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Abstract

Ambrosio and Kirchheim presented a theory of currents with finite
mass in complete metric spaces. We develop a variant of the theory that
does not rely on a finite mass condition, closely paralleling the classi-
cal Federer–Fleming theory. If the underlying metric space is an open
subset of a Euclidean space, we obtain a natural chain monomorphism
from general metric currents to general classical currents whose image
contains the locally flat chains and which restricts to an isomorphism
for locally normal currents. We give a detailed exposition of the slic-
ing theory for locally normal currents with respect to locally Lipschitz
maps, including the rectifiable slices theorem, and of the compactness
theorem for locally integral currents in locally compact metric spaces,
assuming only standard results from analysis and measure theory.
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Introduction

Currents in the sense of geometric measure theory, linear functionals on spaces
of differential forms, were introduced by G. de Rham in 1955 for use in the
theory of harmonic forms [12]. A few years later, H. Federer and W. H. Flem-
ing devised the class of rectifiable currents, generalized oriented surfaces with
integer multiplicities, and the subclass of integral currents, whose boundary
is of the same type. Their fundamental paper [15] from 1960 also furnished
the compactness theorem for integral currents and thereby a solution to the
Plateau problem for surfaces of arbitrary dimension and codimension in Eu-
clidean spaces. The theory of currents then rapidly developed into a powerful
apparatus in the calculus of variations. Federer’s monograph [14] gives a com-
prehensive account of the state of the subject prior to 1970. Since then, the
theory has been extended in various directions and has found numerous ap-
plications in geometric analysis and Riemannian geometry, far beyond pure
area minimization problems.

A breakthrough was achieved in 2000, when L. Ambrosio and B. Kirch-
heim [3], following ideas of E. De Giorgi [7], presented a theory of currents in
complete metric spaces. This elegant approach employs (m+1)-tuples of real-
valued Lipschitz functions in place of differential m-forms and provides some
new insights even if the ambient space is Euclidean. Ambrosio and Kirchheim
discovered new proofs of the boundary rectifiability theorem and the closure
theorem for rectifiable currents, valid in any complete metric space. As an
application, they obtained existence results for generalized Plateau problems
in compact metric spaces and certain Banach spaces. The theory of metric
currents has been further developed in [8], [32], [34], and some geometric ap-
plications have been found [33], [35]. Various interactions with other areas
have emerged and should be further explored. In this context we just mention
the functions of bounded higher variation [21], [8], [9], [28], [25], the recent
progress on (generalized) flat chains [37], [38], [18], [1], the scans from [16],
[10], [11], the differentiation theory on metric measure spaces [4], [22], [5],
and the derivations from [30], [31]. We refer to [19] for an excellent survey of
some of these and further related topics.

The metric currents considered by Ambrosio and Kirchheim have finite
mass by definition. This a priori assumption plays a crucial role in their
development of the theory, in particular it is used to derive the properties that
qualify the functionals under consideration as analogues of classical currents.
Here we present a somewhat different approach, strongly inspired by the work
of Ambrosio and Kirchheim, but not relying on a finite mass condition. In
addition, we switch to local formulations. At a later stage, this enables us to
discuss metric currents with locally finite mass and locally rectifiable currents.
For this purpose it is appropriate to assume the underlying metric space to
be locally compact. However, once some basic properties are established, the
theory readily extends to a theory of currents with locally compact support
in arbitrary metric spaces. Furthermore, in the case of finite mass, it is also
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possible to dispense with the restriction on the support and to incorporate
the class of Ambrosio–Kirchheim currents. In the second half of the paper,
which discusses currents with locally finite mass, a number of results are
local versions of those in [3]. However, in some instances, we give different
arguments, using less prerequisites. A central aim was to provide a detailed
account of the fundamentals of the theory, including a complete proof of the
compactness theorem for locally integral currents in locally compact metric
spaces, in a style readily accessible to non-specialists.

We now describe the contents of the paper in a more systematic way.
Detailed references will be given later in the individual sections.

In Sect. 1 we fix the notation and gather a few basic facts from analysis
and measure theory.

In Sect. 2 we turn to currents. A classical m-dimensional current in an
open set U ⊂ Rn is a real-valued linear function on the space of compactly
supported differential m-forms on U , continuous with respect to convergence
of forms in a suitable C∞-topology. Given a locally compact metric space X,
we substitute differential m-forms by (m + 1)-tuples (f, π1, . . . , πm) of real-
valued functions on X, where f is Lipschitz with compact support spt(f)
and π1, . . . , πm are locally Lipschitz. We denote by Dm(X) the set of all such
tuples. The guiding principle is that if X = U is an open subset of Rn and
if (f, π1, . . . , πm) ∈ C∞c (U) × [C∞(U)]m, then this tuple represents the form
f dπ1 ∧ . . . ∧ dπm. An m-dimensional metric current T in X is defined as
an (m+ 1)-linear real-valued function on Dm(X), continuous with respect to
convergence of tuples in a suitable topology involving locally uniform bounds
on Lipschitz constants, and satisfying T (f, π1, . . . , πm) = 0 whenever some πi
is constant on a neighborhood of spt(f). The vector space of m-dimensional
metric currents in X is denoted by Dm(X). The terminology is justified by
the fact that the defining conditions of a metric current give rise to a set of
further properties, corresponding to the usual rules of calculus for differential
forms. Namely, every T ∈ Dm(X) is alternating in the m last arguments,
and the following product rule holds: If (f, π1, . . . , πm) ∈ Dm(X), and if
g : X → R is locally Lipschitz, then

T (f, gπ1, π2, . . . , πm) = T (fg, π1, . . . , πm) + T (fπ1, g, π2, . . . , πm).

We also obtain a chain rule, a special case of which states that if (f, π) =
(f, π1, . . . , πm) ∈ Dm(X) and g = (g1, . . . , gm) ∈ [C1,1(Rm)]m, i.e., the partial
derivatives of gi are locally Lipschitz, then

T (f, g1 ◦ π, . . . , gm ◦ π) = T (f det((Dg) ◦ π), π1, . . . , πm).

Every function u ∈ L1
loc(U) on an open set U ⊂ Rm induces a metric current

[u] ∈ Dm(U) satisfying

[u](f, g) =

∫
U
uf det(Dg) dx
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for all (f, g) = (f, g1, . . . , gm) ∈ Dm(U). This corresponds to the integration
of a simple m-form over U . The chain rule plays a crucial role in the devel-
opment of the theory. In particular, it is used to show (in Sect. 5) that for
every open set U ⊂ Rn and every m, there is an injective linear map Cm from
Dm(U) into the space of general classical m-currents in U such that

Cm(T )(fdg1 ∧ . . . ∧ dgm) = T (f, g1, . . . , gm)

for all (f, g1, . . . , gm) ∈ C∞c (U)×[C∞(U)]m. This makes the aforesaid guiding
principle rigorous. Some more properties of these comparison maps Cm are
mentioned further below.

In Sect. 3 we define the support spt(T ) ⊂ X of a metric current T and
discuss the boundary and push-forward operators. For a classical m-current
T̄ , the boundary ∂T̄ is the (m−1)-current satisfying ∂T̄ (φ) = T̄ (dφ) for every
(m − 1)-form φ. Correspondingly, the boundary ∂T ∈ Dm−1(X) of a metric
current T ∈ Dm(X) verifies

∂T (f, π1, . . . , πm−1) = T (σ, f, π1, . . . , πm−1)

for all (f, π1, . . . , πm−1) ∈ Dm−1(X) and for all σ such that σ = 1 on some
neighborhood of spt(f). We have ∂ ◦ ∂ = 0, and, in case X = U is an open
set in Rn, ∂ ◦ Cm = Cm−1 ◦ ∂, so that the Cm form a chain map. The push-
forward F#T̄ of a general classical current T̄ is defined for every smooth map
F whose restriction to the support of T̄ is proper, and considerable efforts
are required to extend the definition, for particular classes of currents, to
locally Lipschitz maps. Given a metric current T ∈ Dm(X) and another
locally compact metric space Y , the push-forward F#T ∈ Dm(Y ) is defined
for every locally Lipschitz map F : D → Y such that spt(T ) ⊂ D ⊂ X and
F |spt(T ) is proper. In case D = X, we have

F#T (f, π1, . . . , πm) = T (f̃ , π1 ◦ F, . . . , πm ◦ F )

whenever (f, π1, . . . , πm) ∈ Dm(Y ) and f̃ : X → R is a compactly supported
Lipschitz function that agrees with f ◦ F on spt(T ).

In Sect. 4 we discuss the notion of mass. Given a metric current T ∈
Dm(X), we define its mass MV (T ) in an open set V ⊂ X as the least number
M ∈ [0,∞] such that ∑

λ∈Λ

T (fλ, π
λ) ≤M

whenever Λ is a finite set, (fλ, π
λ) ∈ Dm(X), πλ1 , . . . , π

λ
m are 1-Lipschitz,

spt(fλ) ⊂ V , and
∑

λ∈Λ |fλ| ≤ 1. If a metric current T ∈ Dm(X) has
locally finite mass, then there is an associated Radon measure ‖T‖ on X,
characterized by ‖T‖(V ) = MV (T ) for all open sets V ⊂ X, and

T (f, π) ≤
∫
X
|f | d‖T‖
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whenever (f, π) ∈ Dm(X) and the restrictions of π1, . . . , πm to spt(f) are
1-Lipschitz. This last inequality allows to extend T to all tuples (f, π) such
that f is a bounded Borel function with compact support and π1, . . . , πm are
still locally Lipschitz. For a Borel set B ⊂ X, the restriction T bB is then
defined as the m-current satisfying

(T bB)(f, π) = T (χBf, π)

for all (f, π) ∈ Dm(X), where χB is the characteristic function of B. For a
locally bounded Borel function g : X → R, T b g is defined similarly.

A metric m-current T is called (locally) normal if both the mass of T
and the mass of ∂T are (locally) finite. A fundamental result about locally
normal metric currents, proved in Sect. 5, is the compactness theorem: If
T1, T2, . . . ∈ Dm(X) are currents with separable support, and if

sup
n

(MV (Tn) + MV (∂Tn)) <∞

for every open set V ⊂ X with compact closure, then there is a subse-
quence Tn(1), Tn(2), . . . that converges weakly to some T ∈ Dm(X), i.e.,
limi→∞ Tn(i)(f, π) = T (f, π) for every (f, π) ∈ Dm(X). Since MV is lower
semicontinuous with respect to weak convergence, and also ∂Tn(i) → ∂T
weakly, the limit T is locally normal. In case X = U is an open set in Rn, the
restriction of the comparison map Cm to the vector space of locally normal
currents is an isomorphism onto the space of classical locally normal currents.

An important technique in the theory of currents consists in relating in-
formation on the structure of a current T to properties of lower dimensional
slices of T in the level sets of a function. In Sect. 6 we discuss slicing of a
locally normal current T ∈ Dm(X) with respect to a locally Lipschitz map
π : X → Rk, where 1 ≤ k ≤ m. Let Tπ ∈ Dm−k(X) be the locally normal
current satisfying

Tπ(f, g1, . . . , gm−k) = T (f, π1, . . . , πk, g1, . . . , gm−k)

for all (f, g) ∈ Dm−k(X). If spt(T ) is separable, then for almost every y ∈ Rk
there is a locally normal current in Dm−k(X) with support in π−1{y}∩spt(T ),
denoted by 〈T, π, y〉, such that∫

Rk
〈T, π, y〉(f, g) dy = Tπ(f, g)

for all (f, g) ∈ Dm−k(X). Moreover, for every Borel set B ⊂ X,∫
Rk
‖〈T, π, y〉‖(B) dy = ‖Tπ‖(B).

The first identity also holds more generally if f is a bounded Borel function
with compact support.
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Slicing is particulary important and useful when k = 1, for geometric ap-
plications, or when k = m. In the latter case, the slices are 0-dimensional,
and π maps any compactly supported portion of T to a current of maximal
dimension in Rm. This situation is closely inspected in Sect. 7. The slic-
ing theorem leads to a fundamental identity: If f : X → R is any bounded
Borel function with compact support, then π#(T b f) ∈ Dm(Rm) is a standard
current [uf ], for some uf ∈ L1(Rm), and

〈T, π, y〉(f) = uf (y)

for almost every y ∈ Rm. Moreover, if f is Lipschitz, then [uf ] is normal,
and uf is a function of bounded variation. Such functions satisfy a Lipschitz
condition outside a set of small Lebesgue measure. Exploiting the resulting
Lipschitz property of the function y 7→ 〈T, π, y〉(f), we obtain a partial recti-
fiability result for every locally normal current T with separable support: Let
A ⊂ spt(T ) be the set of all x such that {x} is an atom of the corresponding
slice 〈T, π, π(x)〉. Up to a set of ‖Tπ‖ measure zero, A can be represented as
the union of countable many pairwise disjoint compact sets Bi ⊂ A such that
π|Bi is a bi-Lipschitz map into Rm.

In the final Sect. 8 we turn to rectifiable currents. For a general current
T ∈ Dm(X) with locally finite mass, the measure ‖T‖ may be diffused, so
that T does not correspond to a generalized m-dimensional surface in any
sense. We call T a locally integer rectifiable current if ‖T‖ is concentrated
on some countably m-rectifiable set E, i.e., the union of countably many
Lipschitz images of subsets of Rm, and if T satisfies the following integral-
ity condition: Whenever B ⊂ X is a Borel set with compact closure and
π : X → Rm is Lipschitz, then π#(T bB) = [uB,π] for some uB,π ∈ L1(Rm,Z).
From these conditions it follows that the support of T is separable and that
‖T‖ is absolutely continuous with respect to m-dimensional Hausdorff mea-
sure H m. The slicing theory is then supplemented with the rectifiable slices
theorem, relying on the above partial rectifiability result and the identity
〈T, π, y〉(χB) = uB,π(y): Given a locally normal current T ∈ Dm(X) with sep-
arable support and k ∈ {1, . . . ,m}, T is locally integer rectifiable if and only
if for each Lipschitz map π : X → Rk, the (m− k)-dimensional slice 〈T, π, y〉
is locally integer rectifiable for almost every y ∈ Rk. We call T ∈ Dm(X) a
locally integral current if both T and ∂T are locally integer rectifiable. In
particular, every such T is locally normal. By the boundary rectifiability
theorem, every locally integer rectifiable and locally normal current is locally
integral. This follows easily from the rectifiable slices theorem, by induc-
tion on m. The closure theorem for locally integral currents states that
if T1, T2, . . . ∈ Dm(X) is a sequence of locally integral currents converging
weakly to T ∈ Dm(X), and if

sup
n

(MV (Tn) + MV (∂Tn)) <∞

for every open set V ⊂ X with compact closure, then T is locally integral. The
proof is another simple inductive application of the rectifiable slices theorem.
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By combining this result with the compactness theorem for locally normal
currents mentioned earlier, we obtain the compactness theorem for locally
integral currents.

Further results and applications will be discussed elsewhere.
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and Roger Züst for some useful comments and corrections.

1 Preliminaries

We now fix the notation and collect some basic facts from analysis and mea-
sure theory. A few more prerequisites will be discussed in individual sections.

Given a point x in a metric space X = (X, d), B(x, r) := {y : d(x, y) ≤ r}
and U(x, r) := {y : d(x, y) < r} denote the closed and open ball, respectively,
with center x and radius r.

1.1 Lipschitz maps

Let X = (X, d) and Y = (Y, d) be two metric spaces. For l ∈ [0,∞), a map
f : X → Y is l-Lipschitz if

d(f(x), f(x′)) ≤ l d(x, x′)

for all x, x′ ∈ X. The map f : X → Y is Lipschitz if the Lipschitz constant

Lip(f) := inf{l ∈ [0,∞) : f is l-Lipschitz}

is finite, and f is locally Lipschitz if every point in X has a neighborhood such
that the restriction of f to this neighborhood is Lipschitz. Note that then
f |K is Lipschitz for every compact set K ⊂ X. We let Liploc(X,Y ) be the
set of locally Lipschitz maps from X into Y , Lip(X,Y ) and Lipl(X,Y ) the
subsets of Lipschitz maps and l-Lipschitz maps, respectively. In this notation,
we abbreviate (X,R) by (X). Note that Liploc(X) forms an algebra, while
Lip(X) is an algebra if and only if X is bounded. In fact, if f, g ∈ Lip(X)
are two bounded Lipschitz functions on a metric space X, then the product
fg is Lipschitz with Lipschitz constant

Lip(fg) ≤ ‖f‖∞ Lip(g) + ‖g‖∞ Lip(f), (1.1)
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where ‖ · ‖∞ is the supremum norm.

A map f : X → Y is bi-Lipschitz if there is a constant b ∈ [1,∞) such
that

b−1 d(x, x′) ≤ d(f(x), f(x′)) ≤ b d(x, x′)

for all x, x′ ∈ X.

If A ⊂ X and f ∈ Lipl(A), then there exists an extension f̄ ∈ Lipl(X),
i.e., f̄ |A = f . In fact, one may simply define

f̄(x) := inf
a∈A

(f(a) + l d(a, x)) (1.2)

for x ∈ X. By applying this result to each component of a map f =
(f1, . . . , fm) ∈ Lipl(A,Rm), one obtains an extension f̄ ∈ Lip√ml(X,Rm)
of f .

Every uniformly continuous and bounded function f : X → R is a uniform
limit of a sequence of Lipschitz functions (see e.g. [17, Theorem 6.8]).

By Rademacher’s theorem, every f ∈ Liploc(Rm,Rn) is differentiable at
Lm-almost all points of Rm, where Lm denotes (outer) Lebesgue measure.

1.2 Borel functions and Baire functions

Given a topological space X, B∞loc(X) denotes the algebra of real-valued,
locally bounded Borel functions on X, B∞(X) the subalgebra of bounded
functions, and B∞c (X) the subalgebra of bounded and compactly supported
functions.

A class Φ of real-valued functions on a set X is called a Baire class if
the following holds: Whenever f1, f2, . . . ∈ Φ and fi(x) → g(x) ∈ R for each
x ∈ X, then g ∈ Φ. In case X is a topological space, f : X → R is a Baire
function if it belongs to the smallest Baire class containing all continuous
functions. Since the Borel functions form a Baire class, every Baire function
is a Borel function. Conversely, if X is a metric space, then it is not difficult to
see that characteristic functions of Borel sets are Baire functions and, hence,
every Borel function is also a Baire function (cf. [14, 2.2.15]).

1.3 Outer measures and Radon measures

An outer measure ν on a set X is a set function ν : 2X → [0,∞] such that
ν(∅) = 0 and ν(A) ≤

∑∞
k=1 ν(Ak) whenever A ⊂

⋃∞
k=1Ak. A set A ⊂ X is

called ν-measurable if ν(B) = ν(B∩A) +ν(B \A) for all B ⊂ X. The family
of all ν-measurable sets forms a σ-algebra, and the restriction of ν to this
σ-algebra is a measure. If E ⊂ X is any set, then νbE is the outer measure
satisfying

(νbE)(A) = ν(E ∩A)

for all A ⊂ X. Every ν-measurable set is also (νbE)-measurable. We say
that ν is concentrated on E if ν(X \ E) = 0 or, equivalently, ν = νbE.
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Let ν be an outer measure on a topological space X. The support spt(ν) of
ν inX is the closed set of all x ∈ X such that ν(U) > 0 for every neighborhood
U of x. We call ν Borel regular if all Borel sets are ν-measurable and if every
set A ⊂ X is contained in a Borel set B with ν(B) = ν(A). If ν is Borel
regular and E is a Borel set, then νbE is Borel regular.

Now let ν be an outer measure on a metric space X. Carathéodory’s
criterion says that if ν(A)+ν(B) = ν(A∪B) for all A,B ⊂ X with inf{d(x, y) :
x ∈ A, y ∈ B} > 0, then all Borel sets are ν-measurable. If ν is Borel regular
and B is a ν-measurable set contained in the union of countably many open
sets Ui with ν(Ui) < ∞, and if ε > 0, then there is an open set V such that
B ⊂ V and ν(V \B) < ε.

An outer measure ν on a locally compact Hausdorff space X is called a
Radon measure if Borel sets are ν-measurable, ν is finite on compact sets,

ν(V ) = sup{ν(K) : K ⊂ X is compact, K ⊂ V }

for every open set V ⊂ X, and

ν(A) = inf{ν(V ) : V ⊂ X is open, A ⊂ V }

for every set A ⊂ X. Then it is also true that if B is a ν-measurable set with
ν(B) < ∞, and if ε > 0, then ν(B \ K) < ε for some compact set K ⊂ B
(cf. [14, 2.2.5]).

For m ∈ N, we denote by

αm := Lm(B(0, 1))

the Lebesgue measure of the unit ball in Rm, and we put α0 := 1. Given
a metric space X, the m-dimensional Hausdorff measure of a set A ⊂ X
is defined by H m(A) := limδ→0+ H m

δ (A), where H m
δ (A) is the infimum of∑

C∈C αm(diam(C)/2)m over all countable coverings C of A with diam(C) :=
sup{d(x, y) : x, y ∈ C} ≤ δ for all C ∈ C . For every m, H m is a Borel regular
outer measure on X. With the chosen normalization, H m = Lm on Rm.

1.4 Maximal functions and Lebesgue points

Suppose that µ is a finite Borel measure on Rm, i.e., a σ-additive function
µ : BX → [0,∞), where BX is the σ-algebra of Borel sets in X. We denote
by Mµ : Rm → [0,∞] the maximal function of µ, i.e.,

Mµ(x) := sup
r>0

µ(B(x, r))

αmrm
.

A simple covering argument shows that

Lm({x ∈ Rm : Mµ(x) > s}) ≤ 3ms−1µ(Rm) (1.3)
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for all s > 0. In particular, Mµ(x) <∞ for Lm-almost every x ∈ Rm. Note
also that Mµ is lower semicontinuous on Rm.

We further recall that, given a function u ∈ L1(Rm), Lm-almost every
x ∈ Rm is a Lebesgue point of u, i.e.,

lim
r→0

1

αmrm

∫
B(x,r)

|u(y)− u(x)| dy = 0.

Moreover, if we associate to each x ∈ Rm a sequence of Borel sets Ei(x) with
the property that Ei(x) ⊂ B(x, ri(x)) and Lm(Ei(X)) ≥ β(x)αmri(x)m for
some ri(x)→ 0 and β(x) > 0, then

u(x) = lim
i→∞

1

Lm(Ei(x))

∫
Ei(x)

u(y) dy (1.4)

at every Lebesgue point x of u, hence for Lm-almost every x ∈ Rm. (See
e.g. the first section of [26, Ch. 7].)

1.5 Smoothing

We shall use the following basic facts regarding smoothing. Let η ∈ C∞c (Rm)
be a mollifier, so that spt(η) ⊂ U(0, 1), η(−z) = η(z) ≥ 0 for all z ∈ Rm, and∫
Rm η(z) dz = 1. Recall that for g ∈ L1

loc(Rm), the convolution defined by

(η ∗ g)(x) :=

∫
Rm

η(z)g(x− z) dz =

∫
Rm

η(x− z)g(z) dz

for x ∈ Rm satisfies η ∗ g ∈ C∞(Rm), and spt(η ∗ g) ⊂ spt(η) + spt(g). If
g ∈ Liploc(Rm), then the partial derivatives of η ∗ g are given by

Dk(η ∗ g) = η ∗Dkg, (1.5)

k = 1, . . . ,m. If g is bounded, then ‖η ∗ g‖∞ ≤ ‖g‖∞. If g is Lipschitz, then
η ∗ g is Lipschitz, with constant

Lip(η ∗ g) ≤ Lip(g). (1.6)

Now put ηj(z) := jmη(jz) for z ∈ Rm and j ∈ N, so that spt(ηj) ⊂ U(0, 1/j)
and

∫
Rm ηj(z) dz = 1. As j →∞, (ηj ∗g)(x)→ g(x) whenever x is a Lebesgue

point of g, moreover, the convergence is locally uniform if g is continuous.
(See e.g. [14, 4.1.2].)

2 Metric currents

From now on, unless otherwise stated, X will always denote a locally compact
metric space. We write A b X if A ⊂ X and the closure of A is compact.

We let D(X) be the algebra of all f ∈ Lip(X) whose support spt(f) is
compact; these will serve as test functions. For every compact set K ⊂ X
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and every constant l ≥ 0 we put LipK,l(X) := {f ∈ Lipl(X) : spt(f) ⊂ K},
so that D(X) is the union of all LipK,l(X). Then we equip D(X) with a
locally convex vector space topology τ with respect to which

fj → f in D(X) (2.1)

if and only if all fj belong to some fixed LipK,l(X) and fj → f pointwise
on X for j → ∞, which implies that fj → f uniformly on X. Explicitly,
this topology τ is given as follows. Let β be the collection of all absolutely
convex sets W ⊂ D(X) with the following property: For every pair (K, l)
and every f ∈ W ∩ LipK,l(X), there is an ε > 0 such that g ∈ W whenever
g ∈ LipK,l(X) and ‖f − g‖∞ < ε. (Recall that W is absolutely convex if and
only if sf + tg ∈ W for all f, g ∈ W and s, t ∈ R with |s| + |t| ≤ 1.) Then
β is a local base of τ at 0, thus τ is the collection of all unions of sets of
the form f + W , where f ∈ D(X) and W ∈ β. (See e.g. [27, p. 152] for the
corresponding construction in classical distribution theory.)

Similarly, we equip Liploc(X) with a locally convex vector space topology
with respect to which

πj → π in Liploc(X) (2.2)

if and only if for every compact set K ⊂ X there is a constant lK such that
Lip(πj |K) ≤ lK for all j and πj → π pointwise, hence uniformly, on K for
j → ∞. For a fixed compact set K ⊂ X, let βK be the collection of all
absolutely convex sets W ⊂ Liploc(X) with the following property: For every
l ≥ 0 and every π ∈W with Lip(π|K) ≤ l, there is an ε > 0 such that ρ ∈W
whenever ρ ∈ Liploc(X), Lip(ρ|K) ≤ l, and ‖(π − ρ)|K‖∞ < ε. The union
of all βK forms a local base of the topology of Liploc(X). The topologies of
D(X) and Liploc(X) will only be used through (2.1) and (2.2).

We define the spaces

D0(X) := D(X), Dm(X) := D(X)× [Liploc(X)]m (m ∈ N),

which will serve as substitutes for the spaces of compactly supported m-forms.
The guiding principle is that

(f, π1, . . . , πm) ∈ Dm(X) represents f dπ1 ∧ . . . ∧ dπm (2.3)

if X is an open subset of Rn and the f, π1, . . . , πm are smooth. This correspon-
dence will be made precise in Theorem 5.5. The space Dm(X) is equipped
with the product topology. Thus,

(f j , πj1, . . . , π
j
m)→ (f, π1, . . . , πm) in Dm(X) (2.4)

if and only if f j → f in D(X) and πji → πi in Liploc(X) for i = 1, . . . ,m.

Definition 2.1 (metric current). For m ∈ {0}∪N, an m-dimensional metric
current T in X is a function T : Dm(X) → R satisfying the following three
conditions:
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(1) (multilinearity) T is (m+ 1)-linear;

(2) (continuity) T (f j , πj1, . . . , π
j
m) → T (f, π1, . . . , πm) if (f j , πj1, . . . , π

j
m) →

(f, π1, . . . , πm) in Dm(X);

(3) (locality) in case m ≥ 1, T (f, π1, . . . , πm) = 0 whenever some πi is
constant on a neighborhood of spt(f).

The vector space of m-dimensional metric currents in X is denoted by

Dm(X).

We endow Dm(X) with the locally convex weak topology with respect to which
Tn → T if and only if

Tn(f, π1, . . . , πm)→ T (f, π1, . . . , πm)

for every (f, π1, . . . , πm) ∈ Dm(X).

As a first consequence of the defining conditions, we note the following
strict form of the locality property:

T (f, π1, . . . , πm) = 0 whenever some πi is constant on spt(f). (2.5)

To see this, let βj : R → R (j ∈ N) be the 1-Lipschitz function satisfying
−βj(−s) = βj(s) = max{s − (1/j), 0} for s ≥ 0. Then βj ◦ f → f in D(X),
and spt(f) contains a neighborhood of spt(βj ◦ f) for every j, so that (2.5)
follows. An alternative proof uses the continuity in the respective argument.
Suppose that (πi − c)|spt(f) = 0 for some c ∈ R. Then βj ◦ (πi − c) vanishes
on some neighborhood of spt(f), and βj ◦ (πi− c)→ πi− c in Liploc(X). This
implies that T (f, π1, . . . , πm) = 0.

The following simple lemma shows that the space [D(X)]m+1 would serve
the same purpose as Dm(X). However, the guiding principle (2.3) suggests
to think of π1, . . . , πm as coordinate functions, so that the choice of Liploc(X)
instead of D(X) seems more appropriate. In the proof of Theorem 2.5 (chain
rule) we shall also benefit from the fact that Liploc(Rn) comprises the real
polynomials in n variables.

Lemma 2.2. Suppose T : [D(X)]m+1 → R is a function satisfying the three
conditions of Definition 2.1 with [D(X)]m+1 in place of Dm(X). Then T
extends uniquely to a current T ∈ Dm(X).

In particular, every metric current T ∈ Dm(X) is determined by its values
on [D(X)]m+1.

Proof. In view of conditions (1) and (3), the function T can be extended to
Dm(X) so that

T (f, π1, . . . , πm) = T (f, σπ1, . . . , σπm)
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whenever (f, π1, . . . , πm) ∈ Dm(X), σ ∈ D(X), and σ = 1 on some neighbor-
hood of spt(f). The right side is clearly independent of the choice of σ, for
if τ ∈ D(X) is another such function, then (σ− τ)πi vanishes on a neighbor-
hood of spt(f) for i = 1, . . . ,m. Note also that whenever K ⊂ X is compact,
there is a σ ∈ D(X) such that σ = 1 on some neighborhood of K, since X
is locally compact. Now each of the three properties of the given function T
implies the respective property of the extended function via an appropriate
choice of σ.

By inserting a number of locally Lipschitz functions into T and keeping
them fixed, we obtain a current of smaller dimension. This will often be used
to simplify notation.

Definition 2.3. For T ∈ Dm(X) and (u, v) ∈ Liploc(X)×[Liploc(X)]k, where
m ≥ k ≥ 0, we define the current T b (u, v) ∈ Dm−k(X) by

(T b (u, v))(f, g) := T (uf, v, g)

= T (uf, v1, . . . , vk, g1, . . . , gm−k)

for (f, g) ∈ Dm−k(X).

In case k = 0, the definition simply reads

(T bu)(f, g) := T (uf, g).

In case k ≥ 1, the placement of the functions v1, . . . , vk on the right side is in
accordance with the corresponding definition in the smooth case; it has the
property that

(T b (1, v))b (1, w) = T b (1, v, w). (2.6)

The tuple (u, v) ∈ Liploc(X)× [Liploc(X)]k corresponds to the k-form u dv1 ∧
. . . ∧ dvk. It is clear that T b (u, v) is indeed an element of Dm−k(X), as it
would be with any other placement of v1, . . . , vk.

We now show that the defining properties of a general metric current give
rise to a set of further properties, corresponding to the usual rules of calculus
for differential forms.

Proposition 2.4 (alternating property and product rule). Suppose T ∈
Dm(X), m ≥ 1, and (f, π1, . . . , πm) ∈ Dm(X).

(1) In case m ≥ 2, if πi = πj for some pair of distinct indices i, j, then

T (f, π1, . . . , πm) = 0.

(2) For all g, h ∈ Liploc(X),

T (f, gh, π2, . . . , πm) = T (fg, h, π2, . . . , πm) + T (fh, g, π2, . . . , πm).
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Proof. To prove (1), it suffices to show that if T ∈ D2(X) and (f, π) ∈ D1(X),
then T (f, π, π) = 0. For k ∈ Z, let ρk : R → R be the piecewise affine 1-
Lipschitz function with ρk|[2k,2k+1] = 1 and spt(ρk) = [2k − 1, 2k + 2]. Note
that

∑
k∈Z ρk = 1. Let σ, σ̄ : R → R denote the piecewise affine 4-Lipschitz

functions such that σ|spt(ρk) = 2k for k even and σ̄|spt(ρk) = 2k for k odd.
Then

T (f, σ ◦ π, σ̄ ◦ π) =
∑
k∈Z

T ((ρk ◦ π)f, σ ◦ π, σ̄ ◦ π);

note that (ρk ◦π)f = 0 for almost all k since π|spt(f) is bounded. By the strict
locality property (2.5), each summand is zero because σ◦π or σ̄◦π is constant
on spt(ρk ◦ π) for k even or odd, respectively. Hence T (f, σ ◦ π, σ̄ ◦ π) = 0.
In the above definitions of the functions ρk, σ, σ̄ we may equally well replace
the unit by 1/j, for j ∈ N. The argument then shows that

T (f, σj ◦ π, σ̄j ◦ π) = 0,

where σj(s) = σ(js)/j and σ̄j(s) = σ̄(js)/j for s ∈ R. Letting j tend to
∞, we obtain T (f, π, π) = 0 by the continuity of T , since σj ◦ π → π and
σ̄j ◦ π → π in Liploc(X).

For the proof of (2), it suffices to show that if T ∈ D1(X) and (f, g) ∈
D1(X), then T (f, g2) = 2T (fg, g). Let ρk, σ, σ̄ be defined as above. Since
σ ◦ g|spt(ρk◦g) = 2k for k even and σ̄ ◦ g|spt(ρk◦g) = 2k for k odd, and since
(ρk ◦ g)f = 0 for almost all k, the multilinearity of T and (2.5) give

T (f, (σ ◦ g)(σ̄ ◦ g))

=
∑
k∈Z

T ((ρk ◦ g)f, (σ ◦ g)(σ̄ ◦ g))

=
∑
k even

2kT ((ρk ◦ g)f, σ̄ ◦ g) +
∑
k odd

2kT ((ρk ◦ g)f, σ ◦ g)

=
∑
k∈Z

2kT ((ρk ◦ g)f, σ ◦ g + σ̄ ◦ g)

= T ((τ ◦ g)f, (σ + σ̄) ◦ g)

for the piecewise affine 2-Lipschitz function τ :=
∑

k∈Z 2kρk, which satisfies
τ |[2k,2k+1] = 2k for k ∈ Z. Rescaling by the factor 1/j, as in the proof of (1),
we obtain the identity

T (f, (σj ◦ g)(σ̄j ◦ g)) = T ((τj ◦ g)f, (σj + σ̄j) ◦ g),

where τj(s) = τ(js)/j for s ∈ R. Taking the limit for j → ∞ we conclude
that T (f, g2) = T (gf, 2g).

We now deduce a chain rule, which subsumes both the alternating prop-
erty and the case g = h of Proposition 2.4(2). For an open set U ⊂
Rn, C1,1(U) denotes the space of all g ∈ C1(U) with partial derivatives
D1g, . . . , Dng ∈ Liploc(U). For n ≥ m ≥ 1, we let Λ(n,m) be the set of
all strictly increasing maps λ : {1, . . . ,m} → {1, . . . , n}.
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Theorem 2.5 (chain rule). Suppose m,n ≥ 1, T ∈ Dm(X), U ⊂ Rn is an
open set, f ∈ D(X), π = (π1, . . . , πn) ∈ Liploc(X,U), and g = (g1, . . . , gm) ∈
[C1,1(U)]m. If n ≥ m, then

T (f, g ◦ π) =
∑

λ∈Λ(n,m)

T
(
f det

[
(Dλ(k)gi) ◦ π

]m
i,k=1

, πλ(1), . . . , πλ(m)

)
.

If n < m, then T (f, g ◦ π) = 0.

Proof. For illustration, suppose first that n = m = 1. In this case, the result
says that

T (f, g ◦ π) = T (f(g′ ◦ π), π) (2.7)

whenever T ∈ D1(X), U ⊂ R is an open set, f ∈ D(X), π ∈ Liploc(X,U),
and g ∈ C1,1(U). From the product rule, Proposition 2.4(2), we obtain the
power rule

T (f, πr) = T (frπr−1, π) ((f, π) ∈ D1(X), r ∈ N) (2.8)

by induction on r. Hence, (2.7) holds if g is (the restriction of) a polynomial.
Next, if g ∈ C2(U), there is a sequence of polynomials pj such that pj → g,
p′j → g′, and p′′j → g′′ locally uniformly on U as j →∞. Then pj ◦ π → g ◦ π
and p′j ◦ π → g′ ◦ π in Liploc(X), thus (2.7) follows by continuity. Finally, a

smoothing argument extends the result to all g ∈ C1,1(U). For this, note that
there is no loss of generality in assuming that spt(g) is compact; by (2.5), we
may replace g by σg for any σ ∈ C1,1(U) such that σ = 1 on π(spt(f)) and
spt(σ) is compact.

Now let n ≥ m = 1. We must show that

T (f, g ◦ π) =

n∑
k=1

T
(
f((Dkg) ◦ π), πk

)
(2.9)

whenever T ∈ D1(X), U ⊂ Rn is an open set, f ∈ D(X), π = (π1, . . . , πn) ∈
Liploc(X,U), and g ∈ C1,1(U). As above, the product rule implies that this
identity holds if g is a polynomial in the variables x1, . . . , xn. Furthermore, if
g ∈ C2(U), there is a sequence of polynomials pj = pj(x1, . . . , xn) such that
pj → g, Dkpj → Dkg, and DlDkpj → DlDkg locally uniformly on U for all
k, l ∈ {1, . . . , n} (see e.g. [6, p. 57] for a direct proof). The continuity of T
then yields (2.9), and a smoothing argument shows the same identity for all
g ∈ C1,1(U).

Finally, the general result for m,n ≥ 1 follows from (2.9), applied to each
gi, and the alternating property.

Suppose U is an open subset of Rn, T ∈ Dm(U), and π is the identity map
on U , thus πi(x) = xi. In case m > n, the chain rule says that T (f, g) = 0 for
all (f, g) ∈ D(U) × [C1,1(U)]m, and a smoothing argument then shows that
T = 0. Hence

Dm(U) = {0} for m > n. (2.10)



16 U. Lang

In case m = n, we obtain

T (f, g) = T (f det(Dg), π) (2.11)

for all (f, g) ∈ D(U) × [C1,1(U)]m. We now arrive at the first family of
examples of metric currents, corresponding to the integration of a simple
m-form over U ⊂ Rm.

Proposition 2.6 (standard example). Suppose U ⊂ Rm is open, m ≥ 1.
Every function u ∈ L1

loc(U) induces a current [u] ∈ Dm(U) satisfying

[u](f, g) =

∫
U
uf det(Dg) dx

for all (f, g) ∈ Dm(U).

Clearly [u] is (m + 1)-linear and satisfies the locality condition. The
continuity follows from a well-known property of mappings in [W 1,∞

loc (U)]m

(see e.g. [2, Theorem 2.16]). Since these examples will play a crucial role,
we include a proof below. For reasons of consistency (cf. Definition 8.1), we
also extend the notation to the case m = 0: Then R0 = {0}, u ∈ L1

loc(R0)
assigns the constant u(0) ∈ R, and [u] ∈ D0(R0) is the current satisfying
[u](f) = u(0)f(0) for all f ∈ D(R0).

Proof. We verify the continuity of [u]. Suppose (f j , gj) → (f, g) in Dm(U).
Then there exist an open set V b U and a constant l such that spt(f j) ⊂ V
and Lip(f j) ≤ l for all j, and f j → f uniformly; moreover, for i = 1, . . . ,m,
Lip(gji |V ) ≤ l for all j, and gji |V → gi|V uniformly. Put hji := gji − gi. Then
we have

[u](f j , gj)− [u](f, g)

= [u](f j − f, gj) +

m∑
i=1

[u](f, g1, . . . , gi−1, h
j
i , g

j
i+1, . . . , g

j
m).

Since the sequence (det(Dgj))j∈N is bounded in L∞(V ), the first term on the
right side clearly tends to 0 for j →∞. Now consider the summand for i = 1;
the other summands are treated similarly. Since uf ∈ L1(V ), we want to
show that

lim
j→∞

∫
V
v det(D(hj1, g

j
2, . . . , g

j
m)) dx = 0 (2.12)

for all v ∈ L1(V ). As C1
c (V ) is dense in L1(V ) and the sequence of deter-

minants is bounded in L∞(V ), it suffices to prove (2.12) with v replaced by
w ∈ C1

c (V ). We claim that∫
V
w det(D(hj1, g

j
2, . . . , g

j
m)) dx = −

∫
V
hj1 det(D(w, gj2, . . . , g

j
m)) dx. (2.13)
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If hj1, g
j
2, . . . , g

j
m ∈ C2(V ), then

∫
V d(whj1 dg

j
2 ∧ . . . ∧ dg

j
m) = 0 and hence∫

V
w dhj1 ∧ dg

j
2 ∧ . . . ∧ dg

j
m = −

∫
V
hj1 dw ∧ dg

j
2 ∧ . . . ∧ dg

j
m,

which is just a restatement of (2.13). Now a smoothing argument relying on
the bounded convergence theorem shows (2.13) in the general case. Since
hj1|V → 0 uniformly, the right side of (2.13) tends to zero for j → ∞.
Thus (2.12) holds with v replaced by w ∈ C1

c (V ).

We conclude this section with some comments regarding Proposition 2.4
and Theorem 2.5. The proof of the alternating property does not require
the continuity of T in the first argument and corresponds essentially to the
last paragraph on p. 17 in [3]. In contrast, both the product and the chain
rule depend on the joint continuity condition, Definition 2.1(2). To exemplify
this, consider the functional T : D1(R)→ R defined by

T (f, π) :=

∫
R
f ′π′ dx.

Clearly T is 2-linear and satisfies the locality condition. Moreover, an ap-
proximation and integration by parts argument as in the proof of Proposi-
tion 2.6 shows that if (f j , πj) → (f, π) in D1(R), then T (f j , π) → T (f, π)
and T (f, πj) → T (f, π). Yet, T fails to be a 1-dimensional metric current.
For instance, if f j(x) = χ[0,2π](x) sin(jx)/j, then f j → 0 in D(R), while
T (f j , f j) = π for all j ∈ N. Neither the product rule nor the chain rule holds
for T . In [3, Theorem 3.5], the proofs of the corresponding identities rely
on the finite mass axiom and use piecewise affine approximation rather than
polynomial approximation.

3 Support, boundary, and push-forward

For classical currents, these notions are defined in duality with support, ex-
terior derivative, and pull-back of forms. Similar constructions apply in the
metric context.

Definition 3.1 (support). Given a current T ∈ Dm(X), m ≥ 0, its support
spt(T ) in X is the intersection of all closed sets C ⊂ X with the property
that T (f, π) = 0 whenever (f, π) ∈ Dm(X) with spt(f) ∩ C = ∅.

The definition is justified by the next lemma, whose proof employs Lip-
schitz partitions of unity. This is made possible by the fact that the functions
in D(X) have compact support. In [3], the support of a current T is defined
as the support of the associated finite Borel measure ‖T‖.

Lemma 3.2 (support). Suppose that T ∈ Dm(X), m ≥ 0.
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(1) The support spt(T ) equals the set of all x ∈ X such that for every ε > 0
there exists an (f, π) ∈ Dm(X) with spt(f) ⊂ B(x, ε) and T (f, π) 6= 0.

(2) If f |spt(T ) = 0, then T (f, π1, . . . , πm) = 0.

(3) In case m ≥ 1, T (f, π1, . . . , πm) = 0 whenever some πi is constant on
{f 6= 0} ∩ spt(T ).

This shows in particular that T (f, π1, . . . , πm) depends only on the re-
strictions of f, π1, . . . , πm to spt(T ).

Proof. Let Σ be the set described in (1). Suppose that x 6∈ spt(T ). There
is a closed set C with the property stated in Definition 3.1 such that x 6∈ C.
Then there is an ε > 0 such that T (f, π) = 0 whenever spt(f) ⊂ B(x, ε). This
shows that x 6∈ Σ, so Σ ⊂ spt(T ).

Next we prove that T (f, π) = 0 whenever spt(f) ∩ Σ = ∅. Since spt(f) is
a compact subset of X \ Σ, there exist finitely many open balls U1, . . . , UN
such that spt(f) ⊂

⋃N
k=1 Uk and T (g, π) = 0 whenever {g 6= 0} ⊂ Uk for

some k. Decomposing f by means of a Lipschitz partition of unity (ρk)
N
k=1

on spt(f) with {ρk 6= 0} ⊂ Uk we see that T (f, π) = 0. As Σ is closed, this
shows in particular that spt(T ) ⊂ Σ.

For (2), let βj be the function defined after (2.5), j ∈ N. If f |spt(T ) = 0,
then spt(βj ◦ f) ∩ spt(T ) = ∅. The argument of the previous paragraph then
shows that T (βj ◦ f, π) = 0 for all j, thus T (f, π) = 0 by the continuity of T .

To prove (3), by the linearity, locality, and the alternating property of T
it suffices to show that T (f, π1, . . . , πm) = 0 if π1 = 0 on K := spt

(
f |spt(T )

)
.

Then spt(βj ◦ π1) ∩ K = ∅ for βj as above, j ∈ N. For fixed j, since K is
compact, there is a function σ ∈ D(X) such that σ|K = 1 and βj ◦ π1 = 0 on
some neighborhood of spt(σ). Then (1− σ)f |spt(T ) = 0, hence

T (f, βj ◦ π1, π2, . . . , πm) = T (σf, βj ◦ π1, π2, . . . , πm) = 0

by (2) and the locality of T . Since βj ◦ π1 → π1 in Liploc(X) for j →∞, we
have T (f, π1, . . . , πm) = 0.

Suppose A is a closed subset of X, and TA ∈ Dm(A). For each f ∈ D(X),
the support of f |A in A is compact. Hence one obtains a current T ∈ Dm(X)
by defining

T (f, π1, . . . , πm) := TA(f |A, π1|A, . . . , πm|A) (3.1)

for all (f, π1, . . . , πm) ∈ Dm(X). Clearly spt(T ) = spt(TA). Conversely, the
following holds.

Proposition 3.3. Let T ∈ Dm(X), m ≥ 0, and let A ⊂ X be a locally
compact set containing spt(T ). Then there is a unique current TA ∈ Dm(A)
with the property that

TA(f, π1, . . . , πm) = T (f̄ , π̄1, . . . , π̄m)
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whenever (f, π1, . . . , πm) ∈ Dm(A), (f̄ , π̄1, . . . , π̄m) ∈ Dm(X), f̄ |A = f , and
π̄i|A = πi for i = 1, . . . ,m. Moreover, spt(TA) = spt(T ).

In particular, every current T ∈ Dm(X) may be viewed as a current in its
own support, i.e., as an element of Dm(spt(T )).

Proof. For every compact set K ⊂ A, every l ≥ 0, and every c > 0 there exist
a compact set K ′ ⊂ X containing K, an l′ ≥ l, and an operator

E :
{
f ∈ LipK,l(A) : ‖f‖∞ ≤ c

}
→ LipK′,l′(X)

such that (Ef)|A = f , ‖Ef‖∞ = ‖f‖∞, and ‖Ef − Eg‖∞ = ‖f − g‖∞. In
fact, one may choose σ ∈ D(X) such that 0 ≤ σ ≤ 1 and σ|K = 1 and define

(Ef)(x) := σ(x) min
{
‖f‖∞, infa∈A(f(a) + l d(a, x))

}
,

cf. Sect. 1.1. This has the required properties, with K ′ = spt(σ) and l′ =
l+cLip(σ). Now the result follows easily from Lemma 2.2 and Lemma 3.2.

Suppose for the moment that X is an arbitrary metric space. In view
of (3.1) and Proposition 3.3, it is possible to define the vector space Dm(X)
of general metric m-currents in X as follows: An element

T ∈ Dm(X) (3.2)

is a pair T = (XT, T ) consisting of a closed and locally compact set XT ⊂
X and a current T ∈ Dm(XT) (Definition 2.1) with spt(T ) = XT. For
α ∈ R \ {0}, αT := (XT, αT ), and 0T := (∅, 0). To form the sum of two
elements T,T′ ∈ Dm(X), regard both T and T ′ as currents in XT∪XT′ , put
XT+T′ := spt(T +T ′) ⊂ XT ∪XT′ , and then interpret T +T ′ as a current in
XT+T′ . With this understood, we may write again T instead of T and XT

or spt(T ) instead of XT. We shall briefly return to this discussion at the end
of Sect. 4, but otherwise we shall not pursue it in the present paper.

We now proceed to the definition of the boundary of a metric m-current
in the locally compact space X, which is easily seen to be an (m−1)-current.

Definition 3.4 (boundary). The boundary of a current T ∈ Dm(X), m ≥ 1,
is the current ∂T ∈ Dm−1(X) defined by

∂T (f, π1, . . . , πm−1) := T (σ, f, π1, . . . , πm−1)

for (f, π1, . . . , πm−1) ∈ Dm−1(X), where σ ∈ D(X) is any function such that
σ = 1 on {f 6= 0} ∩ spt(T ).

If τ ∈ D(X) is another such function, then f vanishes on {σ − τ 6=
0}∩ spt(T ), thus T (σ− τ, f, π1, . . . , πm−1) = 0 by Lemma 3.2(3). This shows
that ∂T is well-defined. Clearly ∂T is multilinear and continuous. To verify
the locality of ∂T , suppose that some πi is constant on a neighborhood of
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spt(f), choose σ such that πi is constant on a neighborhood of spt(σ), and
use the locality of T . We have

spt(∂T ) ⊂ spt(T ), (3.3)

and if A ⊂ X and TA are as in Proposition 3.3, then

∂(TA) = (∂T )A. (3.4)

If m ≥ 2, then
∂(∂T ) = 0. (3.5)

To see this, let (f, π) ∈ Dm−2(X), and choose ρ, σ, τ ∈ D(X) such that
ρ|spt(f) = 1, σ|spt(ρ) = 1, and τ |spt(σ) = 1. Then

∂(∂T )(f, π) = ∂T (σ, f, π) = T (τ, σ, f, π) = T (ρ, σ, f, π) = 0;

the third equality holds since f |spt(τ−ρ) = 0, the last since σ|spt(ρ) = 1. The
operator ∂ : Dm(X)→ Dm−1(X) is linear, and if Tn → T weakly in Dm(X),
then ∂Tn → ∂T weakly in Dm−1(X).

The following lemma corresponds to the identity

(∂T )bφ = T b dφ+ (−1)k∂(T bφ)

for a classical m-current T and k-form φ, cf. [14, p. 356].

Lemma 3.5. For T ∈ Dm(X) and (u, v) ∈ Liploc(X) × [Liploc(X)]k, where
m > k ≥ 0, the identity

(∂T )b (u, v) = T b (1, u, v) + (−1)k∂(T b (u, v))

holds.

In case k = 0, the identity simply reads

(∂T )bu = T b (1, u) + ∂(T bu). (3.6)

Note also that
(∂T )b (1, v) = (−1)k∂(T b (1, v)) (3.7)

since T b (1, 1, v) = 0 by the locality of T .

Proof. Let (f, g) ∈ Dm−k−1(X), and choose σ ∈ D(X) with σ|spt(f) = 1.
Then

((∂T )b (u, v))(f, g) = ∂T (uf, v, g)

= T (σ, uf, v, g)

= T (σf, u, v, g) + T (σu, f, v, g)

= T (f, u, v, g) + (−1)kT (σu, v, f, g)

= (T b (1, u, v))(f, g) + (−1)k(T b (u, v))(σ, f, g)

= (T b (1, u, v))(f, g) + (−1)k∂(T b (u, v))(f, g);

the third step uses Proposition 2.4(2), the fourth 2.4(1).
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Next we define push-forwards of metric currents under locally Lipschitz
maps. Since the test functions have compact support, we need to restrict to
proper maps, as in the classical case (cf. [14, p. 359 and 4.1.14]).

Definition 3.6 (push-forward). Suppose that T ∈ Dm(X), m ≥ 0, A ⊂ X is
a locally compact set containing spt(T ), Y is another locally compact metric
space, and F ∈ Liploc(A, Y ) is proper, i.e., F−1(K) is compact whenever
K ⊂ Y is compact. The push-forward of T via F is the current F#T ∈ Dm(Y )
defined by

F#T (f, π1, . . . , πm) := TA(f ◦ F, π1 ◦ F, . . . , πm ◦ F )

for (f, π1, . . . , πm) ∈ Dm(Y ), where TA ∈ Dm(A) is as in Proposition 3.3.

Note that f ◦ F ∈ D(A) since F is locally Lipschitz and proper. One
readily verifies that F#T is a metric current. Since F is a proper continuous
map, F (spt(T )) is closed in Y , and

spt(F#T ) ⊂ F (spt(T )). (3.8)

If m ≥ 1, then
∂(F#T ) = F#(∂T ). (3.9)

To see this, let (f, π) ∈ Dm−1(Y ), and choose σ ∈ D(Y ) such that σ|spt(f) = 1;
then

∂(F#T )(f, π) = (F#T )(σ, f, π) = TA(σ ◦ F, f ◦ F, π ◦ F )

= ∂(TA)(f ◦ F, π ◦ F ) = (∂T )A(f ◦ F, π ◦ F ) = F#(∂T )(f, π).

If Z is another locally compact metric space and G ∈ Liploc(Y, Z) is proper,
then

G#(F#T ) = (G ◦ F )#T. (3.10)

If F ∈ Liploc(X,Y ) is proper, then the operator F# : Dm(X) → Dm(Y ) is
linear, and F#Tn → F#T weakly in Dm(Y ) whenever Tn → T weakly in
Dm(X). Finally, suppose F ∈ Liploc(D,Y ) for some set D ⊂ X containing
spt(T ), and F |spt(T ) is proper. In this situation, we put

F#T :=
(
F |spt(T )

)
#
T ; (3.11)

this is consistent with the above definition in case D is locally compact and
F is proper. When F ∈ Liploc(X,Y ) and F |spt(T ) is proper, it follows that

F#T (f, π1, . . . , πm) = T (σ(f ◦ F ), π1 ◦ F, . . . , πm ◦ F ) (3.12)

for (f, π1, . . . , πm) ∈ Dm(Y ) and any σ ∈ D(X) such that σ = 1 on {f ◦ F 6=
0} ∩ spt(T ).

We compute the push-forward of a current [u] as in Proposition 2.6 (stan-
dard example).
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Lemma 3.7. Suppose u ∈ L1
loc(Rm), m ≥ 1, F ∈ Liploc(Rm,Rm), and

F |spt(u) is proper. Then F#[u] = [v], where v ∈ L1
loc(Rm) satisfies

v(y) =
∑

x∈F−1{y}

u(x) sign(det(DF (x)))

for Lm-almost every y ∈ Rm.

Proof. Let (f, π) ∈ Dm(Rm). Then

F#[u](f, π) =

∫
Rm

u(f ◦ F ) det(D(π ◦ F )) dx =

∫
Rm

h(x) |det(DF (x))| dx

for h(x) := u(x)f(F (x)) det(Dπ(F (x))) sign(det(DF (x))). By the change of
variables formula (cf. [14, Theorem 3.2.3(2)] or [13, 3.3.3], the case n = m),

F#[u](f, π) =

∫
Rm

∑
x∈F−1{y}

h(x) dy =

∫
Rm

v(y)f(y) det(Dπ(y)) dy

= [v](f, π).

This proves the lemma.

4 Mass

We now define the mass of a metric current. Our approach is inspired by both
the classical definition (recalled in (5.2)) and [3, Proposition 2.7]. Currents
with locally finite mass will be of particular interest.

Definition 4.1 (mass). For T ∈ Dm(X), m ≥ 0, and every open set V ⊂ X,
we define the mass MV (T ) of T in V as the least number M ∈ [0,∞] such
that ∑

λ∈Λ

T (fλ, π
λ) ≤M

whenever Λ is a finite set, (fλ, π
λ) = (fλ, π

λ
1 , . . . , π

λ
m) ∈ D(X)× [Lip1(X)]m,

spt(fλ) ⊂ V , and
∑

λ∈Λ |fλ| ≤ 1. The number M(T ) := MX(T ) is the total
mass of T . We denote by

Mm,loc(X)

the vector space of all T ∈ Dm(X) such that MV (T ) <∞ for every open set
V b X, and we put

Mm(X) := {T ∈ Dm(X) : M(T ) <∞}.

Furthermore, we define

‖T‖(A) := inf{MV (T ) : V ⊂ X is open, A ⊂ V }

for T ∈ Dm(X) and every set A ⊂ X.
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Note that for T ∈ D0(X),

MV (T ) = sup{T (f) : f ∈ D(X), spt(f) ⊂ V, |f | ≤ 1},

and by the continuity of T it follows that

MV (T ) = sup{T (f) : f ∈ D(X), |f | ≤ χV }. (4.1)

If T ∈ Dm(X) and A ⊂ X is open, then clearly

‖T‖(A) = MA(T ). (4.2)

The mass is lower semicontinuous with respect to weak convergence: If Tn →
T weakly in Dm(X), then

MV (T ) ≤ lim inf
n→∞

MV (Tn) (4.3)

for every open set V ⊂ X. For T, T ′ ∈ Dm(X) and α ∈ R, we have

‖αT‖ = |α|‖T‖, ‖T + T ′‖ ≤ ‖T‖+ ‖T ′‖, (4.4)

and ‖T‖ = 0 if and only if T = 0. In particular, M is a norm on Mm(X).

Proposition 4.2. For m ≥ 0, (Mm(X),M) is a Banach space.

Proof. Let (Tk)k∈N be a Cauchy sequence in (Mm(X),M). For every ε > 0
there exists an index kε such that

|Tk(f, π)− Tl(f, π)| = |(Tk − Tl)(f, π)| ≤M(Tk − Tl) ≤ ε

whenever k, l ≥ kε and (f, π) ∈ D(X) × [Lip1(X)]m with |f | ≤ 1. In par-
ticular, (Tk(f, π))k∈N is a Cauchy sequence for every such (f, π). It fol-
lows that there is an (m + 1)-linear function T : Dm(X) → R such that
limk→∞ Tk(f, π) = T (f, π) for all (f, π) ∈ Dm(X) and T satisfies the locality
condition (Definition 2.1(3)). Moreover, for ε > 0 and kε as above, we have

|Tk(f, π)− T (f, π)| ≤ ε

whenever k ≥ kε and (f, π) ∈ D(X) × [Lip1(X)]m with |f | ≤ 1. It suffices
to verify the continuity of T on the set of all such (f, π). Suppose that
(f, π), (f1, π1), (f2, π2), . . . belong to this set and (f j , πj)→ (f, π) in Dm(X).
Given ε > 0, there is an index jε such that |Tkε(f j , πj)− Tkε(f, π)| ≤ ε for all
j ≥ jε; then

|T (f j , πj)− T (f, π)|
≤ |T (f j , πj)− Tkε(f j , πj)|+ ε+ |Tkε(f, π)− T (f, π)| ≤ 3ε.
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Hence T is a current. Whenever Λ is a finite set, (fλ, π
λ) ∈ D(X)×[Lip1(X)]m

for λ ∈ Λ, and
∑

λ∈Λ |fλ| ≤ 1, we have∑
λ∈Λ

(Tk − Tl)(fλ, πλ) ≤M(Tk − Tl) ≤ ε

for k, l ≥ kε, hence
∑

λ∈Λ(Tk − T )(fλ, π
λ) ≤ ε for k ≥ kε. We conclude that

M(Tk − T ) ≤ ε for k ≥ kε. Thus T ∈Mm(X) and Tk → T in (Mm(X),M).

Let U ⊂ Rm be an open set. For T ∈ Dm(U), it follows from Theorem 2.5
(chain rule) that

MV (T ) = sup{T (f, id) : f ∈ D(X), spt(f) ⊂ V, |f | ≤ 1}

for every open set V ⊂ U . Given a current [u] as in Proposition 2.6 (standard
example), where u ∈ L1

loc(U), we have

MV ([u]) = sup

{∫
V
uf dx : f ∈ D(V ), |f | ≤ 1

}
=

∫
V
|u| dx (4.5)

for every open set V ⊂ U . In particular, [u] ∈Mm,loc(U).

Theorem 4.3 (mass). Let T ∈ Dm(X), m ≥ 0.

(1) The function ‖T‖ : 2X → [0,∞] (cf. Definition 4.1) is a Borel regular
outer measure.

(2) We have spt(‖T‖) = spt(T ) and ‖T‖(X \ spt(T )) = 0.

(3) For every open set V ⊂ X,

‖T‖(V ) = sup{‖T‖(K) : K ⊂ X is compact, K ⊂ V }.

(4) If T ∈Mm,loc(X), then ‖T‖ is a Radon measure, and

|T (f, π)| ≤
m∏
i=1

Lip
(
πi|spt(f)

) ∫
X
|f | d‖T‖

for all (f, π) = (f, π1, . . . , πm) ∈ Dm(X).

In case m = 0, the inequality in (4) reads

|T (f)| ≤
∫
X
|f | d‖T‖.

In case m ≥ 1, it holds as well with {f 6= 0} ∩ spt(T ) in place of spt(f), by
Lemma 3.2(3) and the extendability of Lipschitz functions. Properties (1),
(2), and (3) hold in general for every (m+1)-linear functional T : Dm(X)→ R;
for m = 0 the same argument occurs in the proof of the Riesz representation
theorem (see e.g. [29, Theorem 4.1]). The proof of (4) corresponds essentially
to that of [3, (2.8)].
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Proof. Clearly ‖T‖(∅) = 0. We claim that

‖T‖(V ) ≤
∞∑
k=1

‖T‖(Vk)

whenever V, V1, V2, . . . ⊂ X are open and V ⊂
⋃∞
k=1 Vk. Let Λ and (fλ, π

λ)
be given as in the definition of MV (T ). There is an index N such that⋃N
k=1 Vk contains the compact set K :=

⋃
λ∈Λ spt(fλ). Then there exist

ρ1, . . . , ρN ∈ D(X) such that
∑N

k=1 ρk = 1 on K and 0 ≤ ρk ≤ 1, spt(ρk) ⊂ Vk
for k = 1, . . . , N . Then∑
λ∈Λ

T (fλ, π
λ) =

∑
λ∈Λ

N∑
k=1

T (ρkfλ, π
λ) =

N∑
k=1

∑
λ∈Λ

T (ρkfλ, π
λ) ≤

N∑
k=1

‖T‖(Vk)

since spt(ρkfλ) ⊂ Vk and
∑

λ∈Λ |ρkfλ| ≤ 1 for k = 1, . . . , N , proving the
claim. It follows that ‖T‖ is an outer measure, and ‖T‖(A ∪B) = ‖T‖(A) +
‖T‖(B) whenever inf{d(x, y) : x ∈ A, y ∈ B} > 0. By Carathéodory’s
criterion, every Borel set is ‖T‖-measurable. If A is an arbitrary set, then
A is contained in a Gδ set B with ‖T‖(B) = ‖T‖(A), by the definition of
‖T‖(A). Thus ‖T‖ is Borel regular. This proves (1).

Assertion (2) follows from Lemma 3.2.
For (3), given an open set V , let α < ‖T‖(V ). Then there exist a finite

set Λ and (fλ, π
λ) ∈ D(X) × [Lip1(X)]m such that K :=

⋃
λ∈Λ spt(fλ) ⊂

V ,
∑

λ∈Λ |fλ| ≤ 1, and s :=
∑

λ∈Λ T (fλ, π
λ) ≥ α. For every open set U

containing K we have ‖T‖(U) ≥ s ≥ α, hence ‖T‖(K) ≥ α.
It remains to prove (4). If T ∈Mm,loc(X), then ‖T‖ is finite on compact

sets, thus T is a Radon measure. For the integral estimate, we first consider
the case m = 0, so that T ∈M0,loc(X). Assuming without loss of generality
that f ≥ 0, we put fs := min{f, s} and observe that, by (4.1),

|T (ft)− T (fs)| = |T (ft − fs)| ≤ ‖T‖({f > s})(t− s)

whenever 0 ≤ s < t. Hence s 7→ T (fs) is a Lipschitz function with
|(d/ds)T (fs)| ≤ ‖T‖({f > s}) for almost every s ≥ 0. Since T (f) =
T (f)− T (f0) =

∫∞
0 (d/ds)T (fs) ds, we conclude that

|T (f)| ≤
∫ ∞

0

∣∣∣∣ ddsT (fs)

∣∣∣∣ ds ≤ ∫ ∞
0
‖T‖({f > s}) ds =

∫
X
f d‖T‖

(for the last step, see e.g. [26, Theorem 8.16]). Now let T ∈ Mm,loc(X),
m ≥ 1. Let first (f, π) ∈ D(X)× [Lip1(X)]m, and consider Tπ := T b (1, π) ∈
D0(X). Then ‖Tπ‖ ≤ ‖T‖, thus Tπ ∈M0,loc(X), and

|T (f, π)| = |Tπ(f)| ≤
∫
X
|f | d‖Tπ‖ ≤

∫
X
|f | d‖T‖.

Finally, given (f, π) ∈ Dm(X), there exists π̃ ∈ [Lip(X)]m such that π̃ = π on
spt(f) and Lip(π̃i) = Lip

(
πi|spt(f)

)
for i = 1, . . . ,m. Then T (f, π) = T (f, π̃)

by the strict locality property (2.5), and the result follows.
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Recall from Sect. 1.2 that we denote by B∞c (X) the algebra of all bounded
Borel functions f : X → R such that spt(f) is compact. From Theorem 4.3(4)
it follows that every T ∈Mm,loc(X), m ≥ 0, naturally extends to a function

T : B∞c (X)× [Liploc(X)]m → R. (4.6)

To see this, note that D(X) is dense in L1(‖T‖) (since Cc(X) is, see e.g. [26,
3.14], and since every element of Cc(X) is a uniform limit of a sequence of
Lipschitz functions, cf. Sect. 1.1). Hence, whenever f ∈ B∞c (X) ⊂ L1(‖T‖)
and U b X is a neighborhood of spt(f), there is a sequence (gk)k∈N in D(X)
such that gk → f in L1(‖T‖) and spt(gk) ⊂ U for all k. By Theorem 4.3(4),
for every π ∈ [Liploc(X)]m, (T (gk, π))k∈N is a Cauchy sequence whose limit is
independent of the choice of (gk)k∈N. Then T (f, π) is defined to be this limit.

Theorem 4.4 (extended functional). Let T ∈ Mm,loc(X), m ≥ 0. The
extension T : B∞c (X)× [Liploc(X)]m → R possesses the following properties:

(1) (multilinearity) T is (m+ 1)-linear on B∞c (X)× [Liploc(X)]m.

(2) (continuity) T (f j , πj) → T (f, π) whenever f, f1, f2, . . . ∈ B∞c (X),
supj ‖f j‖∞ <∞,

⋃
j spt(f j) ⊂ K for some compact set K ⊂ X, f j → f

pointwise on X, and πj → π in [Liploc(X)]m.

(3) (locality) In case m ≥ 1, T (f, π) = 0 whenever some πi is constant on
the support of f ∈ B∞c (X).

(4) For all (f, π) ∈ B∞c (X)× [Liploc(X)]m,

|T (f, π)| ≤
m∏
i=1

Lip
(
πi|spt(f)

) ∫
X
|f | d‖T‖.

Obviously (4) subsumes (3). Moreover, whenever a functional T satis-
fying (4) is linear in the first argument and continuous with respect to the
convergence in [Liploc(X)]m, then T fulfils (2) (cf. (4.9) below). As a conse-
quence of (4) and Theorem 4.3(2), we also have T (f − f̃ , π) = 0 and hence

T (f, π) = T (f̃ , π) (4.7)

whenever f, f̃ ∈ B∞c (X) agree on spt(T ).

Proof. Clearly the extended functional T is (m+ 1)-linear, and

|T (f, π)| ≤
m∏
i=1

Lip(πi|U )

∫
X
|f | d‖T‖ (4.8)

whenever (f, π) ∈ B∞c (X) × [Liploc(X)]m and U b X is a neighborhood of
spt(f).
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Given (f, π), (f1, π1), (f2, π2), . . . and K as in (2), choose a neighborhood
U b X of K. Since πj → π in [Liploc(X)]m, there is a constant l such that
supj Lip(πji |U ) ≤ l and Lip(πi|U ) ≤ l for i = 1, . . . ,m. We have

|T (f j , πj)− T (f, π)| ≤ |T (f j − f, πj)|+ |T (f, πj)− T (f, π)|, (4.9)

and |T (f j − f, πj)| ≤ lm
∫
X |f

j − f | d‖T‖ → 0, by the bounded convergence
theorem. For the second term on the right side, given ε > 0, choose g ∈ D(X)
such that spt(g) ⊂ U and lm

∫
X |f − g| d‖T‖ < ε/3. For j sufficiently large,

|T (g, πj)− T (g, π)| < ε/3 by the continuity of T , hence

|T (f, πj)− T (f, π)|
≤ |T (f − g, πj)|+ |T (f − g, π)|+ |T (g, πj)− T (g, π)| < ε.

This shows (2).
By the locality of T , clearly T (f, π) = 0 if some πi is constant on a

neighborhood of the support of f ∈ B∞c (X). Hence, for the proof of (3),
there is no loss of generality in assuming that πi = 0 on spt(f). Let βj be
the function defined after (2.5). Then βj ◦ πi = 0 on some neighborhood of
spt(f), and letting j tend to infinity we obtain T (f, π) = 0 by means of (2).

Finally, (4) follows from (4.8) by (3) and the extendability of Lipschitz
functions.

The extension of T allows to define T bu more generally for locally
bounded Borel functions u, in particular for characteristic functions of Borel
sets. This complements Definition 2.3.

Definition 4.5. For T ∈ Mm,loc(X) and (u, v) ∈ B∞loc(X) × [Liploc(X)]k,
where m ≥ k ≥ 0, we define T b (u, v) ∈ Mm−k,loc(X) by the same equation
as in Definition 2.3. For a Borel set B ⊂ X,

T bB := T bχB.

Clearly T b (u, v) is a current, and it follows from Theorem 4.4(4) that

MV (T b (u, v)) ≤
k∏
i=1

Lip(vi|V )

∫
V
|u| d‖T‖ (4.10)

for all open sets V ⊂ X (meaning MV (T bu) ≤
∫
V |u| d‖T‖ in case k = 0).

Since the right side is finite if the closure of V is compact, we have T b (u, v) ∈
Mm−k,loc(X).

The next lemma gives information on push-forwards of currents with lo-
cally finite mass.

Lemma 4.6. Suppose T ∈ Mm,loc(X), m ≥ 0, Y is another locally com-
pact metric space, F ∈ Liploc(X,Y ), and F |spt(T ) is proper. Then F#T ∈
Mm,loc(Y ), and the following properties hold:
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(1) For all (f, π) ∈ B∞c (Y ) × [Liploc(Y )]m and any σ ∈ B∞c (X) such that
σ = 1 on {f ◦ F 6= 0} ∩ spt(T ),

F#T (f, π) = T (σ(f ◦ F ), π ◦ F ).

(2) For every Borel set B ⊂ Y ,

M((F#T )bB) ≤ Lip
(
F |F−1(B)∩spt(T )

)m‖T‖(F−1(B)).

Proof. Let V b Y be an open set, and choose σ ∈ D(X) such that σ = 1 on
F−1(V ) ∩ spt(T ). It follows from (3.12) and Theorem 4.3(4) that

MV (F#T ) ≤ Lip
(
F |spt(σ)

)m‖T‖(F−1(V )).

Hence F#T ∈Mm,loc(Y ).

To prove (1), fix π ∈ [Liploc(Y )]m and ρ ∈ D(Y ), ρ ≥ 0. Choose τ ∈ D(X)
such that τ = 1 on {ρ ◦ F 6= 0} ∩ spt(T ), and denote by Φ the set of all
f ∈ B∞c (Y ) such that |f | ≤ ρ and F#T (f, π) = T (τ(f ◦ F ), π ◦ F ). It
follows from Theorem 4.4(2) that Φ is a Baire class. By (3.12), Φ contains all
f ∈ D(Y ) with |f | ≤ ρ and therefore consists of all f ∈ B∞c (Y ) with |f | ≤ ρ,
cf. Sect. 1.2. In view of (4.7), this gives (1).

For (2), suppose (f, π) ∈ D(Y )× [Lip1(Y )]m, and let σ be the character-
istic function of F−1(B)∩ {f ◦F 6= 0} ∩ spt(T ). By (1) and Theorem 4.4(4),

((F#T )bB)(f, π) = F#T (χBf, π) = T (σ(f ◦ F ), π ◦ F )

≤ Lip
(
F |spt(σ)

)m ∫
F−1(B)

|f ◦ F | d‖T‖.

This yields the result.

For a current T ∈ Mm,loc(X) and a Borel set B ⊂ X, we always have
M(T bB) ≤ ‖T‖(B). Equality holds, for instance, if spt(T ) is separable; this
is shown by the following lemma.

Lemma 4.7 (characterizing ‖T‖). Suppose T ∈ Mm,loc(X), m ≥ 0, and
B ⊂ X is either a Borel set that is σ-finite with respect to ‖T‖ or an open
set. Then ‖T‖(B) is the least number such that∑

λ∈Λ

T (fλ, π
λ) ≤ ‖T‖(B)

whenever Λ is a finite set, (fλ, π
λ) ∈ B∞c (X)× [Lip1(X)]m, and

∑
λ∈Λ |fλ| ≤

χB. Moreover

‖T‖bB = ‖T bB‖,

in particular ‖T‖(B) = M(T bB).
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In case m = 0, this says that

‖T‖(B) = sup{T (f) : f ∈ B∞c (X), |f | ≤ χB}. (4.11)

In particular,

‖T‖({x}) = |T (χ{x})| (4.12)

for every x ∈ X.

The following simple example illustrates the σ-finiteness assumption in the
lemma. Let R be any uncountable discrete space, and equip X = R× (−1, 1)
with the metric d defined by

d((r, s), (r′, s′)) :=

{
|s− s′| if r = r′,

1 if r 6= r′.

Note that X is locally compact. Let T ∈M1,loc(X) be the current satisfying

T (f, π) =

∫
X
f(r, s)

dπ

ds
(r, s) dH 1(r, s)

for all (f, π) ∈ D1(X); then ‖T‖ = H 1 (compare (4.5)). Since R is uncount-
able, the closed set B := R × {0} is not σ-finite with respect to ‖T‖, hence
‖T‖bB is not σ-finite. On the other hand, (‖T‖bB)(K) = 0 for all compact
sets K ⊂ X, and T bB = 0.

Proof of Lemma 4.7. We show the first part. By Theorem 4.4(4), the inequal-
ity always holds. To see that ‖T‖(B) is the least number with this property,
let ε > 0, and choose an open set V such that B ⊂ V and ‖T‖(V \ B) ≤ ε.
Note that this is possible by the assumption on B. Let α < ‖T‖(V ). Then
there exist Λ and (fλ, π

λ) as in the definition of MV (T ) such that

α ≤
∑
λ∈Λ

T (fλ, π
λ) =

∑
λ∈Λ

T (χBfλ, π
λ) +

∑
λ∈Λ

T (χV \Bfλ, π
λ)

≤ ‖T‖(B) + ε.

This gives the result.

For the second part, it suffices to prove that ‖T‖(B∩A) = ‖T bB‖(A) for
every Borel set A ⊂ X. To verify this equality, apply the result of the first
part to either side.

In (4.6) we extended the elements of Mm,loc(X) to B∞c (X)×[Liploc(X)]m.
We now extend currents of finite total mass in another direction. This will
also establish the connection to the metric currents of [3].

Let T ∈Mm(X). We consider the restriction of T to D(X)× [Lip(X)]m,
which determines T uniquely (compare Lemma 2.2). Since ‖T‖ is finite,
L1(‖T‖) contains the algebra B∞(X) of bounded Borel functions on X. As
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in Theorem 4.4, it follows from Theorem 4.3(4) that the restriction of T
extends to a function

T : B∞(X)× [Lip(X)]m → R (4.13)

with the following properties:

(1) (multilinearity) T is (m+ 1)-linear.

(2) (continuity) T (f j , πj) → T (f, π) whenever (f, π), (f1, π1), (f2, π2), . . . ∈
B∞(X) × [Lipl(X)]m for some l ≥ 0, supj ‖f j‖∞ < ∞, and (f j , πj) →
(f, π) pointwise on X.

(3) (locality) In case m ≥ 1, T (f, π) = 0 whenever some πi is constant on
spt(f).

(4) For all (f, π) ∈ B∞(X)× [Lip(X)]m,

|T (f, π)| ≤
m∏
i=1

Lip
(
πi|spt(f)

)∫
X
|f | d‖T‖.

Furthermore, by (4) and Lemma 4.7, for every Borel set B ⊂ X, ‖T‖(B) is
the least number such that∑

λ∈Λ

T (fλ, π
λ) ≤ ‖T‖(B) (4.14)

whenever Λ is a finite set, (fλ, π
λ) ∈ B∞(X)× [Lip1(X)]m, and

∑
λ∈Λ |fλ| ≤

χB.
Suppose now, for the remaining part of this section, that X is an arbitrary

metric space. Combining the extension just described with the discussion
of (3.2), we obtain a corresponding normed space (Mm(X),M) of currents
with finite mass and locally compact support in X. By definition, an element
T of Mm(X) is a functional on B∞(XT ) × [Lip(XT )]m for some closed and
locally compact set XT ⊂ X. However, T may now equally well be viewed as
a functional on B∞(X)× [Lip(X)]m (compare (3.1) and Proposition 3.3). A
current

T ∈Mm(X)

is then a function as in (4.13) satisfying (1)–(4) (now for arbitrary X), where
‖T‖ is a finite Borel regular outer measure that is concentrated on its locally
compact support spt(‖T‖) and characterized by (4.14). Since ‖T‖ is finite,
spt(‖T‖) is separable (cf. [14, Theorem 2.2.16]) and hence also σ-compact.
In contrast to Proposition 4.2, the space (Mm(X),M) of all such T , where
M(T ) = ‖T‖(X), is no longer complete in general.

We now denote by (MAK
m (X),M) the Banach space of all m-currents in

the sense of Ambrosio and Kirchheim, viewed as functionals on B∞(X) ×
[Lip(X)]m, cf. [3, Theorem 3.5]. A current

T ∈MAK
m (X)
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is a function as in (4.13) satisfying (1)–(3), moreover there exist a σ-compact
set Σ ⊂ X and a finite Borel measure µ on X such that µ(X \Σ) = 0 and (4)
holds with µ in place of ‖T‖. There is a minimal Borel measure µT with this
property (denoted ‖T‖ in [3]), and M(T ) := µT (X). Regarding the existence
of Σ, see [3, Lemma 2.9] and the remark thereafter; note that this lemma
requires completeness of the underlying metric space.

We now verify that (Mm(X),M) is a dense subspace of (MAK
m (X),M),

so that
(MAK

m (X),M) is the completion of (Mm(X),M). (4.15)

Clearly Mm(X) ⊂ MAK
m (X), and for T ∈ Mm(X), (4.14) readily implies

that ‖T‖(B) = µT (B) for every Borel set B ⊂ X, thus the two definitions of
M(T ) agree. Given T ∈MAK

m (X), there exist compact sets K1 ⊂ K2 ⊂ . . . in
X such that µT (X \ Σ) = 0 for Σ :=

⋃∞
k=1Kk. The restrictions T bKk form

a sequence in Mm(X) converging in (MAK
m (X),M) to T .

In the sequel, X will again denote a locally compact metric space.

5 Normal currents

We turn to the chain complex of normal currents. In the first part of this
section we prove the compactness theorem for locally normal metric currents.
Then we compare metric currents in an open set U ⊂ Rn with classical cur-
rents, in particular we establish an isomorphism for locally normal currents.

Definition 5.1 (normal current). For T ∈ Dm(X) and every open set V ⊂
X, define

NV (T ) := MV (T ) + MV (∂T )

if m ≥ 1 and NV (T ) := MV (T ) if m = 0, and let N(T ) := NX(T ). The
vector space

Nm,loc(X)

of m-dimensional locally normal currents in X consists of all T ∈ Dm(X)
such that NV (T ) < ∞ for all open sets V b X. An m-dimensional normal
current in X is an element of

Nm(X) := {T ∈ Dm(X) : N(T ) <∞}.

Note that (Nm(X),N) is a Banach space, cf. Proposition 4.2. If T ∈
Nm,loc(X) and (u, v) ∈ Liploc(X)× [Liploc(X)]k, where m > k ≥ 0, then

∂(T b (u, v)) = (−1)k
(
(∂T )b (u, v)− T b (1, u, v)

)
by Lemma 3.5. Applying (4.10) twice, we get

MV (∂(T b (u, v))) ≤
k∏
i=1

Lip(vi|V )

(∫
V
|u| d‖∂T‖+ Lip(u|V )‖T‖(V )

)
(5.1)



32 U. Lang

for every open set V ⊂ X. Together with (4.10), this shows that T b (u, v) ∈
Nm−k,loc(X). By Lemma 4.6 and (3.9), push-forwards of locally normal cur-
rents are locally normal.

The following result corresponds to [3, Proposition 5.1].

Lemma 5.2 (uniform continuity of normal currents). Let T ∈ Nm,loc(X),
m ≥ 1.

(1) For every (f, g) ∈ Dm(X) with g2, . . . , gm ∈ Lip1(X),

|T (f, g)| ≤ Lip(f)

∫
spt(f)

|g1| d‖T‖+

∫
X
|fg1| d‖∂T‖.

(2) For all (f, g), (f̃ , g̃) ∈ D(X)× [Lip1(X)]m,

∣∣T (f, g)− T (f̃ , g̃)
∣∣ ≤ ∫

X
|f − f̃ | d‖T‖

+
m∑
i=1

(
Lip(f)

∫
spt(f)

|gi − g̃i| d‖T‖+

∫
X
|f ||gi − g̃i| d‖∂T‖

)
.

Proof. For the proof of (1) we assume m = 1. Let (f, g) ∈ D1(X), and choose
σ ∈ D(X) with σ|spt(f) = 1. By the product rule,

|T (f, g)| ≤ |T (σg, f)|+ |T (σ, fg)| = |T (σg, f)|+ |∂T (fg)|,

hence

|T (f, g)| ≤ Lip(f)

∫
spt(f)

|g| d‖T‖+

∫
X
|fg| d‖∂T‖.

For the proof of (2) we observe that

T (f, g)− T (f̃ , g̃)

= T (f − f̃ , g̃) +

m∑
i=1

T (f, g̃1, . . . , g̃i−1, gi − g̃i, gi+1, . . . , gm),

then we apply the alternating property and (1) to each summand.

Lemma 5.2 yields the following proposition, which will be used repeatedly
in the sequel.

Proposition 5.3 (convergence criterion). Suppose X is compact, F ⊂
Lip1(X) is dense in Lip1(X) with respect to the metric induced by ‖ · ‖∞,
and (Tn)n∈N is a sequence in Nm(X), m ≥ 0, with M := supn N(Tn) < ∞
and the property that the limit limn→∞ Tn(f, g) exists for all (f, g) ∈ F×Fm.
Then (Tn)n∈N converges weakly to some T ∈ Nm(X).
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Proof. We assume m ≥ 1; the case m = 0 is similar but easier. Let
(f, g), (f̃ , g̃) ∈ D(X)× [Lip1(X)]m, and define

R(f, g, f̃ , g̃) := ‖f − f̃‖∞ + max{‖f‖∞,Lip(f)}
m∑
i=1

‖gi − g̃i‖∞.

For every n ∈ N, Lemma 5.2(2) gives

|Tn(f, g)− Tn(f̃ , g̃)| ≤ R(f, g, f̃ , g̃)N(Tn) ≤ R(f, g, f̃ , g̃)M.

Fix (f, g) ∈ Lip1(X) × [Lip1(X)]m for the moment. Given ε > 0, there is
(f̃ , g̃) ∈ F ×Fm such that R(f, g, f̃ , g̃)M ≤ ε, and there is an index n0 such
that |Tn(f̃ , g̃)−Tn′(f̃ , g̃)| ≤ ε for all n, n′ ≥ n0. Then |Tn(f, g)−Tn′(f, g)| ≤ 3ε
for all n, n′ ≥ n0, so (Tn(f, g))n∈N is a Cauchy sequence. Define T : Lip1(X)×
[Lip1(X)]m → R such that

T (f, g) = lim
n→∞

Tn(f, g)

for all (f, g) ∈ Lip1(X) × [Lip1(X)]m. It follows that |T (f, g) − T (f̃ , g̃)| ≤
R(f, g, f̃ , g̃)M for all (f, g), (f̃ , g̃) ∈ Lip1(X) × [Lip1(X)]m. Now it is clear
that T extends uniquely to a current T ∈ Dm(X), and Tn → T weakly. By
the lower semicontinuity of mass, T ∈ Nm(X).

We now arrive at a fundamental result for locally normal currents in a
locally compact metric space X.

Theorem 5.4 (Nm,loc compactness). Suppose (Tn)n∈N is a sequence in
Nm,loc(X), m ≥ 0, such that each spt(Tn) is separable and supn NV (Tn) <∞
for every open set V b X. Then there is a subsequence (Tn(i))i∈N that con-
verges weakly to some T ∈ Nm,loc(X).

Compare [3, Theorem 5.2].

Proof. Assume first that X is compact, so that M := supn N(Tn) < ∞.
Choose a countable set F ⊂ Lip1(X) as in Proposition 5.3. For every (f, g) ∈
F ×Fm,

|Tn(f, g)| ≤ ‖f‖∞M(Tn) ≤ ‖f‖∞M

for all n. A diagonal process then yields a subsequence (Tn(i))i∈N such that the
limit limi→∞ Tn(i)(f, g) exists for every (f, g) ∈ F ×Fm. By Proposition 5.3,
this subsequence converges weakly to some T ∈ Nm(X).

In the general case, the closure of
⋃
n∈N spt(Tn) is separable, thus there is

no loss of generality in assuming that X itself is separable. Then there exists
a countable set Σ ⊂ D(X) such that for every compact set K ⊂ X there is a
σ ∈ Σ with σ|K = 1. Note that

N(Tnbσ) ≤ (‖σ‖∞ + Lip(σ))NV (Tn)
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whenever σ ∈ D(X) and V ⊂ X is an open set containing spt(σ). Hence, for
each σ ∈ Σ, we may apply the first part to the restrictions Tnbσ, temporarily
viewed as currents in the compact set spt(σ). In combination with a diagonal
process, this allows to extract a subsequence (Tn(i))i∈N such that for every
σ ∈ Σ, the Tn(i)bσ converge weakly to some Tσ ∈ Nm(X). Finally, for every
(f, g) ∈ Dm(X), choose σ ∈ Σ with σ|spt(f) = 1 and put T (f, g) := Tσ(f, g).
This defines a locally normal current T in X, and Tn(i) → T weakly.

In the context of classical currents, there is a similar compactness theorem
for currents with locally finite mass, cf. [29, Lemma 26.14]. Such a result is
not available for metric currents. For instance, let (ηj)j∈N be a sequence of
mollifiers on Rm, as in Sect. 1.5. The corresponding currents [ηj ] ∈ Dm(Rm)
(cf. Proposition 2.6) satisfy M([ηj ]) = 1 and spt([ηj ]) ⊂ U(0, 1/j). However,
no subsequence converges weakly to a current in Dm(Rm), for there is no
metric m-current for m ≥ 1 whose support is a single point, cf. Lemma 3.2(3).
Viewed as classical currents, the [ηj ] converge weakly to the classical m-
current T̄ satisfying T̄ (f dx1 ∧ . . . ∧ dxm) = f(0) for all f ∈ C∞c (Rm).

We now examine the relation between metric and classical currents more
closely. To this end we first recall a number of definitions and results from [14].
We adopt the notation from there, except that we put a bar on the symbols
D ,M,N,F to distinguish those spaces of forms, currents, and seminorms
from their metric analogues.

For an open subset U of Rn, D̄m(U) denotes the vector space of compactly
supported C∞ m-forms on U , endowed with the usual locally convex C∞

topology, and D̄m(U) denotes the dual space, consisting of all m-dimensional
currents in U , cf. [29, p. 131f] and [14, 4.1.7]. The comass ‖φ‖ of an m-
covector φ ∈ ΛmRn is the supremum of 〈ξ, φ〉 over all simple m-vectors ξ ∈
ΛmRn with Euclidean norm |ξ| ≤ 1, where 〈·, ·〉 denotes the dual pairing.
The mass ‖ξ‖ of an m-vector ξ ∈ ΛmRn is the supremum of 〈ξ, φ〉 over all
φ ∈ ΛmRn with comass ‖φ‖ ≤ 1, cf. [14, 1.8.1]. The comass norm of an
m-form φ ∈ D̄m(U) is given by

M̄(φ) = supx∈U ‖φ(x)‖.

Let T ∈ D̄m(U). For every open set V ⊂ U , put

M̄V (T ) := sup
{
T (φ) : φ ∈ D̄m(U), spt(φ) ⊂ V, M̄(φ) ≤ 1

}
. (5.2)

The number M̄(T ) := M̄U (T ) ∈ [0,∞] is the mass of T . As in Theorem 4.3,
one obtains a Borel regular outer measure ‖T‖ such that

‖T‖(A) = inf
{
M̄V (T ) : V ⊂ U is open, A ⊂ V

}
for every set A ⊂ U . If ‖T‖ is locally finite, then it is a Radon measure, and
there exists a ‖T‖-measurable m-vector field ξ on U so that ‖ξ(x)‖ = 1 for
‖T‖-almost every x ∈ U and

T (φ) =

∫
U
〈ξ(x), φ(x)〉 d‖T‖(x) ≤

∫
U
‖φ(x)‖ d‖T‖(x)
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for all φ ∈ D̄m(U), cf. [14, 4.1.5 and p. 349] and [29, 26.4–26.8]. The seminorm
N̄ on D̄m(U) and the space N̄m,loc(U) of locally normal currents are defined
in analogy to Definition 5.1. For a compact set K ⊂ U , N̄m,K(U) denotes
the set of all T ∈ D̄m(U) with spt(T ) ⊂ K and N̄(T ) <∞, cf. [14, p. 358].

The flat seminorm of a form φ ∈ D̄m(U) relative to a compact set K ⊂ U
is given by

F̄K(φ) = sup
{

supx∈K ‖φ(x)‖, supx∈K ‖dφ(x)‖
}
,

the respective flat seminorm of a current T ∈ D̄m(U) by

F̄K(T ) = sup
{
T (φ) : φ ∈ D̄m(U), F̄K(φ) ≤ 1

}
.

Note that F̄K(∂T ) ≤ F̄K(T ) for m ≥ 1. If F̄K(T ) <∞, then spt(T ) ⊂ K. If
T ∈ D̄m(U) and spt(T ) ⊂ K, then

F̄K(T ) ≤ M̄(T − ∂S) + M̄(S)

for all S ∈ D̄m+1(U) with spt(S) ⊂ K, and equality holds for at least one such
S. The F̄K-closure of N̄m,K(U) in D̄m(U) is denoted by F̄m,K(U). The space
F̄m(U) of flat chains with compact support in U is the union of all F̄m,K(U).
The space F̄m,loc(U) of locally flat chains consists of all T ∈ D̄m(U) such that
T bσ ∈ F̄m(U) for every σ ∈ C∞c (U), cf. [14, 4.1.12].

Finally, we note that the set
{
T ∈ F̄m,K(U) : M̄(T ) < ∞

}
equals the

M̄-closure of N̄m,K(U) in D̄m(U), cf. [14, 4.1.17], and

F̄m,K(U) =
{
R+ ∂S :R ∈ F̄m,K(U), M̄(R) <∞,

S ∈ F̄m+1,K(U), M̄(S) <∞
}
, (5.3)

cf. [14, p. 382].

Theorem 5.5 (comparison map). Let U ⊂ Rn be an open set, n ≥ 1. For
every m ≥ 0, there exists an injective linear map Cm : Dm(U)→ D̄m(U) such
that

Cm(T )(f dg1 ∧ . . . ∧ dgm) = T (f, g1, . . . , gm)

for all (f, g1, . . . , gm) ∈ C∞c (U)× [C∞(U)]m. The following properties hold:

(1) For m ≥ 1, ∂ ◦ Cm = Cm−1 ◦ ∂.

(2) For all T ∈ Dm(U), ‖T‖ ≤ ‖Cm(T )‖ ≤
(
n
m

)
‖T‖.

(3) The restriction of Cm to Nm,loc(U) is an isomorphism onto N̄m,loc(U).

(4) The image of Cm contains the space F̄m,loc(U) of m-dimensional locally
flat chains in U .
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For currents with finite mass and compact support in Rn this result was
proved by Ambrosio and Kirchheim in [3, Theorem 11.1]. They conjectured
that the image under Cm of {T ∈ Mm(Rn) : spt(T ) is compact} coincides
with the space of m-dimensional flat chains with finite mass and compact
support in Rn. In view of (4) and the many analogous properties of Dm(U)
and F̄m,loc(U), one may similarly ask whether Cm(Dm(U)) = F̄m,loc(U).

Proof. In case m > n, Dm(U) = {0} by (2.10), and also D̄m(U) = {0}. Thus
Cm is the trivial map in this case.

In case m = 0, given T ∈ D0(U), C0(T ) is the functional satisfying
C0(T )(f) = T (f) for all f ∈ D̄0(U) = C∞c (U). The continuity property
of T implies that C0(T ) is sequentially continuous on D̄0(U). This yields
C0(T ) ∈ D̄0(U) (cf. [27, Theorem 6.6]).

Now let T ∈ Dm(U), 1 ≤ m ≤ n. To define Cm(T ), write φ ∈ D̄m(U) as
φ =

∑
λ∈Λ(n,m) φλ dxλ(1) ∧ . . . ∧ dxλ(m), φλ ∈ C∞c (U), and put

Cm(T )(φ) :=
∑

λ∈Λ(n,m)

T (φλ, πλ(1), . . . , πλ(m)),

where πi : U → R is the ith coordinate projection, πi(x) = xi. As above,
due to the continuity of T in the first argument, this defines an element of
D̄m(U). For (f, g1, . . . , gm) ∈ C∞c (U)× [C∞(U)]m, the coefficients of the form
φ = f dg1 ∧ . . . ∧ dgm are given by φλ = f det[Dλ(k)gi]

m
i,k=1. Thus

Cm(T )(φ) =
∑

λ∈Λ(n,m)

T (φλ, πλ(1), . . . , πλ(m)) = T (f, g1, . . . , gm)

by Theorem 2.5 (chain rule).

As for the injectivity of Cm in the case 0 ≤ m ≤ n, it suffices to
note that for every nonzero T ∈ Dm(U) one finds, by approximation, an
(f, g1, . . . , gm) ∈ C∞c (U)× [C∞(U)]m with

Cm(T )(f dg1 ∧ . . . ∧ dgm) = T (f, g1, . . . , gm) 6= 0.

For (1), let T ∈ Dm(U) and (f, g1, . . . , gm−1) ∈ C∞c (U) × [C∞(U)]m−1,
and choose σ ∈ C∞c (U) with σ|spt(f) = 1. Then

∂(Cm(T ))(f dg1 ∧ . . . ∧ dgm−1) = Cm(T )(σ df ∧ dg1 ∧ . . . ∧ dgm−1)

= T (σ, f, g1, . . . , gm−1)

= ∂T (f, g1, . . . , gm−1)

= Cm−1(∂T )(f dg1 ∧ . . . ∧ dgm−1).

To prove (2), let T ∈ Dm(U), and let V ⊂ U be an open set. If Λ
is a finite set, (fλ, g

λ) ∈ C∞c (U) × [C∞(U) ∩ Lip1(U)]m, spt(fλ) ⊂ V , and
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∑
λ∈Λ |fλ| ≤ 1, then the form φ :=

∑
λ∈Λ fλ dg

λ
1 ∧ . . . ∧ dgλm ∈ D̄m(U) has

comass norm M̄(φ) ≤ 1, hence∑
λ∈Λ

T (fλ, g
λ) = Cm(T )(φ) ≤ M̄V (Cm(T )).

This implies that MV (T ) ≤ M̄V (Cm(T )). Conversely, for every form φ =∑
λ∈Λ(n,m) φλ dxλ(1) ∧ . . .∧ dxλ(m) ∈ D̄m(U) with spt(φ) ⊂ V and M̄(φ) ≤ 1,

we have |φλ| ≤ 1 for all λ ∈ Λ(n,m), so that

Cm(T )(φ) =
∑

λ∈Λ(n,m)

T (φλ, πλ(1), . . . , πλ(m)) ≤
(
n

m

)
MV (T ).

Hence M̄V (Cm(T )) ≤
(
n
m

)
MV (T ). This yields (2).

We prove (3). From (1) and (2) it follows that Cm(T ) ∈ N̄m,loc(U) if and
only if T ∈ Nm,loc(U). Hence, since Cm is injective, it suffices to construct
a map C̄m : N̄m,loc(U) → Dm(U) such that Cm(C̄m(T̄ )) = T̄ for all T̄ ∈
N̄m,loc(U). Let T̄ ∈ N̄m,loc(U). We first observe that whenever (f, g), (f̃ , g̃) ∈
C∞c (U)× [C∞(U) ∩ Lip1(U)]m, then∣∣T̄ (f dg1 ∧ . . . ∧ dgm)− T̄ (f̃ dg̃1 ∧ . . . ∧ dg̃m)

∣∣ ≤ ∫
U
|f − f̃ | d‖T̄‖

+
m∑
i=1

(
Lip(f)

∫
spt(f)

|gi − g̃i| d‖T̄‖+

∫
U
|f ||gi − g̃i| d‖∂T̄‖

)
; (5.4)

this is just the “classical” analogue of Lemma 5.2(2). To define C̄m(T̄ ), let
(f, g) ∈ D(U)× [Lip1(U)]m, and choose a sequence ((fk, gk))k∈N in C∞c (U)×
[C∞(U)∩Lip1(U)]m such that fk → f in D(U) and gki → gi locally uniformly
for i = 1, . . . ,m. It follows from (5.4) that (T̄ (fk dgk1 ∧ . . . ∧ dgkm))k∈N is a
Cauchy sequence whose limit is independent of the choice of the sequence
((fk, gk))k∈N. Put

C̄m(T̄ )(f, g) := lim
k→∞

T̄ (fk dgk1 ∧ . . . ∧ dgkm).

Let (f̃ , g̃) ∈ D(U) × [Lip1(U)]m be another such tuple. By choosing the
approximating sequences appropriately, we see that (5.4) holds in the limit,
i.e.,

∣∣C̄m(T̄ )(f, g) − C̄m(T̄ )(f̃ , g̃)
∣∣ is less than or equal to the expression on

the right side of (5.4). Now it is clear that C̄m(T̄ ) extends to a current
C̄m(T̄ ) ∈ Dm(U) satisfying

C̄m(T̄ )(f, g) = T̄ (f dg1 ∧ . . . ∧ dgm)

for all (f, g) ∈ C∞c (U)×[C∞(U)]m. As the left side of this last equality equals
Cm(C̄m(T̄ ))(f dg1 ∧ . . . ∧ dgm), we have Cm(C̄m(T̄ )) = T̄ .

It remains to prove (4). First we observe that for every compact set
K ⊂ U , the restriction of C̄m to N̄m,K(U) naturally extends to a map
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from the set
{
T̄ ∈ F̄m,K(U) : M̄(T̄ ) < ∞

}
, which equals the M̄-closure of

N̄m,K(U) in D̄m(U), into Mm(U). Since the restriction of C̄m is 1-Lipschitz
with respect to M̄ and M, this follows by the completeness of (Mm(U),M)
(cf. Proposition 4.2). For every T̄ ∈ F̄m,K(U) with M̄(T̄ ) < ∞, we still
have Cm(C̄m(T̄ )) = T̄ . Next, let T̄ ∈ F̄m,K(U). Choose R̄ ∈ F̄m,K(U) with
M̄(R̄) < ∞ and S̄ ∈ F̄m+1,K(U) with M̄(S̄) < ∞ such that T̄ = R̄ + ∂S̄,
cf. (5.3), and put C̄m(T̄ ) := C̄m(R̄) + ∂(C̄m+1(S̄)) ∈ Dm(U). Then

Cm(C̄m(T̄ )) = Cm(C̄m(R̄)) + ∂
(
Cm+1(C̄m+1(S̄))

)
= T̄ .

Since Cm is injective, this identity also shows that C̄m(T̄ ) is well-defined.
Finally, suppose that T̄ ∈ F̄m,loc(U). Given (f, g1, . . . , gm) ∈ Dm(U), choose
σ ∈ C∞c (U) such that σ = 1 on some neighborhood of spt(f) and put
C̄m(T̄ )(f, g1, . . . , gm) := C̄m(T̄ bσ)(f, g1, . . . , gm). It is readily checked that
this yields a well-defined C̄m(T̄ ) ∈ Dm(U) with Cm(C̄m(T̄ )) = T̄ .

For an example of a current T ∈ Nm,loc(Rn) with ‖T‖ 6= ‖Cm(T )‖, let
T ∈ N2,loc(R4) be defined by

T (f, g, h) =

∫
R4

f
(
D1gD2h−D2gD1h+D3gD4h−D4gD3h

)
dx

for (f, g, h) ∈ D2(R4). The corresponding classical current T̄ = C2(T ) ∈
N̄2,loc(R4) is given by

T̄ (φ) =

∫
R4

〈e1 ∧ e2 + e3 ∧ e4, φ〉 dx

for φ ∈ D̄2(R4). Note that these currents have boundary zero. To compute
the mass, use the following inequality: If v, w are vectors in R4 with Euclidean
norm |v|, |w| ≤ 1, then

|v1w2 − v2w1 + v3w4 − v4w3| = |〈(−v2, v1,−v4, v3), w〉| ≤ 1,

with equality if and only if w = ±(−v2, v1,−v4, v3). It follows that ‖T‖ = L 4.
The same inequality also shows that the form dx1∧dx2+dx3∧dx4 has comass
norm 1 (a special case of Wirtinger’s inequality, cf. [14, p. 40]), which leads
to ‖T̄‖ = 2L 4.

6 Slicing

We now develop the slicing theory for locally normal m-currents in X with
respect to a locally Lipschitz map π : X → Rk, where 1 ≤ k ≤ m. The slices
are currents of dimension m − k in the level sets of π. General references
are [14, 4.2.1 and 4.3.1–5], [29, 28.6–28.10] for classical currents and [3, pp. 31–
36] for metric currents of finite mass. We first treat the case k = 1, which
suffices for most geometric applications. The general case will be relevant in
Sect. 7 and in Theorems 8.4 and 8.5.
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Definition 6.1 (codimension one slices of normal currents). Suppose T ∈
Nm,loc(X), m ≥ 1, π ∈ Liploc(X), and s ∈ R. The left-hand and right-hand
slices of T at s with respect to π are the currents in Dm−1(X) defined by

〈T, π, s−〉 := ∂(T b {π < s})− (∂T )b {π < s}
= (∂T )b {π ≥ s} − ∂(T b {π ≥ s}),

〈T, π, s+〉 := ∂(T b {π ≤ s})− (∂T )b {π ≤ s}
= (∂T )b {π > s} − ∂(T b {π > s}),

respectively.

Note that since T ∈ Mm,loc(X) and ∂T ∈ Mm−1,loc(X), the restrictions
T bB and (∂T )bB are defined for every Borel set B ⊂ X. Moreover, by
Theorem 4.4(1), T bB + T b (X \B) = T . If (‖T‖+ ‖∂T‖)(π−1{s}) = 0, then
T bπ−1{s} = 0 and (∂T )bπ−1{s} = 0, thus 〈T, π, s−〉 = 〈T, π, s+〉. It follows
that if spt(T ) is separable, then

〈T, π, s−〉 = 〈T, π, s+〉 (6.1)

for all but countably many s ∈ R. We now focus on right-hand slices.
From the two representations of 〈T, π, s+〉 we see that

spt(〈T, π, s+〉) ⊂ π−1{s} ∩ spt(T ) (6.2)

for every s ∈ R. If m ≥ 2, then

〈∂T, π, s+〉 = −∂〈T, π, s+〉 (6.3)

for every s ∈ R.
There is a useful characterization of 〈T, π, s+〉 as a weak limit. For this

we approximate the characteristic function χ{π>s} by a family (us,δ)δ>0 in
Liploc(X) such that

0 ≤ χ{π>s} − us,δ ≤ χ{s<π<s+δ}

on X. (A natural choice is us,δ := γs,δ ◦ π for the piecewise affine (1/δ)-
Lipschitz function γs,δ : R → R with γs,δ|(−∞,s] = 0 and γs,δ|[s+δ,∞) = 1.)
By (3.6), T b (1, us,δ) = (∂T )bus,δ − ∂(T bus,δ), hence

〈T, π, s+〉 − T b (1, us,δ) = (∂T )b (χ{π>s} − us,δ)− ∂(T b (χ{π>s} − us,δ)).

It follows that
〈T, π, s+〉 = lim

δ→0+
T b (1, us,δ) (6.4)

for the weak limit.

Theorem 6.2 (codimension one slices of normal currents). Suppose T ∈
Nm,loc(X), m ≥ 1, and π ∈ Liploc(X).
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(1) For every s ∈ R and every open set V ⊂ X,

‖〈T, π, s+〉‖(V ) ≤ lim inf
δ→0+

1

δ
‖T b (1, π)‖(V ∩ {s < π < s+ δ}).

(2) For all (f, g) ∈ Dm−1(X),∫
R
〈T, π, s+〉(f, g) ds = (T b (1, π))(f, g).

(3) For every ‖T b (1, π)‖-measurable set B ⊂ X with ‖T b (1, π)‖(B) <∞,∫
R
‖〈T, π, s+〉‖(B) ds = ‖T b (1, π)‖(B).

(4) If spt(T ) is separable, then 〈T, π, s+〉 ∈ Nm−1,loc(X) for almost every
s ∈ R. If π|spt(T ) is proper, or if T ∈ Nm(X) and π ∈ Lip(X), then
〈T, π, s+〉 ∈ Nm−1(X) for almost every s ∈ R.

Proof. For every δ > 0, fix a non-decreasing function γδ ∈ C1,1(R) such that
γδ|(−∞,0] = 0 and γδ|[δ,∞) = 1. Let s ∈ R. Define γs,δ(t) := γδ(t−s) for t ∈ R,
and put us,δ := γs,δ ◦ π. By Theorem 2.5 (chain rule),

T b (1, us,δ) = T b (γ′s,δ ◦ π, π) = (T b (1, π))b (γ′s,δ ◦ π).

Hence, for every open set V ⊂ X, (4.10) gives

‖T b (1, us,δ)‖(V ) ≤
∫
V
γ′s,δ ◦ π d‖T b (1, π)‖

≤ Lip(γs,δ)‖T b (1, π)‖(V ∩ {s < π < s+ δ}),

since γ′s,δ ◦ π is zero outside {s < π < s + δ}. Choosing the function γδ
appropriately, with Lip(γδ) ≤ 1/δ + δ say, we obtain (1) by (6.4) and the
lower semicontinuity of mass.

For the proof of (2) we assume (f, g) ∈ D(X) × [Lip1(X)]m−1. Choose
a ∈ R such that spt(f) ⊂ {π > a}. If δ > 0 is fixed, then the function
s 7→ T (f, us,δ, g) is continuous, and an approximation argument using simple
functions shows that∫ ∞

a
T (f, us,δ, g) ds = T

(
f,

∫ ∞
a

us,δ ds, g

)
.

Now we let δ tend to 0. We know that then T (f, us,δ, g) → 〈T, π, s+〉(f, g)
for every s ∈ R. Moreover, since |us,δ| ≤ 1, Lemma 5.2(1) yields the
uniform bound |T (f, us,δ, g)| ≤ Lip(f)‖T‖(spt(f)) +

∫
X |f | d‖∂T‖. Hence,

s 7→ 〈T, π, s+〉(f, g) is a bounded Borel function with compact support, and

lim
δ→0+

∫ ∞
a

T (f, us,δ, g) ds =

∫ ∞
a
〈T, π, s+〉(f, g) ds =

∫
R
〈T, π, s+〉(f, g) ds.
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On the other hand, the functions t 7→
∫∞
a γs,δ(t) ds =

∫ t−a
−∞ γδ(r) dr are 1-

Lipschitz for all δ > 0 and converge uniformly to t 7→ max{t−a, 0}, as δ → 0.
It follows that

lim
δ→0+

T

(
f,

∫ ∞
a

us,δ ds, g

)
= T (f, π − a, g) = T (f, π, g) = (T b (1, π))(f, g).

This proves (2).
Suppose V ⊂ X is an open set such that ‖T b (1, π)‖(V ) < ∞. Then

the function s 7→ ‖T b (1, π)‖(V ∩ {π < s}) is non-decreasing, hence almost
everywhere differentiable. From (1) it follows that

‖〈T, π, s+〉‖(V ) ≤ d

ds
‖T b (1, π)‖(V ∩ {π < s}) (6.5)

for almost every s ∈ R. Hence∫ ∗
R
‖〈T, π, s+〉‖(V ) ds ≤ ‖T b (1, π)‖(V ),

where
∫ ∗
R denotes the upper integral. The reverse inequality∫

∗R
‖〈T, π, s+〉‖(V ) ds ≥ ‖T b (1, π)‖(V )

for the lower integral is a direct consequence of (2). This shows (3) for every
open set V with ‖T b (1, π)‖(V ) < ∞. Since every compact set K ⊂ X is a
difference of two such open sets, the same identity holds for all compact sets,
and we obtain (3) by approximation.

Finally, (4) follows easily from (3), or just (6.5), together with the corre-
sponding result for ∂〈T, π, s+〉 = −〈∂T, π, s+〉 in case m ≥ 2.

Now we pass to slices of codimension k, for 1 ≤ k ≤ m. Our approach is
similar to that of [14, 4.3.1], where slices are defined for arbitrary locally flat
chains (cf. the last remark on p. 437 in [14]). Definition 6.3 generalizes (6.4)
and applies to all metric currents, however we shall prove the existence of the
weak limits in question only for locally normal currents.

For s ∈ R and δ > 0, let now γs,δ : R → R be the piecewise affine (1/δ)-
Lipschitz function with γs,δ|(−∞,s] = 0 and γs,δ|[s+δ,∞) = 1. Then, for y =

(y1, . . . , yk) ∈ Rk and δ > 0, define γy,δ : Rk → Rk such that

γy,δ(z) = (γy1,δ(z1), . . . , γyk,δ(zk))

for all z = (z1, . . . , zk) ∈ Rk.

Definition 6.3 (slices). Suppose 1 ≤ k ≤ m, π ∈ Liploc(X,Rk), and T ∈
Dm(X). We define the slice of T at y ∈ Rk with respect to π as the weak
limit

〈T, π, y〉 := lim
δ→0+

T b (1, γy,δ ◦ π)

whenever it exists and defines an element of Dm−k(X).
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In view of (6.4), in case T ∈ Nm,loc(X) and k = 1 we have

〈T, π, y〉 = 〈T, π, y+〉 (6.6)

for every y ∈ R. (We could equally well arrange that 〈T, π, y〉 = (〈T, π, y−〉+
〈T, π, y+〉)/2, as in [14, 4.3.4], by choosing a more symmetric definition of
〈T, π, y〉.) Before proving the existence of slices of locally normal currents in
the case k > 1 we discuss a few properties that can be derived directly from
the definition.

Let y = (y1, . . . , yk) ∈ Rk, and suppose that 〈T, π, y〉 ∈ Dm−k(X) exists.
For δ > 0, consider the cube

C(y, δ) := [y1, y1 + δ]× . . .× [yk, yk + δ] ⊂ Rk.

A simple Lipschitz partition of unity argument on Rk \ C(y, δ) shows that

spt(T b (1, γy,δ ◦ π)) ⊂ π−1(C(y, δ)) ∩ spt(T ), (6.7)

so that

spt(〈T, π, y〉) ⊂ π−1{y} ∩ spt(T ). (6.8)

If m > k, then (∂T )b (1, γy,δ ◦ π) = (−1)k∂(T b (1, γy,δ ◦ π)) by (3.7), hence

〈∂T, π, y〉 = (−1)k∂〈T, π, y〉. (6.9)

Whenever 0 ≤ l ≤ m−k and (u, v) ∈ Liploc(X)× [Liploc(X)]l, the alternating
property gives (T b (u, v))b (1, γy,δ ◦ π) = (−1)kl(T b (1, γy,δ ◦ π))b (u, v), so

〈T b (u, v), π, y〉 = (−1)kl〈T, π, y〉b (u, v), (6.10)

in particular 〈T bu, π, y〉 = 〈T, π, y〉bu.

Theorem 6.4 (slicing). Suppose 1 ≤ k ≤ m, π ∈ Liploc(X,Rk), T ∈
Nm,loc(X), and spt(T ) is separable.

(1) For L k-almost every y ∈ Rk, the slice 〈T, π, y〉 ∈ Dm−k(X) exists and
is locally normal.

(2) For all (f, g) ∈ B∞c (X)× [Liploc(X)]m−k,∫
Rk
〈T, π, y〉(f, g) dy = (T b (1, π))(f, g).

(3) For every ‖T b (1, π)‖-measurable set B ⊂ X,∫
Rk
‖〈T, π, y〉‖(B) dy = ‖T b (1, π)‖(B).
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Proof. We proceed by induction on k.

Let k = 1. We know from (6.6) and Theorem 6.2 that (1) holds, (2)
holds for all (f, g) ∈ Dm−1(X), and (3) holds for all ‖T b (1, π)‖-measurable
sets with finite measure. Since spt(T ) is separable by assumption, spt(T )
is σ-compact, hence ‖T b (1, π)‖ is σ-finite, and (3) follows. To prove (2) in
the general case, fix g ∈ [Lip1(X)]m−1 and σ ∈ D(X), 0 ≤ σ ≤ 1, and
let K := spt(σ). Denote by Φ the set of all f ∈ B∞c (X) with |f | ≤ σ such
that (2) holds for (f, g). Suppose that f1, f2, . . . ∈ Φ, f ∈ B∞c (X), and fj → f
pointwise on X. For almost every y ∈ R, |〈T, π, y〉(fj , g)| ≤ ‖〈T, π, y〉‖(K)
for all j. Moreover, by (3),

∫
R ‖〈T, π, y〉‖(K) dy = ‖T b (1, π)‖(K) <∞. Now

the bounded convergence theorem and Theorem 4.4(2) imply that f ∈ Φ, so
that Φ is a Baire class. Since Φ contains all f ∈ D(X) with |f | ≤ σ, Φ is the
class of all f ∈ B∞c (X) with |f | ≤ σ, cf. Sect. 1.2. This yields (2).

Now let k ≥ 2, and suppose (1), (2), and (3) hold with k′ := k−1 in place
of k. We write π′ for (π1, . . . , πk′), so that π = (π′, πk). There is a Borel set
D′ ⊂ Rk′ with L k′(Rk′ \D′) = 0 such that 〈T, π′, y′〉 exists as an element of
Nm−k′,loc(X) for every y′ = (y1, . . . , yk′) ∈ D′. By (6.6),

Ty :=
〈
〈T, π′, y′〉, πk, yk

〉
∈ Dm−k(X)

then exists for every y = (y′, yk) ∈ D′ × R. Moreover, for fixed (f, g) ∈
Dm−k(X), the function y 7→ Ty(f, g) is Borel measurable on D′ × R, since

Ty(f, g) = lim
δ→0+

lim
δ′→0+

T (f, γy′,δ′ ◦ π′, γyk,δ ◦ πk, g)

and y 7→ T (f, γy′,δ′ ◦ π′, γyk,δ ◦ πk, g) is continuous on Rk for fixed δ′, δ > 0.
Since each ‖Ty‖ is concentrated on the separable set spt(T ), it also follows
that for every open set V ⊂ X the function y 7→ ‖Ty‖(V ) ∈ [0,∞] is Borel
measurable on D′ × R. Hence, by Fubini’s theorem, the result in the case
k = 1, (6.10), and the induction assumption,∫

Rk
‖Ty‖(V ) dy =

∫
Rk′

∫
R

∥∥〈〈T, π′, y′〉, πk, yk〉∥∥(V ) dyk dy
′

=

∫
Rk′
‖〈T, π′, y′〉b (1, πk)‖(V ) dy′

=

∫
Rk′
‖〈T b (1, πk), π

′, y′〉‖(V ) dy′

= ‖(T b (1, πk))b (1, π′)‖(V )

= ‖T b (1, π)‖(V ).

Reasoning as in the proof of Theorem 6.2 and using again the σ-compactness
of spt(T ) we obtain ∫

Rk
‖Ty‖(B) dy = ‖T b (1, π)‖(B) (6.11)
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for every ‖T b (1, π)‖-measurable set B ⊂ X. Now it follows that Ty ∈
Mm−k,loc(X) for almost every y ∈ Rk, and for fixed (f, g) ∈ Dm−k(X),
the function y 7→ Ty(f, g) is in L1(Rk). By Fubini’s theorem, the result in
the case k = 1, and the induction assumption,∫

Rk
Ty(f, g) dy =

∫
Rk′

∫
R

〈
〈T, π′, y′〉, πk, yk

〉
(f, g) dyk dy

′

=

∫
Rk′
〈T, π′, y′〉(f, πk, g) dy′

= T (f, π′, πk, g)

= (T b (1, π))(f, g).

As in the case k = 1, a Baire class argument then shows that∫
Rk
Ty(f, g) dy = (T b (1, π))(f, g) (6.12)

for all (f, g) ∈ B∞c (X)×[Liploc(X)]m−k. Given φ ∈ B∞loc(Rk), we may replace
f by (φ◦π)f ; since φ◦π = φ(y) on spt(Ty) ⊂ π−1{y}, this yields the identity∫

Rk
φ(y)Ty(f, g) dy = (T b (φ ◦ π, π))(f, g). (6.13)

Now we show that for almost every y ∈ Rk, the slice 〈T, π, y〉 exists as
an element of Nm−k,loc(X) and coincides with Ty. By (6.12) and (6.11), this
will complete the proof of the theorem.

We first assume that X is compact, so that T is normal and π is Lipschitz.
Then we fix a countable set F ⊂ Lip1(X) that is dense in Lip1(X) with
respect to ‖ · ‖∞. Put Tπ := T b (1, π) ∈ Nm−k(X) for the moment, and let
y ∈ Rk and δ > 0. Using (6.7), (4.7), and Theorem 4.4 we get

T b (1, γy,δ ◦ π) = T b (χC(y,δ) ◦ π, γy,δ ◦ π)

=
1

δk
T b (χC(y,δ) ◦ π, π) =

1

δk
Tπbπ−1(C(y, δ)). (6.14)

Similarly, if m > k, applying (3.7) twice we obtain

∂
(
T b (1, γy,δ ◦ π)

)
= (−1)k(∂T )b (1, γy,δ ◦ π)

= (−1)k
1

δk
(
(∂T )b (1, π)

)
bπ−1(C(y, δ)) =

1

δk
(∂Tπ)bπ−1(C(y, δ)).

For every Borel set C ⊂ Rk, put

µ(C) := (‖Tπ‖+ ‖∂Tπ‖)(π−1(C))

if m > k, and µ(C) := ‖Tπ‖(π−1(C)) if m = k. This defines a finite Borel
measure µ on Rk. Let Mµ : Rk → [0,∞] be the maximal function of µ. Then

N
(
T b (1, γy,δ ◦ π)

)
=

1

δk
µ(C(y, δ)) ≤ αkkk/2Mµ(y).
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For all (f, g) ∈ Dm−k(X), (6.14) and (6.13) give

(
T b (1, γy,δ ◦ π)

)
(f, g) =

1

δk
(
T b (χC(y,δ) ◦ π, π)

)
(f, g)

=
1

δk

∫
C(y,δ)

Tz(f, g) dz. (6.15)

Almost every y ∈ Rk satisfies Mµ(y) < ∞ and is a Lebesgue point of z 7→
Tz(f, g) for all (f, g) ∈ F ×Fm−k. Applying Proposition 5.3 (convergence
criterion) and (1.4) we conclude that for every such y, the slice 〈T, π, y〉 exists
as an element of Nm−k(X) and coincides with Ty.

In the general case, when X is locally compact and spt(T ) is separable,
there is no loss of generality in assuming X itself to be separable. Then we
choose a countable set Σ ⊂ D(X) as in the proof of Theorem 5.4. The above
argument together with (6.10) then shows that for almost every y ∈ Rk, the
slice 〈T bσ, π, y〉 exists as an element of Nm−k(X) and coincides with Tybσ
for every σ ∈ Σ. The general result follows.

The following theorem will be used in the proof of Theorem 8.5 (rectifiable
slices).

Theorem 6.5 (iterated slices). Suppose k, k′ ≥ 1, m ≥ k + k′, π ∈
Liploc(X,Rk), π′ ∈ Liploc(X,Rk

′
), T ∈ Nm,loc(X), and spt(T ) is separable.

Then

〈T, (π, π′), (y, y′)〉 =
〈
〈T, π, y〉, π′, y′

〉
for L k+k′-almost every (y, y′) ∈ Rk+k′.

In case k′ = 1 the result is clear from the preceding proof. Our argument
for the general case follows [14, Theorem 4.3.5].

Proof. We assume that X is compact, so that T ∈ Nm(X) and (π, π′) ∈
Lip(X,Rk+k′). The theorem easily follows from the result in this special
case. We fix a countable set F ⊂ Lip1(X) that is dense in Lip1(X) with
respect to ‖ · ‖∞.

From Theorem 6.4 and Fubini’s theorem we conclude that there is a
Borel set D1 ⊂ Rk+k′ with L k+k′(Rk+k′ \ D1) = 0 such that whenever
(y, y′) ∈ D1, both 〈T, π, y〉 and 〈T, (π, π′), (y, y′)〉 exist and are normal cur-
rents, L k′(({y} × Rk′) \D1) = 0, and∫

Rk′
N
(
〈T, (π, π′), (y, z′)〉

)
dz′ <∞. (6.16)

For δ′ > 0 and (y, y′) ∈ D1 we define a functional Aδ′(y, y
′) on Dm−k−k′(X)

by

Aδ′(y, y
′)(f, g) :=

1

(δ′)k

∫
C(y′,δ′)

〈T, (π, π′), (y, z′)〉(f, g) dz′.
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Now (6.16) with M in place of N shows that 〈T, (π, π′), (y, ·)〉(f, g) ∈ L1(Rk′)
and, in conjunction with the bounded convergence theorem, that Aδ′(y, y

′)
satisfies the continuity condition for metric currents. Hence Aδ′(y, y

′) is a
current; since

N(Aδ′(y, y
′)) ≤ 1

(δ′)k

∫
C(y′,δ′)

N
(
〈T, (π, π′), (y, z′)〉

)
dz′, (6.17)

it is normal by (6.16). Now let δ, δ′ > 0 and (y, y′) ∈ D1. For all (f, g) ∈
Dm−k−k′(X), we obtain

T (f, γy,δ ◦ π, γy′,δ′ ◦ π′, g)

=
1

δk(δ′)k

∫
C(y,δ)×C(y′,δ′)

〈T, (π, π′), (z, z′)〉(f, g) d(z, z′)

=
1

δk

∫
C(y,δ)

Aδ′(z, y
′)(f, g) dz (6.18)

by the same argument as for (6.15), and by Fubini’s theorem. Note that the
left side of this identity is continuous in (y, y′), moreover the limit for δ → 0
and for fixed δ′ > 0 is equal to 〈T, π, y〉(f, γy′,δ′ ◦ π′, g). Let D2 be the Borel
set of all (y, y′) ∈ D1 where the limit of (6.18) equals Aδ′(y, y

′)(f, g) for all
rational numbers δ′ > 0 and (f, g) ∈ F ×Fm−k−k′ . Then L k+k′(D1 \D2) =
0, and for every (y, y′) ∈ D2, the equality

〈T, π, y〉(f, γy′,δ′ ◦ π′, g) = Aδ′(y, y
′)(f, g) (6.19)

holds for all rational numbers δ′ > 0 and (f, g) ∈ F ×Fm−k−k′ , hence for
all δ′ > 0 and (f, g) ∈ Dm−k−k′(X) by continuity and multilinearity. Now we
pass to the limit for δ′ → 0. Let D3 be the Borel set of all (y, y′) ∈ D2 where
the limit of the right side of (6.19) coincides with 〈T, (π, π′), (y, y′)〉(f, g) for
all (f, g) ∈ F ×Fm−k−k′ and where

supδ′>0

1

(δ′)k

∫
C(y′,δ′)

N
(
〈T, (π, π′), (y, z′)〉

)
dz′ <∞. (6.20)

Then L k+k′(D2 \D3) = 0, and

lim
δ′→0

(
〈T, π, y〉b (1, γy′,δ′ ◦ π′)

)
(f, g) = 〈T, (π, π′), (y, y′)〉(f, g)

for all (y, y′) ∈ D3 and (f, g) ∈ F ×Fm−k−k′ . Combining (6.19), (6.17), and
(6.20), we have supδ′>0 N

(
〈T, π, y〉b (1, γy′,δ′ ◦ π′)

)
< ∞, so it follows from

Proposition 5.3 (convergence criterion) that〈
〈T, π, y〉, π′, y′

〉
= 〈T, (π, π′), (y, y′)〉

for all (y, y′) ∈ D3.
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We conclude this section with a result that will be used in the proof of
Theorem 8.9 (closure theorem).

Proposition 6.6 (slicing convergent sequences). Suppose m ≥ 1, (Tn)n∈N
is a sequence in Nm,loc(X) that converges weakly to some T ∈ Nm,loc(X),
each spt(Tn) is separable, and supn NV (Tn) <∞ for every open set V b X.
Let π ∈ Liploc(X). Then for L 1-almost every s ∈ R there is a subsequence
(Tn(i))i∈N such that

〈Tn(i), π, s〉 → 〈T, π, s〉
weakly and supi NV (〈Tn(i), π, s〉) <∞ for every open set V b X.

Compare [36, p. 208] and [3, Proposition 8.3].

Proof. We assume without loss of generality that X is compact.
We first show the existence of a subsequence (Tn(i))i∈N such that for all but

countably many s ∈ R, 〈Tn(i), π, s〉 → 〈T, π, s〉 weakly for i → ∞. Consider
the measures µn on R defined by µn(B) := (‖Tn‖ + ‖∂Tn‖)(π−1(B)) for
all Borel sets B ⊂ R. Note that supn µn(R) < ∞. Choose a subsequence
(µn(i))i∈N that converges weakly∗ to some finite Borel measure µ on R (see
e.g. [13, Sect. 1.9]). Now let s ∈ R be such that µ({s}) = 0. Suppose
(f, g) ∈ D(X) × [Lip1(X)]m, and |f | ≤ 1. Given ε > 0, choose δ > 0 such
that ‖T‖({s < π < s+δ}) < ε/3 and µ([s, s+δ]) < ε/3, and let us,δ ∈ Lip(X)
be given as in (6.4). Then∣∣(T bχ{π>s})(f, g)− (T bus,δ)(f, g)

∣∣ = |T ((χ{π>s} − us,δ)f, g)|
≤ ‖T‖({s < π < s+ δ}) < ε/3.

Since lim supi→∞ µn(i)([s, s+ δ]) ≤ µ([s, s+ δ]), it follows similarly that∣∣(Tn(i)bχ{π>s})(f, g)− (Tn(i)bus,δ)(f, g)
∣∣ ≤ µn(i)([s, s+ δ]) < ε/3

for all sufficiently large i. Moreover, since Tn(i) → T weakly,∣∣(Tn(i)bus,δ)(f, g)− (T bus,δ)(f, g)
∣∣ < ε/3

for i sufficiently large. Combining these estimates we conclude that

Tn(i)bχ{π>s} → T bχ{π>s}
weakly for i→∞, and a completely analogous argument shows that

(∂Tn(i))bχ{π>s} → (∂T )bχ{π>s}
weakly. By (6.6), 〈Tn(i), π, s〉 → 〈T, π, s〉 weakly for i→∞.

Applying Theorem 6.2(3) and (6.3) we obtain∫
R

lim inf
n→∞

N(〈Tn, π, s〉) ds ≤ lim inf
n→∞

∫
R

N(〈Tn, π, s〉) ds

≤ Lip(π) supn N(Tn) <∞.

Hence, for L 1-almost every s ∈ R, there is a subsequence (Tn(i))i∈N such that
supi N(〈Tn(i), π, s〉) <∞. Together with the first part of the proof this yields
the result.
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7 Projections to Euclidean spaces

The main purpose of this section is to establish Theorem 7.6, the central piece
of the proof of the rectifiablity criterion used later on, Theorem 8.4. We start
by recalling a few basic facts about functions of bounded variation (cf. [13,
Ch. 5], [29, §6]).

Let U ⊂ Rm be an open set, m ≥ 1, and let u ∈ L1
loc(U). For an open set

A ⊂ U ,

VA(u) := sup

{∫
A
udiv(ϕ) dx : ϕ ∈ C1

c (A,Rm), |ϕ| ≤ 1

}
defines the variation of u in A. The number VA(u) is unchanged if C1

c (A,Rm)
is replaced by C∞c (A,Rm) or Lipc(A,Rm) = [D(A)]m. Then u is a function
of locally bounded variation in U if VA(u) < ∞ for every open set A b U ,
and BVloc(U) denotes the vector space of all such functions. Similarly, u is a
function of bounded variation in U if u ∈ L1(U) and VU (u) <∞, and BV(U)
denotes the vector space of all such functions. Note that for u ∈ Liploc(U),
the integration by parts formula∫

A
udiv(ϕ) dx = −

∫
A
〈∇u, ϕ〉 dx

holds for all ϕ ∈ C1
c (A,Rm), which implies that VA(u) =

∫
A |∇u| dx. In par-

ticular, Liploc(U) ⊂ BVloc(U). The representation theorem for u ∈ BVloc(U)
says that there exist a Radon measure on U , denoted by |Du|, and a |Du|-
measurable vector field τ on U such that |τ(x)| = 1 for |Du|-almost every
x ∈ U and ∫

U
udiv(ϕ) dx = −

∫
U
〈ϕ, τ〉 d|Du| (7.1)

for ϕ ∈ C1
c (U,Rm) or even ϕ ∈ Lipc(U,Rm) = [D(U)]m. The Radon measure

|Du| is characterized by |Du|(A) = VA(u) for all open sets A ⊂ U .

Functions of bounded variation will be used through the following known
fact (cf. the proof of [3, Lemma 7.3] and the references there), which expresses
a Lipschitz property in terms of the maximal function of the variation mea-
sure.

Lemma 7.1. Suppose that u ∈ BV(Rm), m ≥ 1. Whenever x, x′ are two
Lebesgue points of u, then

|u(x)− u(x′)| ≤ cm
(
M|Du|(x) +M|Du|(x

′)
)
|x− x′|

for some constant cm depending only on m.

Thus, by (1.3), u is 2cms-Lipschitz outside a set of Lebesgue measure at
most 3ms−1|Du|(Rm), for any s > 0.
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Proof. Suppose first that u ∈ C1(Rm) in addition, and let r > 0. Since
u(z)− u(0) =

∫ 1
0 〈∇u(tz), z〉 dt for z ∈ Rm, it follows that∫

B(0,r)

|u(z)− u(0)|
|z|

dz ≤
∫

B(0,r)

∫ 1

0
|∇u(tz)| dt dz

=

∫ 1

0

∫
B(0,r)

|∇u(tz)| dz dt

=

∫ 1

0

1

tm

∫
B(0,tr)

|∇u(z)| dz dt

≤ αmrmM|Du|(0).

For a general u ∈ BV(Rm), a smoothing argument then shows that∫
B(x,r)

|u(z)− u(x)|
|z − x|

dz ≤ αmrmM|Du|(x)

for every Lebesgue point x of u (cf. [2, Remark 3.8]).

Now suppose that x, x′ ∈ Rm are two Lebesgue points of u, and r :=
|x− x′| > 0. Put c := 2αmr

m/Lm(B(x, r) ∩ B(x′, r)),

A :=
{
z ∈ B(x, r) : |u(x)− u(z)| > cM|Du|(x)|x− z|

}
,

and define A′ similarly with x′ in place of x. The above estimate implies that
Lm(A),Lm(A′) < αmr

m/c and thus

Lm(A ∪A′) < 2αmr
m/c = Lm(B(x, r) ∩ B(x′, r)).

In particular, B(x, r) ∩ B(x′, r) \ (A ∪ A′) is non-empty; for any z in this set
we get

|u(x)− u(x′)| ≤ |u(x)− u(z)|+ |u(x′)− u(z)|
≤ cM|Du|(x) |x− z|+ cM|Du|(x

′) |x′ − z|.

Since |x− z|, |x′ − z| ≤ r = |x− x′|, the result follows.

The next result relates normal currents of the type described in Propo-
sition 2.6 (standard example) to functions of bounded variation, cf. [29, Re-
mark 26.28] and [3, Theorem 3.7].

Theorem 7.2 (normal m-currents in Rm). Let U ⊂ Rm be an open set,
m ≥ 1.

(1) If u ∈ L1
loc(U), then MA(∂[u]) = VA(u) for every open set A ⊂ U .

(2) If T ∈ Nm,loc(U), then T = [u] for some u ∈ BVloc(U), and ‖∂T‖ =
|Du|.
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In particular, if T ∈ Nm(U), then T = [u] for some u ∈ BV(U).

Proof. Let u ∈ L1
loc(U). Denote by π the identity map on U , πk(x) = xk.

Let ϕ ∈ C∞c (U,Rm), and choose σ ∈ D(U) such that σ|spt(ϕ) = 1. By
Theorem 2.5 (chain rule),∫

U
udiv(ϕ) dx = [u](div(ϕ), π)

=
m∑
k=1

(−1)k−1[u](σ, ϕk, π1, . . . , πk−1, πk+1, . . . , πm)

=
m∑
k=1

(−1)k−1∂[u](ϕk, π1, . . . , πk−1, πk+1, . . . , πm).

Assuming that A ⊂ U is an open set with MA(∂[u]) <∞, we conclude that
VA(u) ≤ mMA(∂[u]) <∞. In particular u ∈ BV(A), and the representation
formula (7.1) holds on A. Let τ be a corresponding vector field on A. To show
that in fact VA(u) ≤ MA(∂[u]), let v ∈ Rm be a unit vector, and complete
it to an orthonormal basis (v, e1, . . . , em−1) of Rm. Define gi ∈ Lip1(U) by
gi(x) := 〈x, ei〉. For f, σ ∈ D(U) with spt(f) ⊂ A and σ|spt(f) = 1, we have∫

A
〈fv,−τ〉 d|Du| =

∫
A
uDvf dx = [u](σ, f, g1, . . . , gm−1)

= ∂[u](f, g1, . . . , gm−1) ≤
∫
A
|f | d‖∂[u]‖.

Now an approximation argument shows that |Du|(A) ≤ ‖∂[u]‖(A), thus
VA(u) ≤MA(∂[u]).

To prove the reverse inequality, suppose that g1, . . . , gm−1 ∈ C2(U). Con-
sider the matrix D(g1, . . . , gm−1), and let Mk be the (m− 1)× (m− 1) minor
obtained by deleting the kth column. Let ϕ be the C1 vector field on U with
components ϕk = (−1)k−1 det(Mk). Note that div(ϕ) = 0 since

0 = d(dg1 ∧ . . . ∧ dgm−1) = div(ϕ) dx1 ∧ . . . ∧ dxm.

Now let f ∈ C1
c (U). Then

det(D(f, g1, . . . , gm−1)) = 〈∇f, ϕ〉 = div(fϕ)− f div(ϕ) = div(fϕ)

on U . Hence, for any σ ∈ D(U) with σ|spt(f) = 1,

∂[u](f, g1, . . . , gm−1) = [u](σ, f, g1, . . . , gm−1) =

∫
U
udiv(fϕ) dx.

If, in addition, g1, . . . , gm−1 ∈ Lip1(U), then |ϕ| ≤ 1 by the Cauchy–Binet
formula (see e.g. [2, Proposition 2.69]). It follows easily that MA(∂[u]) ≤
VA(u) for every open set A ⊂ U . This completes the proof of (1).
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Let T ∈ Nm,loc(U). Specializing Theorem 6.4(2) to the case whereX = U ,
k = m, and π : U → Rk is the inclusion map, we get

T (f, π) =

∫
U
〈T, π, x〉(f) dx =

∫
U
f(x)u(x) dx

for every f ∈ B∞c (U), where u(x) := 〈T, π, x〉(σ) for any σ ∈ D(U) with
σ(x) = 1 (note that spt(〈T, π, x〉) ⊂ {x}). By (2.11) and a smoothing argu-
ment it follows that T = [u]. Together with (1), this proves (2).

Next we discuss two auxiliary results for currents T ∈ Mm,loc(X). We
look at π#(T b f) for f ∈ B∞c (X) and π ∈ Lip(X,Rm). Note that since
spt(T b f) is compact, the push-forward is defined, moreover π#(T b f) is an
element of Mm(Rm) with compact support. In order to gain information
on the local structure of T , we would like to know that π#(T b f) is of the
standard type [u] for some u ∈ L1(Rm). Except for m = 1 and m = 2, it is
an open problem whether every S ∈Mm(Rm) is of this form, cf. [3, p. 15 and
p. 21]. However, by Theorem 7.2, this is the case if S is normal, in particular
π#(T b f) is of standard type if T is locally normal and f ∈ D(X). Thus, for
the purpose of this paper, the following result suffices.

Lemma 7.3. Let T ∈Mm,loc(X), m ≥ 1. For π ∈ Lip(X,Rm), each of the
following two statements implies the other:

(1) Whenever f ∈ D(X), then π#(T b f) = [uf ] for some uf ∈ L1(Rm).

(2) Whenever B b X is a Borel set, then π#(T bB) = [uB] for some uB ∈
L1(Rm).

Proof. Suppose first that (fk)k∈N is a sequence in B∞c (X) that converges in
L1(‖T‖) to some f ∈ B∞c (X). Suppose further that π ∈ Lip1(X,Rm) and
π#(T b fk) = [uk] for some uk ∈ L1(Rm). Then [uk − ul] = [uk] − [ul] =
π#(T b fk)− π#(T b fl) = π#(T b (fk − fl)), and∫

Rm
|uk − ul| dx = M([uk − ul]) = M

(
π#(T b (fk − fl))

)
≤M(T b (fk − fl)) ≤

∫
X
|fk − fl| d‖T‖

by (4.5), Lemma 4.6(2), and (4.10). Since fk → f in L1(‖T‖), by the com-
pleteness of L1(Rm) there is a function u ∈ L1(Rm) such that uk → u
in L1(Rm). By passing to the M-limit on either side of the identity
π#(T b fk) = [uk], for k → ∞, we conclude that π#(T b f) = [u]. Now, to
see that (1) implies (2), apply this procedure to the characteristic function
f of a Borel set B b X and an approximating sequence (fk)k∈N in D(X).
To show that (2) implies (1), choose (fk)k∈N such that each fk is a finite
linear combination of characteristic functions of compact sets, and such that
fk → f ∈ D(X) in L1(‖T‖).
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Proposition 7.4 (absolute continuity). Let T ∈Mm,loc(X), m ≥ 1.

(1) If condition (1) or (2) of Lemma 7.3 holds for some π ∈ Lip(X,Rm),
then

‖T b (1, π)‖(π−1(N) ∩B) = 0

whenever N ⊂ Rm is a Borel set with Lm(N) = 0 and B ⊂ X is a Borel
set that is σ-finite with respect to ‖T‖.

(2) If condition (1) or (2) of Lemma 7.3 holds for all π ∈ Lip(X,Rm), then
‖T‖(A) = 0 for every set A ⊂ X with H m(A) = 0.

Together with Theorem 7.2, this shows that for every T ∈ Nm,loc(X), ‖T‖
is absolutely continuous with respect to H m (cf. [3, Theorem 3.9]).

Proof. We assume that condition (1) of Lemma 7.3 holds for some π ∈
Lip(X,Rm). Suppose N ⊂ Rm is a bounded Borel set with Lm(N) = 0.
Let f ∈ D(X), and choose σ ∈ D(X) with σ|spt(f) = 1. By assumption,
π#(T b f) = [uf ] for some uf ∈ L1(Rm). We abbreviate Tπ := T b (1, π); note
that Tπ ∈M0,loc(X). Using Lemma 4.6(1) we obtain

(Tπbπ−1(N))(f) = T ((χN ◦ π)f, π) = (T b f)(σ(χN ◦ π), π)

= π#(T b f)(χN , id) = [uf ](χN , id) =

∫
Rm

ufχN dx = 0.

As this holds for all f ∈ D(X), we have Tπbπ−1(N) = 0. Let B ⊂ X be a
Borel set that is σ-finite with respect to ‖T‖. By Lemma 4.7, ‖Tπ‖(π−1(N)∩
B) = 0, and it follows that the same identity holds if N is unbounded.

To prove (2), let A ⊂ X be a Borel set with H m(A) = 0. Then A
is separable and hence σ-finite with respect to ‖T‖. Let π ∈ Lip(X,Rm).
Since Lm(π(A)) = 0, there is a Borel set N ⊂ Rm with Lm(N) = 0 that
contains π(A). Then ‖Tπ‖(A) = ‖Tπ‖(π−1(N) ∩ A) = 0 by (1). Hence
T (f, π) = Tπ(f) = 0 for all f ∈ B∞c (X) with {f 6= 0} ⊂ A. As this holds for
all π ∈ Lip(X,Rm), we conclude from Lemma 4.7 that ‖T‖(A) = 0.

We conclude this section with two results for locally normal currents that
relate the previous discussion to the slicing theory.

Theorem 7.5 (0-dimensional slices). Suppose T ∈ Nm,loc(X), m ≥ 1, and
π ∈ Liploc(X,Rm). Whenever f ∈ B∞c (X), then π#(T b f) = [uf ] for some
unique uf ∈ L1(Rm), moreover uf ∈ BV(Rm) if f ∈ D(X). If spt(T ) is
separable, and if f ∈ B∞c (X), then

〈T, π, y〉(f) = uf (y)

for Lm-almost every y ∈ Rm.
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Proof. If f ∈ D(X), then π#(T b f) ∈ Nm(Rm), hence π#(T b f) = [uf ] for
some uf ∈ BV(Rm) by Theorem 7.2. The argument of the proof of Lemma 7.3
then shows that π#(T b f) = [uf ] for some uf ∈ L1(Rm) in the general case,
when f ∈ B∞c (X). Clearly (the equivalence class) uf ∈ L1(Rm) is uniquely
determined.

Now suppose spt(T ) is separable, and f ∈ B∞c (X). Choose σ ∈ D(X)
with σ|spt(f) = 1. For all φ ∈ D(Rm), Theorem 6.4(2) (the case k = m) gives∫

Rm
φ(y)〈T, π, y〉(f) dy = (T b (1, π))((φ ◦ π)f)

= (T b f)(σ(φ ◦ π), π)

= π#(T b f)(φ, id)

= [uf ](φ, id)

=

∫
Rm

φ(y)uf (y) dy.

We conclude that 〈T, π, y〉(f) = uf (y) for Lm-almost every y ∈ Rm.

Theorem 7.6 (partial rectifiability). Suppose T ∈ Nm,loc(X), m ≥ 1, spt(T )
is separable, and π ∈ Liploc(X,Rm). Put

A :=
{
x ∈ X : 〈T, π, π(x)〉 ∈M0,loc(X) and ‖〈T, π, π(x)〉‖({x}) > 0

}
.

Then there exists a countable family of pairwise disjoint compact sets Bi ⊂ A
such that ‖T b (1, π)‖

(
A \

⋃
iBi
)

= 0 and π|Bi is bi-Lipschitz for every i.

Compare [3, Theorem 7.4].

Proof. We assume without loss of generality that X is compact, so that T ∈
Nm(X) and π ∈ Lip(X,Rm). By Theorem 7.5, for every f ∈ D(X) there is a
function uf ∈ BV(Rm) such that π#(T b f) = [uf ]. Hence, using Theorem 7.2,
Lemma 4.7 and Lemma 4.6(2), we obtain

|Duf |(B) = ‖∂[uf ]‖(B) = ‖∂(π#(T b f))‖(B) = ‖π#(∂(T b f))‖(B)

≤ Lip(π)m−1‖∂(T b f)‖(π−1(B))

for every Borel set B ⊂ Rm. Suppose that |f | ≤ 1 and Lip(f) ≤ 1. Since
∂(T b f) = (∂T )b f − T b (1, f), cf. (3.6), it follows that

|Duf |(B) ≤ Lip(π)m−1(‖T‖+ ‖∂T‖)(π−1(B)) =: µ(B)

for all Borel sets B ⊂ Rm. Note that the finite Borel measure µ so defined
is independent of f . Now we choose a countable subset F of {f ∈ D(X) :
0 ≤ f ≤ 1, Lip(f) ≤ 1} with the following property: Whenever x ∈ X and
0 < r ≤ 1, there is an f ∈ F such that

f(x) ≥ 3

4
r, f ≤ r, spt(f) ⊂ U(x, r). (7.2)
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By Theorem 6.4, Theorem 7.5, and Lemma 7.1 there exists a Borel set N ⊂
Rm with Lm(N) = 0 such that whenever y, y′ ∈ Rm \N and f ∈ F , the slice
Ty := 〈T, π, y〉 exists as an element of M0(X), Ty(f) = uf (y), Mµ(y) < ∞,
and

|Ty(f)− Ty′(f)| = |uf (y)− uf (y′)| ≤ cm
(
Mµ(y) +Mµ(y′)

)
|y − y′|.

By Proposition 7.4(1),

‖T b (1, π)‖(π−1(N)) = 0.

Let ε, δ ∈ (0, 1] ∩Q, and recall that ‖Ty‖ is concentrated on π−1{y}. Denote
by Eε,δ the Borel set of all x ∈ X such that y := π(x) 6∈ N and

Mµ(y) ≤ 1

2ε
, ‖Ty‖({x}) ≥ ε, ‖Ty‖(U(x, 2δ) \ {x}) ≤ ε

4
.

We have A \ π−1(N) =
⋃
ε,δ Eε,δ. Let x, x′ ∈ Eε,δ with 0 < r := d(x, x′) ≤ δ

and put y := π(x), y′ = π(x′). Then choose f ∈ F as in (7.2). Since
U(x, r) ⊂ U(x′, 2r) \ {x′}, it follows that

|Ty′(f)| ≤
∫
X
f d‖Ty′‖ ≤ r · ‖Ty′‖(U(x′, 2δ) \ {x′}) ≤ ε

4
r.

Similarly, using (4.12), we obtain

|Ty(f)| ≥ |Ty(χ{x}f)| − |Ty(χX\{x}f)| ≥ 3

4
r · ε− r · ε

4
=
ε

2
r.

We conclude that

ε

4
d(x, x′) =

ε

4
r ≤ |Ty(f)| − |Ty′(f)| ≤ |Ty(f)− Ty′(f)|

≤ cm
(
Mµ(y) +Mµ(y′)

)
|y − y′| ≤ cm

ε
|y − y′| = cm

ε
|π(x)− π(x′)|.

This shows that whenever we restrict π to a subset of Eε,δ with diameter
at most δ, the resulting map is a bi-Lipschitz map into Rm \ N . The result
follows.

8 Integer rectifiable currents

We now turn to integer multiplicity rectifiable currents.
We recall that a subset E of a metric space X is countably m-rectifiable

if there is a countable family of Lipschitz maps Fi : Ai → X, Ai ⊂ Rm, such
that E ⊂

⋃
i Fi(Ai). The set E ⊂ X is countably H m-rectifiable if there is a

countably m-rectifiable set E′ ⊂ X with H m(E \ E′) = 0 (cf. [14, 3.2.14]).
Now we let again X denote a locally compact metric space. Since X is

locally complete, it is not difficult to see that every countably m-rectifiable set
E ⊂ X is contained in a countably m-rectifiable and σ-compact set Ē ⊂ X.
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Definition 8.1 (integer rectifiable current). Let T ∈ Dm(X), m ≥ 0. We
call T a locally integer rectifiable current if

(1) T ∈Mm,loc(X),

(2) whenever B b X is a Borel set and π ∈ Lip(X,Rm), then π#(T bB) = [u]
for some u = uB,π ∈ L1(Rm,Z), and

(3) ‖T‖ is concentrated on some countably H m-rectifiable Borel set E ⊂ X.

The set of all m-dimensional locally integer rectifiable currents in X is de-
noted by

Im,loc(X).

An m-dimensional integer rectifiable current in X is an element of

Im(X) := Im,loc(X) ∩Mm(X).

Note that if a current T ∈ Mm,loc(X) satisfies condition (2), then ‖T‖
is absolutely continuous with respect to H m by Proposition 7.4. Moreover,
condition (3) implies that the support of T is separable. Clearly Im,loc(X)
forms an abelian group, as does Im(X). Push-forwards of locally integer
rectifiable currents under locally Lipschitz maps are again locally integer rec-
tifiable. If T ∈ Im,loc(X), then T bB ∈ Im,loc(X) for every Borel set B ⊂ X.

In case m = 0, condition (2) for T ∈ M0,loc(X) means that T (χB) ∈ Z
for every Borel set B b X (cf. the remark following Proposition 2.6). If
T ∈ I0,loc(X), then ‖T‖ is concentrated on some countable set E ⊂ X
consisting of atoms of ‖T‖, i.e., ‖T‖({x}) > 0 for x ∈ E. By (4.12) and
condition (2), ‖T‖({x}) = |T (χ{x})| ∈ Z for x ∈ E, so E is discrete, and

T (f) =
∑
x∈E

axf(x) (8.1)

for all f ∈ B∞c (X), where ax = T (χ{x}) ∈ Z \ {0}.

Lemma 8.2 (characterizing I0,loc). Suppose S ∈M0,loc(X), spt(S) is sepa-
rable, and S(χK) ∈ Z for every compact set K ⊂ X. Then S ∈ I0,loc(X).

Proof. Let Σ be the set of all x ∈ X such that ‖S‖({x}) ≥ 1. Since S
has locally finite mass, Σ is discrete. Now let x ∈ X \ Σ. There is an open
neighborhood V of x such that ‖S‖(V ) < 1. Then |S(χK)| ≤ ‖S‖(V ) < 1 and
thus S(χK) = 0 for every compact set K ⊂ V . By approximation, this implies
that S(f) = 0 for every f ∈ D(X) with spt(f) ⊂ V , hence x 6∈ spt(S). This
shows that spt(S) ⊂ Σ. Since spt(S) is separable by assumption, it follows
that S ∈ I0,loc(X).

The next theorem corresponds to [3, Theorem 4.5] in the case of finite
mass. A similar characterization of classical rectifiable currents is given in [14,
Theorem 4.1.28].



56 U. Lang

Theorem 8.3 (parametric representation). Let T ∈ Mm,loc(X), m ≥ 1.
Then T ∈ Im,loc(X) if and only if there exists a countable family of currents
T i, each of the form T i = Fi#[ui] for some function ui ∈ L1(Rm,Z) and some
bi-Lipschitz map Fi : Ki → X defined on a compact set Ki ⊂ Rm containing
spt(ui), such that

‖T‖(A) =
∑
i

‖T i‖(A), T (f, π) =
∑
i

T i(f, π)

for all Borel sets A ⊂ X and for all (f, π) ∈ Dm(X).

The proof of the ‘only if’ part uses the following fact: If E ⊂ X is an H m-
measurable and countably H m-rectifiable set, then there exists a countable
family of bi-Lipschitz maps Fi : Ki → E, with Ki ⊂ Rm compact, such that
the Fi(Ki) are pairwise disjoint and

H m
(
E \

⋃
iFi(Ki)

)
= 0. (8.2)

For X = Rn, this result is contained in [14, Lemma 3.2.18]. For a general
complete metric space X, it is stated in [3, Lemma 4.1]; the argument relies
on the metric differentiability theorem of [23] and generalizes to every locally
complete metric space, in particular to our locally compact metric space X.
We omit the details since the ‘only if’ part of the theorem will not be used
in the sequel. In fact, for locally integer rectifiable currents whose bound-
ary has locally finite mass, the existence of such parametric representations
also follows from Theorem 7.6, cf. the proof of Theorem 8.4 together with
Theorem 8.5(1) (the case k = m).

Proof of Theorem 8.3. Suppose T ∈ Im,loc(X), m ≥ 1. Then ‖T‖ is con-
centrated on some countably H m-rectifiable Borel set E ⊂ X. Choose a
countable family of bi-Lipschitz maps Fi : Ki → E, with Ki ⊂ Rm compact,
such that the sets Bi := Fi(Ki) are pairwise disjoint and H m

(
E\
⋃
iB

i
)

= 0,
cf. (8.2). Since ‖T‖ is absolutely continuous with respect to H m by Propo-
sition 7.4,

‖T‖
(
X \

⋃
iB

i
)

= ‖T‖
(
E \

⋃
iB

i
)

= 0.

Let πi : X → Rm be a Lipschitz extension of F−1
i : Bi → Rm, and put T i :=

T bBi. Since T ∈ Im,loc(X), we have πi#T
i = [ui] for some ui ∈ L1(Rm,Z)

with spt(ui) ⊂ Ki. It follows that T i = Fi#(πi#T
i) = Fi#[ui]. For every

Borel set A ⊂ X,

‖T‖(A) = ‖T‖
(
A ∩

⋃
iB

i
)
=
∑
i

‖T‖(A ∩Bi) =
∑
i

‖T i‖(A).

Let (f, π) ∈ Dm(X), and denote by χi and χ the characteristic functions of
Bi and

⋃
iB

i, respectively. Using Theorem 4.4(2) we get

T (f, π) = T (χf, π) =
∑
i

T (χif, π) =
∑
i

T i(f, π).
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Conversely, suppose that T ∈Mm,loc(X) admits a representation as in the
theorem. Since ‖T i‖(X \ Fi(Ki)) = 0, ‖T‖ is concentrated on the countably
m-rectifiable Borel set

⋃
i Fi(Ki). From Lemma 3.7 it follows that [ui] ∈

Im(Rm), hence T i = Fi#[ui] ∈ Im(X). By forming partial sums of
∑

i T
i

we find a sequence (Sk)k∈N in Im(X) such that for every Borel set B b X,
M(T bB−SkbB)→ 0 for k →∞. For π ∈ Lip(X,Rm), we have π#(SkbB) =
[uk], uk ∈ L1(Rm,Z). A similar argument as in the proof of Lemma 7.3 then
shows that π#(T bB) = [u] for some u ∈ L1(Rm,Z). Thus T ∈ Im,loc(X).

We now supplement the slicing theory for locally normal currents T with
the following two theorems, providing criteria for the rectifiability of T in
terms of the rectifiability of slices, and vice-versa. We refer to [38], [20] for
similar statements in the context of classical currents, and to [3, Theorem 8.1]
for a corresponding result for normal metric currents.

Theorem 8.4 (rectifiability criterion). Suppose T ∈ Nm,loc(X), m ≥ 1,
spt(T ) is separable, and P is a countable subset of Lip1(X) such that for
every π0 ∈ Lip1(X) and every compact set K ⊂ spt(T ) there is a sequence
in P converging uniformly on K to π0. If for each π = (π1, . . . , πm) ∈Pm,
〈T, π, y〉 ∈ I0,loc(X) for Lm-almost every y ∈ Rm, then T ∈ Im,loc(X).

Proof. Fix π ∈Pm for the moment. Put

Aπ :=
{
x ∈ X : 〈T, π, π(x)〉 ∈M0,loc(X) and ‖〈T, π, π(x)〉‖({x}) > 0

}
,

and let Eπ ⊂ Aπ be the respective σ-compact set provided by Theorem 7.6, so
that ‖T b (1, π)‖(Aπ \Eπ) = 0. By assumption, for Lm-almost every y ∈ Rm,
‖〈T, π, y〉‖ is concentrated on some countable set contained in Aπ. Hence, by
Theorem 6.4(3),

‖T b (1, π)‖(X \Aπ) =

∫
Rm
‖〈T, π, y〉‖(X \Aπ) dy = 0.

Thus ‖T b (1, π)‖(X \ Eπ) = 0.

Now let E :=
⋃
π∈Pm Eπ. Suppose (f, π) ∈ B∞c (X) ×Pm, and {f 6=

0} ⊂ spt(T ) \ E. Since {f 6= 0} ⊂ X \ Eπ and ‖T b (1, π)‖(X \ Eπ) = 0,
we have T (f, π) = (T b (1, π))(f) = 0. By the choice of the family P, it
follows that T (f, π) = 0 for all (f, π) ∈ B∞c (X)× [Lip1(X)]m with {f 6= 0} ⊂
spt(T ) \E. Since ‖T‖ is σ-finite, Lemma 4.7 yields ‖T‖(X \E) = 0. So ‖T‖
is concentrated on the countably m-rectifiable Borel set E.

By the respective property of the sets Eπ, we find a countable family of
pairwise disjoint compact sets Bk ⊂ E with ‖T‖

(
E \

⋃
k B

k
)

= 0 and the
property that for every k, there is a πk ∈Pm such that πk|Bk is bi-Lipschitz.
By Theorem 7.5, πk#(T bBk) = [uk] for some uk ∈ L1(Rm), and

uk(y) = 〈T, πk, y〉(χBk)
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for Lm-almost every y. By assumption, 〈T, πk, y〉(χBk) ∈ Z for Lm-almost
every y, hence uk ∈ L1(Rm,Z). Now it follows that T admits a parametric
representation as in Theorem 8.3. Hence T ∈ Im,loc(X).

Theorem 8.5 (rectifiable slices). Suppose T ∈ Nm,loc(X), 1 ≤ k ≤ m, and
spt(T ) is separable.

(1) If T satisfies condition (2) of Definition 8.1, in particular if T ∈
Im,loc(X), and if π ∈ Liploc(X,Rk), then 〈T, π, y〉 ∈ Im−k,loc(X) for
L k-almost every y ∈ Rk.

(2) Conversely, if for each π ∈ Lip(X,Rk), 〈T, π, y〉 ∈ Im−k,loc(X) for L k-
almost every y ∈ Rk, then T ∈ Im,loc(X).

Proof. For the proof of (1), we first consider the case k = m, so that
π ∈ Liploc(X,Rm). Choose a countable family U of open sets U b X such
that for every x ∈ spt(T ) and ε > 0 there is a U ∈ U with x ∈ U ⊂ U(x, ε),
and such that the union of finitely many elements of U is in U . By as-
sumption, for every U ∈ U there exists a function uU ∈ L1(Rm,Z) such that
π#(T bU) = [uU ]. Thus, for Lm-almost every y, 〈T, π, y〉 ∈M0,loc(X), and,
by Theorem 7.5,

〈T, π, y〉(χU ) = uU (y) ∈ Z

for all U ∈ U . It follows that for every such y, 〈T, π, y〉(χK) ∈ Z for all
compact sets K ⊂ X. Lemma 8.2 then shows that 〈T, π, y〉 ∈ I0,loc(X).

Now suppose 1 ≤ k < m, and let π ∈ Liploc(X,Rk). Choose a countable
set P ⊂ Lip1(X) as in Theorem 8.4. Fix ρ ∈ Pm−k for the moment. We
know from Theorem 6.5 (iterated slices) and the result in the case k = m
that 〈

〈T, π, y〉, ρ, z
〉

= 〈T, (π, ρ), (y, z)〉 ∈ I0,loc(X)

for Lm-almost every (y, z) ∈ Rk×Rm−k. Hence, there is a set Nρ ⊂ Rk with
L k(Nρ) = 0 such that for every y ∈ Rk \ Nρ, 〈T, π, y〉 ∈ Nm−k,loc(X) and〈
〈T, π, y〉, ρ, z

〉
∈ I0,loc(X) for all z ∈ Rm−k \N ′y,ρ, where Lm−k(N ′y,ρ) = 0.

Suppose y ∈ Rk \
⋃
ρ∈Pm−k Nρ, and put Ty := 〈T, π, y〉. For each ρ ∈Pm−k,

〈Ty, ρ, z〉 ∈ I0,loc(X) for all z ∈ Rm−k \ N ′y,ρ. Hence Ty ∈ Im−k,loc(X) by
Theorem 8.4. Since P is countable, this proves (1).

We show (2). In case k = m, the result holds by Theorem 8.4.
Now suppose 1 ≤ k < m. Let π ∈ Lip(X,Rk) and ρ ∈ Lip(X,Rm−k).

Let again U be given as above. It follows from Theorem 6.4 that the set
M of all (y, z) ∈ Rk × Rm−k such that 〈T, (π, ρ), (y, z)〉 ∈ M0,loc(X) and
〈T, (π, ρ), (y, z)〉(χU ) ∈ Z for all U ∈ U is Lm-measurable. By assumption
(and Theorem 6.4), 〈T, π, y〉 ∈ Im−k,loc(X)∩Nm−k,loc(X) for L k-almost ev-
ery y ∈ Rk. Hence, for L k-almost every y ∈ Rk, it follows from Theorem 6.5
and the first part of the proof of (1) that for Lm−k-almost every z ∈ Rm−k,

〈T, (π, ρ), (y, z)〉 =
〈
〈T, π, y〉, ρ, z

〉
∈ I0,loc(X),
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thus Lm−k({z ∈ Rm−k : (y, z) 6∈M}) = 0. We conclude that Lm(Rm\M) =
0, and, by virtue of Lemma 8.2, that 〈T, (π, ρ), (y, z)〉 ∈ I0,loc(X) for all
(y, z) ∈M . As π and ρ were arbitrary, we have T ∈ Im,loc(X) by the result
in the case k = m.

Finally, we consider the chain complex of integral currents.

Definition 8.6 (integral current). The abelian group of m-dimensional lo-
cally integral currents in X is defined by

Im,loc(X) := {T ∈ Im,loc(X) : ∂T ∈ Im−1,loc(X)}

if m ≥ 1, and I0,loc(X) := I0,loc(X). An m-dimensional integral current in
X is an element of

Im(X) := Im,loc(X) ∩Nm(X).

The following important result yields a simpler characterization of
Im,loc(X), cf. [29, Theorem 30.3] and [3, Theorem 8.6].

Theorem 8.7 (boundary rectifiability). For all m ≥ 0, Im,loc(X) ∩
Nm,loc(X) = Im,loc(X).

In other words, if T ∈ Im,loc(X), m ≥ 1, and if ∂T has locally finite mass,
then ∂T ∈ Im−1,loc(X).

Proof. In case m = 0 there is nothing to prove.
Now consider the case m = 1. Let T ∈ I1,loc(X) ∩ N1,loc(X), and let

U b X be an open set. If U = X, then ∂T (χU ) = ∂T (1) = T (1, 1) = 0. If
U 6= X, put π(x) := inf{d(x, z) : z ∈ X \ U} for x ∈ X. Then for L 1-almost
every s > 0,

∂T (χ{π>s}) = ((∂T )b {π > s})(χU )

= ∂(T b {π > s})(χU ) + 〈T, π, s〉(χU )

= 〈T, π, s〉(χU ) ∈ Z

by Theorem 8.5(1). By continuity, letting s tend to 0 we conclude that
∂T (χU ) is an integer. As this holds for every open set U b X, it follows that
∂T (χK) is an integer for every compact set K ⊂ X, and Lemma 8.2 yields
∂T ∈ I0,loc(X).

Now let m ≥ 1 and suppose the result holds in dimension m. Let
T ∈ Im+1,loc(X) ∩Nm+1,loc(X) and π ∈ Lip(X). For almost every y ∈ R,
〈T, π, y〉 ∈ Im,loc(X) ∩Nm,loc(X) by Theorem 8.5(1), hence

〈∂T, π, y〉 = −∂〈T, π, y〉 ∈ Im−1,loc(X)

by (6.3) and the induction hypothesis. As this holds for every π ∈ Lip(X),
Theorem 8.5(2) implies that ∂T ∈ Im,loc(X).
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As a corollary, we obtain another characterization of locally integral cur-
rents (cf. [3, Theorem 8.8(ii)]).

Theorem 8.8. Let T ∈ Nm,loc(X), m ≥ 0. Then T ∈ Im,loc(X) if and only
if spt(T ) is separable and T satisfies condition (2) of Definition 8.1.

Proof. One implication is clear from Definition 8.1. The other follows from
Lemma 8.2 if m = 0 and from Theorem 8.5 (e.g. the case k = m) and
Theorem 8.7 if m ≥ 1.

A similar induction argument as in the proof of Theorem 8.7 also shows
the next result, cf. [29, Theorem 32.2], [36, Sect. 3], and [3, Theorem 8.5].

Theorem 8.9 (closure theorem). If (Tn)n∈N is a sequence in Im,loc(X) con-
verging weakly to T ∈ Dm(X), m ≥ 0, and if supn NV (Tn) < ∞ for every
open set V b X, then T ∈ Im,loc(X).

Proof. Suppose first that m = 0. Each Tn is a locally finite sum
∑

i an,i[xn,i]
with coefficients an,i ∈ Z \ {0}, where [xn,i](f) = f(xn,i) for all f ∈ D(X),
cf. (8.1). For every open set V b X, spt(Tn) ∩ V contains at most MV (Tn)
points. Since Tn → T , it follows that spt(T ) ∩ V consists of at most
supn MV (Tn) points. Hence, T is a locally finite sum

∑
j aj [xj ] with co-

efficients aj ∈ R \ {0}. To see that aj ∈ Z, choose f ∈ D(X) so that
0 ≤ f ≤ 1, f(xj) = 1, f(x) = 0 for all x ∈ spt(T ) \ {xj}, and such that the
set

{
n : {0 < f < 1} ∩ spt(Tn) 6= ∅

}
is finite. Then, for sufficiently large n,

Tn(f) =
∑

i an,if(xn,i) ∈ Z, thus aj = T (f) = limn→∞ Tn(f) ∈ Z.
Now let m ≥ 1 and suppose the result holds in dimension m − 1. Let

π ∈ Lip(X). For almost every y ∈ R, we have 〈Tn, π, y〉 ∈ Im−1,loc(X)
for all n by Theorem 8.5(1) and Theorem 8.7. Note that T ∈ Nm,loc(X)
by the lower semicontinuity of mass. By Proposition 6.6 (slicing convergent
sequences), for almost every y ∈ R, 〈T, π, y〉 is the weak limit of some locally
N-bounded subsequence of (〈Tn, π, y〉)n∈N. Hence 〈T, π, y〉 ∈ Im−1,loc(X) by
the induction hypothesis. As this holds for every π ∈ Lip(X), Theorem 8.5(2)
and Theorem 8.7 imply that T ∈ Im,loc(X).

The compactness theorem for locally integral currents is now an immedi-
ate consequence. See [29, Theorem 27.3] for the classical result.

Theorem 8.10 (Im,loc compactness). Suppose (Tn)n∈N is a sequence in
Im,loc(X) such that supn NV (Tn) <∞ for every open set V b X. Then there
is a subsequence (Tn(i))i∈N that converges weakly to some T ∈ Im,loc(X).

Note that X still denotes an arbitrary locally compact metric space. How-
ever, the closure of

⋃
n∈N spt(Tn), which also contains the support of the limit

T , is separable.

Proof. Combine Theorem 5.4 (Nm,loc compactness) and Theorem 8.9.

In [24] applications of these results to the asymptotic geometry of spaces
of nonpositive curvature will be discussed.
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