Fragen der Einschätzungstests am D-MATH (HS 2007 und 2008)

Die vorliegenden Fragen wurden in folgenden Vorlesungen eingesetzt:

- HS 2007
 - Analysis I (D-ITET, D-INFK) bei M. Akveld, R. Pink
 - Analysis I (D-MAVT, D-MATL) bei E. Trubowitz
- HS 2008
 - Analysis I (D-BAUG) bei M. Akveld
 - Analysis I (D-MAVT, D-MATL) bei G. Felder
 - Analysis I (D-ITET) bei U. Lang
 - Analysis I (D-INFK) bei M. Struwe

Bei jeder Frage geben wir bei den Antworten die Prozentzahl der Studierenden an, welche jeweils die Antwort angekreuzt hatten – im Durchschnitt über die sechs Tests. Die zu 100 fehlenden Prozent geben den Anteil der Studierenden an, welche die Frage nicht beantwortet hatten. Da die Daten unter unterschiedlichen Bedingungen (z.B. obligatorisch oder nicht-obligatorisch) erfasst wurden, sind sie nur eingeschränkt aussagekräftig.

Die Einteilung orientiert sich an der HSGYM-Studie¹.

Algebra

Frage 1

Die Lösungsmenge der Gleichung $x^4 - 3x^2 + 2 = 0$ ist

\bigcirc	leer	1%
\bigcirc	$\mathbb{L}=\{-1,1\}$	6%
\bigcirc	$\mathbb{L} = \{-2, -1, 1, 2\}$	5%
\otimes	$\mathbb{L} = \{-\sqrt{2}, -1, 1, \sqrt{2}\}$	84%
\bigcirc	keine der Aussagen stimmt	4%

 $^{^1\}mathrm{HSGYM}$ - Hochschule und Gymnasium, Hochschulreife und Studierfähigkeit, Zürcher Dialog an der Schnittstelle mit Analysen und Empfehlungen zu 25 Fachbereichen, HSGYM (2009), S.135ff, http://www.educ.ethz.ch/hsgym

HS 2007 und HS 2008

Frage 2

Für welche $x \in \mathbb{R}$ ist die Ungleichung $5x + \frac{5}{3} \le -2x - \frac{2}{3}$ erfüllt?

\bigcirc	$x \le -\frac{1}{9}$	2%
\otimes	$x \le -\frac{1}{3}$	89%
\bigcirc	$x \ge 0$	1%
\bigcirc	$x \ge \frac{7}{3}$	2%
\bigcirc	$x \ge \frac{1}{3}$	5%

Frage 3

Für welche $x \in \mathbb{R}$ ist die Ungleichung $|x-2| \leq 3$ erfüllt?

\bigcirc	Die Ungleichung ist niemals erfüllt.	0%
\bigcirc	$x \le 5$	20%
\bigcirc	$x \in [-3, 3]$	5%
\bigcirc	$x \ge -1$	1%
\otimes	Keine der obigen Antworten ist richtig.	73%

Frage 4

Welche Lösungsmenge gehört zur Ungleichung $(x-1)(y-2) \geq 0$?

\bigcirc	Die Region $\{(x,y) \in \mathbb{R} \mid x \ge 1, y \ge 2\}$	20%
\bigcirc	Die Region oberhalb der Geraden $y=2$	7%
\otimes	Die Region $\{(x,y) \in \mathbb{R} \mid x \geq 1, y \geq 2\} \cup \{(x,y) \in \mathbb{R} \mid x \leq 1, y \leq 2\}.$	47%

Frage 5

Welche Lösungsmenge gehört zur Ungleichung $x+y\geq 2?$

\bigcirc	Die Region unterhalb der Geraden $y = -x + 2$.	5%
\otimes	Die Region oberhalb der Geraden $y = -x + 2$.	72%
\bigcirc	Die Region unterhalb der Geraden $y = x - 2$.	2%

Frage 6

Welcher Punkt gehört zur Lösungsmenge der Ungleichung $xy+2x+y+2\geq 0$?

\otimes	$P_1 = (38, -2)$	70%
\bigcirc	$P_2 = (-2,3)$	2%
\bigcirc	$P_3 = (-2, 5)$	3%

Frage 7

Welcher Punkt gehört **nicht** zur Lösungsmenge der Ungleichung $\frac{x+5}{y-4} \geq 7?$

\otimes	$P_1 = (1,4)$	75%
\bigcirc	$P_2 = (-55, -1)$	3%
\bigcirc	$P_3 = (2,5)$	3%

Frage 8

Die Lösungsmenge der Gleichung $x^2 - 5 = 0$ ist

\otimes	$\{-\sqrt{5},\sqrt{5}\}.$	92%
\bigcirc	$\{\sqrt{5}\}.$	7%
\bigcirc	$\{-\sqrt{5}\}.$	0%
\bigcirc	{}·	0%
\bigcirc	Keine der obigen Antworten ist richtig.	1%

Frage 9

Die Wurzel aus 36 ist

\bigcirc	$\{-6,6\}.$	35%
\otimes	6.	63%
\bigcirc	-6.	0%
\bigcirc	nicht eindeutig definiert.	2%
\bigcirc	Keine der obigen Antworten ist richtig.	0%

Frage 10

Welche der folgenden Umformungen stimmt?

\bigcirc	$-\frac{a+b}{c} = \frac{-a+b}{c}$	1%
\otimes	a + (b - c) = a + b - c	88%
\bigcirc	a - (b - c) = a - b - c	1%
\bigcirc	(a-b)+c=a-(b+c)	1%
\bigcirc	Keine.	4%

HS 2007 und HS 2008

Frage 11

Welche der folgenden Rechenregeln stimmt?

\bigcirc	$\frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$	6%
\bigcirc	$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$	8%
\bigcirc	(a+b)(c+d) = ac + bd	1%
\bigcirc	$\sin(a+b) = \sin(a) + \sin(b)$	10%
\otimes	Keine.	71%

Frage 12

Welcher Ausdruck ist äquivalent zu $\ln(a^4b^2) - \ln(a^2b^{-2})$?

\bigcirc	$6 \ln a$	5%
\bigcirc	$2\ln(a) - 4\ln(b)$	7%
\bigcirc	$rac{\ln(a^2b)}{\ln(ab^{-1})}$	7%
\otimes	$\ln(a^2b^4)$	60%
\bigcirc	Keine der obigen Antworten ist richtig.	18%

Frage 13

Die Zahl $\sqrt{2}$ ist

\bigcirc	rational	9%
\otimes	reell, aber nicht rational	89%
\bigcirc	rein imaginär	2%

Frage 14

Sei z=2-3i. Welches ist die konjugiert komplexe Zahl \bar{z} ?

\bigcirc	2-3i	5%
\otimes	2+3i	79%
\bigcirc	-2-3i	2%
\bigcirc	3-2i	5%
\bigcirc	3i	5%

HS 2007 und HS 2008

Frage 15

 $(1+i)\cdot(2-i)$ ist gleich

\otimes	3+i	86%
\bigcirc	$2-i^2$	0%
\bigcirc	3	0%
\bigcirc	keine Antwort ist richtig	2%
\bigcirc	keine Vorkenntnisse über komplexe Zahlen	12%

Frage 16

Der Realteil der komplexen Zahl \boldsymbol{e}^i beträgt

\bigcirc	1.	17%
\bigcirc	0.	34%
\otimes	$\cos(1)$.	27%
\bigcirc	$\sin(1)$.	3%
\bigcirc	Keine der obigen Antworten ist richtig.	13%

Trigonometrie

Frage 17

Für welches n ist $\cos \frac{\pi}{n} > \sin \frac{\pi}{n}$?

\bigcirc	2	10%
\bigcirc	3	6%
\bigcirc	4	4%
\otimes	5	66%
\bigcirc	Keines dieser.	11%

Frage 18

Sei $\sin(\alpha) = \frac{\sqrt{2}}{2}$; dann :

\bigcirc	$\cos(\alpha) = -\sqrt{2}$	9%
\bigcirc	$\cos(\alpha) = \frac{\sqrt{2}}{2}$	29%
\otimes	$\cos(\alpha) = \frac{\sqrt{2}}{2}$ oder $\cos(\alpha) = -\frac{\sqrt{2}}{2}$	56%

HS 2007 und HS 2008

Frage 19

Sei $cos(\alpha) = 0$; dann:

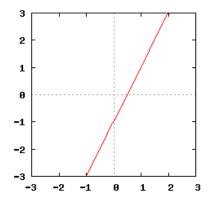
$$\alpha = 0$$

$$\bigcirc \quad \alpha = \frac{\pi}{2}$$

Frage 20

Sei $tan(\alpha) = 2$; dann:

$$\bigcirc \cot (\alpha) = -2$$


$$\bigotimes \cot \alpha(\alpha) = \frac{1}{2}$$

$$\bigcirc \cot (\alpha) = 2$$

Funktionen

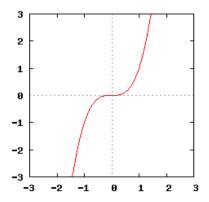
Frage 21

Wie lautet die Gleichung der Geraden auf dem Bild?

$$y = \frac{1}{2}x - 1$$

$$\bigcirc \quad y = \frac{1}{2}x + 1$$

$$\bigcirc \quad y = 2x + 1$$


○ Keine der obigen Antworten ist richtig. 2%

Fragen zu Grundkenntnissen HS 2007 und HS 2008

Frage 22

Die Zeichnung zeigt den Graphen der Funktion $f(x)=x^3$. Durch Verschieben um 2 Einheiten nach rechts erhält man den Graphen einer neuen Funktion g. Wie lautet die Funktionsgleichung von g?

Frage 23

Welche Periode hat die Funktion $f(x) = \sin(2x)$?

\bigcirc	2π	13%
\otimes	π	60%
\bigcirc	$\frac{\pi}{2}$	14%
\bigcirc	4π	9%

HS 2007 und HS 2008

Frage 24

Welche Funktion passt zum folgenden Graphen?

$$\bigotimes \quad x \mapsto \sin(-x)$$

$$\bigcirc \quad x \mapsto -\cos(x)$$

Frage 25

Welche Funktion passt zum folgenden Graphen?

$$\bigotimes \quad x \mapsto \sin(x) - 1$$

$$\bigcirc \quad x \mapsto \sin(x-1)$$

$$\bigcirc \quad x \mapsto \cos(x) - 1$$

Frage 26

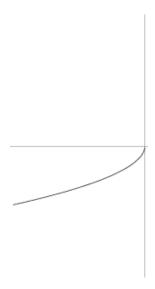
Welche Funktion passt zum folgenden Graphen?

$$\bigotimes x \mapsto |\cos(x)|$$

$$\bigcirc x \mapsto \cos|x|$$

$$\bigcirc \quad x \mapsto (\cos(x))^2$$

HS 2007 und HS 2008


Frage 27

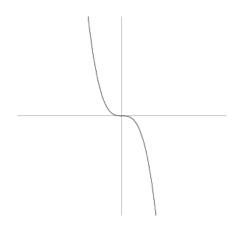
Sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = x^3 + 1$. Welches ist ihre Umkehrfunktion f^{-1} ?

\bigcirc	$x^3 - 1$	0%
\bigcirc	$\sqrt[3]{x^3+1}$	3%
\otimes	$\sqrt[3]{x-1}$	65%
\bigcirc	$\frac{1}{x^3+1}$	22%
\bigcirc	Keine der obigen Antworten ist richtig.	6%

Frage 28

Welche Funktion passt zur folgenden Kurve?

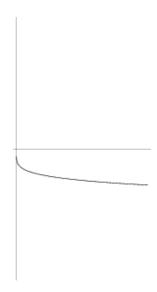
$$\begin{array}{ccc}
 & x \mapsto x^{-\frac{1}{2}} \\
 & x \mapsto -(-x)^{\frac{1}{2}} \\
 & x \mapsto -x^{\frac{1}{2}}
\end{array}$$


$$\begin{array}{ccc}
 & x \mapsto x^{-\frac{1}{2}} \\
 & x \mapsto x^{\frac{1}{2}} \\
 & x \mapsto x^{\frac{1}{2}}
\end{array}$$

HS 2007 und HS 2008

Frage 29

Welche Funktion passt zur folgenden Kurve?


$$\bigcirc \quad x \mapsto x^{-3}$$

$$x \mapsto -x^3$$

$$\bigcirc \quad x \mapsto -x^4$$

Frage 30

Welche Funktion passt zur folgenden Kurve?

$$\bigcirc \quad x \mapsto x^{-\frac{1}{5}}$$

$$\bigcirc \quad x \mapsto x^{-5}$$

$$x \mapsto -x^{\frac{1}{5}} \tag{77\%}$$

Folgen und Reihen

Frage 31

Der Grenzwert $\lim_{n\to\infty}\frac{2n^3-1}{10n^3+n+21}$ beträgt

\otimes	$\frac{1}{5}$.	73%
\bigcirc	0.	15%
\bigcirc	∞ .	4%
\bigcirc	$\frac{1}{32}$.	2%
\bigcirc	$\frac{1}{10}$.	2%

Frage 32

Die Summe der unendlichen geometrischen Reihe $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\dots$ beträgt

\bigcirc	$\frac{1}{2}$.	8%
\otimes	$\frac{2}{3}$.	75%
\bigcirc	2.	6%
\bigcirc	$\frac{3}{2}$.	3%
\bigcirc	∞ .	4%

Frage 33

Welche der Reihen divergiert?

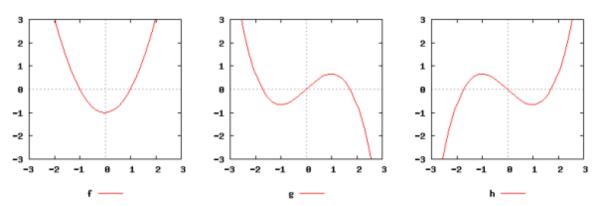
\bigcirc	$\sum_{n=1}^{\infty} \frac{1}{n^2}$	5%
\bigcirc	$\sum_{n=1}^{\infty} \frac{1}{n!}$	6%
\otimes	$\sum_{n=1}^{\infty} \frac{1}{n}$	22%
\bigcirc	$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$	27%
\bigcirc	Keine der Reihen divergiert.	33%

Differentialrechnung

Frage 34

Der Grenzwert $\lim_{x \to 1} \frac{x^5 - 1}{x^2 - x}$ beträgt

\otimes	5.	30%
\bigcirc	$\frac{5}{2}$.	6%
\bigcirc	0.	27%
\bigcirc	1.	15%
\bigcirc	∞ .	18%


Frage 35


Der Grenzwert $\lim_{h \to 0} \frac{\sqrt{2+h} - \sqrt{2}}{h}$ beträgt

35%	0.	0.	\bigcirc
31%	$\frac{1}{2\sqrt{2}}$.	$\frac{1}{2\sqrt{2}}$.	\otimes
2%	$\frac{1}{2}$.	$\frac{1}{2}$.	\bigcirc
4%	$\frac{1}{\sqrt{2}}$.	$\frac{1}{\sqrt{2}}$.	\bigcirc
22%	∞ .	∞ .	\bigcirc

Frage 36

Die drei Graphen stellen die Funktionen f,g und h dar. Welche Aussage ist richtig?

HS 2007 und HS 2008

Frage 3	37
---------	----

Sei $f(x) = \exp(2x)$. Wie lautet die Ableitung f'(x)?

\bigcirc	$2x\exp\left(2x-1\right)$	4%
\bigcirc	$\frac{1}{2}\exp\left(2x\right)$	2%
\otimes	$2\exp\left(2x\right)$	67%
\bigcirc	$\exp\left(2x\right)$	5%
\bigcirc	Keine der obigen Antworten ist richtig.	16%

Frage 38

Es gilt $\frac{d}{dx}(e^{x^2}) =$

\bigcirc	e^{x^2}	5%
\bigcirc	$x^2 \cdot e^{x^2}$	2%
\otimes	$2x \cdot e^{x^2}$	79%
\bigcirc	e^{2x}	7%
\bigcirc	keine Antwort ist richtig	3%

Frage 39

Sei $f(x) = \ln(\sin x)$. Wie lautet die Ableitung f'(x)?

\bigcirc	$\frac{1}{\sin(x)}$	11%
\otimes	$rac{\cos(x)}{\sin(x)}$	61%
\bigcirc	$\ln(\cos(x))$	6%
\bigcirc	$\frac{1}{x}\sin(x) + \ln(\cos x)$	8%
\bigcirc	$\cos(x)\ln(\sin x)$	10%

Frage 40

Sei $f(x) = x^3 \ln x$. Wie lautet die Ableitung f'(x)?

\otimes	$x^2(3\ln x + 1)$	69%
\bigcirc	$x^2(3\ln x + xe^x)$	4%
\bigcirc	3x	6%
\bigcirc	$\frac{x^4}{4}e^x$	1%
\bigcirc	Keine der obigen Antworten ist richtig.	16%

Frage 41

Sei $f(x) = \sqrt{x-2}$. Wie lautet die Gleichung der Tangente an den Graphen von f an der Stelle x=6?

$ y = \frac{1}{2}x - 1 $	16%
---------------------------	-----

$$y = x - 4$$

$$y = -\frac{1}{4}x + \frac{7}{2}$$

$$\bigotimes$$
 Keine der obigen Antworten ist richtig. 56%

Frage 42

Wie lautet die Ableitung der Funktion $f(x) = x^3 + 3x - 2$?

$$x^2 + 3$$
.

$$3x^2 + 1$$
.

$$x^2 + 3x - 2$$
.

$$\otimes$$
 3x² + 3.

Frage 43

Wie gross ist die Steigung der Tangente an den Graphen von $f(x) = -\cos(3x)$ in $x = \frac{\pi}{2}$?

(\bigcirc	1	9%

$$\otimes$$
 -3

$$3\sin(3x)$$

$$\bigcirc$$
 3

Integralrechnung

Frage 44

Das Integral $\int_{-1}^{1}|t|dt$ beträgt

()	0.			409	%

$$\otimes$$
 1.

$$\bigcirc$$
 2.

$$\bigcirc$$
 4.

HS 2007 und HS 2008

Frage 45

Die Funktion $x \cdot e^x + 7$ ist

\bigcirc	Nie negativ	12%
\otimes	Eine Stammfunktion von $e^x + x \cdot e^x$	46%
\bigcirc	Die Ableitung von $\frac{1}{2}x^2 \cdot e^x + 7x$	12%
\bigcirc	Alle obigen Aussagen sind falsch	16%

Frage 46

Das Integral $\int_0^1 \exp{(-2t)} dt$ beträgt

\bigcirc	$1 - \frac{1}{\exp\left(2\right)}.$	11%
\bigcirc	$\frac{1}{2\exp\left(2\right)}$.	8%
\bigcirc	$\frac{1}{2} - \frac{1}{\exp(2)}$.	12%
\otimes	Keine der obigen Antworten ist richtig.	60%

Frage 47

Das Integral $\int_0^\pi \sin(\frac{t}{2}) dt$ beträgt

\otimes	2.	39%
\bigcirc	-2.	9%
\bigcirc	4	3%
\bigcirc	$-\frac{1}{2}$	9%
\bigcirc	Keine der obigen Antworten ist richtig.	34%

Frage 48

Sei $f(x) = \int_3^x \sin(t)dt$. Wie lautet die Ableitung f'(x)?

\bigcirc	$\cos(x) - \cos(3)$	25%
\bigcirc	$\sin(x) - \sin(3)$	23%
\bigcirc	$-\cos(x)$	4%
\bigcirc	$\cos(x)$	8%
\otimes	$\sin(x)$	36%

HS 2007 und HS 2008

Frage 49

Es gilt $\int \frac{x+1}{x} dx =$

$$\bigotimes x + \log(x) + c \text{ (log = nat "urlicher Logar" ithmus)}$$
 74%

$$\bigcap \frac{\frac{1}{2}x^2 + x}{1 - x^2} + c$$
 12%

$$\frac{x^2+x}{x}$$

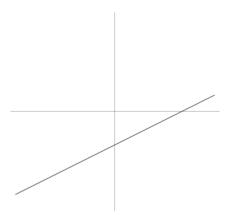
$$\bigcirc \log(\frac{x}{x+1})$$

Analytische Geometrie der Ebene

Frage 50

Gegeben ist der Punkt mit den kartesischen Koordinaten $(-1,\sqrt{3})$. Was sind seine Polarkoordinaten?

$$\bigcirc \quad \rho = 1 \; , \; \; \phi = \pi/4 \qquad \qquad 4\%$$


$$\bigcirc \quad \rho = 2 \; , \quad \phi = \pi/3$$

$$\bigcirc \quad \rho = 1 \; , \quad \phi = 2\pi/3$$

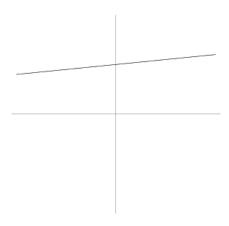
$$\bigotimes \quad \rho = 2 \; , \quad \phi = 2\pi/3$$

Frage 51

Welche Gleichung (Parameterdarstellung) passt zur folgenden Gerade?

$$y = 2x - 2$$

$$\bigcirc \quad y = x - 1$$


$$\bigotimes \quad \left\{ \begin{array}{l} x = 2 - 2t \\ y = -t \end{array} \right.$$
 63%

HS 2007 und HS 2008

Frage 52

Welche Gleichung passt zur folgenden Gerade?

$$\bigotimes \quad y = \frac{1}{10}x + \frac{3}{2}$$

$$y = -4x + \frac{3}{2}$$

Frage 53

Welches Paar von Gleichungen bzw. Parameterdarstellungen definiert Geraden, die nicht zueinander senkrecht sind?

$$y = \frac{1}{3}x; \ 3x + y - \frac{1}{4} = 0$$

$$\bigcirc \quad \{ \begin{array}{l} x = \frac{3}{4}t \\ y = \frac{1}{2}t \end{array} ; \, \{ \begin{array}{l} x = 2 - 2t \\ y = 3 + 3t \end{array} \right.$$

$$y = x; y = 1 - x$$

HS 2007 und HS 2008

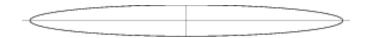
Frage 54

Welche Aussage ist falsch?

- \bigotimes Die Ellipse mit Gleichung $\frac{x^2}{3}+\frac{y^2}{4}=1$ schneidet die Koordinatenachsen in den Punkten (3,0), (-3,0), (0,4) und (0,-4).
- O Die Brennpunkte der Ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ sind $F_1 = (0, +\sqrt{7})$ und $F_2 = (0, -\sqrt{7})$.
- O Die Gleichung $\frac{x^2}{2} + \alpha \frac{y^2}{3} = 1$ beschreibt eine Ellipse, falls $\alpha > 0$, und eine Hyperbel, falls $\alpha < 0$.
- Oie Ellipse mit Gleichung $\frac{x^2}{3} + \frac{y^2}{4} = 1$ schneidet die Koordinatenachsen in den Punkten $(\sqrt{3}, 0)$, $(-\sqrt{3}, 0)$, (0, 2), (0, -2).
- O Die Hyperbel $\frac{x^2}{9} \frac{y^2}{36} = 1$ schneidet die Koordinatenachsen in den Punkten (0,3) und (0,-3). 16%

Frage 55

Die Gleichung $x^2 - y^2 = 5$ beschreibt...


O einen Kreis.

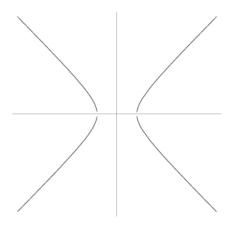
 \otimes eine Hyperbel. 70%

o eine Ellipse. 4%

Frage 56

Welche Gleichung passt zur folgenden Kurve?

$$0 10x^2 + 10y^2 = 1 7\%$$


$$\bigotimes \frac{x^2}{10} + y^2 = 1$$
 54%

HS 2007 und HS 2008

Frage 57

Welche Gleichung passt zur folgenden Kurve?

$$\bigcirc \quad \frac{x^2}{10} - y^2 = 1$$

$$x^2 - 10y^2 = 1$$

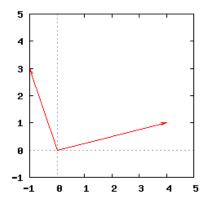
Frage 58

Die Gleichungen { $\begin{array}{l} x=2\cos(3t) \\ y=3\sin(3t) \end{array}}$ beschreiben...

$$\otimes$$
 eine Ellipse. 57%

Vektorgeometrie

Frage 59


Welche der folgenden Gleichungen stellt einen Kreiszylinder mit der y-Achse als Achse und dem Grundkreisradius 3 dar?

$$x^2 + y^2 + z^2 = 3$$

$$y^2 + z^2 = 9$$

Frage 60

Welcher Vektor entspricht der Summe der beiden Vektoren im Bild?

\otimes	Keine der obigen Antworten ist richtig.	94%
\bigcirc	(-1,2)	0%
\bigcirc	(2,2)	2%
\bigcirc	(1,4)	1%
\bigcirc	(4,1)	1%

Frage 61

Sei $\vec{a} = (1, 2, -2)$. Dann ist $|\vec{a}| =$

\bigcirc	1.	1%
\bigcirc	2.	1%
\otimes	3.	85%
\bigcirc	9.	7%
\bigcirc	Keines davon.	3%

Frage 62

Seien $\vec{a}=(1,2,3)$ und $\vec{b}=(1,1,1).$ Dann ist das Skalarprodukt $\vec{a}\cdot\vec{b}=$

\circ	$\sqrt{6}$.	4%
\otimes	6.	84%
\bigcirc	36.	1%
\bigcirc	(-1, 2, -1).	0%
\bigcirc	(1, 2, 3).	8%

HS 2007 und HS 2008

Frage 63

Seien $\vec{a} = (0, 1, 0)$ und $\vec{b} = (1, 0, 0)$. Dann ist das Vektorprodukt $\vec{a} \times \vec{b} =$

\otimes	(0,0,-1).	66%
\bigcirc	(0,0,1).	16%
\bigcirc	(1, 1, 0).	4%
\bigcirc	0.	10%
\bigcirc	2.	1%

Frage 64

Ein Vektor \vec{a} besitze die Eigenschaft $(\vec{a} \cdot \vec{a})\vec{a} = \vec{a}$. Was kann über \vec{a} gesagt werden?

\circ	Jeder Vektor erfüllt diese Gleichung.	3%
\bigcirc	Es gilt $\vec{a} = (1, 0, 0)$.	11%
\bigcirc	Der Vektor \vec{a} ist ein Einheitsvektor.	8%
\otimes	Der Vektor \vec{a} ist entweder ein Einheitsvektor oder der Nullvektor.	67%

Frage 65

Ein Vektor \vec{a} besitze die Eigenschaft $(\vec{a} \times \vec{a}) = \vec{a}$. Was kann über \vec{a} gesagt werden?

\bigcirc	Jeder Vektor erfüllt diese Gleichung.	3%
\bigcirc	Der Vektor \vec{a} ist ein Einheitsvektor.	14%
\otimes	Der Vektor \vec{a} ist der Nullvektor.	68%

Kombinatorik

Frage 66

Sie besitzen 12 verschiedene Bücher: 5 dicke, 4 mittlere und 3 dünne. Auf wie viele Arten lassen sich die Bücher anordnen, so dass die Bücher gleicher Dicke nebeneinander stehen?

\otimes	5!4!3!3! = 103680	38%
\bigcirc	5!4!3! = 17280	14%
\bigcirc	5!4!3!3 = 51840	10%
\bigcirc	$5 \cdot 4 \cdot 3 \cdot 3 = 180$	13%
\bigcirc	(5! + 4! + 3!)3! = 900	22%