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ABSTRACT. In the first section, an account of the definition and basic prop-
erties of the Rasmussen invariant for knots and links is given. An inequality
involving the number of positive Seifert circles of a link diagram, originally due
to Kawamura, is proven. In the second section, arborescent links are intro-
duced as links arising from plumbing twisted bands along a tree. An algorithm
to calculate their signature is given, and, using the inequality mentioned above,
their Rasmussen invariant is computed. In the third section, an account of the
concept of mutant links is given and an upper bound for the difference of the
Rasmussen invariants of two mutant links is proven.
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2 LUKAS LEWARK

INTRODUCTION

In the year 2000, Khovanov introducted a categorification of the Jones polyno-
mial (see [I6] for the original paper, [2] for an alternative account by Bar-Natan):
a chain complex of graded abelian groups, the graded Euler characteristic of which
equals the Jones polynomial.

This categorification, known as Khovanov homology, is strictly stronger than the
Jones polynomial. On alternating knots, however, it is determined by the Jones
polynomial together with the signature, as was conjectured in 2001 by Khovanov,
Bar-Natan and Garoufalidis (see [2] and [10]).

The conjecture was proven by Lee in 2002 (see [I7]) by introducing a variation
of the Khovanov’s chain complex, now called the Khovanov-Lee complex. This
complex has quite a small homology; on knots, all information of that homology is
encoded in the invariant s defined by Rasmussen in 2004 (see [20]). The Rasmussen
invariant equals the signature on alternating knots and gives, like the signature, a
lower bound for the slice genus. The first application of the Rasmussen invariant
was thus to prove the Milnor conjecture about the slice genus of torus knots in a
purely combinatorial way.

In 2005, Beliakova and Wehrli extended the definition of s to links (see [7]); on
links, some of the nice properties of s are lost, but enough remain.

The first section of this thesis sums up all necessary definitions and statement
from the different sources to define the Rasmussen invariant for links and prove its
basic properties. To keep the first section as concise and purposeful as possible,
while still providing the necessary tools for sections II and III, we do not elaborate
on the connections between s and the Khovanov-homology; we manage to prove
next to all results without introducing spectral sequences; and we do not introduce
cobordisms, but merely analyze the effect of a fusion move on s. The first section is
self-contained but for the proof of Reidemeister invariance of the homology of the
Khovanov-Lee complex.

We construct an upper and a lower bound for the Rasmussen invariant and prove
them directly from the definition. If the Seifert algorithm applied to a link diagram
produces at most one Seifert circle adjacent to positive as well as negative cross-
ings, then the lower bound equals the upper and hence determines the Rasmussen
invariant. As an application of the inequality we give an alternative proof that the
Rasmussen invariant equals the signature on non-split alternating links.

Arborescent links are a large class of links with interesting properties: they are
fibered if and only if they arise from trees with weights equal to +2; it is known
which of them are alternating; their genus is known; their crossing number can
easily be computed from their tree; and they contain two-bridge knots, Pretzel
knots, Montesinos knots and Slalom knots as subsets.

Their slice genus, however, is not known yet. In this thesis, their Rasmussen
invariant and signature is computed; both invariants give a lower bound for the
slice genus. To compute the Rasmussen invariant, we make use of the inequalities
mentioned above, while the signature is computed directly from its definition as
signature of the symmetric part of a Seifert matrix.

Mutation is an operation on links that was introduced by Conway. Different
mutant knots are notoriously difficult to distinguish, numerous invariants like skein
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invariants, the colored Jones polynomial, signature or hyperbolic volume failing to
do so. The three- and four-genus and quantum invariants of sufficient order are
examples of invariants that in some cases distinguish pairs of mutant knots.

Khovanov homology is conjectured to be invariant under a link mutation that
does not jumble different link components; this conjecture is partly proven (see[lIL2]
for details). Given that the Rasmussen invariant is conjectured to be determined
by Khovanov homology, it is worthwhile to analyze how the Rasmussen invariant
changes under mutation. We are able to give an estimate.

The prerequisites of this thesis are a bit of linear algebra and some basic knot
theory — definition of knots, links, diagrams, Reidemeister moves, Seifert surfaces,
and the signature.

Finally, a word about enumeration of knots: there are two different systems to
enumerate knots; the classical system follows the knot table published by Rolfsen
[21], containing knots with crossing number up to ten. Rolfsen’s table is correct
but for the mistake of the Perko pair: two knots, 10141 and 10142 in the original
notation, believed to be different turned out to be the same. So the knots were
renumbered, and 10162 now refers to Rolfsen’s 10143 a.s.o.

The other system is based on sorting knots lexicographically by their minimal
Dowker-Thistlethwaite-notation; this is somewhat random, but has the advantage
over the classical system of being well-defined for knots with arbitrarily high cross-
ing number. Like KnotInfo [9] and Knot Atlas [5], we use the classical system for
knots with crossing number 10 or less and the DT-system for knots with higher
crossing number. Note that knotscape [13] uses the DT-system for all knots.

Sadly, there are incongruities concerning chiral knots: although in both enumer-
ation systems it is theoretically clear to which mirror image of a knot a name refers,
this is not always paid attention to. In this thesis, we try to be accurate.

I. THE RASMUSSEN INVARIANT

I.1. Filtered vector spaces. The Khovanov-Lee chain complex lives in the cat-
egory of finite dimensional filtered vector spaces; so we begin with the necessary
definitions and statements.

Throughout the thesis, all vector spaces are assumed to be over Q.

List of definitions. A finite dimensional filtered vector space is a finite dimensional
vector space V equipped with a filtration: an ascending chain of vector spaces

{0} =V, CV,1C...V,, =V

where the indices are integers. If i > n, we consider V; to be {0}, and if i < m, we
consider V; to be V. Notice that the higher the index, the smaller the vector space;
this is a matter of convention.

If a filtered vector space is denoted by [J, then by [J; we mean the i-th vector
space of the chain of vector spaces constituting the filtration of OJ, without explicitly
saying so; unless, of course, [J; already denotes a different vector space.

We may define a filtration of V' by just giving V;, for some i;, where i; < iz <
... <. In that case, if i; <k < ij11, we mean Vi, =V, .

One says that v € V has degree k if v € V}, \ Viy1; this is denoted by degy v = k.
In case of unambiguity, the subscript indicating the vector space may be dropped.
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Every element of V' but the zero vector has a degree. If k € Z, let V[k]| be the
filtered vector space {0} = V[k]ptx C ... C V[k]msr = VI]k], where V[k]iyr = Vi.
This is called the degree shift of V' by k.

A filtered map between filtered vector spaces V and W is an ordinary vector space
homomorphism f : V. — W that respects the filtration, i.e. Vi € Z : f(V;) C W,.
More generally, a filtered map of degree k € Z is a a vector space homomorphism
f:V — W satistying Vi € Z : f(V;) C Wisk. Amap f:V — W is called graded if
it is not only filtered, but also satisfies Vi € Z : f~1(W;) C V;.

Note that there is a crucial difference between vector space isomorphisms and
isomorphisms of filtered vector spaces; by isomorphism, we will from now on mean
the latter.

A subspace U C V is a filtered vector space such that Vi € Z : U; C V;. The
inclusion map U — V is graded. If U is a subspace of V, we define the quotient
V/U as the quotient in the category of vector spaces equipped with the filtration

(V/U); = {[v] € V| [v] has a representative in V;}.

Notice that the canonical projection V' — V/U is filtered.
The filtered sum of filtered vector spaces is given by summing pointwise, i.e.
(Ve W), =V, ®W,. The tensor product is defined by

VeWw):= @ Vv,eW.

k>

A filtered chain complex C is a chain complex C = ... — C; %, Civ1 — ... in

the (abelian) category of filtered vector spaces and filtered maps; by some authors
such an object would be called cochain complex, just as what is called Khovanov
homology is a cohomology, strictly speaking. The height shift by k € Z of C is
denoted by C{k}, where C{k}; = C{k}iz+k, 0{k}i = Oisr-

The dual space of V| denoted by V*, is the space Hom(V, Q) with the filtration

weV® & YoeV;:wl)=0.

Note that if V' has elements of degrees i1, 72, ... i,, then V* has elements of degrees
—iy — 1, —is — 1,... — i, — 1. A basis (v1,...v,) of V induces a vector space
isomorphism ¢ : V' — V* defined by v; — v}, where v} (v;) = d;;. This map has
the property degy . ¢(v) < —degy v because (¢(v))(v) # 0 = @(v) ¢ V*
The basis (v}, ...v}) is called the dual basis of (v1,...vy).

The dual of the map f : V — W, denoted by f* : W* — V™ is defined by
fr(r)(v) =r(f(v)). If f is filtered of degree k, then so is f*. Note that dimim f =
dimim f*.

The dual complex of a given chain complex C = ... — C; %, Cit1 — ... is the
complex C* with spaces (C*); = C_; and boundary maps (0*); = (0—;—1)*.

degy v*

In the remainder of [T we will prove a few technicalities.

Lemma I.1. Let V and W’ C W be filtered vector spaces. A filtered map f:V —
W of degree k induces a filtered map f : V — W/W’' of degree k.

Proof. Let v € V have degree ¢; then f(v) is a representative of [f(v)] € W/W’,
and has degree at least ¢ + k. So [f(v)] has degree at least ¢ + k, and hence f is
filtered of degree k, too. O
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Corollary 1.2. A filtered chain map of degree k descends to a map on homology
that is filtered of degree k.

Lemma I.3. Let C be a chain complex of finite dimensional filtered vector spaces
with homology H;. Then the (—i)-th homology space of the dual complex C* is
isomorphic to H.

Proof. This boils down to the following: let A (L B2 Chea sequence of filtered
vector spaces and maps so that gof = 0. Then the filtered vector spaces er(f~ )) and

lm(

(lffnr?) are isomorphic. Let ¢ : 1:;:((; )) (1:;:};) be defined by o([w])([b]) = w(b).

We prove that ¢ is (i) well-defined, (ii) filtered, (iii) graded, (iv) injective and (v)
bijective.

(i) Let w € im(g*
Vb € kerg : <P([ ])([b
b € im f, ie. =f
w € ker f*.

), ie. Ir € C*Vb € B : w(b) = r(g(b)). Therefore,
1) = r(9(b)) = 0 = ¢([w]) = 0. On the other hand, let
(a) for an a € A. Then ¢([w])([]) = w(f(a)) = 0 since

(ii) Let [w] € (11(2:((5)))16 Without loss of generality, w € (ker f*), C Bj.

Let [b] € (lf,:f}]),k Without loss of generality, b € (kerg)_r C B_j;. Then

w € B,be B_ = o([w])([b]) = w(b) = 0. Therefore p([w]) € (m)z

im f

(iii) Let o([w]) € (%‘erg)z. By definition, this means V[b] € (%‘erg)_k s o([w)])([b])

im f im f
=0, so Vb € (kerg)_j : w(b) = 0. Choose the filtered vector space B’ so that B
decomposes as the filtered sum B’ @ kerg. Let w’ € B} be defined by w'|p = 0
and w'|kery = w. Then (w — w')|kerg = 0. As in the proof of (iv) below, one
ker(f™)
im(g*) *
because B_j, = B’ @© (ker g) 1, we have w'|(kerg)_, =0 = w'|p_, =0=w' € B}.

Therefore, [w] = [w'] € (lffrf((g)))k

sees that this implies (w — w’) € im g*. Hence [w] = [w'] € Furthermore,

(iv) Let o([w]) = 0, i.e. W|kerg = 0. Define r € C* by r(g(b)) = w(b); this is
well-defined since g(b) = ¢g(b') = w(b) = w(b’). Then w(b) = g*(r) = [w] = 0.

(v) Note that
dimker(f*)/im(¢*) = dimker(f*)— dimim(g*)
= dim B* —dimim(f*) — dimim(g*)
dim B — dimim f — dimimg

dimker g — dimim f
dim(ker g/ im f)
= dim(kerg/im f)*

Because ¢ is injective and all vector spaces occurring are finite dimensional, ¢ is
bijective. O
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1.2. The Khovanov-Lee complex.

List of definitions. If D is a link diagram, we denote by n(D) the number of
crossings of D, by ny (D) the number of positive or negative crossings, respectively,
and by w(D) = ny (D) —n_(D) the writhe of D. If there is no danger of ambiguity,
we just write n,ny and w instead of n(D),ny (D) and w(D). Throughout 1.2., let
D be a diagram of an oriented link L.

Index the crossings of D by 1,...n. Each crossing has a 0- and a 1-resolution.

0 \/ 1/
-— —
(A= X
FIGURE 1. 0- and 1-resolution of a crossing

A simultaneous choice of resolution for all crossings is called a state; the set
S(D) of all states has 2™ elements. The word of state is the 0, 1-sequence of length
n, where the i-th 0 or 1 stands for the choice of resolution of the i-th crossing. The
height h of a state s with word a; ...a, is defined as the number of 1-resolutions
of the state, i.e. h(s) =Y i, a;.

Resolving all crossings of D according to a state s yields a diagram, called dia-
gram of the state, consisting only of circles, called the circles of the state. The set
of these circles is denoted by k(s). Let V = (v_,v,) be a filtered, two-dimensional
vector space, where V1 =V and V; = (v;). Leta=v_+viandb=v_ —v,.

To every state s we associate the filtered vector space

Cs = ( ® Vc)[h(s)—i-w—n_]

c€k(s)

where V., = V. Notice that the pure tensors, i.e. elements of Cs of the form
v = ®c€k(s) b. generate Cs. We say v colors the circle ¢ with b.. In particular, we
will often make use of the bases of pure tensors of a,b or of v4.

An a-colored circle and a b-colored circle are said to be colored in the opposite
way.

Let s and s’ be two states that differ only in the resolution of the i-th crossing;
such states are called adjacent. Let s be the state that 0-resolves the i-th crossing.
Passing from the diagram of s to the diagram of s’ may have one of two effects: if
in the diagram of s the i-th crossing connects two different circles, these circles are
merged to one circle; and if it connects one circle to itself, this circle is split in two.

We want to define a map d, 5 : Cs5 — Cy as tensor product of maps. For
each circle ¢ that is unaffected by the process of passing from s to s’, take the
identity map as factor; there is one additional factor: in case of a merge, a map
m:V ®V — V and in case of a split a map A : V — V ® V, where we let

mvy®@vy)=m(vo@v_)=vy A(Vy)=viQ®@Vv_+Vv_®vy
mvyi@v_)=m(v_oQ@vy)=v_ AV)=vi@vi+vo@v_.

Note that thanks to the degree shift in the definition of Cs the maps 0s ¢ are
filtered.
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Whenever the filtration is not of interest, it is easier to use the basis (a, b). With
respect to that basis the maps m and A read:

m(a®a) =2a A(a)=a®a
m(b®b) =—-2b A(b)=b®b
m(a®@b)=m((b®a)=0.
If s and s differ in the resolving of more than one crossing, we set ds ¢ = 0.

Remark I.4. The maps A and m may seem somewhat random; that is not the
case: observe that the maps decompose as the sum of two graded maps, one of
degree (—1) and the other of degree 3; taking the degree shift in consideration,
these maps are graded maps of degree 0 and 4.

The 0-degree maps are up to scalar multiplication the only “non-trivial” sym-
metric maps; these are the maps defined by Khovanov in [16]. The 4-degree maps
were added by Lee in [I7] to show a certain identity of the Khovanov homology.

Definition. If D is a knot diagram, the writhe w(D) is independent from orienta-
tion. That is not the case for links. So we define the writhe of an orientation o of
D to be the writhe of D with orientation o.

Remark I.5. Let o, 0’ two orientations of L. Note that the Khovanov-Lee complex
of (L, 0) differs from the complex of (L, 0’) just by a degree shift of 2(w(0) —w(0'))
and a height shift of $(w(0) — w(0’)).

Definition and Lemma 1.6. For i € Z, let

Ci = @ CS, and (‘31 = @ (_1)H(S7Sl)857s’7

sE€S, s,s'€S,
h(s)=i+n_ h(s)=i+n_,
h(s")=i+n_+1

where 11(s, ) is the number of 1s occurring in the word of s prior to the digit where

it differs from the word of s’. Then ... — C; LN Ci+1 — ... is a chain complex
called the Khovanov-Lee complex of D, or just the complex of D, and denoted by
C(D).

We give a rigorous proof after having introduced two different ways to decompose
the chain complex in spe as a sum of smaller complexes; until then, we treat C(D)
as a mere sequence of spaces and maps.

Lemma I.7. All elements of the chain spaces have degree equal to |L| (mod 2).

Proof. Let s € S(D) be a state and t = vi2 ® ... ®@ vx € C, be a pure tensor of
vy. Let t have ky many v- and k- many v_-factors. The degree of t € C(s)
equals h(s) + w—n_ + ki —k_. Because ky —k_ =k + k_ = #k(s) (mod 2),
and w — n_ = ny, this equals h(s) + ny + #k(s) modulo two. Because C, can be
generated by pure tensors of v, this is true of the degree of any element t € Cs.

Passing from a diagram D of L to the diagram of the Seifert state s, can be seen
as a process of resolving the crossings of L one after the other; each resolving changes
the number of link components by one. We begin with a diagram that has |L| link
components and stop at a diagram that has #k(s,): therefore #k(s,) = |L| +n
(mod 2).

One can pass from any state s € S(D) to the Seifert state s, by a sequence of
fusions and merges. In each step, the number of cirles changes by one, as does
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a a a b b b

a a a b b b

FIGURE 2. Possible local colorings of a crossing in an admissibly
colored diagram.

the height of the state; thefore, h(s) + #k(s) = h(s,) + #k(s,). Consider that
h(so) = n_; so it follows that h(s) + ny + #k(s) = #k(s,) + n = |L| (mod 2). O

Remark I.8. We have already remarked that the boundary maps are the sum of
a map that preserves the degree and one map that increases the degree by four.
So C(D) is the filtered sum of two complexes: one complex containing all elements
of degree equal to |L| (mod 4), the other complex containing all elements equal
to |L| + 2 (mod 4). Likewise, homology — once we have proven C(D) is a chain
complex — is the filtered sum of the two homologies, one summand containing all
elements of degree equal to |L| (mod 4), the other all elements of degree equal to
|L| +2 (mod 4).

Definition. A space homeomorphic to the closed unit interval I is called an arc.
An edge of a diagram is either a circle that contains no crossings, or an arc that
has two crossings as endpoints and contains no crossings in its interior.

Remark 1.9. Let D be a diagram of L. A coloring of D is a map that assigns to
each edge of the diagram either a or b. A coloring is called admissible if there is a
way to resolve all crossings so that each of the emerging circles is of one color only
(see figure [2)).

Now every chain space of the Khovanov-Lee complex can be generated by pure
tensors of a,b. Each of these generators belongs to an admissible coloring: color
every edge by a (or b) if it belongs to an a- (or b)-circle in the diagram of the state
in which the generator in question lives. Conversely, to each admissible coloring ¢
we assign a subset V'(c) of these generators. The crucial point is that a generator t €
V(e) is mapped by the boundary map to a non-zero multiple of another generator
t' € V(c), as one can see from the definition of m and A. Hence V(c) for every c is
a subcomplex and C(D) is the direct sum of these subcomplexes.

Notice that this decomposition does not respect the degree; and note that this
remark does not presume that C(D) is indeed a chain complex.

Proof of lemma[lL@ Because of the above remark it is sufficient to prove that if
¢ is an admissible coloring, then V(¢) is a chain complex. It is enough to prove
that if s1, s2, 85, s3 are states and s; and s3 are adjacent to sy and sb, and V' (¢) is
supported in these states, then

(—1HGsms)tnlsnsalg o9 4 (,1)#(51,S'z)+u(8'z’53)5s,27s3 00y, 5, =0
We show that
Dsg,55 © 051,55 = 85'2,53 o 851,3/2

and
(,1)H(81182)+M(52’83) _ ,(,1)M(81,S£)+M(S'2,Ss).



THE RASMUSSEN INVARIANT OF ARBORESCENT AND OF MUTANT LINKS 9

The chain spaces are generated by pure tensors of a, b. The functions Js, s, ©
0s,.s, and Oy o, © O, & map a generator s in V(c) N Cs, to a non-zero multiple of
a generator in V(c) N Cs,. Because V(c) N Cy, is one-dimensional, both functions
map § to a non-zero multiple of the same generator t. So it just remains to prove
that the rational coefficient are the same. Notice that passing from s; to s3 via so
or s entails the same number of times of splitting a circle, merging two a-circles
and merging two b-circles. Therefore, considering the coefficients of m and A, the
image of s has the same rational coefficient, whether one passes from s; to s3 via
sg or sy. Thus s, s, 0 O, 5, = Osp 55 © Os, )

There are two crossings ¢ and ¢’ such that s; O-resolves both, s3 1-resolves both,
s O-resolves ¢ and 1-resolves ¢/, and s} O-resolves ¢’ and 1-resolves c. Without loss
of generality, let ¢ have a higher index than ¢/. Then u(ss,s3) = p(s1,5) + 1 and
(s, 82) = p(sh, s3), and therefore

(—1)s1552) L (_1)mls2:88) = _(_1)mls152) L (—1)p(s2,58),
a

Definition and Lemma 1.10. Let L be a link. By H;(L) we denote the i-th
filtered homology space of the Khovanov-Lee chain complex of the above lemma.
Let the homology of L be the sum of all homology spaces and denoted by H* =
@iEZ Hi.

This definition is justified because the isomorphism type of H as filtered vector
space is a link invariant.

Rasmussen proves this in section 6 of [20] by constructing chain maps between
chain complexes of diagrams related by the Reidemeister moves; such that these
chain maps induce vector space isomorphisms on homology. For this, the degree
shift of w—n_ and the height shift of —n_ are relevant, similar to the term (—A) 3%
in the definition of the Jones polynomial. Then an argument involving spectral
sequences shows that the filtration of homology is not changed under Reidemeister
moves, either.

Remark 1.11. The Khovanov complex is constructed using Z- instead of Q-
modules. The difference is that Z-modules, i.e. abelian groups, allow torsion;
but torsion is not of interest from the viewpoint of the Rasmussen invariant, so we
can work over Q with clear conscience.

1.3. Cobordisms and definition of the Rasmussen invariant s for links. It
turns out the dimension of the homology is just 2/*l and generators can explicitly
be given.

X\.U
X/'/\

FIGURE 3. Seifert resolution of a crossing



10 LUKAS LEWARK

Definition. Let o be an orientation of L. An orientation induces a state s, that
resolves every crossing in harmony with the orientation, as in the Seifert algorithm
(see figure B). This state is called Seifert resolution of the orientation. Its circles
are called Seifert circles. Now color every circle of this state that is oriented coun-
terclockwise with a and every circle oriented clockwise with b. Switch the coloring
for all circles that are contained in an odd number of other circles, where a circle is
said to be contained in another circle if it lies in the compact one of the two con-
nected components of the complement of that other circle. The element of C(s,)
that colors the circles like this is called the canonical generator corresponding to o
and is denoted by s,.

Remark I1.12. Note that h(s,) = n_, so Cs, = (®c€k(so) Vc) [w]. Furthermore,
5, € Cp.

Lemma I.13. In the diagram of s, each crossing connects two circles. One of them
is colored with a by s,, and the other one with b.

Proof. If two circles are connected by a crossing, they locally look like this: JC.
There are two cases: either neither circle contains the other; then one of the
circles is oriented clockwise and the other one counterclockwise. Or one of the
circles does contain the other; then they have the same orientation.
In both cases, they are colored oppositely. O

Lemma I.14. The homology classes of the 2/* canonical generators are a basis of
homology.

Proof. Decompose C(D) as a sum of subcomplexes as in remark [[9] Then H*(D)
is the direct sum of the homologies of these subcomplexes. Let ¢ be an admissible
coloring that contains a crossing at which all four strands are colored the same
(called coloring of type I). Then, V(c) = Vo(c) U Vi(c), where Vy(c) contains the
elements of the states that O-resolve that crossing, and Vi (c¢) contains the elements
of the states that 1-resolve that crossing. The boundary map is an isomorphism
from Vy(c) to Vi(c). Hence the homology of V(¢) vanishes.

On the other hand, let ¢ be an admissible coloring that uses both colors at each
crossing (called coloring of type II). Then there is only one way to resolve each
crossing consistently with the coloring, and therefore only one state that contains
elements of V(c). So V(¢) is one-dimensional and isomorphic to its homology.

Now the set of colorings of type II is in 1-1-correspondence with the set of possible
orientations of D: If ¢ is a coloring c¢ of type II, it is supported in one state only.
In that state, orient every circle colored a counterclockwise and every circle colored
b clockwise. Reverse the orientation of every circle that is contained in an odd
number of other circles. This orientation of circles induces an orientation of the
diagram D.

On the other hand, if an orientation o is given, resolve D in Seifert’s way and
color each circle as in the above definition of canonical generators. This induces an
admissible coloring; that it is of type II is precisely the statement of lemma [13]
above. It is obvious that the described correspondence between type II colorings
and orientations is 1-1. Notice that V(c) is generated by s,. So the canonical
generators generate homology. O
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Remark I.15. This proof comes from Wehrli (see [27]). Lee’s original proof (see
[I7]) relies on induction on the number of link components and the number of
crossings and uses a long exact sequence in Khovanov-Lee homology.

Definition. Let Lo, L; € S® be links. A cobordism from Ly to Li is a smooth,
oriented surface S properly embedded] in [0,1] x $3 so that SN {i} x §3 = L; for
i=1,2.

Remark 1.16. A weakly connectedd cobordism induces an automorphisms of vec-
tor spaces from H(Lg) to H(Ly). If one follows the construction of the chain
complex given by Bar-Natan in [3], this comes naturally. With our construction,
one has to decompose the cobordism S as sum of elementary cobordisms first, as
done by Rasmussen [20] section 4].

It is possible to fix a projection S — R? so that the set of i € [0,1] for which
the projection of SN ({i} x S?) is not a link diagram is discrete. The cobordism S
can then be depicted as a sequence Dy, ... D, of link diagrams so that:

e Each D; is the projection of SN ({i;} x S3), where 0 =iy < i3 < ... <
in = 1.

e There is at most one k in between i; < k < i;41 such that SN ({k} x S%)
is not a link diagram. For ¢ with i; < ¢ < k, the projection SN ({¢} x S3)
is related to D;; by an isotopy of the plane; for £ with & < ¢ < i;,4, the
projection S N {¢} x S? is related to D;, ., by an isotopy of the plane.

e One can pass from D;, to D by either a Reidemeister move or one of
the three Morse moves:

birth — add a circle to the diagram; comes from a cap-cobordism.

41

% fusion — either switching between = and J(, or between < and J(;
comes from a saddle cobordism.
@ death — remove a circle from the diagram; comes from a cup-
cobordism.

We can define the map H(Lg) — H (L) for each of the six elementary cobordisms
— three Reidemeister moves and three Morse moves — and for the sum of elementary
cobordisms by composition. It turns out that |s(Lg) — s(L1)| < x(95).

However, the only application needed in this thesis is the effect of a fusion on
the Rasmussen invariant; this can be analyzed without even defining cobordisms,
so we will not make the above digressions more formal.

Lemma 1.17. Let D; be a diagram of the link L; and D5 a diagram of the link
Lo obtained from D; by a fusion. Let o be an orientation of Di; it induces an
orientation o’ of Dy. Then there is a filtered map of degree —1 from H;(L{) —
H;(Ly) that takes a canonical generator s, to a non-zero multiple of the canonical
generator &',

Proof. There is an obvious one-to-one correspondence between the states of Dy and
Dy, denote it by ¢ : S(D1) — S(D2). Furthermore, the diagrams of s € S(D;) and
©(s) € S(Ds) look the same except for the site where the fusion took place: thus,

n these circumstances properness just means that the image of the boundary of S is the
intersection of the image of S and {0,1} x S3.

2A cobordism is weakly connected if the intersection of each of its connected components with
Lo is non-empty.
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the diagram of ¢(s) has either one more or one less circle than the diagram of s,
depending on whether the fusion splits or merges two circles. So we can define a
map O ,(s) in the usual way. This map is filtered of degree —1.

One can show that 9(s, p(s")) 0 (s, s") = A(p(s), p(s")) 0 (s, p(s)) in the same
way we proved that the Khovanov-Lee complex is a chain complex (see proof of
[La).

Let f; be the sum of 0, o for all s € S(D;) and ' € S(D3) with h(s) = h(s") = 1.
Then it follows that f;y; 0 9; = 0; o f;, so the maps f; constitute a chain map f
from C(L;y) to C(Lz). The map f is filtered of degree —1 and induces a map of
degree —1 from H*(Lg) — H*(L1) (see corollary [[2).

Let s, € S(D1) and s, € S(Dz) be the Seifert states. Let s, € Cs, and s/, € Cy/
be the canonical generators. Consider the diagrams of s, and s,: near the fusion
site, one of them has one and the other one two circles. But these three circles are
colored the same by s, and s/. Hence, up to non-zero scalar multiplication, f sends
5, to 5. O

Lemma 1.18. Let L be a link with orientation o. Then the subspace of homology
generated by s, and sz has elements of two different degrees, the difference of
which is two. Both canonical generators have the lower degree; the higher degree
is attained by either s, + s5 or 5, — 55.

Proof. Since the subspace in question is generated by two elements, it could be
supported in one or in two different degrees. As seen in remark [[8 the chain
complex of L decomposes as direct sum of two chain complexes. We show that
S, + 55 and s, — 53 lie in one of those two chain complexes each. It follows that the
homological degree of [s, + s5] and [s, — s3] differs by 2 (mod 4).

Consider s, 4+ s5. It can be written as sum of elements of the form vi ® ... ®@ v
in a unique way. In that sum, vy ® ... ® vy appears as summand with non-zero
coefficient if and only if the number of v -factors is even. All pure tensors of v
with an even number of v -factors form a basis of one of the two chain complexes
mentioned above. Similarly, s, — s5 is the sum of all elements vy ® ... ® vy that
have an odd number of v, -factors and consequently lies in the other one of the two
chain complexes mentioned above.

It remains to prove that the difference of the two gradings indeed equals 2, not
only mod 4. Pick any circle. Apply a fusion move that splits this circle, then
merge again with another fusion move. The composition of the maps associated
to these two moves (see lemma [[17) send a — 2a and b — —2b. Because one
of the canonical generators s, and s colors that circle with a, and the other one
with b, the elements s, + 557 and +2(s, — s5) are interchanged (up to non-scalar
multiplication). Thus, by lemma [[T7 the homological degree of s, + 55 and of
s, — 55 differ by at most 2; since we already know that the degree differs by 2
(mod 4), the difference is 2.

Finally, the sum of two elements of different degree has the lower of the two
degrees: so

(0 + 55) + (50 — 53)
2
— and similarly sz — has the lower of the two degrees. O

So =

Definition. The Rasmussen invariant s of the oriented link L is defined as the
number between the two integers of difference 2 that arise as degrees of elements of
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the subspace of homology that is generated by s, and s, where o is the orientation
of L. Another way to say that is
_ degy (5o + 55) + degy. (50 — 55)
3 .
If 0 is an orientation of L, by s(L,0) we denote the Rasmussen invariant of L
oriented by o.

1.4. Basic properties of s.
Lemma 1.19. Let L be a link. Then
s(L)=|L|+1 (mod 2)

Proof. The Rasmussen invariant s of L is equal to one plus the degree of some
element of Cp; by lemma [[7] the degree of such an element is equal to |L| (mod 2).
|

Lemma 1.20. Let D; be a diagram of the link L; and D5 a diagram of the link
Lo obtained from D; by a fusion: switching between /< and J(, or between < and
JC. Then

S(Lg) = S(Lg) +1

Proof. Let f be the filtered map of lemma [[T7l This map f is of degree —1, so
degyr (1) S0 — 1 > degy(r,) 5, & s(Lo) —1 > s(L1). Switching the role of Ly and
Ly results in s(L1) — 1 > s(Lo) = |s(Lo) — s(L1)] < 1.

Since the number of components of Ly and L; differs by one, so does their
Rasmussen invariant mod 2 (see lemma [[19)). This excludes the case and thus
completes the proof. O

Lemma 1.21. Let L be a link. Then the Khovanov-Lee complex of L is isomorphic
to the dual of the complex of L with a degree shift of one:

¢(I) = c(L)*[1].

Proof. We (i) construct an isomorphism C;(L) — C_;(L), (ii) construct an isomor-
phism C_;(L) — (Ci(L))*[1], and (iii) prove that the composition v; : C;(L) —
(C(L)*):[1] of the two isomorphisms is a chain map.

(i) Let D be diagram of L and s € S(D) a state of D. Let 5 € s(D) be the state
that resolves every crossing the same way s does. Then there is natural isomorphism
between C(L)s and C(L)s. A crossing is O-resolved by 3 if it is 1-resolved by s, and
vice versa. So h(3) = n — h(s). The space C(L)s is a summand of C(L)(s)—n_»
whereas the space C(L)s is a summand of C(L)ps)—n, = C(L),__p(s), because
the number of negative crossings of D is ny. So there are natural isomorphisms
between C(L); and C(L)_;

(i) We map V' — V*[1] by vi ~ vZ. This is an isomorphism. It extends
to an isomorphism V@ ...@V — (V& ...® V)*[1], so we have isomorphisms
from C4(L) — (Cs(L))*[1], Where s € S(D). These isomorphisms in turn extend to
isomorphisms C_;(L) — (C;(L))*[1].

(iii) Let s,s' € S(D) be adjacent states so that O, ¢ is non-zero. Assume
05 1 C5(D) — Cy(D) is a merge (if it is a split, the argument is similar). Then
the map Oy 5 : C (D) — Cy(D) is a split. So in the dual complex, the crucial part
of the map 9, ; : Cs(D)* — Cy(D)* is A*. But the isomorphism v + vi maps
m to A*, therefore 95 ; o p(sr)y = Yn(s) © Os,s'- O
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Corollary 1.22. If L is a link, then for all i € Z the i-th homology space H;(L) is
isomorphic to (H;(L))*[1].

Proof. This follows from the previous lemma [[21] and the fact that the dual chain
complex has dual homology (see lemma [[3). O

Proposition 1.23. Let L and L’ be links.
(1) S(Ll [ LQ) = S(Ll) + S(Lg) —1.

(i) 2 — 2|L| < s(L) + s(L) < 0. Let o be the orientation of L. The only
values s(L) can take are —s(L,0), where o’ is an orientation of L with
same writhe as o, or —s(L,0’) + 2, if there is another orientation o’ of L
with same writhe as o that satisfies s(L,0") —4 = s(L,0").

(iii) s(L1#L2) = s(L1) + s(L2) — 1+ 1. If s(L;) = —s(L;) for i € {1,2}
and s(L1#Ly) = —s(L1#Ls), which is e.g. the case for knots, then
S(Ll#Lg) = S(Ll) + S(Lg)

Proof. (i) Let D, Dy and Dy be diagrams of L, Ly and Lo, respectively. There is
a natural bijection ¢ : S(D;) x S(D3) — S(D1 U D3). We have h(s1) + h(s2) =
h(e(s1,82)) and n_(D) =n_(D;1) +n_(D3). Thefore

h(s)=i+n_ (D)

- P( P cw)e( P b)) = P b
Jj+k=i h(si)=j+n_(D1) h(s2)=k+n_(D2) Jjt+k=i
So we have C(L1 (] LQ) = C(Ll) ® C(LQ) = H*(Ll (] LQ) = H*(Ll) ® H*(Lg)
The canonical generator of L LI Ly is the tensor product of the canonical gener-
ators of L, and Lo, so its homological degree is the sum of the homological degrees
of the canonical generators of L1 and Ly. This proves the claim.

(ii) To prove the upper bound: by the above corollary[[22, H;(L) = (H;(L))[1]*.
The basis of pure tensors of vy induces a vector space isomorphism ¢ : H;(L) —
(H_;(L))[1]* with the property degp(t) < —degt. So there is a vector space
isomorphism @ : H;(L) — H_;(L) with the same property. We denote the canonical
generators of L by s, and those of L by 5,. Choose j € {0,1} so that degp+ (1) S0+
(—1)s5 = s(L) + 1. The function ¢ maps s, + (—1)?s5 to 5, + (—1)755. Therefore
we have

degpy. 7y 50+ (—1)'85 < —degp.(g) S0+ (—1)'55 =
s(D)+1 < —(s(L)+1) =
s(D)+s(L) < —-1x1=
s(L)+s(L) < 0.

To prove the lower bound: it is possible to transform L U L to the trivial link with
|L| components by |L| fusion moves. Therefore
|s(LUL) - (1 - [LD] < |L|=
Is(L) +s(L) =2+ LIl < |L|=
- _

—2 - 2|L| s(L) + s(T).
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Finally, consider again that H;(L) and (H;(L))*[1] are isomorphic. So H;(L) has
an element of degree k if and only if H_;(L) has an element of degree —k; this is
the case if and only if there is an orientation o’ of L so that s, lives in H; and
k = s(L,0") £ 1. Furthermore, s,/ lives in H; if and only if o’ has the same writhe
as 0. So, s, is mapped to an element of degree —s(L,0’) —1 or —s(L,0’) + 1. In

the first case, s(L) = —s(L, 0'). In the second, s(L) = —s(L, 0') + 2; but since there
must be an element of H;(L) with degree two greater than the image of s,, this
may only happen if there is an orientation o” of L with same writhe as o such that
s(L,0") = s(L,0") —4 or s(L,0") = s(L,0') — 2. The first case is part of the claim
of the lemma, and in the second case s(L) = —s(L,0).

(iii) There is an obvious fusion move relating Li#Ly to Ly U Ly. Therefore, by
lemma [[20] s(L1#Lo) = s(L1 U Ly) £ 1 =s(Ly) +s(Lg) — 1+ 1.

If s(L;) = —s(L;) for i € {1,2} and s(L1#L2) = —s(L1#Ls), then

s(Li#Ly) = s(Li#Lo)
= —s(Li#L2)
= —(s(L1) +s(L2) —1£1)
= —(=s(L1)—s(La) —1£1)
= s(L1)+s(L2)+1+1
Therefore s(L1#Ls2) = s(L1) + s(Ls). O

Remark I.24. There are currently no links Ly, Lo known for which s(Li#Ls) =
s(L1)+s(L2)—2 ([28]). So proving that there are indeed none appears to be an open
problem. This would be an easy corollary of invariance of the Rasmussen invariant
under link mutation (see section [[IL2)): Let U be the unknot, then U Ul (Li#Ls)
and Ly U Ly are mutant, so s(Li#La) = 14 s(U U (L1#L2)) = 1+ s(L1 U Ly) =
S(Ll) +8(L2) .

The estimate for s(L), however, is sharp in the sense that both lower and upper
bound are attained: For example, the n-component trivial link U,, satisfies s(U,,) =
1 — n, and so does its mirror image. There are even non-split links L that do not
satisfy s(L) = —s(L): let L be a n-component link with unknotting number u. A
crossing change may be realized as two fusion moves (see figure Hl). So there is a

FIGURE 4. A crossing change realized as two fusion moves

/

sequence of 2u fusion moves from L to U,, and therefore s(L) < 1 —n + 2u. This
inequality holds for the mirror image as well. So for any link 1 —n 4+ 2u < 0 =
s(L) # —s(L). Take e.g. the Whitehead link and replace one component with its
(n — 1)-cable (see figure [l for the case n = 4). The resulting link has unknotting
number 1, so for n > 4 we have 1 — n + 2u < 0. This was Stephan Wehrli’s idea
(see [28]).

More generally, take a link L with |L| > 2 that becomes trivial if one removes a
certain link component from it, e.g. any Brunnian link (taking the Hopf link will
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G

FIGURE 5. A non-split link L with s(L) # —s(L).

lead to the above example). Replacing this component by its Whitehead double
yields a link with unknotting number 1. Now, by replacing any other component
with its n-cable one can increase the number of link components without changing
the unknotting number.

I.5. An inequality involving the number of positive circles.

Definition. Let D be a link diagram. Let k(D) denote the number of Seifert circles
of D. We call a Seifert circle positive (or negative) if it is only adjacent to positive
(or negative) crossings. If D is positive, let k,(D) := k(D) — 1, otherwise let k,(D)
denote the number of positive Seifert circles of D. Let k, (D) be defined similarly
for negative D and negative circles. If it does not lead to ambiguity, we just write
k. k, and k,, instead of k(D), k,(D) and k, (D).

Proposition 1.25. Let D be a non-split diagram of writhe w of an oriented link
L. Then

1+w—k+2k, <s(L) <-1+w+k—2k,

Proof. The upper bound is an easy corollary of the lower one and proposition [.23]
(ii): note that the writhe of D is —w and k, (D) = k,(D). Therefore we have

s(L) > 1—w—k+2k,=

—s(L) < —“14+w+k—2k, =

s(L) = (s(L) +s(L)) < —1+w+k—2k,=
s(L) < —l14+w+k—2k,.

We prove the lower bound by constructing a representative of s, with the degree
w — k+ 2k,. We start with the canonical representative; in (i), we show how to find
— under certain conditions — another representative the degree of which is higher
by 2. In (ii), we show (i) can be applied k,, times.

(i) Let c— be a negative circle in s,. Let ¢o € k(s,) be a not necessarily negative
circle adjacent to c_. Let s € C,, color any negative circle but c_ and ¢y in an
arbitrary way; and color c_, ¢y and any non-negative circle the same way s, does.
Then we say c_ is a candidate circle of s, cq its helper circle, and claim that the
element s € C5, that colors the candidate circle with v and every other circle in
the same way s does is homologous to &'

Proof: Fix a common crossing of c_ and ¢y. Let s be the state that resolves
all crossings but the fixed one in the same way as s,. Since this fixed crossing is
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negative, h(s) = h(s,) — 1. Let ¢; be the merge of the circles ¢c_ and ¢y. Every
circle of s but ¢; is a circle of s,, too.

Let t € Cs color ¢; the same way s colors the helper circle; and all other circles
the same way s does. What is the image of t under dj,(,)—17 The fixed crossing is
0O-resolved by s; passing to a l-resolution splits ¢; in ¢ and ¢,, therefore 0 s, (t)
colors every circle the same way s does, but for the candidate circle: that circle is
colored the way s colors the helper circle. So 05 s, (t) colors the candidate circle in
the opposite way s does.

Any other O-resolved crossing in s connects two circles that are colored oppo-
sitely by t. Therefore Jj,(5)—1(t) = 0ss,(t). Let 8" = 5 — Op(5y—1(t): then s colors
every circle the same way s does, but for the candidate circle, which it colors +v .

(ii) There is a sequence (c1,dy), ... (ck,,dk,) of pairs of circles in k(s,), such
that Vi : ¢; is negative, shares a crossing with d;, and d; # ¢; for j <.

Once (ii) has been proven, let 5, € C,_ color ¢; with v for 1 < j <, and every
other circle the way s, does. Then ¢;11 is a candidate circle of s; with helper circle
dit1; 80 [s0] = [s0] = [51] = ... = [sy, | and degc, sk, = w —k + 2k;.

Proof: Let T be the graph with vertices k(s,); and let two vertices be connected
by an edge if and only if the two corresponding Seifert circles have a crossing in
common. Let 7" C I" be a spanning tree: that is a tree with the same vertices as I'
the set of edges of which is a subset of the set of edges of I'. We want to construct
the above sequence inductively; start with an empty sequence. Let ¢ be a leaf of T
and ¢g its father. Prune ¢; and if ¢ is negative, add (¢, ¢p) to the sequence. Proceed
until only one vertex is left, in such a way that, if there is a non-negative circle,
this last vertex is a non-negative circle. In this way, one arrives at a sequence
(c1,d1),...(Ck,,dr,) that satisfies d; # ¢; for j <.

|

Remark 1.26. Let L be a link and D be a non-split diagram of L with the following
property: only one Seifert circle of D is adjacent to positive as well as negative
Seifert circles. Such a diagram is called good. Then the lower bound of the above
proposition equals the upper; so the inequalities determine the Rasmussen invariant
and we have s(L) = w + ky, — k.

Corollary 1.27. Let D be a positive diagram of a link L, i.e. a diagram with
positive crossings only. Then s(L) =1+n — k.
Similarly, if D is a negative diagram of L, s(L) = -1 —n + k.

Corollary 1.28. If a link L has a good diagram, it satisfies s(L) = —s(L).

Remark 1.29. The inequality is a refinement of the inequality 1 +w —k < s(L) <
—1+4+ w + k that was proven by Shumakovitch [22].

It was proven by Kawamura [I4] by constructing a cobordism to a positive link,
the inequality then giving exactly the result; this has the advantage that the
inequalities are proven for every knot invariant satisfying certain conditiond}: the
other prominent member of that set being the Ozsvath-Szabé invariant 7.

3That is, the invariant is required to be a homomorphism ConC(S3) — 7Z that takes the value
of twice the slice genus on positive knots and that has an absolute value smaller than twice the
slice genus on any knot.
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Remark 1.30. Not all alternating knots have good diagrams; however, among
small alternating knots, good diagrams are the rule: there are 1226 alternating
knots of crossing number 12 or less; a computer calculation shows that for 1200 of
them, the diagram given by the PD-notation from KnotInfo [9] is good.

For non-alternating knots with at most 12 crossings, it is 441 out of 1126.

1.6. The relationship of the signature and s. We make use of a statement
obtained by Lee [I8, proposition 3.3] using Goeritz matrices [12]:

Lemma 1.31. Let D be a non-split, reduced, alternating diagram of a link L with
ny positive crossings. It is possible to color the regions of D with black and white
in a checkerboard fashion so that locally, every crossing looks like the X
crossing depicted on the right. Let o denote the number of black regions. K
Then o(L) =1+ ny4 — ol

Remark 1.32. Let D be an alternating diagram. A Seifert circle of D is called
separative if there is at least one circle it contains and at least one it is contained
in. Because D is alternating it has the following property: Every Seifert circle ¢ of
D shares only positive crossings with circles not contained in ¢, and only negative
crossings with circles contained in ¢, or vice versa. So a circle is separative if and
only if it is neither postive nor negative. Hence D is good if and only if there is at
most one separative circle.

@
@

FIGURE 6. A diagram of 815 colored like in lemma [[31] (graphic
taken from Knot Atlas [0]); its colored Seifert resolution (separative
circle drawn thicker) with o = 4; and one of the graphs mentioned
in the proof of (i)

Proposition 1.33. Let L be a non-split alternating link. Then s(L) = o(L).

Proof. Let D be a reduced alternating non-split diagram of L. Without loss of
generality, let a crossing that connects two circle that are not contained in another
one be positive. Let Ky be the set of circles that are contained in an even number
of other circles, and K the set of those that are contained in an odd number. Then
we prove that (i) o(L) = w+ #K; — #Ko+1 and (ii) s(L) = w+ #K1 — #Ko + 1.
Color D in the way of lemma [[31] above and let o be the number of black regions.

(i) Using Lee’s lemmal[31] it suffices to prove 1+ny —0 = w+#K; —#Ko+1 <
o= #Ky— #K;, +n_. Consider a circle ¢ € Ky. We prove that the number o°

4Lee follows a different convention regarding the sign of the signature than we do; so in Lee’s
paper, the formula actually appears as o(L) =0 —n4 — 1.
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of black regions inside of ¢ equals 1 — kf + n°. By summing over all ¢ € Ky, this
implies 0 = # Ko — #K1 +n_.

Consider the K;-circles inside of ¢ as vertices of a graph; let the edges between
two Ki-circles ¢; and co correspond to the crossings ¢; and co have in common.
Draw c as a circle containing these vertices. For every ¢; that shares a crossing
with ¢, place a vertex on ¢ and join it to ¢; with an edge. See [0 for an example of
such a graph.

Let P be the number of negative crossings of ¢. Then the number of vertices of
the graph is P + k{; the number of edges is P + n¢; and the number of faces is o°.
Therefore, P4+ ki — P —n® +0°=1=0"=1—-k{+n_.

(ii) By induction on the number of separative circles. If there is only one sepa-
rative circle, D is good; furthermore, all circles in K but one are positive and K;
is the set of negative circles, so the claim is an application of

Now, choose a separative circle c. Let ¢ have P positive crossings. Let D’ be the
diagram consisting of ¢ and the interior of c¢. Let K}, K and w' be set of Seifert
circles of D? contained in an even number of other circles, the set of circles contained
in an odd number of other circles, and the writhe of D?, respectively. Note that D?
has one separative circle less than D, because c is no longer separative in D. So by
induction s(L?) = w® + #Ki — #K¢ + 1, where L denotes the link represented by
Dt.

Let D¢ be the diagram consisting the exterior of ¢, but not ¢ itself nor any
crossing adjacent to c. Let K§, KY, w® and L be defined similarly as above. Since
D¢ has one separative circle less than D, too, s(L¢) = w® + #K§ — # K¢ + 1 holds.

We have

wHw*—N = w
#Ko+#K; = #Ko
#K +#K{ = #K,

There is a sequence of N fusion moves that connects D to D LI D¢: just resolve all
negative crossings adjacent to c. Therefore,

|s(L) —s(L'UL?)| < N=

|s(L) —s(L) —s(L¢) +1] < N=

|s(L) —w' — #Ki + #Ki —1 —w® — #K{ + #K5—14+1] < N=
|s(L) —w— N —#K+#Ky—1 < N=

|s(L) — (w+ #K; —#Ko+1) —N| < N=

$(L) — (w+ #K1 —#Ko+1) > 0=

w+#K, —#Ko+1 < s(L)

Apply this to D; since now a crossing between circles that are not contained in
another circle are egative instead of positive, we have to change the diagram slightly:
pick a circle in Ky that is not contained in another one. Then one can switch the
interior and exterior of this circle, obtaining a diagram that represents the same
link. Under this, (Ko, K1) — (K; + 1, Kg — 1). Therefore

—w—#K1+#Kog—1 < S(Z)
wH+#K —#Ko+1 > s(L)
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The claim follows. O

Corollary 1.34. If L is an alternating link with C' split components, then s(L) =
o(L)—-C+1.

Remark 1.35. If L is a link, (o(L) — s(L))/2 < alt(L) < w(L), where u(L) is
the unknotting number number of L, and alt(L) is the alternation number: the
minimum number of crossing changes needed to change a diagram of L to the
diagram of an alternating link, the minimum taken over all diagrams of L.

II. ARBORESCENT LINKS

II.1. Definition and basic properties of arborescent links. This subsection
follows Baader [I]. We start with a list of familiar definitions from graph theory:

List of definitions. A G-weighted graph T"is a tuple (V, E,~): V is the finite set
of vertices, v : V. — G the weight function, and E C {{v,w} | v,w € V,v # w} the
set of edges. A vertex v and an edge e are called adjacent if v € e; two vertices
v,w are called adjacent if {v,w} € E. The set of edges adjacent to a given vertex
v is denoted by E,. To prune a subset V/ C V means to delete the vertices in V'
and all edges they are adjacent to. A path in I' is a non-empty sequence vy, ...v,
of distinct vertices so that Vi € {1,...n — 1} : {v;,v;41} € E. A path is said
to connect vy to v,. A graph is called a forest if for any pair of distinct vertices
v, w there is at most one path from v to w; it is called a tree if for any pair there
is one and only one. A leaf of a forest is a vertex adjacent to only one edge.
The only vertex a leaf is adjacent to is called its father. Two G-weighted graphs
'y = (Vi,E1,71) and T'y = (Vi, Eq,71) are considered the same if there is a G-
weighted graph isomorphism f : 'y — TI'g, i.e. a bijection f : V3 — V5 such that
{v,w} e By & {f(v), f(w)} € B2 and 71 =120 f.

A graph can be seen as a topological space: let < be a linear order on V. For
each edge e let I, be a unit interval. Let e = {v,w} € E be an edge and v < w.
Then we set ., =0 € I, and I.,, = 1 € I.. Consider the space | |,y I/ ~ where
ley ~ Ipy fore, f € E;ve V. This is the topological space corresponding to the
graph. An embedding of a graph is an embedding of its topological space in R?. Let
two embedded, G-weighted graphs i; : I'1 — R? and i, : 'y — R? be given, and
denote their topological spaces by X7 and X5. A graph isomorphism f: 'y — I's
induces a homeomorphism f : X; — X5. The embedded graphs I'; and T’y are
considered the same if there is a G-weighted graph automorphism f such that is o f
and iy are isotopic.

An embedding of a graph induces a symmetric relation on each E, that conveys
if two edges are next to each other in the embedding.

Every forest is embeddable.

Definition. To a Z-weighted, embedded tree I' = (V, E,~) one associates an em-
bedding of a surface in S? by plumbing twisted bands along the tree: first, place a
~(v)-twisted band (see Figure[T)) at every vertex v. Then, for each edge {v,w} € E,
plumb together the band at v with the one at w as in figure B in the order given
by the embedding: i.e., the plumbing sites of the bands at w and w’ are next to
each other if and only if the edges {v, w} and {v,w’} are next to each other in the
embedding of T'.
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FiGUrE 7. The —4-, - (cylinder), 1- (Mobius strip), 2- (Hopf
band), 3-, and 4- tw1sted band In the orlentable case the two sides
of the band are colored differently. In the making of this figure
SeifertView [24] was used.

FIGURE 8. One 2- and one (—2)-twisted bands plumbed together
forming a Seifert surface of 41, the plumbing site colored red. In
the making of this figure SeifertView [24] was used.

b &@$$

FIGURE 9. From the weighted, embedded tree to the diagram of
the link bordering the surface.

This plumbing operation is a special case of the Murasugi sum; we rely on figure
and do not give an exact definition of plumbing. Such a definition can be found
in Kawauchi’s book [I5], chaper 4.2].

The border of that surface is a link called the link associated to T'.

Remark I1.1. Notice that two oriented surfaces yield an oriented surface if plumbed
together. A n-twisted band is orientable if and only if n € 2Z. Thus, the surface
associated to a 2Z-weighted tree is orientable and hence constitutes a Seifert surface
for the link associated to the tree. We refer to this Seifert surface as the canonical
Seifert surface of L. The existence of such a surface proves to be highly fruitful.

In the remainder of section II, let I' = (V, E,v) with V' = (vy,...v,) be a 2Z-
weighted tree and L the link associated to I' with an arbitrary embedding.
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Lemma II.2. The number ¢(T") of link components of L can be calculated recur-
sively:
(i) If T has a single vertex, ¢(T") = 2.

(ii) If T has just two vertices, ¢(T") = 1.

(iii) If there is a leaf the father of which is adjacent only to one vertex aside
from the leaf, one can prune the leaf and his father: the resulting tree I
satisfies ¢(I") = ¢(T).

(iv) If there are two leafs with the same father, one can prune one of them: the
resulting tree I' satisfies ¢(I') = ¢(T") — 1.

Proof. (i) and (ii) can be easily checked.

Plumbing is a local action and takes a place in a tangle of the type =), T one

plumbs a band b only once with a band b’, the type of tangle is changed to >C
If one plumbs the band b" with another band, the type of tangle is changed

back to “~ and no additional circles emerge in the tangle. So the number of link
components of the link associated to a tree is not changed by adjoining —/ to some
vertex. This proves (iii).

On the other hand, if one plumbs b with another band, the type of the resulting

tangle is DC, that is the same as before, but an additional circle comes up in the
tangle. Thus passing from —/ to -V increases the number of link components of
the link associated to the tree by 1. This proves (iv).

An easy induction argument shows that by applying (i)—(iv), ¢ can be calculated
for all trees: Apply (iii) and (iv) until one reaches (i) or (ii). O

II1.2. The signature of arborescent links. The calculation of the signature of
an arborescent link will follow the direct way: find a Seifert matrix of the link and
manipulate that matrix to obtain its signature.

Definition. The matriz associated to I' is denoted by Ar and defined as

w(v;) i=7
(Ar)ij = 1 {’Uz',lij} ek
0 {Uivvj} gEv

where we allow I' to be a forest.
Lemma II1.3. There is a Seifert matrix S of L so that Ap =S + ST.

Proof. Consider the natural Seifert surface of L (see remark [[LT]). As a basis of the
first homology group of that surface we choose the set of (f,)yev, where f, “goes
around” the twisted band associated to the edge v one time.

It should be clear that Ik(f,, f,7) = w(v)/2. The curves f, and f,; may only be
linked if the band at v and the band at w are plumbed, i.e if and only if {v,w} € E.
It is possible to choose the orientations of the f, so that Ik(f,, f.) +1k(fw, f,7) = 1.

Let S be the Seifert surface corresponding to that choice of basis. Then, clearly,
Ar=85+S". O

The following proposition gives an easy algorithm operating on I" that computes
the signature of Ar and thereby of L.

Proposition 1I.4. (i) If E = @, then o(Ar) = Z sig(w(v)).
veV
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Otherwise, let v € V' be a leaf. Denote its father by w € V.
(i) Ify(v) # 0, then o(Ar) = o(Ar/), where I' is obtained from I by removing
the edge {v,w} and changing the weight of w to y(w) — 1/(v).
(ii) Ify(v) =0, then o(Ar) = o(Arr), where I' is obtained from I by removing
the two vertices v, w and all edges adjacent to them.

Proof. f E = @, Ar is a diagonal matrix with entries y(v;); this proves (i).
While proving (ii) and (iii), for the sake of better legibility reindex the vertices
so that v = v; and w = v9. Then Ar has the form

() 1
1 y(w) (Ar)2s - (Ar)an
(Ar)a2
: B
(Al")n2

where left-out entries are understood to be zero and B is the matrix associated to
the tree obtained from I' by pruning v and w.

The signature of Ar is invariant under Ar — SApST where S € GL,(Q). In
case of (ii), let

1
NELOR
1
That results in
v(v)
Y(w) = 1/7(v) (Ar)2s -+ (Ar)on
SArST = (Ar)a2
: B
(AF)nQ

which is the matrix associated to the tree obtained from I' as described in the
statement of (ii).
In case of (iii), let

1
0 1
g—| —(Ar)as 1
—(Ar)an 1
That results in
0 1
1 y(w)
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That matrix has the same signature as B, because

aee (3 o) =120 (] 4e) =0

Remark II.5. Note that signature and Rasmussen invariant may agree on non-
alternating arborescent links, e.g. on 89, or may as well disagree, e.g. on 10139 or

O

I1.3. The Rasmussen invariant of arborescent links.

Lemma II1.6. Let D be the canonical diagram of L with ) ., |y(v)| crossings (cf
figure @) and writhe ) i v(v). Then the Seifert resolution of D has

o 1+ Z (|v(v)| — 1) many Seifert circles.
veV

o Z (7(v) — 1) many positive circles.

veV
v(v)>0

o Z (—y(v) — 1) many negative circles.

veV
v(v)<0

Proof.
By induction on #V. For #V = 1, a Seifert diagram is shown on the
right; the claim holds for this diagram. We call the outer circle the big
circle.

Now let the claim be true for I'; and modify I by adding one edge and one vertex
v. This has the following effect on the Seifert diagram of the link associated to I':

g R N A

F1GURrE 10. Effect of plumbing on the Seifert diagram.

First, we prove inductively that the two arcs depicted in the left diagram always
belong to the big circle. This is true if v is the second vertex of I'. If one adds a
vertex v’ by adjoining it to v, the diagram is changed inside the rectangle drawn in
the right diagram: again both arcs belong to the big circle. The same is true if the
vertex v is added to the father of v.
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There are v(v) — 1 new Seifert circles, all of which are positive if v(v) is positive,
and are negative if v(v) is. There are v(v) new crossings with the same sign as v(v).
The only old Seifert circle that gained new crossings is the big circle. Hence all
other circles that were positive or negative before are so still. Adding these changes
to the induction hypothesis proves the claim. O

Proposition I1.7. Let I' be a 2Z-weighted tree and L the link associated to I
embedded arbitrarily. Then

s(L) =) sig(y(v)).
veV

Proof. Note that by the previous lemma, the canonical diagram D of L is good; so
following remark [[.20] we have

s(L) = w(D)+ kn(D) — kp(D)
= Y )+ D (W) -1D= > (v(v)-1)
veV veV veV
v(v)<0 v(v)>0
= > sig(y(v)).
veV

O

Alternative proof. Let Vi = {v € V | y(v) > 0} and V_ = {v € V | v(v) < 0}.
In the canonical diagram of L, one can apply one fusion move and |n| Reide-
meister I-moves to the part of the diagram that comes from an n-twisted band
in order to eliminate that band. If one does this to all negative bands, one ob-
tains a positive diagram D of an arborescent link L, coming from the complete
subgraph containing all positive vertices of I'. The link L, is positive, therefore
$(Ly) =14¢(D4)—k(D+) = #V4 (see corollary [L21). Thus |s(L) — #V,| < #V_.

Similarly, one can eliminate all positive bands at the cost of #V, fusion moves
to arrive at a negative link with Rasmussen invariant —#V_, and therefore |s(L) —
#V_| < #V,.

Together, these two inequalities imply that s(L) = #V, — #V_. O

Remark I1.8. The Rasmussen invariant does not always provide a better estimate
for the four-genus than the signature: for the knot K coming from the tree in figure
[ we have s(K) =0, but o(K) = 2.

F1GURE 11. A scorpion with positive body, five positive legs and
one negative tail 11 vertices long (vertices marked with a circle
have weight —2, vertices marked with a dot weight +2.)
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FIGURE 12. The three half-turns.

III. MUTANT LINKS

ITI.1. Definition of mutant links. Our definitions follow Wehrli [27], who in turn
follows Murakami [19].

List of definitions. An oriented 2-tangle is a smooth embedding S' LI... U S LI
IUT — D3 of two oriented arcs and an arbitrary finite number of oriented circles
into a three-ball such that the intersection with the boundary of the ball consists
of the endpoints of the arcsfl A tangle diagram resembles a knot diagram; the ball
is drawn as a dashed circle. From the diagrammatic viewpoint, there are three
different types of tangles: “'K(_va\", = and 9. Three-dimensionally seen, however, they
are equivalent, so in the following definitions we always assume our tangle to be of
the first type.

The closure of a tangle is the link obtained by joining the four endpoints such

that the two arcs of the tangle form one circle: C=0.

The sum of two tangles is the tangle obtained by joining two endpoints of one
tangle to two endpoints of the other tangle by two arcs: <", Note that there
are two different possibilities to sum two tangles.

Now assume we allow the reversal of the orientation of one of the tangles be-
fore adding. Then there are four possibilities to compose two tangles. Let L be
an oriented link that is the closure of a sum of two tangles 77 and T5. Add T3
and T, in one of the three other possible ways, reversing the orientation of T5 if
necessary; this yields a link L’. Passing from L to L’ is called elementary mutation.
Links that are connected by a sequence of elementary mutations are called mutant
links. Elementary mutation can be thought of as first cutting the two tangles, then
applying one of the three half-turns depicted in figure [[2] and finally joining the
tangles again. Note that two of the half-turns (hy and hs) make it necessary to
reverse the orientation of one of the tangles.

50r equivalently: a 2-tangle is the intersection of a three-ball with a link such that the boundary
of the three-ball intersects the link in four points.
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Ry ) S )
s N Y

121156 12n57

FiGUurE 13. Example of a triple of mutant knots. The knot dia-
grams are modified diagrams from Knotscape [13].

Remark ITI.1. Examples for mutant links are:

e Decompose a knot as sum of two tangles in such a way that mutation
gives the same isotopy class of unoriented knot. Then, applying ho or hg
reverses the orientation of the knot. So, 8;7 and its reverse constitute the
pair of distinct mutant knots with the lowest crossing number.

e The most famous pair of mutant knots is the Kinoshita-Terasaka knot
11nys and the Conway knot 11ngy.

e A complete list of mutant knots with up to 15 crossings, disregarding
orientation, can be found on Alexander Stoimenow’s homepage [23].

e Yvonne Gerber proved in her dissertation [II] that two different embedded
trees that have weights equal to +2 produce two different knots. This
fact allows to construct easily arbitrarily large classes of arbitrarily large
mutant knots. For arborescent links coming from trees with arbitrary
even weights, the analogous statement seems not to have been proven. An
example is the knot depicted in figure [ (12n290), which is different from
the knot produced by switching two branches of the vertex of degree 4 of
the given tree: that is the knot 12ngg.

e The pretzel links P(aq,...a,) and P(o(ay),...0(a,)) are mutant for an
arbitrary permutation o € S(n); for many choices of o, however, the two
pretzel links are not the same. This example is just a special case of the
previous, since the link P(ay,...a,) is arborescent: the corresponding tree
has one vertex v with weight 0, and n vertices with weights a; that all are
adjacent to v.

I11.2. Behaviour of the Rasmussen invariant under mutation. An elemen-
tary mutation is called component-preserving if the two arcs of the tangle that
is being half-turned belong to the same link component. A mutation is called
component-preserving if it is the composition of component-preserving elementary
mutations.

Khovanov homology is not invariant under general mutation; there is a simple
example of mutant links with different Khovanov homology (published by Wehrli
[25]), namely 31 U 37 and (31#31) U0;.

However, there is hope that the Khovanov homology might be invariant under
component-preserving mutation of links; there is an “almost-proof” by Bar-Natan
[], which has been successfully completed to a proof by Wehrli for Khovanov homol-
ogy over Fy (see [20]). Recently, a proof for mutation invariance of odd Khovanov
homology was published by Bloom [§].
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Furthermore, Khovanov homology is conjectured to determine the Rasmussen in-
variant of knots [2], a fact already proven by Lee for alternating knots [I7]. Putting
the conjectures together, s is conjectured to be invariant under mutation of knots;
there is no pair of mutant links — even dropping the condition that components
are preserved — with different Rasmussen invariant known, either, but since the
Rasmussen invariant has not been tabulated for small links, that need not be too
strong evidence.

FI1GURE 14. Two fusions decomposing a sum of two tangles.

Proposition ITI.2. Let Ly and Ly be a pair of mutant links, then [s(L;)—s(La)| <
4m, where m is the minimal number of half-turns necessary to carry out the mu-
tation.

Proof. First, apply two fusion moves as shown in figure[[4l This yields the disjoint
sum of two links L; and Ls. Now, rotate Lo according to the kind of half-turn
given, and reverse its orientation if necessary. This does not change the Rasmussen
invariant. Finally, apply again two fusion moves, retracing the steps shown in figure
[[4l During this whole process, four fusion moves were carried out, so the Rasmussen
invariant changes by at most 4 (see lemma [[20). Repeat for every half-turn. O

Remark I11.3. If s(L1#Ly) = s(L1)+s(Ls) holds for arbitrary L; and Lo (see[[23]
(iii)), the inequality of the above proposition can be improved to |s(Lq) — s(Lo)| <
2m.
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CONCLUSION: RESULTS AND OPEN PROBLEMS

In the first section, a little improvement could be made regarding the estimate of
s(L)+s(L): we proved s(L)+s(L) <0, and only s(L)+s(L) < 2 was known before.
Apart from that, the first section does not contain any new results. However,
alternative proofs for Kawamura’s inequality and the equality of the signature and
the Rasmussen invariant on alternating non-split links were given. Furthermore,
we defined the Rasmusssen invariant and proved almost all its basic properties
without using spectral sequences: the only part that is still missing is the proof of
Reidemeister invariance of the homology of the Khovanov-Lee complex.

Generally, the Rasmussen invariant of links does not seem to draw much atten-

tion. It is not yet well understood how s(L) + s(L) behaves, e.g. if it is possible
to further characterize links satisfying s(L) + s(L) = 0. To show s(Li1#Ls) =
s(L1) + s(L2) is an open problem as well. The relationship between the Rasmussen
invariant and Khovanov homology on links is not yet well-known, either. Finally,
tabulating the Rasmussen invariant of small links — as has been done for small knots
— would be helpful for further exploration.

In the second section, the signature and Rasmussen invariant of trees with even
weights could be computed; it is not clear yet if this might help in determining
their slice genus. Furthermore, the Rasmussen invariant or signature of arbitrary
weighted trees could be interesting; as well as the effect on the Rasmussen invariant
of plumbing arbitrary links with twisted bands or even plumbing two arbitrary links.

In the third section, an upper bound for the difference of the Rasmussen invariant
of mutant knots was found; an attempt to actually prove mutation invariance could
be made by imitating Bar-Natan’s “almost-proof” ([4]), using Bar-Natan’s local
approach to Khovanov-Lee homology ([6]). Or, since odd Khovanov homology is
mutation invariant (see Bloom [8]), it would also suffice to prove that odd Khovanov
homology determines the Rasmussen invariant.
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