The isoperimetric problem in $H^m_{\mathbb{C}}$ via the hyperbolic log-convex density conjecture

Lauro Silini

ETH Zürich, Switzerland

EHzürich

The problem

Let M be a Riemannian manifold.

A set $E \subset M$ solves the isoperimetric problem if it minimizes the perimeter among all sets with equal volume.

Example:

Geodesic balls are uniquely isoperimetric in \mathbb{R}^n , S^{n-1} , and $H^n_{\mathbb{R}}$.

Open Conjecture [3]

Gromov-Ros: Geodesic balls are isoperimetric for all volumes in the complex hyperbolic space $H^m_{\mathbb{C}}$.

Hopf-symmetric sets

Def: A set $E \subset H^m_{\mathbb{C}} = \operatorname{SU}(m, 1) / \operatorname{U}(m)$ is *Hopf-symmetric* if it is invariant under the action of the one parameter subgroup $e^{i\theta}Id_m \leq \operatorname{U}(m)$ up to isometry.

Example: The set *E* such that

 $\partial E = \{ \exp_o(\rho(x)x) : x \in S^{2m-1} \subset T_o H^m_{\mathbb{C}} \}$

with $\rho \in C^1(S^{2n-1},\mathbb{R}_+)$ constant along the Hopf fibration

 $h: S^1 \to S^{2m-1} \to P^{m-1}_{\mathbb{C}}.$

Our contribution [8]

Proof of Theorem B

We adapt Chamber's strategy.

1) There exists an optimal set. It is bounded and C^{∞} away from a set of higher codimension. **2)** The first variation of P_f : at each regular point of ∂E

$$\mathbf{H}_{f} := H + \partial_{\nu} \ln(f) = \lambda, \tag{1}$$

is constant, where H is the Riemannian mean curvature. **3)** f radial: E^* spherical symmetrization of E satisfies

 $V_f(E^\star) = V_f(E), \qquad P_f(E^\star) \le P_f(E).$

4) The profile of E^{\star} is a smooth curve γ in $H^2_{\mathbb{R}}$. By (1) it solves an explicit ODE.

5) A meticulous analysis of γ shows that either it is a centered circle (and therefore E is a ball), or it does a curl

Theorem A: In $H^m_{\mathbb{C}}$, geodesic balls are uniquely isoperimetric in the class of Hopf-symmetric sets for all volumes.

Main observation

Def: $f : H^n_{\mathbb{R}} \to \mathbb{R}$ is *(strictly) radially log-convex* if $\exists o \in H^n_{\mathbb{R}}$ such that $\ln(f(x)) = h(d(o, x))$ for $h : \mathbb{R} \to \mathbb{R}$ (strictly) convex and even.

Via a comparison argument between $H^m_{\mathbb{C}}$ and $H^{2m}_{\mathbb{R}}$, Theorem A is implied by

Theorem B: Centered geodesic balls are uniquely isoperimetric in $H^n_{\mathbb{R}}$ with respect to the *weighted* volume and perimeter

$$V_f(E) = \int_E f \, d\mathscr{H}^n, \qquad P_f(E) = \int_{\partial E} f \, d\mathscr{H}^{n-1},$$

if f is strictly radially and log-convex.

Background

Brakke conjectured Theorem B in the Euclidean context, which inspired multiple results, notably [2, 4, 6, 7]. Recently, G. R. Chambers proved Brakke's conjecture in [1]. For a partial contribution in $H^n_{\mathbb{R}}$, see [5].

contradicting the fact that E^* is spherically symmetric.

Remark: Theorem A holds in all rank one symmetric spaces of non-compact type $H^m_{\mathbb{C}}, H^m_{\mathbb{H}}, H^2_{\mathbb{O}}$.

References

- CHAMBERS, G. R. Proof of the log-convex density conjecture. J. Eur. Math. Soc. 21, 8 (2019), 2301–2332.
- [2] FIGALLI, A., AND MAGGI, F. On the isoperimetric problem for radial log-convex densities. *Calc. Var. Partial Differential Equations 48*, 3 (2013), 447–489.
- [3] GROMOV, M., KATZ, M., PANSU, P., SEMMES, S., AND LAFONTAINE, J. *Metric Structures for Riemannian and Non-Riemannian Spaces*. Boston, MA : Birkhäuser Boston, 2014.
- [4] KOLESNIKOV, A., AND ZHDANOV, R. On isoperimetric sets of radially symmetric measures. *Contemp. Math. 545* (02 2010).
- [5] LI, H., AND XU, B. A class of weighted isoperimetric inequalities in hyperbolic space. *Proc. Amer. Math. Soc.* 151, 05 (2023), 2155–2168.
- [6] MORGAN, F., AND PRATELLI, A. Existence of isoperimetric regions in \mathbb{R}^n with density. Ann. Global Anal. Geom. 43, 4 (2013), 331–365.
- [7] ROSALES, C., CANETE, A., BAYLE, V., AND MORGAN, F. On the isoperimetric problem in euclidean space with density. *Calc. Var. Partial Differential Equations* 31, 1 (2008), 27–46.
- [8] SILINI, L. Approaching the isoperimetric problem in $H^m_{\mathbb{C}}$ via the hyperbolic log-convex density conjecture, 2022.