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Abstract

These are the notes to the first chapter (out of four) of a lecture course
on Metric Geometry given at ETH Zurich in the summer semester 2004.

1 Basic Definitions

We start with some basic definitions.

1.1 Definition (pseudometric, metric, metric space)
Let X be a set. A function d : X ×X → [0,∞) is called a pseudometric on X if
it satisfies

(1) d(x, x) = 0 for all x ∈ X,

(2) d(x, y) = d(y, x) for all x, y ∈ X, and

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality).

The pseudometric d is called a metric if in addition

(4) d(x, y) > 0 for all x, y ∈ X with x 6= y;

then the pair (X, d) is called a metric space. Sometimes we will also allow the
value ∞ for d.

We use the following notation. For x ∈ X, r ∈ R, and A,B ⊂ X,

B(x, r) := {y ∈ X | d(x, y) ≤ r},
U(x, r) := {y ∈ X | d(x, y) < r},
S(x, r) := {y ∈ X | d(x, y) = r},
d(x,A) := inf{d(x, p) | p ∈ A},
d(A,B) := inf{d(p, q) | p ∈ A, q ∈ B},
Br(A) := {x ∈ X | d(x,A) ≤ r},
Ur(A) := {x ∈ X | d(x,A) < r},

diam(A) := sup{d(x, y) |x, y ∈ A}.

1



2 1 BASIC DEFINITIONS

Let (X, d), (X̄, d̄) be metric spaces. We call a map f : X → X̄ an isometric
embedding if d̄(f(x), f(y)) = d(x, y) for all x, y ∈ X. If f is surjective in addition,
then it is called an isometry . We denote the isometry group of a metric space X
by Isom(X). The map f : X → X̄ is a local isometry if for every x ∈ X there is
an ε > 0 such that f |U(x,ε) is an isometry onto U(f(x), ε).

1.2 Definition (length of a curve)
Let (X, d) be a metric space, I ⊂ R a non-empty interval (i.e. a connected set)
and σ : I → X a curve (i.e. a continuous map). We define the length L(σ) ∈ [0,∞]
of σ by

L(σ) := sup

k∑
i=1

d(σ(ti−1), σ(ti)),

where the supremum is taken over all k ∈ N and all sequences t0 ≤ t1 ≤ . . . ≤ tk
in I. We say that σ is rectifiable if L(σ) <∞.

Exercise: Let X = Rn be equipped with the Euclidean metric d(x, y) = |x− y| =
(
∑n

i=1 |xi − yi|
2)1/2. Show that for every piecewise C1 curve σ : [a, b] → X, L(σ)

agrees with
∫ b
a |σ̇(t)| dt.

If σ : I → X is a curve, Ĩ ⊂ R is an interval, and ϕ : Ĩ → I is continuous,
surjective, and non-decreasing or non-increasing (i.e. t ≤ t′ implies ϕ(t) ≤ ϕ(t′) or
ϕ(t) ≥ ϕ(t′), respectively), then the curve σ̃ := σ◦ϕ : Ĩ → X satisfies L(σ̃) = L(σ).

A curve σ : I → X is said to have constant speed if there exists a constant λ ≥ 0,
the speed of σ, such that L(σ|[t,t′]) = λ |t− t′| for all t, t′ ∈ I, t ≤ t′; σ has unit

speed or is parametrized by arc length if λ = 1. Suppose that a curve σ̃ : Ĩ → X
satisfies L(σ̃|[t,t′]) < ∞ for all [t, t′] ⊂ Ĩ. Pick t0 ∈ Ĩ and define ϕ : Ĩ → R such
that ϕ(t) = L(σ̃|[t0,t]) for t ≥ t0 and ϕ(t) = −L(σ̃|[t,t0]) for t ≤ t0; ϕ is continuous
and non-decreasing. Then the map

σ : ϕ(Ĩ)→ X, σ(ϕ(t)) := σ̃(t),

is well-defined, continuous, and parametrized by arc length since

L(σ|[ϕ(t),ϕ(t′)]) = L(σ̃|[t,t′]) = ϕ(t′)− ϕ(t)

for all [t, t′] ⊂ Ĩ.

1.3 Definition (inner metric, length space)
Let (X, d) be a metric space. The inner metric or length metric associated with
d is the function di : X ×X → [0,∞] defined by

di(x, y) := inf L(σ),

where the infimum is taken over all rectifiable curves σ : [0, 1] → X from x to y,
i.e. σ(0) = x, σ(1) = y. (X, d) is called an inner metric space or length space if
di = d.
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The metric di is finite if and only if every pair of points in X can be joined by a
rectifiable curve. Note that always di ≥ d and (di)i = di.

Examples: 1. Let (X, g) be a connected Riemannian manifold with the metric d
defined by

d(x, y) := inf{L(σ) |σ : [0, 1]→ X a piecewise C1 curve from x to y}.

Then di = d, i.e. (X, d) is a length space.

2. Suppose that X = Rn, d(x, y) = |x− y| for x, y ∈ X, and X ′ = Sn−1(r) :=
S(0, r) ⊂ X is equipped with the metric d′ induced by d. Let d′i be the inner
metric associated with d′; this will be called the induced inner metric. We have
d′(x, y) = |x− y| and d′i(x, y) = r arccos(〈x, y〉/r2) > d′(x, y) for x, y ∈ X ′, x 6= y.

2 Geodesics and the Hopf–Rinow Theorem

2.1 Definition (geodesic, local geodesic, geodesic space)
Let (X, d) be a metric space. A curve σ : I → X is called a geodesic if σ has
constant speed and if L(σ|[t,t′]) = d(σ(t), σ(t′)) for all t, t′ ∈ I, t ≤ t′. The curve σ
is called a local geodesic if for all t ∈ I there exists an ε > 0 such that σ|I∩[t−ε,t+ε]
is a geodesic. (X, d) is a geodesic space if for every pair of points x, y ∈ X there
exists a geodesic σ : [0, 1]→ X joining x to y. (X, d) is called uniquely geodesic if
for every pair of points x, y ∈ X there is a unique geodesic σ : [0, 1] → X from x
to y.

Every geodesic space is a length space. When is the converse true? Theorem 2.4
(Hopf–Rinow) below gives an answer to this question.

Note that a curve σ : I → X is a geodesic if and only if there exists a constant
λ ≥ 0 such that d(σ(t), σ(t′)) = λ |t− t′| for all t, t′ ∈ I.

Exercise: Every normed vector space (V, ‖·‖) with the metric d(v, w) = ‖v − w‖
is a geodesic space. V is uniquely geodesic if and only if B(0, 1) ⊂ V is strictly
convex, cf. [BriH, Proposition I.1.6].

2.2 Lemma (midpoints)
Let X be a complete metric space.

(1) X is a length space if and only if for all x, y ∈ X and all ε > 0 there is a
point z ∈ X such that

d(x, z), d(y, z) ≤ 1
2d(x, y) + ε.

(2) X is a geodesic space if and only if for all x, y ∈ X there is a point z ∈ X
such that

d(x, z) = d(y, z) = 1
2d(x, y).
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Proof : (2): Let x, y ∈ X. To construct a geodesic σ : [0, 1] → X from x to y, we
first define σ(t) for all t ∈ [0, 1] of the form t = k/2n, k, n ∈ N ∪ {0}, such that
σ(0) = x, σ(1) = y, σ(1

2) is a midpoint between σ(0) and σ(1), σ(1
4) is a midpoint

between σ(0) and σ(1
2), σ(3

4) is a midpoint between σ(1
2) and σ(1), and so on. The

map constructed this way is λ-Lipschitz for λ = d(x, y). Since X is complete we
can extend σ to the whole interval [0, 1]: For t ∈ [0, 1] we choose a sequence (ti)
converging to t such that each σ(ti) is already defined. As (ti) is Cauchy and σ is
λ-Lipschitz, (σ(ti)) is also Cauchy. Then we put σ(t) := limi→∞ σ(ti). It follows
that σ : [0, 1] → X is λ-Lipschitz for λ = d(x, y), hence σ must be a geodesic
joining x to y. 2

2.3 Lemma (Arzelà–Ascoli)
If X is a compact metric space and Y is a separable metric space, then every
equicontinuous sequence of maps fi : Y → X has a subsequence that converges
uniformly on compact subsets to a continuous map f : Y → X.

Proof : Choose a dense set Q = {q1, q2, . . .} in Y . X is compact; pick a subsequence
(f1,i) of (fi) such that (f1,i(q1)) converges. Then choose a subsequence (f2,i) of
(f1,i) such that (f1,i(q2)) converges, a subsequence (f3,i) of (f2,i) such that (f3,i(q3))
converges, and so on. The diagonal sequence (fi,i) converges pointwise on Q to
a map f : Q → X. For every ε > 0 there is a δ > 0 such that if q, q′ ∈ Q and
d(q, q′) ≤ δ, then d(fi,i(q), fi,i(q

′)) ≤ ε for all i, hence d(f(q), f(q′)) ≤ ε. Since Q
is dense in Y and X is complete, there exists a unique continuous extension of f to
Y , f : Y → X, and d(f(y), f(y′)) ≤ ε whenever d(y, y′) ≤ δ. To prove the uniform
convergence on a compact set C ⊂ Y , given ε > 0, choose δ > 0 as above. Pick
numbers N,M such that for every y ∈ C there is a j(y) ≤ N with d(y, qj(y)) ≤ δ
and such that d(f(qj), fi,i(qj)) ≤ ε whenever i ≥ M and j ≤ N . Then for all
y ∈ C and i ≥ M , d(f(y), fi,i(y)) ≤ d(f(y), f(qj(y))) + d(f(qj(y)), fi,i(qj(y))) +
d(fi,i(qj(y)), fi,i(y)) ≤ 3ε. 2

2.4 Theorem (Hopf–Rinow, Cohn-Vossen 1935)
Let X be a length space. If X is complete and locally compact, then

(1) X is proper, i.e. every closed bounded subset of X is compact, and

(2) X is a geodesic space.

The theorem is optimal, as the following examples show. The length space R2\{0}
(with the induced inner metric) is locally compact, but not complete. The length
space obtained from a sequence of disjoint segments [ai, bi] with bi − ai = 1 + 1

i ,
i ∈ N, by gluing each ai to a1 and each bi to b1 is complete, but not locally compact.
(See Example 2 on page 9 for a precise description of this space.) Neither of these
length spaces is a geodesic space.

Proof of 2.4: (1): Fix z ∈ X. It suffices to show that B(z, r) is compact for all
r ≥ 0. Let I := {r ≥ 0 |B(z, r) is compact}; I is an interval containing 0. Let
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r ∈ I. Use the local compactness of X to cover the compact ball B(z, r) with
finitely many balls U(xi, εi) such that the B(xi, εi) are compact. Then

⋃
B(xi, εi)

is compact and contains B(z, r + δ) for some δ > 0, hence r + δ ∈ I. This shows
that I is open relative to [0,∞).

To prove that I is also closed, suppose that [0, R) ⊂ I, R > 0, and let (yj)j∈N be
a sequence in B(z,R). Choose a decreasing sequence (εi)i∈N converging to 0, with
εi < R. Since X is a length space, for all i, j there exists an xij ∈ B(z,R− εi

2 ) with

d(xij , yj) ≤ εi. The sequence (x1
j ) has a convergent subsequence (x1

j(1,k)). Consider

the corresponding sequence (x2
j(1,k)) and pick a convergent subsequence (x2

j(2,k)).

Then consider (x3
j(2,k)) and select a converging subsequence (x3

j(3,k)). Continue

in this manner. Finally, put j(k) := j(k, k) for k ∈ N; the sequence (xij(k))k∈N
converges for all i ∈ N. We claim that the associated sequence (yj(k)) is Cauchy.
Let ε > 0 and choose i with εi ≤ ε. Then d(xij(k), x

i
j(l)) ≤ ε for k, l sufficiently

large. It follows that

d(yj(k), yj(l)) ≤ d(yj(k), x
i
j(k)) + d(xij(k), x

i
j(l)) + d(xij(l), yj(l))

≤ εi + ε+ εi ≤ 3ε.

Since X is complete, (yj(k)) converges. This shows that every sequence (yj)j∈N in
B(z,R) has a convergent subsequence. Hence B(z,R) is compact, i.e. [0, R] ⊂ I.
Thus I is both open and closed in [0,∞), so I = [0,∞).

(2): Let x, y ∈ X. Since X is a length space, it follows that for every j ∈ N there
exists a point zj ∈ X such that

d(x, zj), d(y, zj) ≤ 1
2d(x, y) + 1

j .

The sequence (zj) lies in B(x, 1
2d(x, y) + 1) which is compact by (1). Hence some

subsequence converges to a midpoint between x and y. From Lemma 2.2(2) (mid-
points) it follows that X is a geodesic space. 2

2.5 Lemma (continuously varying geodesics)
Suppose that X is a proper metric space, σ : [0, 1]→ X is a geodesic, and σ([0, 1])
is the only geodesic segment connecting σ(0) and σ(1). Suppose further that there
is a sequence of geodesics σk : [0, 1] → X such that the sequences (σk(0)) and
(σk(1)) converge to σ(0) and σ(1), respectively. Then (σk) converges uniformly
to σ.

Proof : Fix R > 0 such that the compact ball B(σ(0), R) contains σk([0, 1]) for
all k. If (σk) did not converge to σ pointwise, then there would exist t ∈ [0, 1],
ε > 0 and an infinite subsequence (σk(l)) such that d(σk(l)(t), σ(t)) ≥ ε for all l.
Lemma 2.3 (Arzelà–Ascoli) would then yield a subsequence of (σk(l)) converging
uniformly to a geodesic σ̄ : [0, 1]→ X from σ(0) to σ(1) with d(σ̄(t), σ(t)) ≥ ε, in
contradiction to the uniqueness of σ. Hence (σk) converges pointwise to σ. By
equicontinuity, the convergence is uniform. 2



6 3 CONSTRUCTIONS OF METRIC SPACES

Lemma 2.5 is no longer valid without the word “proper”, even if X is assumed to
be uniquely geodesic and contractible, cf. [BriH, Exercise I.3.14].

A curve σ : [0, 1]→ X is called a loop or is said to be closed if σ(1) = σ(0); then it
may be viewed as a map σ : R/Z→ X. If its lift σ̃ : R→ X is a local geodesic, then
we will call σ a closed geodesic. The next result asserts the existence of a closed
geodesic in certain metric spaces X. Recall that a path-connected topological
space X is called semi-locally simply connected if each point x ∈ X has a neigh-
bourhood U such that each closed curve in U is null-homotopic (i.e. homotopic to
a constant map) in X.

2.6 Theorem (closed geodesics)
If X is a compact length space that is semi-locally simply connected, then every
closed curve σ : R/Z → X is homotopic to a closed geodesic or homotopic to a
constant map.

Note that X is geodesic by Theorem 2.4 (Hopf–Rinow). Theorem 2.6 is no longer
true without the assumption “semi-locally simply connected”.

Proof : Since X is compact and semi-locally simply connected it follows that there
is an r > 0 such that every closed curve of length < r is null-homotopic. Assume
that σ : R/Z→ X is not homotopic to a constant map. Then

λ := inf{L(σ′) |σ′ : R/Z→ X, σ′ ' σ (homotopic)} > 0.

Choose a sequence of closed curves σi : R/Z → X, σi ' σ, such that L(σi) → λ
and each σi has constant speed. The sequence is equicontinuous. Lemma 2.3
(Arzelà–Ascoli) yields a subsequence (σi(j)) converging uniformly to a λ-Lipschitz
curve σ̄ : R/Z → X. It remains to prove that σ̄ ' σ. Choose an index i = i(j)
with d(σi(t), σ̄(t)) < r

4 for all t ∈ R/Z. Then pick 0 = t0 < t1 < . . . < tm = 1
such that L(σi|[tk−1,tk]) <

r
4 and L(σ̄|[tk−1,tk]) <

r
4 for k = 1, . . . ,m. Choose curves

γk from σi(tk) to σ̄(tk) of length < r
4 . This gives m closed curves of length < r,

hence they are all null-homotopic. Using this fact one can see that σ̄ ' σi ' σ. 2

3 Constructions of Metric Spaces

In this section we discuss various constructions of metric spaces.

Products. Let X1, X2 be metric spaces. The (usual l2) product of X1 and X2 is
the metric space X1 ×X2 with the metric

d((x1, x2), (y1, y2)) :=
(
d(x1, y1)2 + d(x2, y2)2

)1/2
. (3.1)

3.1 Proposition (product)
Suppose that X1, X2 are metric spaces, and X = X1 ×X2.
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(1) X is a length space if and only if X1, X2 are length spaces.

(2) X is a geodesic space if and only if X1, X2 are geodesic spaces; a curve
σ = (σ1, σ2) : I → X is a geodesic if and only if both σ1 : I → X1 and
σ2 : I → X2 are geodesics.

(3) An isometry g : X → X is of the form g(x1, x2) = (g1(x1), g2(x2)) for isome-
tries g1 : X1 → X1, g2 : X2 → X2 if and only if for every x1 ∈ X1 there exists
a point denoted g1(x1) ∈ X1 such that g({x1} ×X2) = {g1(x1)} ×X2.

More generally, the lp product of X1 and X2 carries the metric

d((x1, x2), (y1, y2)) :=
(
d(x1, y1)p + d(x2, y2)p

)1/p
.

The analogues of (1) and (2) are valid for 1 < p <∞.

Proof of 3.1: (1): Suppose thatX is a length space. Since the canonical projection
πi : X → Xi is 1-Lipschitz it follows easily that Xi is a length space. Conversely,
suppose that X1, X2 are length spaces. Let (x1, x2), (y1, y2) ∈ X. Given unit
speed curves σi : [0, li] → Xi from xi to yi, i = 1, 2, we obtain a 1-Lipschitz map
(s1, s2) 7→ (σ1(s1), σ2(s2)) from the product [0, l1]× [0, l2] into X. Restricting this
map to the diagonal [(0, 0), (l1, l2)] we get a curve from (x1, x2) to (y1, y2) of length
at most l = (l1

2 + l2
2)1/2. As li → d(xi, yi), i = 1, 2, l→ d((x1, x2), (y1, y2)).

(2): It suffices to show that (z1, z2) is a midpoint between (x1, x2) and (y1, y2) if
and only if for i = 1, 2, zi is a midpoint between xi and yi. Setting ai := d(xi, zi),
bi := d(yi, zi), and ci := d(xi, yi), we must show that

a1
2 + a2

2 = b1
2 + b2

2 = 1
4(c1

2 + c2
2) (3.2)

if and only if a1 = b1 = 1
2c1 and a2 = b2 = 1

2c2. One implication is clear. For the
other, (3.2) yields

a1
2 + b1

2 + a2
2 + b2

2 = 1
2(c1

2 + c2
2).

Moreover, ai
2 +bi

2 ≥ 1
2(ai+bi)

2 ≥ 1
2ci

2 by the triangle inequality, with ai
2 +bi

2 =
1
2ci

2 if and only if ai = bi = 1
2ci. The result follows.

(3): See [BriH, Proposition I.5.3]. 2

Disjoint union. Suppose (Xα, dα)α∈A is a family of metric spaces. The disjoint
union of this family is the set∐

α∈A
Xα =

⋃
α∈A

Xα × {α},

equipped with the metric

d((x, α), (x′, α′)) :=

{
dα(x, x′) if α = α′,

∞ otherwise.
(3.3)
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Quotient pseudometrics. Let X be a metric space with a possibly infinite
metric, ∼ an equivalence relation on X, and X̄ = X/∼ the set of equivalence
classes. For x̄, ȳ ∈ X̄, we define

d̄(x̄, ȳ) := inf
k∑
j=1

d(xj , yj), (3.4)

where the infimum is taken over all k ∈ N and sequences x1, y1, x2, y2, . . . , xk, yk
with x1 ∈ x̄, yk ∈ ȳ, and yj ∼ xj+1 for j = 1, 2, . . . , k − 1. Clearly d̄ is a
pseudometric on X̄, the quotient pseudometric on X/∼ = X̄. We have d̄(x̄, ȳ) ≤
d(x, y) for all x, y ∈ X, and d̄ is exactly the biggest pseudometric on X̄ with that
property.

3.2 Proposition (quotient pseudometric)
Suppose that (X, d), ∼, X̄ = X/∼, and d̄ are given as above.

(1) Suppose that for every equivalence class x̄ ⊂ X there exists an ε(x̄) > 0 such
that Uδ(x̄) is a union of equivalence classes for 0 < δ ≤ ε(x̄). Then

d̄(x̄, ȳ) = d(x̄, ȳ) whenever x̄, ȳ ∈ X̄ and d̄(x̄, ȳ) < ε(x̄). (3.5)

If in addition every equivalence class x̄ ⊂ X is closed, then d̄ is a metric on
X̄.

(2) If d̄ is a metric and (X, d) is a length space, then (X̄, d̄) is a length space.

Note that in (3.5), d(x̄, ȳ) stands for inf{d(x′, y′) |x′ ∈ x̄, y′ ∈ ȳ}. Clearly d̄(x̄, ȳ) ≤
d(x̄, ȳ) for all x̄, ȳ ∈ X̄.

Proof : (1): Suppose that x̄, ȳ ∈ X̄, x̄ 6= ȳ, and d̄(x̄, ȳ) < ε(x̄). Since Uδ(x̄) is a
union of equivalence classes for 0 < δ ≤ ε(x̄), it follows that

d(z, x̄) = d(z′, x̄) whenever z ∼ z′ and d(x̄, z̄) < ε(x̄). (3.6)

Choose x1, y1, . . . , xk, yk ∈ X with x1 ∈ x̄, yk ∈ ȳ, yi ∼ xi+1 for i = 1, . . . , i − 1,
and

∑k
i=1 d(xi, yi) < ε(x̄). We show by induction that for j = 1, . . . , k, we have

d(yj , x̄) ≤
j∑
i=1

d(xi, yi). (3.7)

This is obvious for j = 1 as x1 ∈ x̄. Now let j ∈ {2, . . . , k} and suppose that (3.7)
holds with j − 1 in place of j. Then d(yj−1, x̄) ≤

∑j−1
i=1 d(xi, yi) < ε(x̄). Since

yj−1 ∼ xj , using (3.6) we get

d(yj , x̄) ≤ d(xj , yj) + d(xj , x̄) = d(xj , yj) + d(yj−1, x̄) ≤
j∑
i=1

d(xi, yi),
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hence (3.7). Consequently, d̄(x̄, ȳ) ≤ d(x̄, ȳ) ≤ d(yk, x̄) ≤
∑k

i=1 d(xi, yi). As this
sum can be chosen arbitrarily close to d̄(x̄, ȳ) we have d̄(x̄, ȳ) = d(x̄, ȳ).

If x̄ is a closed subset of X and y 6∈ x̄, then d(y, x̄) > 0. Hence, if d(x̄, ȳ) =
d̄(x̄, ȳ) < ε(x̄), using (3.6) again we see that

d(x̄, ȳ) = inf
y′∈ȳ

d(y′, x̄) = d(y, x̄) > 0.

So d̄ is a metric on X̄.

(2): Suppose that 0 < d̄(x̄, ȳ) < ∞. Let ε > 0, and choose x1, y1, . . . , xk, yk ∈ X
with x1 ∈ x̄, yk ∈ ȳ and yj ∼ xj+1 for j = 1, . . . , k − 1 such that

k∑
j=1

d(xj , yj) < d̄(x̄, ȳ) +
ε

2
.

Now pick curves σj : [0, 1] → X joining xj to yj , j = 1, . . . , k, with L(σj) <
d(xj , yj) + ε

2k . Let π : X → X̄ be the canonical projection and σ̄ : [0, k] → X̄ the
concatenation of the curves π ◦ σ1, . . . , π ◦ σk. Since d̄(π(x′), π(y′)) ≤ d(x′, y′) for
all x′, y′ ∈ X, we have

L(σ̄) =
k∑
j=1

L(π ◦ σj) ≤
k∑
j=1

L(σj) <
k∑
j=1

d(xj , yj) +
ε

2
< d̄(x̄, ȳ) + ε.

Hence (X̄, d̄) is a length space. 2

Examples: 1. Let X̄ = R/∼, where x ∼ y if and only if y− x ∈ Z, i.e. X̄ = R/Z.
Then we have d̄(x̄, ȳ) = d(x̄, ȳ), and (X̄, d̄) is a geodesic space isometric to circle
of length 1.

2. Let X =
∐
j∈N[0, 1 + 1

j ] =
⋃
j∈N[0, 1 + 1

j ] × {j}. Consider the equivalence

relation on X generated by the relations (0, j) ∼ (0, k) and (1 + 1
j , j) ∼ (1 + 1

k , k),

j, k ∈ N. Then X̄ = X/∼ is the complete length space from the remark following
Theorem 2.4 (Hopf–Rinow).

3. Metric graphs. Let G be a combinatorial graph with vertex set V , edge set E,
and endpoint maps ∂, ∂′ : E → V , where ∂(E) ∪ ∂′(E) = V . Choose a function
l : E → (0,∞). Let (X, d) be the disjoint union

∐
e∈E [0, l(e)] =

⋃
e∈E([0, l(e)] ×

{e}) of the intervals [0, l(e)] ⊂ R, cf. (3.3). Consider the equivalence relation on
X generated by the classes {(0, e) | ∂(e) = v} ∪ {(l(e), e) | ∂′(e) = v} for v ∈ V ,
and let X̄ = X/∼. If

ε(v) := inf{l(e) | e ∈ E, ∂(e) = v or ∂′(e) = v} > 0

for all v ∈ V , then the quotient pseudometric d̄ is a metric, and X̄ is a length
space.
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Isometric gluing. Let (Xα, dα)α∈A be a family of metric spaces. Suppose that
Z is a metric space, and gα : Z → Zα is an isometry onto a closed set Zα ⊂ Xα for
every α ∈ A. Consider the equivalence relation on the disjoint union

(∐
α∈AXα, d

)
generated by the relations gα(z) ∼ gβ(z) for all z ∈ Z, α, β ∈ A. The quotient
space X̄ =

∐
α∈AXα/∼ with the quotient (pseudo-)metric d̄ is called the isometric

gluing of the spaces Xα along the gα.

3.3 Proposition (isometric gluing)
Let (Xα, dα)α∈A, Z, gα : Z → Zα, and (X̄, d̄) be given as above.

(1) d̄ is a metric on X̄, and for all x ∈ Xα, y ∈ Xβ,

d̄(x̄, ȳ) =

{
dα(x, y) if α = β,

infz∈Z
(
dα(x, gα(z)) + dβ(y, gβ(z))

)
if α 6= β.

(2) If every Xα is a length space, then X̄ is a length space.

(3) If every Xα is a geodesic space and Z is proper, then X̄ is a geodesic space.

Proof : Since the gluing maps gα are isometries and the sets Zα are closed, it
follows from Proposition 3.2(1) that d̄ is a metric. Moreover, 3.2(2) implies (2).
To prove the claimed identity for d̄(x̄, ȳ), consider points x1, y1, x2, y2, x3, y3 such
that y1 ∼ x2, y2 ∼ x3, and

∑3
i=1 d(xi, yi) < ∞, i.e. xi, yi ∈ Xαi for i = 1, 2, 3.

Since y2 ∼ x3, there is a y′1 ∈ Xα1 such that y′1 ∼ x3. Then

3∑
i=1

d(xi, yi) = d(x1, y1) + d(y1, y
′
1) + d(x3, y3) ≥ d(x1, y

′
1) + d(x3, y3),

and in view of (3.4) the identity follows. Now suppose that every Xα is a geodesic
space and Z is proper. Using (1) we see that for all x ∈ Xα and y ∈ Xβ, α 6= β,
there exists a point z ∈ Z such that d̄(x̄, ȳ) = dα(x, gα(z)) + dβ(y, gβ(z)). This
yields (3). 2

Euclidean polyhedral complexes. By a convex euclidean polyhedral cell C =
(C, d) we mean a (compact, geodesic) metric space isometric to the convex hull
of a positive finite number of points in a euclidean space. Vertices, edges, faces,
the interior intC and the dimension of C are defined in an obvious way. An n-
dimensional convex euclidean polyhedral cell with exactly n+ 1 vertices is called
a euclidean simplex .

3.4 Definition (euclidean polyhedral/simplicial complex)
Let X be a set and C = (Cα)α∈A a family of convex euclidean polyhedral cells
with the following properties:

(1) X =
⋃
α∈ACα, and Cα 6= Cβ for α 6= β.
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(2) If Cα ∩ Cβ 6= ∅, then the respective metrics dα and dβ coincide on Cα ∩ Cβ,
and Cα ∩ Cβ is a common face of Cα and Cβ.

The pair (X, C), where X is equipped with the maximal pseudometric d such that
d ≤ dα on Cα for every α ∈ A, is called a euclidean polyhedral complex . If each
cell Cα is a euclidean simplex, then (X, C) is a euclidean simplicial complex .

The pseudometric d can be described in a different way. Consider the equivalence
relation on the disjoint union

(∐
α∈ACα, d̃

)
generated by the relations (x, α) ∼

(x, β) for x ∈ X, α, β ∈ A. Then
∐
α∈ACα/∼ = X, and d equals the quotient

pseudometric. More explicitly,

d(x, y) = inf
{∑k

j=1dαj (xj−1, xj)
∣∣x0 = x, xk = y, xj−1, xj ∈ Cαj

}
.

3.5 Lemma (euclidean polyhedral complexes)
Suppose that for all x ∈ X,

ε(x) := inf{dα(x, F ) |x ∈ Cα, F a face of Cα, x 6∈ F} > 0.

Then d is a metric and (X, d) is a length space.

Proof : This follows directly from Proposition 3.2. 2

In [BriH, Theorem I.7.19] it is shown that if X is connected and C contains only
finitely many isometry types of cells, then (X, d) is a complete geodesic space.

4 Group Actions and Coverings

By an action of a group G on a set X we mean a map G×X → X, (g, x) 7→ g(x),
such that g(h(x)) = gh(x) and e(x) = x for all g, h ∈ G and x ∈ X. The action is
called free if g(x) 6= x for all g 6= e and all x ∈ X.

Let G be a subgroup of the isometry group of a metric space X. The action of G
on X is said to be proper if for each x ∈ X there exists an ε > 0 such that the set
{g ∈ G | g(U(x, ε)) ∩ U(x, ε) 6= ∅} is finite. Regarding this terminology, see [BriH,
I.8.2 and I.8.3]. Define an equivalence relation on X such that x ∼ y if and only
if y = g(x) for some g ∈ G. The quotient space X̄ := X/G = X/∼ is the set of all
G-orbits x̄ := G(x) := {g(x) | g ∈ G}.

4.1 Proposition (X/G)
Let G be a group of isometries of X, and let d̄ be the quotient pseudometric on
X̄ = X/G.

(1) For all x̄, ȳ ∈ X̄, d̄(x̄, ȳ) = d(x̄, ȳ).

(2) Suppose that the action is proper. Then d̄ is a metric on X̄, and (X̄, d̄) is a
length space if (X, d) is a length space.
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(3) Suppose that the action is proper and free. Then the canonical projection
π : X → X̄ is a covering map and a local isometry.

Recall that a continuous map π : X → Y between topological spaces is a covering
map if π is surjective and every point y ∈ Y has an open neighbourhood V such
that π−1(V ) is a disjoint union of open sets Uα and π|Uα is a homeomorphism
onto V for every α.

Proof : (1): If x̄ ∈ X̄ and y ∈ Uδ(x̄) for a δ > 0, then ȳ ⊂ Uδ(x̄). The claim follows
from Proposition 3.2(1).

(2): Since G acts properly on X, each orbit x̄ ⊂ X is closed. Hence Proposition 3.2
yields the result.

(3): Since G acts properly and freely, for each x ∈ X there is an ε > 0 such that
g(U(x, ε)) ∩ U(x, ε) = ∅ for all g 6= e. Using (1) we see that d̄(x̄, ȳ) = d(x̄, ȳ) =
d(x, y) for all y ∈ U(x, ε). This implies (3). 2

Suppose now that X is a length space, X̃ is a topological space, and π : X̃ → X
is a local homeomorphism, i.e., a map with the property that every x̃ ∈ X̃ has an
open neighbourhood Ũ such that π|Ũ is a homeomorphism onto an open subset of

X. In particular, π is continuous. For x̃, ỹ ∈ X̃ put

d̃(x̃, ỹ) := inf{L(π ◦ σ̃) | σ̃ : [0, 1]→ X̃ a curve from x̃ to ỹ}.

This defines a pseudometric d̃ on X̃, and d(π(x̃), π(ỹ)) ≤ d̃(x̃, ỹ) for all x̃, ỹ ∈ X̃.
If X̃ is a Hausdorff space, then d̃ is a metric.

4.2 Lemma (pull-back length metric)
Suppose that (X, d) is a length space, X̃ is a Hausdorff space, π : X̃ → X is a local

homeomorphism, and d̃ is defined as above. Then

(1) π is a local isometry, and

(2) (X̃, d̃) is a length space.

Moreover, d̃ is the only metric on X̃ with these two properties.

Proof : (1): Let x̃ ∈ X̃, and put x := π(x̃). We must show that there is an ε > 0
such that π|U(x̃,ε) is an isometry onto U(x, ε). Choose an open neighborhood

Ũ of x̃ such that π|Ũ is a homeomorphism onto the open set U = π(Ũ). Put

% := (π|Ũ )−1 : U → Ũ . Pick ε > 0 such that U(x, 2ε) ⊂ U . Let y, z ∈ U(x, ε).
For all δ > 0 there exists a curve σ : [0, 1] → U(x, 2ε) from y to z with L(σ) <
d(y, z) + δ. Then σ̃ := % ◦ σ is a curve joining %(y) to %(z) with π ◦ σ̃ = σ,
hence d̃(%(y), %(z)) ≤ L(σ) < d(y, z) + δ. On the other hand we have d̃(ỹ, z̃) ≥
d(π(ỹ), π(z̃)) for all ỹ, z̃ ∈ X̃. Hence d̃(%(y), %(z)) = d(y, z). Finally, we observe
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that %|U(x,ε) : U(x, ε) → U(x̃, ε) is surjective since % ◦ π|U(x̃,ε) is the identity on
U(x̃, ε) and π is 1-Lipschitz.

(2): Since π is a local isometry, we have L(σ̃) = L(π ◦ σ̃) for all curves σ̃. The
result follows with the definition of d̃. 2

4.3 Proposition
Let π : X̃ → X be a map between two length spaces such that

(1) X̃ is complete,

(2) X is connected,

(3) for every x ∈ X there exists an ε > 0 such that for all y ∈ U(x, ε) there is
a unique geodesic σy : [0, 1]→ U(x, ε) joining x to y, and σy varies continu-
ously with y,

(4) π is a local homeomorphism, and

(5) L(σ̃) ≤ L(π ◦ σ̃) for every rectifiable curve σ̃ : [0, 1]→ X̃.

Then π is a covering map.

Note that (4) and (5) hold in particular if π is a local isometry. (See also Olivia
Gutú and Jesús A. Jaramillo, Global homeomorphisms and covering projections
on metric spaces, Math. Ann. 338 (2007), 75–95.)

Proof : We first show that for every rectifiable curve σ : [0, 1] → X and every
x̃ ∈ X̃ with π(x̃) = σ(0) there exists a unique curve σ̃ : [0, 1] → X̃ such that
σ̃(0) = x̃ and π ◦ σ̃ = σ. Suppose that σ̃ is already constructed on [0, a) for some
0 < a ≤ 1. Choose a sequence 0 < t1 < t2 < . . . converging to a. Using (5) we get

d(σ̃(ti), σ̃(tj)) ≤ L(σ̃|[ti,tj ]) ≤ L(π ◦ σ̃|[ti,tj ]) = L(σ|[ti,tj ])

for i < j. Since (L(σ|[0,ti]))i∈N is Cauchy it follows that (σ̃(ti))i∈N is Cauchy and
hence convergent by (1); define σ̃(a) to be the limit point. This shows that the
maximal subinterval of [0, 1] that contains 0 and on which the lift σ̃ exists is closed.
Due to (4) it is also open, so it is equal to [0, 1].

Using (2) and (3) we see that for every pair of points in X, there is a rectifiable
path joining them. With the existence of the lifts it follows that the restriction of
π to every connected component of X̃ is a surjection onto X.

Let x ∈ X, and let ε > 0 be given as in (3). Fix x̃ ∈ π−1{x}. For y ∈ U(x, ε)
let σ̃y : [0, 1] → X̃ be the unique lift of σy : [0, 1] → X with σ̃y(0) = x̃. Define
%x̃ : U(x, ε) → X̃ by %x̃(y) = σ̃y(1). We claim that %x̃ is a homeomorphism onto
an open subset of X̃. By (4) and the fact that π ◦ %x̃ = idU(x,ε) it suffices to show
that %x̃ is continuous in y. Cover σy([0, 1]) with open balls U1, . . . , Uk ⊂ U(x, ε)
such that

σy
([ j−1

k , jk
])
⊂ Uj for j = 1, . . . , k
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and such that there exist continuous maps %j : Uj → X̃ with π ◦ %j = idUj and

%j ◦ σy = %x̃ ◦ σy on [ j−1
k , jk ]. This is possible due to (4). By (3), for δ > 0 small

enough and z ∈ U(y, δ) ⊂ U(x, ε) we have σz([
j−1
k , jk ]) ⊂ Uj . Define a continuous

map %̃ : U(y, δ)× [0, 1]→ X̃ such that

%̃(z, t) = %j(σz(t)) whenever (z, t) ∈ U(y, δ)×
[ j−1
k , jk

]
.

Then t 7→ %̃(z, t) is a lift of σz starting at x̃, so %̃(z, t) = σ̃z(t). In particular,
%̃(z, 1) = σ̃z(1) = %x̃(z) for all z ∈ U(y, δ), hence %x̃ is continuous in y.

We have shown that π−1(U(x, ε)) is the union of the open sets %x̃(U(x, ε)) with x̃ ∈
π−1{x}, and π|%x̃(U(x,ε)) is a homeomorphism onto U(x, ε). The sets %x̃(U(x, ε))
are pairwise disjoint: If ỹ ∈ %x̃(U(x, ε)) ∩ %x̃′(U(x, ε)), then the two lifts of cπ(ỹ)

both end at ỹ (by the definition of %x̃ and %x̃′), thus x̃ = x̃′. Hence π is a covering
map. 2

5 Quasi-Isometries

5.1 Definition (quasi-isometric embedding, quasi-isometry)
Let (X, d), (X̄, d̄) be metric spaces. A (not necessarily continuous) map f : X → X̄
is called quasi-isometric embedding if there exist constants λ ≥ 1 and ε ≥ 0 such
that

1

λ
d(x, y)− ε ≤ d̄(f(x), f(y)) ≤ λ d(x, y) + ε for all x, y ∈ X.

If in addition supx̄∈X̄ d̄(x̄, f(X)) < ∞, then f is called a quasi-isometry . X and
X̄ are called quasi-isometric if there exists a quasi-isometry f : X → X̄.

If f : X → X̄ is a quasi-isometry, then there exists a quasi-isometry f̄ : X̄ → X
such that supx∈X d(x, f̄ ◦ f(x)) < ∞ and supx̄∈X̄ d̄(x̄, f ◦ f̄(x̄)) < ∞; f̄ is called
a quasi-inverse of f . X is quasi-isometric to {0} if and only if diam(X) < ∞.
The composition of quasi-isometric embeddings/quasi-isometries is again a quasi-
isometric embedding/quasi-isometry. We call two maps f, g : X → X equivalent if
supx∈X d(f(x), g(x)) <∞; the quasi-isometry group Q-Isom(X) of X is the set of
all equivalence classes, endowed with the multiplication defined by [f ]·[g] := [f ◦g].

Exercise: Give examples of a metric space X such that (a) X is unbounded
and the natural homomorphism Isom(X) → Q-Isom(X) is an isomorphism,
(b) Isom(X) is trivial and Q-Isom(X) is infinite, (c) Isom(X) is infinite and
Q-Isom(X) is trivial.

Let A be a finite set. We denote by A−1 a disjoint set of the same cardinality, and
we fix an involution ι : A∪A−1 → A∪A−1 that interchanges A and A−1. We use
a−1 as a shorthand for ι(a). A word over the alphabet A is a finite string a1 . . . an
where ai ∈ A ∪ A−1 and n ∈ N ∪ {0}; for n = 0 we have the empty word ∅. A
word is called reduced if it has no substring of the form aa−1. The set F (A) of
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reduced words over A has a natural group structure: The product of two elements
is obtained by concatenating them and cancelling out substrings of the form aa−1,
and the neutral element is the empty word. We call F (A) the free group on the
alphabet A.

Now letG be a group with a finite generating setA ⊂ G, e 6∈ A. Every element ofG
can be written as a product of elements of A∪A−1 (now A−1 = {a−1 | a ∈ A} need
not be disjoint from A), thus there is a natural group epimorphism π : F (A)→ G
with π(a) = a and π(ι(a)) = a−1 for all a ∈ A ⊂ F (A). If R ⊂ F (A) is a set of
reduced words such that the kernel of π is the smallest normal subgroup of F (A)
containing R, we say that R is a set of relators for G. Then A and R together
form a group presentation for G; this is denoted by G = 〈A |R〉. The presentation
is finite if R is finite.

The word metric dA on G with respect to the finite generating set A ⊂ G \ {e} is
defined so that dA(g, h) is the length of the shortest word in π−1(g−1h) ⊂ F (A).
The metric dA is invariant under left multiplication: dA(g′g, g′h) = dA(g, h) since
(g′g)−1(g′h) = g−1h. If A′ ⊂ G \ {e} is another finite generating set for G, then
there is a constant λ ∈ N such that

1

λ
dA(g, h) ≤ dA′(g, h) ≤ λ dA(g, h) for all g, h ∈ G,

i.e. the identity map from (G, dA) to (G, dA′) is a bi-Lipschitz equivalence, in
particular a quasi-isometry.

An illustrative picture for the word metric is given by the Cayley graph. Let G
and A be given as above; CA(G) is the metric graph with vertex set V = G, edge
set E = {(g, a) | g ∈ G, a ∈ A}, endpoint maps ∂(g, a) = g, ∂′(g, a) = ga, and
length function l : E → {1} (see Example 3 on page 9). The length space CA(G)
is complete and locally compact, hence it is a proper geodesic space. We denote
the metric on CA(G) by dA; this is justified by the fact that the metric induced
on G = V ⊂ CA(G) agrees with the word metric dA.

Examples: 1. The Cayley graph of the free group G = 〈a, b | ∅〉 = F (a, b) on two
generators is a regular tree with valence 4.

2. The Cayley graph of the free abelian group G = 〈a, b | aba−1b−1〉 = Z2 on two
generators is the familiar square grid.

3. The group G = 〈a, b, c | a2, b2, c2, (ab)2, (bc)3, (ca)6〉 is isomorphic to a subgroup
of Isom(R2) generated by the reflections in the sides of a fixed triangle with angles
π/2, π/3 and π/6. To obtain a picture of its Cayley graph, draw the resulting
triangular tesselation of R2, mark the center of the inscribed circle in each triangle,
and connect every pair of centers belonging to two triangles with a common side
by a pair of edges.

For two different generating sets A and A′ of G, the spaces (CA(G), dA) and
(CA′(G), dA′) are still quasi-isometric, but rarely bi-Lipschitz equivalent.
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5.2 Theorem (Švarc–Milnor)
Let X be a length space and G a group of isometries of X. If G acts properly
and cocompactly on X, then G is finitely generated and the map g 7→ g(z) is a
quasi-isometry for every basepoint z ∈ X.

Recall that we defined the action of G on X to be proper if for all x ∈ X there is
an ε > 0 such that the set {g ∈ G | g(U(x, ε))∩U(x, ε) 6= ∅} is finite. The action is
said to be cocompact if there is a compact set C ⊂ X such that

⋃
g∈G g(C) = X.

Proof : Choose a compact set C ⊂ X such that
⋃
g∈G g(C) = X. Since G acts

properly, it follows that there exists an open neighbourhood V of C such that the
set {g ∈ G | g(V ) ∩ V 6= ∅} is finite. Hence, only finitely many sets g(C) with
g ∈ G meet V ; their union is compact and contains a tubular neighborhood of V .
This shows that X is locally compact and complete. Since X is a length space,
Theorem 2.4 (Hopf–Rinow) tells us that X is a proper geodesic space.

Now choose z ∈ C and r > 0 such that C ⊂ B(z, r). Let A′ := {g ∈ G | d(z, g(z)) ≤
3r}. BecauseX is proper andG acts properly, A′ is a finite set. Let g ∈ G\{e}, and
let σ : [0, 1]→ X be a geodesic from z to g(z). Choose 0 = t0 < t1 < · · · < tk = 1
such that d(σ(ti−1), σ(ti)) ≤ r and k ≤ 1

r d(z, g(z)) + 1. For every i there exists a
gi ∈ G such that d(σ(ti), gi(z)) ≤ r, where we take g0 = e and gk = g. We have
d(gi−1(z), gi(z)) ≤ 3r and therefore d(z, g−1

i−1gi(z)) ≤ 3r, so ai := g−1
i−1gi ∈ A′. If

follows that
g = g0(g−1

0 g1) · · · (g−1
k−2gk−1)(g−1

k−1gk) = a1 · · · ak.

Hence A′ is a generating set; let A := A′\{e}. Then dA(e, g) ≤ k ≤ 1
r d(z, g(z))+1.

Conversely, if dA(e, g) = k ∈ N, we can write g as a product a1 · · · ak with ai ∈
A ∪A−1. Put g0 := e and gi := a1 · · · ai. Then we have ai = g−1

i−1gi and

d(z, g(z)) ≤
k∑
i=1

d(gi−1(z), gi(z)) =
k∑
i=1

d(z, ai(z)) ≤ kλ = λ dA(e, g)

for λ := maxa∈A∪A−1 d(z, a(z)). 2
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