# The isoperimetric problem in $H_{\mathbb{C}}^{m}$ via the hyperbolic log-convex density conjecture 

Lauro Silini
ㅋHzürich
ETH Zürich, Switzerland

## The problem

Let $M$ be a Riemannian manifold.
A set $E \subset M$ solves the isoperimetric problem if it minimizes the perimeter among all sets with equal volume.

## Example:

Geodesic balls are uniquely isoperimetric in $\mathbb{R}^{n}, S^{n-1}$, and $H_{\mathbb{R}^{n}}^{n}$


## Open Conjecture [3]

Gromov-Ros: Geodesic balls are isoperimetric for all volumes in the complex hyperbolic space $H_{\mathbb{C}}^{m}$.

Hopf-symmetric sets
Def: A set $E \subset H_{\mathbb{C}}^{m}=\operatorname{SU}(m, 1) / \mathrm{U}(m)$ is Hopf-symmetric if it is invariant under the action of the one parameter subgroup $e^{i \theta} I d_{m} \leqslant \mathrm{U}(m)$ up to isometry.
Example: The set $E$ such that

$$
\partial E=\left\{\exp _{o}(\rho(x) x): x \in S^{2 m-1} \subset T_{o} H_{\mathbb{C}}^{m}\right\}
$$

with $\rho \in C^{1}\left(S^{2 n-1}, \mathbb{R}_{+}\right)$constant along the Hopf fibration

$$
h: S^{1} \rightarrow S^{2 m-1} \rightarrow P_{\mathbb{C}}^{m-1}
$$

## Our contribution [8]

Theorem A: In $H_{\mathbb{C}}^{m}$, geodesic balls are uniquely isoperimetric in the class of Hopf-symmetric sets for all volumes.
$\frac{\text { Main observation }}{\text { Def: } f: H_{\mathbb{R}}^{n} \rightarrow \mathbb{R} \text { is (strictly) radially log-convex if } \exists o \in H_{\mathbb{R}}^{n}}$ such that $\ln (f(x))=h(d(o, x))$ for $h: \mathbb{R} \rightarrow \mathbb{R}$ (strictly) convex and even.
Via a comparison argument between $H_{\mathbb{C}}^{m}$ and $H_{\mathbb{R}}^{2 m}$, Theorem A is implied by
Theorem B: Centered geodesic balls are uniquely isoperimetric in $H_{\mathbb{R}}^{n}$ with respect to the weighted volume and perimeter

$$
V_{f}(E)=\int_{E} f d \mathscr{H}^{n}, \quad P_{f}(E)=\int_{\partial E} f d \mathscr{H}^{n-1},
$$

if $f$ is strictly radially and log-convex.

## Background

Brakke conjectured Theorem B in the Euclidean context, which inspired multiple results, notably [2, 4, 6, 7]. Recently, G. R. Chambers proved Brakke's conjecture in [1]. For a partial contribution in $H_{\mathbb{R}}^{n}$, see [5].

## Proof of Theorem B

We adapt Chamber's strategy.

1) There exists an optimal set. It is bounded and $C^{\infty}$ away from a set of higher codimension.
2) The first variation of $P_{f}$ : at each regular point of $\partial E$

$$
\begin{equation*}
\mathbf{H}_{f}:=H+\partial_{\nu} \ln (f)=\lambda, \tag{1}
\end{equation*}
$$

is constant, where $H$ is the Riemannian mean curvature. 3) $f$ radial: $E^{\star}$ spherical symmetrization of $E$ satisfies

$$
V_{f}\left(E^{\star}\right)=V_{f}(E), \quad P_{f}\left(E^{\star}\right) \leq P_{f}(E) .
$$

4) The profile of $E^{\star}$ is a smooth curve $\gamma$ in $H_{\mathbb{R}}^{2}$. By (1) it solves an explicit ODE.


Spherical profile.
5) A meticulous analysis of $\gamma$ shows that either it is a centered circle (and therefore $E$ is a ball), or it does a curl


The curl.
contradicting the fact that $E^{\star}$ is spherically symmetric.
Remark: Theorem A holds in all rank one symmetric spaces of non-compact type $H_{\mathbb{C}}^{m}, H_{\mathbb{H}}^{m}, H_{\mathbb{O}}^{2}$.

## References

[1] Chambers, G. R. Proof of the log-convex density conjecture. J. Eur. Math. Soc. 21, 8 (2019), 2301-2332.
[2] Figalli, A., AND MAgGI, F. On the isoperimetric problem for radial log-convex densities. Calc. Var. Partial Differential Equations 48, 3 (2013), 447-489.
[3] Gromov, M., Katz, M., Pansu, P., Semmes, S., and LaFontaine, J. Metric Structures for Riemannian and Non-Riemannian Spaces. Boston, MA : Birkhäuser Boston, 2014.
[4] Kolesnikov, A., AND ZhDANov, R. On isoperimetric sets of radially symmetric measures. Contemp. Math. 545 (02 2010).
[5] LI, H., AND XU, B. A class of weighted isoperimetric inequalities in hyperbolic space. Proc. Amer. Math. Soc. 151, 05 (2023), 2155-2168.
[6] Morgan, F., and Pratelli, A. Existence of isoperimetric regions in $\mathbb{R}^{n}$ with density. Ann. Global Anal. Geom. 43, 4 (2013), 331-365.
[7] Rosales, C., Canete, A., Bayle, V., and Morgan, F. On the isoperimetric problem in euclidean space with density. Calc. Var. Partial Differential Equations 31, 1 (2008), 27-46
[8] SILINI, L. Approaching the isoperimetric problem in $H_{\mathbb{C}}^{m}$ via the hyperbolic log-convex density conjecture, 2022.

