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Abstract

The well-known Erdős-Hajnal conjecture states that for any graph F , there exists ϵ > 0
such that every n-vertex graph G that contains no induced copy of F has a homogeneous set of
size at least nϵ. We consider a variant of the Erdős-Hajnal problem for hypergraphs where we
forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that
if we forbid induced subgraphs on m vertices and f edges for any positive m and 0 ≤ f ≤

(
m
2

)
,

then we obtain large homogeneous sets. For triple systems, in the first nontrivial case m = 4,
for every S ⊆ {0, 1, 2, 3, 4}, we give bounds on the minimum size of a homogeneous set in a
triple system where the number of edges spanned by every four vertices is not in S. In most
cases the bounds are essentially tight. We also determine, for all S, whether the growth rate is
polynomial or polylogarithmic. Some open problems remain.

1 Introduction

For an integer r ≥ 2, an r-graph or r-uniform hypergraph is a pair H = (V,E), where V = V (H)
is the set of vertices and E = E(H) ⊆

(
V
r

)
is the set of edges. A 2-graph is simply a graph. A

homogeneous set is a set of vertices that is either a clique or a coclique (independent set). For an
r-graph H, let h(H) be the size of a largest homogeneous set. Given r-graphs F,H, say that H is
F -free if H contains no isomorphic copy of F as an induced subgraph. We say that an r-graph F
has the Erdős-Hajnal-property or simply EH-property if there is a constant ϵ = ϵF > 0 such that
every n-vertex F -free r-graph H satisfies h(H) ≥ nϵ. A conjecture of Erdős and Hajnal [13] states
that any 2-graph has the EH-property. The conjecture remains open, see for example a survey by
Chudnovsky [8], as well as [1, 5, 17], to name a few central results on the topic. When F is a fixed
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graph and G is an F -free n-vertex graph, Erdős and Hajnal proved that h(G) ≥ 2c
√
logn. This was

recently improved to h(G) ≥ 2c
√
logn log logn by Bucić, Nguyen, Scott, and Seymour [7].

The Erdős-Hajnal conjecture fails for r-graphs, r ≥ 3, already when F is a clique of size r+1. Indeed,
well-known results on off-diagonal hypergraph Ramsey numbers show that there are n-vertex r-
graphs that do not have a clique on r+1 vertices and do not have cocliques on fr(n) vertices, where
fr is an iterated logarithmic function (see [25] for the best known results). Moreover, the following
result (Claim 1.3 in [19]) tells us exactly which r-graphs, r ≥ 3, have the EH-property. Here D2 is
the unique 3-graph on 4 vertices with exactly 2 edges.

Theorem 1.1 (Gishboliner and Tomon [19]). Let r ≥ 3. If F is an r-graph on at least r + 1
vertices and F ̸= D2, then there is an F -free r-graph H on n vertices such that h(H) = O(log n).
On the other hand, there is a constant c > 0 such that if H is an D2-free n-vertex 3-graph, then
h(H) ≥ nc.

It is natural to consider the EH-property for families of r-graphs instead of a single r-graph. In
this paper, we consider families determined by a given set of orders and sizes. Several special cases
of this have been extensively studied over the years (see, e.g. [12]). For 0 ≤ f ≤

(
m
r

)
, we call

an r-graph F on m vertices and f edges an (m, f)-graph and we call the pair (m, f) the order-
size pair for F . Say that H is (m, f)-free if it contains no induced copy of an (m, f)-graph. If
Q = {(m1, f1), . . . , (mt, ft)}, say that H is Q-free if H is (mi, fi)-free for all i = 1, . . . , t.

Definition 1.2. Given r ≥ 2 and Q = {(m1, f1), . . . , (mt, ft)}, let h(n,Q) = hr(n,Q) be the
minimum of h(H), taken over all n-vertex Q-free r-graphs H. Say that Q has the EH-property if
there exists ϵ = ϵQ > 0 such that h(n,Q) > nϵ.

For example h3(n, {(4, 0), (4, 2)}) = k means that every n-vertex 3-graph in which any 4 vertices
induce 1, 3, or 4 edges has a homogenous set of size k, and there is a 3-graph H as above with
h(H) = k. We may omit the subscript r in the notation hr(n,Q) if it is obvious from context.
When Q = {(m, f)} we use the simpler notation h(n,m, f) instead of h(n, {(m, f)}). Let us make
two simple observations:

hr(n,Q) ≤ hr(n,Q
′) if Q ⊆ Q′, (1)

hr(n,Q) = hr(n,Q) where Q =

{(
m,

(
m

r

)
− f

)
: (m, f) ∈ Q

}
. (2)

Our first result concerns 2-graphs, where we show that forbidding a single order-size pair already
guarantees large homogeneous sets.

Proposition 1.3. For any integers m, f with m ≥ 2 and 0 ≤ f ≤
(
m
2

)
there exists c > 0 such that

h2(n,m, f) ≥ c n1/(m−1).

Proposition 1.3 is proved in Section 2. It seems a challenging problem to give good upper bounds
on h2(n,m, f). For example, determining h2(n,m,

(
m
2

)
) is equivalent to determining off-diagonal

Ramsey numbers.

Our second main result concerns the case r = 3 and m = 4. We shall consider sets Q consisting
of pairs (4, i) for i ∈ {0, 1, 2, 3, 4}. The cases where Q contains both (4, 0) and (4, 4) are trivial,
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because Ramsey’s theorem guarantees that for sufficiently large n we cannot avoid both (4, 0) and
(4, 4). In all remaining cases, the following theorem determines whether h3(n,Q) is polynomial or
polylogarithmic in n.

Theorem 1.4. Let ∅ ≠ S ⊆ {0, 1, 2, 3, 4} and suppose that {0, 4} ̸⊆ S. Set Q = {(4, i) : i ∈ S}.

1. If S = {0}, {1}, {0, 1}, {1, 3} or S := {4 − i : i ∈ S} is one of these four sets, then there are
constants c1, c2 > 0 such that logc1(n) ≤ h3(n,Q) ≤ logc2(n).

2. In all other cases, there is a constant c > 0 such that h3(n,Q) ≥ nc.

We will prove Theorem 1.4 by considering separately each of the cases (up to complementation, see
(2)). Some cases follow from known results, and these are surveyed in Section 1.1. Many cases are
new results, and these are presented in Section 1.2.

1.1 Prior work

In this section we review the cases of Theorem 1.4 that follow from prior work. The problem of
estimating h(n, 4, 0) (or, equivalently, of h(n, 4, 4)) is equivalent to estimating the Ramsey number
R3(4, t). Recall that Rr(s, t) is the minimum n such that every n-vertex r-graph contains a clique
of size s or an independent set of size t. It is known [9] that 2c1t log t ≤ R3(4, t) ≤ 2c2t

2 log t. This
yields positive constants c1 and c2 such that

c1

(
log n

log logn

)1/2

< h3(n, 4, 0) < c2
log n

log logn
.

Similarly, the case Q = {(4, 0), (4, 1)} is equivalent (due to complementation (2)) to estimating the
minimum possible independence number of an n-vertex 3-graph where no 4 vertices span at least 3
edges. This is a well-studied problem in hypergraph Ramsey theory, and an old result of Erdős and
Hajnal [12] gives the bound h3(n, {(4, 0), (4, 1)}) ≥ c1

logn
log logn for some constant c1 > 0. Recently,

Fox and He [16] proved a corresponding upper bound, showing that

h3(n, 4, 1) ≤ h3(n, {(4, 0), (4, 1)}) < c2
log n

log logn
(3)

for a suitable constant c2. It is worth mentioning that the case Q = {(4, 3), (4, 4)} (which is
equivalent to {(4, 0), (4, 1)}) is the first instance of a (different) conjecture of Erdős and Hajnal [12]
about the growth rate of generalized hypergraph Ramsey numbers that correspond to our setting of
h(n,Q), where Q = {(m, f), (m, f +1), . . . , (m,

(
m
r

)
)}. Recent results of Mubayi and Razborov [24]

on this problem determine, for each m > r ≥ 4, the minimum f such that hr(n,Q) < c loga n for
some a and Q = {(m, f), . . . , (m,

(
m
r

)
)}. When r = 3, the minimum f was determined by Conlon,

Fox, and Sudakov [9] for m being a power of 3 and for growing m, as well as some other values.

For the case Q = {(4, 2)}, we have h(n, 4, 2) ≥ nc for a suitable constant c > 0, by Theorem 1.1.

Finally, we discuss two known cases with |Q| = 3. If Q = {(4, 0), (4, 1), (4, 2)}, then a Q-free
3-graph is the same as a partial Steiner system (STS), and it is well known [14, 26, 6] that the
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minimum independence number of an n-vertex partial STS has order of magnitude
√
n log n. Thus

h3(n,Q) has order of magnitude
√
n log n.

If Q = {(4, 1), (4, 2), (4, 3)} and n ≥ 4, then it is a simple exercise to show that any Q-free 4-graph
on at least four vertices is a clique or coclique and therefore h3(n,Q) = n for n ≥ 4.

1.2 New results

In this section we state our new results for the cases not covered in Section 1.1. The results of this
section and Section 1.1 immediately imply Theorem 2. Up to complementation, the missing cases
correspond to the following sets Q of order-size pairs:

• {(4, 1)};

• {(4, 0), (4, 2)}, {(4, 0), (4, 3)}, {(4, 1), (4, 2)}, {(4, 1), (4, 3)}; and

• {(4, 0), (4, 1), (4, 3)}, {(4, 0), (4, 2), (4, 3)}.

For |Q| = 1, 2, we summarize our results in the following table. Here, c1, c2 always denote suitable
positive constants. The table also indicates the section where each result is proved. Note that for
Q = {(4, 1)}, the lower bound is proved in Section 3.1 and the upper bound follows from (3).

Q Lower bound Upper bound Appears in

{(4, 0), (4, 2)} c1
√
n c2

√
n log n Section 4

{(4, 1), (4, 2)} c1n
1/3 log1/3 n c2n

1/3 log4/3 n Section 5

{(4, 0), (4, 3)} c1n
⌈
n
3

⌉
+ 1 Section 3.2

{(4, 1), (4, 3)} c1 log n c2 log n Section 6

{(4, 1)} c1
( logn
log logn

)1/2
c2

logn
log logn Section 3.1 and (3)

Table 1: Bounds for h3(n,Q)

For the two remaining cases with |Q| = 3, we obtain exact results:

Theorem 1.5. Let n ≥ 4. Then h3(n, {(4, 0), (4, 2), (4, 3)}) = n− 1 and

h3(n, {(4, 0), (4, 1), (4, 3)}) =

{
n
2 if n ≡ 0 (mod 6)

⌈n+1
2 ⌉ if n ̸≡ 0 (mod 6).

Theorem 1.5 is proved in Section 7.
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Notation: Throughout the paper, for a hypergraph H, let ω(H) and α(H) denote the size of a
largest clique and independent set in H, respectively. Recall that h(H) = max{ω(H), α(H)}. For
a 3-graph H and one of its vertices v, we define the link graph of v to be the graph L(v) whose
vertex set is V (H) \ {v} and whose edge set is {e ⊆ V (H) \ {v} : e ∪ {v} ∈ E(H)}. Moreover, for
S ⊆ V (H) \ {v}, we use LS(v) to denote the subgraph of L(v) induced by S. A clique on s vertices
is denoted Ks. When denoting edges in 3-graphs, we shall often omit parentheses and commas; for
example, instead of writing {x, y, z}, we shall simply write xyz. A star is a hypergraph consisting
of a set S and a vertex v /∈ S with edge-set {vxy : x, y ∈ S, x ̸= y}. We will denote this star by
(v, S). As usual, we write f(n) = O(g(n)) if there is a constant C > 0 such that f(n) ≤ Cg(n) for
all n, and we write f(n) = Ω(g(n)) to mean that g(n) = O(f(n)).

2 Graphs: Proof of Proposition 1.3

Proof of Proposition 1.3. We show that c = 2/
√
5 suffices. We shall use induction on m with

basis m = 2. In this case f ∈ {0, 1}. Note that h(n, 2, 0) = h(n, 2, 1) = n = n1 = n1/(m−1),
since forbidden graphs are either a non-edge or an edge. Consider an (m, f)-free graph G on n
vertices, m ≥ 3, and assume that the statement of the proposition holds for smaller values of m.
We can also assume that G is not a complete graph or an empty graph. Suppose first that G is
an odd cycle or a complement of an odd cycle. Then α(G) or ω(G) is at least n−1

2 , so it suffices

to check that n−1
2 ≥ cn1/2, as n1/2 ≥ n1/(m−1). And indeed, by squaring, we get the inequality

(n− 1)2 ≥ 4c2n = 16
5 n, and after rearranging we get n2 − 26n

5 +1 ≥ 0, which holds for every n ≥ 5.

So from now on, suppose that G is neither an odd cycle nor the complement of an odd cycle. Let
∆ and ∆ be the maximum degree of G and of the complement G of G, respectively. Using Brooks’
theorem, the chromatic number of G and of G is at most ∆ and ∆, respectively. Thus, α(G) ≥ n/∆
and ω(G) ≥ n/∆. Therefore, we can assume that ∆ ≥ n(m−2)/(m−1) and ∆ ≥ n(m−2)/(m−1),
otherwise we are done. Thus, there is a vertex with at least n(m−2)/(m−1) edges incident to it and
there is a vertex with at least n(m−2)/(m−1) non-edges incident to it.

Assume first that f ≤ m−2. Then f ≤
(
m−1
2

)
. Take v ∈ V (G) with at least n(m−2)/(m−1) non-edges

incident to it, i.e., with a set X of vertices each non-adjacent to v, |X| ≥ n(m−2)/(m−1). Since G is
(m, f)-free, G[X] is (m−1, f)-free. Thus, by induction, h(G) ≥ h(G[X]) ≥ c|X|1/(m−2) ≥ cn1/(m−1).

Now assume that f ≥ m − 1. Consider a vertex v with at least n(m−2)/(m−1) edges incident to it,
i.e., with a set X of vertices each adjacent to v, |X| ≥ n(m−2)/(m−1). Since G is (m, f)-free, G[X]
is (m− 1, f − (m− 1))-free. Thus, by induction, h(G) ≥ h(G[X]) ≥ c|X|1/(m−2) ≥ cn1/(m−1).

3 Two Short Proofs

3.1 Q = {(4, 1)}

To prove the lower bound on h(n, 4, 1) from Table 1, we shall consider the complementary setting
and an arbitrary n-vertex (4, 3)-free 3-graph H. We need the following theorem of Fox and He [16].
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Theorem 3.1 (Fox and He [16], Thm. 1.4). For all t, s ≥ 3, any 3-graph on more than (2t)st

vertices contains either a coclique on t vertices or a star (v, S) with |S| = s.

Proposition 3.2. h(n, 4, 3) ≥ c
(

logn
log logn

)1/2
for a constant c > 0.

Proof. We shall apply Theorem 3.1 with the largest possible t = s such that (2t)st < n. In this
case t = s ≥ c(log n/ log log n)1/2. If H has a coclique of size t, then h(H) ≥ t and we are done.
Otherwise H contains a star (v, S) with |S| = s. Note that S induces a clique in H, because
otherwise v and three vertices of S not inducing an edge give a (4, 3)-subgraph. Thus, h(H) ≥ s.
In each case h(H) ≥ c(log n/ log logn)1/2.

3.2 Q = {(4, 0), (4, 3)}

Let us restate our result from Table 1:

Proposition 3.3. Ω(n) ≤ h3(n, {(4, 0), (4, 3)}) ≤
⌈
n
3

⌉
+ 1.

Proof. Let H be a {(4, 0), (4, 3)}-free 3-graph. We may assume that e(H) = Ω(n3), else H is not
(4, 0)-free. (Indeed, if e(H) = o(n3), then the probability that a random set of 4 vertices contains
an edge is o(1), so H contains a (4, 0)-subgraph.) Fix v ∈ V (H) with e(L(v)) = Ω(n2). Note that
L(v) is induced C4-free. Indeed, if C is an induced C4 in L(v), then for each A ⊆ V (C), |A| = 3, it
holds that A /∈ E(H), because else A ∪ {v} spans exactly 3 edges. This means that V (C) spans 0
edges, a contradiction. By a result of Gyárfás, Hubenko and Solymosi [21], an n-vertex graph with
Ω(n2) edges and no induced C4 contains a clique of size Ω(n). So L(v) contains a clique X of size
Ω(n). For each A ⊆ X, |A| = 3, we have A ∈ E(H) because else A∪ {v} spans exactly 3 edges. So
X is a clique in H, implying ω(H) = Ω(n). This proves the lower bound in the proposition.

For the upper bound, let H be a 3-graph on n vertices with vertex set A ∪ B ∪ C, where A,B,
and C are pairwise disjoint sets of almost equal sizes. Let E(H) = {abc : a ∈ A, b ∈ B, c ∈
C} ∪ {abb′ : a ∈ A, b, b′ ∈ B} ∪ {bcc′ : b ∈ B, c, c′ ∈ C} ∪ {caa′ : c ∈ C, a, a′ ∈ A}. We see that H
is {(4, 1), (4, 4)}-free, α(H) ≤ ⌈n/3⌉+1, and ω(H) = 3. Using complementation gives the required
upper bound.

4 Q = {(4, 0), (4, 2)}

It will be convenient to consider Q = {(4, 2), (4, 4)} (which is equivalent to {(4, 0), (4, 2)} via
complementation). Let us restate our result from Table 1:

Theorem 4.1. Ω(
√
n) ≤ h3(n, {(4, 2), (4, 4)}) ≤ O(

√
n log n).

To lower-bound h3(n, {(4, 2), (4, 4)}), we prove the following characterization of {(4, 2), (4, 4)}-free
3-graphs. A tight component is a maximal (with respect to inclusion) set of edges C such that for any
distinct e1, e2 ∈ C, there is a tight walk from e1 to e2, i.e. a sequence of edges e1 = f1, . . . , fk = e2
with |fi ∩ fi+1| = 2. We call a tight component a star if it is an edge-set of a star.
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Theorem 4.2. A 3-graph H is {(4, 2), (4, 4)}-free if and only if every tight component is a star.

Proof. Suppose first that every tight component of H is a star. If H contains 4 vertices spanning
exactly 2 or 4 edges, then the edges on these vertices are in the same tight component, but a star
does not contain 4 vertices spanning exactly 2 or 4 edges, a contradiction. So H is {(4, 2), (4, 4)}-
free.

We now prove the other direction. Let H be a {(4, 2), (4, 4)}-free 3-graph. Observe that for every
star (v, S) in H, the set S is independent, because otherwise H would not be (4, 4)-free.

Claim 4.3. Let (v, S) be a star in H with |S| ≥ 3. There is no edge in H of the form uxy with
u /∈ {v} ∪ S and x, y ∈ S.

Proof. Suppose otherwise. The vertices {v, u, x, y} must span exactly 3 edges, because vxy, uxy ∈
E(H) but {v, u, x, y} cannot span 2 or 4 edges. Without loss of generality, suppose that vux ∈
E(H), vuy /∈ E(H). Let z ∈ S \{x, y}. Suppose first that vuz ∈ E(H). Then uyz ∈ E(H) because
otherwise {v, u, y, z} spans 2 edges. This implies that uxz ∈ E(H), because else {u, x, y, z} spans
2 edges. Now {v, u, x, z} spans 4 edges, contradiction. Similarly, suppose that vuz /∈ E(H). Then
uyz /∈ E(H) because else {v, u, y, z} spans 2 edges. This implies that uxz /∈ E(H), because else
{u, x, y, z} spans 2 edges. Now, {v, u, x, z} spans 2 edges, contradiction.

Now we complete the proof of the theorem. Let C be a tight component of H, and let us show
that C is a star. If |C| = 1 (i.e. C contains only one edge) then this is immediate, so suppose
that C contains at least 2 edges. Let e, f ∈ C with |e ∩ f | = 2. Write e = uvx, f = uvy. Then
exactly one of the triples vxy, uxy is an edge, say vxy ∈ E(H). So C contains the edges of the
star (v, {u, x, y}). Let S be a maximal subset of V (H) \ {v} such that C contains the edges of
the star (v, S), so |S| ≥ 3. We claim that C contains no other edges. Suppose otherwise. Recall
that S induces no edges. So there must be an edge e ∈ C which contains one vertex w outside
{v} ∪ S and two vertices s, t in {v} ∪ S. By Claim 4.3, it is impossible that s, t ∈ S. So suppose
that s = v, t ∈ S. Fix an arbitrary z ∈ S \ {t}. We have vzt ∈ E(H). Also, vwt ∈ E(H) (because
s = v). By Claim 4.3, wzt /∈ E(H), which implies that vwz ∈ E(H) as otherwise {v, w, t, z} spans
exactly two edges. As this holds for every z ∈ S, we get that (v, S ∪ {w}) is a star contained in C,
contradicting the maximality of S.

In what follows, for a tight component C that is a star, we denote by V (C) the vertex set of the
respective graph and e(C) = |C|, the number of edges in C.

Lemma 4.4. Let C1, C2 be distinct tight components of a {(4, 2), (4, 4)}-free 3-graph. Then |V (C1)∩
V (C2)| ≤ 1.

Proof. Suppose by contradiction that there are distinct x, y ∈ V (C1)∩ V (C2). Note that in a star,
every pair of vertices is contained in some edge of the star. Let ei be an edge of Ci containing x, y,
i = 1, 2. Then there is a tight walk between every edge of C1 and every edge of C2 by using the
connection e1, e2. It follows that C1, C2 are in the same tight component, a contradiction.
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Next, we prove a tight bound for the number of edges in a {(4, 2), (4, 4)}-free 3-graph. The extremal
case is when H is a star.

Proposition 4.5. For a {(4, 2), (4, 4)}-free n-vertex 3-graph H, it holds that e(H) ≤
(
n−1
2

)
.

Proof. Let C1, . . . , Cm be the tight connected components of H. Each edge is contained in a
unique Ci, and e(Ci) =

(|V (Ci)|−1
2

)
because Ci is a star. Therefore, e(H) =

∑m
i=1

(|V (Ci)|−1
2

)
. Also,∑m

i=1

(|V (Ci)|
2

)
≤

(
n
2

)
, because each pair of vertices is contained in at most one V (Ci), by Lemma

4.4. Let f be the function f(x) = x − 1
2

√
8x+ 1 + 1

2 , so that f(
(
k
2

)
) =

(
k−1
2

)
. Put xi =

(|V (Ci)|
2

)
,

so that f(xi) =
(|V (Ci)|−1

2

)
. We have

∑m
i=1 xi ≤

(
n
2

)
. The function f is convex on [0,∞), so∑m

i=1 f(xi) is maximized when exactly one of the xi’s, say x1, is non-zero. As x1 ≤
(
n
2

)
, we have

e(H) =
∑m

i=1 f(xi) ≤ f(
(
n
2

)
) =

(
n−1
2

)
.

Proof of Theorem 4.1. The upper bound in the theorem follows from the fact that every linear
3-graph is {(4, 2), (4, 4)}-free (this follows e.g. from Theorem 4.2, because every tight component
of a linear hypergraph has size 1), and the well-known result that there exist linear 3-graphs with
independence number O(

√
n log n) (which is tight), see [14, 26, 6].

The lower bound in the theorem follows from Proposition 4.5 and the known fact that every n-

vertex 3-graph H has an independent set of size min
{

n
2 ,

cn3/2

e(H)1/2

}
. (To see this, take a random

subset X ⊆ V (H) by keeping each vertex with probability p = cn1/2

e(H)1/2
, and delete one vertex from

each edge inside X.)

5 Q = {(4, 1), (4, 2)}

Here we consider Q = {(4, 1), (4, 2)}. By complementation, we may equivalently consider Q =
{(4, 2), (4, 3)}. Let us restate our result from Table 1.

Theorem 5.1. Ω(n1/3 log1/3 n) ≤ h3(n, {(4, 2), (4, 3)}) ≤ O(n1/3 log4/3).

For the lower bound in Theorem 5.1, we need the following result of Kostochka, Mubayi, and
Verstraëte [23] on independent sets in sparse hypergraphs.

Theorem 5.2 (Kostochka, Mubayi, and Verstraëte [23]). Suppose that H is an n-vertex 3-graph
in which every pair of vertices lies in at most d edges, where 0 < d < n/(log n)27. Then H has an
independent set of size at least c

√
(n/d) log(n/d) where c is an absolute constant.

Proof of the lower bound in Theorem 5.1. Let H be an n-vertex {(4, 2), (4, 3)}-free 3-graph, where
n is sufficiently large. Let u, v be a pair of vertices in H whose common neighborhood S has
maximum size d > 0. Given vertices x, y ∈ S, the edges xyu and xyv are both in H, else {u, v, x, y}
induces a (4, 2)- or (4, 3)-graph. Next, any three vertices x, y, z ∈ S must form an edge of H,
otherwise {u, x, y, z} induces a (4, 3)-graph. Therefore S induces a clique in H of size d. If d > n0.4,
say, then we are done as h(H) ≥ d. Recalling that n is large enough, we may assume that
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d ≤ n0.4 < n/(log n)27. Now Theorem 5.2 yields a coclique in H of size at least c
√
(n/d) log n for

some positive constant c. Consequently, there is a constant c′ such that

h(H) ≥ max {d, c
√

(n/d) log n} > c′ (n log n)1/3.

Replacing c′ by a possibly smaller constant c1 yields the result for all n > 4.

In the rest of this section, we prove the upper bound in Theorem 5.1. We begin with the following
two lemmas, giving a structural characterization of {(4, 2), (4, 3)}-free 3-graphs and rephrasing the
problem of estimating h3(n, {(4, 2), (4, 3)}) in terms of a certain extremal problem for (non-uniform)
linear hypergraphs.

Lemma 5.3. Let H be a {(4, 2), (4, 3)}-free 3-graph. Then every two maximal cliques in H intersect
in at most one vertex.

Proof. Let X,Y be maximal cliques and suppose that |X∩Y | ≥ 2. Fix u, v ∈ X∩Y and y ∈ Y \X.
Note that uvy ∈ E(H). For every x ∈ X \ {u, v}, we have uvx ∈ E(H), so we must have
uxy, vxy ∈ E(H), because else {u, v, x, y} spans 2 or 3 edges. Next, for every x1, x2 ∈ X \ {u}, we
have ux1y, ux2y ∈ E(H), so we must also have x1x2y ∈ E(H). It follows that X ∪ {y} is a clique,
in contradiction to the maximality of X.

For a (not necessarily uniform) hypergraph H, let α2(H) be the maximum size of a set I ⊆ V (H)
such that |I ∩ e| ≤ 2 for every e ∈ E(H). Denote g(H) = max

(
maxe∈E(H) |e|, α2(H)

)
. Denote by

g(n) the minimum of g(H) over all linear (not necessarily uniform) hypergraphs with n vertices.

Lemma 5.4. h3(n, {(4, 2), (4, 3)}) = g(n).

Proof. Let H be an n-vertex Q-free 3-graph with h(H) = h(n,Q), where Q = {(4, 2), (4, 3)}. Let
H be the hypergraph on V (H) whose edges are the maximal cliques of H. Then H is linear by the
previous lemma. Also, maxe∈E(H) |e| = ω(H), and α2(H) = α(H), so h(H) = g(H).

In the other direction, let H be an n-vertex linear hypergraph with g(H) = g(n). Let H be the
3-graph obtained by making each e ∈ E(H) a clique. Then h(H) = g(H), and it is easy to check
that H is {(4, 2), (4, 3)}-free.

From now on, our goal is to upper-bound g(n). As we will shortly show, the problem can be
translated to a problem about C4-free bipartite graphs. We prove the following.

Theorem 5.5. For some positive constant C and every large m, there is a C4-free bipartite graph
G = (X,Y,E) with |X| ≥ 1

2m
3/4 log2m and |Y | = (1 + o(1))m, such that the following holds:

1. d(y) ≤ 2m1/4 log2m for every y ∈ Y .

2. For every set X ′ ⊆ X of size at least Cm1/4 log2m, there is y ∈ Y with |N(y) ∩X ′| ≥ 3.

9



Proof of the upper bound in Theorem 5.1. By Lemma 5.4, it is enough to show that g(n) =
O(n1/3 log4/3 n). Let G = (X,Y,E) be the graph given by Theorem 5.5. Put n = |X| =
Ω(m3/4 log2m). Let H be the hypergraph whose edges are the sets NG(y) ⊆ X, y ∈ Y . Then
H is linear because G is C4-free. Also maxe∈E(H) |e| = O(m1/4 log2m) = O(n1/3 log4/3 n) by Item 1

of Theorem 5.5. Finally, α2(H) = O(m1/4 log2m) = O(n1/3 log4/3 n) by Item 2 of Theorem 5.5.

5.1 Proof of Theorem 5.5

Let H be the incidence graph of a finite projective plane with n = (1 + o(1))m points and lines;
that is, H is a bipartite C4-free graph with sides X0, Y of size n, and every pair of vertices in X0

have exactly one common neighbour in Y. Let X be a random subset of X0 obtained by including
every vertex independently with probability p = n−1/4 log2 n. Let G = H[X,Y ]. Clearly, with high
probability |X| ≥ 3

4pn ≥ 1
2pm ≥ 1

2m
3/4 log2m. Also, we have dH(y) = (1+o(1))

√
n for every y ∈ Y ,

and it is easy to show, using the Chernoff bound, that w.h.p. d(y) ≤ 2
√
np = 2n1/4 log2 n for every

y ∈ Y . So it remains to show that w.h.p., G satisfies Item 2. To this end, we use the container
method. Let I be the set of all subsets I ⊆ X0 of size Cn1/4 log2 n such that |N(y) ∩ I| ≤ 2 for
every y ∈ Y. We want to show that with high probability X contains no set in I. We will prove the
following claim.

Claim 5.6. There is a positive constant C0, a set S ⊆
( X0

C0n1/4 logn

)
and a function f : S →

( X0

≤C0
√
n

)
such that for every I ∈ I, there exists S = S(I) ∈ S satisfying S ⊆ I ⊆ f(S).

Let us first complete the proof given Claim 5.6. Fix an arbitrary S ∈ S. Note that |X∩f(S)| is dis-
tributed as Bin(|f(S)|, p). We have P[Bin(N, p) ≥ k] ≤

(
N
k

)
pk ≤ ( eNp

k )k. So for k = Cn1/4 log2 n ≥
C
C0

· p|f(S)|, we have (assuming C ≫ C0),

P
[
|X ∩ f(S)| ≥ Cn1/4 log2 n

]
≤ exp

(
−Cn1/4 log2 n

)
. (4)

Taking the union bound over all S ∈ S, of which there are at most
(

n
C0n1/4 logn

)
≤ exp(2C0n

1/4 log2 n),

it follows that with high probability, |X ∩ f(S)| < Cn1/4 log2 n holds for every S ∈ S. Recall
that for every I ∈ I there is S ∈ S such that I ⊆ f(S(I)). Hence, for every I ∈ I, we have
|I ∩X| < Cn1/4 log2 n ≤ |I|, which implies I ̸⊆ X, as required.

Proof of Claim 5.6. We present an algorithm which, given I, produces sets S(I) ⊆ I and f(S) ⊇ I.
The algorithm maintains sets At, St. Initially, we set A0 = X0, S

0 = ∅. The algorithm runs for
q = C0n

1/4 log n steps t = 0, . . . , q−1 and in step t, obtains an index it, to be defined later, and new
sets At+1, St+1. Recall that for any I ∈ I, we have |I| = Cn1/4 log2 n > q. Throughout the algorithm
we will have |St| = t, St ⊆ I ⊆ St ∪At and St ∩At = ∅. Now, suppose we are at step t. We define a
graph F t with V (F t) = At and where aa′ ∈ E(F t) if and only if there exist s ∈ St and y ∈ Y such
that a, a′, s ∈ N(y). Note that F t only depends on At, St, but not on I. Let at1, a

t
2, . . . , a

t
|At| be an

ordering of At such that for all i, ati is a vertex of maximum degree in F t[{ati, ati+1, . . . , a
t
|At|}], with

ties broken according to some fixed ordering of X0. Let i
t be the minimum index i such that ati ∈ I.

We let St+1 = St ∪ {atit} and At+1 = At \ ({at1, . . . , atit} ∪ NF t(ait)). Note that it is well-defined
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since we have |St| < q < |I| and I ⊆ St ∪ At (which we will soon prove). After q steps, we let
S(I) = Sq and f(Sq) = Sq ∪Aq. We denote S = {S(I) | I ∈ I}.

Clearly, we have St ⊆ I, St ∩ At = ∅ for any t ∈ {0, . . . q} and St+1 ∪ At+1 ⊆ St ∪ At for any
t ∈ {0, . . . , q − 1}. Let us also verify that I ⊆ St ∪ At throughout, which clearly implies that
I ⊆ f(S(I)). Indeed, suppose that I ⊆ St ∪ At at some step of the algorithm, let at1, . . . , a

t
|At| be

the ordering of At as described in the algorithm, and let i = it be the index chosen in the algorithm,
i.e. such that ati ∈ I and at1, . . . , a

t
i−1 /∈ I. Consider a neighbour v of ati in F t. By definition, there

exist s ∈ St ⊆ I and y ∈ Y such that s, ati, v ∈ N(y). Then, since I ∈ I and s, ati ∈ I, it follows
that v ̸∈ I. Hence, I ⊆ At+1 ∪ St+1.

Let us now prove that f(S) is indeed uniquely determined by S. In the following, we will denote
by St(I), At(I) the relevant St, At when the input of the algorithm is I, and similarly denote by
it(I) the relevant index it. Fix I, I ′ ∈ I such that S(I) = S(I ′). We show that St(I) = St(I ′)
and At(I) = At(I ′) for all t ∈ {0, . . . , q}. This clearly holds for t = 0. Suppose that this holds
for some t, and let us prove this for t + 1. Denote St = St(I) = St(I ′), At = At(I) = At(I ′) and
F t = F t(I) = F t(I ′), where the last equality holds since F t(J) is uniquely determined by St(J) and
At(J). Let at1, . . . , a

t
|At| be the ordering of At = V (F t) as above. Denote i = it(I) and i′ = it(I ′).

If i = i′, then it follows that St+1(I) = St+1(I ′) and from the definition of the algorithm, also
At+1(I) = At+1(I ′), as required. So let us assume without loss of generality that i < i′. Then,
ati ∈ St+1(I) ⊆ S(I). On the other hand, by definition of i′, we have ati ̸∈ I ′ which, using that
S(I ′) ⊆ I ′, implies ati ̸∈ S(I ′). Hence, S(I) ̸= S(I ′), contradicting our assumption.

Finally, we need to show that |f(S)| ≤ C0
√
n for every S ∈ S. We will prove the following claim.

Claim 5.7. Suppose that t ≥ 2n1/4 and |At| ≥ 10
√
n. Then |At+1| ≤ (1− n−1/4)|At|.

Let us finish the proof given Claim 5.7. Fix any I ∈ I and S = S(I), and suppose for the sake of
contradiction that |f(S)| = |S ∪Aq(I)| ≥ 11

√
n. As |S| = q ≪

√
n, we must have |Aq(I)| ≥ 10

√
n.

Then, by Claim 5.7, for any t ∈ [2n1/4, q − 1], we have |At+1| ≤ (1− n−1/4)|At|, which implies

|Aq| ≤ n ·
(
1− n−1/4

)q−2n1/4

< n · e−n−1/4·(q/2) ≤ n · e− logn = 1,

a contradiction.

Proof of Claim 5.7. Let St, At, F t, at1, . . . , a
t
|At| and it be as given in the algorithm. For 1 ≤ j ≤ |At|,

denote Fj = F t[{atj , . . . , at|At|}]. It is enough to prove that ∆(Fj) ≥ |V (Fj)|/n1/4 for every j ≤
|At|/2. Indeed, then if it ≤ |At|/2, we obtain |At+1| ≤ |At|− it−∆(Fit) ≤ |At|− it−|V (Fit)|/n1/4 =
|At| − it − (|At| − it + 1)/n1/4 ≤ (1− n−1/4)|At|, and if it ≥ |At|/2, then |At+1| ≤ |At|/2.

Consider a fixed 1 ≤ j ≤ |At|/2. Denote A′ = {aj , . . . , a|At|} = V (Fj). We need to show that

∆(Fj) ≥ |A′|/n1/4. Fix any s ∈ St. Then, for every y ∈ NH(s) and distinct a, a′ ∈ A′ ∩ NH(y),
we have aa′ ∈ E(Fj). Note that the sets (NH(y) \ {s})y∈NH(St) partition X0 \ {s}, since every two
vertices in X0 have exactly one common neighbour in H. The number of pairs (y, {a, a′}) with
a, a′ ∈ A′ and a, a′, s ∈ NH(y) is∑

y∈NH(s)

(
|A′ ∩NH(y)|

2

)
≥ |NH(s)| ·

(
|A′|/|NH(s)|

2

)
≥ |A′|2

4
√
n
,
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where we used Jensen’s inequality for the convex function
(
x
2

)
, the fact that NH(s) = (1+o(1))

√
n,

and the assumption that |A′| ≥ |At|/2 ≥ 5
√
n. Hence, every s ∈ St contributes at least |A′|2

4
√
n

edges to Fj . Finally, we prove that for every aa′ ∈ E(Fj), there are unique s ∈ St, y ∈ Y such that
s, a, a′ ∈ NH(y). Indeed, recall that every pair of vertices in X0 have a unique common neighbour in
Y. Hence, given a, a′, the vertex y ∈ Y is uniquely determined. But then, the vertex s ∈ St∩NH(y)
is also uniquely determined. Indeed, suppose there are two distinct s, s′ ∈ St∩NH(y). Without loss
of generality, there is an index t0 such that {s} = St0 \ St0−1 and s′ ∈ St0−1. Then, by definition,
sa ∈ E(F t0−1), so a ̸∈ St0 ∪At0 ⊇ At, a contradiction.

Therefore, we have e(Fj) ≥ |St|· |A
′|2

4
√
n
≥ |A′|2

2n1/4 , which implies that ∆(Fj) ≥ |A′|/n1/4 as required.

This concludes the proof of Claim 5.6 and hence the theorem.

6 Q = {(4, 1), (4, 3)}

Here we prove that h3(n, {(4, 1), (4, 3)}) = Θ(log n). We note that {(4, 1), (4, 3)}-free 3-graphs are
also known as two-graphs (not to be confused with 2-graphs, which are just graphs), and have been
thoroughly studied in algebraic combinatorics due to their connection to sets of equiangular lines,
see e.g. [22, Chapter 11]. Every two-graph H arises from some graph G by taking x, y, z ∈ V (G)
to be an edge of H if and only if {x, y, z} induces an odd number of edges in G. This will be used
in the proof. We start with the following lemma.

Lemma 6.1. There is a constant C > 0 such that for every n, there is an n-vertex graph in which
every set of size C log n contains a triangle and a coclique of size 3.

Proof. Take G ∼ G(n, 1/2). Fix any U ⊆ V (G), |U | = k := C log n. It is well-known that there is
a partial Steiner system on U with m = (16 − o(1))k2 ≥ k2/7 triples, T1, . . . , Tm. The probability

that no Ti is a triangle in G is (7/8)m ≤ (7/8)k
2/7 = (7/8)

1
7
C2 log2 n. Taking the union bound over

all
(

n
C logn

)
≤ eC log2 n choices for U , and assuming that C is large enough, we get that with high

probability, every set of size C log n contains a triangle. By the same argument, w.h.p. every such
set contains a coclique of size 3.

Theorem 6.2. h3(n, {(4, 1), (4, 3)}) = Θ(log n).

Proof. For the lower bound, let H be an n-vertex {(4, 1), (4, 3)}-free 3-graph. Pick a vertex v in
H and consider its link graph L(v). Since R2(t, t) < 4t−1 (see Erdős and Szekeres [15]), we see
that L(v) has a clique or coclique K of size at least 1

2 log n. In the first case, K is a clique in H,
else we find a (4, 3)-subgraph in H; and in the second case, K is a coclique in H, else we find a
(4, 1)-subgraph in H.

For the upper bound, let G be the graph from Lemma 6.1. Let H be the 3-graph on vertex set
V (G) whose edge set consists of all triples of vertices x, y, z which induce an odd number of edges
in G. Lemma 6.1 guarantees that every set of C log n vertices contains both an edge and a non-
edge of H. Hence, h(H) ≤ C log n. Let us show that H is Q-free, Q = {(4, 1), (4, 3)}. Fix any
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X ⊆ V (G) = V (H), |X| = 4. For each A ⊆ X, |A| = 3, we have A ∈ E(H) if and only if eG(A)
is odd, where eG(A) is the number of edges spanned by A in G. Note that each edge of G[X] is
contained in exactly two sets A ⊆ X, |A| = 3. Hence,

∑
A⊆X,|A|=3 eG(A) = 2eG(X). The right-hand

side is even, so there is an even number of A with eG(A) odd. It follows that every four vertices in
H induce an even number of edges. So H is Q-free.

7 Forbidden sets of size 3: Proof of Theorem 1.5

We will need the following structural characterization ofQ-free 3-graphs forQ = {(4, 1), (4, 3), (4, 4)}.

Theorem 7.1 (Frankl and Füredi [18]). Let H be an {(4, 1), (4, 3), (4, 4)})-free 3-graph. Then H
is isomorphic to one of the following 3-graphs:

1. A blow-up of the 6 vertex 3-graph H ′ with vertex set V (H ′) = [6] and edge set E(H ′) =
{123, 124, 345, 346, 561, 562, 135, 146, 236, 245}. Here for the blow-up we replace every vertex
of H ′ by an independent set, and whenever we have 3 vertices from three distinct of those
sets, they induce an edge if and only if the corresponding vertices in H ′ do.

2. The 3-graph whose vertices are the points of a regular n-gon where 3 vertices span an edge if
and only if the corresponding points span a triangle whose interior contains the center of the
n-gon.

Proof of Theorem 1.5.

Case Q = {(4, 1), (4, 3), (4, 4)}.
We are to prove that

h(n, {(4, 0), (4, 1), (4, 3)}) = h(n,Q) =

{
n
2 if n ≡ 0 (mod 6)

⌈n+1
2 ⌉ if n ̸≡ 0 (mod 6).

First, let us prove that the second 3-graph H in Theorem 7.1 has independence number exactly
⌈(n+ 1)/2)⌉. Assume the vertex set is [n] and the vertices are labeled by consecutive integers in
clockwise orientation. The lower bound is by taking ⌈(n+ 1)/2)⌉ consecutive vertices on the n-gon
and noting that no three of them contain the center in their interior. For the upper bound, let us see
how many vertices can lie in an independent set containing 1. When n is odd, the triangle formed
by {1, i, (n−1)/2+i} contains the center and hence is an edge. Therefore we may pair the elements
of [n] \ {1} as (2, (n + 3)/2), (3, (n + 5)/2), . . . , ((n + 1)/2, n) and note that each pair can have at
most one vertex in an independent set containing 1. Hence the maximum size of an independent set
containing 1 is at most (n+1)/2 and by vertex transitivity of H, the independence number of H is
at most (n+1)/2. For n even we consider the n/2−1 pairs (2, n/2+1), (3, n/2+2), . . . , (n/2, n−1)
and add the vertex n to get an upper bound n/2 + 1 = ⌈(n+ 1)/2)⌉.

Next we observe that the 6-vertex 3-graph H ′ in Theorem 7.1 has independence number exactly
3 (we omit the short case analysis needed for the proof). Hence if we blow-up each vertex of H ′

into sets of the same size, then we obtain n-vertex 3-graphs with independence number exactly n/2
whenever n ≡ 0 (mod 6). This concludes the proof of the upper bound.
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For the lower bound, let H be Q-free. Then by Theorem 7.1, H is isomorphic to one of the two
graphs described in Theorem 7.1. If H is isomorphic to the second graph, then we have already
shown that its independence number is at least (n + 1)/2, so assume that H is isomorphic to the
blow-up of the 6-vertex 10-edge 3-graph H ′. There are 10 non-edges in H ′. Let V1, . . . , V6 be the
blown up vertex sets. Since every vertex i ∈ [6] in H ′ is contained in exactly 5 non-edges, we obtain

5n = 5
∑
i∈[6]

|Vi| =
∑

j1j2j3 ̸∈E(H)

|Vj1 |+ |Vj2 |+ |Vj3 |.

By the pigeonhole principle, there is a non-edge i1i2i3, such that |Vi1 |+|Vi2 |+|Vi3 | ≥ n/2. Our bound
follows by observing that for any non-edge i1i2i3 in the original 3-graph H ′ the set Vi1 ∪Vi2 ∪Vi3 is
an independent set. This gives an independent set of size at least n/2, and if n ̸≡ 0 (mod 6), then
equality cannot hold throughout (a short case analysis, which we omit, is needed to prove this) and
we obtain an independent set of size strictly greater than n/2 as required.

Case Q = {(4, 0), (4, 2), (4, 3)}.
We now prove h(n, {(4, 0), (4, 2), (4, 3)}) = n− 1, for n ≥ 4. Let H be a 3-graph that is a clique on
n− 1 vertices and a single isolated vertex, then H is Q-free, giving us the upper bound.

For the lower bound, let H be a Q-free 3-graph on n vertices, n ≥ 4. Assume that H is not a
clique. We shall show that H is a clique and a single isolated vertex. Consider a maximal clique
S in H. Since |S| < n, there is a vertex v ∈ V (H) \ S. From the maximality of S, LS(v) is not
a clique. If LS(v) contains an edge, then we have that for some vertices x, y, y′, xy ∈ E(LS(v))
and xy′ ̸∈ E(LS(v)). But then {v, x, y, y′} induces a (4, 2) or a (4, 3)-graph, a contradiction. Thus,
LS(v) is an empty graph, i.e., there is no edge in H containing v and two vertices of S. Now assume
there exists a second vertex v′ ∈ V (H) \ (S ∪{v}). Then by the same argument as above, v′ is also
not contained in any edge with two vertices from S. Consider triples vv′x, x ∈ S. Since |S| ≥ 3,
by the pigeonhole principle there are two vertices x, x′ ∈ S such that either vv′x, vv′x′ ∈ E(H) or
vv′x, vv′x′ ̸∈ E(H). Then {v, v′, x, x′} induces 2 or 0 edges respectively, a contradiction. Thus,
|S| = n− 1 and v is an isolated vertex.

8 Concluding Remarks

• In Section 3.1 we showed that h3(n, 4, 1) ≥ c1(
logn

log logn)
1/2, and from (3) we have h3(n, 4, 1) ≤

c2
logn

log logn (for constants c1, c2). It is unclear if either of these bounds represents the correct
order of magnitude, but the lower bound certainly seems far off.

Problem 8.1. Improve the exponent 1/2 in the lower bound on h3(n, 4, 1).

• In the cases Q = {(4, 0), (4, 2)} and Q = {(4, 1), (4, 2)}, there is a polylogarithmic gap between
our lower and upper bounds in Table 1, and it would be interesting to close the gap. In
particular, it would be interesting to decide whether h(n, {(4, 2), (4, 4)}) = Θ(

√
n log n) (this

is equivalent to Q = {(4, 0), (4, 2)} by complementation). Recall that in a {(4, 2), (4, 4)}-free
3-graph, every tight component is a star (Theorem 4.2). One example of such 3-graphs is
linear 3-graphs, and it is well-known that every n-vertex linear 3-graph has an independent
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set of size Ω(
√
n log n), and that this is tight. Another example is to take a projective plane

and put a star on each line (so that each star has roughly
√
n vertices). It would be interesting

to estimate the smallest possible independence number of such a hypergraph.

• Fix integers m > r. Recall that a set Q of order-size pairs {(m, f1), . . . , (m, ft)} has the
Erdős-Hajnal (EH) property if there exists ϵ = ϵQ such that hr(n,Q) > nϵ. As |Q| grows,
the collection of Q-free r-graphs is more restrictive, and hence hr(n,Q) grows (assuming
that large Q-free r-graphs are not forbidden to exist by Ramsey’s theorem). The case when
hr(n,Q) = Ω(n) was treated by the first author and Balogh [3] when r = 2. A natural
question then is to ask what is the smallest t such that every Q of size t has the EH property.
Call this minimum value EHr(m). Our results for r = 3 show that for m = 4, all Q of size 3
have the EH property, but there are Q of size 2 which do not. Consequently, EH3(4) = 3.

In order to further study EHr(m), we need another definition. Given integers m ≥ r ≥ 3, let
gr(m) be the number of edges in an r-graph on m vertices obtained by first taking a partition
of the m vertices into almost equal parts, then taking all edges that intersect each part, and
then recursing this construction within each part. For example, g3(7) = 13 since we start
with a complete 3-partite 3-graph with part sizes 2, 2, 3 and then add one edge within the
part of size 3. It is known (see, e.g. [24]) that as r grows we have

gr(m) = (1 + o(1))
r!

rr − r

(
m

r

)
.

Note that r!
rr−r approaches 0 as r grows. The second author and Razborov [24] proved that

for all fixed m > r > 3, there are n-vertex r-graphs which are Q-free, Q = {(m, i) : gr(m) <
i ≤

(
m
r

)
}, with h(G) = O(log n). In other words, there exists Q of size

(
m
r

)
− gr(m) which

does not have the EH property. This proves that EHr(m) ≥
(
m
r

)
− gr(m) + 1.

Erdős and Hajnal [12] proved that for all m > r ≥ 3, the set Q = {(m, i) : gr(m) ≤ i ≤
(
m
r

)
}

has the EH property. In other words, they proved that every n-vertex r-graph in which every
set of m vertices spans less than gr(m) edges has an independent set of size at least nϵ, where
ϵ depends only on r and m. This is a particular set Q of size

(
m
r

)
− gr(m) + 1 that has the

EH property, and we speculate that every other set Q of this size also has the EH property.

Problem 8.2. Prove or disprove that for all m > r > 2,

EHr(m) =

(
m

r

)
− gr(m) + 1.

We end by noting that EH3(4) = 3 =
(
4
3

)
− g3(4) + 1.
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