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Abstract
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1 Embeddings of metric spaces

We start with some basic and well-known isometric embedding theorems for metric
spaces.

For a non-empty set 𝑆, 𝑙∞(𝑆) = (𝑙∞(𝑆), ∥ · ∥∞) denotes the Banach space of all
functions 𝑢 : 𝑆 → R with ∥𝑢∥∞ := sup𝑠∈𝑆 |𝑢(𝑠) | < ∞. Similarly, 𝑙∞ := 𝑙∞(N) =
{(𝑢𝑘)𝑘∈N : ∥(𝑢𝑘)∥∞ := sup𝑘∈N |𝑢𝑘 | < ∞}.

Proposition 1.1 (Kuratowski, Fréchet) (1) Every metric space 𝑋 admits an iso-
metric embedding into 𝑙∞(𝑋).

(2) Every separable metric space admits an isometric embedding into 𝑙∞.

Proof : For (1), fix a basepoint 𝑧 ∈ 𝑋 and define 𝑓 : 𝑋 → 𝑙∞(𝑋),

𝑥 ↦→ 𝑢𝑥 , 𝑢𝑥 (𝑦) = 𝑑 (𝑥, 𝑦) − 𝑑 (𝑦, 𝑧).

Note that ∥𝑢𝑥 ∥∞ = sup𝑦 |𝑢𝑥 (𝑦) | ≤ 𝑑 (𝑥, 𝑧). Moreover,

∥𝑢𝑥 − 𝑢𝑥′ ∥∞ = sup𝑦 |𝑑 (𝑥, 𝑦) − 𝑑 (𝑥′, 𝑦) | ≤ 𝑑 (𝑥, 𝑥′),

and equality occurs for 𝑦 = 𝑥′.
To prove (2), choose a basepoint 𝑧 ∈ 𝑋 and a countable dense set 𝑆 = {𝑦𝑘 : 𝑘 ∈

N} in 𝑋 . Define 𝑓 : 𝑋 → 𝑙∞,

𝑥 ↦→ (𝑑 (𝑥, 𝑦𝑘) − 𝑑 (𝑦𝑘 , 𝑧))𝑘∈N.

By (1), 𝑓 |𝑆 : 𝑆 → 𝑙∞ = 𝑙∞(𝑆) is an isometric embedding. Since 𝑆 is dense and 𝑓

is continuous, 𝑓 is an isometric embedding. □

Note that if 𝑋 is bounded, there is no need for the term −𝑑 (𝑦, 𝑧) or −𝑑 (𝑦𝑘 , 𝑧),
respectively, in the definition of 𝑓 . In this case, the embedding is canonical. For
further reading on results of this type and detailed references we refer to [Hei2003].

Recall that a metric space 𝑋 is said to be precompact or totally bounded if for
every 𝜖 > 0, 𝑋 can be covered by a finite number of closed balls of radius 𝜖 . We
call a set 𝑌 ⊂ 𝑋 𝜖-separated if 𝑑 (𝑦, 𝑦′) ≥ 𝜖 whenever 𝑦, 𝑦′ ∈ 𝑌 , 𝑦 ≠ 𝑦′. Note that
𝑋 is precompact if and only if for every 𝜖 > 0, all 𝜖-separated subsets of 𝑋 are
finite. A metric space is compact if and only if it is precompact and complete.

Definition 1.2 (uniformly precompact family) A family (𝑋𝛼)𝛼∈𝐴 of metric
spaces is called uniformly precompact if for all 𝜖 > 0 there exists a number
𝑛 = 𝑛(𝜖) ∈ N such that each 𝑋𝛼 can be covered by 𝑛 closed balls of radius 𝜖 . The
family (𝑋𝛼)𝛼∈𝐴 is uniformly bounded if sup𝛼∈𝐴 diam(𝑋𝛼) < ∞.

2



Theorem 1.3 (Gromov embedding) Suppose that (𝑋𝛼)𝛼∈𝐴 is a uniformly pre-
compact and uniformly bounded family of metric spaces. Then there is a compact
metric space 𝑍 such that each 𝑋𝛼 admits an isometric embedding into 𝑍 .

We follow essentially the original proof from [Gro1981].

Proof : For 𝑖 ∈ N, let 𝜖𝑖 := 2−𝑖 and pick 𝑛𝑖 ∈ N such that each 𝑋𝛼 can be covered
by 𝑛𝑖 closed balls of radius 𝜖𝑖 . Choose a partition of N into sets 𝑁𝑖 , 𝑖 ∈ N,
with cardinality #𝑁𝑖 = 𝑛1𝑛2 . . . 𝑛𝑖 , and define a map 𝜋 : N \ 𝑁1 → N such that
𝜋−1(𝑁𝑖) = 𝑁𝑖+1 and #(𝜋−1{𝑘}) = 𝑛𝑖+1 for all 𝑖 ∈ N and 𝑘 ∈ 𝑁𝑖 . Now we construct
in each 𝑋𝛼 a sequence (𝑥𝛼

𝑘
)𝑘∈N according to the following inductive scheme. For

𝑖 = 1, the points 𝑥𝛼
𝑘

with 𝑘 ∈ 𝑁𝑖 = 𝑁1 are chosen such that the 𝑛1 balls 𝐵(𝑥𝛼
𝑘
, 𝜖1)

cover 𝑋𝛼. For 𝑖 ≥ 1, if the 𝑛1 . . . 𝑛𝑖 centers 𝑥𝛼
𝑘

with 𝑘 ∈ 𝑁𝑖 are selected, the
𝑛1 . . . 𝑛𝑖𝑛𝑖+1 points 𝑥𝛼

𝑙
with 𝑙 ∈ 𝑁𝑖+1 are chosen such that for each 𝑘 ∈ 𝑁𝑖 , the ball

𝐵(𝑥𝛼
𝑘
, 𝜖𝑖) is covered by the 𝑛𝑖+1 balls

𝐵(𝑥𝛼𝑙 , 𝜖𝑖+1) ⊂ 𝐵(𝑥𝛼𝑘 , 2𝜖𝑖)

with 𝑙 ∈ 𝜋−1{𝑘}. In this way we obtain for every 𝛼 ∈ 𝐴 a dense sequence (𝑥𝛼
𝑘
)𝑘∈N

in 𝑋𝛼 which gives rise to an isometric embedding 𝑓𝛼 : 𝑋𝛼 → 𝑙∞, mapping 𝑥 to
(𝑑 (𝑥, 𝑥𝛼

𝑘
))𝑘∈N. Whenever 𝑖 ∈ N, 𝑘 ∈ 𝑁𝑖 , and 𝑙 ∈ 𝜋−1{𝑘}, then

|𝑑 (𝑥, 𝑥𝛼𝑘 ) − 𝑑 (𝑥, 𝑥
𝛼
𝑙 ) | ≤ 𝑑 (𝑥𝛼𝑘 , 𝑥

𝛼
𝑙 ) ≤ 2𝜖𝑖 .

Hence, each 𝑓𝛼 (𝑋𝛼) lies in the set 𝑍 of all sequences (𝑢𝑘)𝑘∈N with 0 ≤ 𝑢𝑘 ≤
sup𝛼 diam(𝑋𝛼) for all 𝑘 ∈ N and

|𝑢𝑘 − 𝑢𝑙 | ≤ 2𝜖𝑖

whenever 𝑖 ∈ N, 𝑘 ∈ 𝑁𝑖 , and 𝑙 ∈ 𝜋−1{𝑘}. Since the sequence (𝜖𝑖)𝑖∈N is summable,
it follows that 𝑍 is a compact subset of 𝑙∞. □

2 Compactness theorems for metric spaces

For subsets 𝐴, 𝐵 of a metric space 𝑋 we denote by

𝑁𝛿 (𝐴) = {𝑥 ∈ 𝑋 : 𝑑 (𝑥, 𝐴) ≤ 𝛿}

the closed 𝛿-neighborhood of 𝐴 and by

𝑑H(𝐴, 𝐵) = inf{𝛿 ≥ 0 : 𝐴 ⊂ 𝑁𝛿 (𝐵), 𝐵 ⊂ 𝑁𝛿 (𝐴)}

the Hausdorff distance of 𝐴 and 𝐵; 𝑑H defines a metric on the set C of non-empty,
closed and bounded subsets of 𝑋 .
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Theorem 2.1 (Blaschke) Suppose that 𝑋 = (𝑋, 𝑑) is a metric space and C is the
set of non-empty, closed and bounded subsets of 𝑋 , endowed with the Hausdorff
metric 𝑑H.
(1) If 𝑋 is complete, then C is complete.
(2) If 𝑋 is compact, then C is compact.

This was first proved by Blaschke [Bla1916] for compact convex bodies in R3

to settle the existence question in the isoperimetric problem.

Proof : We start with (1). Let (𝐶𝑖)𝑖∈N be a Cauchy sequence in C. Then the set

𝐶 :=
⋂∞
𝑖=1

⋃
𝑗≥𝑖𝐶 𝑗

is closed and bounded. We show that

lim
𝑖→∞

𝑑H(𝐶𝑖 , 𝐶) = 0.

Let 𝜖 > 0. Choose 𝑖0 such that 𝑑H(𝐶𝑖 , 𝐶 𝑗) < 𝜖/2 whenever 𝑖, 𝑗 ≥ 𝑖0. Suppose
𝑥 ∈ 𝐶. Since 𝐶 ⊂ ⋃

𝑗≥𝑖0 𝐶 𝑗 , there exists an index 𝑗 ≥ 𝑖0 with 𝑑 (𝑥, 𝐶 𝑗) < 𝜖/2.
Hence 𝑑 (𝑥, 𝐶𝑖) ≤ 𝑑 (𝑥, 𝐶 𝑗) + 𝑑H(𝐶𝑖 , 𝐶 𝑗) < 𝜖 for all 𝑖 ≥ 𝑖0. This shows that
𝐶 ⊂ 𝑁𝜖 (𝐶𝑖) for 𝑖 ≥ 𝑖0.

Now suppose 𝑥 ∈ 𝐶𝑖 for some 𝑖 ≥ 𝑖0. Pick a sequence 𝑖 = 𝑖1 < 𝑖2 < . . . such
that 𝑑H(𝐶𝑚, 𝐶𝑛) < 𝜖/2𝑘 whenever 𝑚, 𝑛 ≥ 𝑖𝑘 , 𝑘 ∈ N. Then choose a sequence
(𝑥𝑘)𝑘∈N such that 𝑥1 = 𝑥, 𝑥𝑘 ∈ 𝐶𝑖𝑘 and 𝑑 (𝑥𝑘 , 𝑥𝑘+1) < 𝜖/2𝑘 . As 𝑋 is complete, the
Cauchy sequence (𝑥𝑘) converges to some point 𝑦. We have

𝑑 (𝑥, 𝑦) = lim
𝑘→∞

𝑑 (𝑥, 𝑥𝑘) ≤
∞∑︁
𝑘=1

𝑑 (𝑥𝑘 , 𝑥𝑘+1) < 𝜖,

and 𝑦 belongs to the closure of 𝐶𝑖𝑘 ∪ 𝐶𝑖𝑘+1 ∪ . . . for all 𝑘 . Thus 𝑦 ∈ 𝐶 and
𝑑 (𝑥, 𝐶) < 𝜖 . This shows that 𝐶𝑖 ⊂ 𝑁𝜖 (𝐶) whenever 𝑖 ≥ 𝑖0.

For the proof of (2), we know that C is complete since 𝑋 is, so it suffices to
show that C is precompact. Let 𝜖 > 0. Since 𝑋 is precompact, there exists a finite
set 𝑍 ⊂ 𝑋 with 𝑁𝜖 (𝑍) = 𝑋 . We show that every 𝐶 ∈ C is at Hausdorff distance
at most 𝜖 of some subset of 𝑍 , namely 𝑍𝐶 := 𝑍 ∩ 𝑁𝜖 (𝐶). For every 𝑥 ∈ 𝐶 there
exists a point 𝑧 ∈ 𝑍 with 𝑑 (𝑥, 𝑧) ≤ 𝜖 , so 𝑧 ∈ 𝑍𝐶 . This shows that 𝐶 ⊂ 𝑁𝜖 (𝑍𝐶).
Since also 𝑍𝐶 ⊂ 𝑁𝜖 (𝐶), we have 𝑑H(𝐶, 𝑍𝐶) ≤ 𝜖 . As there are only finitely many
distinct subsets of 𝑍 , we conclude that C is precompact. □

Definition 2.2 (Gromov–Hausdorff distance) The Gromov–Hausdorff distance
of two metric spaces 𝑋,𝑌 is the infimum of all 𝑟 > 0 for which there exist a
metric space (𝑍, 𝑑𝑍 ) and subspaces 𝑋 ′ ⊂ 𝑍 and 𝑌 ′ ⊂ 𝑍 isometric to 𝑋 and 𝑌 ,
respectively, such that 𝑑𝑍H (𝑋 ′, 𝑌 ′) < 𝑟.
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Compare [Gro1981], [Gro1999]. Alternatively, call a metric 𝑑 on the disjoint
union 𝑋 ⊔ 𝑌 admissible for the given metrics 𝑑 = 𝑑𝑋 and 𝑑 = 𝑑𝑌 on 𝑋 and 𝑌 if
𝑑 |𝑋×𝑋 = 𝑑𝑋 and 𝑑 |𝑌×𝑌 = 𝑑𝑌 ; then

𝑑GH(𝑋,𝑌 ) = inf 𝑑H(𝑋,𝑌 )

where the infimum is taken over all admissible metrics 𝑑 on 𝑋 ⊔ 𝑌 .
For instance, suppose that diam(𝑋), diam(𝑌 ) ≤ 𝐷 < ∞. Setting 𝑑 (𝑥, 𝑦) = 𝐷/2

for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 we obtain an admissible metric on 𝑋 ⊔ 𝑌 , in particular
𝑑GH(𝑋,𝑌 ) ≤ 𝐷/2.

Proposition 2.3 (1) 𝑑GH satisfies the triangle inequality, i.e. 𝑑GH(𝑋, 𝑍) ≤
𝑑GH(𝑋,𝑌 ) + 𝑑GH(𝑌, 𝑍) for all metric spaces 𝑋,𝑌, 𝑍 .

(2) 𝑑GH defines a metric on the set of isometry classes of compact metric spaces.

See [BurBI2001, Proposition 7.3.16, Theorem 7.3.30]. Assertion (2) is no
longer true if ’compact’ is replaced with ’complete and bounded’.

Theorem 2.4 (Gromov compactness criterion) Suppose that (𝑋𝑖)𝑖∈N is a uni-
formly precompact and uniformly bounded sequence of metric spaces. Then there
exist a subsequence (𝑋𝑖 𝑗 ) 𝑗∈N and a compact metric space 𝑍 such that (𝑋𝑖 𝑗 ) Gromov–
Hausdorff converges to 𝑍 , i.e. lim 𝑗→∞ 𝑑GH(𝑋𝑖 𝑗 , 𝑍) = 0.

This was proved in [Gro1981].

Proof : Combine Theorems 1.3 (Gromov embedding) and 2.1(2) (Blaschke). □

3 Lipschitz maps

Let 𝑋,𝑌 be metric spaces, and let _ ∈ [0,∞). A map 𝑓 : 𝑋 → 𝑌 is _-Lipschitz if

𝑑 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ _ 𝑑 (𝑥, 𝑥′)

for all 𝑥, 𝑥′ ∈ 𝑋 , and 𝑓 is Lipschitz if

Lip( 𝑓 ) := inf{_ ∈ [0,∞) : 𝑓 is _-Lipschitz} < ∞

(where inf ∅ := ∞). We say that 𝑓 : 𝑋 → 𝑌 is bi-Lipschitz if 𝑓 is _-bi-Lipschitz for
some _ ∈ [1,∞), that is,

_−1𝑑 (𝑥, 𝑥′) ≤ 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ _ 𝑑 (𝑥, 𝑥′)

for all 𝑥, 𝑥′ ∈ 𝑋 .
The following basic extension result for Lipschitz maps holds, see [McS1934]

and the footnote in [Whit1934].
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Proposition 3.1 (McShane, Whitney) Suppose that 𝑋 is a metric space, and
𝐴 ⊂ 𝑋 .
(1) Let 𝑛 ∈ N. Every _-Lipschitz map 𝑓 : 𝐴 → R𝑛 admits a

√
𝑛_-Lipschitz

extension 𝑓 : 𝑋 → R𝑛.
(2) Let 𝑆 be any non-empty set. Every _-Lipschitz map 𝑓 : 𝐴 → 𝑙∞(𝑆) possesses

a _-Lipschitz extension 𝑓 : 𝑋 → 𝑙∞(𝑆).

Proof : To prove (1), consider first the case 𝑛 = 1. Put

𝑓 (𝑥) := inf{ 𝑓 (𝑎) + _ 𝑑 (𝑎, 𝑥) : 𝑎 ∈ 𝐴}

for all 𝑥 ∈ 𝑋 . Note that for 𝑏 ∈ 𝐴, since 𝑓 is _-Lipschitz,

𝑓 (𝑥) ≥ inf{ 𝑓 (𝑏) − _ 𝑑 (𝑎, 𝑏) + _ 𝑑 (𝑎, 𝑥) : 𝑎 ∈ 𝐴} ≥ 𝑓 (𝑏) − _ 𝑑 (𝑏, 𝑥),

in particular 𝑓 (𝑥) > −∞ and 𝑓 (𝑏) ≥ 𝑓 (𝑏). As 𝑓 (𝑏) ≤ 𝑓 (𝑏) by definition,
𝑓 : 𝑋 → R is an extension of 𝑓 . For 𝑥, 𝑥′ ∈ 𝑋 ,

𝑓 (𝑥) ≤ inf{ 𝑓 (𝑎) + _ 𝑑 (𝑎, 𝑥′) + _ 𝑑 (𝑥, 𝑥′) : 𝑎 ∈ 𝐴} = 𝑓 (𝑥′) + _ 𝑑 (𝑥, 𝑥′),

so 𝑓 is _-Lipschitz. In the case that 𝑛 ≥ 2, note that each component of 𝑓 =

( 𝑓1, . . . , 𝑓𝑛) is _-Lipschitz and hence admits a _-Lipschitz extension 𝑓𝑖 : 𝑋 → R.
The function 𝑓 = ( 𝑓1, . . . , 𝑓𝑛) with these components is then

√
𝑛_-Lipschitz.

The proof of (2) is similar. Given 𝑓 = ( 𝑓𝑠)𝑠∈𝑆 , each component 𝑓𝑠 has a
_-Lipschitz extension 𝑓𝑠 : 𝑋 → R, and then 𝑓 = ( 𝑓𝑠)𝑠∈𝑆 is _-Lipschitz as well. □

In (1), the factor
√
𝑛 cannot be replaced with a constant < 𝑛1/4, com-

pare [JohLS1986] and [Lan1999]. In particular, Lipschitz maps into a Hilbert
space 𝑌 cannot be extended in general. However, if 𝑋 is itself a Hilbert space, one
has again an optimal result:

Theorem 3.2 (Kirszbraun, Valentine) If 𝑋,𝑌 are Hilbert spaces, 𝐴 ⊂ 𝑋 , and
𝑓 : 𝐴→ 𝑌 is _-Lipschitz, then 𝑓 has a _-Lipschitz extension 𝑓 : 𝑋 → 𝑌 .

See [Kirs1934], [Val1945], or [Fed1969, Theorem 2.10.43]. The following
argument is essentially due to Mickle (1949). A generalization to metric spaces
with curvature bounds was given in [LanS1997].

Proof (sketch): It suffices to prove the result for _ = 1.
Step I. First one shows that if 𝐴 ⊂ 𝑋 is finite and 𝑥 ∈ 𝑋 \ 𝐴, and 𝑓 : 𝐴 → 𝑌 is

1-Lipschitz, then there is a 1-Lipschitz extension 𝑓𝑥 : 𝐴 ∪ {𝑥} → 𝑌 of 𝑓 .
Suppose that 𝐴 = {𝑥1, . . . , 𝑥𝑛}, and put 𝑟𝑖 := ∥𝑥𝑖 − 𝑥∥ and 𝑦𝑖 := 𝑓 (𝑥𝑖). The

goal is to show that
⋂𝑛
𝑖=1 𝐵(𝑦𝑖 , 𝑟𝑖) ≠ ∅. Clearly 𝐶𝑡 :=

⋂𝑛
𝑖=1 𝐵(𝑦𝑖 , 𝑡𝑟𝑖) ≠ ∅ for 𝑡 > 0

sufficiently large. Put 𝑠 := inf{𝑡 > 0 : 𝐶𝑡 ≠ ∅}. Use the strict convexity of balls in
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𝑌 and completeness to prove that diam(𝐶𝑡 ) → 0 as 𝑡 → 𝑠+ and that 𝐶𝑠 consists of
a single point, 𝐶𝑠 = {𝑦}. It then remains to show that 𝑠 ≤ 1.

Put 𝑢𝑖 := 𝑥𝑖 − 𝑥 and 𝑣𝑖 := 𝑦𝑖 − 𝑦, and note that ∥𝑢𝑖 ∥ = 𝑟𝑖 and ∥𝑣𝑖 ∥ ≤ 𝑠𝑟𝑖 .
Let 𝐼 := {𝑖 : ∥𝑣𝑖 ∥ = 𝑠𝑟𝑖}. It follows from the choice of 𝑠 that 𝑦 is in the convex
hull of {𝑦𝑖 : 𝑖 ∈ 𝐼}, so 0 can be written as a convex combination

∑
𝑖∈𝐼 _𝑖𝑣𝑖 . Since

∥𝑣𝑖 − 𝑣 𝑗 ∥2 = ∥𝑦𝑖 − 𝑦 𝑗 ∥2 ≤ ∥𝑥𝑖 − 𝑥 𝑗 ∥2 = ∥𝑢𝑖 − 𝑢 𝑗 ∥2, we have

𝑠2𝑟2
𝑖 − 2⟨𝑣𝑖 , 𝑣 𝑗⟩ + 𝑠2𝑟2

𝑗 ≤ 𝑟2
𝑖 − 2⟨𝑢𝑖 , 𝑢 𝑗⟩ + 𝑟2

𝑗

for all 𝑖, 𝑗 ∈ 𝐼. Now multiply this inequality by _𝑖_ 𝑗 and sum over 𝑖, 𝑗 ∈ 𝐼. Since∑
𝑖, 𝑗 _𝑖_ 𝑗 ⟨𝑣𝑖 , 𝑣 𝑗⟩ =

∑
𝑖 _𝑖𝑣𝑖

2
= 0 and

∑
𝑖, 𝑗 _𝑖_ 𝑗 ⟨𝑢𝑖 , 𝑢 𝑗⟩ =

∑
𝑖_𝑖𝑢𝑖

2 ≥ 0, this
gives

𝑠2
∑︁
𝑖, 𝑗∈𝐼

_𝑖_ 𝑗 (𝑟2
𝑖 + 𝑟2

𝑗 ) ≤
∑︁
𝑖, 𝑗∈𝐼

_𝑖_ 𝑗 (𝑟2
𝑖 + 𝑟2

𝑗 ),

showing that 𝑠 ≤ 1.
Step II. If B is a family of closed balls in 𝑌 such that every finite subfamily

has non-empty intersection, then also
⋂B ≠ ∅. From this (well-known) property

of Hilbert spaces and the result of Step I one concludes that if 𝐴 ⊂ 𝑋 is arbitrary
and 𝑥 ∈ 𝑋 \ 𝐴, then every 1-Lipschitz map 𝑓 : 𝐴 → 𝑌 has a 1-Lipschitz extension
𝑓𝑥 : 𝐴 ∪ {𝑥} → 𝑌 .

Step III. The theorem now follows from the result of Step II by a standard
application of Zorn’s Lemma. □

The next result characterizes the extendability of partially defined Lipschitz
maps from R𝑚 into a complete metric space 𝑌 ; it is useful in connection with the
definition of rectifiable sets (Definition 10.1). We call a metric space 𝑌 Lipschitz
𝑚-connected if there is a constant 𝑐 ≥ 1 such that for 𝑘 ∈ {0, . . . , 𝑚}, every _-
Lipschitz map 𝑓 : 𝑆𝑘 → 𝑌 admits a 𝑐_-Lipschitz extension 𝑓 : 𝐵𝑘+1 → 𝑌 ; here 𝑆𝑘

and 𝐵𝑘+1 denote the unit sphere and closed ball in R𝑘+1, endowed with the induced
metric. Every Banach space is Lipschitz 𝑚-connected for all 𝑚 ≥ 0. The sphere
𝑆𝑛 is Lipschitz (𝑛 − 1)-connected.

Theorem 3.3 (Lipschitz maps on R𝑚) Let 𝑌 be a complete metric space, and let
𝑚 ∈ N. Then the following statements are equivalent:
(1) 𝑌 is Lipschitz (𝑚 − 1)-connected.
(2) There is a constant 𝑐 such that every _-Lipschitz map 𝑓 : 𝐴 → 𝑌 , 𝐴 ⊂ R𝑚,

has a 𝑐_-Lipschitz extension 𝑓 : R𝑚 → 𝑌 .

The idea of the proof goes back to Whitney [Whit1934]. Compare [Alm1962,
Theorem (1.2)] and [JohLS1986].

Proof : It is clear that (2) implies (1). Now suppose that (1) holds, and let 𝑓 : 𝐴→ 𝑌

be a _-Lipschitz map, 𝐴 ⊂ R𝑚. As 𝑌 is complete, 𝑓 extends canonically to the
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closure of 𝐴, with the same Lipschitz constant. Hence, assume 𝐴 to be closed. A
dyadic cube in R𝑚 is a set of the form 𝑥 + [0, 2𝑘]𝑚 for some 𝑘 ∈ Z and 𝑥 ∈ (2𝑘Z)𝑚.
Denote by C the family of all dyadic cubes 𝐶 ⊂ R𝑚 \ 𝐴 that are maximal (with
respect to inclusion) subject to the condition

diam(𝐶) ≤ 2 𝑑 (𝐴,𝐶).

The cubes in C have pairwise disjoint interiors and cover R𝑚 \ 𝐴. Moreover, they
satisfy

𝑑 (𝐴,𝐶) < 2 diam(𝐶),

for if𝐶′ is the next bigger dyadic cube containing𝐶, then 2 𝑑 (𝐴,𝐶′) < diam(𝐶′) =
2 diam(𝐶) and 𝑑 (𝐴,𝐶) ≤ 𝑑 (𝐴,𝐶′) + diam(𝐶).

Let Σ𝑘 ⊂ R𝑚 denote the 𝑘-skeleton of this cubical decomposition. Choose
𝜋 : 𝐴 ∪ Σ0 → 𝐴 such that 𝑑 (𝑥, 𝜋(𝑥)) = 𝑑 (𝑥, 𝐴) for all 𝑥 ∈ 𝐴 ∪ Σ0. If 𝑥 ∈ Σ0 and
𝑎 ∈ 𝐴, then

𝑑 (𝜋(𝑥), 𝜋(𝑎)) = 𝑑 (𝜋(𝑥), 𝑎) ≤ 𝑑 (𝑥, 𝜋(𝑥)) + 𝑑 (𝑥, 𝑎) ≤ 2 𝑑 (𝑥, 𝑎).

If 𝑥, 𝑥′ ∈ Σ0 are distinct, and 𝐶𝑥 ∈ C is a smallest cube containing 𝑥, then

𝑑 (𝜋(𝑥), 𝑥) ≤ 𝑑 (𝐴,𝐶𝑥) + diam(𝐶𝑥) ≤ 3 diam(𝐶𝑥) ≤ 3
√
𝑚 𝑑 (𝑥, 𝑥′),

and likewise 𝑑 (𝜋(𝑥′), 𝑥′) ≤ 3
√
𝑚 𝑑 (𝑥, 𝑥′); thus

𝑑 (𝜋(𝑥), 𝜋(𝑥′)) ≤ 𝑑 (𝜋(𝑥), 𝑥) + 𝑑 (𝑥, 𝑥′) + 𝑑 (𝑥′, 𝜋(𝑥′)) ≤ 𝑐0 𝑑 (𝑥, 𝑥′)

for 𝑐0 := 6
√
𝑚 + 1. This shows that 𝜋 is 𝑐0-Lipschitz.

Extend 𝑓 to a 𝑐0_-Lipschitz map 𝑓0 : 𝐴 ∪ Σ0 → 𝑌 by putting 𝑓0 := 𝑓 ◦ 𝜋.
Since 𝑌 is Lipschitz 0-connected, 𝑓0 can be extended to a map 𝑓1 : 𝐴 ∪ Σ1 → 𝑌

whose restriction to any edge of a cube in C is 𝑐1_-Lipschitz for some constant
𝑐1. It then follows easily that the restriction of 𝑓1 to the (relative) boundary of
any 2-dimensional face of a cube in C is 2𝑐1_-Lipschitz. Since 𝑌 is Lipschitz
1-connected, 𝑓1 admits an extension 𝑓2 : 𝐴 ∪ Σ2 → 𝑌 whose restriction to any
2-face of a cube in C is 𝑐2_-Lipschitz for some constant 𝑐2. It follows that the
restriction of 𝑓2 to the boundary of any 3-face of a cube in C is 2𝑐2_-Lipschitz. By
successively constructing extensions to 𝐴 ∪ Σ3, . . . , 𝐴 ∪ Σ𝑚 = R𝑚, using that 𝑌 is
Lipschitz (𝑚 − 1)-connected, one arrives at an extension 𝑓 := 𝑓𝑚 : R𝑚 → 𝑌 of 𝑓0
whose restriction to any cube 𝐶 ∈ C is 𝑐𝑚_-Lipschitz for some constant 𝑐𝑚 ≥ 1.
Since 𝑓0 is continuous, and 𝑓 |𝐴 = 𝑓 is _-Lipschitz, it follows easily that 𝑓 is in fact
𝑐𝑚_-Lipschitz on R𝑚. □

A metric space 𝑌 is an absolute (𝐶-)Lipschitz retract if for any isometric
embedding 𝑖 : 𝑌 → 𝑍 into another metric space 𝑍 there is a (𝐶-)Lipschitz retraction
of 𝑍 onto 𝑖(𝑌 ).
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Proposition 3.4 For a metric space 𝑌 , the following are equivalent:
(1) For every metric space 𝑋 and every Lipschitz map 𝑓 : 𝐴→ 𝑌 , 𝐴 ⊂ 𝑌 , there is

a Lipschitz extension 𝑓 : 𝑋 → 𝑌 .
(2) There exists a constant 𝐶 ≥ 1 such that for every metric space 𝑋 and every

Lipschitz map 𝑓 : 𝐴 → 𝑌 , 𝐴 ⊂ 𝑌 , there is a Lipschitz extension 𝑓 : 𝑋 → 𝑌

with Lip( 𝑓 ) ≤ 𝐶 Lip( 𝑓 ).
(3) 𝑌 is an absolute Lipschitz retract.
(4) 𝑌 is an absolute 𝐶-Lipschitz retract for some 𝐶 ≥ 1.

Proof : To be completed. □

Proposition 3.5 Let 𝑋 be a metric space. Every uniformly continuous and bounded
function 𝑓 : 𝑋 → R is a uniform limit of a sequence of Lipschitz functions.

This is taken from [Hei2001, Theorem 6.8].

Proof : Let 𝜔(𝛿) := sup{| 𝑓 (𝑥) − 𝑓 (𝑦) | : 𝑑 (𝑥, 𝑦) ≤ 𝛿}, 𝛿 ≥ 0, be the modulus of
continuity of 𝑓 . For 𝑘 ∈ N, define 𝑓𝑘 : 𝑋 → R by

𝑓𝑘 (𝑥) := inf{ 𝑓 (𝑦) + 𝑘 𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝑋}.

Then 𝑓 (𝑥) ≥ 𝑓𝑘 (𝑥) ≥ inf 𝑓 > −∞, and 𝑓𝑘 is 𝑘-Lipschitz (compare the proof of
Proposition 3.1). If 𝑑 (𝑥, 𝑦) > 𝛿𝑘 := 2 sup | 𝑓 |/𝑘 , then

𝑓 (𝑦) + 𝑘 𝑑 (𝑥, 𝑦) > 𝑓 (𝑦) + 2 sup | 𝑓 | ≥ 𝑓 (𝑥) ≥ 𝑓𝑘 (𝑥),

so in the definition of 𝑓𝑘 (𝑥) it suffices to take the infimum over the closed ball
𝐵(𝑥, 𝛿𝑘). In particular 𝑓𝑘 (𝑥) ≥ inf{ 𝑓 (𝑦) : 𝑦 ∈ 𝐵(𝑥, 𝛿𝑘)} and hence

0 ≤ 𝑓 (𝑥) − 𝑓𝑘 (𝑥) ≤ sup{ 𝑓 (𝑥) − 𝑓 (𝑦) : 𝑦 ∈ 𝐵(𝑥, 𝛿𝑘)} ≤ 𝜔(𝛿𝑘)

for all 𝑥 ∈ 𝑋 . We conclude that 𝑓𝑘 → 𝑓 (𝑘 → ∞) uniformly on 𝑋 . □

4 Differentiability of Lipschitz maps

Recall the following definitions.

Definition 4.1 (Gâteaux and Fréchet differential) Suppose that 𝑋,𝑌 are Banach
spaces, 𝑓 maps an open set𝑈 ⊂ 𝑋 into 𝑌 , and 𝑥 ∈ 𝑈.
(1) The map 𝑓 is Gâteaux differentiable at 𝑥 if the directional derivative

𝐷𝑣 𝑓 (𝑥) = lim
𝑡→0

𝑓 (𝑥 + 𝑡𝑣) − 𝑓 (𝑥)
𝑡

exists for every 𝑣 ∈ 𝑋 and if there is a continuous linear map 𝐿 : 𝑋 → 𝑌 such
that

𝐿 (𝑣) = 𝐷𝑣 𝑓 (𝑥)
for all 𝑣 ∈ 𝑋 . Then 𝐿 is the Gâteaux differential of 𝑓 at 𝑥.

9



(2) The map 𝑓 is (Fréchet) differentiable at 𝑥 if there is a continuous linear map
𝐿 : 𝑋 → 𝑌 such that

lim
𝑣→0

𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥) − 𝐿 (𝑣)
∥𝑣∥ = 0.

Then 𝐿 =: 𝑑𝑓𝑥 is the (Fréchet) differential of 𝑓 at 𝑥.

The map 𝑓 is Fréchet differentiable at 𝑥 if and only if 𝑓 is Gâteaux differentiable
at 𝑥 and the limit 𝐿 (𝑢) = 𝐷𝑢 𝑓 (𝑥) exists uniformly for 𝑢 in the unit sphere of 𝑋 ,
i.e., for all 𝜖 > 0 there is a 𝛿 > 0 such that

∥ 𝑓 (𝑥 + 𝑡𝑢) − 𝑓 (𝑥) − 𝑡𝐿 (𝑢)∥ ≤ 𝜖 |𝑡 |

whenever |𝑡 | ≤ 𝛿 and 𝑢 ∈ 𝑆(0, 1) ⊂ 𝑋 .

Lemma 4.2 (differentiable Lipschitz maps) Suppose that 𝑌 is a Banach space,
𝑓 : R𝑚 → 𝑌 is Lipschitz, 𝑥 ∈ R𝑚, 𝐷 is a dense subset of 𝑆𝑚−1, 𝐷𝑢 𝑓 (𝑥) exists for
every 𝑢 ∈ 𝐷, 𝐿 : R𝑚 → 𝑌 is linear, and 𝐿 (𝑢) = 𝐷𝑢 𝑓 (𝑥) for all 𝑢 ∈ 𝐷. Then 𝑓 is
Fréchet differentiable at 𝑥 with differential 𝑑𝑓𝑥 = 𝐿.

In particular, if a Lipschitz map 𝑓 : R𝑚 → 𝑌 is Gâteaux differentiable at 𝑥, then
𝑓 is Fréchet differentiable at 𝑥.

Proof : Let 𝜖 > 0. Choose a finite set 𝐷′ ⊂ 𝐷 such that for every 𝑢 ∈ 𝑆𝑚−1 there is
a 𝑢′ ∈ 𝐷′ with ∥𝑢 − 𝑢′∥ ≤ 𝜖 . Then there is a 𝛿 > 0 such that

∥ 𝑓 (𝑥 + 𝑡𝑢′) − 𝑓 (𝑥) − 𝑡𝐿 (𝑢′)∥ ≤ 𝜖 |𝑡 |

whenever |𝑡 | ≤ 𝛿 and 𝑢′ ∈ 𝐷′. Given 𝑢 ∈ 𝑆𝑚−1, pick 𝑢′ ∈ 𝐷′ with ∥𝑢 − 𝑢′∥ ≤ 𝜖 ;
then

∥ 𝑓 (𝑥 + 𝑡𝑢) − 𝑓 (𝑥) − 𝑡𝐿 (𝑢)∥
≤ 𝜖 |𝑡 | + ∥ 𝑓 (𝑥 + 𝑡𝑢) − 𝑓 (𝑥 + 𝑡𝑢′)∥ + |𝑡 |∥𝐿 (𝑢 − 𝑢′)∥
≤ (1 + Lip( 𝑓 ) + ∥𝐿∥)𝜖 |𝑡 |

for |𝑡 | ≤ 𝛿. By the remark preceding the lemma, this gives the result. □

Theorem 4.3 (Rademacher) Every Lipschitz map 𝑓 : R𝑚 → R𝑛 is differentiable
at L𝑚-almost all points in R𝑚.

This was originally proved in [Rad1919].

Proof : It suffices to prove the theorem for 𝑛 = 1; in the general case, 𝑓 =

( 𝑓1, . . . , 𝑓𝑛) is differentiable at 𝑥 if and only if each 𝑓𝑖 is differentiable at 𝑥.
In the case 𝑚 = 1 the function 𝑓 : R → R is absolutely continuous and hence

L1-almost everywhere differentiable.
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Now let 𝑚 ≥ 2. Fix 𝑢 ∈ 𝑆𝑚−1 for the moment, and let 𝐵𝑢 denote the Borel set
of all 𝑥 ∈ R𝑚 where 𝐷𝑢 𝑓 (𝑥) exists. Let 𝐻𝑢 be the linear hyperplane orthogonal to
𝑢. For 𝑥0 ∈ 𝐻𝑢, the function 𝑡 ↦→ 𝑓 (𝑥0+ 𝑡𝑢) is L1-almost everywhere differentiable
by the result for 𝑚 = 1, hence

L1((𝑥0 +R𝑢) \ 𝐵𝑢) = 0.

The characteristic function of R𝑚 \ 𝐵𝑢 is L𝑚-measurable, and an application of
Fubini’s Theorem shows that L𝑚(R𝑚 \ 𝐵𝑢) = 0.

Now choose a dense countable subset 𝐷 of 𝑆𝑚−1 containing the canonical
basis vectors 𝑒1, . . . , 𝑒𝑚, and put 𝐵 :=

⋂
𝑢∈𝐷 𝐵𝑢. Then L𝑚(R𝑚 \ 𝐵) = 0, and

for every 𝑥 ∈ 𝐵, 𝐷𝑢 𝑓 (𝑥) exists for all 𝑢 ∈ 𝐷; in particular, the formal gradient
∇ 𝑓 (𝑥) := (𝐷𝑒1 𝑓 (𝑥), . . . , 𝐷𝑒𝑚 𝑓 (𝑥)) exists. It now suffices to show that for L𝑚-
almost all 𝑥 ∈ 𝐵, the usual relation

𝐷𝑢 𝑓 (𝑥) = ⟨∇ 𝑓 (𝑥), 𝑢⟩

holds for all 𝑢 ∈ 𝐷. Since the right side is linear in 𝑢, the theorem then follows
from Lemma 4.2.

Let 𝜙 ∈ 𝐶∞
𝑐 (R𝑚). By Lebesgue’s bounded convergence theorem,

lim
𝑡→0

∫
𝑓 (𝑥 + 𝑡𝑢) − 𝑓 (𝑥)

𝑡
𝜙(𝑥) 𝑑𝑥 =

∫
𝐷𝑢 𝑓 (𝑥)𝜙(𝑥) 𝑑𝑥,

lim
𝑡→0

∫
𝑓 (𝑥) 𝜙(𝑥 − 𝑡𝑢) − 𝜙(𝑥)

𝑡
𝑑𝑥 = −

∫
𝑓 (𝑥)𝐷𝑢𝜙(𝑥) 𝑑𝑥.

Substituting 𝑥 − 𝑡𝑢 for 𝑥 in the term 𝑓 (𝑥 + 𝑡𝑢)𝜙(𝑥) we see that the two left sides
coincide. Hence, ∫

𝐷𝑢 𝑓 (𝑥)𝜙(𝑥) 𝑑𝑥 = −
∫

𝑓 (𝑥)𝐷𝑢𝜙(𝑥) 𝑑𝑥.

This holds in particular for 𝑒1, . . . , 𝑒𝑚, and by taking linear combinations of these
identities we get∫

⟨∇ 𝑓 (𝑥), 𝑢⟩𝜙(𝑥) 𝑑𝑥 = −
∫

𝑓 (𝑥)⟨∇𝜙(𝑥), 𝑢⟩ 𝑑𝑥.

Now the right sides of the last two identities coincide. As 𝜙 ∈ 𝐶∞
𝑐 (R𝑚) is arbitrary,

it follows that 𝐷𝑢 𝑓 (𝑥) = ⟨∇ 𝑓 (𝑥), 𝑢⟩ for L𝑚-almost every 𝑥 ∈ 𝐵, as desired. □

Theorem 4.4 (Stepanov) Every map 𝑓 : R𝑚 → R𝑛 is differentiable at L𝑚-almost
all points in the set

𝐿 ( 𝑓 ) :=
{
𝑥 : lim sup𝑦→𝑥 ∥ 𝑓 (𝑦) − 𝑓 (𝑥)∥/∥𝑦 − 𝑥∥ < ∞

}
.

This generalization of Rademacher’s Theorem was proved in [Step1923]. The
following elegant argument is due to Malý [Mal1999].
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Proof : It suffices to consider the case 𝑛 = 1. Let (𝑈𝑘)𝑘∈N be the family of all open
balls inR𝑚 with center inQ𝑚 and positive rational radius such that 𝑓 |𝑈𝑘

is bounded.
This family covers 𝐿 ( 𝑓 ). Let 𝑎𝑘 : 𝑈𝑘 → R be the supremum of all 𝑘-Lipschitz
functions ≤ 𝑓 |𝑈𝑘

, and let 𝑏𝑘 : 𝑈𝑖 → R be the infimum of all 𝑘-Lipschitz functions
≥ 𝑓 |𝑈𝑘

. Note that 𝑎𝑘 , 𝑏𝑘 are 𝑘-Lipschitz and 𝑎𝑘 ≤ 𝑓 |𝑈𝑘
≤ 𝑏𝑘 . Let

𝐵𝑘 := {𝑥 ∈ 𝑈𝑘 : both 𝑎𝑘 and 𝑏𝑘 are differentiable at 𝑥}.

By Rademacher’s Theorem, 𝑍 :=
⋃∞
𝑖=1𝑈𝑘 \𝐵𝑘 has measure zero. Let 𝑥 ∈ 𝐿 ( 𝑓 ) \𝑍 .

We show that there exists an index 𝑘 such that 𝑥 ∈ 𝐵𝑘 and 𝑎𝑘 (𝑥) = 𝑏𝑘 (𝑥);
then 𝑓 is differentiable at 𝑥. Since 𝑥 ∈ 𝐿 ( 𝑓 ), there is a radius 𝑟 > 0 such that
∥ 𝑓 (𝑦) − 𝑓 (𝑥)∥ ≤ _∥𝑦 − 𝑥∥ for all 𝑦 ∈ 𝐵(𝑥, 𝑟) and for some _ ≥ 0 independent of
𝑦. Choose 𝑘 such that 𝑘 ≥ _ and 𝑥 ∈ 𝑈𝑘 ⊂ 𝐵(𝑥, 𝑟). Since 𝑥 ∉ 𝑍 , 𝑥 ∈ 𝐵𝑘 . By the
definition of 𝑎𝑘 and 𝑏𝑘 , because 𝑘 ≥ _,

𝑓 (𝑥) − 𝑘 ∥𝑦 − 𝑥∥ ≤ 𝑎𝑘 (𝑦) ≤ 𝑓 (𝑦) ≤ 𝑏𝑘 (𝑦) ≤ 𝑓 (𝑥) + 𝑘 ∥𝑦 − 𝑥∥

for all 𝑦 ∈ 𝑈𝑘 . For 𝑦 = 𝑥 this gives 𝑎𝑘 (𝑥) = 𝑏𝑘 (𝑥), as desired. □

The following simple example shows that Theorem 4.3 is not valid in general
for Banach space valued maps (cf. [Fed1969, 2.9.23]).

Example 4.5 Consider the map 𝑓 : [0, 1] → 𝐿1( [0, 1]) that sends 𝑠 to the charac-
teristic function 𝜒[0,𝑠] of [0, 𝑠]. For 0 ≤ 𝑠 ≤ 𝑠 + ℎ ≤ 1 we have

∥ 𝑓 (𝑠 + ℎ) − 𝑓 (𝑠)∥1 =

∫ 1

0
|𝜒[0,𝑠+ℎ] − 𝜒[0,𝑠] | 𝑑L1 =

∫ 1

0
𝜒(𝑠,𝑠+ℎ] 𝑑L1 = ℎ,

so 𝑓 is an isometric embedding, in particular 𝑓 is 1-Lipschitz. However, the
difference quotients 1

ℎ
( 𝑓 (𝑠 + ℎ) − 𝑓 (𝑠)) = 1

ℎ
𝜒(𝑠,𝑠+ℎ] have integral 1, and they form

no Cauchy family for ℎ → 0. Hence, 𝑓 is nowhere differentiable.

For a Banach space 𝑌 , the property that every absolutely continuous function
𝑓 : [0, 1] → 𝑌 is differentiable almost everywhere holds if and only if 𝑌 has
the so-called Radon–Nikodym property (RNP), and then also every Lipschitz map
𝑓 : R𝑚 → 𝑌 is (Fréchet) differentiable almost everywhere. The definition of
the RNP postulates the existence of a Radon–Nikodym derivative in 𝐿1(`,𝑌 ) (a
Bochner integrable function) for every 𝑌 -valued measure a : M → 𝑌 whose norm
is absolutely continuous with respect to a probability measure space (𝑋,M, `). A
geometric characterization is as follows: 𝑌 has the RNP if and only if every closed
convex set 𝐶 in the unit ball has slices of arbitrarily small diameter. Here, a slice is
a set of the form 𝑆(𝐶, _, 𝛼) := {𝑦 ∈ 𝐶 : _(𝑦) ≥ sup𝑥∈𝐶 _(𝑥) − 𝛼} for _ ∈ 𝑌 ∗ and
𝛼 > 0. Every separable dual space and every reflexive Banach space has the RNP.
For a detailed discussion, see [BenL2000].
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5 Extension of smooth functions

We state Whitney’s extension theorem for 𝐶1 functions and some applications,
compare [Whit1934], [Fed1969, Sect. 3.1], and [Sim2014, Ch. 2].

Theorem 5.1 (Whitney) Suppose 𝑓 : 𝐴→ R is a function on a closed set 𝐴 ⊂ R𝑚,
𝑔 : 𝐴→ R𝑚 is continuous, and for every compact set 𝐾 ⊂ 𝐴 and every 𝜖 > 0 there
is a 𝛿 > 0 such that

| 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨𝑔(𝑥), 𝑦 − 𝑥⟩| ≤ 𝜖 ∥𝑦 − 𝑥∥

whenever 𝑥, 𝑦 ∈ 𝐾 and ∥𝑦 − 𝑥∥ ≤ 𝛿. Then there exists a 𝐶1 function 𝑓 : R𝑚 → R

with 𝑓 |𝐴 = 𝑓 and ∇ 𝑓 |𝐴 = 𝑔.

It follows from the assumptions that 𝑓 is locally Lipschitz, hence continuous: if
𝑥, 𝑦 ∈ 𝐾 and ∥𝑦 − 𝑥∥ ≤ 𝛿, then | 𝑓 (𝑦) − 𝑓 (𝑥) | ≤ (𝜖 + sup𝑥∈𝐾 ∥𝑔(𝑥)∥) ∥𝑦 − 𝑥∥. Note
also that if 𝑓 : R𝑚 → R is𝐶1, then 𝑓 := 𝑓 |𝐴 and 𝑔 := ∇ 𝑓 |𝐴 satisfy the assumptions
of the theorem. The proof of Theorem 5.1 uses a decomposition of R𝑚 \ 𝐴 as for
Theorem 3.3 and a 𝐶1 partition of unity.

A first application is the following strong approximation result.

Theorem 5.2 (𝐶1 approximation of Lipschitz functions) If 𝑓 : R𝑚 → R is Lip-
schitz and 𝜖 > 0, then there is a 𝐶1 function 𝑓 : R𝑚 → R such that

L𝑚({𝑥 ∈ R𝑚 : 𝑓 (𝑥) ≠ 𝑓 (𝑥)}) < 𝜖.

Proof : Let 𝜖 > 0. By Rademacher’s Theorem, there is a Borel set 𝐵 ⊂ R𝑚

with L𝑚(R𝑚 \ 𝐵) < 𝜖/2 such that 𝑓 is differentiable at every point in 𝐵, and
𝑔 := ∇ 𝑓 : 𝐵 → R𝑚 is a measurable function. For 𝑥 ∈ 𝐵 and 𝑘 ∈ N, let

𝑟𝑘 (𝑥) := sup
{
| 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨𝑔(𝑥), 𝑦 − 𝑥⟩|

∥𝑦 − 𝑥∥ : 𝑦 ∈ 𝐵, 0 < ∥𝑦 − 𝑥∥ ≤ 1
𝑘

}
;

then 𝑟𝑘 → 0 pointwise on 𝐵 as 𝑘 → ∞. Applying both Lusin’s Theorem and
Egorov’s Theorem, we find a closed set 𝐶 ⊂ 𝐵 with L𝑚(𝐵 \ 𝐶) < 𝜖/2 such that
𝑔 |𝐶 is continuous and 𝑟𝑘 → 0 uniformly on compact subsets of 𝐶. Now extend
𝑓 |𝐶 to R𝑚 by means of Theorem 5.1. □

For an another application of Theorem 5.1, recall that by Sard’s Theorem, the set
of critical values of a𝐶𝑘 function 𝑓 : R𝑚 → R𝑛 with 0 ≤ 𝑚−𝑛 < 𝑘 hasL𝑛-measure
zero. In the case that 𝑚 = 2 and 𝑛 = 1, the assumption that 𝑓 be twice continuously
differentiable seems too strong but is necessary. Indeed, using the 𝐶1 extension
result, Whitney constructed an example of a 𝐶1 function 𝑓 : R2 → R and an
injective non-rectifiable curve 𝛾 : [0, 1] → R2 with ∇ 𝑓 (𝛾(𝑡)) = 0 for all 𝑡 ∈ [0, 1],
such that 𝑓 ◦ 𝛾 : [0, 1] → [0, 1] is monotonic and surjective (see [Whit1935]).
Thus, in this example, there is whole interval of critical values.
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6 Metric differentiability

Let 𝑌 = (𝑌, 𝑑) be a metric space. Suppose 𝐼 ⊂ R is an interval (i.e. a connected
set) and 𝛾 : 𝐼 → 𝑌 is a curve (i.e. a continuous map). The length of 𝛾 is the possibly
infinite number

𝐿 (𝛾) := sup
𝑁∑︁
𝑖=1

𝑑 (𝛾(𝑡𝑖−1), 𝛾(𝑡𝑖)),

where the supremum is taken over all finite sequences 𝑡0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝑁 in 𝐼. The
curve 𝛾 is called rectifiable if 𝐿 (𝛾) < ∞.

Theorem 6.1 (metric derivative) Suppose that 𝑎 < 𝑏, 𝑌 is a metric space, and
𝛾 : [𝑎, 𝑏] → 𝑌 is Lipschitz. Then the limit

| ¤𝛾 | (𝑡) := lim
ℎ→0

𝑑 (𝛾(𝑡 + ℎ), 𝛾(𝑡))
|ℎ|

exists for L1-almost every 𝑡 ∈ [𝑎, 𝑏], and

𝐿 (𝛾) =
∫ 𝑏

𝑎

| ¤𝛾 | (𝑡) 𝑑𝑡.

The proof below follows [AmbT2004, Theorem 4.1.1] (see also [Kir1994,
Proposition 1] and [BurBI2001, Theorem 2.7.6]).

Proof : Choose a dense sequence (𝑦𝑘)𝑘∈N in 𝛾( [𝑎, 𝑏]) and define

𝜌𝑘 : [𝑎, 𝑏] → R, 𝜌𝑘 (𝑡) = 𝑑 (𝛾(𝑡), 𝑦𝑘).

By the triangle inequality, |𝜌𝑘 (𝑡+ℎ) − 𝜌𝑘 (𝑡) | ≤ 𝑑 (𝛾(𝑡+ℎ), 𝛾(𝑡)) whenever 𝑡, 𝑡+ℎ ∈
[𝑎, 𝑏], in particular Lip(𝜌𝑘) ≤ Lip(𝛾). Hence, for almost every 𝑡 ∈ [𝑎, 𝑏], the
derivative ¤𝜌𝑘 (𝑡) exists for all 𝑘 , and

𝑀 (𝑡) := sup
𝑘

| ¤𝜌𝑘 (𝑡) | ≤ lim inf
ℎ→0

𝑑 (𝛾(𝑡 + ℎ), 𝛾(𝑡))
|ℎ| .

On the other hand, if (𝑦𝑘𝑛)𝑛∈N is a subsequence tending to 𝛾(𝑡), then

𝑑 (𝛾(𝑡 + ℎ), 𝛾(𝑡)) = lim
𝑛→∞

|𝜌𝑘𝑛 (𝑡 + ℎ) − 𝜌𝑘𝑛 (𝑡) | ≤ sgn(ℎ)
∫ 𝑡+ℎ

𝑡

𝑀 (𝑠) 𝑑𝑠

and so

lim sup
ℎ→0

𝑑 (𝛾(𝑡 + ℎ), 𝛾(𝑡))
|ℎ| ≤ lim sup

ℎ→0

1
ℎ

∫ 𝑡+ℎ

𝑡

𝑀 (𝑠) 𝑑𝑠.

It follows that for every Lebesgue point 𝑡 of the measurable function 𝑠 ↦→ 𝑀 (𝑠),
the limit | ¤𝛾 | (𝑡) exists and equals 𝑀 (𝑡). This proves the first part of the theorem.
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The above argument also shows that

𝑑 (𝛾(𝑡 + ℎ), 𝛾(𝑡)) ≤
∫ 𝑡+ℎ

𝑡

| ¤𝛾 | (𝑠) 𝑑𝑠

whenever 𝑎 ≤ 𝑡 < 𝑡 + ℎ ≤ 𝑏, which implies that 𝐿 (𝛾) ≤
∫ 𝑏
𝑎

| ¤𝛾 | (𝑡) 𝑑𝑡. For the
reverse inequality, fix 𝜖 > 0, and choose 𝑁 ≥ 2 such that ℎ := (𝑏 − 𝑎)/𝑁 ≤ 𝜖 . Put
𝑡𝑖 := 𝑎 + 𝑖ℎ, for 𝑖 = 0, 1, . . . , 𝑁 . Then

1
ℎ

∫ 𝑏−ℎ

𝑎

𝑑 (𝛾(𝑡), 𝛾(𝑡 + ℎ)) 𝑑𝑡 = 1
ℎ

∫ ℎ

0

𝑁−1∑︁
𝑖=1

𝑑 (𝛾(𝑠 + 𝑡𝑖−1), 𝛾(𝑠 + 𝑡𝑖)) 𝑑𝑠

≤ 1
ℎ

∫ ℎ

0
𝐿 (𝛾) 𝑑𝑠 = 𝐿 (𝛾).

Using Fatou’s lemma, we conclude that∫ 𝑏−𝜖

𝑎

| ¤𝛾 | (𝑡) 𝑑𝑡 =
∫ 𝑏−𝜖

𝑎

lim
𝑁→∞

𝑑 (𝛾(𝑡 + ℎ), 𝛾(𝑡))
ℎ

𝑑𝑡

≤ lim inf
𝑁→∞

1
ℎ

∫ 𝑏−𝜖

𝑎

𝑑 (𝛾(𝑡 + ℎ), 𝛾(𝑡)) 𝑑𝑡 ≤ 𝐿 (𝛾).

Letting 𝜖 → 0, we obtain
∫ 𝑏
𝑎

| ¤𝛾 | (𝑡) 𝑑𝑡 ≤ 𝐿 (𝛾). □

We now consider functions 𝑓 : R𝑚 → 𝑌 = (𝑌, 𝑑) for 𝑚 ≥ 1. To motivate
the following definition, we first remark that if 𝑌 is a Banach space and 𝑓 is
differentiable at 𝑥, then it is also true that

lim
∥𝑣 ∥+∥𝑤 ∥→0

𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥 + 𝑤) − 𝑑𝑓𝑥 (𝑣 − 𝑤)
∥𝑣∥ + ∥𝑤∥ = 0.

Indeed, given 𝜖 > 0, there is a 𝛿 > 0 such that ∥ 𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥) − 𝑑𝑓𝑥 (𝑣)∥ ≤ 𝜖 ∥𝑣∥
whenever ∥𝑣∥ ≤ 𝛿. Hence, if also ∥𝑤∥ ≤ 𝛿, then

∥ 𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥 + 𝑤) − 𝑑𝑓𝑥 (𝑣 − 𝑤)∥
=
( 𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥) − 𝑑𝑓𝑥 (𝑣)

)
−
(
𝑓 (𝑥 + 𝑤) − 𝑓 (𝑥) − 𝑑𝑓𝑥 (𝑤)

)
≤ 𝜖 (∥𝑣∥ + ∥𝑤∥)

by the triangle inequality.

Definition 6.2 (metric differentiability) Suppose 𝑌 is a metric space, 𝑈 ⊂ R𝑚 is
an open set, and 𝑥 ∈ 𝑈. A map 𝑓 : 𝑈 → 𝑌 is metrically differentiable at 𝑥 if there
exists a seminorm 𝜎 on R𝑚 such that

lim
∥𝑣 ∥+∥𝑤 ∥→0

𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥 + 𝑤)) − 𝜎(𝑣 − 𝑤)
∥𝑣∥ + ∥𝑤∥ = 0.

Then we call 𝜎 the metric differential of 𝑓 at 𝑥 and denote it by md 𝑓𝑥 .
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It is clear that for every 𝑥 there is at most one such seminorm. In particular, if𝑌 is
a Banach space and 𝑓 is differentiable at 𝑥, then it follows from the preceding remark
that 𝑓 is metrically differentiable at 𝑥 with metric differential md 𝑓𝑥 = ∥𝑑𝑓𝑥 (·)∥.

Theorem 6.3 (metric differentiability of Lipschitz maps) Suppose that 𝑌 is a
metric space,𝑈 ⊂ R𝑚 is an open set, and 𝑓 : 𝑈 → 𝑌 is a Lipschitz map. Then 𝑓 is
metrically differentiable at L𝑚-almost all points in𝑈.

See [Kir1994] and [KorS1993]. For the proof we use the following proposition
(compare [Wen2008]).

Proposition 6.4 Let 𝑓 : 𝑈 → 𝑌 be given as in Theorem 6.3, and let 𝐵 be the set of
all 𝑥 ∈ 𝑈 with the property that the limit

𝜎𝑥 (𝑣) := lim
𝑡→0

𝑑 ( 𝑓 (𝑥 + 𝑡𝑣), 𝑓 (𝑥))
|𝑡 |

exists for all 𝑣 ∈ R𝑚. The following holds.
(1) L𝑚(𝑈 \ 𝐵) = 0, and every 𝑥 ∈ 𝐵, the function 𝜎𝑥 : R𝑚 → R satisfies

Lip(𝜎𝑥) ≤ Lip( 𝑓 ) and 𝜎𝑥 (𝑠𝑣) = |𝑠 | 𝜎𝑥 (𝑣) for all 𝑣 ∈ R𝑚 and 𝑠 ∈ R.
(2) There exist compact sets 𝐾1, 𝐾2, . . . ⊂ 𝐵 with L𝑚(𝐵 \⋃∞

𝑗=1 𝐾 𝑗) = 0 and the
following property: for every 𝑗 and every 𝜖 > 0 there is a 𝛿 > 0 such that

|𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥 + 𝑤)) − 𝜎𝑥 (𝑣 − 𝑤) | ≤ 𝜖 ∥𝑣 − 𝑤∥

whenever 𝑣, 𝑤 ∈ R𝑚, ∥𝑣∥, ∥𝑤∥ ≤ 𝛿, and 𝑥, 𝑥 + 𝑤 ∈ 𝐾 𝑗 .

Proof : To prove (1), we choose a countable dense set 𝐷 ⊂ 𝑆𝑚−1. For 𝑥 ∈ 𝑈,
𝑡 ∈ R \ {0}, and 𝑣 ∈ R𝑚, put

𝑞𝑥,𝑡 (𝑣) :=
𝑑 ( 𝑓 (𝑥 + 𝑡𝑣), 𝑓 (𝑥))

|𝑡 | .

Using Theorem 6.1, we conclude similarly as in the first part of the proof of
Theorem 4.3 (Rademacher) that the set 𝐵 of all 𝑥 ∈ 𝑈 with the property that the
limit 𝜎𝑥 (𝑢) = lim𝑡→0 𝑞𝑥,𝑡 (𝑢) exists for all 𝑢 ∈ 𝐷 is a Borel set with L𝑚(𝑈 \𝐵) = 0.
Let 𝑥 ∈ 𝐵. For fixed 𝑡, the function 𝑞𝑥,𝑡 : R𝑚 → R is _-Lipschitz, _ := Lip( 𝑓 ). It
follows that 𝜎𝑥 : 𝐷 → R is _-Lipschitz, and since 𝐷 is dense, 𝜎𝑥 extends uniquely
to a _-Lipschitz function on 𝑆𝑚−1, which is then the uniform limit of 𝑞𝑥,𝑡 |𝑆𝑚−1 for
𝑡 → 0 (compare Lemma 4.2). The existence of the metric derivative 𝜎𝑥 (𝑢) also
implies the existence of 𝜎𝑥 (𝑟𝑢) for all 𝑟 ∈ R, and it holds that 𝜎𝑥 (𝑠𝑣) = |𝑠 | 𝜎𝑥 (𝑣)
for all 𝑣 ∈ R𝑚 and 𝑠 ∈ R. Moreover, 𝜎𝑥 : R𝑚 → R is _-Lipschitz.

For (2), consider the map 𝜎 : 𝐵 → 𝐶 (𝑆𝑚−1), 𝑥 ↦→ 𝜎𝑥 |𝑆𝑚−1 , where 𝐶 (𝑆𝑚−1)
denotes the space of continuous real-valued functions on 𝑆𝑚−1, endowed with the
supremum norm ∥ · ∥∞. This space is separable, and 𝜎 is measurable. By Lusin’s
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Theorem there exist closed sets 𝐶1, 𝐶2, . . . ⊂ 𝐵 such that L𝑚(𝐵 \ ⋃∞
𝑘=1𝐶𝑘) = 0

and 𝜎 |𝐶𝑘
is continuous for each 𝑘 . For 𝑦 ∈ 𝐵 and 𝑖 ∈ N, let

𝑟𝑖 (𝑦) := sup
0<𝑡≤1/𝑖

sup
∥𝑢∥=1

��𝑞𝑦,𝑡 (𝑢) − 𝜎𝑦 (𝑢)�� .
From the proof of (1) we know that 𝑟𝑖 (𝑦) → 0 (𝑖 → ∞) for every 𝑦 ∈ 𝐵. Using
Egorov’s Theorem we find compact sets 𝐾1, 𝐾2, . . . ⊂ 𝐵with L𝑚(𝐵\⋃∞

𝑗=1 𝐾 𝑗) = 0
such that each 𝐾 𝑗 is contained in some 𝐶𝑘 (hence 𝜎 |𝐾 𝑗

is uniformly continuous)
and 𝑟𝑖 → 0 (𝑖 → ∞) uniformly on each 𝐾 𝑗 . Now let 𝑗 ∈ N and 𝜖 > 0. Then there
is an 𝑖 such that

sup
∥𝑢∥=1

|𝜎𝑥 (𝑢) − 𝜎𝑦 (𝑢) | = ∥𝜎𝑥 − 𝜎𝑦 ∥∞ ≤ 𝜖

2
, 𝑟𝑖 (𝑦) ≤

𝜖

2

whenever 𝑥, 𝑦 ∈ 𝐾 𝑗 and ∥𝑥 − 𝑦∥ ≤ 𝛿 := 1/(2𝑖). Given 𝑥 ∈ 𝐾 𝑗 and 𝑣, 𝑤 ∈ R𝑚 with
∥𝑣∥, ∥𝑤∥ ≤ 𝛿, 𝑣 ≠ 𝑤, and 𝑦 := 𝑥 +𝑤 ∈ 𝐾 𝑗 , put 𝑡 := ∥𝑣 −𝑤∥ and 𝑢 := (1/𝑡) (𝑣 −𝑤).
Then it follows that 0 < 𝑡 ≤ ∥𝑣∥ + ∥𝑤∥ ≤ 2𝛿 = 1/𝑖 and��𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑦)) − 𝜎𝑥 (𝑣 − 𝑤)��

≤
��𝑑 ( 𝑓 (𝑦 + 𝑣 − 𝑤), 𝑓 (𝑦)) − 𝜎𝑦 (𝑣 − 𝑤)�� + ��𝜎𝑥 (𝑣 − 𝑤) − 𝜎𝑦 (𝑣 − 𝑤)��

= 𝑡
��𝑞𝑦,𝑡 (𝑢) − 𝜎𝑦 (𝑢)�� + 𝑡 |𝜎𝑥 (𝑢) − 𝜎𝑦 (𝑢) |

≤ 𝜖𝑡.

As 𝑦 = 𝑥 + 𝑤 and 𝑡 = ∥𝑣 − 𝑤∥, this completes the proof. □

Proof of Theorem 6.3: Let compact sets 𝐾1, 𝐾2, . . . ⊂ 𝑈 be given as in Proposi-
tion 6.4. Suppose 𝑥 ∈ 𝐾 𝑗 is a point with Lebesgue density 1, i.e.,

Θ𝑚(𝐾 𝑗 , 𝑥) := lim
𝑟→0+

L𝑚(𝐾 𝑗 ∩ 𝐵(𝑥, 𝑟))
L𝑚(𝐵(𝑥, 𝑟)) = 1.

Let 𝜖 > 0, and let 𝛿 = 𝛿( 𝑗 , 𝜖) > 0 be given as in Proposition 6.4. By adjusting
𝛿 if necessary, we arrange that for every 𝑤 ∈ R𝑚 with ∥𝑤∥ ≤ 𝛿 there exists a
𝑤′ = 𝑤′(𝑤) such that 𝑥 + 𝑤′ ∈ 𝐾 𝑗 , ∥𝑤′∥ ≤ ∥𝑤∥ and ∥𝑤 − 𝑤′∥ ≤ 𝜖 ∥𝑤∥. Suppose
now that 𝑣, 𝑤 ∈ R𝑛, ∥𝑣∥, ∥𝑤∥ ≤ 𝛿, and 𝑤′ = 𝑤′(𝑤). Using Proposition 6.4 we
conclude that��𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥 + 𝑤)) − 𝜎𝑥 (𝑣 − 𝑤)��

≤
��𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥 + 𝑤′)) − 𝜎𝑥 (𝑣 − 𝑤′)

��
+ 𝑑 ( 𝑓 (𝑥 + 𝑤), 𝑓 (𝑥 + 𝑤′)) +

��𝜎𝑥 (𝑣 − 𝑤) − 𝜎𝑥 (𝑣 − 𝑤′)
��

≤ 𝜖 ∥𝑣 − 𝑤′∥ + 2 Lip( 𝑓 )∥𝑤 − 𝑤′∥
≤ 𝜖 (∥𝑣∥ + ∥𝑤∥) + 2𝜖 Lip( 𝑓 )∥𝑤∥
≤ 𝜖 (1 + 2 Lip( 𝑓 )) (∥𝑣∥ + ∥𝑤∥).
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Since almost every point in𝑈 is a density point of some 𝐾 𝑗 , this shows that

lim
∥𝑣 ∥+∥𝑤 ∥→0

𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥 + 𝑤)) − 𝜎𝑥 (𝑣 − 𝑤)
∥𝑣∥ + ∥𝑤∥ = 0

for almost every 𝑥 ∈ 𝑈.
It remains to prove that 𝜎𝑥 satisfies the triangle inequality. For 𝑣, 𝑤 ∈ R𝑚,

𝜎𝑥 (𝑣 + 𝑤) = lim
𝑡→0+

𝑑 ( 𝑓 (𝑥 + 𝑡𝑣), 𝑓 (𝑥 − 𝑡𝑤))
𝑡

≤ lim
𝑡→0+

𝑑 ( 𝑓 (𝑥 + 𝑡𝑣), 𝑓 (𝑥))
𝑡

+ lim
𝑡→0+

𝑑 ( 𝑓 (𝑥 − 𝑡𝑤), 𝑓 (𝑥))
𝑡

= 𝜎𝑥 (𝑣) + 𝜎𝑥 (−𝑤).

Since 𝜎𝑥 (−𝑤) = 𝜎𝑥 (𝑤), the proof is complete. □

7 Hausdorff measures

For every real number 𝑠 ≥ 0, we put

𝛼𝑠 :=
𝜋𝑠/2

Γ( 𝑠2 + 1) ,

where Γ : (0,∞) → R is the usual gamma function, Γ(𝑠) =
∫ ∞

0 𝑥𝑠−1𝑒−𝑥 𝑑𝑥. Note
that Γ(1) = 1, Γ(𝑠 + 1) = 𝑠 Γ(𝑠) for 𝑠 > 0, and Γ(1/2) =

√
𝜋. For 𝑚 ∈ N, 𝛼𝑚

equals the Lebesgue measure of the unit ball in R𝑚,

𝛼𝑚 = L𝑚(𝐵(0, 1)) =


2𝑚𝜋 (𝑚−1)/2(𝑚−1

2 )!
𝑚!

if 𝑚 is odd,
𝜋𝑚/2

(𝑚2 )!
if 𝑚 is even.

We recall the definition of the Hausdorff measures.

Definition 7.1 Let 𝑋 be a metric space. For 𝑠 ≥ 0, 0 < 𝛿 ≤ ∞, and 𝐴 ⊂ 𝑋 , define

H 𝑠
𝛿 (𝐴) := inf

∞∑︁
𝑖=1

𝛼𝑠
( 1

2 diam(𝐶𝑖)
)𝑠
,

where the infimum is taken over all coverings (𝐶𝑖)𝑖∈N of 𝐴 with diam(𝐶𝑖) ≤ 𝛿 for
all 𝑖. (Here the conventions diam(∅)𝑠 = 0, 00 = 1 are used.) Then

H 𝑠 (𝐴) := lim
𝛿→0+

H 𝑠
𝛿 (𝐴) = sup

𝛿>0
H 𝑠
𝛿 (𝐴)

is the 𝑠-dimensional Hausdorff measure of the set 𝐴.
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For every 𝑠, H 𝑠 is a Borel regular metric outer measure on 𝑋 . As we will show
below, with the chosen normalization, H𝑚 = L𝑚 on R𝑚. Whenever 𝐴 ⊂ 𝑋 and
𝑓 : 𝐴→ 𝑌 is a Lipschitz map into another metric space 𝑌 , then

H 𝑠 ( 𝑓 (𝐴)) ≤ Lip( 𝑓 )𝑠H𝑚(𝐴).

Suppose 𝑋 is a metric space, 𝐴 ⊂ 𝑋 , and 𝑥 ∈ 𝑋 . Then the 𝑠-dimensional upper
density and lower density of 𝐴 at 𝑥 are defined by

Θ∗𝑠 (𝐴, 𝑥) = lim sup
𝑟→0+

H 𝑠 (𝐴 ∩ 𝐵(𝑥, 𝑟))
𝛼𝑠𝑟

𝑠
,

Θ𝑠∗ (𝐴, 𝑥) = lim inf
𝑟→0+

H 𝑠 (𝐴 ∩ 𝐵(𝑥, 𝑟))
𝛼𝑠𝑟

𝑠
,

respectively. If the two coincide, then the common value Θ𝑠 (𝐴, 𝑥) is the 𝑠-
dimensional density of 𝐴 at 𝑥.

Theorem 7.2 (densities) Let 𝐴 be a subset of 𝑋 with H 𝑠 (𝐴) < ∞.
(1) For H 𝑠-almost every 𝑥 ∈ 𝐴, 2−𝑠 ≤ Θ∗𝑚(𝐴, 𝑥) ≤ 1.
(2) If 𝐴 is H 𝑠-measurable, then Θ𝑠 (𝐴, 𝑥) = 0 for H 𝑠-almost every 𝑥 ∈ 𝑋 \ 𝐴.
(3) If both 𝐴 and 𝐵 ⊂ 𝐴 are H 𝑠-measurable, then Θ∗𝑠 (𝐴, 𝑥) = Θ∗𝑠 (𝐵, 𝑥) and

Θ𝑠∗ (𝐴, 𝑥) = Θ𝑠∗ (𝐵, 𝑥) for H 𝑠-almost every 𝑥 ∈ 𝐵.

Proof : For the proof of (1) and (2) we refer to [Sim2014, Ch. 1, Theorem 3.6 and
Theorem 3.26] (see also [Mat1995, Theorem 6.2 and Corollary 6.3]).

(3) follows from (2): 𝐶 := 𝐴 \ 𝐵 is H 𝑠-measurable with H 𝑠 (𝐶) < ∞, so
Θ𝑠 (𝐶, 𝑥) = 0 for H 𝑠-almost every 𝑥 ∈ 𝐵 ⊂ 𝑋 \ 𝐶, and hence Θ∗𝑠 (𝐴, 𝑥) =

Θ∗𝑠 (𝐵, 𝑥) +Θ𝑠 (𝐶, 𝑥) = Θ∗𝑠 (𝐵, 𝑥) and Θ𝑠∗ (𝐴, 𝑥) = Θ𝑠∗ (𝐵, 𝑥) +Θ𝑠 (𝐶, 𝑥) = Θ𝑠∗ (𝐵, 𝑥).
□

Theorem 7.3 (isodiametric inequality) Let 𝜌 be a norm on R𝑚 with unit ball
𝐵𝜌. For a non-empty set 𝐶 ⊂ R𝑚, let conv(𝐶) denote the convex hull of 𝐶 and
diam𝜌 (𝐶) the diameter of 𝐶 with respect to 𝜌. Then

L𝑚(conv(𝐶)) ≤ L𝑚(𝐵𝜌)
( 1

2 diam𝜌 (𝐶)
)𝑚
.

In particular, for the standard Euclidean norm on R𝑚, L𝑚(conv(𝐶)) ≤
𝛼𝑚

( 1
2 diam(𝐶)

)𝑚.

Proof : It suffices to prove the inequality for a compact convex body 𝐶. The idea is
to show that there exists a centrally symmetric convex body 𝐶∗ such that L𝑚(𝐶) ≤
L𝑚(𝐶∗) and diam𝜌 (𝐶∗) ≤ diam𝜌 (𝐶). Then 𝐶∗ ⊂ 𝐵𝜌

(
0, 1

2 diam𝜌 (𝐶∗)
)
, hence

L𝑚(𝐶∗) ≤ L𝑚(𝐵𝜌)
( 1

2 diam𝜌 (𝐶∗)
)𝑚, and the desired inequality for 𝐶 follows. As
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for 𝐶∗, one can put 𝐶′ := −𝐶 and 𝐶∗ := 1
2 (𝐶 + 𝐶′). Then, by (a special case of)

the Brunn-Minkowski inequality,

L𝑚(𝐶∗)1/𝑚 ≥ L𝑚
( 1

2𝐶
)1/𝑚 + L𝑚

( 1
2𝐶

′)1/𝑚
= L𝑚(𝐶)1/𝑚.

Furthermore, for every pair of points 𝑥∗ = 1
2 (𝑥 + 𝑥

′) and 𝑦∗ = 1
2 (𝑦 + 𝑦

′) in 𝐶∗, with
𝑥, 𝑦 ∈ 𝐶 and 𝑥′, 𝑦′ ∈ 𝐶′,

𝜌(𝑥∗ − 𝑦∗) = 1
2
𝜌(𝑥 − 𝑦 + 𝑥′ − 𝑦′) ≤ 1

2
(
𝜌(𝑥 − 𝑦) + 𝜌(𝑥′ − 𝑦′)

)
,

thus diam𝜌 (𝐶∗) ≤ diam𝜌 (𝐶). See [BurZ1988, Theorem 11.2.1]. □

Theorem 7.4 Let 𝜌 be a norm on R𝑚, and let H𝑚
𝜌 denote the Hausdorff measure

with respect to the corresponding metric. Then H𝑚
𝜌 (𝐵𝜌) = 𝛼𝑚. In particular, with

respect to the standard Euclidean norm, H𝑚 = L𝑚.

Compare [Kir1994, Lemma 6].

Proof : The inequality H𝑚
𝜌 (𝐵𝜌) ≤ 𝛼𝑚 follows from the fact that the quotient

H𝑚
𝜌 (𝐵𝜌 (𝑥, 𝑟))/𝑟𝑚 is constant for all 𝑥 ∈ R𝑚 and 𝑟 > 0 and, hence, is less than or

equal to 𝛼𝑚 since Θ∗𝑚(R𝑚𝜌 , 𝑥) ≤ 1 by Theorem 7.2. The reverse inequality is a
consequence Theorem 7.3, which implies that for every covering (𝐶𝑖)𝑖∈N of 𝐵𝜌,∑︁

𝑖

( 1
2 diam𝜌 (𝐶𝑖)

)𝑚 ≥
∑︁
𝑖

L𝑚(𝐶𝑖)
L𝑚(𝐵𝜌)

≥ 1,

thus H𝑚
𝜌 (𝐵𝜌) ≥ 𝛼𝑚. □

8 Area formula

The next goal is to prove Theorem 8.3 below. We start with a technical lemma,
compare [Kir1994, Lemma 4].

Lemma 8.1 (Borel partition) Suppose that 𝑌 is a metric space, 𝑓 : R𝑚 → 𝑌 is
Lipschitz, and 𝐵 is the Borel set of all 𝑥 where 𝑓 is metrically differentiable and
md 𝑓𝑥 is a norm. Let _ > 1. Then there exist a Borel partition (𝐵𝑖)𝑖∈N of 𝐵 and a
sequence of norms 𝜌𝑖 on R𝑚 such that

_−1𝜌𝑖 (𝑥 − 𝑥′) ≤ 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ _ 𝜌𝑖 (𝑥 − 𝑥′),
_−1𝜌𝑖 (𝑣) ≤ md 𝑓𝑥 (𝑣) ≤ _ 𝜌𝑖 (𝑣)

for all 𝑥, 𝑥′ ∈ 𝐵𝑖 and 𝑣 ∈ R𝑚.
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In the ‘classical’ case, when 𝑌 = R𝑛 and 𝐵 is the Borel set of all 𝑥 where 𝑓 is
differentiable and 𝑑𝑓𝑥 has rank 𝑚, all norms 𝜌𝑖 may be chosen to be Euclidean, that
is, induced by an inner product, compare [Fed1969, Lemma 3.2.2] and [EvaG1992,
p. 94].

Proof : Choose a sequence of norms 𝜌𝑖 on R𝑚 such that for every norm 𝜌 on R𝑚

and for every 𝑐 > 1 there is an 𝑖 ∈ N such that

𝑐−1𝜌𝑖 (𝑣) ≤ 𝜌(𝑣) ≤ 𝑐 𝜌𝑖 (𝑣)

for all 𝑣 ∈ R𝑚. Given _ > 1, pick 𝛿 > 0 such that _−1 + 𝛿 < 1 < _− 𝛿. For 𝑖, 𝑘 ∈ N,
denote by 𝐵𝑖,𝑘 the Borel set of all 𝑥 ∈ 𝐵 such that

(i) (_−1 + 𝛿) 𝜌𝑖 (𝑣) ≤ md 𝑓𝑥 (𝑣) ≤ (_ − 𝛿) 𝜌𝑖 (𝑣) for 𝑣 ∈ R𝑚,

(ii) |𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥)) − md 𝑓𝑥 (𝑣) | ≤ 𝛿 𝜌𝑖 (𝑣) for ∥𝑣∥ ≤ 1/𝑘 .

The sets 𝐵𝑖,𝑘 cover 𝐵: given 𝑥 ∈ 𝐵, choose 𝑖 ∈ N such that (i) holds, let 𝑐𝑖 > 0
be such that ∥𝑣∥ ≤ 𝑐𝑖 𝜌𝑖 (𝑣) for all 𝑣 ∈ R𝑚, and pick 𝑘 ∈ N such that (ii) holds
with (𝛿/𝑐𝑖)∥𝑣∥ in place of 𝛿 𝜌𝑖 (𝑣); then 𝑥 ∈ 𝐵𝑖,𝑘 . Now if 𝐶 ⊂ 𝐵𝑖,𝑘 is a set with
diam𝐶 ≤ 1/𝑘 , then

𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥)) ≤ md 𝑓𝑥 (𝑣) + 𝛿 𝜌𝑖 (𝑣) ≤ _ 𝜌𝑖 (𝑣),
𝑑 ( 𝑓 (𝑥 + 𝑣), 𝑓 (𝑥)) ≥ md 𝑓𝑥 (𝑣) − 𝛿 𝜌𝑖 (𝑣) ≥ _−1𝜌𝑖 (𝑣)

whenever 𝑥, 𝑥 + 𝑣 ∈ 𝐶. By subdividing and relabeling the sets 𝐵𝑖,𝑘 appropriately
we obtain the result. □

Definition 8.2 (jacobian) (1) Suppose that 𝑋,𝑌 are normed spaces, dim 𝑋 = 𝑚 ∈
N, and 𝐿 : 𝑋 → 𝑌 is linear. The jacobian J(𝐿) ∈ [0,∞) of 𝐿 is the (unique)
number satisfying

H𝑚(𝐿 (𝐴)) = J(𝐿) H𝑚(𝐴)

for all 𝐴 ⊂ 𝑋 .
(2) If 𝜎 is a seminorm on R𝑚, we define the jacobian J(𝜎) of 𝜎 as the number

satisfying
H𝑚
𝜎 (𝐴) = J(𝜎) L𝑚(𝐴)

for all 𝐴 ⊂ R𝑚 in case 𝜎 is a norm and J(𝜎) = 0 otherwise.

We remark that if 𝐴 ⊂ R𝑚 is L𝑚-measurable, and 𝑓 : 𝐴 → 𝑌 is a Lipschitz
map into a metric space 𝑌 , then 𝑓 (𝐴) is H𝑚-measurable. This is because 𝐴 can
be written as the union of countably many compact sets and a set of measure zero,
thus the same is true for 𝑓 (𝐴).

Theorem 8.3 (area formula) Suppose that 𝑌 is a metric space and 𝑓 : R𝑚 → 𝑌

is Lipschitz.
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(1) If 𝐴 ⊂ R𝑚 is L𝑚-measurable, then∫
𝐴

J(md 𝑓𝑥) 𝑑𝑥 =
∫
𝑌

#( 𝑓 −1{𝑦} ∩ 𝐴) 𝑑H𝑚(𝑦).

(2) If 𝑔 is a real-valued L𝑚-integrable function on R𝑚, then∫
R𝑚

𝑔(𝑥) J(md 𝑓𝑥) 𝑑𝑥 =
∫
𝑌

∑︁
𝑥∈ 𝑓 −1{𝑦}

𝑔(𝑥) 𝑑H𝑚(𝑦).

See [Kir1994]. Note that # = H0. In the case 𝑌 = R𝑛 we obtain the classical
area formula as J(md 𝑓𝑥) coincides with J(𝑑𝑓𝑥) for L𝑚-almost every 𝑥 ∈ R𝑚.
Compare [Fed1969, Theorem 3.2.3], [EvaG1992, Sect. 3.3]. That formula says,
in particular, that the differential geometric volume of an injective 𝐶1 immersion
𝑓 : 𝑈 → R𝑛,𝑈 an open subset of R𝑚, equals H𝑚( 𝑓 (𝑈)).

Proof : For (1), we may partition 𝐴 into countably many measurable sets and prove
the respective formula for each of these sets separately. In particular, we lose no
generality in assuming L𝑚(𝐴) < ∞. Let 𝐴0 denote the set of all 𝑥 ∈ 𝐴 where 𝑓 is
not metrically differentiable. Then

H𝑚( 𝑓 (𝐴0)) ≤ Lip( 𝑓 )𝑚L𝑚(𝐴0) = 0

by Theorem 6.3, thus 𝐴0 does not contribute to either side of the claimed identity.
Now we split 𝐴 \ 𝐴0 into the two sets 𝐴′, 𝐴′′, where 𝐴′ consists of all 𝑥 for which
md 𝑓𝑥 is a norm, that is, J(md 𝑓𝑥) > 0.

First we consider 𝐴′. Let _ > 1. Using Lemma 8.1 we find a measurable
partition (𝐴𝑖)𝑖∈N of 𝐴′ and norms 𝜌𝑖 on R𝑚 such that 𝑓 |𝐴𝑖

is injective,

_−𝑚H𝑚
𝜌𝑖
(𝐴𝑖) ≤ H𝑚( 𝑓 (𝐴𝑖)) ≤ _𝑚H𝑚

𝜌𝑖
(𝐴𝑖),

and _−1𝜌𝑖 ≤ md 𝑓𝑥 ≤ _ 𝜌𝑖 for all 𝑥 ∈ 𝐴𝑖 . This last assertion yields

_−𝑚 J(𝜌𝑖) ≤ J(md 𝑓𝑥) ≤ _𝑚 J(𝜌𝑖)

for all 𝑥 ∈ 𝐴𝑖 . Since J(𝜌𝑖) L𝑚(𝐴𝑖) = H𝑚
𝜌𝑖
(𝐴𝑖), it follows that

_−𝑚H𝑚
𝜌𝑖
(𝐴𝑖) ≤

∫
𝐴𝑖

J(md 𝑓𝑥) 𝑑𝑥 ≤ _𝑚H𝑚
𝜌𝑖
(𝐴𝑖)

and
_−2𝑚H𝑚( 𝑓 (𝐴𝑖)) ≤

∫
𝐴𝑖

J(md 𝑓𝑥) 𝑑𝑥 ≤ _2𝑚H𝑚( 𝑓 (𝐴𝑖)).

Since 𝑓 |𝐴𝑖
is injective and 𝑓 (𝐴𝑖) is H𝑚-measurable, H𝑚( 𝑓 (𝐴𝑖)) can be written

as
∫
𝑌

#( 𝑓 −1{𝑦} ∩ 𝐴𝑖) 𝑑H𝑚(𝑦). Then, summing over 𝑖, we get that

_−2𝑚
∫
𝑌

#
(
𝑓 −1{𝑦} ∩ 𝐴′) 𝑑H𝑚(𝑦) ≤

∫
𝐴′

J(md 𝑓𝑥) 𝑑𝑥

≤ _2𝑚
∫
𝑌

#
(
𝑓 −1{𝑦} ∩ 𝐴′) 𝑑H𝑚(𝑦).
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As _ > 1 was arbitrary, this shows that (1) holds for 𝐴′.
Now we turn to the set 𝐴′′ of all 𝑥 ∈ 𝐴 where J(md 𝑓𝑥) = 0. We prove that

H𝑚( 𝑓 (𝐴′′)) = 0; thus either side of the claimed identity is zero for 𝐴′′. Let
𝜖 ∈ (0, 1), and define

ℎ : R𝑚 → 𝑌 ×R𝑚, ℎ(𝑥) = ( 𝑓 (𝑥), 𝜖𝑥).

Equip 𝑌 ×R𝑚 with the 𝑙1 product metric

𝑑1((𝑦, 𝑧), (𝑦′, 𝑧′)) = 𝑑 (𝑦, 𝑦′) + ∥𝑧 − 𝑧′∥.

Clearly, ℎ is metrically differentiable at 𝑥 whenever 𝑓 is, and

md ℎ𝑥 (𝑣) = md 𝑓𝑥 (𝑣) + 𝜖 ∥𝑣∥

for all 𝑣 ∈ R𝑚. In particular, md ℎ𝑥 is a norm on R𝑚 for every 𝑥 ∈ 𝐴′′. Fix 𝑥 ∈ 𝐴′′

for the moment, and put 𝜌 := md ℎ𝑥 . Consider the norm ball 𝐵𝜌 := 𝐵𝜌 (0, 1) ⊂ R𝑚.
Since md 𝑓𝑥 is not a norm, there is a 𝑣0 ∈ R𝑚 with 𝜌(𝑣0) = 1 and md 𝑓𝑥 (𝑣0) = 0,
thus ∥𝑣0∥ = 1/𝜖 . Moreover, if 𝜌(𝑣) = 1, then

1 = md 𝑓𝑥 (𝑣) + 𝜖 ∥𝑣∥ ≤ (Lip( 𝑓 ) + 1)∥𝑣∥,

thus ∥𝑣∥ ≥ 𝑟 := 1/(Lip( 𝑓 ) + 1). Hence, 𝐵𝜌 contains the convex hull of {𝑣0,−𝑣0} ∪
𝐵(0, 𝑟), where ∥𝑣0∥ = 1/𝜖 . It follows that L𝑚(𝐵𝜌) ≥ 𝑐𝑚𝑟𝑚−1/𝜖 for some constant
𝑐𝑚 depending only on 𝑚, hence

J(md ℎ𝑥) = J(𝜌) =
H𝑚
𝜌 (𝐵𝜌)

L𝑚(𝐵𝜌)
≤ 𝜖 𝛼𝑚

𝑐𝑚𝑟
𝑚−1

(recall Theorem 7.4). Applying the above result for ( 𝑓 , 𝐴′) to (ℎ, 𝐴′′), we get that

H𝑚(ℎ(𝐴′′)) =
∫
𝐴′′

J(md ℎ𝑥) 𝑑𝑥 ≤ 𝜖 𝛼𝑚

𝑐𝑚𝑟
𝑚−1 L

𝑚(𝐴′′).

Since the canonical projection 𝑌 × R𝑚 → 𝑌 is 1-Lipschitz and maps ℎ(𝐴′′) to
𝑓 (𝐴′′), we have H𝑚( 𝑓 (𝐴′′)) ≤ H𝑚(ℎ(𝐴′′)), and letting 𝜖 tend to 0 we conclude
that H𝑚( 𝑓 (𝐴′′)) = 0. This completes the proof of (1).

Finally, (2) follows from (1), by approximating 𝑔 by simple functions. □

9 Coarea formula

For the proof of the coarea formula, Theorem 9.4, we need the following general
coarea inequality, which is also of independent interest.

Theorem 9.1 (coarea inequality) Suppose that 𝑋,𝑌 are metric spaces, 𝑓 : 𝑋 → 𝑌

is a Lipschitz map, 𝐴 ⊂ 𝑋 , and 𝑚, 𝑘 ≥ 0 are real numbers. Then∫ ∗

𝑌

H 𝑘 ( 𝑓 −1{𝑦} ∩ 𝐴) 𝑑H𝑚(𝑦) ≤ 𝛼𝑚𝛼𝑘

𝛼𝑚+𝑘
Lip( 𝑓 )𝑚H𝑚+𝑘 (𝐴).
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Here
∫ ∗ denotes the upper integral; in general, the integrand 𝑦 ↦→ H 𝑘 ( 𝑓 −1{𝑦}∩

𝐴) is not H𝑚-measurable. However, if 𝑋 is proper (that is, closed bounded
subsets of 𝑋 are compact) and 𝐴 is H𝑚+𝑘-measurable with H𝑚+𝑘 (𝐴) < ∞, then
𝑓 −1{𝑦} ∩ 𝐴 is H 𝑘-measurable for H𝑚-almost every 𝑦 and 𝑦 ↦→ H 𝑘 ( 𝑓 −1{𝑦} ∩ 𝐴)
is H𝑚-measurable, compare [Fed1969, 2.10.26]. Theorem 9.1 is stated with some
additional assumptions in [Fed1969, Theorem 2.10.25]. As remarked in [Dav1970,
p. 236], these are superfluous. See also [Rei2009] and [EsmH2021].

We prove Theorem 9.1 in the case that 𝑌 is an 𝑚-dimensional normed space
(R𝑚, 𝜌), so we will write H𝑚

𝜌 for the Hausdorff measure on 𝑌 .

Proof : Assume that H𝑚+𝑘 (𝐴) < ∞. Let 𝑖 ∈ N and 𝛿 ∈ (0, 1/𝑖]. Choose a
countable 𝛿-bounded covering C of 𝐴 such that∑︁

𝐶∈C
𝛼𝑘+𝑚

( 1
2 diam(𝐶)

)𝑚+𝑘 ≤ H𝑚+𝑘
𝛿 (𝐴) + 𝛿.

For 𝐶 ∈ C, let 𝐷𝐶 denote the (H𝑚
𝜌 -measurable) closure of 𝑓 (𝐶), and define

𝑔𝐶 : 𝑌 → R as 𝛼𝑘
( 1

2 diam(𝐶)
) 𝑘 times the characteristic function of 𝐷𝐶 . For every

𝑦 ∈ 𝑌 , the sets 𝐶 ∈ C with 𝑦 ∈ 𝐷𝐶 cover 𝑓 −1{𝑦} ∩ 𝐴, thus

H 𝑘
1/𝑖

(
𝑓 −1{𝑦} ∩ 𝐴

)
≤

∑︁
𝐶∈C

𝑔𝐶 (𝑦).

It follows that∫ ∗

𝑌

H 𝑘
1/𝑖

(
𝑓 −1{𝑦} ∩ 𝐴

)
𝑑H𝑚

𝜌 (𝑦) ≤
∫
𝑌

∑︁
𝐶∈C

𝑔𝐶 (𝑦) 𝑑H𝑚
𝜌 (𝑦)

=
∑︁
𝐶∈C

∫
𝑌

𝑔𝐶 (𝑦) 𝑑H𝑚
𝜌 (𝑦)

=
∑︁
𝐶∈C

𝛼𝑘
( 1

2 diam(𝐶)
) 𝑘H𝑚

𝜌 (𝐷𝐶).

By Theorems 7.3 and 7.4, and since 𝑓 is Lipschitz,

H𝑚
𝜌 (𝐷𝐶) ≤ 𝛼𝑚

( 1
2 diam(𝐷𝐶)

)𝑚
≤ 𝛼𝑚 Lip( 𝑓 )𝑚

( 1
2 diam(𝐶)

)𝑚
.

We conclude that∫ ∗

𝑌

H 𝑘
1/𝑖

(
𝑓 −1{𝑦} ∩ 𝐴

)
𝑑H𝑚

𝜌 (𝑦) ≤ 𝛼𝑚𝛼𝑘

𝛼𝑚+𝑘
Lip( 𝑓 )𝑚

(
H𝑚+𝑘
𝛿 (𝐴) + 𝛿

)
.

Now we let first 𝛿 → 0, then 𝑖 → ∞. □

Lemma 9.2 (factorization) Suppose that 𝑓 : R𝑛 → R𝑚 is a Lipschitz map, where
𝑛 ≥ 𝑚, and 𝐴 ⊂ R𝑛 is an L𝑛-measurable set such that 𝑑𝑓𝑥 exists and has rank 𝑚
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for all 𝑥 ∈ 𝐴. Let _ > 1. Then there exist countable families of L𝑛-measurable sets
𝐴𝑖 ⊂ 𝐴, Lipschitz maps ℎ𝑖 : R𝑛 → R𝑛, and linear maps 𝐿𝑖 : R𝑛 → R𝑚 such that
L𝑛 (𝐴 \⋃𝑖 𝐴𝑖) = 0, ℎ𝑖 |𝐴𝑖

is _-bi-Lipschitz,

𝑓 = 𝐿𝑖 ◦ ℎ𝑖 ,

and for all 𝑥 ∈ 𝐴𝑖 , 𝑑 (ℎ𝑖)𝑥 exists and is _-bi-Lipschitz.

Proof : It is easy to see that for every 𝑥 ∈ R𝑛 where 𝑑𝑓𝑥 exists and has rank 𝑚 there
is a coordinate projection 𝑝 : R𝑛 → R𝑛−𝑚 such that 𝑑𝑢𝑥 has rank 𝑛, where

𝑢 : R𝑛 → R𝑚 ×R𝑛−𝑚, 𝑢(𝑥) = ( 𝑓 (𝑥), 𝑝(𝑥)).

According to the possible choices of 𝑝 we obtain a covering of 𝐴 by finitely many
measurable subsets. For the proof of the lemma it suffices to consider a single such
subset which, for simplicity, we denote again by 𝐴. Thus, we assume that there is a
fixed projection 𝑝 as above such that 𝑑𝑢𝑥 has rank 𝑛 for every 𝑥 ∈ 𝐴. By applying
Lemma 8.1 to 𝑢, we find a measurable partition (𝐵𝑖)𝑖∈N of 𝐴 such that each 𝑢 |𝐵𝑖

is
bi-Lipschitz. For every 𝑖, choose a Lipschitz extension

𝑣𝑖 : R𝑚 ×R𝑛−𝑚 → R𝑛

of (𝑢 |𝐵𝑖
)−1, thus 𝑣𝑖 (𝑢(𝑥)) = 𝑥 for all 𝑥 ∈ 𝐵𝑖 . There is a measurable set 𝐶𝑖 ⊂ 𝑢(𝐵𝑖)

with L𝑛 (𝑢(𝐵𝑖) \ 𝐶𝑖) = 0 such that 𝑣𝑖 is differentiable at every point 𝑢(𝑥) ∈ 𝐶𝑖 ,
and 𝑑 (𝑣𝑖)𝑢(𝑥 ) ◦ 𝑑𝑢𝑥 = idR𝑛 . Let _ > 1. Applying Lemma 8.1 to 𝑣𝑖 , we find a
measurable partition (𝐶𝑖,𝑘)𝑘∈N of 𝐶𝑖 and a sequence of Euclidean norms 𝜌𝑖,𝑘 on
R𝑚 ×R𝑛−𝑚 such that

_−1𝜌𝑖,𝑘 ((𝑦, 𝑧) − (𝑦′, 𝑧′)) ≤ ∥𝑣𝑖 (𝑦, 𝑧) − 𝑣𝑖 (𝑦′, 𝑧′)∥ ≤ _ 𝜌𝑖,𝑘 ((𝑦, 𝑧) − (𝑦′, 𝑧′))

and _−1𝜌𝑖,𝑘 (·) ≤ ∥𝑑 (𝑣𝑖) (𝑦,𝑧) (·)∥ ≤ _ 𝜌𝑖,𝑘 (·) for all (𝑦, 𝑧), (𝑦′, 𝑧′) ∈ 𝐶𝑖,𝑘 . Now
choose linear isometries 𝑇𝑖,𝑘 : (R𝑚 ×R𝑛−𝑚, 𝜌𝑖,𝑘) → R𝑛 and put

ℎ𝑖,𝑘 := 𝑇𝑖,𝑘 ◦ 𝑢 : R𝑛 → R𝑛.

For all 𝑥, 𝑥′ ∈ 𝑣𝑖 (𝐶𝑖,𝑘), we have ∥ℎ𝑖,𝑘 (𝑥) − ℎ𝑖,𝑘 (𝑥′)∥ = 𝜌𝑖,𝑘 (𝑢(𝑥) − 𝑢(𝑥′)) and
∥𝑑 (ℎ𝑖,𝑘)𝑥 (·)∥ = 𝜌𝑖,𝑘 (𝑑𝑢𝑥 (·)). It follows that both the restriction of ℎ𝑖,𝑘 to 𝑣𝑖 (𝐶𝑖,𝑘)
and 𝑑 (ℎ𝑖,𝑘)𝑥 are _-bi-Lipschitz. Finally, define 𝑞 : R𝑚×R𝑛−𝑚 → R𝑚 by 𝑞(𝑦, 𝑧) =
𝑦 and put

𝐿𝑖,𝑘 := 𝑞 ◦ 𝑇−1
𝑖,𝑘 : R𝑛 → R𝑛.

Then 𝐿𝑖,𝑘 ◦ ℎ𝑖,𝑘 = 𝑞 ◦ 𝑢 = 𝑓 . □

Definition 9.3 (coarea factor) Suppose that 𝑋,𝑌 are normed spaces, dim 𝑋 = 𝑛 ≥
dim𝑌 = 𝑚, and 𝐿 : 𝑋 → 𝑌 is linear. The 𝑚-dimensional coarea factor C𝑚(𝐿) is
the number satisfying

C𝑚(𝐿)H𝑛 (𝐴) =
∫
𝑌

H𝑛−𝑚(𝐿−1{𝑦} ∩ 𝐴) 𝑑H𝑚(𝑦)

for all H𝑛-measurable sets 𝐴 ⊂ 𝑋 with H𝑛 (𝐴) < ∞.
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Compare [AmbK2000a, Sect. 9]. Note that the right side is invariant under
translations of 𝐴 and, by Theorem 9.1 (coarea inequality), less than or equal to
(𝛼𝑚𝛼𝑛−𝑚/𝛼𝑛) Lip(𝐿)𝑚H𝑛 (𝐴). Therefore C𝑚(𝐿) is a well-defined finite number.
Clearly C𝑚(𝐿) = J(𝐿) if 𝑛 = 𝑚. Note that C𝑚(𝐿) = 0 if 𝐿 has rank < 𝑚,
since H𝑚(𝐿 (𝑋)) = 0. Now suppose 𝐿 has rank 𝑚. Choosing an 𝑚-dimensional
linear subspace 𝑉 ⊂ 𝑋 complementary to the kernel ker(𝐿) and a set 𝐴 of the
form 𝐴 = 𝐵 + 𝐶 for 𝐵 ⊂ ker(𝐿) and 𝐶 ⊂ 𝑉 , we infer that C𝑚(𝐿) H𝑛 (𝐴) =

H𝑛−𝑚(𝐵) H𝑚(𝐿 (𝐴)). Since 𝐿 (𝐴) = 𝐿 (𝐶) and H𝑚(𝐿 (𝐶)) = J(𝐿 |𝑉 ) H𝑚(𝐶),
this yields the identity

C𝑚(𝐿) H𝑛 (𝐴) = J(𝐿 |𝑉 ) H𝑛−𝑚(𝐵) H𝑚(𝐶).

When 𝑋 is a Euclidean space, it follows that

C𝑚(𝐿) = J
(
𝐿 |𝑊

)
≥ J(𝐿 |𝑉 ),

where 𝑊 denotes the orthogonal complement of ker(𝐿) and 𝐿 is still assumed to
have rank 𝑚.

Finally, we remark that if 𝐻 is a linear automorphism of the Euclidean space
𝑋 , and if 𝐻 is _-bi-Lipschitz, then

_−𝑚 C𝑚(𝐿) ≤ C𝑚(𝐿 ◦ 𝐻) ≤ _𝑚 C𝑚(𝐿).

This holds trivially if the rank of 𝐿 is < 𝑚. If the rank is 𝑚, put 𝑉 := 𝐻−1(𝑊) for
𝑊 as above. Then

C𝑚(𝐿 ◦ 𝐻) ≥ J(𝐿 ◦ 𝐻 |𝑉 ) = J(𝐻 |𝑉 ) J
(
𝐿 |𝑊

)
≥ _−𝑚 C𝑚(𝐿),

which proves the first inequality. To verify the second, apply the first with 𝐿 ◦ 𝐻
and 𝐻−1 in place of 𝐿 and 𝐻, respectively.

Theorem 9.4 (coarea formula) Suppose that 𝑓 : R𝑛 → R𝑚 is a Lipschitz map,
where 𝑛 ≥ 𝑚 ≥ 1.
(1) If 𝐴 ⊂ R𝑛 is L𝑛-measurable, then∫

𝐴

C𝑚(𝑑𝑓𝑥) 𝑑𝑥 =
∫
R𝑚

H𝑛−𝑚( 𝑓 −1{𝑦} ∩ 𝐴) 𝑑𝑦.

(2) If 𝑔 is a real-valued L𝑛-integrable function on R𝑛, then∫
R𝑛

𝑔(𝑥) C𝑚(𝑑𝑓𝑥) 𝑑𝑥 =
∫
R𝑚

∫
𝑓 −1{𝑦}

𝑔(𝑥) 𝑑H𝑛−𝑚(𝑥) 𝑑𝑦.

Proof : To prove (1), we may partition 𝐴 into countably many measurable sets and
prove the respective formula for each of these sets separately. In particular, we lose
no generality in assuming L𝑛 (𝐴) < ∞. Let 𝐴0 denote the set of all 𝑥 ∈ 𝐴 where
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𝑓 is not differentiable. It follows from Theorem 9.1 that 𝐴0, as well as any other
set of L𝑛 measure zero, does not contribute to either side of the claimed identity.
Now we split 𝐴 \ 𝐴0 into the two sets 𝐴′, 𝐴′′, where 𝐴′ consists of all 𝑥 where
C𝑚(𝑑𝑓𝑥) > 0, i.e. 𝑑𝑓𝑥 has rank 𝑚.

First we consider 𝐴′. Let_ > 1. Using Lemma 9.2 we choose countable families
of pairwise disjoint measurable sets 𝐴𝑖 ⊂ 𝐴′, Lipschitz maps ℎ𝑖 : R𝑛 → R𝑛, and
linear maps 𝐿𝑖 : R𝑛 → R𝑚 such that L𝑛 (𝐴′ \⋃𝑖 𝐴𝑖) = 0, ℎ𝑖 |𝐴𝑖

is _-bi-Lipschitz,
𝑓 = 𝐿𝑖 ◦ ℎ𝑖 , and 𝑑 (ℎ𝑖)𝑥 exists and is _-bi-Lipschitz for all 𝑥 ∈ 𝐴𝑖 . By the definition
of the coarea factor,

C𝑚(𝐿𝑖) L𝑛 (ℎ𝑖 (𝐴𝑖)) =
∫
R𝑚

H𝑛−𝑚(𝐿−1
𝑖 {𝑦} ∩ ℎ𝑖 (𝐴𝑖)) 𝑑𝑦.

Since ℎ𝑖 |𝐴𝑖
is _-bi-Lipschitz and maps 𝑓 −1{𝑦}∩𝐴𝑖 onto 𝐿−1

𝑖
{𝑦}∩ℎ𝑖 (𝐴𝑖), it follows

that

_−(2𝑛−𝑚) C𝑚(𝐿𝑖) L𝑛 (𝐴𝑖) ≤
∫
R𝑚

H𝑛−𝑚( 𝑓 −1{𝑦} ∩ 𝐴𝑖) 𝑑𝑦

≤ _2𝑛−𝑚 C𝑚(𝐿𝑖) L𝑛 (𝐴𝑖).

For all 𝑥 ∈ 𝐴𝑖 , 𝑑𝑓𝑥 = 𝐿𝑖 ◦ 𝑑 (ℎ𝑖)𝑥 , and 𝑑 (ℎ𝑖)𝑥 is _-bi-Lipschitz, hence

_−𝑚 C𝑚(𝑑𝑓𝑥) ≤ C𝑚(𝐿𝑖) ≤ _𝑚 C𝑚(𝑑𝑓𝑥).

We conclude that

_−2𝑛
∫
𝐴𝑖

C𝑚(𝑑𝑓𝑥) 𝑑𝑥 ≤
∫
R𝑚

H𝑛−𝑚( 𝑓 −1{𝑦} ∩ 𝐴𝑖) 𝑑𝑦

≤ _2𝑛
∫
𝐴𝑖

C𝑚(𝑑𝑓𝑥) 𝑑𝑥.

Summing over 𝑖 and then letting _ tend to 1 we infer that (1) holds for
⋃
𝑖 𝐴𝑖 and

hence for 𝐴′.
Now we turn to the set 𝐴′′ of all 𝑥 ∈ 𝐴 where C𝑚(𝑑𝑓𝑥) = 0. We must show

that
∫
R𝑚 H𝑛−𝑚( 𝑓 −1{𝑦} ∩ 𝐴′′) 𝑑𝑦 = 0. Let 𝜖 > 0, and define

ℎ : R𝑛 ×R𝑚 → R𝑚, ℎ(𝑥, 𝑧) = 𝑓 (𝑥) + 𝜖𝑧,
𝑝 : R𝑛 ×R𝑚 → R𝑚, 𝑝(𝑥, 𝑧) = 𝑧.

Suppose that (𝑥, 𝑧) ∈ 𝐴′′ ×R𝑚. Then

𝑑ℎ (𝑥,𝑧) (𝑣, 𝑤) = 𝑑𝑓𝑥 (𝑣) + 𝜖𝑤

for all (𝑣, 𝑤) ∈ R𝑛×R𝑚. In particular, 𝑑ℎ (𝑥,𝑧) has rank𝑚, and 𝑍 := ker(𝑑ℎ (𝑥,𝑧) ) is
𝑛-dimensional. Since 𝑍∩(R𝑛×{0}) = ker(𝑑𝑓𝑥)×{0} has dimension ≥ 𝑛−(𝑚−1),
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𝑉 := 𝑝(𝑍) is a proper subspace of R𝑚, and so its orthogonal complement 𝑉⊥ in
R𝑚 is non-trivial. Since {0} ×𝑉⊥ ⊂ 𝑊 := 𝑍⊥, it follows that

C𝑚(𝑑ℎ (𝑥,𝑧) ) = J
(
𝑑ℎ (𝑥,𝑧) |𝑊

)
≤ 𝜖 (Lip( 𝑓 ) + 𝜖)𝑚−1.

Let 𝐶 := [0, 1]𝑚 ⊂ R𝑚. Using Fubini’s Theorem and Theorem 9.1 (coarea
inequality) with 𝑘 = 𝑛 − 𝑚, we obtain∫

R𝑚

H𝑛−𝑚( 𝑓 −1{𝑦} ∩ 𝐴′′) 𝑑𝑦

=

∫
𝐶

∫
R𝑚

H𝑛−𝑚( 𝑓 −1{𝑦 − 𝜖𝑧} ∩ 𝐴′′) 𝑑𝑦 𝑑𝑧

=

∫
R𝑚

∫
𝐶

H𝑛−𝑚({𝑥 ∈ 𝐴′′ : ℎ(𝑥, 𝑧) = 𝑦}) 𝑑𝑧 𝑑𝑦

=

∫
R𝑚

∫
R𝑚

H𝑛−𝑚(𝑝−1{𝑧} ∩ ℎ−1{𝑦} ∩ (𝐴′′ × 𝐶)) 𝑑𝑧 𝑑𝑦

≤ 𝛼𝑚𝛼𝑛−𝑚
𝛼𝑛

∫
R𝑚

H𝑛 (ℎ−1{𝑦} ∩ (𝐴′′ × 𝐶)) 𝑑𝑦.

Applying the above result for ( 𝑓 , 𝐴′) to (ℎ, 𝐴′′ × 𝐶), we get∫
R𝑚

H𝑛 (ℎ−1{𝑦} ∩ (𝐴′′ × 𝐶)) 𝑑𝑦 =
∫
𝐴′′×𝐶

C𝑚(𝑑ℎ (𝑥,𝑧) ) 𝑑 (𝑥, 𝑧)

≤ 𝜖 (Lip( 𝑓 ) + 𝜖)𝑚−1L𝑛 (𝐴′′).

Letting 𝜖 tend to 0 we conclude that
∫
R𝑚 H𝑛−𝑚( 𝑓 −1{𝑦} ∩ 𝐴′′) 𝑑𝑦 = 0. This

completes the proof of (1).
Finally, (2) follows from (1) by approximation. □

10 Rectifiable sets

The following notion is fundamental in geometric measure theory.

Definition 10.1 (countably rectifiable set) Let 𝑌 be a metric space. A set 𝐸 ⊂ 𝑌
is called countably H𝑚-rectifiable if there is a countable family of Lipschitz maps
𝑓𝑖 : 𝐴𝑖 → 𝑌 , where 𝐴𝑖 ⊂ R𝑚 is L𝑚-measurable, such that

H𝑚
(
𝐸 \⋃𝑖 𝑓𝑖 (𝐴𝑖)

)
= 0.

It is often possible to take without loss of generality 𝐴𝑖 = R𝑚, e.g. if 𝑌 is a
Banach space (recall Theorem 3.3).

Lemma 10.2 (bi-Lipschitz parametrization) Suppose that 𝑌 is a metric space
and 𝐸 ⊂ 𝑌 is an H𝑚-measurable and countably H𝑚-rectifiable set. Then there
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exists a countable family of bi-Lipschitz maps 𝑓𝑘 : 𝐶𝑘 → 𝑓𝑘 (𝐶𝑘) ⊂ 𝐸 , with 𝐶𝑘 ⊂
R𝑚 compact, such that the 𝑓𝑘 (𝐶𝑘) are pairwise disjoint and

H𝑚
(
𝐸 \⋃𝑘 𝑓𝑘 (𝐶𝑘)

)
= 0.

Compare [Fed1969, Lemma 3.2.18] and [AmbK2000b, Lemma 4.1]. When
𝑌 = R𝑛 it is possible to choose all 𝑓𝑘 to be _-bi-Lipschitz, for any given _ > 1.

Proof : Consider first a single Lipschitz map 𝑓 : 𝐴 → 𝑌 for some L𝑚-measurable
set 𝐴 ⊂ R𝑚. We assume that 𝑓 extends to a Lipschitz map 𝑓 defined on all of
R𝑚; if such an extension does not exist, we may first replace 𝑓 with ] ◦ 𝑓 for some
isometric embedding ] : 𝑌 → 𝑙∞(𝑌 ). Applying Lemma 8.1 (Borel partition) to the
set of all 𝑥 ∈ 𝐴 where md 𝑓𝑥 exists and is a norm, we find a sequence of measurable
sets 𝐷 𝑗 ⊂ 𝐴 such that 𝑓 |𝐷 𝑗

is bi-Lipschitz and, by Theorem 8.3 (area formula),
H𝑚( 𝑓 (𝐴) \⋃ 𝑗 𝑓 (𝐷 𝑗)) = 0.

Suppose now that H𝑚(𝐸 \⋃𝑖 𝑓𝑖 (𝐴𝑖)) = 0 for some sequence of Lipschitz maps
𝑓𝑖 : 𝐴𝑖 → 𝑌 , where 𝐴𝑖 ⊂ R𝑚 is L𝑚-measurable with L𝑚(𝐴𝑖) < ∞. Applying the
above argument to each 𝑓𝑖 , we get (after relabeling) a sequence of bi-Lipschitz maps
𝑔 𝑗 : 𝐷 𝑗 → 𝑔 𝑗 (𝐷 𝑗) ⊂ 𝑌 such that 𝐷 𝑗 ⊂ R𝑚 is L𝑚-measurable with finite measure
and H𝑚(𝐸 \⋃ 𝑗𝑔 𝑗 (𝐷 𝑗)) = 0. Note that 𝐸 𝑗 := 𝐸 ∩ 𝑔 𝑗 (𝐷 𝑗) is H𝑚-measurable and
H𝑚(𝐸 𝑗) < ∞. Then there exists a sequence of pairwise disjoint 𝐹𝜎 sets

𝐹1 ⊂ 𝐸1, 𝐹2 ⊂ 𝐸2 \ 𝐸1, 𝐹3 ⊂ 𝐸3 \ (𝐸1 ∪ 𝐸2), . . .

such thatH𝑚(𝐸 \⋃ 𝑗𝐹𝑗) = 0. Exhausting each of the L𝑚-measurable sets 𝑔−1
𝑗
(𝐹𝑗),

up to an L𝑚-nullset, by a countable collection of pairwise disjoint compact sets,
we obtain the result. □

Proposition 10.3 (rectifiable level sets) Suppose that 𝑋 is a metric space, 𝑛 ≥
𝑚 ≥ 1, 𝐸 ⊂ 𝑋 is H𝑛-measurable and countably H𝑛-rectifiable, and 𝑓 : 𝐸 → R𝑚

is Lipschitz. Then for L𝑚-almost every 𝑦 ∈ R𝑚, 𝑓 −1{𝑦} is H𝑛−𝑚-measurable and
countably H𝑛−𝑚-rectifiable.

Proof : Consider first the case 𝐸 = 𝑋 = R𝑛. Let 𝐵 denote the set of all 𝑥 ∈ R𝑛

where 𝑑𝑓𝑥 exists and has rank 𝑚. Choose a Borel partition (𝐵𝑖)𝑖∈N of 𝐵 and
coordinate projections 𝑝𝑖 : R𝑛 → R𝑛−𝑚 such that each 𝑢𝑖 |𝐵𝑖

is bi-Lipschitz, where
𝑢𝑖 = ( 𝑓 , 𝑝𝑖); compare the first part of the proof of Lemma 9.2. For all 𝑦 ∈ R𝑚,

𝑓 −1{𝑦} ∩ 𝐵𝑖 = (𝑢𝑖 |𝐵𝑖
)−1(({𝑦} ×R𝑛−𝑚) ∩ 𝑢𝑖 (𝐵𝑖)).

For L𝑚-almost every 𝑦 ∈ R𝑚, we have in addition that H𝑛−𝑚( 𝑓 −1{𝑦} \ 𝐵) = 0
since, by Theorem 9.4 (coarea formula),∫

R𝑚

H𝑛−𝑚( 𝑓 −1{𝑦} \ 𝐵) 𝑑𝑦 =
∫
R𝑛\𝐵

C𝑚(𝑑𝑓𝑥) 𝑑𝑥 = 0.
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As (𝑢𝑖 |𝐵𝑖
)−1 is Lipschitz, this shows that 𝑓 −1{𝑦} is countably H𝑛−𝑚-rectifiable for

L𝑚-almost every 𝑦 ∈ R𝑚.
Now consider the general case, and let 𝐸 ⊂ 𝑋 and 𝑓 : 𝐸 → R𝑚 be given.

By Lemma 10.2 there exists a sequence of Lipschitz maps ℎ𝑖 : 𝐶𝑖 → 𝐸 , where
𝐶𝑖 ⊂ R𝑛 is compact, such that H𝑛 (𝐸 \ 𝐷) = 0 for 𝐷 :=

⋃∞
𝑖=1 ℎ𝑖 (𝐶𝑖). For each 𝑖,

put 𝑓𝑖 := 𝑓 ◦ ℎ𝑖 : 𝐶𝑖 → R𝑚 and choose a Lipschitz extension 𝑓𝑖 : R𝑛 → R𝑚. For
L𝑚-almost every 𝑦 ∈ R𝑚, the set 𝑓 −1

𝑖
{𝑦} is countably H𝑛−𝑚-rectifiable by the first

part of the proof, and so is

ℎ𝑖 ( 𝑓 −1
𝑖 {𝑦} ∩ 𝐶𝑖) = ℎ𝑖 ( 𝑓 −1

𝑖 {𝑦} ∩ 𝐶𝑖) = 𝑓 −1{𝑦} ∩ ℎ𝑖 (𝐶𝑖),

thus 𝑓 −1{𝑦} ∩ 𝐷 is a 𝜎-compact countably H𝑛−𝑚-rectifiable subset of 𝑓 −1{𝑦}.
Moreover, H𝑛−𝑚( 𝑓 −1{𝑦} \ 𝐷) = 0 for L𝑚-almost every 𝑦 ∈ R𝑚, because∫ ∗

R𝑚

H𝑛−𝑚( 𝑓 −1{𝑦} \ 𝐷) 𝑑𝑦 ≤ 𝛼𝑚𝛼𝑛−𝑚
𝛼𝑛

Lip( 𝑓 )𝑚H𝑛 (𝐸 \ 𝐷) = 0

by Theorem 9.1 (coarea inequality). This gives the result. □

Proposition 10.4 (countably rectifiable sets in R𝑛) A set 𝐸 ⊂ R𝑛 is countably
H𝑚-rectifiable if and only if there exists a sequence of 𝑚-dimensional 𝐶1 subman-
ifolds 𝑀𝑘 of R𝑛 such that

H𝑚
(
𝐸 \⋃𝑘𝑀𝑘

)
= 0.

See [Fed1969, Theorem 3.2.29], [Sim2014, Ch. 3].

Proof : Suppose that H𝑚(𝐸 \ ⋃𝑖 𝑓𝑖 (R𝑚)) = 0 for a sequence of Lipschitz maps
𝑓𝑖 : R𝑚 → R𝑛. By Theorem 5.2, we can assume without loss of generality that the
𝑓𝑖 are 𝐶1. Let 𝑈𝑖 ⊂ R𝑚 be the set of all 𝑥 ∈ R𝑚 where 𝑑𝑓𝑥 has rank 𝑚. By the
area formula, H𝑚( 𝑓𝑖 (R𝑚 \𝑈𝑖)) = 0. Hence, H𝑚(𝐸 \⋃𝑖 𝑓𝑖 (𝑈𝑖)) = 0. Finally, it
follows from the inverse function theorem that each 𝑓𝑖 (𝑈𝑖) is a countable union of
𝐶1 submanifolds.

The other implication is clear. □

We now turn to linear approximation properties of countably H𝑚-rectifiable
subsets of R𝑛. There are different definitions of approximate tangent spaces for
such sets in the literature, compare [Fed1969, 3.2.16] and [Mat1995, Ch. 15]. Here
we adopt the approach from [Sim2014, Ch. 3].

For 𝑥 ∈ R𝑛 and _ > 0, define [𝑥,_ : R𝑛 → R𝑛, [𝑥,_(𝑦) = (𝑦 − 𝑥)/_. Note that
[𝑥,_ maps 𝐵(𝑥, _𝑟) onto 𝐵(0, 𝑟).

Definition 10.5 (approximate tangent space) Suppose that 𝐸 ⊂ R𝑛 is an H𝑚-
measurable set with H𝑚(𝐸) < ∞. Let 𝑥 ∈ R𝑛. An 𝑚-dimensional linear subspace
𝐿 ⊂ R𝑛 is called the (H𝑚-)approximate tangent space of 𝐸 at 𝑥 if

lim
_→0+

∫
[𝑥,_ (𝐸 )

𝜙 𝑑H𝑚 =

∫
𝐿

𝜙 𝑑H𝑚

30



for all 𝜙 ∈ 𝐶𝑐 (R𝑛). Then we write 𝐿 =: Tan𝑚(𝐸, 𝑥).

Clearly Tan𝑚(𝐸, 𝑥) is uniquely determined if it exists. For an 𝑚-dimensional
𝐶1 submanifold 𝑀 ⊂ R𝑛, Tan𝑚(𝑀, 𝑥) agrees with the usual tangent space 𝑇𝑥𝑀 for
every 𝑥 ∈ 𝑀 .

Theorem 10.6 (existence of approximate tangent spaces) Suppose that 𝐸 ⊂ R𝑛

is an H𝑚-measurable and countably H𝑚-rectifiable set with H𝑚(𝐸) < ∞. Then
for H𝑚-almost every 𝑥 ∈ 𝐸 , Tan𝑚(𝐸, 𝑥) exists and Θ𝑚(𝐸, 𝑥) = 1.

Proof : Choose a sequence of 𝑚-dimensional 𝐶1 submanifolds 𝑀𝑘 of R𝑛 such that
H𝑚(𝐸 \ ⋃

𝑘 𝑀𝑘) = 0, compare Proposition 10.4. The sets 𝐸𝑘 := 𝐸 ∩ 𝑀𝑘 are
H𝑚-measurable with H𝑚(𝐸𝑘) < ∞, so it follows from the second statement in
Theorem 7.2 that for H𝑚-almost every 𝑥 ∈ 𝐸𝑘 ,

Θ𝑚(𝐸, 𝑥) = Θ𝑚(𝑀𝑘 , 𝑥) − Θ𝑚(𝑀𝑘 \ 𝐸𝑘 , 𝑥) + Θ𝑚(𝐸 \ 𝐸𝑘 , 𝑥) = 1 − 0 + 0.

Similarly, if 𝜙 ∈ 𝐶𝑐 (R𝑛) with spt(𝜙) ⊂ 𝐵(0, 𝑟), then∫
[𝑥,_ (𝐸 )

𝜙 𝑑H𝑚 =

∫
[𝑥,_ (𝑀𝑘 )

𝜙 𝑑H𝑚 −
∫
[𝑥,_ (𝑀𝑘\𝐸𝑘 )

𝜙 𝑑H𝑚 +
∫
[𝑥,_ (𝐸\𝐸𝑘 )

𝜙 𝑑H𝑚

for all _ > 0, and for H𝑚-almost every 𝑥 ∈ 𝐸𝑘 , the last two integrals tend to 0 as
_ → 0. For example,����∫

[𝑥,_ (𝐸\𝐸𝑘 )
𝜙 𝑑H𝑚

���� ≤ sup |𝜙 | · H𝑚([𝑥,_(𝐸 \ 𝐸𝑘) ∩ 𝐵(0, 𝑟))

= sup |𝜙| · H
𝑚((𝐸 \ 𝐸𝑘) ∩ 𝐵(𝑥, _𝑟))

_𝑚
,

which tends to sup |𝜙 | 𝑟𝑚Θ𝑚(𝐸 \ 𝐸𝑘 , 𝑥) = 0. It now follows that

lim
_→0+

∫
[𝑥,_ (𝐸 )

𝜙 𝑑H𝑚 = lim
_→0+

∫
[𝑥,_ (𝑀𝑘 )

𝜙 𝑑H𝑚 =

∫
𝑇𝑥𝑀𝑘

𝜙 𝑑H𝑚

and thus Tan𝑚(𝐸, 𝑥) = 𝑇𝑥𝑀𝑘 for H𝑚-almost every 𝑥 ∈ 𝐸𝑘 . □

The following two converses to Theorem 10.6 hold. For the first part, see
again [Mat1995, Ch. 15] and [Sim2014, Ch. 3]. The second statement is a deep
result of Preiss [Pre1987]; see [Mat1995, Ch. 17] and [DeL2008] for some accounts.

Theorem 10.7 (rectifiability criteria) Let 𝐸 ⊂ R𝑛 be anH𝑚-measurable set with
H𝑚(𝐸) < ∞.
(1) If Tan𝑚(𝐸, 𝑥) exists for H𝑚-almost every 𝑥 ∈ 𝐸 , then 𝐸 is countably H𝑚-

rectifiable.
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(2) If the density Θ𝑚(𝐸, 𝑥) exists for H𝑚-almost every 𝑥 ∈ 𝐸 , then 𝐸 is countably
H𝑚-rectifiable.

Finally, we state the Besicovitch–Federer projection theorem which played a
central role in the development of the theory of rectifiable currents. This deep
result was proved in [Bes1939] for 𝑚 = 1 and 𝑛 = 2 and in [Fed1947] for general
dimensions. See [Fed1969, Theorem 3.3.13], [Mat1995, Theorem 18.1].

A subset 𝐹 of a metric space 𝑌 is purely H𝑚-unrectifiable if H𝑚(𝐹 ∩ 𝐸) = 0
for every countably H𝑚-rectifiable set 𝐸 ⊂ 𝑌 . Every set 𝐴 ⊂ 𝑌 with H𝑚(𝐴) < ∞
can be written as the disjoint union of a countably H𝑚-rectifiable set 𝐸 and a purely
H𝑚-unrectifiable set 𝐹 (compare [Mat1995, Theorem 15.6]).

Theorem 10.8 (Besicovitch, Federer) Let 𝐹 ⊂ R𝑛 be a purely H𝑚-unrectifiable
set with H𝑚(𝐹) < ∞. Then H𝑚(𝜋𝐿 (𝐹)) = 0 for 𝛾𝑛,𝑚-almost every 𝐿 ∈ 𝐺 (𝑛, 𝑚) ,
where 𝛾𝑛,𝑚 denotes the Haar measure on 𝐺 (𝑛, 𝑚) (see below), and 𝜋𝐿 : R𝑛 → 𝐿

is orthogonal projection.

Recall that on every locally compact, Hausdorff topological group 𝐺, there
exists a left-invariant Radon measure ` . 0 that is uniquely determined up to a
positive factor. As for the canonical measure 𝛾𝑛,𝑚 on the Grassmannian manifold
𝐺 (𝑛, 𝑚) of 𝑚-dimensional linear subspaces of R𝑛, one can take the normalized
Haar measure ` on the compact group 𝐺 = 𝑆𝑂 (𝑛) and define 𝛾𝑛,𝑚 as the push-
forward𝛼#` under the map𝛼 : 𝑆𝑂 (𝑛) → 𝐺 (𝑛, 𝑚), 𝑔 ↦→ 𝑔𝐿0, for any fixed subspace
𝐿0 ∈ 𝐺 (𝑛, 𝑚). Thus, for every Borel set 𝐵 ⊂ 𝐺 (𝑛, 𝑚),

𝛾𝑛,𝑚(𝐵) := `
(
{𝑔 ∈ 𝑆𝑂 (𝑛) : 𝑔𝐿0 ∈ 𝐵}

)
.

For illustration, we describe a simple example of compact purely H1-unrectifiable
subset of R2 with positive finite H1-measure.

Example 10.9 (Cantor dust) Start with the unit square [0, 1]2 in R2, subdivide it
into 16 closed squares of equal size, and let 𝐶1 denote the union of the first and
third square in the top row and the second and fourth square in the bottom row.
Subdivide each of these four squares using the same pattern, and let 𝐶2 denote the
corresponding union of the sixteen little squares. Continuing this process, one gets
a decreasing sequence of compact sets 𝐶𝑘 consisting of 4𝑘 squares of edge length
4−𝑘 . By construction, the set 𝐶 :=

⋂∞
𝑘=1𝐶𝑘 has the property that 𝜋(𝐶) = [0, 1] for

the projection 𝜋 : (𝑥, 𝑦) ↦→ 𝑥, hence H1(𝐶) ≥ 1, and clearly H1(𝐶) < ∞. One
can check that 𝐶 has no approximate tangents, so it follows from Theorem 10.6
that𝐶 is purely H1-unrectifiable. According to Theorem 10.8, H1(𝜋𝐿 (𝐶)) = 0 for
𝛾2,1-almost every line 𝐿 ∈ 𝐺 (2, 1).

Using Theorem 10.8 and Example 10.9, one can give a simple construction of a
Besicovitch set, that is, a set 𝐵 ⊂ R2 of L2-measure zero containing a line in every
direction (compare [Mat1995, Thm. 18.1]).
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Example 10.10 (Besicovitch set) The idea is to use the set 𝐶 from Example 10.9
as a parameter space for a family of lines. Define 𝑓 : 𝐶 ×R → R2 by 𝑓 (𝑎, 𝑏, 𝑥) :=
(𝑥, 𝑎𝑥 + 𝑏), and put 𝐵 := 𝑓 (𝐶 ×R). Note that 𝐵 is 𝜎-compact. For every 𝑎 ∈ [0, 1]
there exists a point (𝑎, 𝑏) ∈ 𝐶, so 𝐵 contains the graph of the function 𝑥 ↦→ 𝑎𝑥 + 𝑏.
Thus there are lines of every slope 𝑎 ∈ [0, 1] in 𝐵, and by taking the union of four
suitably rotated copies of 𝐵 one gets a Borel set containing a line in every direction.
It remains to show that L2(𝐵) = 0. For 𝑡 ∈ R, consider the set

𝐵 ∩ ({𝑡} ×R) = {(𝑡, 𝑎𝑡 + 𝑏) : (𝑎, 𝑏) ∈ 𝐶} = {𝑡} × 𝜌𝑡 (𝐶),

where 𝜌𝑡 (𝑥, 𝑦) = 𝑡𝑥 + 𝑦. Write 𝑡 = cot(𝜙) for 𝜙 ∈ (0, 𝜋), and let 𝜋𝜙 : R2 → 𝐿𝜙

denote the orthogonal projection to 𝐿𝜙 = R(cos(𝜙), sin(𝜙)). Then 𝜋𝜙 (𝑥, 𝑦) =

𝑟 (cos(𝜙), sin(𝜙)) for

𝑟 = cos(𝜙)𝑥 + sin(𝜙)𝑦 = 𝜌𝑡 (𝑥, 𝑦) sin(𝜙).

It follows that L1(𝜌𝑡 (𝐶)) = 0 for almost every 𝑡 ∈ R if and only if H1(𝜋𝜙 (𝐶)) = 0
for almost every 𝜙 ∈ (0, 𝜋), which holds by Theorem 10.8. Hence, by Fubini’s
Theorem, L2(𝐵) = 0.
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