
On the Slice Genus of Twist Knots

Master thesis
Faculty of Science, University of Bern

handed in by

Damian Iltgen

2019

Supervisor

Dr. L. P. Lewark



Contents
0 Introduction 1

I General Knot Theory 6

1 Elements from Classical Knot Theory 7
1.1 Knots in S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Knot Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Knot Complement, Knot Exterior, and Linking Numbers . . . . 12
1.4 Seifert Surfaces, Seifert Pairing, and Seifert Matrices . . . . . . . 14
1.5 Alexander Polynomial . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Knot Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Finite Cyclic Branched Coverings of a Knot . . . . . . . . . . . . 20

2 Slice Knots and Knot Concordance 23
2.1 Slice Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Knot Concordance . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Slice Genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Stable 4-Genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Casson-Gordon Invariants 31
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The Invariant σ(K,χ) . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 The Invariant τ(K,χ) . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Gilmer’s Results about τ(K,χ) . . . . . . . . . . . . . . . . . . . 41

II The Slice Genus of Twist Knots 45

4 The Twist Knots Kn – A First Pass 46
4.1 Definition and General Properties . . . . . . . . . . . . . . . . . . 46
4.2 Genus and Algebraic Sliceness . . . . . . . . . . . . . . . . . . . . 49
4.3 The Double Branched Cover of Twist Knots . . . . . . . . . . . . 51

5 Sliceness of Kn 53
5.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Preliminary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Sliceness of the Connected Sum rKn 61

7 An Upper Bound for gst(Kn) 67
7.1 A Method for Bounding the Slice Genus . . . . . . . . . . . . . . 67
7.2 Constructing the Upper Bound for gst(Kn) . . . . . . . . . . . . 68
7.3 Perspectives on Improving the Bound . . . . . . . . . . . . . . . 71

8 References 74

i



Abstract

The present work deals with the study of the slice genus of the twist
knots Kn. More precisely, we present another proof of Casson and Gor-
don’s famous result that the only slice knots among the twist knots are
the unknot K0 and the Stevedore knot K2, based on the work of Patrick
Gilmer, discuss to what extent the methods used can be applied to find
the order of the twist knots in the knot concordance group C, and pro-
vide an upper bound for the stable 4-genus gst(Kn) which was recently
introduced by Charles Livingston. Moreover, our methods can possibly be
used to derive a lower bound for gst(Kn) as well. In addition, we provide
an overview of classical knot theory, slice knots, knot concordance, and
Casson-Gordon invariants.

0 Introduction
Historical Remarks

Knots have fascinated humanity for a very long time. Tying knots dates
back to prehistoric times, and beside the many practical uses of knots,
their aesthetics and spiritual symbolism has interested mankind ever since.
It is thus not surprising that it was just a matter of time until knots were
studied from a scientific point of view. Indeed, in the 1860’s, Lord Kelvin’s
theory of atoms said that properties of chemical elements are connected
to knottings of atoms, indicating that one might gain insight to chem-
istry by understanding knots. This led P. G. Tait in the 1870’s to the
first attempt of classifying knots up to a small crossing number. While
he was first concentrating on knots up to five or six crossings, his tabula-
tion already included at the beginning of the 20th century, together with
the work of C. N. Little, almost all knots up to ten crossings. Tait con-
sidered two knots as equivalent if one could be deformed into the other,
and he was focusing on having each type of knot once in his tabulation.
However, the problem of deciding whether two knots are equivalent or
not can be remarkably difficult, and back at his time, there was no exact
formalism available for justifying his classification. Tait’s arguments were
reasonable, but they were entirely of empirical nature.

The mathematical study of knots began in the 19th century with Carl
Friedrich Gauss, who developed the linking integral for computing the
linking number of two knots. However, it was not until the early 20th cen-
tury where advances in topology laid the foundations for a proper mathe-
matical treatment of knots. Indeed, the formalism of topology developed
in the early 1900’s by famous mathematicians such as Henri Poincaré or
Felix Hausdorff allowed for precise definitions of the objects arising from
the theory of knots, and it became possible to formulate and prove theo-
rems about them. At this time, deciding whether two knots are equivalent
or not was still one of the main problems, and the introduction of algebraic
methods to topology led to first advances to this problem. Max Dehn, for
example, succeeded in 1914 to prove that the right-handed and left-handed
trefoil are not equivalent, while J. W. Alexander used homology theory
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to derive an invariant of equivalent knots, known as the Alexander poly-
nomial. In 1932, Kurt Reidemeister published the first book about knot
theory, and he presented tools, known as the Reidemeister moves, which
allowed to check the equivalence of two knots by simple modifications in
a two-dimensional illustration (known as a knot diagram) of each indi-
vidual knot. However, the computations involved were too lengthy for
complicated knots in order to be of full benefit. In 1961, Wolfgang Haken
discovered an algorithm that can determine whether or not a knot is non-
trivial, but the complexity in computation restricted the algorithm from
being of general use as well. Thus, the problem of detecting equivalent
knots in useful time was still not fully solved.

The main approach to knots continued to be the study of algebraic
objects associated to the complement of a knot, until William P. Thurston
introduced in the 1970’s hyperbolic geometry to knot theory, bringing new
wind into the subject. Thurston’s advances in hyperbolic geometry led
to the definition of new, powerful knot invariants, and after Vaughan
Jones’ discovery of the Jones polynomial in 1984, knot theory became
an established subject with interest throughout the entire mathematical
community. Contributions from Edward Witten, Maxim Kontsevich, and
others in the 1980’s revealed a deep connection between the theory of
knots and mathematical methods in statistical mechanics and quantum
field theory, showing further the omnipresence of knots in mathematical
and physical science.

Since then, many breakthroughs have been made in knot theory. The
discovery of Khovanov homology and knot Floer homology in the 1990’s
greatly generalize the Jones and Alexander polynomial and serve as a
new source for knot invariants that is investigated and studied up to this
date. At the same time, scientists started to find applications of knot
theory to biology and chemistry, leading to new understandings in knot-
ting phenomena in DNA and other polymers. Although knot theory has
been studied extensively throughout the 20th century, it is still one of
the most active fields of research in post-modern mathematics and bears
many open questions, one of them still being to decide whether or not a
knot is trivial in useful time.

Motivation

There is one method of study that has been common practice in the his-
tory of knot theory: acquiring insight to the general theory by studying
specific families of knots. In the present work, we follow this practice and
study one specific type of knots, the twist knots Kn, which are obtained
by repeatedly twisting a closed loop and linking its ends together (see
Figure 1 below).

Twist knots are considered, next to the torus knots, as the most sim-
ple families of knots and have been studied extensively already in clas-
sical knot theory. However, connections between knot theory and 4-
dimensional topology have been made in the past, and there are still open
questions about the behavior of twist knots in relation to 4-dimensional
topology. Thus, the aim of the present work is to review existing results
and study further the properties of twist knots.
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Figure 1: The twist knots Kn

Our motivating questions arise from the notion of knot concordance;
an equivalence relation on the set of knots in the 3-sphere S3 which turns
them into an abelian group under the operation of connected sum, the
knot concordance group C. More precisely, two knots J1, J2 ⊂ S3 are
called concordant if the connected sum J1# − J∗

2 , where −J∗
2 denotes

the mirror image of J2 with reversed orientation, bounds a properly and
smoothly embedded 2-disk D in the 4-dimensional unit ball B4 ⊂ R4. In
general, a knot K ⊂ S3 that bounds a disk as described above is called
slice. Knot concordance defines a well-defined equivalence relation, and
the associated set of equivalence classes form the aforementioned knot
concordance group C. The identity element is formed by the class of the
unknot, which contains all slice knots.

The knot concordance group was first introduced in 1966 by Fox and
Milnor [14] and has been subject of extensive study ever since. Although
there has been a lot of progress in the study of its structure, some of the
most basic questions about it remain unsolved. For example, it is still an
open problem to fully describe torsion in C. Fox [13] could show that the
figure-eight knot is of order two in C by using the Alexander polynomial,
while Murasugi [41] used the signature of a knot to obstruct sliceness,
showing that the trefoil is of infinite order in C. In general, all that is
known about its structure as an abstract group is that it is countable,
and that it splits off an infinitely generated free summand and an infinite
summand consisting of 2-torsion.

The order of the twist knots Kn in C is difficult to describe. Casson
and Gordon [5, 6] defined in the late 1970’s invariants of knots based on
the Atiyah-Singer G-signature which could be used to prove that the only
slice knots among the twist knots are the unknot K0 and the knot K2,
also known as Stevedore knot, showing that K0 and K2 represent zero in
C. Furthermore, Livingston and Naik [36] could show that if 4n+1 = pm,
where p is a prime congruent to 3 mod 4 and gcd(p,m) = 1, then Kn

is of infinite order in C. Recent results [23] have shown that all twist
knots are of infinite order in C. However, the methods used are based
on sophisticated tools such as Heegaard Floer homology that exclusively
work in the smooth setting. In the present work, we provide another proof
of Casson and Gordon’s result that the only slice knots among the twist
knots are K0 and K2 based on the work of Patrick Gilmer [18, 19] about
the Casson-Gordon invariants, and describe a way that could possibly lead
to the order of any twist knot Kn in C by using tools that also work in
the topological setting.
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The classical genus g(K) of a knot K is defined as the minimal genus
of a Seifert surface for the knot, i.e. a compact, connected, orientable
surface that bounds K in S3. Such a surface always exists [47], and g(K)
is thus well-defined. Asking whether or not a knot bounds a properly and
smoothly embedded disk in B4 leads to an extension of the classical genus,
the slice or 4-ball genus g4, which is defined as the minimal genus of a
compact, connected, orientable surface smoothly and properly embedded
in B4 that bounds the knot in S3. Since a Seifert surface can be pushed
into the 4-ball while leaving its boundary fixed in S3, we have the bound
g4 ≤ g. Clearly, if K is slice, then g4(K) = 0.

While there are techniques to compute the classical genus, there are
no known methods to compute the slice genus of an arbitrary knot. Since
all twist knots Kn bound a genus one Seifert surface and only K0 and K2

are slice, we know that g4(Kn) = 1 for n ∕= 0, 2. It is thus an interesting
question to ask how the slice genus behaves for a connected sum of twist
knots rKn. We will give a partial answer to this question as well by
providing an upper bound for the slice genus of any connected sum rKn.

In 2010, Charles Livingston [34] defined a variation of the slice genus,
which is called the stable 4-genus gst, which is defined as

gst(K) = lim
n→∞

g4(nK)

n
,

where nK denotes the n-fold connected sum of K. The stable 4-genus de-
fines a semi-norm on the rationalized concordance group CQ = C⊗Q, and
there are many open questions related to this semi-norm. In particular,
the value of gst is unknown for many knots, especially for the twist knots
Kn. In the present work, we will provide an upper bound for the stable
4-genus of the twist knots Kn.

Organization

The present work is structured as follows. There are two parts, Part
I: General Knot Theory and Part II: The Slice Genus of Twist Knots.
The first part consists of Sections 1 to 3 and provide an overview of topics
from general knot theory that will be relevant to us. More precisely, in
Section 1, we give a brief survey of classical knot theory, presenting and
discussing those objects that will be used throughout the text. In Section
2, we discuss slice knots and the knot concordance group, and in Section
3, we provide an introduction to the Casson-Gordon invariants σ(K,χ)
and τ(K,χ), which will serve as a main tool for the second part of this
text. Furthermore, we discuss Patrick Gilmer’s results about the invariant
τ(K,χ), which will be used for computations later on.

The second part consists of Sections 4 to 7 and deals with the study of
the slice genus of the twist knots Kn. More precisely, in Section 4, we turn
our interest to the main actors of this text, namely the twist knots Kn.
We discuss basic properties and prove first (of course well-known) results
about them. In Section 5, we reprove Casson and Gordon’s famous result
that the only slice knots among the twist knots are the unknot K0 and the
Stevedore knot K2 by using the results of Gilmer. Section 6 is devoted to
the discussion of the sliceness of the connected sum rKn, and Section 7
concludes the work by presenting the upper bound for the (stable) 4-genus
of the twist knots Kn. References will be included throughout the text.
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Part I

General Knot Theory



1 Elements from Classical Knot Theory
The aim of this section is to give a short survey of classical knot theory
and the elements arising from it that will be used throughout this text.
Since our survey has more the character of a summary rather than a
full treatment of knot theory (which would be far beyond the scope of
this text), we assume that the reader has already been exposed to the
basics of knot theory. A little more emphasis will be given on advanced
topics, such as the construction of finite cyclic branched coverings. Proofs
will be mostly omitted, but references where proofs can be found will be
included whenever a result is cited. The survey is based on classical texts
about knot theory, such as [25], [31], or [45]; additional references will be
included separately throughout the text when needed.

As it is in the nature of the topic, knot theory makes strong use of
topology and its subfields differential and algebraic topology, and we as-
sume that the reader has already been exposed to these subjects. In
particular, we assume that the reader is familiar with (smooth) manifolds
and maps between them, covering spaces, homology theory, and so on.
References for these topics include [24], [27], and [28]. Throughout this
section, homology will always be understood with coefficients in Z if not
mentioned otherwise.

1.1 Knots in S3

Knots and Knot Equivalence

Before we start our discussion about knots we will fix some notation and
conventions. Let Rn denote the n-dimensional Euclidean space, equipped
with the standard topology induced by the Euclidean metric ‖x‖ = (x2

1 +

· · · + x2
n)

1
2 and oriented positively by choosing the canonical basis. We

will denote the n-dimensional ball by

Bn = {(x1, . . . , xn) ∈ Rn : ‖x‖ ≤ 1},

and the n-dimensional sphere by

Sn = {(x1, . . . , xn+1) ∈ Rn+1 : ‖x‖ = 1}.

We have the relation ∂Bn+1 = Sn, where ∂Bn+1 ⊂ Rn+1 denotes the
boundary of Bn+1. As Bn is a (smooth) n-dimensional submanifold of Rn,
it inherits a natural orientation from Rn. An orientation on Sn−1 = ∂Bn

is induced from Bn by the standard convention "outward pointing normal
first".

Let us turn our attention now to the heart of this text, knots. Intu-
itively, a mathematical knot can be understood as a knot in a rope with
its ends glued together. Formally, this is realized as an embedding of the
circle S1 into three-dimensional space.

Definition 1.1 (Knot). A knot K is a smooth embedding f : S1 → S3.
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Figure 1.1: A trefoil

Figure 1.1 above shows a knot called trefoil. Knots will be usually
denoted by K or J . A knot can naturally be given an orientation by
specifying a string orientation of the knot. An oriented knot is a knot with
a given orientation. If it is clear from the context that we are speaking
of oriented knots, we will sometimes omit the word ’oriented’ and simply
speak of knots.

It is customary to identify the knot with the image of the embedding
f : S1 → S3. While this is convenient for visualizing a knot, it is important
to keep in mind that the definition of a knot as the image of an embedding
would not yield any interesting objects as all one-dimensional subspaces
of S3 diffeomorphic to S1 are isotopic to each other (though not ambient
isotopic, see below). Thus, the embedding itself is important and carries
useful information.

The requirement of the embedding being smooth is necessary in order
to exclude so called wild knots, in which we are not particularly interested.

Figure 1.2: A depiction of a wild knot (picture taken from the
Wikipedia article "Wild knots")

We could have also defined a knot as an embedding S1 → R3 rather
than S1 → S3, and the two definitions yield in fact equivalent classes of
knots (see below). However, it is very convenient for various applications
to work in a compact space rather than a non-compact one, which is why
knots are usually defined as embeddings of the circle into the 3-sphere.

More generally, one can consider knotted objects in the 3-sphere that
consist of multiple components. A link L of n components is a subset of
S3 (or R3) that is diffeomorphic to a disjoint union of n knots K1, . . . ,Kn,
denoted by L = K1 ∪ · · · ∪Kn. A link with one component is just a knot
as defined above, and a link whose components are unknots that can be
arranged such that each of them is contained in disjoint 3-balls is called
the unlink. Links are an interesting subject on their own, and in fact most
of classical knot theory is treated in terms of links. However, as we are
mostly interested in knots themselves, we will continue our discussion in
terms of ordinary knots. Note though that most of the definitions and
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statements made in this and following sections admit a straightforward
generalization to links.

We will define now what it means for knots to be equivalent.

Definition 1.2 (Ambient Isotopy). Let X and Y be topological spaces.
Two smooth embeddings f1, f2 : X → Y are called ambient isotopic if
there is a smooth isotopy

H : Y × [0, 1] → Y, (x, t) +→ H(x, t) = Ht(x)

such that H0 = idY and H1 = g, where g : Y → Y is a diffeomorphism
such that g ◦ f1 = f2.

In our case, X = S1 and Y = S3, so the definition above reads as
follows: two knots K1 and K2 are ambient isotopic if there is an isotopy
H : S3 × [0, 1] → S3 from the identity on S3 to a diffeomorphism g such
that g(K1) = K2. It is not difficult to see that ambient isotopy defines an
equivalence relation on the class of embeddings f : S1 → S3.

Definition 1.3 (Knot Equivalence). Two knots K1 and K2 are called
equivalent (or isotopic) if they are ambient isotopic.

Definition 1.3 makes the idea precise that two knots are to be consid-
ered as equivalent if they can be continuously transformed into each other
without cutting any of the strands of the knots. Note that there are also
other notions of knot equivalence, compare e.g. [3], [36], or [45].

We have mentioned above that knots in R3 and S3 define the same
equivalence classes. This can be seen as follows: Any knot K ⊂ S3 can
be moved by means of an isotopy such that it misses the north-pole in
S3. Stereographic projection then defines a knot in R3, and we see that
equivalent knots in S3 define equivalent knots in R3.

Knot Diagrams

Knots are usually visualized by means of a knot diagram, i.e. the re-
sult of a regular projection p : R3 → E applied to a knot K ⊂ R3, where
E ⊂ R3 is a plane. Here, "regular" means that there are no occurrences
of singularities, i.e. no triple points, tangential intersections or cusps, in
the image p(K). Below is a knot diagram of the figure-eight knot.

Figure 1.3: The figure-eight knot
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It can be shown that such a regular projection p : R3 → E always exists
(cf. [3]). Note that in the knot diagram above, we have indicated the over-
and undercrossings of the strands. This is a necessary condition in order
to reconstruct the knot from a knot diagram, and is in fact sometimes
included in its definition. Of course, a knot can have many different knot
diagrams, but the diagrams of equivalent knots are all related by simple
operations called the Reidemeister moves.

Figure 1.4: The three Reidemeister moves

It can be shown that two knots are equivalent if and only if their dia-
grams are related by a finite sequence of Reidemeister moves (cf. [3]). The
minimal number of crossings in any knot diagram of a knot K is called the
crossing number u(K) of K. The orientation of the knot can be indicated
in a knot diagram by adding a string orientation in the knot diagram.
However, this is usually omitted and only indicated when needed.

The crossing number of a knot together with an index is commonly
used as a reference for a knot in a traditional knot tabulation based on
the number of crossings. For example, 31 denotes the first (and only)
knot with 3 crossings, the trefoil, and 85 denotes the fifth knot with 8
crossings. The ordering of the knots in such a tabulation (i.e. the index
of the crossing number) has no particular meaning and is traditionally
coined. Knot tabulations up to 10 or fewer crossings can be found in
most standard text books about knot theory, such as [3, 25, 31, 45]. Note
that these tabulations usually do not take into account orientations or
symmetries and only list prime knots (we will describe symmetries and
prime knots shortly). Below is a table of the number of knots up to 16 or
fewer crossings (with the aforementioned conventions), due to the work
M. B. Thistlewaite, J. Hoste and J. Weeks [53].

Crossing number 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of knots 1 1 2 3 7 21 49 165 552 2’176 9’988 46’972 253’293 1’388’795

Table 1.1: Number of knots up to 16 or fewer crossings

1.2 Knot Operations
Knot Symmetries

Given an oriented knot K ⊂ R3, there are three natural geometric op-
erations that can be performed on K, resulting in three new knots.

Definition 1.4. Let K ⊂ R3 be an oriented knot.

1.) The reverse −K of K is defined as K with reversed orientation;
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2.) The mirror image K∗ of K is defined as K reflected in the plane of
a regular projection p : R3 → E;

3.) The inverse of K is defined as −K∗.

K is called reversible if K = −K, amphicheiral if K = K∗, and invertible
(or negative amphicheiral) if K = −K∗.

The reverse, mirror image, and inverse of the trefoil is depicted below.

Figure 1.5: The reverse, mirror image, and inverse of the trefoil

Note that there is no consistent usage in the literature of the terms
in Definition 1.4; for example, the reverse is often called the inverse. We
are adopting here the convention of [36]. Examples of reversible knots
include the trefoil and the figure-eight knot. While the figure-eight knot
is amphicheiral, the trefoil is not, as first proved by Max Dehn in 1914
[11]. This leads to the notion of the left-handed and right-handed trefoil
(K respectively K∗ in Figure 1.5). As the figure-eight knot is reversible
and amphicheiral, it is an example of an invertible knot.

While the operations defined above are an interesting object of study
on their own, we are going to use them to define an equivalence relation
on the set of isotopy classes of knots which is known as knot concordance
(cf. Section 2.2).

Connected Sum of Knots

Another geometric operation that arises naturally is the connected sum of
two knots, defined as follows (compare the connected sum of two manifolds
of same dimension).

Let J1, J2 ⊂ S3 be two oriented knots with a regular projection to
a plane such that the images of both knots are disjoint. Perform the
following steps (see Figure 1.6 below):

1.) Find a rectangle in the plane that meets J1 and J2 along one pair
of arcs of the rectangle and that is disjoint otherwise, and so that
the orientation of the knots induced on the pair of arcs that meet J1

and J2 is opposed to the orientation of the boundary of the rectangle
(after possibly applying a suitable (orientation-preserving) transfor-
mation to one of the knots in S3, such a rectangle always exists).

2.) Join the two knots together by deleting the pair of arcs that meet
J1 and J2 and adding the other pair of arcs of the rectangle.

10



Figure 1.6: Forming the connected sum of two knots

The resulting knot is called the connected sum of J1 and J2 and is
denoted by J1#J2. The connected sum J1#J2 inherits an orientation from
the knots J1 and J2 which is consistent with the original orientation of J1

and J2. In particular, the connected sum is well-defined up to (oriented)
ambient isotopy of knots. Note that it is essential to take orientations
into account when forming the connected sum of knots in order to get a
well-defined result.

The operation of connected sum turns the set of equivalence classes
of oriented knots in S3 into a commutative monoid with a unique prime
factorization, leading to the notion of a prime knot, i.e. a knot that can
not be further decomposed into a connected sum of non-trivial knots. The
unit is formed by the unknot, and examples of prime knots include the
left- and right-handed trefoil. We will see below that the unknot can not
be written as the connected sum of two non-trivial knots. Unfortunately,
there are in general no inverses under the connected sum, which turns the
monoid not into a group. However, we will encounter in Section 2.2 an
equivalence relation on knots called knot concordance, which turns the
corresponding set of equivalence classes into a countable, abelian group,
the knot concordance group C.

1.3 Knot Complement, Knot Exterior, and Link-
ing Numbers
Knot Complement and Knot Exterior

In order to gain information about the isotopy type of a knot, it can
be very useful to study not the knot itself, but rather its surroundings in
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S3. This leads to the notion of the knot complement and knot exterior,
which are defined as follows. Let K ⊂ S3 be a knot. Considering K as a
submanifold of S3, it has a tubular neighborhood N(K) ⊂ S3, which is
the image of an embedding f : S1×D2 → S3 such that f(S1×(0, 0)) = K.
Note that N(K) is unique up to isotopy that fixes K.

Definition 1.5. Let K ⊂ S3 be a knot.

1.) The knot complement is defined as S3 \K.

2.) The knot exterior X(K) of K is defined as

X(K) := S3 \ (N(K))◦.

The knot complement is simply the topological complement of K in
S3, and the knot exterior X(K) is a 3-manifold with boundary ∂X(K) =
∂N(K) ∼= T 2, where T 2 denotes the standard torus. It is easy to see that
knots with diffeomorphic exteriors have diffeomorphic complements. The
converse is true as well, but it is non-trivial. In fact, a much stronger
result holds: if the complements of two knots are diffeomorphic, then the
corresponding knots are isotopic (see [22]).

A powerful invariant that arises from the knot complement (respec-
tively the knot exterior) is the knot group π1(S

3 \ K) = π1(X(K)). It
can be shown that prime knots with isomorphic knot groups have diffeo-
morphic complements (see [57]). The downside of the knot group is that
(non-abelian) groups are in general difficult to handle, and its abelianiza-
tion H1(S

3 \K) is the infinite cyclic group Z for any knot K:

Proposition 1.6. Let K ⊂ S3 be a knot. Then

H1(X(K)) ∼= Z.

Proposition 1.6 is a direct consequence of Alexander duality. For a
proof without Alexander duality, see [36]. Since the knot complement
S3 \ K deformation retracts to the knot exterior X(K), the inclusion
i : X(K) → S3 \ K induces an isomorphism on the homology groups,
showing that H1(S

3 \ K) ∼= Z as well. The fact that the first homology
group of the knot exterior is infinite cyclic is essential and will be used
in order to construct other objects based on the knot complement (for
example the finite cyclic branched coverings, see Section 1.7).

Linking Numbers in S3

Given a knot J ⊂ S3, its exterior X(J) and the fact that H1(X(J)) ∼= Z
can be used to define a quantity that measures how two knots are linked
in S3.

Definition 1.7. Let J1 and J2 be two oriented knots in S3. Then the
linking number lk(J1, J2) of J1 and J2 is defined as

lk(J1, J2) := [J2] ∈ H1(X(J1)) ∼= Z.
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The linking number can be computed algorithmically by counting how
many times J2 passes over J1 in a regular projection of J1 and J2, where
a crossing is counted positive or negative if J1 passes from right to left or
left to right under J2, respectively (see Figure 1.7 below).

Figure 1.7: Sign convention at crossings

Note that the linking number doesn’t change if we count at under-
crossings instead of overcrossing. It follows that the linking number is
symmetric, i.e. lk(J1, J2) = lk(J2, J1).

The concept of linking numbers in S3 can be used to define an impor-
tant bilinear pairing in knot theory, which will be described in the next
section.

1.4 Seifert Surfaces, Seifert Pairing, and Seifert
Matrices
Seifert Surfaces

One of the most important objects in knot theory is the Seifert surface of
a knot.

Definition 1.8 (Seifert Surface). Let K ⊂ S3 be an oriented knot. A
compact, connected, orientable surface F embedded in S3 that has K as
its oriented boundary is called a Seifert surface for K.

Seifert surfaces can be used to study knots in different ways, and they
form the starting point for many other constructions in knot theory. Note
that it is not obvious why an arbitrary knot should have a Seifert surface;
the justification in the definition above is given by the following proposi-
tion, first proved by Frankl and Pontrjagin in 1930 [15].

Proposition 1.9. Any oriented knot K ⊂ S3 has a Seifert surface.

A proof can be found in any textbook about knot theory. The proof is
usually done by giving an explicit algorithm, known as Seifert algorithm,
for constructing a Seifert surface from a knot diagram, which is due to
Herbert Seifert [47]. We omit the description of the algorithm at this
point as we are not going to need it and refer the interested reader to
[31] instead. In Figure 1.8 below is an example of a Seifert surface for the
trefoil.

13



Figure 1.8: A Seifert surface for the trefoil

It is not difficult to see that the boundary of this surface is actually
a trefoil since a curled band can be transformed into a twisted band (cf.
Figure 4.5 in Section 6).

Of course, a Seifert surface for a knot K need not be unique. However,
two Seifert surfaces for a knot are related by two simple operations, which
consist, roughly speaking, of adding and removing embedded cylinders
from the Seifert surfaces in S3 (this is known as 0- and 1-surgery, and
leads to the notion of S-equivalence of Seifert surfaces, cf. [25]). More
generally, it can be shown that any two Seifert surfaces of isotopic knots
J1 and J2 are related by the moves described above (cf. [25]).

Knot Genus

Recall from the theory of surfaces that any closed and orientable sur-
face F is homeomorphic to a connected sum of a sphere and n ∈ N0 tori
T 2. The number of tori in the connected sum is called the genus of the
surface, and is denoted by g(F ). This leads to the following definition:

Definition 1.10. The genus g(K) of a knot K ⊂ S3 is defined as

g(K) := min{g(F ) : F is a Seifert surface for K}.

The genus of a knot is sometimes also called classical genus or 3-genus
in order to distinguish it from other notions of knot genus (such as the
slice genus, which will be described below). For the same reasion, it is
sometimes also denoted by g3(K).

A Seifert surface F is an orientable surface with one boundary com-
ponent, so it is topologically equivalent to a disk with an even number of
twisted, knotted and linked bands attached to it (see for example [3] for a
proof). Figure 1.8 above shows a Seifert surface for the trefoil in this form.
The number of bands divided by two is the genus of F . Alternatively, the
Euler characteristic of a Seifert surface F is χ(F ) = 1− 2g(F ), so

g(F ) =
1

2
(1− χ(F )).

It follows that a knot K is the unknot if and only if g(K) = 0. This
implies that if K has a genus one Seifert surface and it is known that K
is not the unknot, then g(K) = 1. In general, it is difficult to explicitly
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compute the genus of an arbitrary knot, but possible, as recent results of
Friedl and Vidussi demonstrate [17].

There is a very useful property of the knot genus: it is additive under
connected sum of knots.

Theorem 1.11. Let K1,K2 ⊂ S3 be two knots. Then

g(K1#K2) = g(K1) + g(K2).

For a proof, see [31]. The additivity of the knot genus has several
implications:

Corollary 1.12. There is no additive inverse for a (non-trivial) knot.
That is, if K1#K2 is the unknot, then K1 and K2 are unknotted as well.

Corollary 1.13. If K is a non-trivial knot and if nK denotes the n-fold
connected sum of K, then nK ∕= mK whenever n ∕= m. In particular,
there are infinitely many distinct knots.

Corollary 1.14. If g(K) = 1, then K is prime.

Corollary 1.15. Any knot can be expressed as a finite sum of prime
knots.

The last corollary implies in particular that there is indeed a prime
factorization in the monoid of isotopy classes of knots as mentioned in
Section 1.2.

Seifert Pairing and Seifert Matrices

Given a Seifert surface F for a knot K, there is a bilinear pairing that
captures how F is embedded in S3, defined as follows. Let K be a knot
with Seifert surface F , and let i+ : H1(F ) → H1(S

3 \ F ) be the homo-
morphism induced by the positive push-off F → S3 \ F . Then there is a
bilinear form θ defined by

θ : H1(F )×H1(F ) → Z, ([α], [β]) +→ lk(α, i+(β)).

Of course, one has to check that θ is indeed a well-defined bilinear form.
A proof can be found in [31]. Note that this bilinear form need not
necessarily be non-singular.

Definition 1.16 (Seifert Pairing). Let K ⊂ S3 be a knot with Seifert
surface F . Then the bilinear form θ described above is called Seifert form
(or Seifert pairing) associated to F .

From now on, we will start to omit brackets for homology classes to
shorten notation. The first homology H1(F ) of a Seifert surface F is
isomorphic to the free abelian group in 2g generators, where g denotes
the genus of F . If we fix a basis x1, . . . , x2g of H1(F ), we can express the
Seifert form θ in terms of a matrix

A = (θ(xi, xj))
2g
i,j=1.

We have the following definition.
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Definition 1.17 (Seifert Matrix). A matrix A associated to the Seifert
form θ of a knot K as described above is called Seifert matrix for K.

It is customary to slightly abuse notation and write θ for both the
Seifert pairing and the associated Seifert matrix, and we will start doing
so in the following.

We have remarked earlier that a Seifert surface F is topologically
equivalent to a disk with a certain number of twisted, linked and knotted
bands attached to it. Given such a representation of F , it is possible to find
a basis of H1(F ) in terms of simple closed curves, making it easy to com-
pute the Seifert matrix A. Note that for some given element x ∈ H1(F ),
the self-linking number or framing θ(x, x) = lk(x, i+(x)) can be computed
by first representing i+(x) by a parallel copy !x of x in F , and then count-
ing the number of curls with sign in the band that gets traced out by !x
and x in F . As an example, consider the Seifert surface for the trefoil
with the indicated basis for the first homology in Figure 1.9.

Figure 1.9: A Seifert surface for the trefoil with first homology basis

In this basis, the Seifert matrix for the trefoil is given as

A =

"
−1 1
0 −1

#
.

Seifert matrices are not only important for computing the Seifert pair-
ing, but also in the sense that there are a lot of knot invariants arising
from them. However, there is a lot of choice involved in the definition of
a Seifert matrix, and it is not obvious at all why a knot invariant that
is derived from a Seifert matrix is left unchanged when choosing another
Seifert matrix. We have elaborated above how Seifert surfaces of isotopic
knots are related to each other. Fortunately, this relation descends to
Seifert matrices, leading to the notion of S-equivalence of Seifert matri-
ces. Similarly as for Seifert surfaces, Seifert matrices of isotopic knots
are related by a finite sequence of certain matrix operations. We are not
going into further detail at this point since the exact relations are not of
particular interest to us. For a full description of the terms and relations
mentioned above, see [25]. For our purposes, it will always be sufficient to
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specify one particular Seifert surface and a corresponding Seifert matrix
for a knot K.

1.5 Alexander Polynomial
An important family of knot invariants is formed by certain polynomials
defined from geometric observations about knots. One of them is the
Alexander polynomial, defined as follows.

Definition 1.18. Let K ⊂ S3 be a knot with Seifert matrix A. Then the
Alexander polynomial ∆K(t) of K is defined as

∆K(t) = det(A− tAT ) ∈ Z[t, t−1].

The Alexander polynomial is a well-defined knot invariant up to mul-
tiplication by ±t±n, meaning that if two different Seifert surfaces (resp.
Seifert matrices) are used to compute ∆K(t), then the resulting polynomi-
als only differ by ±t±n. The Alexander polynomial has some interesting
properties, such as

∆K(t)
.
= ∆rK(t)

.
= ∆mK(t),

and
∆K1#K2(t)

.
= ∆K1(t) ·∆K2(t),

for any knots K,K1,K2 ⊂ S3. Here, .
= denotes equality up to multiplica-

tion of ±tk for some k ∈ Z. In particular, we have the inequality

deg(∆K(t)) ≤ 2g(K).

For a proof of these results, see [3] or [31]. The Alexander polynomial will
be important for us because its zeros mark the points where the so-called
Tristram-Levine signature of a knot can change. The description of this
and other knot signatures will be the topic of the next section.

1.6 Knot Signatures
Let K ⊂ S3 be a knot with Seifert surface F and Seifert pairing θ. Further,
let A be a Seifert matrix associated to θ. Note that the matrix A is in
general neither symmetric nor non-singular (in fact, A is symmetric if
and only if A is the empty matrix [36]). However, the symmetrized Seifert
matrix A+AT is a non-singular and symmetric matrix with integer entries,
and thus diagonalizable (over R). Applying Sylvester’s law of intertia, we
know that the signature of A+AT , i.e. the number of positive minus the
number of negative entries in a diagonalization of A+AT , is an invariant
of the Seifert form. This leads to the following definition:

Definition 1.19 (Classical Knot Signature). Let K ⊂ S3 be a knot
with Seifert matrix A. The signature σ(K) of K is defined as the number of
positive entries minus the number of negative entries in a diagonalization
of A+AT .
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The signature of a knot is sometimes referred to as the classical sig-
nature. The knot signature has some interesting properties, which are
summarized in the following theorem.

Theorem 1.20. Let K ⊂ S3 be a knot. Then the signature σ(K) is a
well-defined knot invariant, satisfying the following properties:

1.) σ(K) is an even number for any knot K;

2.) σ(rK) = σ(K);

3.) σ(mK) = −σ(K);

4.) σ(K1#K2) = σ(K1) + σ(K2).

A proof can be found in [45]. Sylvester’s law of inertia is also valid for
Hermitian matrices, leading to another definition of knot signature.

Definition 1.21 (Tristram-Levine Signature). Let K ⊂ S3 be an
oriented knot with Seifert matrix A, and let ω ∈ S1 ⊂ C, ω ∕= 1. Then the
ω-signature σω(K) is defined as the signature of the Hermitian matrix

Aω := (1− ω)A+ (1− ω)AT .

In case that ω = e
2πis
m with s,m ∈ Z, m ∕= 0, and ω ∕= 1, the ω-signature

is also denoted by σ s
m
(K).

The ω-signature is also known as the Tristram-Levine signature, and
was first introduced and studied by A. G. Tristram [54] and J. Levine
[29], generalizing the work of Murasugi [42]. It follows directly from the
definition that σ 1

2
resp. σπ is the classical signature σ as defined above.

The Tristram-Levine signature is an integer and defines thus a signature
function

f : S1 \ {1} → Z, ω +→ σω(K).

Since

Aω = (1− ω)A+ (1− ω)AT = (1− ω)(A− ωAT ) = (1− ω)∆A(ω),

the matrix Aω is non-singular except at zeros of the Alexander polynomial
∆A(ω). Moreover, the diagonal entries in a diagonalization of Aω are (real-
valued) polynomials in ω, so the signature of Aω has a constant value in
a neighborhood to the left and in a neighborhood to the right of a zero of
∆A(ω) on S1. It follows that the signature function is a continuous and
piecewise-constant function with a finite set of discontinuities, which are
a subset of the zeros of the Alexander polynomial. Moreover, the function
is even valued outside of the discontinuities.

The Tristram-Levine signature shares many properties with the clas-
sical signature. For example, for any knot K we have the symmetries
σω(rK) = σω(K) and σω(mK) = −σω(K), and σω is additive under
connected sum of knots:

σω(K1#K2) = σω(K1) + σω(K2).

These properties can be proved in essentially the same way as for the
classical signature σ(K), but with the matrix Aω instead of A+AT . For
more on knot signatures and their properties, see [21].
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1.7 Finite Cyclic Branched Coverings of a Knot
In this section we are going to describe finite cyclic branched covering
spaces of a knot K ⊂ S3. These coverings, in particular their homology,
capture a lot of information about the knot exterior and find applications
throughout knot theory. Our description follows mostly [7]. For a more
detailed description, see [25, 31, 36, 45].

Recall from covering space theory that for a sufficiently nice space
X (that is, connected, locally connected, semi-locally simply connected),
covering spaces are classified up to covering isomorphisms by conjugacy
classes of subgroups of the fundamental group π1(X). In particular, spec-
ifying a surjective homomorphism ϕ : π1(X) → G to some group G gives
rise to a regular covering $X → X that corresponds to the normal sub-
group ker(ϕ) ⊂ π1(X) with group of deck transformations isomorphic to
G.

Returning to knots, let K ⊂ S3 be a knot with exterior X(K), and
consider the composition

π1(X(K))
ϕ→ H1(X(K)) ∼= Z p→ Z/nZ,

where ϕ denotes the abelianization map and p denotes the projection.
Then there is an associated covering Xn(K) → X(K) with group of deck
transformations isomorphic to Z/nZ.

Definition 1.22. The covering space Xn(K) is called the n-fold cyclic
covering of the knot exterior X(K).

Our aim is now to extend the n-fold covering Xn(K) (almost) to a
covering of the 3-sphere S3. For this, note that the boundary ∂X(K)
of the knot exterior is a torus K × S1. Since the Euler characteristic is
multiplicative under finite covers, the n-fold covering Xn(K) → X(K)
restricts on the boundary to a map ξ : K × S1 → K × S1. In other
words, ∂Xn(K) has to be a torus as well. Let ℓ be the preferred longitude
(i.e. the longitude that is null-homologous in X(K), unique up to ambient
isotopy of ∂X(K)) and µ a meridian of ∂X(K). Now, the map ϕ can be
expressed in terms of the linking number, that is,

ϕ(α) = lk(α,K) ∈ Z

(for a proof, see [45]). Then ϕ(ℓ) = 0 and ϕ(µ) = 1, so we see that
the preferred longitude ℓ lifts to a closed curve !ℓ in ∂Xn(K), while the
meridian µ in general does not. However, the n-fold composition µn does
lift to a closed curve %µn in ∂Xn(K). In other words, the boundary map ξ
is given by

ξ(z1, z2) = (z1, z
n
2 ).

If we now glue a solid torus K × D2 to the boundary of Xn(K) by a
diffeomorphism that maps the meridian µ to %µn, we get a closed 3-manifold
Ln. If we further glue a solid torus to the boundary of X(K) in the
canonical way, we get a map

Ln := Xn(K) ∪∂ (K ×D2) → X(K) ∪∂ (K ×D2) ∼= S3
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that is an extension of the n-fold cyclic covering Xn(K) → X(K) except
at K×{0} ∼= K. Indeed, the map ξ extends to K×D2 except at K×{0},
showing that Ln → S3 is a well-defined covering except at K ⊂ S3. This
leads to the following definition.

Definition 1.23 (Finite Cyclic Branched Covering). Let K ⊂ S3 be
a knot and Xn the n-fold covering of X(K). Then the associated closed
3-manifold Ln as constructed above is called the n-fold cyclic cover of S3

branched along K.

If the choice of the knot K is not ambiguous, Ln is sometimes just
called the n-fold cyclic branched covering of S3. It might seem that the
definition of Ln depends on the gluing homomorphism that is used. How-
ever, the diffeomorphism type of Ln is entirely determined by the image of
the meridian in H1(∂Xn(K)), showing that it is enough to specify where
the meridian is mapped to (cf. [45]).

Our approach to the cyclic branched coverings Ln is rather algebraic,
but they can also be constructed purely geometrical: take a knot K ⊂ S3

with Seifert surface F , and cut S3 along F . Denote the resulting space
X. Now take n copies of X and glue them cyclically together along their
boundaries. The result is a closed 3-manifold that is diffeomorphic to the
branched covering Ln. The group of deck transformations of this covering
acts by shifting indices, showing the the group is isomorphic to Z/nZ. For
a detailed description of this construction, see [25] or [45].

A characteristic property of the n-fold branched coverings is that their
homology is not too difficult to handle.

Proposition 1.24. Let p be a prime and r > 0. Then the pr-fold cyclic
branched covering Lpr is a rational homology 3-sphere, i.e. H∗(Lpr ;Q) =
H∗(S

3;Q).

A proof can be found in [7]. Our interest will mainly lie in the 2-fold
(or double) branched covering L2. More precisely, we are going to use
its first cohomology with Q/Z-coefficients to derive information about the
slice genus of the twist knots Kn. For this, we need to understand how to
compute H1(L2;Q/Z). Fortunately, there is a very convenient way to do
so.

Proposition 1.25. If K ⊂ S3 is a knot with Seifert matrix A and double
branched covering L2, then A+AT is a presentation matrix for H1(L2;Z).
In particular,

H1(L2;Z) ∼= coker(A+AT ).

A proof can be found in [45]. We have the following corollary.

Corollary 1.26. Under the assumptions of Proposition 1.25,

H1(L2;Q/Z) ∼= coker(A+AT ).

Proof. Since A+AT is non-singular, it follows that H1(L2;Z) is torsion (of
course, this also follows from Proposition 1.24). The universal coefficient
theorem implies that

H1(L2;Q/Z) ∼= HomZ(H1(L2;Z),Q/Z),
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and since H1(L2;Z) is torsion, we have

H1(L2;Q/Z) ∼= H1(L2;Z) ∼= coker(A+AT ),

where the last isomorphism is given by Proposition 1.25. □

Thus, in order to compute H1(L2;Q/Z), all we have to do is to com-
pute the Smith normal form of A+AT and read-off the elementary divi-
sors of H1(L2;Q/Z). We will do this computation for the twist knots in
Section 4.
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2 Slice Knots and Knot Concordance
In this section we introduce slice knots, the knot concordance group and
related notions. More precisely, we start by discussing slice knots and
their properties, continue with the definition of knot concordance and the
knot concordance group, and discuss the slice genus and stable 4-genus of
a knot. This section is mainly based on [25] and [36]. As in the previous
section, proofs will be mostly omitted, but references where proofs can be
found will be included whenever a result is cited.

Before we start, a last remark has to be made about the distinction
between the topological and the smooth setting. Slice knots and knot
concordance can be studied from the topological and from the smooth
point of view, and the two approaches differ substantially. Throughout
this work, we will work exclusively in the smooth setting. Some essen-
tial differences will be mentioned, but for a more extensive comparison,
see [35].

2.1 Slice Knots
It is a standard fact that a knot K ⊂ S3 bounds an embedded 2-disk D
in S3 if and only if K is the unknot (cf. [45]). Thus, one might ask if the
situation changes if we go one dimension up. That is, are there non-trivial
knots K ⊂ S3 that bound an embedded disk D in the 4-ball D4? The
answer is yes, and we will encounter an example shortly.

Definition 2.1 (Slice Knot). A knot K ⊂ S3 is called slice if it bounds
a smoothly and properly embedded 2-disk D in the 4-ball B4. Such a disk
is called a slice disk for the knot K.

Here, proper means that D ∩ S3 = ∂D. In some sense, slice knots can
be considered as the next best thing to the unknot (a phrase coined by
Teichner [51]). The term slice knot first appeared in the work of Fox and
Milnor [14], but it was Artin [1] that described in 1926 the construction
of certain smooth, knotted 2-spheres in R4 such that their intersection
with the standard R3 ⊂ R4 yields a non-trivial knot in R3 that bounds a
smooth embedded disk in the upper half-space. At first it seemed possible
that every knot is a slice knot, and it was not until the early 1960’s that
Murasugi [41] and Fox and Milnor [14] showed that some knots are not
slice.

Note that it is essential to require that the slice disk is smoothly em-
bedded, because otherwise we could just take the cone of a knot K to
show that any knot is slice.

Since we work in the smooth setting, a slice knot is sometimes also
called smoothly slice in order to distinguish it from the topological coun-
terpart. In the topological setting, a slice disk is required to be locally
flat instead of smooth, leading to topological slice knots. The two notions
are not equivalent: several mathematicians have constructed knots that
are topologically, but not smoothly slice (see for example [20] or [46]),
so smoothly slice is a stronger notion than topologically slice. We will
continue to work in the smooth setting. For an overview of the differences
between the smooth and topological setting, see [35].
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It is in general difficult to decide whether a knot is slice or not. One
method to do so is to try to find a "movie" that describes the slice disk
of a knot (cf. [36]). More precisely, let D ⊂ B4 be a slice disk for a knot
K ⊂ S3, and let S3

t ⊂ B4 denote the 3-sphere of radius 0 < t ≤ 1. The
standard norm on R4 induces a height function h on B4 that restricts to a
height function of the slice disk D. After a sufficiently large perturbation,
we can assume that h is a Morse function, with critical points arranged
according to the order of their index. Then it is possible to arrange the
slice disk D such that the cross-sections Kt = S3

t ∩D consist of either

1.) an ordinary knot or link without any singularities; or

2.) a knot or link with singularities corresponding to a local maximum,
local minimum, or a saddle point of D.

By increasing the parameter t of the cross-sections Kt, we get a series of
finitely many diagrams that describe the slice disk D. Such a series of
diagrams is called a (slice) movie of the slice disk D. Figure 2.1 below
shows an example of such a movie for the square-knot, which is the con-
nected sum of a trefoil K with its inverse −K∗ (note that this proves that
the square-knot is slice).

Figure 2.1: Slice movie for the square knot (picture as in [36], page 42)

Looking at Figure 2.1 top down, we can see that at t = 1 we have
the square knot, followed by a saddle-point (index 1) at t = 0.75, where
the circle pinches together by a band, resulting in a link with two com-
ponents at t = 0.5 that is isotopic to the unlink with two components at
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t = 0.25, each bounding a disk that corresponds to one of the two local
minima (index 0) of the slice disk. Observe that the number of local min-
ima and maxima minus the number of saddle-points equals one; an Euler
characteristic argument shows that this is a necessary condition for the
cross-sections Kt to trace out a disk in B4.

The existence of such a slice movie follows from Morse theory [13]. For
a more detailed description of the procedure described above, see [36]. In
general, it is difficult to find a slice movie for an arbitrary knot, especially
when it is not known beforehand whether or not the knot is slice. Thus,
other methods to detect sliceness are needed. But first, we discuss a
special type of knots that is related to slice knots.

Definition 2.2 (Ribbon Knot). A knot K ⊂ S3 is called a ribbon
knot if it is the boundary of of a ribbon disk, i.e. the image α(D2) of an
immersion α : D2 → R3 ⊂ S3 such that

1.) the only singularities of α are transverse double points (i.e. double
points belonging to a transverse self-intersection of α(D2));

2.) the set of double points forms a collection of arcs;

3.) the preimage of each of those arcs is a pair of arcs on D2, one with
endpoints on the boundary of the disk and one in an open neighbor-
hood in the interior of the disk.

Figure 2.2 below shows an example of a ribbon knot with ribbon disk.

Figure 2.2: A ribbon knot (picture as in [3], page 27)

It is not difficult to see that a ribbon knot is slice: simply push an open
neighborhood of the one-dimensional self-intersections of the ribbon disk
into R4 (compare Figure 2.2 above).

Theorem 2.3. A ribbon knot is slice.

In fact, it can be shown that a knot is ribbon if it bounds a slice disk
with no index 2 critical points [36]. An interesting open question is the
following: if K is a slice knot, is K ribbon? This question was first posed
by Fox in 1966, and is still unsolved at the time of writing. Note that this
question is only relevant in the smooth setting: a ribbon knot is smoothly
slice, but since there are topological slice knots that are not smoothly
slice, there exist topological slice knots which are not ribbon.
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Let’s return to the problem of detecting sliceness. It is possible to
find an obstruction to sliceness based on a general result that arises from
studying the inclusion ∂W → W of a compact orientable manifold with
boundary W . Proofs of the following results can be found in [36].

Theorem 2.4. Let W be a compact, orientable, (2n + 1)-dimensional
manifold with boundary. Then, for any coefficient field F, we have

2 · dim(ker(Hn(∂W ;F) i∗→ Hn(W ;F))) = dimHn(∂W ;F),

where i∗ denotes the map induced by the inclusion i : ∂W ↩→ W . More-
over, the intersection pairing Hn(∂W ;F) × Hn(∂W ;F) → F vanishes on
this kernel.

Theorem 2.4 is known as the "half lives, half dies" principle. The
connection to slice knots is made by the following theorem.

Theorem 2.5. Let K ⊂ S3 be a slice knot with Seifert surface F and
slice disk D ⊂ B4. Then there exists a compact orientable 3-manifold
with boundary M ⊂ B4 such that ∂M = D ∪K F .

Combining Theorem 2.4 and 2.5 now yields the following obstruction
to sliceness.

Theorem 2.6. Let K be a slice knot with Seifert surface F and Seifert
pairing θ. Then there exists a direct summand (a so-called metabolizer)
H of H1(F ) such that

1.) 2 rank(H) = rank(H1(F ));

2.) θ(H ×H) = 0.

Note that the intersection pairing on H1(F ) is related to the Seifert
pairing by the formula θ − θT (cf. [45]). Theorem 2.6 is one of the main
characterization of slice knots and motivates the following definitions.

Definition 2.7 (Algebraically Slice Seifert Form). A (2n × 2n)-
dimensional Seifert form is called algebraically slice (or metabolic) if there
is an n-dimensional summand of the underlying free Z-module on which
the form vanishes. Such a summand is called metabolizer of the form.
Equivalently, a (2n×2n)-dimensional Seifert matrix is called algebraically
slice if it is congruent to a matrix with a half-dimensional block of zeros.
That is, there exists a non-singular integral matrix P such that

PAPT =

"
0 B
C D

#
,

where the top-left zero denotes the (n× n)-dimensional zero matrix.

Definition 2.8 (Algebraically Slice Knot). A knot K is called alge-
braically slice if it admits a Seifert form which is algebraically slice.

It can be shown that if some Seifert matrix for K is algebraically slice,
then all are, independent of the choice of Seifert surface or basis for the
first homology (cf. [36]). The following corollary is a direct consequence
of Theorem 2.6.
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Corollary 2.9. If a knot K is slice, then it is also algebraically slice.

The converse to Corollary 2.9 is not true: there exist knots which are
algebraically slice, but not slice (cf. Section 5).

In the previous section, we have defined three knot invariants in terms
of Seifert matrices: the Alexander polynomial, the classical signature and
the Tristram-Levine signature. It is not surprising that these invariants
have special properties for algebraically slice knots.

Proposition 2.10. Let K be algebraically slice.

1.) The Alexander polynomial of K takes the form

∆K(t) = ±tkf(t)f(t−1)

for some polynomial f ∈ Z[t] with f(1) = ±1.
2.) The signature of K vanishes, i.e. σ(K) = 0.
3.) Given ω ∈ S1 ⊂ C such that ∆K(ω) ∕= 0, then the Tristram-Levine

signature vanishes as well, i.e. σω = 0.

The notion of algebraic sliceness is a consequence of one of the most
elementary obstructions to sliceness of a knot. Of course, this is not the
only obstruction knot theory has found so far, and we will encounter some
more obstructions in the section about Casson-Gordon invariants which
we are going to use for our analysis of the twist knots. But first, we are
going to discuss how the notion of sliceness can turn equivalence classes
of knots into a group.

2.2 Knot Concordance
We have mentioned earlier that the connected sum turns the set of equiv-
alence classes of oriented knots into a commutative monoid. This monoid
is not a group because there are in general no additive inverses. However,
the notion of sliceness can be used to define another equivalence relation
on the set of knots, which turns them into an abelian group, the knot con-
cordance group. Throughout this section, orientation plays an important
role, and every object will be understood with orientations in mind, even
though we might not always explicitly specify a particular orientation.

Before we can start describing this equivalence relation, we need a
result regarding the sliceness of the connected sum of knots. Recall that
the inverse −K∗ of a knot K is defined as the mirror image of K with its
orientation reversed (cf. Section 1.2).

Theorem 2.11. Let K ⊂ S3 be a knot. Then K#−K∗ is slice.

Theorem 2.11 can be proved directly by constructing a slice disk in
terms of so-called spun knots, first introduced by Artin [1] (see also [45]),
or indirectly by showing that for any knot K, K# − K∗ is ribbon (cf.
[25]). Theorem 2.11 already gives a glimpse of what the new equivalence
relation will look like. The next definition makes this precise.

Definition 2.12 (Knot Concordance). Two knots K1,K2 ⊂ S3 are
called concordant if K1# − K∗

2 is slice. If this is the case, we write
K1 ∼ K2.
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The following theorem provides a useful characterization of knot con-
cordance.

Theorem 2.13. Two knots K1,K2 ⊂ S3 are concordant if and only if
they cobound a smooth 2-manifold C diffeomorphic to S1 × I in S3 × I
such that C∩(S3×{1}) = K1 and C∩(S3×{−1}) = K2. Here, I = [−1, 1].

For a proof, see [36]. The next theorem shows that knot concordance
induces a well-defined equivalence relation on the set of knots, turning the
set of equivalence classes into an abelian group. A proof can be found
in [36].

Theorem 2.14.

1.) Knot concordance is an equivalence relation on the set of oriented
knots in S3. Its equivalence classes are called (knot) concordance
classes.

2.) Isotopic knots are concordant.

3.) The connected sum of knots induces a well-defined binary operation
on the set of concordance classes, and under this operation the set of
concordance classes is turned into an abelian group, where the class
of the unknot represents the identity element and −K∗ represents
the inverse of the class of a knot K.

Definition 2.15 (Knot Concordance Group). The (classical) knot
concordance group C is the abelian group of concordance classes under
the operation of connected sum. The identity element in C is given by the
class of the unknot, which contains all slice knots.

As mentioned in the introduction, the knot concordance group was
first introduced in 1966 by Fox and Milnor [14] and has been subject of
extensive study ever since. There are also other notions of concordance,
one of them being algebraic concordance. Algebraic concordance is the
form of concordance corresponding to algebraically slice knots, that is, it
is an equivalence relation defined on Seifert matrices which turns them
into an abelian group, the algebraic concordance group, denoted by GZ.
Unlike the classical concordance group, the algebraic concordance group
is well-understood. Knowing that there is only little information about
the algebraic structure of the classical concordance group, it is remarkable
that J. Levine [29, 30] could prove in the late 1960’s that

GZ ∼= Z∞ ⊕ (Z/2Z)∞ ⊕ (Z/4Z)∞.

For a detailed treatment of the algebraic concordance group, see [36]. We
continue our discussion by introducing an extension of the classical knot
genus, known as the slice or 4-ball genus.

2.3 Slice Genus
Recall that the classical genus g(K) of a knot K ⊂ S3 is defined as the
minimal genus of any Seifert surface for K (cf. Section 1.4). Since we
have been studying knots that bound a smoothly and properly embedded
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disk in the 4-ball, one could ask if a knot that does not bound such a disk
might bound a smoothly and properly embedded (orientable) surface in
the 4-ball instead, and if it does, one could further ask how the minimal
genus among all such surfaces compares to the ordinary genus of the knot.
This leads to the following definition.

Definition 2.16 (Slice Genus). Let K ⊂ S3 be a knot. The slice or 4-
ball genus g4(K) of K is defined as the minimal genus among all smoothly
and properly embedded orientable surfaces in B4 that bound the knot K.

The slice genus is sometimes also simply called 4-genus. By pushing a
Seifert surface of a knot K into the 4-ball B4 while keeping its boundary
fixed in S3, we see that

g4(K) ≤ g(K).

Since a slice knot bounds a properly and smoothly embedded disk in
B4, we see that for slice knots g4 = 0. On the other hand, non-trivial
slice knots (such as the square knot) provide examples of 0 = g4 < g. The
trefoil and the figure eight knot are examples of non-slice genus one knots,
so for each of these we have g4 = g = 1. In Section 7, we will encounter a
technique that can be used to improve the bound g4(K) ≤ g(K) in certain
cases. Another convenient bound for the 4-genus is given by the following
theorem.

Theorem 2.17. If a knot K can be unknotted by changing n crossings,
then

g4(K) ≤ n.

A proof can be found in [36]. Theorem 2.17 implies in particular that
if u(K) is the unknotting number, i.e. the minimal number of changings
of crossings needed to unknot K, then g4(K) ≤ u(K). Another bound
was given by Murasugi [41] in terms of the signature of a knot:

g4(K) ≥ 1

2
|σ(K)|.

This bound generalizes to 2g4(K) ≥ |σω(K)| provided that ∆K(ω) ∕= 0,
where σω(K) denotes the Tristram-Levine signature of K and ∆K is the
Alexander polynomial of K (cf. Sections 1.5 and 1.6). If J1#J2 is the
connected sum of two knots J1 and J2, then we have the trivial bound

g4(J1#J2) ≤ g4(J1) + g4(J2).

In particular, g4 defines a sub-additive function on the knot concordance
group C.

In general, it is difficult to obtain lower bounds for the slice genus
g4. In Section 3.4, we will encounter a theorem based on Casson-Gordon
invariants that can be used to obtain lower bounds in certain cases, see
for instance [19]. Other than that, we have Taylor’s lower bound [50]
and bounds obtained from L2-signatures, Khovanov-Rozansky homology,
knot Floer homology and gauge theory, see for instance [9, 12, 26, 43, 44].
Note that Casson-Gordon invariants, Taylor’s method and L2-signatures
are the only tools that also provide bounds in the topological setting.
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2.4 Stable 4-Genus
In 2010, Livingston [35] defined a variation of the 4-genus defined as fol-
lows.

Definition 2.18 (Stable 4-Genus). Let K ⊂ S3 be a knot. Then the
stable 4-genus gst(K) of K is defined as

gst(K) = lim
n→∞

g4(nK)

n
,

where nK denotes the n-fold connected sum K# · · ·#K.

The existence of the limit follows from the subadditivity of g4. As an
example, the stable 4-genus of the figure-eight is 0 (which is a consequence
of the figure-eight being amphicheiral), and the stable 4-genus of the trefoil
is 1 (cf. [35]).

It is possible to show that gst induces a semi-norm on the rationalized
knot concordance group CQ = C ⊗Q. The definition of the stable 4-genus
is in analogy with the stable commutator length from group theory, which
can be used to study genus problems of various kinds in topology and
geometry (e.g. find a surface of least genus with a particular property
in some topological space). An introduction to the stable commutator
length and related topics can be found in [4].

There are many open questions around the stable 4-genus gst. For
example, it is known that gst is not always an integer, but it is unknown
whether gst(K) ∈ Q for all knots K or not. Maybe of more interest is the
question whether or not gst is a norm on CQ. That is, if gst(K) = 0, does
K represent torsion in C? In the same spirit is the question whether or
not there is a knot K such that 0 < gst(K) < 1

2
, which is closely related

to the question whether there is torsion of order greater than 2 in C (see
[35] for more details).

In Section 7, we will provide an upper bound for the stable 4-genus of
the twist knots Kn.
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3 Casson-Gordon Invariants
In the late 1970’s, Casson and Gordon [5, 6] have defined certain invariants
of knots, known as σ(K,χ) and τ(K,χ), which led to new obstructions for
a knot being slice. In particular, they used these obstructions to show that
the only slice knots among the twist knots Kn are the unknot K0 and the
Stevedore knot K2. Roughly speaking, the invariant σ(K,χ) is the differ-
ence between a twisted and untwisted signature of the intersection form
of a certain 4-manifold W associated to the n-fold cyclic branched cov-
ering Ln and a character χ : H1(Ln) → Zm, which yields an obstruction
for ribbon knots (Theorem 1 in [5]). To extend this obstruction to slice
knots (Theorem 2 in [5]), Casson and Gordon introduce another invariant
τ(K,χ), which is an element in the rationalized Witt group W (C(t))⊗Q
and takes, next to finite cyclic branched covers, also infinite cyclic covers
into account. The relation between the invariants σ(K,χ) and τ(K,χ)
is given in Theorem 3 in [5] (also see Section 3.3 below). Casson and
Gordon’s result about the sliceness of the twist knots then follows after
a careful analysis of the invariant σ(K,χ) for 2-bridge knots (cf. Section
4) and applying the obstruction to sliceness obtained from σ(K,χ) and
τ(K,χ).

For our analysis of the slice genus of the twist knots, we will only be
interested in the invariant τ(K,χ), and in particular in Gilmer’s descrip-
tion of τ(K,χ) in terms of curves lying on a Seifert surface for the knot.
However, for the sake of completeness, we will also include the definition
of σ(K,χ), and state the main results of [5]. But first, we will give a short
overview of the objects that arise in the definition of σ(K,χ) and τ(K,χ),
respectively.

3.1 Preliminaries
Dehn Surgery on Knots

Let K ⊂ S3 be a knot and XK the knot exterior. Further, let r = p
q

be a rational number with p and q coprime. Recall that ∂XK is a torus
S1 × S1 with longitude-meridian pair (λ, µ). By gluing a solid torus to
the boundary of XK , we obtain a closed 3-manifold (which, of course,
depends on the gluing map). This yields the following definition.

Definition 3.1 (Dehn Surgery on Knots). The Dehn surgery along
K with framing r = p

q
consists of the closed 3-manifold S3

r (K) obtained
by gluing a solid torus S1×D2 to the boundary of the knot exterior ∂XK ,
identifying the meridian of S1 ×D2 with pµ+ qλ. In symbols,

S3
r (K) := XK ∪r S

1 ×D2.

Since the diffeomorphism type of S3
r (K) is entirely specified by the

image of the meridian of the solid torus S1 ×D2 (cf. [45]), the result of
Dehn surgery is well-defined (up to diffeomorphism). A remarkable result
is that every closed, orientable 3-manifold can be obtained by performing
surgery on a framed link in S3, as shown by Lickorish and Wallace in
the 1960’s [32, 56]. An important class of spaces is formed by performing
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p
q
-surgery on the unknot U . Such a space is called lens space, and is

denoted by L(p, q). Lens spaces were introduced by Heinrich Tietze in
1908 [52] and are the only known examples of closed 3-manifolds that are
not entirely determined by their fundamental group and homology. We
will remark in Section 4 that the 2-fold branched cover of the twist knots
is a lens space.

For the definition of the invariant τ , we will be interested in the 0-
surgery S3

0/1(K), i.e. the closed 3-manifold that is obtained by gluing
a solid torus to the knot exterior XK , where the meridian of the solid
torus is identified with the longitude of ∂XK . To shorten notation, let M
denote S3

0/1(K). It can be shown (cf. Lemma 2.18 in [7]) that the first
homology group of M is infinite cyclic, that is, H1(M ;Z) ∼= Z, generated
by a meridian of a tubular neighborhood of K in M . Thus, similar to
the construction of the finite cyclic coverings of XK , we can consider the
composition

π1(M) → H1(M ;Z) ∼= Z → Z/nZ
in order to obtain an n-fold cyclic covering Mn → M . A key observation
that will be needed later is the following.

Lemma 3.2. Let K ⊂ S3 be a knot with knot exterior XK , and let
M = S3

0/1(K) denote the 0-surgery performed along K. Further, let Ln

be the n-fold cyclic branched covering of S3 and let Mn be the n-fold cylic
covering of M . Then:

1.) H1(Mn;Z) ∼= H1(XK ;Z);
2.) H1(XK ;Z) ∼= H1(Ln;Z)⊕ Z.

The proof is a standard application of the Mayer-Vietoris exact se-
quence and can be found for example in [7]. We will use Lemma 3.2 to
define a certain character on H1(Mn;Z).

Twisted Homology and the Intersection Form

The aim of this paragraph is to give the definition of homology with
twisted coefficients and see how it compares to the ordinary homology of
a space X. Along we will review the intersection form on 4-manifolds and
the corresponding twisted version. Our discussion will be based on [7]. A
more detailed treatment can be found in [10, 16].

Fix a (not necessarily commutative) ring R with involution ν. Given
a right R-module M , let M denote the left R-module obtained by turning
M into a left R-module via the standard procedure r ·m := m · ν(r).

Let X be a topological space that admits a universal covering p :
!X → X. Further, let Y ⊂ X be a (possibly empty) subspace and set
!Y := p−1(Y ). Let C∗( !X, !Y ) denote the singular chain complex of the pair
( !X, !Y ). Then, the usual right action of π1(X) on !X endows C∗( !X, !Y )
with the structure of a right Z[π1(X)]-module, and the choice of a ho-
momorphism ϕ : π1(X) → R endows R with a (Z[π1(X)], R)-bimodule
structure. Tensoring now C∗( !X, !Y ) with R over Z[π1(X)] yields a new
chain complex whose homology is the twisted homology of the pair (X,Y ).

31



Definition 3.3 (Homology with Twisted Coefficients). The twisted
homology of the pair (X,Y ) with coefficients in R is defined as

H∗(X,Y ;R) = H∗(C∗( !X, !Y )⊗Z[π1(X)] R).

Similarly, the twisted cohomology of the pair (X,Y ) with coefficients in R
is defined as

H∗(X,Y ;R) = H∗(HomZ[π1(X)](C∗( !X, !Y ), R)).

Homology with twisted coefficients is also known as homology with local
coefficients and was first introduced by Norman E. Steenrod [49] in 1963 as
a generalization of ordinary homology theories. In some sense, homology
with twisted coefficients captures the homology of all regular coverings
of X. Indeed, suppose that ϕ : π1(X) → G is an epimorphism to some
abelian group G, and let $X denote the covering of X corresponding to
ker(ϕ). Note that ϕ equips Z[G] with a right Z[π1(X)]-module structure.
Then it can be shown that the covering map !X → $X induces a chain
isomorphism

C∗( !X)⊗Z[π1(X)] Z[G] ∼= C∗( $X).

Consequently, H∗(X;Z[G]) and H∗(X;Z) are canonically isomorphic. Note
that the cases G = {1} and G = Z[π1(X)] yield the usual singular homol-
ogy of X and !X, respectively.

We are going to recall the definition of the intersection form of a com-
pact, orientable 4-manifold W next. Consider the composition

ΦZ : H2(W ;Z) i∗→ H2(W, ∂W ;Z) PD→ H2(W ;Z) ev→ Hom(H2(W ;Z),Z),

where i∗ denotes the map induced by the inclusion i : (W, ∅) → (W, ∂W ),
PD denotes the Poincaré duality isomorphism and ev denotes the eval-
uation map. Set λZ(x, y) := ΦZ(x)(y). It turns out that λZ defines a
symmetric bilinear form on W (cf. [24]).

Definition 3.4 (Intersection Form). The symmetric bilinear pairing

λZ : H2(W ;Z)×H2(W ;Z) → Z, λZ(x, y) = ΦZ(x)(y)

is called intersection form of W . The signature of λZ is called the signature
of W and is denoted by signZ(W ).

Note that the intersection pairing need not be non-degenerate. Indeed,
the evaluation map is in general not injective and furthermore, the exact
sequence of the pair (W, ∂W ) shows that λZ vanishes on im(H2(∂W ;Z) →
H2(W ;Z)). However, the definition of the intersection form can be adapted
to rational coefficients. This yields a pairing λQ on H2(W ;Q) whose sig-
nature coincides with the signature of λZ. This means in particular that
if H2(∂W ;Q) = 0, then λQ is non-degenerate (and in fact non-singular
since Q is a field). There are also other, more geometric interpretations
of the intersection form, see for example [2] or [24].

There is an analogue of the intersection form for homology with twisted
coefficients, defined in the exact same way (cf. [7]): consider the compo-
sition

ΦR : H2(W ;R)
i∗→ H2(W, ∂W ;R)

PD→ H2(W ;R)
ev→ HomR(H2(W ;R), R),
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where i∗ denotes the map induced by the inclusion inclusion i : (W, ∅) →
(W, ∂W ), PD denotes the Poincaré duality isomorphism and ev denotes
the evaluation map. As above, the map Φ yields a well-defined symmetric
bilinear form λR on W .

Definition 3.5 (Twisted Intersection Form). The symmetric bilinear
pairing

λR : H2(W ;R)×H2(W ;R) → R, λR(x, y) = ΦR(x)(y)

is called twisted intersection form of W . The signature of λR is called the
twisted signature of W and is denoted by signR(W ).

Note that for R = Z, one recovers the definition of the ordinary in-
tersection form λZ. The twisted and untwisted intersection form and
their respective signatures are the powerful tools that lead to the Casson-
Gordon invariants.

Linking Forms

There is an analogue to the intersection form of a 4-manifold in the 3-
dimensional case. Let M be a compact, orientable, 3-dimensional mani-
fold, and let TorH1(M ;Z) be the torsion part of H1(M ;Z), that is,

TorH1(M ;Z) := {x ∈ H1(M ;Z) : nx = 0 for some n ∈ N}.

Then there exists a Q/Z-valued bilinear form φ on TorH1(M ;Z), defined
as follows. Given [x], [y] ∈ TorH1(M ;Z), let x, y ∈ C1(M) be cycles
representing [x] and [y], respectively. Further, let w ∈ C2(M) be such
that ∂w = ny for some n ∈ N, and suppose that w is transverse to x.
Define

φ : TorH1(M ;Z)× TorH1(M ;Z) → Q/Z, φ([x], [y]) =
#(x ∩ w)

n
,

where #(x ∩ w) denotes the number of intersection points counted with
signs. It follows from classical results in algebraic topology that φ is well-
defined and bilinear (see for example [2] or [24]). We have the following
definition.

Definition 3.6 (Linking Form). Let M be a compact, orientable, 3-
dimensional manifold. The Q/Z-valued bilinear form φ defined above
is called (geometric) linking form of M . φ is called non-singular if the
correlation map c : TorH1(M ;Z) → Hom(TorH1(M ;Z),Q/Z) defined by
cx(·) = φ(x, ·) is an isomorphism.

If M is a rational homology 3-sphere, then one can show that L is
symmetric and non-singular (cf. [8]). We will be mainly interested in the
case where M is the double branched cover L2 of some knot K ⊂ S3. Since
L2 is a rational homology 3-sphere (cf. Proposition 1.24), the linking form
φ of the double branched cover is symmetric and non-singular.

It is also possible to define linking forms in purely algebraic terms (cf.
[36]). Let A be a finite abelian group. An (algebraic) linking form on A is a
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bilinear symmetric map φ′ : A×A → Q/Z that is non-singular. As above,
non-singular means that the correlation map c′ : A → Hom(A,Q/Z) de-
fined by c′x(·) = φ′(x, ·) is an isomorphism. Note that it is not necessary
to require φ′ to be symmetric and non-singular, but it is customary to do
so in the context of knot theory. Also, note that since H1(L2;Z) is a finite
torsion group (cf. Proposition 4.4), its geometric linking form φ is also an
algebraic linking form φ′ as defined above.

In the upcoming sections, we will need some further notions that are
associated to linking forms. For convenience, we stay in the algebraic
context. If φ′ is an algebraically defined linking form, then there is a dual
form (φ′)∗ on A∗ = Hom(A,Q/Z) defined by the formula (φ′)∗(cx, cy) =
φ(x, y). Next, if H is a subgroup of A, let

H⊥ := {x ∈ A : φ′(x, y) = 0 for all y ∈ H}.

Similar to the notion of a metabolizer for the Seifert pairing (cf. Definition
2.7), there is a notion of metabolizer for linking forms.

Definition 3.7 (Metabolic Linking Form). Let φ′ be an algebraically
defined linking form. If there is a subgroup H such that H = H⊥, then
φ′ is called metabolic and H is called a metabolizer.

In contrast to the rank of a metabolizer of the Seifert pairing, which
is half the rank of the first homology of a Seifert surface, the order of a
metabolizer H of a linking form ψ′ satisfies |H|2 = |A|. As we will see,
this is a key property of metabolic linking forms that is used in many
arguments.

The last notion that we are going to need is that of an even presentation
of a linking form (cf. [19]). Let F be a free Z-module of finite rank and
〈·, ·〉 : F × F → Z a non-degenerate symmetric bilinear form. Here,
non-degenerate means that the correlation map F → F ∗ = Hom(L,Z) is
injective. By tensoring with Q, we can extend 〈·, ·〉 to a form

〈·, ·〉 : F ⊗Q× F ⊗Q → Q.

Define
F# := {x ∈ F ⊗Q : 〈x, y〉 ∈ Z for all y ∈ F}.

Identifying F as a subset of F ⊗ Q in the usual way, we have F ⊂ F#,
and since F is free of finite rank, F#/F is a finite abelian group. It is
now possible to define a linking form φ′ on F#/F by the formula

φ′(xF, yF ) = 〈x, y〉 mod Z.

〈·, ·〉 is called a presentation of φ′. If 〈x, x〉 is even for all x ∈ F , then the
presentation is called even. It is possible to show that every algebraically
defined linking form has an even presentation (cf. [55]).

Witt Groups

We have mentioned earlier that the invariant τ(K,χ) is an element of
the rationalized Witt group W (C(t)) ⊗ Q, where C(t) denotes the field
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of complex rational functions in one variable t. The aim of this para-
graph is to briefly recall the definition of Witt groups W (R) and de-
scribe, in the case that R = C(t), a certain averaged signature function
signav

ω : W (C(t) → Q. Our discussion follows [7] and [36]. A more detailed
account to Witt groups can be found in [38].

As above, let R be a ring with involution ν. To simplify our algebra,
we now assume that R is commutative and, furthermore, a principal ideal
domain. Given a free R-module M of finite rank, a map β : M ×M → R
is called sesquiliniear if β is linear in the first and anti-linear in the second
variable, that is, β(x, ry) = ν(r)β(x, y). Further, β is called Hermitian if β
is sesquilinear and β(x, y) = ν(β(y, x)). Finally, β is called non-degenerate
if the adjoint map M → HomR(M,R) given by x +→ β(x, ·) is injective,
and non-singular if the adjoint map is an (anti-linear) isomorphism. A
Hermitian form is a pair (M,β), where M is a free R-module of finite
rank and β is a non-singular Hermitian pairing.

Let us turn our attention now to the definition of Witt equivalence.
Given two Hermitian forms (M1,β1) and (M2,β2), their direct sum
(M1,β1)⊕ (M2,β2) = (M1⊕M2,β1⊕β2) is formed in the obvious way. A
Hermitian form (M,β) is called metabolic if there exists a direct summand
submodule P ⊂ M whose orthogonal complement P⊥ is equal to P , i.e.

P⊥ = {x ∈ M : β(x, y) = 0 for all y ∈ P} = P.

Last but not least, two Hermitian forms (M1,β1) and (M2,β2) are called
Witt equivalent if the direct sum (M1,β1) ⊕ (M2,−β2) is metabolic. We
have the following theorem:

Theorem 3.8. Let R be a commutative principal ideal domain with in-
volution ν : R → R. Then the following statements hold:

1.) Witt equivalence is an equivalence relation on the set of isomorphism
classes of free finite rank Hermitian forms over R, and the set of
equivalence classes forms an abelian group W (R), the Witt group of
R.

2.) A Hermitian form represents zero in the Witt group if and only if it
is metabolic.

3.) The additive inverse of an element [(M,β)] ∈ W (R) is given by
[(M,−β)] ∈ W (R).

A proof can be found in [7]. Of course, the group operation on W (R)
is given by direct sum. As an example, given R = R with the trivial
involution and R = C with the involution given by complex conjugation,
one can show that the ordinary signature induces isomorphisms W (R) ∼= Z
and W (C) ∼= Z. As mentioned above, we will be interested in the Witt
group W (C(t)) (note that the involution on C(t) is given by conjugating
complex numbers and sending t to t−1). Unfortunately, W (C(t)) is rather
difficult to describe; it is isomorphic to an infinite direct sum of copies of
Z (cf. [33]). However, the exact description of W (C(t)) is not needed for
the definition of τ , so we do not go into further details at this point.

Let us describe now a signature function signav
ω : W (C(t)) → Q, where

ω ∈ S1, which will relate the invariants σ(K,χ) and τ(K,χ) (cf. Theorem
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3.14). Given a Hermitian matrix A(t) over C(t), note that for some fixed
ω ∈ S1, the signature sign(A(ω)) is constant in a neighborhood of ω
unless det(A(ω)) = 0 or some entry of A(ω) is infinite (compare to the
Tristram-Levine signature σω in Section 1.6). Thus, ω +→ sign(A(ω)) is
a piecewise-constant function with finitely many discontinuities. At each
discontinuitiy ω, we redefine sign(A(ω)) to be the averaged signature

signav(A(ω)) := lim
ω+,ω−→ω

"
sign(A(ω+)) + sign(A(ω−))

2

#
∈ Q,

where ω+,ω− ∈ S1 are unit complex numbers with arguments above and
below that of ω. One can check that signav(A(ω)) is well-defined for all
ω ∈ S1. This leads to the following definition.

Definition 3.9 (Averaged Signature Function). Let ω ∈ S1 be fixed.
Then the averaged signature function signav

ω is defined as

signav
ω : W (C(t)) → Q, A(t) +→ signav(A(ω)).

It is possible to show that signav
ω is a well-defined group homomorphism

(cf. [5]). Note that every element [(M,β)] ∈ W (C(t)) can be represented
by a matrix over C(t) after choosing a basis for M .

3.2 The Invariant σ(K,χ)

In this section we are going to define the Casson-Gordon invariant σ(K,χ)
following [5] and [7]. Throughout this section Zn will denote the finite
cyclic group Z/nZ.

Let M be a closed 3-manifold and χ : H1(M ;Z) → Zm an epimor-
phism. It follows from bordism theory that there exists a 4-manifold W
and a character ψ : H1(W ;Z) → Zm such that ∂W consists of r > 0
copies of M , and ψ agrees with χ on each copy of M . For short, we will
write ∂(W,ψ) = r(M,χ) in this case. Precomposing ψ with the abelian-
ization map yields a surjection π1(W ) → Zm. Let Wm → W denote the
corresponding m-fold covering.

Since the group of deck transformations of Wm is isomorphic to Zm,
we can regard H2(Wm;Z) as a Z[Zm]-module. By mapping the generator
of Zm to ω = e

2πi
m , we obtain a map Z[Zm] → Q(ω) which endows Q(ω)

with a (Z[Zm],Q(ω))-bimodule structure. Define

H∗(W ;Q(ω)) := H∗(Wm;Z)⊗Z[Zm] Q(ω).

The notation H∗(W ;Q(ω)) is justified since H∗(Wm;Z)⊗Z[Zm]Q(ω) is iso-
morphic to the homology of the twisted chain complex C∗(%W ) ⊗Z[π1(W )]

Q(ω), where %W denotes the universal cover of W (cf. [7]). Moreover, this
isomorphism induces a (twisted) intersection form λQ(ω) on H∗(W ;Q(ω))
whose signature will be denoted by signψ(W ). Similarly, denote the sig-
nature of the standard (untwisted) intersection for λZ on H2(W ;Z) by
sign(W ). The main definition of this section is the following.
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Definition 3.10 (Casson-Gordon Invariant σ(K,χ)). Let M be a
closed 3-manifold and χ : H1(M ;Z) → Zm, m ∈ N, an epimorphism.
Suppose that that ∂(W,ψ) = r(M,χ) for some 4-manifold, character pair
(W,ψ) and r ∈ N>0. The Casson-Gordon invariant σ(M,χ) is defined as

σ(M,χ) :=
1

r
(signψ(W )− sign(W )) ∈ Q.

In the special case that M is the double branched covering L2 of a knot
K ⊂ S3, the invariant σ(K,χ) is defined as

σ(K,χ) := σ(L2,χ).

One can check [7] that σ(M,χ) (and consequently σ(K,χ)) is well-
defined and does not depend on r, W , or ψ. The following theorem is the
main result about σ(K,χ) (Theorem 1 in [5]).

Theorem 3.11. If K ⊂ S3 is a ribbon knot whose double branched cov-
ering L2 is a lens space, then:

1.) |H1(L2;Z)| is a square, say k2;

2.) if χ : H1(L2;Z) → Zm is a non-constant character whose order m
divides k2, then |σ(K,χ)| = 1.

The proof (cf. [5]) reveals that one can take as W the 2-fold cover of
B4 branched along a pushed-in ribbon disk D for K (note that ∂W = L2),
and relies further on the fact that π1(L2) is finite cyclic and that D has no
index 2 critical points (cf. Section 2.1 or Lemma 1 in [5]). Thus, the proof
of the theorem above can not be directly applied to arbitrary slice knots,
which is why Casson and Gordon introduce a second invariant, τ(K,χ).

3.3 The Invariant τ(K,χ)

In this section we are going to define the invariant τ(K,χ) following [7]
and [5]. As before, throughout this section Zn will denote the finite cyclic
group Z/nZ.

Let K ⊂ S3 be a knot, and let M be the closed 3-manifold obtained by
performing 0-framed surgery on the knot exterior XK , i.e. M = S3

0/1(K).
We have remarked in Section 3.1 that H1(M ;Z) ∼= Z, giving rise to the
composition

π1(M) → H1(M ;Z) ∼= Z → Zn

whose kernel corresponds to an n-fold cyclic covering Mn → M . Now, let
Ln denote the n-fold cyclic cover of S3 branched along K, and suppose we
are given a character χ : H1(Ln;Z) → Zm of prime-power order m = pk,
p prime. Our aim is now to define an epimorphism ϕ : π1(Mn) → Zm×Z.
This is done as follows:

• The covering map p : Mn → M gives rise to the composition

π1(Mn)
p∗→ π1(M) → H1(M ;Z) ∼= Z

with image isomorphic to nZ. This allows us to define a surjection
α : π1(Mn) → Z.
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• Recall from Lemma 3.2 that H1(Mn;Z) ∼= H1(Ln;Z) ⊕ Z. Using
projection to the first factor and the character χ : H1(Ln) → Zm,
we get again a composition

π1(Mn) → H1(Mn;Z) → H1(Ln;Z)
χ→ Zm.

Let !χ : π1(Mn) → Zm denote this composition.

Using α and !χ, we can now define a homomorphism

ϕ : π1(Mn) → Zm × Z, x +→ (α(x), !χ(x)),

which is surjective [5].
Now, similarly to the definition of σ(K,χ), bordism theory implies that

there exists an r > 0, a 4-manifold Vn, and a map ψ : π1(Vn) → Z × Zm

such that ∂(Vn,ψ) = r(Mn,ϕ). Let $Vn → Vn denote the Zm × Z-cover
associated to ψ. Next, equip C(t) with the (Z[Zm × Z],C(t))-bimodule
structure that arises from the composition

Z[Zm × Z] → Q[Zm × Z] → C(t),

where the last map sends the generator of Zm to ω = e
2πi
m and the gener-

ator of Z to t. Define

H∗(Vn;C(t)) = H∗($Vn;Z)⊗Z[Zm×Z] C(t).

As before, the notation H∗(Vn;C(t)) is justified since H∗($Vn;Z)⊗Z[Zm×Z]
C(t) is isomorphic to the homology of the twisted chain complex
C∗(!Vn)⊗Z[π1(Vn)] C(t), where !Vn denotes the universal cover of Vn. More-
over, this isomorphism induces a (twisted) intersection form λC(t) on
H∗(Vn;C(t)). Since m is by assumption a primer-power, the form λC(t)
is non-singular and defines therefore an element [λC(t)] in the Witt group
W (C(t)) (cf. the corollary to Lemma 4 in [5]).

We wish now to compare [λC(t)] with an element in W (C(t)) that arises
from the standard intersection form λZ on H2(Vn;Z). As mentioned in
Section 3.1, the signature of λZ agrees with the signature of the intersec-
tion form λQ on H2(Vn;Q). However, in both cases, the forms might be
singular. So instead, we consider the non-singular form λnonsing

Q induced
by λQ on H2(Vn;Q)/im(H2(∂Vn;Q) → H2(Vn;Q)), which defines an ele-
ment [λnonsing

Q ] in the Witt group W (Q). Mapping [λnonsing
Q ] to W (C(t))

via the homomorphism i : W (Q) → W (C(t)) induced by the canonical
inclusion Q → C(t) then defines an element i([λnonsing

Q ]) ∈ W (C(t)). We
have the following definition.

Definition 3.12 (Casson-Gordon Invariant τ(K,χ)). Let K ⊂ S3 be
a knot, n ∈ N>0 a positive integer, and let Mn → M be the n-fold cyclic
cover of M , where M is the result of 0-framed surgery along K. Further,
let Ln be the n-fold cyclic cover of S3 branched along K, and let χ :
H1(Ln;Z) → Zm be a character of primer-power order m = pk. Finally,
let ϕ : π1(Mn) → Zm × Z be the epimorphism as defined above, and
suppose that ∂(Vn,ψ) = r(Mn,ϕ) for some 4-manifold, homomorphism
pair (Vn,ψ) and r ∈ N>0. The Casson-Gordon invariant τ(K,χ) is defined
as the Witt class

τ(K,χ) := ([λC(t)]− i([λnonsing
Q ]))⊗ 1

r
∈ W (C(t))⊗Q.
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As for the invariant σ(K,χ), one can check [7] that τ(K,χ) is well-
defined and does not depend on r, Vn, or ψ. Note that tensoring with Q
is necessary in order to obtain a well-defined knot invariant (cf. [5]). The
following theorem is the main result about τ(K,χ), providing the already
mentioned slicing obstruction (Theorem 2 in [5]).

Theorem 3.13. Let K ⊂ S3 be a knot with n-fold cyclic branched cover-
ing Ln for some prime-power n. If K is slice, then there exists a subgroup
G ⊂ H1(Ln;Z) such that

1.) |G|2 = |H1(Ln;Z)|;
2.) φ(G×G) = 0, where φ is the geometric linking form of Ln;

3.) if χ : H1(Ln;Z) → Zm is a character of prime-power order such that
χ(G) = 0, then

τ(K,χ) = 0.

The proof can be found in [5]. Note that the first and second point
of Theorem 3.13 say that the linking form φ of Ln is metabolic with
metabolizer G.

In general, the invariant τ(K,χ) is difficult to compute. Fortunately,
it is possible to compare τ(K,χ) to σ(K,χ) using the averaged signature
function signav

ω , which turns Theorem 3.11 into an obstruction for slice
knots whose double branched cover is a lens space. Recall from Definition
3.9 that the averaged signature function is defined as

signav
ω : W (C(t)) → Q, A(t) +→ signav(A(ω)),

where

signav(A(ω)) := lim
ω+,ω−→ω

"
sign(A(ω+)) + sign(A(ω−))

2

#
∈ Q.

We have the following theorem by Casson and Gordon (Theorem 3 in [5]).

Theorem 3.14. Let K ⊂ S3 be a knot with n-fold cyclic branched cov-
ering Ln. Further, let χ : H1(Ln;Z) → Zm be a character of prime-power
order, inducing an m-fold covering !Ln → Ln. If H1(!Ln;Q) = 0, then

|σ(K,χ)− signav
1 (τ(K,χ))| ≤ 1.

A proof can be found in [5]. The following corollary now provides the
aforementioned slicing obstruction for knots whose double branched cover
is a lens space (compare Theorem 3.11)

Corollary 3.15. Let K ⊂ S3 be a knot whose double branched covering
L2 is a lens space. If K is slice, then

1.) |H1(L2;Z)| is a square, say k2;

2.) if χ : H1(L2;Z) → Zm is a non-constant character whose prime-
power order m divides k2, then |σ(K,χ)| ≤ 1.
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The first point of the corollary follows from the first point in Theorem
3.13, while the second point follows from the fact that if L2 is a lens space,
then H1(L2;Z) = Zk2 , so there is a unique subgroup G ⊂ H1(L2;Z) of
order k on which χ vanishes. Then Theorem 3.13 applies and shows that
τ(K,χ) = 0, so by Theorem 3.14, |σ(K,χ)| ≤ 1 (for more details, see [7]).

These are the main results obtained by Casson and Gordon in the
1970’s. The Casson-Gordon invariants have been ever since important
objects in the study of slice knots and have found interpretations in many
different contexts. See the appendix of [5] for further information on
subsequent developments.

We conclude this section with a few remarks regarding τ(K,χ) that
will be needed in the next section.

Remark.

1.) In the definition of τ(K,χ), the character χ maps into a finite cyclic
group Zm. It is also possible to consider characters χ : H1(Ln;Z) →
C∗ or χ : H1(Ln;Z) → Q/Z of order m instead, so that the cor-
responding images are isomorphic to a finite cyclic group. In par-
ticular, this allows us to consider χ as an element of H1(L2;C∗) or
H1(L2;Q/Z), respectively. The latter case will be used in particular
in the next section.

2.) Given χ ∈ H1(L2;Q/Z) ∼= HomZ(H1(L2;Z),Q/Z), one can consider
the inverse character −χ and the corresponding Casson-Gordon in-
variant τ(K,−χ). It is possible to show that τ(K,χ) = τ(K,−χ),
see for instance [18].

3.) Consider again the averaged signature function signav
1 . Note that

there is a natural map W (R) → W (C(t)). We have mentioned in Sec-
tion 3.1 that the ordinary signature gives an isomorphism W (R) ∼= Z.
Together, this yields a map

ρ : Q → W (C(t))⊗Q.

It is not difficult to see that signav
1 ◦ ρ is the identity, what in partic-

ular implies that ρ is injective. This fact will be needed in the next
section about Gilmer’s description of the invariant τ(K,χ).

3.4 Gilmer’s Results about τ(K,χ)

In [18], Patrick Gilmer gives a relation between the first cohomology
H1(L2;Q/Z) of the double branched cover L2 of a knot K ⊂ S3 with
certain curves lying on a Seifert surface for K, leading to an expression of
the Casson-Gordon invariant τ(K,χ) in terms of these curves. Moreover,
in the case that the genus of K is one, he gives an explicit formula for the
computation of τ(K,χ) based on these curves.

In a second paper [19], Gilmer provides an extension of Casson and
Gordon’s slicing obstruction that we stated in Theorem 3.13 above. More
precisely, Gilmer’s result can be used to derive lower bounds for the slice
genus g4. In combination with Gilmer’s results about τ(K,χ), one gets
powerful tools for the analysis of the slice genus g4.
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As we will see in Section 4, all twist knots have genus one. Therefore,
we can use Gilmer’s formula for τ(K,χ) together with his obstruction to
provide a simple proof of Casson and Gordon’s theorem that the only slice
knots among the twist knots are the unknot and the Stevedore’s knot (cf.
Section 5). For this, we are going to briefly review the most important
points of Gilmer’s papers [18] and [19] in the following section.

Let K be a knot in S3 with Seifert surface F ⊂ S3 and Seifert pair-
ing θ : H1(F ) × H1(F ) → Z. Let L2 denote the double branched cover
of S3, branched along K, and let H1(L2;Q/Z) be the first cohomology of
L2 with Q/Z-coefficients, i.e. the set of characters χ : H1(L2;Z) → Q/Z.
Define a map ε : H1(F ) → H1(F ) by

εx(y) = θ(x, y) + θ(y, x),

and let N ⊂ H1(F )⊗Q/Z be the kernel of ε⊗ idQ/Z. Further, let N ′ ⊂ N
be the subset of elements of N with prime-power order. In Section 1 of
[18], Gilmer shows that

H1(L2;Q/Z) ∼= N,

and this isomorphism is natural up to sign. For χ ∈ H1(L2,Q/Z), let
τ(K,χ) be the Casson-Gordon invariant as defined in Section 3.3. Because
τ(K,χ) = τ(K,−χ), we can view τ as defined on N .

In order to describe Gilmer’s formula for τ(K,χ) in the genus one
case, assume that x ∈ H1(F ) is primitive (i.e. not a multiple of any other
element), and let Cx denote the collection of knots in S3 obtained by
representing x first by a simple closed curve γ on F , and then viewing
γ in S3. Note that if g(F ) = 1, then Cx is a singleton whose element is
denoted by Jx. Recall that H1(L2;Q/Z) ∼= N ⊂ H1(F )⊗ Q/Z. We have
the following result [18]:

Theorem 3.16. If a knot K admits a genus one Seifert surface F , then
for any χ = x ⊗ s

m
∈ N , where x ∈ H1(F ) is primitive, m is a prime

power, and 0 < s < m, we have

τ(K,χ) = ρ
&
2σ s

m
(Jx) +

4(m− s)s

m2
θ(x, x)− σ 1

2
(K)

' () *
=:C(s)

+
,

where ρ : Q → W (C(t))⊗Q is the homomorphism induced by the ordinary
signature σ : W (R) → Z and the inclusion W (R) → W (C(t)).

As mentioned in Section 3.3, the homomorphism ρ is injective, so that
τ(K,χ) = 0 if and only if the argument C(s) of ρ is zero. In general, not
every χ ∈ N satisfies the requirements of Theorem 3.16. However, it still
makes sense to compute the rational number C(s) for any χ ∈ N . We
will make use of this fact in Section 5 in order to show that the only slice
knots among the twist knots Kn are the unknot K0 and the Stevedore’s
knot K2.

Note that there is a more general result of Theorem 3.16, also due
to Gilmer, which holds for knots with arbitrary genus. The result states
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that it is possible to bound the difference |signav
1 (τ(K,χ))−C(s)| by the

nullity of the Tristram-Levine matrix (1 − ωs)A − (1 − ω−s)AT , where
ω = e

2πi
m , and the first Betti number of a Seifert surface for K. We refer

the interested reader to [18], Theorem 3.5.
Let us turn our attention now to Gilmer’s extension of Casson and

Gordon’s slicing obstruction given in [19]. Let L2 denote again the double
branched cover of a knot K ⊂ S3, and let φ denote the geometric linking
form of L2. Further, let β denote the form −φ∗ defined on H1(L2;Q/Z).
We have the following theorem [19]:

Theorem 3.17. If g4(K) = g, then (H1(L2;Q/Z),β) can be written as a
direct sum β1 ⊕ β2 such that

1.) β1 has an even presentation with rank 2g and signature σ(K);

2.) β2 has a metabolizer H such that if χ ∈ H has prime-power order,
then

|signav
ω (τ(K,χ)) + σ(K)| ≤ 4g

for all ω ∈ S1.

Clearly, if g = 0, we recover Casson and Gordon’s slicing obstruction
described in Theorem 3.13 above. Note that if K is slice (i.e. g = 0), then
β1 = 0 and β2 = β, so H ⊂ H1(L2;Q/Z) is a metabolizer for β.

Let us now see what happens in the case that K is a genus one knot.
Suppose that ω = 1. Since signav

1 ◦ ρ = idQ as described in Section 3.3,
the inequality in the second point of Theorem 3.17 becomes

|C(s) + σ(K))| ≤ 4g.

If we further assume that K is slice and that σ(K) = 0, then the inequality
further simplifies to

|C(s)| ≤ 0.

Thus, Theorem 3.17 shows that if K is a genus one knot with signature
zero such that C(s) ∕= 0 for all prime-power order χ ∈ H1(L2;Q/Z), then
K can not be slice. On the other hand, if there are some χ such that
C(s) = 0, then these have to be contained in a metabolizer for β, which
is a priori not always guaranteed.

As we will see in Section 4, all twist knots Kn are of genus one and
have signature zero. We will prove in Section 5 that C(s) ∕= 0 except when
n = 0, 2, which shows by the previous discussion that the only possible
slice knots are K0 and K2.

We have remarked earlier that Theorem 3.17 can be used to obtain
lower bounds for the slice genus g4. This is usually done by assuming a
certain value for g4(K) = g, and then show that β does not split according
to Theorem 3.17. Although this is in general rather difficult, it is actually
possible to obtain exact values for the slice genus from this method in
some cases. Sample computations can be found in Gilmer’s original paper
[19].

The last result that we are going to need from Gilmer is concerned
with the behavior of τ(K,χ) under connected sum of knots. For this,
let J1, J2 ⊂ S3 be two knots with double branched covering L1

2 and L2
2,
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respectively, and set Ni = H1(Li
2;Q/Z) for i = 1, 2. Further, let J =

J1#J2 be the connected sum of J1 and J2, with double branched covering
L2 and N = H1(L2;Q/Z). Then L2 = L1

2#L2
2 and N = N1 ⊕ N2. The

following proposition is due to Gilmer [18].

Proposition 3.18. If χ1 ∈ N1 and χ2 ∈ N2, then

τ(J1#J2,χ1 ⊕ χ2) = τ(J1,χ1) + τ(J2,χ2).

Thus, Proposition 3.18 shows that the Casson-Gordon invariant τ(K,χ)
is additive under connected sum, which will be of great use to us in
Section 6.
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Part II

The Slice Genus of Twist
Knots



4 The Twist Knots Kn – A First Pass
In this section, we finally turn our interest to the main actors of this text:
the twist knots Kn. We start with definitions and general properties,
describe a Seifert surface and Seifert matrix for the twist knots, and study
their double branched covering. We further show that the signature of all
twist knots vanishes, and show that Kn is algebraically slice if and only
if 4n+ 1 is a square.

4.1 Definition and General Properties
Roughly speaking, a twist knot is obtained by applying a certain number
of full 2π-right hand twists to an unknot and then linking its end together.
More formally, twist knots arise as a special case of so-called 2-bridge knots
(respectively 2-bridge links) C(a1, . . . , ak), where ai ∈ Z, depicted below:

Figure 4.1: General 2-bridge knot C(a1, . . . , ak) and the 2-bridge
knot C(4,−2, 3)

Here, ai ∈ Z denotes the number of half-twists in each corresponding
box, with the convention that for even (respectively odd) i ∈ N and pos-
itive ai, left-hand (respectively right-hand) half-twists are applied (and
vice-versa if ai is negative). Depending on k and the coefficients ai,
C(a1, . . . , ak) is either a knot or a link with two components. On the
right hand side of Figure 4.1 is the 2-bridge knot C(4,−2, 3). Note that
depending on the parity of k, there are two different ways to connect the
top and bottom of C(a1, . . . , ak). The left hand side of Figure 4.1 shows
the connection for even k, while the example on the right hand side shows
how the strands are connected for odd k.
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By setting k = 2, a1 = 2n for n ∈ N, and a2 = 2, we obtain the twist
knot Kn.

Definition 4.1 (Twist Knot). For n ∈ N, the 2-bridge knot C(2n, 2) is
called twist knot with n full 2π-twists and is denoted by Kn.

For short, we simply call Kn a twist knot. Note that the twists in
Kn are right-handed (also called positive). Figure 4.2 below shows the
general form of a twist knot.

Figure 4.2: The twist knots Kn

The most famous knots among the twist knots are the unknot K0, the
figure-eight K1 = 41, and the Stevedore’s knot K2 = 61 shown below.

Figure 4.3: The unknot, figure-eight, and Stevedore’s knot

All twist knots are reversible (i.e. equivalent to itself with reversed
orientation), but only the figure-eight K1 is amphicheiral (i.e. equivalent
to its mirror image with reversed orientation). A possible Seifert surface
for Kn is already visible from Figure 4.2. However, we will work with
a more convenient representation of that Seifert surface in the form of a
disk with a number of curled and linked bands attached, as seen in Figure
4.4 below.

The surface in Figure 4.4 will be denoted by Fn, and when speaking of
a Seifert surface for the twist knots Kn, we will always mean the surface
Fn. It is not difficult to see that Fn actually bounds the twist knot Kn;
just note that the boundary of a curl corresponds to a full 2π-twist as
shown in Figure 4.5 below.

The advantage of the Seifert surface Fn is that there is a basis for
H1(Fn) in terms of simple closed curves. The basis elements we are going
to work with are represented by the curves labelled a and b in Figure 4.4,
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Figure 4.4: Seifert surface for Kn

Figure 4.5: Curls in bands correspond to twists

equipped with the indicated orientation. In this basis, a Seifert matrix for
Kn is given as

An :=

"
−1 1
0 n

#
.

When speaking of a Seifert matrix for Kn, we will always mean the matrix
An defined above. From this Seifert matrix, the Alexander polynomial
∆Kn(t) of the twist knots is readily computed:

∆Kn(t) = An − tAT
n =

"
t− 1 1
−t n(1− t)

#
.
= −nt+ (2n+ 1)− nt−1.

Another characteristic of the twist knots is that they all have vanishing
signature. Recall from Section 1.6 that the Tristram-Levine signature of
a knot K is defined as σω(K) = sign((1 − ω)A + (1 − ω)AT ), where
ω ∈ S1 \ {1} and A is a Seifert matrix for K. Note that σ−1(K) is the
ordinary signature of K.

Proposition 4.2. σω(Kn) = 0 for all n ∈ N and ω ∈ S1 \ {1}.

Proof. Let ω ∈ S1, ω ∕= 1, and n ∈ N be arbitrary, and let

An =

"
−1 1
0 n

#
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denote the usual matrix of the Seifert form of Kn as defined above. Then
the signature σω(Kn) is given as the signature of the matrix

Aω = (1− ω)A+ (1− ω)AT =

"
ω + ω − 2 1− ω
1− ω n(2− ω − ω)

#
.

Our aim is to find a diagonal matrix Dω congruent to the Hermitian
matrix Aω. First note that ω + ω − 2 = 0 implies that ω + ω = 2, so
Re(ω) = 1 and hence ω = 1, the case we excluded. So we can assume
ω + ω − 2 ∕= 0 and perform the following row and column operations to
Aω: multiply the first row with − 1−ω

ω+ω−2
and add it to the second row,

and then multiply the first column with − 1−ω
ω+ω−2

and add it to the second
column. This yields the following matrix:

Dω =

,
ω + ω − 2 0

0 n(2− ω − ω)− (1−ω)(1−ω)
(ω+ω−2)

-
.

Note that

n(2− ω − ω)− (1− ω)(1− ω)

(ω + ω − 2)
= n(2− ω − ω)− 1− ω − ω + 1

(ω + ω − 2)

= n(2− ω − ω) + 1,

so

Dω =

"
ω + ω − 2 0

0 n(2− ω − ω) + 1

#
.

Since ω ∕= 1, we know that ω + ω − 2 < 0, so

σω(Kn) = −1 + sign(n(2− ω − ω) + 1).

Thus we are done if we can show that n(2−ω−ω) + 1 > 0 for all ω ∈ S1

unequal to 1. But this is clear, since ω ∕= 1 implies that

2− ω − ω = 2− 2Re(ω) > 0.

□

Note that it is also possible to consider twist knots with left-hand
instead of right-hand twists. However, one can show that twist knots
with left-hand twists all have signature zero (cf. [7]), so by Proposition
2.10, none of them are slice. Therefore, twist knots with right-hand twists
are the only ones that are interesting to us.

4.2 Genus and Algebraic Sliceness
The classical genus g3(Kn) of the twist knots can directly be computed
from the Seifert surface Fn. Since Fn is a disk with two bands attached,
we have that g(Fn) = 1. By looking at the Alexander polynomial ∆Kn(t),
we can see that all twist knots are different from the unknot (except the
unknot itself), so we conclude that for n ∈ N \ {0},

g3(Kn) = 1.
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When it comes to the slice genus g4(Kn), we can see from the trivial
bound g4 ≤ g3 that

g4(Kn) ≤ g3(Kn) = 1.

As we will see in Section 5, g4(Kn) = 0 if and only if n = 0 or n = 2, so

g4(Kn) = 1

for all n ∈ N \ {0, 2}. Although only K0 and K2 are slice, it would be
interesting to know which twist knots are algebraically slice (cf. Section
2.1). It turns out that there is a simple condition on the number of twists
that ensures algebraic sliceness.

Proposition 4.3. Kn is algebraically slice if and only if 4n+1 is a square.

Proof. Let Kn, n ∈ N, be arbitrary with the usual Seifert matrix An as
described in Section 4. Our aim is to find conditions that guarantee the
existence of a metabolizer H of H1(Fn) satisfying 1. and 2. in Theorem
2.6. We will do so by considering what the possible generators of such a
metabolizer are. Since rank(H1(Fn)) = 2, we know that rank(H) = 1, so
a possible metabolizer is generated by a single element of H1(F ). Now, if
(x y) generates H, then it has to fulfill the equation

(x y)

"
−1 1
0 n

#"
x
y

#
= −x2 + ny2 + yx = 0. (4.1)

This equation is homogeneous in the sense that any multiple of a solution
is a solution again. Now, if y = 0 then x = 0, leading to the trivial
solution, so without loss of generality assume that y ∕= 0. By scaling over
R we might further assume that y = 1, so the equation reads as

−x2 + x+ n = 0,

which has two solutions

x1,2 =
−1±

√
4n+ 1

−2
∈ R.

We would like to know if there exists some n ∈ N such that x1, x2 ∈ Z.
The first condition for x1 and x2 to be integers is certainly that 4n + 1
is a square ℓ2. If this is the case, then ℓ is odd since the square root of
an odd number is odd, so −1± ℓ is even. But if this is the case, then the
nominator is a multiple of 2, and hence x1, x2 ∈ Z. Thus, if 4n + 1 is a
square ℓ2, then the two elements

α =

"
(1− ℓ)/2

1

#
and β =

"
(1 + ℓ)/2

1

#

are contained in H1(Fn), satisfy equation (4.1), and are therefore possible
generators of a metabolizer H, proving that such a metabolizer exists if
4n+ 1 is a square. □

Since slice knots are algebraically slice, Proposition 4.3 will be very
convenient in order to rule out many possible candidates for slice knots in
the proof that only K0 and K2 are slice in Section 5.
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4.3 The Double Branched Cover of Twist Knots
For our further study, we will need to work with the double branched
cover L2 of the twist knots Kn. In the case of twist knots, L2 admits
a nice description: it is the lens space L(4n + 1, 2). More generally, if
C = C(a1, . . . , ak) is a 2-bridge knot, then the double branched cover of
C is the lens space L(p, q), where p and q are defined via the continuous
fraction

q

p
=

1

a1 +
1

a2+
1

···+ 1
an

.

For a proof, see [7] or [45]. For our purposes, the first homology of the
double branched cover will be the most important. Recall from Propo-
sition 1.25 that for a knot K with double branched cover L2, H1(L2;Z)
is isomorphic to the cokernel of A + AT , where A is a Seifert matrix for
K. The following proposition shows that in the case of the twist knots,
H1(L2;Z) is finite cyclic.

Proposition 4.4. Let An be the standard Seifert matrix for Kn as de-
scribed above. Then

coker(An +AT
n ) ∼= Z4n+1.

Proof. Recall that in our situation, coker(An +AT
n ) is defined as

coker(An +AT
n ) = Z2/ im(An +AT

n ).

In order to identify the quotient on the right-hand side of the equation
above. For this, we are going to compute the Smith normal form of
An +AT

n . We have:

An +AT
n =

"
−2 1
1 2n

#

∼
"

1 −2
2n 1

#

∼
"

1 0
2n 4n+ 1

#

∼
"
1 0
0 4n+ 1

#
.

Thus, the elementary divisors are 1 and 4n+ 1, so we have

coker(An +AT
n ) ∼= Z4n+1.

□

Corollary 4.5. Let L2 be the double branched cover of S3 branched along
Kn. Then

H1(L2;Z) ∼= Z4n+1.

In particular, H1(L2;Q/Z) ∼= Z4n+1.
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Proof. It follows from Proposition 1.25 and 4.4 that

H1(L2;Z) ∼= coker(An +AT
n ) ∼= Z4n+1.

The second statements follows from the isomorphism H1(L2;Q/Z) ∼=
H1(L2;Z) (cf. Corollary 1.26). □

The fact that H1(L2;Q/Z) ∼= Z4n+1 will be used in the upcoming
section. Note that the above also follows from the description of L2 as
the lens space L(4n+ 1, 2).
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5 Sliceness of Kn

5.1 Main Result
In this section, we are going to provide another proof of the following
well-known result by Casson and Gordon [5, 6]:

Theorem 5.1. Kn is slice if and only if n = 0 (the unknot) or n = 2 (the
Stevedore knot).

While the original proof in [5] respectively [6] is rather long and based
on extensive computations, further developments in the theory allow one
to prove Theorem 5.1 in a much simpler way. More precisely, we are
going to use Gilmer’s results about the Casson-Gordon invariant τ(K,χ)
described in Section 3.4 in order to show that there is no metabolizer for
the dual linking form −φ∗ as described in Theorem 3.17, except when
n = 0, 2. As we will see, the proof of Theorem 5.1 essentially boils down
to the computation of signatures of torus knots.

5.2 Preliminary Lemmas
In order to prove Theorem 5.1, we are going to need a few preliminary
lemmas. As we have mentioned above, we are going to use Gilmer’s results
about the Casson-Gordon invariant τ(K,χ) described in Section 3.4. For
this, we are going to quickly recall the most important points from this
section. Let K be a knot with Seifert surface F , Seifert pairing θ, and
double branched covering L2. We have the isomorphism H1(L2;Q/Z) ∼=
N , where N denotes the kernel of the map ε ⊗ idQ/Z, and where ε :
H1(F ) → H1(F ) is defined as εx(y) = θ(x, y) + θ(y, x). Assuming that
g(F ) = 1 and χ = x⊗ s

m
∈ N with 0 < s < m and m a prime-power, we

know from Theorem 3.16 that

τ(K,χ) = ρ
&
2σ s

m
(Jx) +

4(m− s)s

m2
θ(x, x)− σ 1

2
(Kn)

' () *
=:C(s)

+
, (5.1)

where ρ : Q → W (C(t)) ⊗ Q is the homomorphism described in Section
3.3, and where Jx denotes the curve that represents x on F , but viewed
as a knot in S3.

The main task in the proof of Theorem 5.1 will be to compute the
rational number C(s) in the case of the twist knots Kn. The following
results serve as a preparation for this. As a start, we are going to compute
the kernel N for the twist knots Kn.

Lemma 5.2. For the twist knots Kn, the kernel N is generated by the
element

!χ =

"
1
2

#
⊗ 1

4n+ 1
∈ H1(Fn)⊗Q/Z

for any n ∈ N.

Proof. Let

An =

"
−1 1
0 n

#
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be the usual Seifert matrix for Kn and write x = (1 2). For y = (u v) ∈
H1(F ), we have:

εx(y) = θ(x, y) + θ(y, x)

= (1 2)

"
−1 1
0 n

#"
u
v

#
+ (1 2)

"
−1 0
1 n

#"
u
v

#

= (1 2)

"
−2 1
1 2n

#"
u
v

#

= (0 4n+ 1)

"
u
v

#

= (4n+ 1)π2(y),

where π2 is the projection to the second component. Thus,

ε⊗ idQ/Z

"
x⊗ 1

4n+ 1

#
= εx(·)⊗

1

4n+ 1

= (4n+ 1)π2(·)⊗
1

4n+ 1

= π2(·)⊗ 1

= 0.

Hence !χ ∈ ker ε⊗ idQ/Z = N . Now, let L be the double branched cover of
Kn. Since H1(L;Q/Z) is isomorphic to the cokernel of A+AT , we know
that N ∼= Z4n+1 (cf. Section 3.4 and 4). But !χ is an element of order
4n+ 1, thus a generator of N . □

Lemma 5.2 shows that N is finite cyclic in the case of twist knots. As
a consequence, there is only one curve Jx that has to be taken under con-
sideration, namely the one that represents (1 2) ∈ H1(Fn). Fortunately,
this curve can be easily described.

Lemma 5.3. The element x = (1 2) ∈ H1(Fn) is represented by a
(2, 2n+ 1)-torus knot. That is, Jx = T (2, 2n+ 1).

Proof. Consider the following illustration.

Figure 5.1: The curve Jx is a (2, 2n+ 1)-torus knot
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In the top-left corner of Figure 5.1, we can see the Seifert surface Fn

together with x ∈ H1(Fn) represented as a simple closed curve, indicated
in blue. If we now consider this curve as contained in S3, we arrive at
the knot labelled Jx shown at the top-right. The transformations on the
lower half of Figure 5.1 show that Jx is a (2, 2n+ 1)-torus knot. □

Looking back at Equation 5.1, Lemma 5.2 and 5.3 show that we are
interested in the signatures σ s

4n+1
(Jx), where Jx is the (2, 2n + 1)-torus

knot and 0 < s < 4n + 1. Recall that the Tristram-Levine signature σω

is a piecewise constant function in ω with jumps only occurring at zeros
of the Alexander polynomial of the knot. Away from the discontinuities,
the function is even-valued (see Section 1.6). The Alexander polynomial
of the torus knot T (2, 2n+ 1) is given as (cf. [40])

∆T (2,2n+1)(t) =
(t2(2n+1) − 1)(t− 1)

(t2 − 1)(t2n+1 − 1)
=

t2n+1 + 1

t+ 1
,

thus the zeros are exactly the (2n+1)st roots of −1, that is, exp(πi(2t−1)
2n+1

)
for t = 1, 2, . . . , 2n + 1. In particular, all zeros are of multiplicity one,
so we know that the signature function of Jx can only jump by ±2 at
a discontinuity. Thus, in order to derive a formula for σ s

4n+1
(Jx), we

certainly need to know what values exp( 2πis
4n+1

) lie between which zeros of
∆T (2,2n+1)(t) on S1.

Lemma 5.4. Let ωs = 2πis
4n+1

and ξ2t−1 = πi(2t−1)
2n+1

be the arguments of
the (4n+ 1)st roots of unity and the arguments of the (2n+ 1)st roots of
minus one, respectively. Then, for t = 1, . . . , 2n,

ωs ∈ [ξ2t−1, ξ2t+1] ⇐⇒ s = 2t− 1, 2t,

and for t = 2n+ 1,

ωs ∈ [ξ2n+1, ξ2n+3] ⇐⇒ s = 4n+ 1.

In other words, on S1, between each two roots of minus one there are
exactly two roots of unity, except between exp(ξ2n+1) and exp(ξ1), where
there is only one root, namely exp(ω4n+1) = 1.

Proof. The lemma is basically a consequence of the pigeonhole principle,
but it can also be proved by direct computation. Let ωs and ξ2t−1 be as
above. Then

ωs =
2πis

4n+ 1
=

πis(4n+ 2)

(4n+ 1)(2n+ 1)
, ξ2t−1 =

πi(2t− 1)

2n+ 1
=

πi(2t− 1)(4n+ 1)

(2n+ 1)(4n+ 1)
.

Write !ωs = s(4n + 2) and !ξ2t−1 = (2t − 1)(4n + 1). Then the statement
from the lemma is equivalent to

!ωs ∈ [!ξ2t−1, !ξ2t+1] ⇐⇒ s = 2t− 1, 2t

for t = 1, . . . , 2n, and

!ωs ∈ [!ξ2n+1, !ξ2n+2] ⇐⇒ s = 4n+ 1.
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Fix t ∈ {1, . . . , 2n}. Then

!ω2t−2 < !ξ2t−1 ⇐⇒
(2t− 2)(4n+ 2) < (2t− 1)(4n+ 1) ⇐⇒

8nt− 8n+ 4t− 4 < 8nt− 4n+ 2t− 1 ⇐⇒
−4n+ 2t− 3 < 0,

which is clearly satisfied. Similarly,

!ξ2t+1 < !ω2t+1 ⇐⇒
(2t+ 1)(4n+ 1) < (2t+ 1)(4n+ 2) ⇐⇒

4n+ 1 < 4n+ 2,

which is satisfied as well. So, for t = 1, . . . , 2n, the only candidates for
being contained in [!ξ2t−1, !ξ2t+1] are !ω2t−1 and !ω2t. We have

!ξ2t−1 < !ω2t−1 ⇐⇒ (4n+ 1)(2t− 1) < (4n+ 2)(2t− 1)

and

!ω2t < !ξ2t+1 ⇐⇒
(4n+ 2)2t < (4n+ 1)(2t+ 1) ⇐⇒

2t < 4n+ 1,

which is satisfied for t = 1, . . . , 2n. This proves the first statement. The
case t = 2n+ 1 is treated similarly. □

Figure 5.2 below shows the distribution of the roots in the case n = 5.

Figure 5.2: Distribution of the roots on S1 described in Lemma 5.4
in the case n = 5. The thin red dots mark the 21st roots of unity,
while the thick blue dots mark the 11th roots of minus one.
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Knowing that the ordinary signature of a (2, 2n + 1)-torus knot is −2n
and that its ω-signature jumps by −2 on the upper and by +2 on the
lower hemisphere of S1 and stays constant at ω = −1 (cf. [40]), a formula
for σ s

4n+1
(T (2, 2n+ 1)) is now readily derived by using Lemma 5.4:

σ s
4n+1

(T (2, 2n+ 1)) =

.
−2

/
s
2

0
, s = 1, . . . , 2n

−2
1

(4n+1)−s
2

2
, s = 2n+ 1, . . . , 4n.

Note that σ s
4n+1

(T (2, 2n+1)) is symmetric about 2n. Figure 5.3 below
shows the values of the formula above in the case n = 5.

2 4 6 8 10 12 14 16 18 20

−10

−8

−6

−4

−2

s

Figure 5.3: The values of σ s
21
(T (2, 11)) for s = 1, . . . , 20

The last lemma that we are going to need will be essential in order to
derive a contradiction to the sliceness obstruction given in Theorem 3.17.
Recall the statement from Theorem 3.17: If a knot K is slice, then there
exists a metabolizer H ⊂ H1(L2;Q/Z) of the dual linking form −φ∗ such
that |signav

ω (τ(K,χ)) + σ(K)| = 0 for all χ ∈ H of prime-power order and
ω ∈ S1.

Lemma 5.5. Let Kn be slice with metabolizer H as in Theorem 3.17.
Then there is at least one non-trivial element χ ∈ H of prime-power
order.

Proof. Let Kn be slice. Since a slice knot is always algebraically slice,
we may assume that 4n + 1 is a square ℓ2. Let χ ∈ H be arbitrary
and non-trivial. Since H1(L2;Q/Z) ∼= N and N is generated by x ⊗ 1

ℓ2
,

where x = (1 2) ∈ H1(Fn;Z), we may assume that χ = x⊗ s
ℓ2

for some
0 < s < ℓ2. If χ is already of prime-power order, there is nothing to show.
Otherwise, suppose that ℓ2 = pr11 · · · prkk is the prime decomposition of ℓ2.
Since a metabolizer is a subgroup, we have

(pr12 · · · prkk )(x⊗ s

ℓ2
) = x⊗ 1

pr11
∈ H.

Thus, x⊗ 1

p
r1
1

is an element of prime-power order that is contained in the
metabolizer H. □
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5.3 Proof of Theorem 5.1
We are now finally ready to prove Theorem 5.1: Kn is slice if and only
if n = 0 or n = 2. The main part of the proof will reveal that the only
possible candidates for slice knots are K0 and K2. While the unknot is
certainly slice, it is not obvious that the same is true for the Stevedore
knot K2. Since the proof that K2 is slice is in a slightly different spirit
than the rest of the proof of Theorem 5.1, we are first going that show
that K2 is indeed slice.

Proposition 5.6. The Stevedore knot K2 is slice.

Proof. Consider the following transformations of the Stevedore knot K2:

Figure 5.4: Ribbon disk for the Stevedore’s knot K2

We can clearly see that the end product of this transformation is a
ribbon disk according to Definition 2.2 that bounds K2. Since ribbon
knots are slice by Theorem 2.3, we conclude that the Stevedore’s knot K2

is indeed slice. □
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Note that we have actually encountered the ribbon disk for the Steve-
dore’s knot already in Figure 2.2. We are now ready to prove Theorem
5.1.

Proof (Theorem 5.1). Let Kn, n ∈ N, be an arbitrary twist knot. Since
a slice knot is always algebraically slice, we can assume that 4n+ 1 = ℓ2

is a square (cf. Proposition 4.3). Recall once more the formula for τ from
Theorem 3.16: If χ = x⊗ s

m
∈ H1(L2;Q/Z) ∼= N = ker ε⊗ idQ/Z with m

a prime-power and 0 < s < m, then

τ(Kn,χ) = ρ
&
2σ s

m
(Jx) +

4(m− s)s

m2
θ(x, x)− σ 1

2
(Kn)

' () *
=:C(s)

+
. (5.2)

Now, assume for a contradiction that Kn is slice. Then the dual linking
form −φ∗ admits a metabolizer H as in Theorem 3.17. We have shown
in Lemma 5.5 above that there is at least one non-trivial element χ of
prime-power order contained in H that satisfies

signav
ω (τ(Kn,χ)) = signav

ω (ρ(C(s))) = 0.

If we set ω = 1, then signav
1 ◦ ρ = idQ, so if Kn is slice, then there is at

least one non-trivial element χ ∈ H of prime-power order such that

C(s) = 0.

Our goal is now to show the contrary: C(s) ∕= 0 for any χ ∈ H1(L2;Q/Z)
except when n = 0, 2.

Recall from Lemma 5.2 that H1(L2;Q/Z) is generated by an element
of order 4n+1, so we can set m = 4n+1 = ℓ2. Let χ = (1 2)⊗ s

ℓ2
∈ N

be arbitrary. Since θ(x, x) = ℓ2 for x = (1 2) and σ 1
2
(Kn) = 0 (cf.

Proposition 4.2), we have

C(s) = 2σ s
ℓ2
(T (2, 2n+ 1)) +

4(ℓ2 − s)s

ℓ2

=

3
4

5
−4

/
s
2

0
+ 4(ℓ2−s)s

ℓ2
, s = 1, . . . , 2n

−4
1

(4n+1)−s
2

2
+ 4(ℓ2−s)s

ℓ2
, s = 2n+ 1, . . . , 4n.

By the symmetry of C(s) about 2n, is is sufficient to consider the case
s ∈ {1, . . . , 2n}. If s is not a multiple of ℓ, then 4(ℓ2−s)s

ℓ2
∈ Q \ Z while

−4
/
s
2

0
∈ Z, so C(s) ∕= 0. If s is a (non-zero) multiple of ℓ, i.e. s = rℓ for

some r ∈ N>0, then

C(rℓ) = −4

6
rℓ

2

7
+

4(ℓ2 − rℓ)rℓ

ℓ2
= −4

6
rℓ

2

7
+ 4r(ℓ− r).

Now, if r is even, then −4
/
rℓ
2

0
= −2rℓ, so

C(rℓ) = −2rℓ+ 4r(l − r)

= 2rℓ− 4r2

= 2r(ℓ− 2r),
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which is zero if and only if ℓ = 2r, a contradiction because ℓ is odd. On
the other hand, if r is odd, then −4

/
rℓ
2

0
= −2(rℓ+ 1), yielding

C(rℓ) = −2(rℓ+ 1) + 4r(l − r)

= 2rℓ− 4r2 − 2

= 2(rℓ− 2r2 − 1),

which is zero if and only if

r(ℓ− 2r) = 1 ⇔ ℓ− 2r =
1

r
.

However, the only possible integer solution to this equation is given by
ℓ = 3 and r = 1, which can only appear if n = 2.

The computations above show that C(s) ∕= 0 for all χ ∈ H1(L2;Q/Z)
except when n = 0, 2, which is in particular true for all χ of prime-power
order (so that the formula for τ(Kn,χ) in Equation 5.2 holds). Thus, if
n ∕= 0, 2, then there is no metabolizer for the dual linking form −φ∗ as in
Theorem 3.17. Therefore, the only possible slice knots are the unknot K0

and the Stevedore knot K2. The unknot is clearly slice, and the Stevedore
knot is slice by Proposition 5.6. This concludes the proof that Kn is not
slice except when n = 0 or n = 2. □
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6 Sliceness of the Connected Sum rKn

We have seen in the previous section that the only slice knots among the
twist knots are the unknot K0 and the Stevedore knot K2. An interesting
question would now be to ask whether the same is true for a connected
sum of some twist knot Kn. That is, if Kn# . . .#Kn is a finite connected
sum of the twist knot Kn, is such a sum slice if and only if n = 0 or n = 2?
Or is there some other n ∈ N and a certain number of summands such
that the connected sum becomes slice? In fact, what we are asking for is
the order of Kn in the knot concordance group C (cf. Section 2.2). In this
section, we provide a way based on our previous computations that could
possibly lead to an answer to the above questions.

Before we start, let us fix some notation and conventions. Given n, r ∈
N, let

rKn := Kn# · · ·#Kn' () *
r times

denote the r-fold connected sum of the twist knot Kn. A Seifert surface
for rKn is given as the r-fold connected sum of the Seifert surface Fn,
shown in the figure below.

Figure 6.1: A Seifert surface for rKn

We will denote this Seifert surface by rFn. A basis for H1(rFn;Z)
is given by the curves a1, b1, . . . , ar, br ∈ H1(rFn;Z), with orientation as
indicated in Figure 7.1. In this basis, a Seifert matrix for rKn is given as

An :=

m8

1

An =

9

:::::;

−1 1
0 n

. . .

−1 1
0 n

<

=====>
.

Let us turn our attention now to the question if there are some n, r ∈ N,
n ∕= 0, 2, such that rKn is slice. If n = 1, then K1 is the figure-eight which
is amphicheiral (i.e. K1 = −K∗

1 ), so the connected sum K1#K1 is slice,
and the order of the figure-eight in the knot concordance group C is 2 (cf.
[36]). So we may assume that n > 2.

Since a slice knot is always algebraically slice, the first question to ask
is what knots rKn are algebraically slice. In contrast to the case r = 1,
one can show that if a knot has Tristram-Levine signature zero, then it
is of finite order in the algebraic concordance group GZ (cf. [36]). Since
the signature is additive under connected sum and all twist knots have
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signature zero, we have by Levine’s results that Kn is of order at most 4
in GZ (cf. Section 2.2). Therefore, it makes sense to take all twist knots
Kn, n > 2, into account for our further considerations.

In the following, fix some n > 2 and the corresponding twist knot Kn.
Let Li, i = 1, . . . , r, be r copies of the double branched cover of Kn, and
set Ni = H1(Li;Q/Z). If L denotes the double branched cover of rKn

and N = H1(L;Q/Z), then L = L1# · · ·#Lr and N = N1 ⊕ · · ·⊕Nr, as
remarked in Section 3.4. Since Ni = Z4n+1 for all i = 1, . . . , r, we have
that

N = H1(L;Q/Z) ∼=
r8

i=1

Z4n+1.

Now, given some χ = χ1 ⊕ · · · ⊕ χr ∈ N , we have by Gilmer’s additivity
result (cf. Proposition 3.18)

τ(rKn,χ) =

r?

i=1

τ(Kn,χi).

Next, recall once more the formula for τ(Kn,χi) from Theorem 3.16: If
χi = x⊗ s

m
∈ Ni, with 0 < s < m and m a prime-power, then

τ(Kn,χi) = ρ
&
2σ s

m
(Jx) +

4(m− s)s

m2
θ(x, x)− σ 1

2
(Kn)

' () *
=:C(s)

+
,

where ρ : Q → W (C(t)) ⊗ Q is the injective homomorphism described in
Section 3.3. Supposing that χ = χ1 ⊕ · · ·⊕ χr ∈ N = N1 ⊕ · · ·⊕Nr is a
character such that each χi is of prime-power order, then

τ(rKn,χ) =

r?

i=1

τ(Kn,χi) =

r?

i=1

ρ(C(si))

for some suitable 0 < si < m, i = 1, . . . , r.
Assume that rKn is slice. Then by Theorem 3.17, there exists a me-

tabolizer H ⊂ H1(L;Q/Z) = N for the dual linking form −φ∗ such that

signav
ω (τ(rKn,χ)) = signav

ω (ρ(C(s))) = 0

for all χ ∈ H of prime-power order. Similarly as before, set ω = 1 and
suppose that χ = χ1 ⊕ · · ·⊕χr ∈ H is of prime-power order (note that H
does not necessarily split as a direct sum). Then

signav
1 (τ(rKn,χ)) = signav

1 (
r?

i=1

τ(Kn,χi))

= signav
1 (

r?

i=1

ρ(C(si))

=

r?

i=1

signav
1 ◦ ρ' () *

=idQ

(C(si))

=

r?

i=1

C(si)

= 0,
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for suitable 0 < si < m, i = 1, . . . , r. Thus, in order to know if rKn is
slice, the above suggests that we try to find solutions to the equation

C(s1) + C(s2) + · · ·+ C(sr) = 0 (6.1)

and then check if the corresponding characters are contained in a metabo-
lizer for −φ∗. Note that since a metabolizer satisfies |H|2 = |H1(L;Q/Z)|,
r has either to be even or 4n+ 1 has to be a square.

The first step in finding solutions is to check if a solution is possible at
all. For this, recall that Ni is generated by the element x ⊗ 1

4n+1
, where

x = (1 2) ∈ H1(Fn;Z) (cf. Lemma 5.2). Each character χi = x⊗ s
4n+1

∈
Ni defines a rational number C(s). Although χi might not be of prime-
power order, we can still check if there is some 0 < s < 4n + 1 and a
corresponding character such that C(s) < 0, since this is clearly needed
in order to make the sum in Equation 6.1 vanish (note that C(s) = 0 is
not possible as seen in the proof of Theorem 5.1). From Section 5, we
know that

C(s) = 2σ s
4n+1

(T (2, 2n+ 1)) +
4((4n+ 1)− s)s

4n+ 1

=

.
−4

/
s
2

0
+ 4((4n+1)−s)s

4n+1
, s = 1, . . . , 2n

−4
1

(4n+1)−s
2

2
+ 4((4n+1)−s)s

4n+1
, s = 2n+ 1, . . . , 4n.

We claim the following:

Lemma 6.1. C(s) < 0 if and only if s = 1 or s = 4n.

Proof. By the symmetry of C(s) about 2n, it is sufficient to consider
the cases s = 1, . . . , 2n and show that C(s) < 0 if s = 1 and C(s) > 0
otherwise. Consider first the case s = 1. Then

C(1) = −4 +
16n

4n+ 1
=

−4

4n+ 1
< 0,

so C(1) < 0. In order to shorten notation for the second case, set m =
4n+ 1. Suppose that s ≥ 2. Then

C(s) = −4
1 s
2

2
+

4(m− s)s

m
> 0 ⇐⇒ 4(m(s−

1 s
2

2
)− s2) > 0.

Looking at the right-hand side of the equivalence, if s is even, then

m(s−
1 s
2

2
)− s2 =

ms

2
− s2 = s(

m

2
− s) > s(2n− s) ≥ 0

since s ≤ 2n. On the other hand, if s is odd, then

m(s−
1 s
2

2
)− s2 =

m(s− 1)

2
− s2 =

ms−m− 2s2

2
.

Considering −2s2 +ms−m as a polynomial in s, its zeros are

x1 =
−m+

√
m2 − 8m

−4
, x2 =

−m−
√
m2 − 8m

−4
.
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We have

x1 < 3 ⇐⇒
@

m2 − 8m > m− 12

⇐⇒ m2 − 8m > m2 − 24m+ 144

⇐⇒ 16m > 144

⇐⇒ 64n > 128,

which is satisfied since we assume that n > 2. Similarly, we have

2n− 1 < x2 ⇐⇒ 8n−m− 4 <
@

m2 − 8m

⇐⇒ 64n2 − 16nm− 64n+ 16m+ 16 < 0

⇐⇒ −16n+ 32 < 0

⇐⇒ 32 < 16n,

which is again satisfied because n > 2 by assumption. Since the leading
coefficient of −2s2 +ms−m is negative, we see that

−2s2 +ms−m > 0

for all odd s ∈ {1, . . . , 2n}. Thus if s ≥ 2, then C(s) > 0. All together,
we have shown that C(s) < 0 if and only if s = 1 or s = 4n. □

Lemma 6.1 implies that if C(s1) + · · · + C(sr) = 0, then si = 1 or
si = 4n for at least one i ∈ {1, . . . , r}. In particular, every corresponding
character has order 4n + 1. Also, we see that solutions to Equation 6.1
are indeed possible.

The next step is to try to find actual solutions to the Equation 6.1.
The best way in doing so is probably to solve the equation

α1C(1) + α2C(2) + · · ·+ α4nC(4n) = 0,

where αi ∈ N, i = 1, . . . , n, and then build solutions to Equation 6.1 for
some fixed r > 0. To demonstrate the procedure, we do the computation
in the case n = 3, that is, for the twist knot K3.

Example 6.2. Consider the twist knot K3. In this case, 4n+ 1 = 13, so
we have to consider the values C(1), . . . , C(12). By the symmetry of C(s)
about 2n, we can restrict our considerations to the values C(1), . . . , C(6)
and then count solutions with multiplicity. The values C(1), . . . , C(6) are
the following:

C(1) = −4 +
48

13
= − 4

13
C(4) = −8 +

144

13
=

40

13

C(2) = −4 +
88

13
=

36

13
C(5) = −12 +

160

13
=

4

13

C(3) = −8 +
120

13
=

16

13
C(6) = −12 +

168

13
=

12

13

Thus, we would like to solve the equation

α1 · (−
4

13
) + α2 ·

36

13
+ α3 ·

16

13
+ α4 ·

40

13
+ α5 ·

4

13
+ α6 ·

12

13
= 0,
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where αi ∈ N, which is equivalent to

−4α1 + 36α2 + 16α3 + 40α4 + 4α5 + 12α6 = 0.

Now, if we set
α1 = 9α2 + 4α3 + 10α4 + α5 + 3α6,

then we can construct for any given natural numbers α2, . . . ,α6 ∈ N a
sum C(s1)+ · · ·+C(sr), 0 < si ≤ 6, that vanishes. For example, if we set
α5 = 2 and αi = 0 for i ∕= 1, 5, then

C(1) + C(1) + C(5) + C(5) = 0.

Here r = 4, so the sum C(1) + C(1) + C(5) + C(5) corresponds to the
character

χ = (x⊗ 1

13
)⊕ (x⊗ 1

13
)⊕ (x⊗ 5

13
)⊕ (x⊗ 5

13
) ∈ H1(L;Q/Z),

where L is the double branched cover of 4K3, and we see that we have
found a character χ such that

signav
1 (τ(4K3,χ)) = 0.

The above procedure can be used to find all characters χ such that
signav

1 (τ(rK3,χ)) = 0 for any given (even) r > 0. For instance, if r = 2,
we have the characters

χ1 = (x⊗ 1

13
)⊕ (x⊗ 5

13
)

χ2 = (x⊗ 5

13
)⊕ (x⊗ 1

13
).

Taking the symmetry of C(s) into account, we get further the characters

χ3 = (x⊗ 1

13
)⊕ (x⊗ 8

13
)

χ4 = (x⊗ 8

13
)⊕ (x⊗ 1

13
)

χ5 = (x⊗ 12

13
)⊕ (x⊗ 5

13
)

χ6 = (x⊗ 5

13
)⊕ (x⊗ 12

13
)

χ7 = (x⊗ 12

13
)⊕ (x⊗ 8

13
)

χ8 = (x⊗ 8

13
)⊕ (x⊗ 12

13
).

Thus, we end up with a total of 8 characters such that

signav
1 (τ(2K3,χ)) = 0.

Note that this actually implies that 2K3 is not slice since a metabolizer
H ⊂ H1(L;Q/Z) ∼= Z13 ⊕ Z13 would need to have exactly 13 elements.
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The computations in Example 6.2 can be done for any n ∈ N. The
reason for this is that C(1) = − 4

4n+1
(resp. C(4n) = − 4

4n+1
) for any

n ∈ N, and that both summands in the formula for C(s) are a multiple of
4 (see above). Therefore, we conclude that there are indeed many possible
solutions to the equation C(s1) + · · · + C(sr) = 0 for any sum rKn, and
it is not possible to say something about the sliceness of rKn yet.

The next step would be to take the metabolizer into account and
check if the characters that satisfy signav

1 (τ(rKn,χ)) = 0 are contained in
some metabolizer H. However, this is where the difficulties start. First
of all, given a sum rKn, it is difficult to compute possible generators
of a metabolizer H ⊂ H1(L;Q/Z) for the dual form −φ∗. Second, the
computations done in Example 6.2 get more and more involved as r and
n grow, which makes it difficult to determine all suitable characters χ.

Another option arises if we assume that 4n+ 1 is a prime-power. For
if this is the case, then every character χ ∈ H1(L;Q/Z) is of prime-power
order, so the characters that satisfy signav

1 (τ(rKn,χ)) = 0 have to form
a metabolizer themselves. Consider for example the sum 4K6. Then
4n+ 1 = 25, and

H1(L;Q/Z) = Z25 ⊕ Z25 ⊕ Z25 ⊕ Z25.

In this case, a metabolizer H would need to have 252 elements, and all of
them need to satisfy signav

1 (τ(4K6,χ)) = 0. It is not obvious if there are
enough such elements at all (compare with Example 6.2 above). However,
as already remarked earlier, it is difficult to explicitly compute all suitable
characters χ in the general case. A possible workaround could be to
consider the asymptotic behavior of the order of H and an estimate of
the number of characters χ that satisfy signav

1 (τ(rKn,χ)) = 0. For this,
further investigations are needed.
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7 An Upper Bound for gst(Kn)

In this section, we provide an upper bound for the stable 4-genus of the
twist knots gst(Kn). Recall the definition of the stable 4-genus of knots
from Section 2.4: if K ⊂ S3 is a knot, then the stable 4-genus of K is
defined as

gst(K) = lim
n→∞

g4(nK)

n
,

where nK denotes the n-fold connected sum K# · · ·#K. The basic ap-
proach to compute gst(K) is to find upper and lower bounds for the 4-
genus g4(nK) of connected sums nK. While it is in general difficult to
find suitable lower bounds, there is a convenient method for bounding
the 4-genus from above by finding so-called surgery curves on a Seifert
surface for K. We will describe this method in Section 7.1 and then use it
in Section 7.2 to construct the upper bound for gst(Kn). In Section 7.3,
we discuss to what extent the upper bound can be improved. Throughout
the following sections, we frequently abuse notation and denote curves on
surfaces and their homology class with the same symbols.

7.1 A Method for Bounding the Slice Genus
The method goes as follows (cf. [25]):

Let K ⊂ S3 be a knot with Seifert surface F and Seifert pairing θ.
Suppose that there exists an embedded curve α ⊂ F such that

1.) [α] ∕= 0 ∈ H1(F );

2.) α has framing zero, i.e. θ([α], [α]) = 0;

3.) α traces out a slice knot in S3.

A curve α satisfying 1.) - 3.) is called a surgery curve. Now, given a
surgery curve α, we can perform surgery on F along α as follows. Since
α has framing zero, we can embed a cylinder α × I in F , and since α
is slice, there is an embedding of D × S0 into B4, where D ⊂ B4 is a
slice disk for α. Now perform surgery by cutting out α × I ⊂ F and
gluing back in the embedded D × S0 ⊂ B4. This creates a new surface
F ′ that is, after smoothing corners, properly and smoothly embedded in
B4. The surgery process is best visualized by taking two copies of α on
F , cutting out the annulus between them (possible since θ(x, x) = 0),
and then adding two slice disks in B4 at the resulting boundary curves.
Note that it is important to be in dimension 4; for example, if α is a
surgery curve that is an unknot in S3, then adding a disk along α in S3

could possibly produce ribbon or clasp singularities (this can be seen by
considering F as a disk with a number of twisted, knotted, and linked
bands attached).

The surgery leaves the boundary untouched, so the resulting surface
F ′ has the same boundary as F , i.e. ∂F ′ = ∂F = K. Furthermore, the
process of adding slice disks in B4 reduces the genus of the surface by one,
so we have

g(F ′) = g(F )− 1.
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In particular, this yields the upper bound for the slice genus

g4(K) ≤ g(F )− 1.

If there are multiple disjoint surgery curves available, say α1, . . . ,αn, then
it is possible to perform surgery along all of them in order to produce a
surface F ′ with ∂F ′ = ∂F = K and g(F ′) = g(F )−n, provided the curves
satisfy the following additional properties:

1.)′ [α1], . . . , [αn] need to be linearly independent in H1(F );

2.)′ θ([αi], [αj ]) = 0 for all i, j = 1, . . . , n;

3.)′ a1 ∪ · · · ∪ αn is a slice link in S3.

Here, slice link means that the link bounds n disjoint properly and smoothly
embedded disks D in the 4-ball B4.

7.2 Constructing the Upper Bound for gst(Kn)

Having the technique from the previous section in mind, our aim is now
to find a surgery curve α for a connected sum of twist knots in order to
bound the slice genus from above and derive an upper bound for the stable
4-genus of Kn. As in Section 6, let rKn denote the m-fold connected sum
of the twist knot Kn, where m,n ∈ N, together with the Seifert surface
rFn shown below.

Figure 7.1: A Seifert surface for rKn

In the basis a1, b1, . . . , ar, br ∈ H1(rFn) shown in Figure 7.1, the cor-
responding Seifert matrix is given as

An :=

m8

1

An =

9

:::::;

−1 1
0 n

. . .

−1 1
0 n

<

=====>
.

We wish to find a curve α on rFn (for some suitable r ∈ N) such that
[α] ∕= 0 ∈ H1(mFn), θ([α], [α]) = 0, where θ is the Seifert pairing for
mKn, and such that α is a slice knot in S3. Consider first the cases n = 0
and n = 1. If n = 0, then mK0 = K0 is the unknot for all m ∈ N, and
since the unknot is slice, there is no need to find a surgery curve. If n = 1,
then K1 is the figure-eight, which is amphicheiral (i.e. K1 = −K∗

1 ). Since
K1# − K∗

1 is slice, it follows that g4(2K1) = 0, so g4(2mK1) = 0 and
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g4((2m+ 1)K1) = 1 for all m ∈ N. Thus, there is again no need to find a
surgery curve. Note that g4(2K1) = 0 also implies that gst(K1) = 0.

Now, suppose that n ≥ 2 and set r = n− 1. Consider the curve α on
the Seifert surface (n− 1)Fn shown in Figure 7.2 below.

Figure 7.2: A surgery curve for (n− 1)Fn

The following proposition shows that α is a surgery curve for (n−1)Fn.

Proposition 7.1. Suppose that n ≥ 2. Then the curve α shown in Figure
7.2 forms a surgery curve for (n− 1)Fn. In particular,

g4((n− 1)Kn) ≤ n− 2.

Proof. In order to show that α is a surgery curve, we have to check three
things.

1.) In the basis a1, b1, . . . , an−1, bn−1 ∈ H1((n− 1)Fn) shown in Figure
7.1, α represents the element

[α] = (2 1 −1 0 · · · −1 0) ∈ H1((n− 1)Fn)

which is certainly not zero in H1((n− 1)Fn). Note that in order to
draw the curve α as in Figure 7.2, it is necessary to pass through the
band with n-curls on the second copy of Fn once in each direction.
However, this does not affect the homology class of α.

2.) Let ξ denote the basis representation of [α] from above. Then

An−1ξ =

9

:::::::::;

−1 1
0 n

−1 1
0 n

. . .

−1 1
0 n

<

=========>

·

9

:::::::::;

2
1

−1
0
...

−1
0

<

=========>

=

9

:::::::::;

−1
n
1
0
...
1
0

<

=========>

,

so
θ([α], [α]) = ξTAnξ = 0,

showing that α has framing zero.
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3.) Consider the curve α in S3 as shown below.

Figure 7.3: The curve α represents the unknot in S3

Clearly, the curve α can be untangled to the unknot in S3. Since
the unknot is slice, α represents a slice knot in S3.

The points above show that α is a surgery curve for (n− 1)Fn. Thus, we
can perform surgery on (n− 1)Fn along α to obtain a new surface ((n−
1)Fn)

′ that is properly and smoothly embedded in B4, bounds (n− 1)Kn

in S3, and satisfies g(((n− 1)Fn)
′) = g((n− 1)Fn)− 1 = n− 2. Therefore

g4((n− 1)Kn) ≤ n− 2.

□

As a consequence, we can derive an upper bound for the stable 4-genus
of the twist knots Kn.

Corollary 7.2. The stable 4-genus of the twist knots gst(Kn) satisfies

gst(Kn) ≤
n− 2

n− 1
,

provided n ∕= 0, 1.

Proof. We know from Proposition 7.1 that

g4((n− 1)Kn) ≤ n− 2,

which implies that
g4((n− 1)Kn)

n− 1
≤ n− 2

n− 1
.

Thus, by extracting a subsequence and using the subadditivity of g4, we
get

gst(Kn) = lim
m→∞

g4(mKn)

m

= lim
m→∞

g4(m(n− 1)Kn)

m(n− 1)

≤ lim
m→∞

g4((n− 1)Kn)

(n− 1)

≤ n− 2

n− 1
.

□

Although the bound in Corollary 7.2 tends to 1 as n goes to infinity, it
shows that for each individual n ∈ N \ {0, 1}, the stable 4-genus gst(Kn)
is not an integer (except possibly 0) and smaller than 1.
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7.3 Perspectives on Improving the Bound
The question that now arises is if there are any further surgery curves to
improve the upper bound in Propsition 7.1 (respectively Corollary 7.2).
However, finding another surgery curve seems difficult because of the ad-
ditional requirements that arise when performing surgery along multiple
curves (see 2.)′ and 3.)′ in Section 7.1 above). Let us elaborate.

First of all, there are not too many curves available on Fn that are
slice knots in S3. Recall that the basis for H1(Fn) is given by the simple
closed curves a and b shown below.

Figure 7.4: Seifert surface for Kn

One can show that any element of the form x ·a+ b is a non-slice knot
for x /∈ {−1, 0, 1, 2}. To convince the reader, consider the curves shown
below.

Figure 7.5: The curves −3a+ b, −2a+ b and 2a+ b
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Figure 7.6: The curves 3a+ b and 4a+ b

The curves shown in Figure 7.5 and 7.6 are the torus knots T (−4, 3),
T (−3, 2), T (1, 2), T (2, 3) and T (3, 4), respectively, which are all not slice
except T (1, 1) (note that the curve 2a + b is an unknot as shown in the
proof of Proposition 7.1). In general, the curve xa + b represents the
torus knot T (x − 1, x), which is not slice for x /∈ {−1, 0, 1, 2} (cf. [25]).
Therefore, it is likely that most curves xa + yb do not represent a slice
knot in S3.

Second, a surgery curve also needs to have framing zero. Consider
for example some twist knot Kn, n ≥ 2, and an arbitrary element v =
(x y) ∈ H1(Fn). Then

θ(v, v) = vTAnv = (x y)

"
−1 1
0 n

#"
x
y

#
= −x2 + ny2 + xy ∈ Z.

Let S(x, y) := −x2 + ny2 + xy. Then, for r ∈ N and any simple closed
curve β on rFn, its framing is given as

θ(β,β) = S(x1, y1) + S(x2, y2) + · · ·+ S(xr, yr),

where x1, y1, . . . , xr, yr ∈ Z are the coefficients of β ∈ H1(rFn) in the
basis shown in Figure 7.1 above (here, we are slightly abusing notation by
denoting the Seifert pairing of Fn and of rFn with θ). If β was a surgery
curve, then the sum on the right-hand side would have to vanish. Since β
also has to be a slice knot in S3, the possibilites for β remain manageable.
Consider for example the first few values for S(x, y) in the case n = 6:

x | y 0 1 2 3 4 5 6 7 8
-1 -1 4 21 50 91 144 209 286 375
0 0 6 24 54 96 150 216 294 384
1 -1 6 25 56 99 154 221 300 391
2 -4 4 24 56 100 156 224 304 396

Table 7.1: The first few values for S(x, y) in the case n = 6
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Since β has to be a slice knot in S3, we only need to consider the
values x = −1, 0, 1, 2 by the discussion above. Also, note that we are
omitting negative values for y in Table 7.1 because of the symmetries
S(−x,−y) = S(x, y) and S(−x, y) = S(x,−y). From Table 7.1, we can
construct various surgery curves β, for instance,

β = (−1 1 −1 0 −1 0 −1 0 −1 0) ∈ H1(5F6),

However, if we now wish to perform surgery along the curve α from the
previous section and β, then we would additionally need that θ(α,β) = 0
and that α∪β is a slice link in S3, and this is where most surgery curves β
get excluded. For example, a short computation shows that for the curve
β above,

θ(α,β) = 6, θ(β,α) = 3,

so β can not be used to perform surgery along α and β. A similar behavior
can be observed for other values of n ∈ N and surgery curves β.

Although this discussion does certainly not prove that there are no
other curves available to improve the bound from Corollary 7.2, it shows
that most likely other methods are needed in order to gain further infor-
mations about the stable 4-genus of the twist knots gst(Kn).
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