 12 (1963), 106–116.
- [2] H. Cartan, Sur la mesure de Haar, C. R. Acad. Sci. Paris 211 (1940), 759–762
 [Reprinted in: Œuvres, Vol. III, 1020–1022, Springer, Berlin 1979].
- [3] A. Haar, Der Massbegriff in der Theorie der kontinuierlichen Gruppen, Ann. Math. 34 (1933), 147–169.
- [4] G. K. Pedersen, The existence and uniqueness of the Haar integral on a locally compact topological group, Univ. of Copenhagen, 2000.
 www.math.ku.dk/kurser/2004-2/mat3re/haarintegral.pdf
- [5] W. Rudin, Real and complex analysis, third edition, McGraw-Hill, New York, 1987.
- [6] D. Salamon, Measure and integration, ETH Zurich, 2014. www.math.ethz.ch/~salamon/PREPRINTS/measure.pdf
- [7] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann & Cie, Paris, 1940.