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Abstract

We prove that for every ordered matching H on t vertices, if an ordered n-vertex graph
G is ε-far from being H-free, then G contains poly(ε)nt copies of H. This proves a special
case of a conjecture of Tomon and the first author. We also generalize this statement to
uniform hypergraphs.

1 Introduction

The graph removal lemma is a fundamental result in extremal graph theory, stating that for
every fixed graph H and ε > 0, if an n-vertex graph G is ε-far from being H-free, in the sense
that εn2 edges must be deleted in order to turn G into an H-free graph, then G contains at least
δn|V (H)| copies of H, where δ = δ(H, ε) > 0. This was proved in a seminal work of Ruzsa and
Szemerédi [18]. The removal lemma was subsequently generalized to many other combinatorial
structures, notably induced subgraphs [4], hypergraphs [16, 17, 20] and ordered graphs [3].
Removal lemmas are also closely related to graph property testing in the dense graph model,
where they correspond to testing algorithms with constant query complexity, see the book [15].

A drawback of the known proofs of the removal lemma (and its many generalizations) is that all
such proofs rely on Szemerédi’s regularity lemma [19] or a generalization thereof. This results
in weak quantitative bounds; for example, for the graph removal lemma stated above, the best
known bound [9] is that 1/δ ≤ tower(O(log 1/ε)), where tower(x) is a tower of x exponents.
This situation has led to research on the problem of characterizing the cases where the removal
lemma has polynomial bounds, namely, where δ depends polynomially on ε. By now there are
many works of this type [1, 2, 5, 6, 7, 11, 10, 12, 13, 14].

Here we focus on ordered graphs. In an important work [3], Alon, Ben-Eliezer and Fischer
proved an ordered analogue of the graph removal lemma. They further asked to study cases
where the ordered removal lemma has polynomial bounds. Addressing this question, Tomon
and the first author [14] characterized the ordered graphs H for which the induced H-removal
lemma has polynomial bounds. They also studied the non-induced case, and conjectured that
the (non-induced) H-removal lemma has polynomial bounds if and only if the ordered core of H
is an (ordered) forest. As observed in [14], to prove this conjecture it suffices to show that the
H-removal lemma has polynomial bounds for every ordered forest H. Here we make progress on
this conjecture by proving it for every ordered matching H. We also generalize this to s-uniform
hypergraphs, s ≥ 3. An (ordered) n-vertex s-uniform hypergraph G is said to be ε-far from
being H-free if one has to delete at least εns edges to turn G into an H-free hypergraph. Our
main result is as follows.

Theorem 1. For every t ≥ s ≥ 2, there exists C = C(t) such that the following holds. Let
ε > 0, let H be an ordered s-uniform matching on t vertices, and let G be an ordered s-uniform
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hypergraph on n vertices. If G is ε-far from being H-free, then G contains at least (ε/C)Cnt

copies of H.

Proving removal-type statements for ordered structures tends to be considerably more difficult
than for their unordered counterparts. For example, the proof of the ordered removal lemma
in [3] is substantially more involved than the original proof of the removal lemma in [18]. The
key difficulty is to find copies of H which respect the vertex order. To deal with this difficulty,
our proof uses a novel argument of considering nested partitions of the vertex-set (with each
partition refining the previous one) and “cleaning” the graph with respect to each of these levels.

2 Proof of Theorem 1

Assume G is as in the statement of the theorem, with vertex set [n]. For two subsets A,B ⊆ [n],
we write A < B to mean that A is completely to the left of B. We begin by partitioning1 [n]
into k := 1

ε intervals I1 < · · · < Ik of length εn each, and delete all edges with at least two
vertices inside one of these intervals. Let G0 ⊆ G be the resulting hypergraph. This step deletes
less than

1

ε

(
εn

2

)
·
(
n− 2

s− 2

)
<

ε

2
ns

edges, so G0 is still ε
2 -far from being H-free.

Set γ := ε
4t (recall that t = |V (H)|). For each 1 ≤ ℓ ≤ k, we define t nested partitions of Iℓ as

follows. Set Jℓ,1 = {Iℓ}. For j = 2, . . . , t and for each J ∈ Jℓ,j−1, split J into intervals of length
γ|J | and add these intervals to Jℓ,j . Note that for each 1 ≤ j ≤ t, Jℓ,j forms a partition of Iℓ
into intervals of size γj−1|Iℓ|. Put Jℓ :=

⋃t
j=1 Jℓ,j . For each v ∈ Iℓ and 1 ≤ j ≤ t, it will be

convenient to denote by Jj(v) the interval in Jℓ,j containing v, so that

v ∈ Jt(v) ⊆ Jt−1(v) ⊆ . . . ⊆ J1(v) = Iℓ.

Set β := 2γ = ε
2t . We now perform a sequence of k cleaning steps and define k corresponding

hypergraphs G0 ⊇ G1 · · · ⊇ Gk, where Gℓ is the hypergraph obtained after the ℓth cleaning step
(1 ≤ ℓ ≤ k). At step ℓ we clean with respect to the interval Iℓ, as follows: For every choice of s−1
vertices v1 < v2 < . . . < vs−1 outside of Iℓ, and for every interval J ∈ Jℓ, let Lℓ(v1, v2, . . . vs−1, J)
denote the leftmost β|J | vertices w ∈ J such that {v1, . . . , vs−1, w} ∈ E(Gℓ−1), if there are at
least β|J | such vertices, and else let Lℓ(v1, v2, . . . vs−1, J) be the set of all such vertices w. Delete
all edges {v1, . . . , vs−1, w} ∈ E(Gℓ−1) with w ∈ Lℓ(v1, v2, . . . vs−1, J). The resulting hypergraph
isGℓ. By definition, for every given (s−1)-tuple v1, v2, . . . , vs−1 and for every interval J ∈ Jℓ, this
operation deletes at most β|J | edges of the form {v1, . . . , vs−1, w} with w ∈ J . Since the intervals
in Jℓ,j form a partition of Iℓ (for every 1 ≤ j ≤ t), we delete at most β|Iℓ| edges when considering
these intervals. Summing over 1 ≤ j ≤ t, this gives a total of at most tβ|Iℓ| edge deletions for
each of the less than ns−1 choices of v1, . . . , vs−1. Therefore, e(Gℓ−1) − e(Gℓ) < tβns−1|Iℓ|.
Summing over ℓ = 1, . . . , k, we get that

e(G0)− e(Gk) <
k∑

ℓ=1

tβns−1|Iℓ| = tβns =
ε

2
ns,

using our choice of β. As G0 is ε
2 -far from being H-free, Gk must contain a copy of H. We will

use this fact later on. The key property guaranteed by the cleaning procedure is the following.

Lemma 1. Let 1 ≤ ℓ ≤ k and 1 ≤ m ≤ t, let w1 < · · · < wm be vertices in Iℓ, and let
vi,j ∈ [n] \ Iℓ, where 1 ≤ i ≤ m and 1 ≤ j ≤ s − 1, such that {vi,1, vi,2, . . . vi,s−1, wi} ∈ E(Gℓ)

for every i = 1, . . . ,m. Then there are at least
(
ε
4t

)m(t+1)
nm different m-tuples of vertices

w′
1 < · · · < w′

m in Iℓ, such that {vi,1, vi,2, . . . vi,s−1, w
′
i} ∈ E(Gℓ−1) for every i = 1, . . . ,m.

1Here and throughout the proof, for the sake of simplicity, we omit floor and ceiling signs by assuming that n
is divisible by an appropriate (polynomial) function of ε.
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Proof. Define sets L1, . . . , Lm ⊆ Iℓ as follows:

Li := Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) \ Ji+1(wi)

for 1 ≤ i < m, and
Lm := Lℓ(vm,1, vm,2, . . . , vm,s−1, Jm(wm)).

For every 1 ≤ i ≤ m and w′
i ∈ Li, it holds that {vi,1, vi,2, . . . vi,s−1, w

′
i} ∈ E(Gℓ−1), by the

definition of Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi)).

Claim 1. L1 < · · · < Lm.

Proof. Fix any 1 ≤ i < m, and let us show that Li < Li+1. We begin by proving that
Li < wi, namely, that all vertices of Li are to the left of wi. Indeed, first note that Li ⊆
Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi)). Recall that Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) is a set of leftmost ver-
tices w ∈ Ji(wi) satisfying {vi,1, vi,2, . . . vi,s−1, w} ∈ E(Gℓ−1), and the edges {vi,1, vi,2, . . . vi,s−1, w}
for w ∈ Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) are deleted when obtaining Gℓ from Gℓ−1, while the edge
{vi,1, vi,2, . . . vi,s−1, wi} is still present in Gℓ. This shows that Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) is to
the left of wi, implying that Li < wi.

Next, note that Li is disjoint from Ji+1(wi) by definition. It follows that Li < Ji+1(wi); indeed,
for each w ∈ Li, we have Ji+1(w) ≤ Ji+1(wi) as w < wi, and also Ji+1(w) ̸= Ji+1(wi) because
w /∈ Ji+1(wi), hence w < Ji+1(wi). We conclude that Li < Ji+1(wi) ≤ Ji+1(wi+1), using that
wi < wi+1. As Li+1 ⊆ Ji+1(wi+1), we get that Li < Li+1, as required.

Claim 2. |Li| ≥
(
ε
4t

)t+1
n for all 1 ≤ i ≤ m.

Proof. Recall that for every w ∈ Iℓ, we have

|Jt(w)| = γ|Jt−1(w)| = . . . = γt−1|J1(w)| = γt−1|Iℓ| = γt−1εn >
( ε

4t

)t
n.

Now, observe that |Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi))| ≥ β|Ji(wi)|, because otherwise we would have
deleted all edges of the form {vi,1, vi,2, . . . , vi,s−1, w} with w ∈ Ji(wi) when obtaining Gℓ from
Gℓ−1, but the edge {vi,1, vi,2, . . . , vi,s−1, wi} is still present in Gℓ. Using that |Ji+1(wi)| =

γ|Ji(wi)| = β
2 |Ji(wi)|, we get by the definition of Li that

|Li| ≥ |Lℓ(vi,1, vi,2, . . . , vi,s−1, Ji(wi))| − |Ji+1(wi)| ≥
β

2
|Ji(wi)| ≥

( ε

4t

)t+1
n.

We now complete the proof of Lemma 1. As we saw above, for every 1 ≤ i ≤ m and w′
i ∈ Li, it

holds that {vi,1, vi,2, . . . vi,s−1, w
′
i} ∈ E(Gℓ−1). Thus, the lemma follows from Claims 1 and 2.

Recall that Gk contains a copy of H; denote it Hk. We can now use this initial copy and Lemma
1 to construct the required number of distinct H-copies in G0. This will be done in the following
lemma. For 1 ≤ ℓ ≤ k, let mℓ be the number of vertices of Hk in the interval Iℓ. For convenience,
put δ :=

(
ε
4t

)t+1
.

Lemma 2. For every ℓ = k, . . . , 0, there are at least (δn)mℓ+1+···+mk copies of H in Gℓ which
have mi vertices in Ii for every 1 ≤ i ≤ k, and have the same vertices as Hk in I1 ∪ · · · ∪ Iℓ.
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Proof. The proof is by reverse induction on ℓ. The base case ℓ = k holds trivially, because Hk

is a copy of H in Gk satisfying the required properties, and (δn)0 = 1. For the induction step,
let 0 < ℓ ≤ k. By the induction hypothesis, there is a collection Hℓ of at least (δn)mℓ+1+···+mk

copies of H in Gℓ which have mi vertices in Ii for every 1 ≤ i ≤ k, and have the same vertices
as Hk in I1 ∪ · · · ∪ Iℓ. If mℓ = 0 then there is nothing to prove, so suppose that mℓ ≥ 1. Fix any
Hℓ ∈ Hℓ. Note that every edge of Hℓ touching Iℓ has exactly one vertex in Iℓ, because every
edge of G0 has at most one vertex in each of the intervals I1, . . . , Ik (by the definition of G0).
Namely, every edge e ∈ E(Hℓ) with e ∩ Iℓ ̸= ∅ is of the form {v1, . . . , vs−1, w} with w ∈ Iℓ and
v1, . . . , vs−1 ∈ [n] \ Iℓ. Let w1 < · · · < wmℓ

be the vertices of Hℓ in Iℓ. For each 1 ≤ i ≤ mℓ, let
vi,1, . . . , vi,s−1 ∈ [n] \ Iℓ such that {vi,1, . . . , vi,s−1, wi} ∈ E(Hℓ). By Lemma 1, we can replace
w1, . . . , wmℓ

in (δn)mℓ ways to obtain copies of H in Gℓ−1. Doing this for different Hℓ, H
′
ℓ ∈ Hℓ

gives different copies of H, because Hℓ, H
′
ℓ differ on vertices outside Iℓ (as they both agree with

Hk on Iℓ), and we do not change the vertices of Hℓ, H
′
ℓ which are outside Iℓ. Thus, doing the

above for each Hℓ ∈ Hℓ gives the required (δn)mℓ |Hℓ| ≥ (δn)mℓ+···+mk copies of H in Gℓ−1. This
completes the induction step.

For ℓ = 0, Lemma 2 gives

(δn)m1+···+mk = (δn)t =
( ε

4t

)t(t+1)
nt

copies of H in G0 (and so in G), as required. This proves the theorem.

3 Concluding remarks

We proved that ordered matchings admit a polynomial removal lemma. It would be interesting
to extend this result to other families of ordered forests, such as ordered paths.

Our proof of Theorem 1 shows that one can take C(t) = O(t2). It would be interesting to
improve this to C(t) = O(t). For fixed s and growing t, this would be tight, as shown by the
following proposition:

Proposition 1. Let H be an ordered s-uniform hypergraph with t vertices and m edges, let ε > 0
be small enough, and let n ≥ n0(ε). Then there exists an n-vertex s-uniform ordered hypergraph
G which is ε-far from being H-free but contains only O(ntεm) copies of H.

If H is an ordered matching then e(H) = t
s , so the proposition implies that C(t) ≥ t

s . We give
a proof sketch of the proposition.

Proof sketch of Proposition 1. TakeG ∼ Hs(n, ε) to be the random (binomial) ordered s-uniform
hypergraph; namely, each of the

(
n
s

)
potential edges is included in G with probability ε, inde-

pendently. The expected number of copies of H in G is Θ(ntεm), because there are Θ(nt)
potential copies, and each appears with probability εm. Similarly, a given edge of G appears in
expectation in O(nt−sεm−1) copies of H. Using Azuma’s inequality (see e.g. [8, Chapter 7]),
one can show that w.h.p. every edge appears in O(nt−sεm−1) copies of H, and the total number

of copies of H is Θ(ntεm). Thus, one has to delete Ω
(

ntεm

nt−sεm−1

)
= Ω(εns) edges to destroy all

copies of H, meaning that G is Ω(ε)-far from being H-free.
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