Existence and uniqueness of Haar integrals

Urs Lang*

January 14, 2015

Abstract

This is an expository note providing an elementary constructive proof of the existence and uniqueness of a Haar integral on every locally compact and Hausdorff topological group.

In the following, G denotes a locally compact and Hausdorff topological group, and $C_{\mathrm{c}}(G)$ denotes the vector space of continuous functions $f: G \rightarrow \mathbb{R}$ with compact support $\operatorname{spt}(f):=\overline{\{x \in G: f(x) \neq 0\}}$. For $a \in G$, we denote by $L_{a}: G \rightarrow G$ the homeomorphism of G that maps x to $a x$, and whose inverse L_{a}^{-1} is $L_{a^{-1}}$. A linear functional $\Lambda: C_{\mathrm{c}}(G) \rightarrow \mathbb{R}$ is called

- positive if $\Lambda(f) \geq 0$ for all $f \in C_{\mathrm{c}}^{+}(G):=\left\{f \in C_{\mathrm{c}}(G): f \geq 0\right\}$; and
- left-invariant if $\Lambda\left(f \circ L_{a}\right)=\Lambda(f)$ for all $f \in C_{\mathrm{c}}(G)$ and $a \in G$.

A left Haar integral Λ on G is a left-invariant, positive and non-trivial (that is, not identically vanishing) linear functional $\Lambda: C_{\mathrm{c}}(G) \rightarrow \mathbb{R}$.

Theorem 1. There exists a left Haar integral Λ on G, unique up to multiplication by a positive constant. It satisfies $\Lambda(f)>0$ for every $f \in C_{\mathrm{c}}^{+}(G) \backslash\{0\}$.

The existence of an essentially unique left Haar measure on G then follows immediately from the Riesz Representation Theorem (cf. [5, 2.14] and [6, Theorem 3.15]). Theorem 1 has its origins in [3] and is due to Weil [7], whose elegant proof depended, for the existence part, on the axiom of choice. Cartan [2] then gave a constructive existence proof inspired by Weil's argument for the uniqueness. The proof given below is another modification of Weil's approach (compare also [1], [4], [6]).

We start with a basic uniform continuity result. In the sequel, \mathscr{U} denotes the collection of all open neighborhoods of the neutral element e in G.

Lemma 2. Let $f \in C_{\mathrm{c}}^{+}(G)$. Then there exists a function $\varrho \in C_{\mathrm{c}}^{+}(G)$ with values in $[0,1]$ such that $\operatorname{spt}(f)$ is contained in the interior of the set $\varrho^{-1}\{1\}$, and for every such ϱ and every $\varepsilon>0$ there exists a neighborhood $U \in \mathscr{U}$ such that $f(x) \leq$ $f(y)+\varepsilon \varrho(y) \leq f(y)+\varepsilon$ whenever $x, y \in G$ and $x^{-1} y \in U$ or $y^{-1} x \in U$.

[^0]Proof. The existence of ϱ follows from Urysohn's Lemma (s. [5, 2.12]). Now let such a function ϱ and a constant $\varepsilon>0$ be given. Let W denote the interior of $\varrho^{-1}\{1\}$, and put $K:=\operatorname{spt}(f)$. For every $a \in K$, since f is continuous at a, there is an open neighborhood $V_{a} \subset W$ of a such that $|f(a)-f(b)|<\varepsilon / 2$ for all $b \in V_{a}$. Furthermore, since the map $(x, y) \mapsto a x y$ is continuous at (e, e), there exists $U_{a} \in \mathscr{U}$ such that $a U_{a} U_{a} \subset V_{a}$. The collection of open sets $a U_{a}$ with $a \in K$ covers the compact set K, thus there is a finite set $A \subset K$ such that $K \subset \bigcup_{a \in A} a U_{a}$. Put $U^{\prime}:=\bigcap_{a \in A} U_{a}$ and $U:=U^{\prime} \cap\left(U^{\prime}\right)^{-1}$, and note that $U=U^{-1} \in \mathscr{U}$. Now let $x, y \in G$ be such that $x^{-1} y \in U$ (or $y^{-1} x=\left(x^{-1} y\right)^{-1} \in U$). Suppose $f(x)>0$. Then $x \in K$, thus there is an $a \in A$ such that $x \in a U_{a}$ and hence $y=x\left(x^{-1} y\right) \in a U_{a} U$. It follows that $x, y \in V_{a} \subset W$, and $f(x) \leq f(a)+\varepsilon / 2 \leq f(y)+\varepsilon=f(y)+\varepsilon \varrho(y)$.

The proof of Theorem 1 examines certain functions $I: C_{c}^{+}(G) \rightarrow[0, \infty)$. Such a functional will be called

- left-invariant if $I\left(f \circ L_{a}\right)=I(f)$ for all $f \in C_{\mathrm{c}}^{+}(G)$ and $a \in G$;
- homogeneous if $I(\lambda f)=\lambda I(f)$ for all $f \in C_{\mathrm{c}}^{+}(G)$ and $\lambda \geq 0$;
- subadditive if $I\left(f+f^{\prime}\right) \leq I(f)+I\left(f^{\prime}\right)$ for all $f, f^{\prime} \in C_{\mathrm{c}}^{+}(G)$; and
- monotonic if $I(f) \leq I(g)$ whenever $f, g \in C_{\mathrm{c}}^{+}(G)$ and $f \leq g$.

We denote by \mathscr{F} the set of all functions $I: C_{\mathrm{c}}^{+}(G) \rightarrow[0, \infty)$ satisfying these four properties, and by \mathscr{L} the set of all functions $I: C_{\mathrm{c}}^{+}(G) \rightarrow[0, \infty)$ that are leftinvariant, homogeneous, and additive. Note that $\mathscr{L} \subset \mathscr{F}$, for if $I \in \mathscr{L}$ and $f \leq g$, then $I(f) \leq I(f)+I(g-f)=I(g)$. The restriction of any left-invariant, positive linear functional on $C_{c}(G)$ to $C_{\mathrm{c}}^{+}(G)$ belongs to \mathscr{L}. Conversely, given $I \in \mathscr{L}$, the extension to $C_{c}(G)$ obtained by putting $I(f):=I\left(f^{+}\right)-I\left(f^{-}\right)$for $f \in C_{c}(G) \backslash C_{\mathrm{c}}^{+}(G)$ is a left-invariant, positive linear functional.

For a neighborhood $U \in \mathscr{U}$, we put

$$
\mathscr{P}(U):=\left\{g \in C_{\mathrm{c}}^{+}(G): g \not \equiv 0, \operatorname{spt}(g) \subset U\right\},
$$

and we denote by $\mathscr{P}_{*}(U)$ the subset of all $g \in \mathscr{P}(U)$ such that $g\left(x^{-1}\right)=g(x)$ for all $x \in G$. Note that $\mathscr{P}(U)$ is non-empty by Urysohn's Lemma, and if $U=U^{-1} \in \mathscr{U}$ and $g \in \mathscr{P}(U)$, then $x \mapsto \max \left\{g(x), g\left(x^{-1}\right)\right\}$ is an element of $\mathscr{P}_{*}(U)$.

Now we give the proof of Theorem 1, which is divided into five parts.
Part I. Let $g \in \mathscr{P}(G)$. For every $f \in C_{\mathrm{c}}^{+}(G)$, we denote by $I_{g}(f)$ the infimum of all $s \geq 0$ for which there exist a finite set $A \subset G$ and constants $c_{a} \geq 0$, for $a \in A$, such that

$$
\begin{equation*}
f \leq \sum_{a \in A} c_{a} g \circ L_{a}^{-1} \quad \text { and } \quad \sum_{a \in A} c_{a} \leq s \tag{1}
\end{equation*}
$$

Due to the compactness of $\operatorname{spt}(f)$, the set of all such s is non-empty, so that $I_{g}(f)$ is finite. For instance, if V is the non-empty open set where $g>\|g\|_{\infty} / 2$, then there
is a finite set $A \subset G$ such that $\operatorname{spt}(f) \subset \bigcup_{a \in A} a V$ and hence $f \leq \sum_{a \in A} c g \circ L_{a}^{-1}$ for $c:=2\|f\|_{\infty} /\|g\|_{\infty}$. Thus we have a function $I_{g}: C_{\mathrm{c}}^{+}(G) \rightarrow[0, \infty)$, and it follows directly from the definition that $I_{g} \in \mathscr{F}$. Furthermore, for any $J \in \mathscr{F}$,

$$
\begin{equation*}
J(f) \leq I_{g}(f) J(g) \quad \text { for all } f \in C_{\mathrm{c}}^{+}(G), \tag{2}
\end{equation*}
$$

as is easily seen by applying J to the first inequality in (1). For $J=\|\cdot\|_{\infty}$, (2) shows that $I_{g}(f)>0$ whenever $f \in \mathscr{P}(G)$. It also follows that if $J(f)>0$ for some $f \in C_{\mathrm{c}}^{+}(G)$, then $J(g)>0$ for all $g \in \mathscr{P}(G)$. This proves in particular the last assertion of the theorem.

We note further that for every $f \in C_{\mathrm{c}}^{+}(G)$ and every constant $r>1$ there exist $\bar{f} \in C_{\mathrm{c}}^{+}(G)$ and $U \in \mathscr{U}$ such that $\bar{f}>f$ on $\operatorname{spt}(f), f(x) \leq \bar{f}(y)$ whenever $x, y \in G$ and $x^{-1} y \in U$ or $y^{-1} x \in U$, and

$$
\begin{equation*}
J(\bar{f}) \leq r J(f) \quad \text { for all } J \in \mathscr{F} . \tag{3}
\end{equation*}
$$

Suppose that $f \not \equiv 0$, and choose ϱ as in Lemma 2. Then let $\varepsilon>0$ be such that $1+\varepsilon I_{f}(\varrho) \leq r$, and put $\bar{f}:=f+\varepsilon \varrho$. Now the result follows from the lemma and the fact that $J(\bar{f}) \leq J(f)+\varepsilon J(\varrho) \leq\left(1+\varepsilon I_{f}(\varrho)\right) J(f)$ by (2). Note also that if $f \in \mathscr{P}_{*}(G)$, then by choosing $\varrho \in \mathscr{P}_{*}(G)$ one can arrange that $\bar{f} \in \mathscr{P}_{*}(G)$.

Part II. Next we show that for every finite collection of functions $f_{1}, \ldots, f_{n} \in$ $C_{\mathrm{c}}^{+}(G)$ and every $r>1$ there is a neighborhood $V \in \mathscr{U}$ such that

$$
\begin{equation*}
I_{g}\left(f_{1}\right)+\cdots+I_{g}\left(f_{n}\right) \leq r I_{g}\left(f_{1}+\cdots+f_{n}\right) \quad \text { for all } g \in \mathscr{P}(V) \tag{4}
\end{equation*}
$$

Put $f:=f_{1}+\cdots+f_{n}$. By (3) there is an $\bar{f} \in C_{c}^{+}(G)$ such that $\bar{f}>f$ on $\operatorname{spt}(f)$ and $J(\bar{f}) \leq r^{1 / 2} J(f)$ for all $J \in \mathscr{F}$. Then there exist functions $\varrho_{1}, \ldots, \varrho_{n} \in C_{\mathrm{c}}^{+}(G)$ so that $f_{i}=\varrho_{i} \bar{f}$ and $\operatorname{spt}\left(\varrho_{i}\right)=\operatorname{spt}\left(f_{i}\right)$. Let $\varepsilon>0$ be such that $1+n \varepsilon \leq r^{1 / 2}$. By Lemma 2 there exists $V \in \mathscr{U}$ such that $\varrho_{i}(y) \leq \varrho_{i}(a)+\varepsilon$ whenever $a^{-1} y \in V$, for $i=1, \ldots, n$. Now let $g \in \mathscr{P}(V)$, and let s, A, c_{a} be such that the inequalities (1) hold with \bar{f} in place of f. Then $\left(g \circ L_{a}^{-1}\right)(y)>0$ implies that $\varrho_{i}(y) \leq \varrho_{i}(a)+\varepsilon$, so

$$
f_{i}=\varrho_{i} \bar{f} \leq \sum_{a \in A} c_{a} \varrho_{i} g \circ L_{a}^{-1} \leq \sum_{a \in A} c_{a}\left(\varrho_{i}(a)+\varepsilon\right) g \circ L_{a}^{-1}
$$

and therefore $I_{g}\left(f_{i}\right) \leq \sum_{a} c_{a}\left(\varrho_{i}(a)+\varepsilon\right)$. Since $\sum_{i} \varrho_{i} \bar{f}=f \leq \bar{f}$, we have $\sum_{i} \varrho_{i} \leq 1$, thus it follows that

$$
\sum_{i=1}^{n} I_{g}\left(f_{i}\right) \leq(1+n \varepsilon) \sum_{a \in A} c_{a} \leq r^{1 / 2} s
$$

Taking the infimum over all such s we conclude that $\sum_{i} I_{g}\left(f_{i}\right) \leq r^{1 / 2} I_{g}(\bar{f})$. Since $I_{g}(\bar{f}) \leq r^{1 / 2} I_{g}(f)$, this yields (4).

Part III. Next we establish a counterpart to (2): Given $f \in C_{\mathrm{c}}^{+}(G)$ and $r>1$, there exists $U \in \mathscr{U}$ such that for every $g \in \mathscr{P}_{*}(U)$ there exists $W \in \mathscr{U}$ such that

$$
\begin{equation*}
I_{g}(f) J(g) \leq r J(f) \quad \text { for all } J \in \mathscr{L} \cup\left\{I_{h}: h \in \mathscr{P}(W)\right\} . \tag{5}
\end{equation*}
$$

By (3) there exist $\bar{f} \in C_{c}^{+}(G)$ and $U \in \mathscr{U}$ such that $f(x) \leq \bar{f}(y)$ whenever $x^{-1} y \in U$, and $J(\bar{f}) \leq r^{1 / 3} J(f)$ whenever $J \in \mathscr{F}$. Let now $g \in \mathscr{P}_{*}(U)$, as in the assertion. Then, again by (3), there exist $\bar{g} \in \mathscr{P}_{*}(G)$ and $V \in \mathscr{U}$ such that $g\left(x^{-1} y\right) \leq \bar{g}\left(x^{-1} a\right)$ for $\left(x^{-1} a\right)^{-1}\left(x^{-1} y\right)=a^{-1} y \in V$, and $J(\bar{g}) \leq r^{1 / 3} J(g)$ for $J \in \mathscr{F}$. Since $\operatorname{spt}(\bar{f})$ is compact, there exists a finite set $A \subset G$ such that the collection of open sets $a V$ with $a \in A$ covers $\operatorname{spt}(\bar{f})$. Then \bar{f} can be decomposed by means of a partition of unity subordinate to this covering (cf. [5, 2.13]), thus $\bar{f}=\sum_{a \in A} \bar{f}_{a}$ for some functions $\bar{f}_{a} \in C_{\mathrm{c}}^{+}(G)$ with $\operatorname{spt}\left(\bar{f}_{a}\right) \subset a V$. Now, for all $x, y \in G$,

$$
\begin{equation*}
f(x) g\left(x^{-1} y\right) \leq \sum_{a \in A} \bar{f}_{a}(y) g\left(x^{-1} y\right) \leq \sum_{a \in A} \bar{f}_{a}(y) \bar{g}\left(a^{-1} x\right) \tag{6}
\end{equation*}
$$

the first inequality holds since $g\left(x^{-1} y\right)>0$ implies that $f(x) \leq \bar{f}(y)=\sum_{a} \bar{f}_{a}(y)$, the second since $\bar{f}_{a}(y)>0$ implies that $g\left(x^{-1} y\right) \leq \bar{g}\left(x^{-1} a\right)=\bar{g}\left(a^{-1} x\right)$. By Part II there exists $W \in \mathscr{U}$ such that $\sum_{a} I_{h}\left(\bar{f}_{a}\right) \leq r^{1 / 3} I_{h}(\bar{f})$ for all $h \in \mathscr{P}(W)$. Let now $J \in \mathscr{L} \cup\left\{I_{h}: h \in \mathscr{P}(W)\right\}$. Fix x for the moment and apply J to the functions of y on the left and right of (6). This yields

$$
\begin{equation*}
f(x) J(g) \leq \sum_{a \in A} J\left(\bar{f}_{a}\right) \bar{g}\left(a^{-1} x\right) \tag{7}
\end{equation*}
$$

Then, applying I_{g} to the functions of x on either side of (7), and noting that $I_{g}(\bar{g}) \leq$ $r^{1 / 3} I_{g}(g) \leq r^{1 / 3}$, we obtain $I_{g}(f) J(g) \leq r^{1 / 3} \sum_{a} J\left(\bar{f}_{a}\right)$. This sum is equal to $J(\bar{f})$ if J is additive and less than or equal to $r^{1 / 3} J(\bar{f})$ if $J=I_{h}$ with $h \in \mathscr{P}(W)$. Since $J(\bar{f}) \leq r^{1 / 3} J(f)$, this gives the result.
Part IV. Now we fix once and for all a reference function $\phi \in \mathscr{P}(G)$. Normalizing the functionals I_{g}, we note that, by (2),

$$
\begin{equation*}
\Lambda_{g}:=\frac{1}{I_{g}(\phi)} I_{g} \leq I_{\phi} \quad \text { for all } g \in \mathscr{P}(G) \tag{8}
\end{equation*}
$$

Let $f \in C_{\mathrm{c}}^{+}(G)$ and $r>1$. By (2) and Part III, there exists a neighborhood $U_{r}(f) \in$ \mathscr{U} such that for each $g \in \mathscr{P}_{*}\left(U_{r}(f)\right)$ there exists $W \in \mathscr{U}$ such that the inequalities $J(f) \leq I_{g}(f) J(g) \leq r J(f)$ and $J(\phi) \leq I_{g}(\phi) J(g) \leq r J(\phi)$ hold simultaneously for all $J \in \mathscr{L} \cup\left\{I_{h}: h \in \mathscr{P}(W)\right\}$. Then it follows that

$$
\begin{equation*}
r^{-1} \Lambda_{g}(f) \leq \frac{J(f)}{J(\phi)} \leq r \Lambda_{g}(f) \quad \text { for all } J \in \mathscr{L} \cup\left\{I_{h}: h \in \mathscr{P}(W)\right\} \tag{9}
\end{equation*}
$$

From (8) and (9) we conclude that for any two left Haar integrals $\Lambda, \Lambda^{\prime}$ on G the quotients $\Lambda(f) / \Lambda(\phi)$ and $\Lambda^{\prime}(f) / \Lambda^{\prime}(\phi)$ agree. Thus Λ and Λ^{\prime} are constant multiples of each other on $C_{\mathrm{c}}^{+}(G)$ and hence also on $C_{\mathrm{c}}(G)$. This proves the uniqueness assertion of Theorem 1.

Part V. Finally, we construct a left Haar integral on G. Let again $f \in C_{\mathrm{c}}^{+}(G)$ and $r>1$. Denote by $\mathscr{G}_{r}(f)$ the set of all $g \in \mathscr{P}(G)$ for which there exists a neighborhood $W \in \mathscr{U}$ such that

$$
\begin{equation*}
\Lambda_{g}(f) \leq r \Lambda_{h}(f) \quad \text { for all } h \in \mathscr{P}(W) \tag{10}
\end{equation*}
$$

From the first inequality in (9) we know that $\mathscr{G}_{r}(f)$ contains $\mathscr{P}_{*}\left(U_{r}(f)\right)$. Clearly $\mathscr{G}_{r}\left(f \circ L_{a}\right)=\mathscr{G}_{r}(f)=\mathscr{G}_{r}(\lambda f)$ for all $a \in G$ and $\lambda>0$. Now put

$$
\bar{\Lambda}_{r}(f):=\sup \left\{\Lambda_{g}(f): g \in \mathscr{G}_{r}(f)\right\}
$$

and note that this is finite by (8). The functional $\bar{\Lambda}_{r}: C_{\mathrm{c}}^{+}(G) \rightarrow[0, \infty)$ is leftinvariant and homogeneous. We claim that if $f, f^{\prime} \in C_{\mathrm{c}}^{+}(G)$, then

$$
\begin{equation*}
r^{-1} \bar{\Lambda}_{r}\left(f+f^{\prime}\right) \leq \bar{\Lambda}_{r}(f)+\bar{\Lambda}_{r}\left(f^{\prime}\right) \leq r^{2} \bar{\Lambda}_{r}\left(f+f^{\prime}\right) \tag{11}
\end{equation*}
$$

For every $g \in \mathscr{G}_{r}\left(f+f^{\prime}\right)$ there exists $W \in \mathscr{U}$ such that if $h \in \mathscr{P}(W) \cap \mathscr{G}_{r}(f) \cap \mathscr{G}_{r}\left(f^{\prime}\right)$, then $r^{-1} \Lambda_{g}\left(f+f^{\prime}\right) \leq \Lambda_{h}\left(f+f^{\prime}\right) \leq \Lambda_{h}(f)+\Lambda_{h}\left(f^{\prime}\right) \leq \bar{\Lambda}_{r}(f)+\bar{\Lambda}_{r}\left(f^{\prime}\right)$. Hence the first inequality holds. Conversely, given $g \in \mathscr{G}_{r}(f)$ and $g^{\prime} \in \mathscr{G}_{r}\left(f^{\prime}\right)$, by the definition of $\mathscr{G}_{r}(f)$ and $\mathscr{G}_{r}\left(f^{\prime}\right)$ and by Part II there exists $W \in \mathscr{U}$ such that if $h \in \mathscr{P}(W) \cap \mathscr{G}_{r}\left(f+f^{\prime}\right)$, then $\Lambda_{g}(f)+\Lambda_{g^{\prime}}\left(f^{\prime}\right) \leq r\left(\Lambda_{h}(f)+\Lambda_{h}\left(f^{\prime}\right)\right) \leq r^{2} \Lambda_{h}\left(f+f^{\prime}\right) \leq$ $r^{2} \bar{\Lambda}_{r}\left(f+f^{\prime}\right)$. This yields the second inequality in (11).

Finally, if $1<r^{\prime}<r$, then clearly $\mathscr{G}_{r^{\prime}}(f) \subset \mathscr{G}_{r}(f)$ and hence $\bar{\Lambda}_{r^{\prime}}(f) \leq \bar{\Lambda}_{r}(f)$. Thus the limit

$$
\Lambda(f):=\lim _{r \rightarrow 1+} \bar{\Lambda}_{r}(f)
$$

exists. The resulting functional $\Lambda: C_{\mathrm{c}}^{+}(G) \rightarrow[0, \infty)$ is left-invariant and homogeneous. By virtue of (11), it is also additive, thus Λ belongs to \mathscr{L} and extends to a left-invariant, positive linear functional on $C_{\mathrm{c}}(G)$. This functional is non-trivial, in fact $\Lambda(\phi)=1$, as $\Lambda_{g}(\phi)=1$ for all $g \in \mathscr{P}(G)$.

References

[1] E. M. Alfsen, A simplified constructive proof of the existence and uniqueness of Haar measure, Math. Scandinavica 12 (1963), 106-116.
[2] H. Cartan, Sur la mesure de Haar, C. R. Acad. Sci. Paris 211 (1940), 759-762 [Reprinted in: Euvres, Vol. III, 1020-1022, Springer, Berlin 1979].
[3] A. Haar, Der Massbegriff in der Theorie der kontinuierlichen Gruppen, Ann. Math. 34 (1933), 147-169.
[4] G. K. Pedersen, The existence and uniqueness of the Haar integral on a locally compact topological group, Univ. of Copenhagen, 2000. www.math.ku.dk/kurser/2004-2/mat3re/haarintegral.pdf
[5] W. Rudin, Real and complex analysis, third edition, McGraw-Hill, New York, 1987.
[6] D. Salamon, Measure and integration, ETH Zurich, 2014. www.math.ethz.ch/~salamon/PREPRINTS/measure.pdf
[7] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann \& Cie, Paris, 1940.

[^0]: *Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland; lang@math.ethz.ch

