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Preface

R is a freely available implementation of John Chambers’ award-winning S language for
computing with data. It is “Open Source” software for which the user can, if she wishes,
obtain the original source code and determine exactly how the computations are being
performed. Most users of R use the precompiled versions that are available for recent
versions of the Microsoft Windows operating system, for Mac OS X, and for several versions
of the Linux operating system. Directions for obtaining and installing R are on https:
//www.R-project.org or https://cran.R-project.org.

Because it is freely available, R is accessible to anyone who cares to learn to use it, and
thousands have done so. Recently many prominent social scientists, including John Fox
of McMaster University and Gary King of Harvard University, have become enthusiastic
R users and developers.

Another recent development in the analysis of social sciences data is the recognition
and modeling of multiple levels of variation in longitudinal and organizational data. The
class of techniques for modeling such levels of variation has become known as multilevel
modeling or hierarchical linear modeling.

In this book I describe the use of R for examining, managing, visualizing, and modeling
multilevel data.

Madison, WI, USA, Douglas Bates
October, 2005
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Chapter 1

A Simple, Linear, Mixed-effects
Model

In this book we describe the theory behind a type of statistical model called mized-effects
models and the practice of fitting and analyzing such models using the 1me4 package for
R. These models are used in many different disciplines. Because the descriptions of the
models can vary markedly between disciplines, we begin by describing what mixed-effects
models are and by exploring a very simple example of one type of mixed model, the linear
mixed model.

This simple example allows us to illustrate the use of the lmer function in the lme4
package for fitting such models and for analyzing the fitted model. We also describe meth-
ods of assessing the precision of the parameter estimates and of visualizing the conditional
distribution of the random effects, given the observed data.

1.1 Mixed-effects Models

Mixed-effects models, like many other types of statistical models, describe a relationship
between a response variable and some of the covariates that have been measured or ob-
served along with the response. In mixed-effects models at least one of the covariates is
a categorical covariate representing experimental or observational “units” in the data set.
In the example from the chemical industry that is given in this chapter, the observational
unit is the batch of an intermediate product used in production of a dye. In medical and
social sciences the observational units are often the human or animal subjects in the study.
In agriculture the experimental units may be the plots of land or the specific plants being
studied.

In all of these cases the categorical covariate or covariates are observed at a set of
discrete levels. We may use numbers, such as subject identifiers, to designate the particular
levels that we observed but these numbers are simply labels. The important characteristic
of a categorical covariate is that, at each observed value of the response, the covariate
takes on the value of one of a set of distinct levels.

Parameters associated with the particular levels of a covariate are sometimes called the
“effects” of the levels. If the set of possible levels of the covariate is fixed and reproducible
we model the covariate using fized-effects parameters. If the levels that we observed
represent a random sample from the set of all possible levels we incorporate random effects
in the model.

There are two things to notice about this distinction between fixed-effects parameters
and random effects. First, the names are misleading because the distinction between
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fixed and random is more a property of the levels of the categorical covariate than a
property of the effects associated with them. Secondly, we distinguish between “fixed-
effects parameters”, which are indeed parameters in the statistical model, and “random
effects”, which, strictly speaking, are not parameters. As we will see shortly, random
effects are unobserved random variables.

To make the distinction more concrete, suppose that we wish to model the annual
reading test scores for students in a school district and that the covariates recorded with
the score include a student identifier and the student’s gender. Both of these are categorical
covariates. The levels of the gender covariate, male and female, are fixed. If we consider
data from another school district or we incorporate scores from earlier tests, we will not
change those levels. On the other hand, the students whose scores we observed would
generally be regarded as a sample from the set of all possible students whom we could
have observed. Adding more data, either from more school districts or from results on
previous or subsequent tests, will increase the number of distinct levels of the student
identifier.

Mixed-effects models or, more simply, mized models are statistical models that incor-
porate both fixed-effects parameters and random effects. Because of the way that we will
define random effects, a model with random effects always includes at least one fixed-effects
parameter. Thus, any model with random effects is a mixed model.

We characterize the statistical model in terms of two random variables: a g-dimensional
vector of random effects represented by the random variable B and an n-dimensional re-
sponse vector represented by the random variable Y. (We use upper-case “script” char-
acters to denote random variables. The corresponding lower-case upright letter denotes
a particular value of the random variable.) We observe the value, ¥, of Y. We do not
observe the value, 5, of B.

When formulating the model we describe the unconditional distribution of B and the
conditional distribution, (Y|B = l;) The descriptions of the distributions involve the form
of the distribution and the values of certain parameters. We use the observed values of the
response and the covariates to estimate these parameters and to make inferences about
them.

That’s the big picture. Now let’s make this more concrete by describing a particu-
lar, versatile class of mixed models called linear mixed models and by studying a simple
example of such a model. First we describe the data in the example.

1.2 The Dyestuff and Dyestuff2 Data

Models with random effects have been in use for a long time. The first edition of the
classic book, Statistical Methods in Research and Production, edited by O.L. Davies, was
published in 1947 and contained examples of the use of random effects to characterize
batch-to-batch variability in chemical processes. The data from one of these examples are
available as the Dyestuff data in the 1me4 package. In this section we describe and plot
these data and introduce a second example, the Dyestuff2 data, described in Box & Tiao
(1973).

1.2.1 The Dyestuff Data

The Dyestuff data are described in Davies & Goldsmith (1972, Table 6.3, p. 131), the
fourth edition of the book mentioned above, as coming from

an investigation to find out how much the variation from batch to batch in the
quality of an intermediate product (H-acid) contributes to the variation in the
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yield of the dyestuff (Naphthalene Black 12B) made from it. In the experi-
ment six samples of the intermediate, representing different batches of works
manufacture, were obtained, and five preparations of the dyestuff were made
in the laboratory from each sample. The equivalent yield of each preparation
as grams of standard colour was determined by dye-trial.

To access these data within R we must first attach the 1me4 package to our session
using

> library(lme4)

Note that the ">" symbol in the line shown is the prompt in R and not part of what
the user types. The 1me4 package must be attached before any of the data sets or functions
in the package can be used. If typing this line results in an error report stating that there
is no package by this name then you must first install the package.

In what follows, we will assume that the 1me4 package has been installed and that it

has been attached to the R session before any of the code shown has been run.
The str function in R provides a concise description of the structure of the data

> str(Dyestuff)

'data.frame': 30 obs. of 2 variables:
$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1111122222 ...
$ Yield: num 1545 1440 1440 1520 1580 ...

from which we see that it consists of 30 observations of the Yield, the response variable,
and of the covariate, Batch, which is a categorical variable stored as a factor object. If
the labels for the factor levels are arbitrary, as they are here, we will use letters instead of
numbers for the labels. That is, we label the batches as "A" through "F" rather than "1"
through "6". When the labels are letters it is clear that the variable is categorical. When
the labels are numbers a categorical covariate can be mistaken for a numeric covariate,
with unintended consequences.

It is a good practice to apply str to any data frame the first time you work with it

and to check carefully that any categorical variables are indeed represented as factors.
The data in a data frame are viewed as a table with columns corresponding to variables

and rows to observations. The functions head and tail print the first or last few rows (the

default value of “few” happens to be 6 but we can specify another value if we so choose)

> head(Dyestuff)

Batch Yield

1 A 1545
2 A 1440
3 A 1440
4 A 1520
5 A 1580
6 B 1540

or we could ask for a summary of the data

> summary (Dyestuff)

Batch Yield
A:5 Min. 11440
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Batch

1450 1500 1550 1600
Yield of dyestuff (grams of standard color)

Figure 1.1: Yield of dyestuff (Napthalene Black 12B) for 5 preparations from each of 6
batches of an intermediate product (H-acid). The line joins the mean yields from the
batches, which have been ordered by increasing mean yield. The vertical positions are
“jittered” slightly to avoid over-plotting. Notice that the lowest yield for batch A was
observed for two distinct preparations from that batch

B:5 1st Qu.:1469
C:5 Median :1530
D:5 Mean 11528
E:5 3rd Qu.:1575
F:5 Max. 11635

Although the summary does show us an important property of the data, namely that
there are exactly 5 observations on each batch — a property that we will describe by saying
that the data are balanced with respect to Batch — we usually learn much more about the
structure of such data from plots like Fig. 1.1 than we do from numerical summaries.

In Fig. 1.1 we can see that there is considerable variability in yield, even for prepa-
rations from the same batch, but there is also noticeable batch-to-batch variability. For
example, four of the five preparations from batch F provided lower yields than did any of
the preparations from batches C and E.

This plot, and essentially all the other plots in this book, were created using Deepayan
Sarkar’s lattice package for R. In Sarkar (2008) he describes how one would create such
a plot. Because this book was created using Sweave (Leisch, 2002), the exact code used to
create the plot, as well as the code for all the other figures and calculations in the book,
is available on the web site for the book. In sec. 3.1.1 we review some of the principles
of lattice graphics, such as reordering the levels of the Batch factor by increasing mean
response, that enhance the informativeness of the plot. At this point we will concentrate
on the information conveyed by the plot and not on how the plot is created.

In sec. 1.3.1 we will use mixed models to quantify the variability in yield between
batches. For the time being let us just note that the particular batches used in this
experiment are a selection or sample from the set of all batches that we wish to consider.
Furthermore, the extent to which one particular batch tends to increase or decrease the
mean yield of the process — in other words, the “effect” of that particular batch on the
yield — is not as interesting to us as is the extent of the variability between batches.
For the purposes of designing, monitoring and controlling a process we want to predict
the yield from future batches, taking into account the batch-to-batch variability and the
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Batch

0 5 10
Simulated response (dimensionless)

Figure 1.2: Simulated data presented in Box & Tiao (1973) with a structure similar to that
of the Dyestuff data. These data represent a case where the batch-to-batch variability is
small relative to the within-batch variability.

within-batch variability. Being able to estimate the extent to which a particular batch in
the past increased or decreased the yield is not usually an important goal for us. We will
model the effects of the batches as random effects rather than as fixed-effects parameters.

1.2.2 The Dyestuff2 Data

The Dyestuff2 data are simulated data presented in Box & Tiao (1973, Table 5.1.4, p.
247) where the authors state

These data had to be constructed for although examples of this sort undoubt-
edly occur in practice they seem to be rarely published.

The structure and summary

> str(Dyestuff2)

'data.frame': 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1111122222 ...
$ Yield: num 7.3 3.85 2.43 9.57 7.99 ...

> summary (Dyestuff2)

Batch Yield

A:5 Min. :-0.892
B:5 1st Qu.: 2.765
C:5 Median : 5.365
D:5 Mean : 5.666
E:5 3rd Qu.: 8.151
F:5 Max. :13.434

are intentionally similar to those of the Dyestuff data. As can be seen in Fig. 1.2

the batch-to-batch variability in these data is small compared to the within-batch vari-
ability. In some approaches to mixed models it can be difficult to fit models to such data.
Paradoxically, small “variance components” can be more difficult to estimate than large
variance components.
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The methods we will present are not compromised when estimating small variance
components.

1.3 Fitting Linear Mixed Models

Before we formally define a linear mixed model, let’s go ahead and fit models to these
data sets using lmer. Like most model-fitting functions in R, lmer takes, as its first
two arguments, a formula specifying the model and the data with which to evaluate the
formula. This second argument, data, is optional but recommended. It is usually the
name of a data frame, such as those we examined in the last section. Throughout this
book all model specifications will be given in this formula/data format.

We will explain the structure of the formula after we have considered an example.

1.3.1 A Model For the Dyestuff Data

We fit a model to the Dyestuff data allowing for an overall level of the Yield and for an
additive random effect for each level of Batch

> fmO1 <- Imer(Yield ~ 1 + (1|Batch), Dyestuff)
> summary (fm01)

Linear mixed model fit by REML ['lmerMod']
Formula: Yield ™ 1 + (1 | Batch)

Data: Dyestuff
REML criterion at convergence: 319.7
Scaled residuals:

Min 1Q Median 3Q Max
-1.4117 -0.7634 0.1418 0.7792 1.8296

Random effects:

Groups  Name Variance Std.Dev.
Batch (Intercept) 1764 42.00
Residual 2451 49.51

Number of obs: 30, groups: Batch, 6

Fixed effects:
Estimate Std. Error t value
(Intercept) 1527.50 19.38 78.8

In the first line we call the 1mer function to fit a model with formula
Yield ~ 1 + (1 | Batch)

applied to the Dyestuff data and assign the result to the name fm01. (The name is
arbitrary. I happen to use names that start with fm, indicating “fitted model”.)

As is customary in R, there is no output shown after this assignment. We have simply
saved the fitted model as an object named fm01. In the second line we display some
information about the fitted model by applying summary to fm01. In later examples we will
condense these two steps into one but here it helps to emphasize that we save the result
of fitting a model then apply various extractor functions to the fitted model to get a brief
summary of the model fit or to obtain the values of some of the estimated quantities.
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Details of the Printed Display

The printed display of a model fit with 1mer has four major sections: a description of the
model that was fit, some statistics characterizing the model fit, a summary of properties of
the random effects and a summary of the fixed-effects parameter estimates. We consider
each of these sections in turn.

The description section states that this is a linear mixed model in which the parameters
have been estimated as those that minimize the REML criterion (described in sec. 5.5).
The formula and data arguments are displayed for later reference. If other, optional
arguments affecting the fit, such as a subset specification, were used, they too will be

displayed here.

For models fit by the REML criterion the only statistic describing the model fit is
the value of the REML criterion itself. An alternative set of parameter estimates, the
maximum likelihood estimates (MLEs), are obtained by specifying the optional argument
REML=FALSE.

> summary (fmO1ML <- lmer(Yield ~ 1 + (1|Batch), Dyestuff,
+ REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Yield ~ 1 + (1 | Batch)
Data: Dyestuff

AIC BIC logLik deviance df.resid
333.3 337.5 -163.7 327.3 27

Scaled residuals:
Min 1Q Median 3Q Max
-1.4315 -0.7972 0.1480 0.7721 1.8037

Random effects:

Groups  Name Variance Std.Dev.
Batch (Intercept) 1388 37.26
Residual 2451 49.51

Number of obs: 30, groups: Batch, 6

Fixed effects:
Estimate Std. Error t value
(Intercept) 1527.50 17.69 86.33

(Notice that this code fragment also illustrates a way to condense the assignment
and the display of the fitted model into a single step. The redundant set of parentheses
surrounding the assignment causes the result of the assignment to be displayed. We will
use this device often in what follows.)

The display of a model fit by maximum likelihood (ML) provides several other model-fit
statistics such as Akaike’s Information Criterion (AIC) (Sakamoto et al., 1986), Schwarz’s
Bayesian Information Criterion (BIC) (Schwarz, 1978), the log-likelihood (logLik) at the
parameter estimates, and the deviance (negative twice the log-likelihood) at the parameter
estimates. These are all statistics related to the model fit and are used to compare different
models fit to the same data.

At this point the important thing to note is that the default estimation criterion is the
REML criterion. Generally the REML estimates of variance components are preferred to
the ML estimates. When comparing models, however, we will use likelihood ratio tests, for
which the test statistic is the difference in the deviance of the fitted models. (Recall that
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the deviance is negative twice the log-likelihood, hence a ratio of likelihoods corresponds to
the difference in deviance values.) Therefore, when building and assessing models we will
often use maximum likelihood fits. As described in sec. 2.2.4, the function that performs a
likelihood-ratio test will accept models fit by REML but it adds an extra step of refitting
the models to obtain the maximum likelihood estimates (MLEs).

The third section is the table of estimates of parameters associated with the random
effects. There are two sources of variability in the model we have fit, a batch-to-batch
variability in the level of the response and the residual or per-observation variability —
also called the within-batch variability. The name “residual” is used in statistical modeling
to denote the part of the variability that cannot be explained or modeled with the other
terms. It is the variation in the observed data that is “left over” after we have determined
the estimates of the parameters in the other parts of the model.

Some of the variability in the response is associated with the fixed-effects terms. In
this model there is only one such term, labeled as the (Intercept). The name “intercept”,
which is better suited to models based on straight lines written in a slope/intercept form,
should be understood to represent an overall “typical” or mean level of the response in
this case. (In case you are wondering about the parentheses around the name, they are
included so that you can’t accidentally create a variable with a name that conflicts with
this name.) The line labeled Batch in the random effects table shows that the random
effects added to the (Intercept) term, one for each level of the Batch factor, are modeled
as random variables whose unconditional variance is estimated as 1764.05 g2 in the REML
fit and as 1388.33 g? in the ML fit. The corresponding standard deviations are 42.00 g for
the REML fit and 37.26 g for the ML fit.

Note that the last column in the random effects summary table is the estimate of the
variability expressed as a standard deviation rather than as a variance. These are provided
because it is usually easier to visualize standard deviations, which are on the scale of the
response, than it is to visualize the magnitude of a variance. The values in this column
are a simple re-expression (the square root) of the estimated variances. Do not confuse
them with the standard errors of the variance estimators, which are not given here. In
sec. 1.5 we explain why we do not provide standard errors of variance estimates.

The line labeled Residual in this table gives the estimate of the variance of the residuals
(also in g?) and its corresponding standard deviation. For the REML fit the estimated
standard deviation of the residuals is 49.51 g and for the ML fit it is also 49.51 g. (Generally
these estimates do not need to be equal. They happen to be equal in this case because of
the simple model form and the balanced data set.)

The last line in the random effects table states the number of observations to which the
model was fit and the number of levels of any “grouping factors” for the random effects.
In this case we have a single random effects term, (1|Batch), in the model formula and
the grouping factor for that term is Batch. There will be a total of six random effects, one
for each level of Batch.

The final part of the printed display gives the estimates and standard errors of any
fixed-effects parameters in the model. The only fixed-effects term in the model formula
is the 1, denoting a constant which, as explained above, is labeled as (Intercept). For
both the REML and the ML estimation criterion the estimate of this parameter is 1527.5 g
(equality is again a consequence of the simple model and balanced data set). The standard
error of the intercept estimate is 19.38 g for the REML fit and 17.69 g for the ML fit.

1.3.2 A Model For the Dyestuff2 Data

Fitting a similar model to the Dyestuff2 data produces an estimate o1 = 0 in both the
REML
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> summary (fm02 <- lmer(Yield ~ 1 + (1|Batch), Dyestuff2))
Linear mixed model fit by REML ['lmerMod']
Formula: Yield ™ 1 + (1 | Batch)
Data: Dyestuff2
REML criterion at convergence: 161.8
Scaled residuals:
Min 1Q Median 3Q Max
-1.7648 -0.7806 -0.0809 0.6689 2.0907

Random effects:

Groups  Name Variance Std.Dev.
Batch (Intercept) 0.00 0.000
Residual 13.81 3.716

Number of obs: 30, groups: Batch, 6
Fixed effects:

Estimate Std. Error t value
(Intercept) 5.6656 0.6784 8.352

and the ML fits.

> summary (fmO2ML <- update(fm02, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Yield ~ 1 + (1 | Batch)
Data: Dyestuff2

AIC BIC logLik deviance df.resid
168.9 173.1 -81.4 162.9 27

Scaled residuals:
Min 1Q Median 3Q Max
-1.79501 -0.79398 -0.08228 0.68033 2.12645

Random effects:

Groups  Name Variance Std.Dev.
Batch (Intercept) 0.00 0.000
Residual 13.35 3.653

Number of obs: 30, groups: Batch, 6

Fixed effects:
Estimate Std. Error t value
(Intercept) 5.666 0.667 8.494

(Note the use of the update function to re-fit a model changing some of the arguments.
In a case like this, where the call to fit the original model is not very complicated, the
use of update is not that much simpler than repeating the original call to 1mer with extra
arguments. For complicated model fits it can be.)

An estimate of 0 for o1 does not mean that there is no variation between the groups.
Indeed Fig. 1.2 shows that there is some small amount of variability between the groups.
The estimate, 61 = 0, simply indicates that the level of “between-group” variability is not
sufficient to warrant incorporating random effects in the model.
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The important point to take away from this example is that we must allow for the
estimates of variance components to be zero. We describe such a model as being degen-
erate, in the sense that it corresponds to a linear model in which we have removed the
random effects associated with Batch. Degenerate models can and do occur in practice.
Even when the final fitted model is not degenerate, we must allow for such models when

determining the parameter estimates through numerical optimization.
To reiterate, the model £fm02 corresponds to the linear model

> summary (fm02a <- 1lm(Yield ~ 1, Dyestuff2))

Call:
Im(formula = Yield ~ 1, data = Dyestuff2)

Residuals:
Min 1Q Median 3Q Max
-6.5576 -2.9006 -0.3006 2.4854 7.7684

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.6656 0.6784 8.352 3.32e-09

Residual standard error: 3.716 on 29 degrees of freedom

because the random effects are inert, in the sense that they have a variance of zero, and
hence can be removed.

Notice that the estimate of o from the linear model (called the Residual standard
error in the summary) corresponds to the estimate in the REML fit (£fm02) but not that
from the ML fit (fm02ML). The fact that the REML estimates of variance components in
mixed models generalize the estimate of the variance used in linear models, in the sense
that these estimates coincide in the degenerate case, is part of the motivation for the use
of the REML criterion for fitting mixed-effects models.

1.3.3 Further Assessment of the Fitted Models

The parameter estimates in a statistical model represent our “best guess” at the unknown
values of the model parameters and, as such, are important results in statistical modeling.
However, they are not the whole story. Statistical models characterize the variability in
the data and we must assess the effect of this variability on the parameter estimates and
on the precision of predictions made from the model.

In sec. 1.5 we introduce a method of assessing variability in parameter estimates using
the “profiled deviance” and in sec. 1.6 we show methods of characterizing the conditional
distribution of the random effects given the data. Before we get to these sections, however,
we should state in some detail the probability model for linear mixed-effects and establish
some definitions and notation. In particular, before we can discuss profiling the deviance,
we should define the deviance. We do that in the next section.

1.4 The Linear Mixed-effects Probability Model

In explaining some of parameter estimates related to the random effects we have used terms
such as “unconditional distribution” from the theory of probability. Before proceeding
further we clarify the linear mixed-effects probability model and define several terms and
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concepts that will be used throughout the book. Readers who are more interested in
practical results than in the statistical theory should feel free to skip this section.

1.4.1 Definitions and Results

In this section we provide some definitions and formulas without derivation and with
minimal explanation, so that we can use these terms in what follows. In Chap. 5 we
revisit these definitions providing derivations and more explanation.

As mentioned in sec. 1.1, a mixed model incorporates two random variables: 1B, the
g-dimensional vector of random effects, and Y, the n-dimensional response vector. In a
linear mixed model the unconditional distribution of B and the conditional distribution,

-,

(Y|B =), are both multivariate Gaussian (or “normal”) distributions,
(VIB =b) ~ N (X3 + Zb,0*]) an
B~ N(0,%). '

The conditional mean of Y, given B = l;, is the linear predictor, )Z'B+ Zg, which depends
on the p-dimensional fized-effects parameter, 5, and on b. The model matrices, X and Z ,
of dimension n x p and n X ¢, respectively, are determined from the formula for the model
and the values of covariates. Although the matrix Z can be large (i.e. both n and ¢ can
be large), it is sparse (i.e. most of the elements in the matrix are zero).

The relative covariance factor, Ay, is a g X ¢ matrix, depending on the wariance-
component parameter, 5: and generating the symmetric g X g variance-covariance matrix,
Y9, according to

Yo = o2AgA]. (1.2)

The spherical random effects, U ~ N (6, O'QI_(;), determine B according to
B=AgU.
The penalized residual sum of squares (PRSS),
r?(0, B,i) = 1§ — XB — ZAgil|)* + ||, (1.3)

is the sum of the residual sum of squares, measuring fidelity of the model to the data, and
a penalty on the size of @, measuring the complexity of the model. Minimizing 2 with
respect to ,

r} o = min {||7 — X7 - ZAga? + 1@ | (1.4)

is a direct (i.e. non-iterative) computation during which we calculate the sparse Cholesky
factor, Ly, which is a lower triangular ¢ x ¢ matrix satisfying

EQ[_:T = AgZTjAg + I_(; (1.5)

where fq is the ¢ x q identity matrix.
The deviance (negative twice the log-likelihood) of the parameters, given the data, ¥,
is
2
0

- 2 72y TBo
d(9,3,0ly) = nlog(2mo®) + log(|Ls|*) +

— (1.6)

where |Eg| denotes the determinant of Ly. Because Ly is triangular, its determinant is the
product of its diagonal elements.
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Because the conditional mean, /jy|B:E =X 5 + ZAgﬁ, is a linear function of both 5
and , minimization of the PRSS with respect to both 5 and @ to produce

r§ =min {7 - X5 Zna> + |17} (1.7)

)

is also a direct calculation. The values of u and 5 that provide this minimum are called,
respectively, the conditional mode, g, of the spherical random effects and the conditional

estimate, 59, of the fixed effects. At the conditional estimate of the fixed effects the
deviance is

d(0, By, olij) = nlog(2ma?) +log(|Le|*) + ;% (1.8)
Minimizing this expression with respect to o2 produces the conditional estimate
2
02 = g@ (1.9)
which provides the profiled deviance,
30 = 40, ol =g L) 40 [1 4108 (222)] o)

a function of 6 alone. R
The MLE of 6, written 6, is the value that minimizes the profiled deviance (1.10). We

determine this value by numerical optimization. In the process of evaluating a?(q\gj) we
determine 5 = ﬁg, z:[é\ and rg\, from which we can evaluate o = 7‘5\/ n.

The elements of the conditional mode of B, evaluated at the parameter estimates,
bgz Aé\ﬂg (1.11)

are sometimes called the best linear unbiased predictors or BLUPs of the random effects.
Although it has an appealing acronym, I don’t find the term particularly instructive (what
is a “linear unbiased predictor” and in what sense are these the “best”?) and prefer the
term “conditional mode”, which is explained in sec. 1.6.

1.4.2 Matrices and Vectors in the Fitted Model Object

The optional argument, verbose=1, in a call to 1mer produces output showing the progress
of the iterative optimization of d(0|y).

> fmO01ML <- 1lmer(Yield ~ 1|Batch, Dyestuff, REML=FALSE, verbose=10L)

npt =3 , n= 1
rhobeg = 0.1957521 , rhoend = 1.957521e-07

start par. = 0.9787605 fn = 327.7027
1: 327.70265: 0.978761
2: 328.40653: 1.17451
3: 327.33537: 0.783008
4: 327.40052: 0.667284
rho: 0.020 eval: 4 fn: 327.335 par:0.783008
5: 327.32772: 0.761090
6: 327.33415: 0.780665

rho: 0.0020 eval: 6 fn: 327.328 par:0.761090
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7 327.32708: 0.754019
8: 327.32706: 0.752061
9 327.32712: 0.750104

rho: 0.00020 eval: 9 fn: 327.327 par:0.752061
10: 327.32706: 0.752582
11: 327.32706: 0.752386

rho: 2.0e-05 eval: 11 fn: 327.327 par:0.752582
12: 327.32706: 0.752602
13: 327.32706: 0.752563

rho: 2.0e-06 eval: 13 fn: 327.327 par:0.752582
14: 327.32706: 0.752581
15: 327.32706: 0.752583

rho: 2.0e-07 eval: 15 fn: 327.327 par:0.752581
16: 327.32706: 0.752580
17: 327.32706: 0.752581
18: 327.32706: 0.752581

At return

eval: 18 fn: 327.32706 par: 0.752581

The algorithm converges after 17 function evaluations to a profiled deviance of 327.32706
at 0 =0.752581. In this model the scalar parameter 6 is the ratio o1 /0.

The actual values of many of the matrices and vectors defined above are available as
slots of the fitted model object. In general the object returned by a model-fitting function
from the 1me4 package has three upper-level slots: re, consisting of information related
to the random effects, fe, consisting of information related to the fixed effects, and resp,
consisting of information related to the response.

In practice we rarely access the slots of a fitted model object directly, preferring instead
to use some of the accessor functions that, as the name implies, provide access to some
of the properties of the model. However, in this section we will access some of the slots
directly for the purposes of illustration.

For example, Aj is retrieved by as

> getME(fmO1ML, "Lambda")
6 x 6 sparse Matrix of class "dgCMatrix"

[1,] 0.7525807 . .

[2,1 . 0.7525807 . .

[3,] . . 0.7525807 . .

(4,1 . . . 0.7525807 . .

(5,1 . . . . 0.7525807 .

(6,1 . . . . . 0.7525807

Often we will show the structure of sparse matrices as an image (Fig. 1.3).
Especially for large sparse matrices, the image conveys the structure more compactly than
does the printed representation.

In this simple model A = 91:;; is a multiple of the identity matrix and the 30 x 6
model matrix Z , whose transpose is shown in Fig. 1.4, consists of the indicator columns
for Batch. Because the data are balanced with respect to Batch, the Cholesky factor, Lis
also a multiple of the identity (use image(getME(fmO1ML,"L")) to check if you wish). The
vector 4 is available in getME(fm01ML,"u"). The vector 5 and the model matrix X are
available as getME(fm01ML,"beta") and getME(fmO1ML,"X").
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Figure 1.3: Image of the relative covariance factor, Az for model fm01ML. The non-zero
elements are shown as darkened squares. The zero elements are blank
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Figure 1.4: Image of the random-effects model matrix, ZT, for fm01

1.5 Assessing the Variability of the Parameter Estimates

In this section we show how to create a profile deviance object from a fitted linear mixed
model and how to use this object to evaluate confidence intervals on the parameters. We
also discuss the construction and interpretation of profile zeta plots for the parameters.
In Chap. A we discuss the use of the deviance profiles to produce likelihood contours for
pairs of parameters.

1.5.1 Confidence Intervals on the Parameters

The mixed-effects model fit as fm01 or fm01ML has three parameters for which we obtained
estimates. These parameters are o1, the standard deviation of the random effects, o, the
standard deviation of the residual or “per-observation” noise term and [y, the fixed-effects
parameter that is labeled as (Intercept).

The profile function systematically varies the parameters in a model, assessing the
best possible fit that can be obtained with one parameter fixed at a specific value and
comparing this fit to the globally optimal fit, which is the original model fit that allowed
all the parameters to vary. The models are compared according to the change in the
deviance, which is the likelihood ratio test (LRT) statistic. We apply a signed square
root transformation to this statistic and plot the resulting function, called {, versus the



1.5 Assessing the Variability of the Parameter Estimates 15

0 g (Intercept)
2 L
N A AL
N~ 0
J
o - L
I I I I I I I I I I I I I
0 20 40 60 80 100 40 50 60 70 1500 1550

Figure 1.5: Signed square root, (, of the likelihood ratio test statistic for each of the
parameters in model fm01ML. The vertical lines are the endpoints of 50%, 80%, 90%, 95%
and 99% confidence intervals derived from this test statistic.

parameter value. A ( value can be compared to the quantiles of the standard normal
distribution, Z ~ N(0,1). For example, a 95% profile deviance confidence interval on the
parameter consists of those values for which —1.960 < ¢ < 1.960.

Because the process of profiling a fitted model, which involves re-fitting the model
many times, can be computationally intensive, one should exercise caution with complex
models fit to very large data sets. Because the statistic of interest is a likelihood ratio,
the model is re-fit according to the maximum likelihood criterion, even if the original fit
is a REML fit. Thus, there is a slight advantage in starting with an ML fit.

> prO1 <- profile(fmO1ML)

Plots of ¢ versus the parameter being profiled (Fig. 1.5) are obtained with

> xyplot(prOl, aspect = 1.3)

We will refer to such plots as profile zeta plots. I usually adjust the aspect ratio of the
panels in profile zeta plots to, say, aspect = 1.3 and frequently set the layout so the panels
form a single row (layout = c(3,1), in this case).

The vertical lines in the panels delimit the 50%, 80%, 90%, 95% and 99% confidence
intervals, when these intervals can be calculated. Numerical values of the endpoints are
returned by the confint extractor.

> confint (pro01)

2.5 % 97.5 Y,
.sig01 12.19746  84.06336
.sigma 38.23012 67.65767

(Intercept) 1486.45151 1568.54849

By default the 95% confidence interval is returned. The optional argument, level, is used
to obtain other confidence levels.
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Figure 1.6: Profiled deviance, on the scale ||, the square root of the change in the deviance,
for each of the parameters in model fm01ML. The intervals shown are 50%, 80%, 90%, 95%
and 99% confidence intervals based on the profile likelihood.

> confint(pr0l, level = 0.99)

0.5 % 99.5 %
.sig01 0.00000 113.69028
.sigma 35.56243  75.66662

(Intercept) 1465.87288 1589.12712

Notice that the lower bound on the 99% confidence interval for o7 is not defined. Also
notice that we profile log(o) instead of o, the residual standard deviation.

A plot of |{[, the absolute value of (, versus the parameter (Fig. 1.6), obtained by
adding the optional argument absVal = TRUE to the call to xyplot, can be more effective
for visualizing the confidence intervals.

1.5.2 Interpreting the Profile Zeta Plot

A profile zeta plot, such as Fig. 1.5, shows us the sensitivity of the model fit to changes in
the value of particular parameters. Although this is not quite the same as describing the
distribution of an estimator, it is a similar idea and we will use some of the terminology
from distributions when describing these plots. Essentially we view the patterns in the
plots as we would those in a normal probability plot of data values or of residuals from a
model.

Ideally the profile zeta plot will be close to a straight line over the region of interest, in
which case we can perform reliable statistical inference based on the parameter’s estimate,
its standard error and quantiles of the standard normal distribution. We will describe such
a situation as providing a good normal approximation for inference. The common practice
of quoting a parameter estimate and its standard error assumes that this is always the
case.

In Fig. 1.5 the profile zeta plot for log(o) is reasonably straight so log(c) has a good
normal approximation. But this does not mean that there is a good normal approximation
for o2 or even for 0. As shown in Fig. 1.7 the profile zeta plot for log(o) is slightly skewed,
that for o is moderately skewed and the profile zeta plot for o2 is highly skewed. Deviance-
based confidence intervals on o are quite asymmetric, of the form “estimate minus a little,
plus a lot”.

This should not come as a surprise to anyone who learned in an introductory statistics
course that, given a random sample of data assumed to come from a Gaussian distribution,

we use a x2 distribution, which can be quite skewed, to form a confidence interval on o2.
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Figure 1.7: Signed square root, ¢, of the likelihood ratio test statistic as a function of
log(c), of o and of o2. The vertical lines are the endpoints of 50%, 80%, 90%, 95% and
99% confidence intervals.

Yet somehow there is a widespread belief that the distribution of variance estimators in
much more complex situations should be well approximated by a normal distribution.
It is nonsensical to believe that. In most cases summarizing the precision of a variance
component estimate by giving an approximate standard error is woefully inadequate.
The pattern in the profile plot for fy is sigmoidal (i.e. an elongated “S”-shape). The
pattern is symmetric about the estimate but curved in such a way that the profile-based
confidence intervals are wider than those based on a normal approximation. We char-
acterize this pattern as symmetric but over-dispersed (relative to a normal distribution).
Again, this pattern is not unexpected. Estimators of the coefficients in a linear model
without random effects have a distribution which is a scaled Student’s T distribution.

That is, they follow a symmetric distribution that is over-dispersed relative to the normal.
The pattern in the profile zeta plot for o7 is more complex.

Fig. 1.8 shows the profile zeta plot on the scale of log(c1), o1 and o?. Notice that the
profile zeta plot for log(cy) is very close to linear to the right of the estimate but flattens
out on the left. That is, o1 behaves like ¢ in that its profile zeta plot is more-or-less a
straight line on the logarithmic scale, except when oy is close to zero. The model loses
sensitivity to values of oy that are close to zero. If, as in this case, zero is within the
“region of interest” then we should expect that the profile zeta plot will flatten out on the
left hand side.

Notice that the profile zeta plot of o2 in Fig. 1.8 is dramatically skewed. If reporting
the estimate, 551, and its standard error, as many statistical software packages do, were
to be an adequate description of the variability in this estimate then this profile zeta plot
should be a straight line. It’s nowhere close to being a straight line in this and in many
other model fits, which is why we don’t report standard errors for variance estimates.

1.5.3 Deriving densities from the profile

In the profile zeta plots we show ¢ as a function of a parameter. We can use the function
shown there, which we will call the profile zeta function, to generate a corresponding
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Figure 1.8: Signed square root, (, of the likelihood ratio test statistic as a function of
log(c1), of o1 and of o2. The vertical lines are the endpoints of 50%, 80%, 90%, 95% and
99% confidence intervals.
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Figure 1.9: Density plot derived from the profile of model fm01ML

distribution by setting the cumulative distribution function (c.d.f) to be ®({) where ® is
the c.d.f. of the standard normal distribution. From this we can derive a density.

This is not quite the same as evaluating the distribution of the estimator of the param-
eter, which for mixed-effects models can be very difficult, but it gives us a good indication
of what the distribution of the estimator would be. Fig. 1.9,

> densityplot (pr01)

shows the densities corresponding to the profiles in Fig. 1.5. We see that the density for
o1 is quite skewed.

If we had plotted the densities corresponding to the profiles of the variance components
instead, we would get Fig. 1.10

which, of course, just accentuates the skewness in the distribution of these variance com-
ponents.
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Figure 1.10: Densities of the variance components, o7 and o2 for model fm01ML derived
from the profile, pro1.

1.6 Assessing the Random Effects

In sec. 1.4.1 we mentioned that what are sometimes called the BLUPs (or best linear
unbiased predictors) of the random effects, B, are the conditional modes evaluated at the
parameter estimates, calculated as Bg = Ajugp.

These values are often considered as some sort of “estimates” of the random effects. It
can be helpful to think of them this way but it can also be misleading. As we have stated,
the random effects are not, strictly speaking, parameters—they are unobserved random
variables. We don’t estimate the random effects in the same sense that we estimate
parameters. Instead, we consider the conditional distribution of B given the observed
data, (B|Y = 7).

Because the unconditional distribution, B ~ A (6, Yp) is continuous, the conditional
distribution, (B|Y = %) will also be continuous. In general, the mode of a probability
density is the point of maximum density, so the phrase “conditional mode” refers to the
point at which this conditional density is maximized. Because this definition relates to the
probability model, the values of the parameters are assumed to be known. In practice, of
course, we don’t know the values of the parameters (if we did there would be no purpose
in forming the parameter estimates), so we use the estimated values of the parameters to
evaluate the conditional modes.

Those who are familiar with the multivariate Gaussian distribution may recognize
that, because both B and (Y|B = b) are multivariate Gaussian, (B|Y = 7) will also be
multivariate Gaussian and the conditional mode will also be the conditional mean of B,
given Y = y. This is the case for a linear mixed model but it does not carry over to

other forms of mixed models. In the general case all we can say about @ or b is that
they maximize a conditional density, which is why we use the term “conditional mode” to
describe these values. We will only use the term “conditional mean” and the symbol, /i, in

reference to E(Y|B = b), which is the conditional mean of Y given B, and an important

part of the formulation of all types of mixed-effects models.
The ranef extractor returns the conditional modes.

> ranef (fm01ML)
$Batch

(Intercept)
A -16.628222
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0.369516
26.974671
-21.801446
53.579825
-42.494344

Mmoo QW

Applying str to the result of ranef
> str(ranef (fmO1ML))

List of 1
$ Batch:'data.frame': 6 obs. of 1 variable:

..$ (Intercept): num [1:6] -16.63 0.37 26.97 -21.8 53.58 ...
- attr(*, "class")= chr "ranef.mer"

shows that the value is a list of data frames. In this case the list is of length 1 because there
is only one random-effects term, (1|Batch), in the model and, hence, only one grouping
factor, Batch, for the random effects. There is only one column in this data frame because
the random-effects term, (1|Batch), is a simple, scalar term.

To make this more explicit, random-effects terms in the model formula are those that
contain the vertical bar ("|") character. The Batch variable is the grouping factor for the
random effects generated by this term. An expression for the grouping factor, usually
just the name of a variable, occurs to the right of the vertical bar. If the expression on
the left of the vertical bar is 1, as it is here, we describe the term as a simple, scalar,
random-effects term. The designation “scalar” means there will be exactly one random
effect generated for each level of the grouping factor. A simple, scalar term generates a
block of indicator columns — the indicators for the grouping factor — in Z. Because there
is only one random-effects term in this model and because that term is a simple, scalar
term, the model matrix 7 for this model is the indicator matrix for the levels of Batch.

In the next chapter we fit models with multiple simple, scalar terms and, in subsequent
chapters, we extend random-effects terms beyond simple, scalar terms. When we have only
simple, scalar terms in the model, each term has a unique grouping factor and the elements
of the list returned by ranef can be considered as associated with terms or with grouping
factors. In more complex models a particular grouping factor may occur in more than one
term, in which case the elements of the list are associated with the grouping factors, not
the terms.

Given the data, ¢, and the parameter estimates, we can evaluate a measure of the
dispersion of (B|Y = 7). In the case of a linear mixed model, this is the conditional
standard deviation, from which we can obtain a prediction interval. The ranef extractor
takes an optional argument, condVar = TRUE, which adds these dispersion measures as an
attribute of the result. (The name stands for “conditional variance”, previously misnomed

“posterior variance”).
We can plot these prediction intervals using

> dotplot(ranef (fm01ML, condVar=TRUE), strip = FALSE)

$Batch

(Fig. 1.11), which provides linear spacing of the levels on the y axis, or using
> qgmath(ranef (fmO1ML, condVar=TRUE), strip = FALSE)

$Batch
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Figure 1.11: 95% prediction intervals on the random effects in fm01ML, shown as a dotplot.
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Figure 1.12: 95% prediction intervals on the random effects in fm01ML versus quantiles of
the standard normal distribution.

(Fig. 1.12), where the intervals are plotted with spacing determined by quantiles of the
standard normal distribution.

The dotplot is preferred when there are only a few levels of the grouping factor, as
in this case. When there are hundreds or thousands of random effects the qgmath form
is preferred because it focuses attention on the “important few” at the extremes and
de-emphasizes the “trivial many” that are close to zero.

1.7 Chapter Summary

A considerable amount of material has been presented in this chapter, especially consid-
ering the word “simple” in its title (it’s the model that is simple, not the material). A
summary may be in order.

A mixed-effects model incorporates fixed-effects parameters and random effects, which
are unobserved random variables, B. In a linear mixed model, both the unconditional
distribution of B and the conditional distribution, (Y|B = b), are multivariate Gaussian
distributions. Furthermore, this conditional distribution is a spherical Gaussian with

mean, ji, determined by the linear predictor, Zb+ X 5 . That is,

(VB =b) ~ N(Z5+ XB,0°I).
The unconditional distribution of B has mean 0 and a parameterized g X ¢ variance-
covariance matrix, g.

In the models we considered in this chapter, ¥y, is a simple multiple of the identity
matrix, Is. This matrix is always a multiple of the identity in models with just one random-
effects term that is a simple, scalar term. The reason for introducing all the machinery
that we did is to allow for more general model specifications.

The maximum likelihood estimates of the parameters are obtained by minimizing the
deviance. For linear mixed models we can minimize the profiled deviance, which is a
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function of 6 only, thereby considerably simplifying the optimization problem.

To assess the precision of the parameter estimates, we profile the deviance function
with respect to each parameter and apply a signed square root transformation to the
likelihood ratio test statistic, producing a profile zeta function for each parameter. These
functions provide likelihood-based confidence intervals for the parameters. Profile zeta
plots allow us to visually assess the precision of individual parameters. Density plots
derived from the profile zeta function provide another way of examining the distribution
of the estimators of the parameters.

Prediction intervals from the conditional distribution of the random effects, given the
observed data, allow us to assess the precision of the random effects.

Notation

Random Variables

Y The responses (n-dimensional Gaussian)
B The random effects on the original scale (¢g-dimensional Gaussian with mean 6)

U The orthogonal random effects (¢g-dimensional spherical Gaussian)

Values of these random variables are denoted by the correspondmg bold-face, lower-
case letters: ¥/, b and . We observe y. We do not observe b or 4.

Parameters in the Probability Model

E The p-dimension fixed-effects parameter vector.

g The variance-component parameter vector. Its (unnamed) dimension is typically very
small. Dimensions of 1, 2 or 3 are common in practice.

o The (scalar) common scale parameter, o > 0. It is called the common scale parameter
because it is incorporated in the variance-covariance matrices of both Y and U.

The parameter 0 determines the q X q lower triangular matrix Ag, called the relative
covariance factor, which, in turn, determines the g x ¢ sparse, symmetric semidefinite
variance-covariance matrix g = 02A9A9T that defines the distribution of B.

Model Matrices

X Fixed-effects model matrix of size n x p.

Z Random-effects model matrix of size n x g.

Derived Matrices

Ly The sparse, lower triangular Cholesky factor of AgZTZAg + I_;]

In Chap. 5 this definition will be modified to allow for a fill-reducing permutation of
the rows and columns of A-erZTZ Ag.



1.7 Chapter Summary 23

D °
C
= F
©
T A
E
B o
T T T T
40 60 80 100
Travel time for an ultrasonic wave (ms.)
Figure 1.13: Travel time for an ultrasonic wave test on 6 rails
Vectors

In addition to the parameter vectors already mentioned, we define
i the n-dimensional observed response vector
~ the n-dimension linear predictor,

¥=XB+Zb=ZAgii + X5

iZ the n-dimensional conditional mean of Y given B = b (or, equivalently, given U = «)

-

fi=E|B=b] =EYU =1

g the g-dimensional conditional mode (the value at which the conditional density is
maximized) of U given Y = ¢.

Exercises

These exercises and several others in this book use data sets from the MEMSS package for
R. You will need to ensure that this package is installed before you can access the data
sets.

To load a particular data set,
either attach the package

> library (MEMSS)
or load just the one data set

> data(Rail, package = "MEMSS")

Check the documentation, the structure (str) and a summary of the Rail data (Fig. 1.13)
from the MEMSS package. Note that if you used data to access this data set (i.e. you did
not attach the whole MEMSS package) then you must use
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> help(Rail, package = "MEMSS")
to display the documentation for it.

Fit a model with travel as the response and a simple, scalar random-effects term for
the variable Rail. Use the REML criterion, which is the default. Create a dotplot of the
conditional modes of the random effects.

Refit the model using maximum likelihood. Check the parameter estimates and, in the
case of the fixed-effects parameter, its standard error. In what ways have the parameter
estimates changed? Which parameter estimates have not changed?

Profile the fitted model and construct 95% profile-based confidence intervals on the
parameters. Is the confidence interval on o7 close to being symmetric about the estimate?
Is the corresponding interval on log(oy) close to being symmetric about its estimate?

Create the profile zeta plot for this model. For which parameters are there good normal
approximations?

Plot the prediction intervals on the random effects from this model. Do any of these
prediction intervals contain zero? Consider the relative magnitudes of o1 and @ in this
model compared to those in model fm01 for the Dyestuff data. Should these ratios of
o1/0 lead you to expect a different pattern of prediction intervals in this plot than those
in Fig. 1.117
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##
## Attaching package: ’lme4’

## The following object ts masked from ’package:sfsmisc’:

##
## factorize
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Chapter 2

Models With Multiple
Random-effects Terms

The mixed models considered in the previous chapter had only one random-effects term,
which was a simple, scalar random-effects term, and a single fixed-effects coefficient. Al-
though such models can be useful, it is with the facility to use multiple random-effects
terms and to use random-effects terms beyond a simple, scalar term that we can begin to
realize the flexibility and versatility of mixed models.

In this chapter we consider models with multiple simple, scalar random-effects terms,
showing examples where the grouping factors for these terms are in completely crossed
or nested or partially crossed configurations. For ease of description we will refer to
the random effects as being crossed or nested although, strictly speaking, the distinction
between nested and non-nested refers to the grouping factors, not the random effects.

2.1 A Model With Crossed Random Effects

One of the areas in which the methods in the 1me4 package for R are particularly effective
is in fitting models to cross-classified data where several factors have random effects asso-
ciated with them. For example, in many experiments in psychology the reaction of each
of a group of subjects to each of a group of stimuli or items is measured. If the subjects
are considered to be a sample from a population of subjects and the items are a sample
from a population of items, then it would make sense to associate random effects with
both these factors.

In the past it was difficult to fit mixed models with multiple, crossed grouping factors
to large, possibly unbalanced, data sets. The methods in the 1me4 package are able to
do this. To introduce the methods let us first consider a small, balanced data set with
crossed grouping factors.

2.1.1 The Penicillin Data

The Penicillin data are derived from Table 6.6, p. 144 of Davies & Goldsmith (1972)
where they are described as coming from an investigation to

assess the variability between samples of penicillin by the B. subtilis method.
In this test method a bulk-innoculated nutrient agar medium is poured into a
Petri dish of approximately 90 mm. diameter, known as a plate. When the
medium has set, six small hollow cylinders or pots (about 4 mm. in diameter)
are cemented onto the surface at equally spaced intervals. A few drops of the

27
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penicillin solutions to be compared are placed in the respective cylinders, and
the whole plate is placed in an incubator for a given time. Penicillin diffuses
from the pots into the agar, and this produces a clear circular zone of inhibition
of growth of the organisms, which can be readily measured. The diameter of
the zone is related in a known way to the concentration of penicillin in the
solution.

As with the Dyestuff data, we examine the structure

> str(Penicillin)

'data.frame': 144 obs. of 3 variables:

$ diameter: num 27 23 26 23 23 21 27 23 26 23 ...

$ plate : Factor w/ 24 levels "a","b","c¢","d",..: 1111112222 ...
$ sample : Factor w/ 6 levels "A","B","C","D",..: 1234561234 ...

and a summary

> summary(Penicillin)

diameter plate sample
Min. :18.00 a : 6 A:24
1st Qu.:22.00 b 6 B:24
Median :23.00 c 6 C:24
Mean :22.97 d 6 D:24
3rd Qu.:24.00 e 6 E:24
Max. :27.00 f : 6 F:24
(Other) :108

of the Penicillin data, then plot it
(Fig. 2.1).

The variation in the diameter is associated with the plates and with the samples.
Because each plate is used only for the six samples shown here we are not interested in the
contributions of specific plates as much as we are interested in the variation due to plates
and in assessing the potency of the samples after accounting for this variation. Thus, we
will use random effects for the plate factor. We will also use random effects for the sample
factor because, as in the dyestuff example, we are more interested in the sample-to-sample
variability in the penicillin samples than in the potency of a particular sample.

In this experiment each sample is used on each plate. We say that the sample and
plate factors are crossed, as opposed to nested factors, which we will describe in the next
section. By itself, the designation “crossed” just means that the factors are not nested. If
we wish to be more specific, we could describe these factors as being completely crossed,
which means that we have at least one observation for each combination of a level of
sample and a level of plate. We can see this in Fig. 2.1 and, because there are moderate
numbers of levels in these factors, we can check it in a cross-tabulation

> xtabs(~ sample + plate, Penicillin)

plate

sample abcdefghijklmnopgrstuvwx
A111111111111111111111111
B111111111111111111111111
ci111111111111111111111111
pi111111111111111111111111
E111111111111111111111111
F111111111111111111111111
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Figure 2.1: Diameter of the growth inhibition zone (mm) in the B. subtilis method of
assessing the concentration of penicillin. Each of 6 samples was applied to each of the 24
agar plates. The lines join observations on the same sample.

Like the Dyestuff data, the factors in the Penicillin data are balanced. That is,
there are exactly the same number of observations on each plate and for each sample
and, furthermore, there is the same number of observations on each combination of levels.
In this case there is exactly one observation for each combination of sample and plate.
We would describe the configuration of these two factors as an unreplicated, completely

balanced, crossed design.

In general, balance is a desirable but precarious property of a data set. We may be
able to impose balance in a designed experiment but we typically cannot expect that data
from an observation study will be balanced. Also, as anyone who analyzes real data soon
finds out, expecting that balance in the design of an experiment will produce a balanced
data set is contrary to “Murphy’s Law”. That’s why statisticians allow for missing data.
Even when we apply each of the six samples to each of the 24 plates, something could go
wrong for one of the samples on one of the plates, leaving us without a measurement for
that combination of levels and thus an unbalanced data set.
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2.1.2 A Model For the Penicillin Data

A model incorporating random effects for both the plate and the sample is straightforward
to specify — we include simple, scalar random effects terms for both these factors.

> summary (fm03 <- lmer(diameter ~ 1 + (l|plate) + (1|sample), Penicillin))

Linear mixed model fit by REML ['lmerMod']
Formula: diameter ~ 1 + (1 | plate) + (1 | sample)
Data: Penicillin

REML criterion at convergence: 330.9

Scaled residuals:
Min 1Q Median 3Q Max
-2.07923 -0.67140 0.06292 0.58377 2.97958

Random effects:

Groups  Name Variance Std.Dev.

plate (Intercept) 0.7169  0.8467

sample  (Intercept) 3.7309 1.9316

Residual 0.3024 0.5499
Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:
Estimate Std. Error t value
(Intercept) 22.9722 0.8086  28.41

This model display indicates that the sample-to-sample variability has the greatest contri-
bution, then plate-to-plate variability and finally the “residual” variability that cannot be
attributed to either the sample or the plate. These conclusions are consistent with what
we see in the Penicillin data plot (Fig. 2.1).

The prediction intervals on the random effects (Fig. 2.2) confirm that the conditional dis-
tribution of the random effects for plate has much less variability than does the conditional
distribution of the random effects for sample, in the sense that the dots in the bottom panel
have less variability than those in the top panel. (Note the different horizontal axes for
the two panels.) However, the conditional distribution of the random effect for a partic-
ular sample, say sample ’F’, has less variability than the conditional distribution of the
random effect for a particular plate, say plate *m’. That is, the lines in the bottom panel
are wider than the lines in the top panel, even after taking the different axis scales into
account. This is because the conditional distribution of the random effect for a particular
sample depends on 24 responses while the conditional distribution of the random effect
for a particular plate depends on only 6 responses.

In chapter 1 we saw that a model with a single, simple, scalar random-effects term
generated a random-effects model matrix, 7 , that is the matrix of indicators of the levels
of the grouping factor. When we have multiple, simple, scalar random-effects terms, as in
model £fm03, each term generates a matrix of indicator columns and these sets of indicators
are concatenated to form the model matrix Z. The transpose of this matrix, shown in
Fig. 2.3, contains rows of indicators for each factor.

The relative covariance factor, Ay, (Fig. 2.4, left panel) is no longer a multiple of the
identity. It is now block diagonal, with two blocks, one of size 24 and one of size 6, each
of which is a multiple of the identity. The diagonal elements of the two blocks are 6; and
02, respectively. The numeric values of these parameters can be obtained as
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Figure 2.2: 95% prediction intervals on the random effects for model fm03 fit to the
Penicillin data. The intervals in the upper panel are those for levels of the sample factor.
Those in the lower panel correspond to levels of the plate factor.
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Figure 2.3: Image of the transpose of the random-effects model matrix, A , for model £m03.
The non-zero elements, which are all unity, are shown as darkened squares. The zero
elements are blank.
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Figure 2.5: Profile zeta plot of the parameters in model £m03.

> getME(fm03, "theta")

plate. (Intercept) sample.(Intercept)
1.539678 3.512415

The first parameter is the relative standard deviation of the random effects for plate,
which has the value 0.84671/0.54992 = 1.53968 at convergence, and the second is the
relative standard deviation of the random effects for sample (1.93157/0.54992 = 3.512443).

Because Ay is diagonal, the pattern of non-zeros in AgZTZ Ag + I will be the same as
that in Z7Z , shown in the middle panel of Fig. 2.4. The sparse Cholesky factor, E, shown
in the right panel, is lower triangular and has non-zero elements in the lower right hand
corner in positions where Z77Z has systematic zeros. We say that “fill-in” has occurred
when forming the sparse Cholesky decomposition. In this case there is a relatively minor
amount of fill but in other cases there can be a substantial amount of fill and we shall
take precautions so as to reduce this, because fill-in adds to the computational effort in
determining the MLEs or the REML estimates.

A profile zeta plot (Fig. 2.5) for the parameters in model fm03
leads to conclusions similar to those from Fig. 1.5 for model £fm01ML in the previous chapter.
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The fixed-effect parameter, Sy, for the (Intercept) term has symmetric intervals and is
over-dispersed relative to the normal distribution. The logarithm of ¢ has a good normal
approximation but the standard deviations of the random effects, o1 and o9, are skewed.
The skewness for o9 is worse than that for o1, because the estimate of o9 is less precise
than that of o1, in both absolute and relative senses. For an absolute comparison we
compare the widths of the confidence intervals for these parameters.

> confint (pr03)

2.5 % 97.5 %
.8ig01 0.6335658 1.1821040
.sig02 1.0957893 3.5562919
.sigma 0.4858454 0.6294535

(Intercept) 21.2666274 24.6778176

In a relative comparison we examine the ratio of the endpoints of the interval divided
by the estimate.

> confint(pr03) [1:2,]1/c(0.8455722, 1.770648)

2.5 % 97.5 9%
.sig01 0.7492746 1.397993
.sig02 0.6188634 2.008469

(We have switched from the REML estimates shown in the display of £fm03 to the ML
estimates of the standard deviations.)

The lack of precision in the estimate of o3 is a consequence of only having 6 distinct
levels of the sample factor. The plate factor, on the other hand, has 24 distinct levels.
In general it is more difficult to estimate a measure of spread, such as the standard
deviation, than to estimate a measure of location, such as a mean, especially when the
number of levels of the factor is small. Six levels are about the minimum number required
for obtaining sensible estimates of standard deviations for simple, scalar random effects
terms.

The profile pairs plot (Fig. 2.6)
shows patterns similar to those in Fig. A.1 for pairs of parameters in model fm01 fit to the
Dyestuff data. On the ( scale (panels below the diagonal) the profile traces are nearly
straight and orthogonal with the exception of the trace of {(o2) on ((5p) (the horizontal
trace for the panel in the (4,2) position). The pattern of this trace is similar to the
pattern of the trace of ((o1) on ((5p) in Fig. A.1. Moving [y from its estimate, fy, in
either direction will increase the residual sum of squares. The increase in the residual
variability is reflected in an increase of one or more of the dispersion parameters. The
balanced experimental design results in a fixed estimate of o and the extra apparent
variability must be incorporated into oy or os.

Contours in panels of parameter pairs on the original scales (i.e. panels above the
diagonal) can show considerable distortion from the ideal elliptical shape. For example,
contours in the oy versus o; panel (the (1,2) position) and the log(o) versus oy panel (in
the (2, 3) position) are dramatically non-elliptical. However, the distortion of the contours
is not due to these parameter estimates depending strongly on each other. It is almost
entirely due to the choice of scale for o1 and oo. When we plot the contours on the scale
of log(o1) and log(o2) instead (Fig. 2.7)
they are much closer to the elliptical pattern.

Conversely, if we tried to plot contours on the scale of o7 and 03 (not shown), they
would be hideously distorted.
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Figure 2.6: Profile pairs plot for the parameters in model fm03 fit to the Penicillin data.

2.2 A Model With Nested Random Effects

In this section we again consider a simple example, this time fitting a model with nested
grouping factors for the random effects.

2.2.1 The Pastes Data

The third example from Davies & Goldsmith (1972, Table 6.5, p. 138) is described as
coming from

deliveries of a chemical paste product contained in casks where, in addition to
sampling and testing errors, there are variations in quality between deliveries
... As a routine, three casks selected at random from each delivery were sam-
pled and the samples were kept for reference. ... Ten of the delivery batches

were sampled at random and two analytical tests carried out on each of the 30
samples.
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The structure and summary of the Pastes data object are

> str(Pastes)

'data.frame': 60 obs. of 4 variables:

$ strength: num 62.8 62.6 60.1 62.3 62.7 63.1 60 61.4 57.5 56.9 ...

$ batch : Factor w/ 10 levels "A","B","C","D",..: 1111112222

$ cask : Factor w/ 3 levels "a","b","c": 1122331122

$ sample : Factor w/ 30 levels "A:a","A:b","A:c",..: 1122334455

> summary (Pastes)

strength batch cask sample
Min. :54.20 A : 6 a:20 A:a 2
1st Qu.:57.50 B : 6 b:20 A:b 2
Median :59.30 C : 6 c:20 A:c 2
Mean :60.05 D : 6 B:a 2
3rd Qu.:62.88 E : 6 B:b 0 2
Max. 166.00 F : 6 B:c 2
(Other) :24 (Other) :48

As stated in the description in Davies & Goldsmith (1972), there are 30 samples, three
from each of the 10 delivery batches. We have labelled the levels of the sample factor with
the label of the batch factor followed by ‘a’, ‘b’ or ‘¢’ to distinguish the three samples
taken from that batch. The cross-tabulation produced by the xtabs function, using the
optional argument sparse = TRUE, provides a concise display of the relationship.

> xtabs(™ batch + sample, Pastes, drop = TRUE, sparse = TRUE)
10 x 30 sparse Matrix of class "dgCMatrix"

[[ suppressing 30 column names °’A:a’, °A:b’, ’A:c’ ... ]J]

N
N
N
N
N .
N -
N
N -
N -

L2220 ...
L2220 0.
L2220 .0 ..
L2220 ...
L2220 .0 ..
L2220 ..
. 222

uHIEDQTNMMEMUOQW®=

An image (Fig. 2.8) of this cross-tabulation is, perhaps, easier to appreciate.

When plotting the strength versus batch and sample in the Pastes data we should
remember that we have two strength measurements on each of the 30 samples. It is
tempting to use the cask designation (‘a’, ‘b’ and ‘c’) to determine, say, the plotting
symbol within a batch. It would be fine to do this within a batch but the plot would
be misleading if we used the same symbol for cask ‘a’ in different batches. There is no
relationship between cask ‘a’ in batch ‘A’ and cask ‘a’ in batch ‘B’. The labels ‘a’, ‘b’
and ‘c’ are used only to distinguish the three samples within a batch; they do not have a
meaning across batches.

In Fig. 2.9 we plot the two strength measurements on each of the samples within each

of the batches and join up the average strength for each sample. The perceptive reader will
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Figure 2.9: Strength of paste preparations according to the batch and the sample within
the batch. There were two strength measurements on each of the 30 samples; three samples

each from 10 batches.
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have noticed that the levels of the factors on the vertical axis in this figure, and in Fig. 1.1
and 2.1, have been reordered according to increasing average response. In all these cases
there is no inherent ordering of the levels of the covariate such as batch or plate. Rather
than confuse our interpretation of the plot by determining the vertical displacement of
points according to a random ordering, we impose an ordering according to increasing
mean response. This allows us to more easily check for structure in the data, including
undesirable characteristics like increasing variability of the response with increasing mean
level of the response.

In Fig. 2.9 we order the samples within each batch separately then order the batches
according to increasing mean strength.

Figure 2.9 shows considerable variability in strength between samples relative to the
variability within samples. There is some indication of variability between batches, in
addition to the variability induced by the samples, but not a strong indication of a batch
effect. For example, batches I and D, with low mean strength relative to the other batches,
each contained one sample (I:b and D:c, respectively) that had high mean strength rela-
tive to the other samples. Also, batches H and C, with comparatively high mean batch
strength, contain samples H:a and C:a with comparatively low mean sample strength. In
sec. 2.2.4 we will examine the need for incorporating batch-to-batch variability, in addition
to sample-to-sample variability, in the statistical model.

Nested Factors

Because each level of sample occurs with one and only one level of batch we say that sample
is nested within batch. Some presentations of mixed-effects models, especially those related
to multilevel modeling (Rasbash et al., 2000) or hierarchical linear models (Raudenbush &
Bryk, 2002), leave the impression that one can only define random effects with respect to
factors that are nested. This is the origin of the terms “multilevel”, referring to multiple,
nested levels of variability, and “hierarchical”, also invoking the concept of a hierarchy of
levels. To be fair, both those references do describe the use of models with random effects
associated with non-nested factors, but such models tend to be treated as a special case.

The blurring of mixed-effects models with the concept of multiple, hierarchical levels of
variation results in an unwarranted emphasis on “levels” when defining a model and leads
to considerable confusion. It is perfectly legitimate to define models having random effects
associated with non-nested factors. The reasons for the emphasis on defining random
effects with respect to nested factors only are that such cases do occur frequently in
practice and that some of the computational methods for estimating the parameters in
the models can only be easily applied to nested factors.

This is not the case for the methods used in the 1me4 package. Indeed there is nothing
special done for models with random effects for nested factors. When random effects are
associated with multiple factors exactly the same computational methods are used whether
the factors form a nested sequence or are partially crossed or are completely crossed.

There is, however, one aspect of nested grouping factors that we should emphasize,
which is the possibility of a factor that is implicitly nested within another factor. Suppose,
for example, that the sample factor was defined as having three levels instead of 30 with
the implicit assumption that sample is nested within batch. It may seem silly to try to
distinguish 30 different batches with only three levels of a factor but, unfortunately, data
are frequently organized and presented like this, especially in text books. The cask factor
in the Pastes data is exactly such an implicitly nested factor. If we cross-tabulate batch
and cask



2.2 A Model With Nested Random Effects 39

> xtabs(~ cask + batch, Pastes)

we get the impression that the cask and batch factors are crossed, not nested. If we know
that the cask should be considered as nested within the batch then we should create a new
categorical variable giving the batch-cask combination, which is exactly what the sample
factor is. A simple way to create such a factor is to use the interaction operator, ‘:’,
on the factors. It is advisable, but not necessary, to apply factor to the result thereby
dropping unused levels of the interaction from the set of all possible levels of the factor.
(An “unused level” is a combination that does not occur in the data.) A convenient code

idiom is
> Pastes$sample <- with(Pastes, factor(batch:cask))
or

> Pastes <- within(Pastes, sample <- factor(batch:cask))

In a small data set like Pastes we can quickly detect a factor being implicitly nested
within another factor and take appropriate action. In a large data set, perhaps hundreds
of thousands of test scores for students in thousands of schools from hundreds of school
districts, it is not always obvious if school identifiers are unique across the entire data
set or just within a district. If you are not sure, the safest thing to do is to create the
interaction factor, as shown above, so you can be confident that levels of the district:school
interaction do indeed correspond to unique schools.

2.2.2 Fitting a Model With Nested Random Effects

Fitting a model with simple, scalar random effects for nested factors is done in exactly the
same way as fitting a model with random effects for crossed grouping factors. We include
random-effects terms for each factor, as in

> summary (fm04 <- lmer(strength ~ 1 + (1|sample) + (1|batch), Pastes, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: strength ~ 1 + (1 | sample) + (1 | batch)
Data: Pastes

AIC BIC 1loglik deviance df.resid
256.0 264.4 -124.0 248.0 56

Scaled residuals:
Min 1Q Median 3Q Max
-1.48467 -0.52624 0.01215 0.46735 1.38919

Random effects:
Groups  Name Variance Std.Dev.
sample  (Intercept) 8.434 2.9041
batch (Intercept) 1.199 1.0951
Residual 0.678 0.8234
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Figure 2.10: Images of the relative covariance factor, A, the cross-product of the random-
effects model matrix, Z'Z, and the sparse Cholesky factor, L, for model £m04.

Number of obs: 60, groups: sample, 30; batch, 10

Fixed effects:
Estimate Std. Error t value
(Intercept) 60.0533 0.6421 93.52

Not only is the model specification similar for nested and crossed
factors, the internal calculations are performed according to the methods described in
sec. 1.4.1 for each model type. Comparing the patterns in the matrices A, ZZ and
L for this model (Fig. 2.10) to those in Fig. 2.4 shows that models with nested factors
produce simple repeated structures along the diagonal of the sparse Cholesky factor, E,
after reordering the random effects (we discuss this reordering later in sec. 5.4.1). This
type of structure has the desirable property that there is no “fill-in” during calculation
of the Cholesky factor. In other words, the number of non-zeros in L is the same as
the number of non-zeros in the lower triangle of the matrix being factored, ATZTZA+T
(which, because A is diagonal, has the same structure as A ).

Fill-in of the Cholesky factor is not an important issue when we have a few dozen
random effects, as we do here. It is an important issue when we have millions of random
effects in complex configurations, as has been the case in some of the models that have
been fit using lmer.

2.2.3 Assessing Parameter Estimates in Model fm04

The parameter estimates are: o7 =2.904, the standard deviation of the random effects for
sample; 05 =1.095, the standard deviation of the random effects for batch; o =0.823, the
standard deviation of the residual noise term; and By =60.053, the overall mean response,
which is labeled (Intercept) in these models.

The estimated standard deviation for sample is nearly three times as large as that for
batch, which confirms what we saw in Fig. 2.9. Indeed our conclusion from Fig. 2.9 was
that there may not be a significant batch-to-batch variability in addition to the sample-
to-sample variability.

Plots of the prediction intervals of the random effects (Fig. 2.11)
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Figure 2.11: 95% prediction intervals on the random effects for model £m04 fit to the Pastes
data.
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Figure 2.12: Profile zeta plots for the parameters in model fm04.

confirm this impression in that all the prediction intervals for the random effects for batch
contain zero. Furthermore, the profile zeta plot (Fig. 2.12)

shows that the even the 50% profile-based confidence interval on o9 extends to zero.
Because there are several indications that o9 could reasonably be zero, resulting in a
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simpler model incorporating random effects for batch only, we perform a statistical test of
this hypothesis.

2.2.4 Testing Hy: 0, =0 Versus H, : 05 > 0

One of the many famous statements attributed to Albert Einstein is “Everything should
be made as simple as possible, but not simpler.” In statistical modeling this principal of
parsimony is embodied in hypothesis tests comparing two models, one of which contains
the other as a special case. Typically, one or more of the parameters in the more general
model, which we call the alternative hypothesis, is constrained in some way, resulting in
the restricted model, which we call the null hypothesis. Although we phrase the hypothesis
test in terms of the parameter restriction, it is important to realize that we are comparing
the quality of fits obtained with two nested models. That is, we are not assessing param-
eter values per se; we are comparing the model fit obtainable with some constraints on
parameter values to that without the constraints.

Because the more general model, H,, must provide a fit that is at least as good as
the restricted model, Hy, our purpose is to determine whether the change in the quality
of the fit is sufficient to justify the greater complexity of model H,. This comparison is
often reduced to a p-value, which is the probability of seeing a difference in the model fits
as large as we did, or even larger, when, in fact, Hy is adequate. Like all probabilities,
a p-value must be between 0 and 1. When the p-value for a test is small (close to zero)
we prefer the more complex model, saying that we “reject Hy in favor of H,”. On the
other hand, when the p-value is not small we “fail to reject Hy”, arguing that there is a
non-negligible probability that the observed difference in the model fits could reasonably
be the result of random chance, not the inherent superiority of the model H,. Under these
circumstances we prefer the simpler model, Hy, according to the principal of parsimony.

These are the general principles of statistical hypothesis tests. To perform a test in
practice we must specify the criterion for comparing the model fits, the method for calcu-
lating the p-value from an observed value of the criterion, and the standard by which we
will determine if the p-value is “small” or not. The criterion is called the test statistic, the
p-value is calculated from a reference distribution for the test statistic, and the standard
for small p-values is called the level of the test.

In sec. 1.5 we referred to likelihood ratio tests (LRTs) for which the test statistic is the
difference in the deviance. That is, the LRT statistic is dy — d, where d, is the deviance
in the more general (H,) model fit and dy is the deviance in the constrained (Hp) model.
An approximate reference distribution for an LRT statistic is the x2 distribution where
v, the degrees of freedom, is determined by the number of constraints imposed on the

parameters of H, to produce Hy.
The restricted model fit

> summary (fmO4a <- lmer(strength ~ 1 + (1|sample), Pastes, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: strength ~ 1 + (1 | sample)
Data: Pastes

AIC BIC logLik deviance df.resid
254 .4 260.7 -124.2 248.4 57

Scaled residuals:
Min 1Q Median 3Q Max
-1.49173 -0.54158 0.01509 0.46195 1.38824
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Random effects:

Groups  Name Variance Std.Dev.
sample  (Intercept) 9.633 3.1037
Residual 0.678 0.8234

Number of obs: 60, groups: sample, 30

Fixed effects:
Estimate Std. Error t value
(Intercept) 60.0533 0.5765 104.2

is compared to model fm04 with the anova function

> anova(fmO4a, fm04)

Data: Pastes
Models:
fm04a: strength ~ 1 + (1 | sample)
fm04: strength ~ 1 + (1 | sample) + (1 | batch)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
fmO4a 3 254.40 260.69 -124.2 248.40
fm04 4 255.99 264.37 -124.0 247.99 0.4072 1 0.5234

which provides a p-value of 0.5234. Because typical standards for “small” p-values are
5% or 1%, a p-value over 50% would not be considered significant at any reasonable level.

We do need to be cautious in quoting this p-value, however, because the parameter
value being tested, oo = 0, is on the boundary of set of possible values, oo > 0, for this
parameter. The argument for using a X% distribution to calculate a p-value for the change
in the deviance does not apply when the parameter value being tested is on the boundary.
As shown in Pinheiro & Bates (2000, Sect. 2.5), the p-value from the x? distribution will
be “conservative” in the sense that it is larger than a simulation-based p-value would be.
In the worst-case scenario the y2-based p-value will be twice as large as it should be but,
even if that were true, an effective p-value of 26% would not cause us to reject Hy in favor
of H,.

2.2.5 Assessing the Reduced Model, fm04a

The profile zeta plots for the remaining parameters in model fmo4a (Fig. 2.13)
are similar to the corresponding panels in Fig. 2.12, as confirmed by the numerical values
of the confidence intervals.

> confint (pro4)

2.5 % 97.5 Y%

.sig01 2.1579337 4.053589
.sig02 0.0000000 2.946591
.sigma 0.6520234 1.085448
(Intercept) 58.6636504 61.443016

> confint (proda)

2.5 % 97.5 %
.sig01 2.4306377 4.122011
.sigma 0.6520207 1.085448
(Intercept) 58.8861831 61.220484
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Figure 2.13: Profile zeta plots for the parameters in model £fm04a.
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Figure 2.14: Profile pairs plot for the parameters in model fm04a fit to the Pastes data.

The confidence intervals on log(o) and (y are similar for the two models. The confi-
dence interval on o; is slightly wider in model £fm04a than in fm04, because the variability

that is attributed to batch in fm04 is incorporated into the variability due to sample in
fmO4a.

The patterns in the profile pairs plot (Fig. 2.14) for the reduced model fm04a are similar
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to those in Fig. A.1, the profile pairs plot for model fm01.

2.3 A Model With Partially Crossed Random Effects

Especially in observational studies with multiple grouping factors, the configuration of
the factors frequently ends up neither nested nor completely crossed. We describe such
situations as having partially crossed grouping factors for the random effects.

Studies in education, in which test scores for students over time are also associated
with teachers and schools, usually result in partially crossed grouping factors. If students
with scores in multiple years have different teachers for the different years, the student
factor cannot be nested within the teacher factor. Conversely, student and teacher factors
are not expected to be completely crossed. To have complete crossing of the student and
teacher factors it would be necessary for each student to be observed with each teacher,
which would be unusual. A longitudinal study of thousands of students with hundreds of
different teachers inevitably ends up partially crossed.

In this section we consider an example with thousands of students and instructors
where the response is the student’s evaluation of the instructor’s effectiveness. These
data, like those from most large observational studies, are quite unbalanced.

2.3.1 The InstEval Data

The InstEval data are from a special evaluation of lecturers by students at the Swiss
Federal Institute for Technology—Ziirich (ETH-Ziirich), to determine who should receive
the “best-liked professor” award. These data have been slightly simplified and identifying

labels have been removed, so as to preserve anonymity.
The variables

> ## the default strict.width is 'no' for back-compatibility instead, we could also
> ## *globally* set strOptions(strict.width = 'cut') str(InstEval, strict.width = 'cut')
> str(InstEval)

'data.frame': 73421 obs. of 7 variables:

$ s : Factor w/ 2972 levels "i","2" ,"3","4" ,.,: 1111223333 ...

$d : Factor w/ 1128 levels "1","s","7","8",..: 525 560 832 1068 62 406 3 6 19 7..
$ studage: Ord.factor w/ 4 levels "2"<"4"<"g"<"8": 1111111111 ...

$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2122111111 ...

$ service: Factor w/ 2 levels "O","1": 1 212112111 ...

$ dept : Factor w/ 14 levels "15","5","10",..: 14 5 14 12 2 2 13 3 3 3 ...

$y :int 5253244554 ...

have somewhat cryptic names. Factor s designates the student and d the instructor.
The dept factor is the department for the course and service indicates whether the course
was a service course taught to students from other departments.

Although the response, y, is on a scale of 1 to 5,

> xtabs(™ y, InstEval)

y
1 2 3 4 5

10186 12951 17609 16921 15754

it is sufficiently diffuse to warrant treating it as if it were a continuous response.
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At this point we will fit models that have random effects for student, instructor, and
department (or the dept:service combination) to these data. In the next chapter we will
fit models incorporating fixed-effects for instructor and department to these data.

> summary (fm05 <- Imer(y ~ 1 + (1]s) + (1|d)+(1|dept:service),
+ InstEval, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: y ~ 1 + (1 | s) + (1 | 4 + (1 | dept:service)
Data: ImstEval

AIC BIC logLik deviance df.resid
237663.3 237709.3 -118826.6 237653.3 73416

Scaled residuals:
Min 1Q Median 3Q Max
-2.9941 -0.7474 0.0400 0.7721 3.1124

Random effects:

Groups Name Variance Std.Dev.
s (Intercept) 0.10541 0.3247
d (Intercept) 0.26256 0.5124
dept:service (Intercept) 0.01213 0.1101
Residual 1.38495 1.1768

Number of obs: 73421, groups: s, 2972; d, 1128; dept:service, 28

Fixed effects:
Estimate Std. Error t value
(Intercept) 3.25521 0.02824 115.3

(Fitting this complex model to a moderately large data set takes less than two minutes
on a modest laptop computer purchased in 2006. Although this is more time than required
for earlier model fits, it is a remarkably short time for fitting a model of this size and
complexity. In some ways it is remarkable that such a model can be fit at all on such a
computer.)

All three estimated standard deviations of the random effects are less than o, with o3,
the estimated standard deviation of the random effects for the dept:service interaction,
less than one-tenth the estimated residual standard deviation.

> dotplot(rr4, strip = FALSE)
$ dept:service”

It is not surprising that zero is within all of the prediction intervals on the random
effects for this factor (Fig. 2.15). In fact, zero is close to the middle of all these prediction
intervals. However, the p-value for the LRT of Hy : 03 = 0 versus H, : 03 > 0

> fmO5a <- Imer(y ~ 1 + (1]s) + (1|d), InstEval, REML=FALSE)
> anova(fm05a,fm05)

Data: ImnstEval

Models:

fmOba: y "1+ (1 | s) + (1 | &)

fm05: y ~ 1+ (1 | s) + (1 | &) + (1 | dept:service)
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Figure 2.15: 95% prediction intervals on the random effects for the dept:service factor in
model £m05 fit to the InstEval data.

Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
fmOba 4 237786 237823 -118889 237778
fm05 5 237663 237709 -118827 237653 124.43 1 < 2.2e-16

is highly significant. That is, we have very strong evidence that we should reject Hy
in favor of H,.

The seeming inconsistency of these conclusions is due to the large sample size (n =
73421). When a model is fit to a very large sample even the most subtle of differences
can be highly “statistically significant”. The researcher or data analyst must then decide
if these terms have practical significance, beyond the apparent statistical significance.

The large sample size also helps to assure that the parameters have good normal
approximations. We could profile this model fit but doing so would take a very long
time and, in this particular case, the analysts are more interested in a model that uses
fixed-effects parameters for the instructors, which we will describe in the next chapter.

We could pursue other mixed-effects models here, such as using the dept factor and
not the dept:service interaction to define random effects, but we will revisit these data
in the next chapter and follow up on some of these variations there.

2.3.2 Structure of L for model fm05

Before leaving this model we examine the sparse Cholesky factor, E, (Fig. 2.16), which is
of size 4128 x 4128. Even as a sparse matrix this factor requires a considerable amount of
memory,

> object.size(getME(fm05,"L"))

8283328 bytes
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Figure 2.16: Image of the sparse Cholesky factor, E, from model £m05

> unclass(round(object.size(getME(fm05,"L")) /2720, 3)) # stze in megabytes

(11 7.9

but as a triangular dense matrix it would require nearly 10 times as much. There are
(4128 x 4129)/2 elements on and below the diagonal, each of which would require 8 bytes
of storage. A packed lower triangular array would require
> (8 * (4128 * 4129)/2)/2720  # size in megabytes
[1] 65.01965

megabytes. The more commonly used full rectangular storage requires

> (8 * 412872)/2720 # size in megabytes

[1] 130.0078

megabytes of storage.
The number of nonzero elements in this matrix that must be updated for each evalu-
ation of the deviance is

> nnzero(as(getME(fm05,"L"), "sparseMatrix"))

[1] 566960
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Comparing this to 8.522256 x 106, the number of elements that must be updated in a
dense Cholesky factor, we can see why the sparse Cholesky factor provides a much more
efficient evaluation of the profiled deviance function.

2.4 Chapter Summary

A simple, scalar random effects term in an lmer model formula is of the form (1|fac),
where fac is an expression whose value is the grouping factor of the set of random effects
generated by this term. Typically, fac is simply the name of a factor, such as in the terms
(1|sample) or (1|plate) in the examples in this chapter. However, the grouping factor
can be the value of an expression, such as (1|dept:service) in the last example.

Because simple, scalar random-effects terms can differ only in the description of the
grouping factor we refer to configurations such as crossed or nested as applying to the
terms or to the random effects, although it is more accurate to refer to the configuration
as applying to the grouping factors.

A model formula can include several such random effects terms. Because configurations
such as nested or crossed or partially crossed grouping factors are a property of the data,
the specification in the model formula does not depend on the configuration. We simply
include multiple random effects terms in the formula specifying the model.

One apparent exception to this rule occurs with implicitly nested factors, in which the
levels of one factor are only meaningful within a particular level of the other factor. In

the Pastes data, levels of the cask factor are only meaningful within a particular level of
the batch factor. A model formula of

strength ~ 1 + (1 | cask) + (1 | batch)

would result in a fitted model that did not appropriately reflect the sources of variability
in the data. Following the simple rule that the factor should be defined so that distinct
experimental or observational units correspond to distinct levels of the factor will avoid
such ambiguity.

For convenience, a model with multiple, nested random-effects terms can be specified
as

strength ~ 1 + (1 | batch/cask)
which internally is re-expressed as

strength ~ 1 + (1 | batch) + (1 | batch:cask)

We will avoid terms of the form (1|batch/cask), preferring instead an explicit specifi-
cation with simple, scalar terms based on unambiguous grouping factors.

The InstEval data, described in sec. 2.3.1, illustrate some of the characteristics of the
real data to which mixed-effects models are now fit. There is a large number of observa-
tions associated with several grouping factors; two of which, student and instructor, have
a large number of levels and are partially crossed. Such data are common in sociological
and educational studies but until now it has been very difficult to fit models that appro-
priately reflect such a structure. Much of the literature on mixed-effects models leaves the
impression that multiple random effects terms can only be associated with nested grouping
factors. The resulting emphasis on hierarchical or multilevel configurations is an artifact
of the computational methods used to fit the models, not the models themselves.

The parameters of the models fit to small data sets have properties similar to those
for the models in the previous chapter. That is, profile-based confidence intervals on the
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fixed-effects parameter, fy, are symmetric about the estimate but overdispersed relative to
those that would be calculated from a normal distribution and the logarithm of the residual
standard deviation, log(c), has a good normal approximation. Profile-based confidence
intervals for the standard deviations of random effects (o;, o2, etc.) are symmetric on a
logarithmic scale except for those that could be zero.

Another observation from the last example is that, for data sets with a very large
numbers of observations, a term in a model may be “statistically significant” even when
its practical significance is questionable.

Exercises

These exercises use data sets from the MEMSS package for R. Recall that to access a particular
data set, you must either attach the package

> library (MEMSS)

or load just the one data set

> data(ergoStool, package = "MEMSS")

We begin with exercises using the ergoStool data from the MEMSS package. The analysis
and graphics in these exercises is performed in Chap. 4. The purpose of these exercises is
to see if you can use the material from this chapter to anticipate the results quoted in the
next chapter.

Check the documentation, the structure (str) and a summary of the ergoStool data
from the MEMSS package. (If you are familiar with the Star Trek television series and
movies, you may want to speculate about what, exactly, the “Borg scale” is.) Use

> xtabs(~ Type + Subject, ergoStool)

to determine if these factors are nested, partially crossed or completely crossed. Is this
a replicated or an unreplicated design?

Create a plot, similar to Fig. 2.1, showing the effort by subject with lines connecting
points corresponding to the same stool types. Order the levels of the Subject factor by
increasing average effort.

The experimenters are interested in comparing these specific stool types. In the next
chapter we will fit a model with fixed-effects for the Type factor and random effects for
Subject, allowing us to perform comparisons of these specific types. At this point fit a
model with random effects for both Type and Subject. What are the relative sizes of the
estimates of the standard deviations, o1 (for Subject), o2 (for Type) and & (for the residual
variability)?

Refit the model using maximum likelihood. Check the parameter estimates and, in
the case of the fixed-effects parameter, Sy, its standard error. In what ways have the
parameter estimates changed? Which parameter estimates have not changed?
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Profile the fitted model and construct 95% profile-based confidence intervals on the
parameters. (Note that you will get the same profile object whether you start with the
REML fit or the ML fit. There is a slight advantage in starting with the ML fit.) Is the
confidence interval on o; close to being symmetric about its estimate? Is the confidence
interval on oy close to being symmetric about its estimate? Is the corresponding interval
on log(o1) close to being symmetric about its estimate?

Create the profile zeta plot for this model. For which parameters are there good normal
approximations?

Create a profile pairs plot for this model. Comment on the shapes of the profile traces
in the transformed () scale and the shapes of the contours in the original scales of the
parameters.

Create a plot of the 95% prediction intervals on the random effects for Type using

> dotplot(ranef (fm, which = "Type", condVar = TRUE), aspect = 0.2,
+ strip = FALSE)

(Substitute the name of your fitted model for fm in the call to ranef.) Is there a clear
winner among the stool types? (Assume that lower numbers on the Borg scale correspond
to less effort).

Create a plot of the 95% prediction intervals on the random effects for Subject.

Check the documentation, the structure (str) and a summary of the Meat data from
the MEMSS package. Use a cross-tabulation to discover whether Pair and Block are nested,
partially crossed or completely crossed.

Use a cross-tabulation

> xtabs (™ Pair + Storage, Meat)

to determine whether Pair and Storage are nested, partially crossed or completely
crossed.

Fit a model of the score in the Meat data with random effects for Pair, Storage and
Block.

Plot the prediction intervals for each of the three sets of random effects.

Profile the parameters in this model. Create a profile zeta plot. Does including the
random effect for Block appear to be warranted. Does your conclusion from the profile
zeta plot agree with your conclusion from examining the prediction intervals for the random
effects for Block?

Refit the model without random effects for Block. Perform a likelihood ratio test of
Hy : 03 =0 versus H, : 03 > 0. Would you reject Hy in favor of H, or fail to reject Hy?
Would you reach the same conclusion if you adjusted the p-value for the test by halving
it, to take into account the fact that 0 is on the boundary of the parameter region?
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Profile the reduced model (i.e. the one without random effects for Block) and create
profile zeta and profile pairs plots. Can you explain the apparent interaction between
log(o) and 01?7 (This is a difficult question.)



Chapter 3

Models for Longitudinal Data

Longitudinal data consist of repeated measurements on the same subject (or some other
“experimental unit”) taken over time. Generally we wish to characterize the time trends
within subjects and between subjects. The data will always include the response, the
time covariate and the indicator of the subject on which the measurement has been made.
If other covariates are recorded, say whether the subject is in the treatment group or
the control group, we may wish to relate the within- and between-subject trends to such
covariates.

In this chapter we introduce graphical and statistical techniques for the analysis of
longitudinal data by applying them to a simple example.

3.1 The sleepstudy Data

Belenky et al. (2003) report on a study of the effects of sleep deprivation on reaction time
for a number of subjects chosen from a population of long-distance truck drivers. These
subjects were divided into groups that were allowed only a limited amount of sleep each
night. We consider here the group of 18 subjects who were restricted to three hours of sleep
per night for the first ten days of the trial. Each subject’s reaction time was measured
several times on each day of the trial.

> str(sleepstudy)

'data.frame': 180 obs. of 3 variables:

$ Reaction: num 250 259 251 321 357 ...

$ Days :num 0123456789 ...

$ Subject : Factor w/ 18 levels "308","309","310",..: 1111111111 ...

In this data frame, the response variable Reaction, is the average of the reaction
time measurements on a given subject for a given day. The two covariates are Days, the
number of days of sleep deprivation, and Subject, the identifier of the subject on which
the observation was made.

As recommended for any statistical analysis, we begin by plotting the data. The most
important relationship to plot for longitudinal data on multiple subjects is the trend of
the response over time by subject, as shown in Fig. 3.1. This plot, in which the data
for different subjects are shown in separate panels with the axes held constant for all the
panels, allows for examination of the time-trends within subjects and for comparison of
these patterns between subjects. Through the use of small panels in a repeating pattern
Fig. 3.1 conveys a great deal of information, the individual time trends for 18 subjects
over 10 days — a total of 180 points — without being overly cluttered.

93
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Figure 3.1: A lattice plot of the average reaction time versus number of days of sleep
deprivation by subject for the sleepstudy data. Each subject’s data are shown in a separate
panel, along with a simple linear regression line fit to the data in that panel. The panels are
ordered, from left to right along rows starting at the bottom row, by increasing intercept
of these per-subject linear regression lines. The subject number is given in the strip above
the panel.
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3.1.1 Characteristics of the sleepstudy Data Plot

The principles of “Trellis graphics”, developed by Bill Cleveland and his coworkers at
Bell Labs and implemented in the lattice package for R by Deepayan Sarkar, have been
incorporated in this plot. As stated above, all the panels have the same vertical and
horizontal scales, allowing us to evaluate the pattern over time for each subject and also
to compare patterns between subjects. The line drawn in each panel is a simple least
squares line fit to the data in that panel only. It is provided to enhance our ability to
discern patterns in both the slope (the typical change in reaction time per day of sleep
deprivation for that particular subject) and the intercept (the average response time for
the subject when on their usual sleep pattern).

The aspect ratio of the panels (ratio of the height to the width) has been chosen,
according to an algorithm described in Cleveland (1993), to facilitate comparison of slopes.
The effect of choosing the aspect ratio in this way is to have the slopes of the lines on the
page distributed around +45°, thereby making it easier to detect systematic changes in
slopes.

The panels have been ordered (from left to right starting at the bottom row) by
increasing intercept. Because the subject identifiers, shown in the strip above each panel,
are unrelated to the response it would not be helpful to use the default ordering of the
panels, which is by increasing subject number. If we did so our perception of patterns in the
data would be confused by the, essentially random, ordering of the panels. Instead we use
a characteristic of the data to determine the ordering of the panels, thereby enhancing our
ability to compare across panels. For example, a question of interest to the experimenters
is whether a subject’s rate of change in reaction time is related to the subject’s initial
reaction time. If this were the case we would expect that the slopes would show an
increasing trend (or, less likely, a decreasing trend) in the left to right, bottom to top
ordering.

There is little evidence in Fig. 3.1 of such a systematic relationship between the sub-
ject’s initial reaction time and their rate of change in reaction time per day of sleep
deprivation. We do see that for each subject, except 335, reaction time increases, more-
or-less linearly, with days of sleep deprivation. However, there is considerable variation
both in the initial reaction time and in the daily rate of increase in reaction time. We can
also see that these data are balanced, both with respect to the number of observations on
each subject, and with respect to the times at which these observations were taken. This
can be confirmed by cross-tabulating Subject and Days.

> xtabs(™ Subject + Days, sleepstudy)

Days
Subject 01 23456789
381111111111
3091111111111
3101111111111
3301111111111
3311111111111
3321111111111
3331111111111
3341111111111
3361111111111
3371111111111
3491111111111
3501111111111
3611111111111
3621111111111
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In cases like this where there are several observations (10) per subject and a relatively
simple within-subject pattern (more-or-less linear) we may want to examine coefficients
from within-subject fixed-effects fits. However, because the subjects constitute a sample
from the population of interest and we wish to drawn conclusions about typical patterns in
the population and the subject-to-subject variability of these patterns, we will eventually
want to fit mixed models and we begin by doing so. In sec. 3.4 we will compare estimates
from a mixed-effects model with those from the within-subject fixed-effects fits.

3.2 Mixed-effects Models For the sleepstudy Data

Based on our preliminary graphical exploration of these data, we fit a mixed-effects model
with two fixed-effects parameters, the intercept and slope of the linear time trend for the
population, and two random effects for each subject. The random effects for a particular
subject are the deviations in intercept and slope of that subject’s time trend from the
population values.

We will fit two linear mixed models to these data. One model, £fm06, allows for correla-
tion (in the unconditional distribution) of the random effects for the same subject. That
is, we allow for the possibility that, for example, subjects with higher initial reaction times
may, on average, be more strongly affected by sleep deprivation. The second model pro-
vides independent (again, in the unconditional distribution) random effects for intercept
and slope for each subject.

3.2.1 A Model With Correlated Random Effects
The first model is fit as

> summary (fm06 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject),
+ sleepstudy, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Reaction ™ 1 + Days + (1 + Days | Subject)
Data: sleepstudy

AIC BIC loglLik deviance df.resid
1763.9 1783.1 -876.0 1751.9 174

Scaled residuals:
Min 1Q Median 3Q Max
-3.9416 -0.4656 0.0289 0.4636 5.1793

Random effects:

Groups  Name Variance Std.Dev. Corr
Subject (Intercept) 565.52  23.781

Days 32.68 5.717 0.08
Residual 654.94  25.592

Number of obs: 180, groups: Subject, 18

Fixed effects:
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Figure 3.2: Images of A, ¥ and L for model £m06
Estimate Std. Error t value
(Intercept) 251.405 6.632 37.91
Days 10.467 1.502 6.97

Correlation of Fixed Effects:

(Intr)
Days -0.138

From the display we see that this model incorporates both an intercept and a slope (with
respect to Days) in the fixed effects and in the random effects. Extracting the conditional

modes of the random effects

> head(ranef (fm06) [["Subject"]])

(Intercept) Days
308 2.815682 9.0755340
309 -40.048486 -8.6440673
310 -38.433152 -5.5133788
330 22.832296 -4.6587505
331 21.549990 -2.9445202
332 8.8155687 -0.2352092

confirms that these are vector-valued random effects. There are a total of ¢ = 36 random
effects, two for each of the 18 subjects.
The random effects section of the model display,

Subject (Intercept) 23.781
Days 5.717 0.08
Residual 25.592
Number of obs: 180, groups: Subject, 18

indicates that there will be a random effect for the intercept and a random effect for the
slope with respect to Days at each level of Subject and, furthermore, the unconditional

distribution of these random effects, B ~ N (6, Y)), allows for correlation of the random
effects for the same subject.

We can confirm the potential for correlation of random effects within subject in the
images of A, ¥ and L for this model (Fig. 3.2). The matrix A has 18 triangular blocks
of size 2 along the diagonal, generating 18 square, symmetric blocks of size 2 along the
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diagonal of ¥. The 18 symmetric blocks on the diagonal of ¥ are identical. Overall we
estimate two standard deviations and a correlation for a vector-valued random effect of
size 2, as shown in the model summary.

Often the variances and the covariance of random effects are quoted, rather than the
standard deviations and the correlation shown here. We have already seen that the vari-
ance of a random effect is a poor scale on which to quote the estimate because confidence
intervals on the variance are so badly skewed. It is more sensible to assess the estimates
of the standard deviations of random effects or, possibly, the logarithms of the standard
deviations if we can be confident that 0 is outside the region of interest. We do display the
estimates of the variances of the random effects but mostly so that the user can compare
these estimates to those from other software or for cases where an estimate of a variance
is expected (sometimes even required) to be given when reporting a mixed model fit.

We do not quote estimates of covariances of vector-valued random effects because the
covariance is a difficult scale to interpret, whereas a correlation has a fixed scale. A
correlation must be between —1 and 1, allowing us to conclude that a correlation estimate
close to those extremes indicates that > is close to singular and the model is not well
formulated.

The estimates of the fixed effects parameters are = (251.41,10.467)7. These repre-
sent a typical initial reaction time (i.e. without sleep deprivation) in the population of
about 250 milliseconds, or 1/4 sec., and a typical increase in reaction time of a little more
than 10 milliseconds per day of sleep deprivation.

The estimated subject-to-subject variation in the intercept corresponds to a standard
deviation of about 25 ms. A 95% prediction interval on this random variable would be
approximately £50 ms. Combining this range with a population estimated intercept of
250 ms. indicates that we should not be surprised by intercepts as low as 200 ms. or as
high as 300 ms. This range is consistent with the reference lines shown in Figure 3.1.

Similarly, the estimated subject-to-subject variation in the slope corresponds to a
standard deviation of about 5.7 ms./day so we would not be surprised by slopes as low
as 10.5 — 2 5.7 = —0.9 ms./day or as high as 10.5 + 2 - 5.7 = 21.9 ms./day. Again, the
conclusions from these rough, “back of the envelope” calculations are consistent with our
observations from Fig. 3.1.

The estimated residual standard deviation is about 25 ms. leading us to expect a
scatter around the fitted lines for each subject of up to 50 ms. From Figure 3.1 we can
see that some subjects (309, 372 and 337) appear to have less variation than £50 ms.
about their within-subject fit but others (308, 332 and 331) may have more.

Finally, we see the estimated within-subject correlation of the random effect for the
intercept and the random effect for the slope is very low, 0.081, confirming our impression
that there is little evidence of a systematic relationship between these quantities. In
other words, observing a subject’s initial reaction time does not give us much information
for predicting whether their reaction time will be strongly affected by each day of sleep
deprivation or not. It seems reasonable that we could get nearly as good a fit from a model
that does not allow for correlation, which we describe next.

3.2.2 A Model With Uncorrelated Random Effects

In a model with uncorrelated random effects we have B ~ N(0, ©) where ¥ is diagonal. We
have seen models like this in previous chapters but those models had simple scalar random
effects for all the grouping factors. Here we want to have a simple scalar random effect for
Subject and a random effect for the slope with respect to Days, also indexed by Subject.
We accomplish this by specifying two random-effects terms. The first, (1|Subject), is a
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simple scalar term. The second has Days on the left hand side of the vertical bar.
It may seem that the model formula we want should be

Reaction ~ 1 + Days + (1 | Subject) + (Days | Subject)

but it is not. Because the intercept is implicit in linear models, the second random effects
term is equivalent to (1+Days|Subject) and will, by itself, produce correlated, vector-
valued random effects.

We must suppress the implicit intercept in the second random-effects term, which we
do by writing it as (0+Days|Subject), read as “no intercept and Days by Subject”. An
alternative expression for Days without an intercept by Subject is (Days - 1 | Subject).
Using the first form we have

> summary (fm07 <- lmer (Reaction ~ 1 + Days + (1|Subject) +
+ (0+Days|Subject), sleepstudy, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Reaction ~ 1 + Days + (1 | Subject) + (0 + Days | Subject)
Data: sleepstudy

AIC BIC logLik deviance df.resid
1762 1778 -876 1752 175

Scaled residuals:
Min 1Q Median 3Q Max
-3.9535 -0.4673 0.0239 0.4625 5.1883

Random effects:

Groups Name Variance Std.Dev.
Subject (Intercept) 584.25 24.171
Subject.1 Days 33.63 5.799
Residual 653.12  25.556

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value
(Intercept) 251.405 6.708 37.48
Days 10.467 1.519 6.89

Correlation of Fixed Effects:
(Intr)
Days -0.194

As in model fm06, there are two random effects for each subject

> head(ranef (fm07) [["Subject"]])

(Intercept) Days
308 1.854656 9.2364345
309 -40.022307 -8.6174729
310 -38.723163 -5.4343800
330  23.903319 -4.8581939
331 22.396321 -3.1048404
332 9.052001 -0.2821598

but no correlation has been estimated
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Figure 3.3: Images of A, the relative covariance factor, X, the variance-covariance matrix
of the random effects, and L, the sparse Cholesky factor, in model £fm07
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Figure 3.4: Images of ZT for models £m06 (upper panel) and £m07 (lower panel)

Subject  (Intercept) 24.171
Subject.1 Days 5.799
Residual 25.556
Number of obs: 180, groups: Subject, 18

The Subject factor is repeated in the “Groups” column because there were two distinct
terms generating these random effects and these two terms had the same grouping factor.

Images of the matrices A, ¥ and L (Fig. 3.3) show that ¥ is indeed diagonal. The
order of the random effects in 3 and A for model £m07 is different from the order in model
fm06. In model fm06 the two random effects for a particular subject were adjacent. In
model £m07 all the intercept random effects occur first then all the Days random effects.

The sparse Cholesky decomposition, E, has the same form in both models because the
fill-reducing permutation (described in sec. 5.4.1) calculated for model fm07 provides a

post-ordering to group random effects with similar structure in Z.
Images of ZT for these two models (Fig. 3.4) shows that the columns of Z (rows of
ZT) from one model are the same those from the other model but in a different order.
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3.2.3 Generating Z and A From Random-effects Terms

Let us consider these columns in more detail, starting with the columns of Z for model
fm07. The first 18 columns (rows in the bottom panel of Fig. 3.4) are the indicator columns
for the Subject factor, as we would expect from the simple, scalar random-effects term
(1|8ubject). The pattern of zeros and non-zeros in the second group of 18 columns is
determined by the indicators of the grouping factor, Subject, and the values of the non-
zeros are determined by the Days covariate. In other words, these columns are formed by
the interaction of the numeric covariate, Days, and the categorical covariate, Subject.

The non-zero values in the model matrix Z for model fm06 are the same as those for
model fm06 but the columns are in a different order. Pairs of columns associated with
the same level of the grouping factor are adjacent. One way to think of the process of
generating these columns is to extend the idea of an interaction between a single covariate
and the grouping factor to generating an “interaction” of a model matrix and the levels of
the grouping factor. In other words, we begin with the two columns of the model matrix
for the expression 1 + Days and the 18 columns of indicators for the Subject factor. The
result will have 36 columns that we regard as 18 adjacent pairs. The values within each
of these pairs of columns are the values of the 1 + Days columns, when the indicator is 1,
otherwise they are zero.

We can now describe the general process of creating the model matrix, Z , and the
relative covariance factor, A from the random-effects terms in the model formula. Each
random-effects term is of the form (expr|fac). The expression expr is evaluated as a linear
model formula, producing a model matrix with s columns. The expression fac is evaluated
as a factor. Let k be the number of levels in this factor, after eliminating unused levels, if
any. The ¢th term generates s;k; columns in the model matrix, 7 , and a diagonal block
of size s;k; in the relative covariance factor, A. The s;k; columns in 7 have the pattern of
the interaction of the s; columns from the ith expr with the k; indicator columns for the
1th grouping factor fac. The diagonal block in A is itself block diagonal, consisting of k;
blocks, each a lower triangular matrix of size s;. In fact, these inner blocks are repetitions
of the same lower triangular s; x s; matrix. The i term contributes s;(s; + 1)/2 elements
to the variance-component parameter, 5, and these are the elements in the lower triangle
of this s; X s; template matrix.

Note that when counting the columns in a model matrix we must take into account
the implicit intercept term. For example, we could write the formula for model fm06 as

Reaction ~ Days + (Days | Subject)

realizing that the linear model expression, Days, actually generates two columns because
of the implicit intercept.

Whether or not to include an explicit intercept term in a model formula is a matter of
personal taste. Many people prefer to write the intercept explicitly so as to emphasize the
relationship between terms in the formula and coefficients or random effects in the model.
Others omit these implicit terms so as to economize on the amount of typing required.
Either approach can be used. The important point to remember is that the intercept must
be explicitly suppressed when you don’t want it in a term.

Also, the intercept term must be explicit when it is the only term in the expression.
That is, a simple, scalar random-effects term must be written as (1|fac) because a term
like (1fac) is not syntactically correct. However, we can omit the intercept from the fixed-
effects part of the model formula if we have any random-effects terms. That is, we could
write the formula for model fm01 in Chap. 1 as
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Yield ~ (1 | Batch)
or even

Yield ~ 1 | Batch

although omitting the parentheses around a random-effects term is risky. Because
of operator precedence, the vertical bar operator, |, takes essentially everything in the
expression to the left of it as its first operand. It is advisable always to enclose such terms
in parentheses so the scope of the operands to the | operator is clearly defined.

3.2.4 Comparing Models fm07 and fm06

Returning to models £fm06 and fm07 for the sleepstudy data, it is easy to see that these are
nested models because £m06 is reduced to £fm07 by constraining the within-group correlation
of random effects to be zero (which is equivalent to constraining the element below the

diagonal in the 2 x 2 lower triangular blocks of A in Fig. 3.2 to be zero).
We can use a likelihood ratio test to compare these fitted models.

> anova(fm07, fmO06)

Data: sleepstudy
Models:
fm07: Reaction ~ 1 + Days + (1 | Subject) + (0 + Days | Subject)
fm06: Reaction ~ 1 + Days + (1 + Days | Subject)

Df AIC BIC loglLik deviance Chisq Chi Df Pr(>Chisq)
fm07 5 1762.0 1778.0 -876.00 1752.0
fm06 6 1763.9 1783.1 -875.97 1751.9 0.0639 1 0.8004

The value of the x? statistic, 0.0639, is very small, corresponding to a p-value of 0.80
and indicating that the extra parameter in model £fm06 relative to fm07 does not produce a
significantly better fit. By the principal of parsimony we prefer the reduced model, £fm07.

This conclusion is consistent with the visual impression provided by Fig. 3.1. There
does not appear to be a strong relationship between a subject’s initial reaction time and
the extent to which his or her reaction time is affected by sleep deprivation.

In this likelihood ratio test the value of the parameter being tested, a correlation of
zero, is not on the boundary of the parameter space. We can be confident that the p-value
from the LRT adequately reflects the underlying situation.

(Note: It is possible to extend profiling to the correlation parameters and we will do
so but that has not been done yet.)

3.3 Assessing the Precision of the Parameter Estimates

Plots of the profile ¢ for the parameters in model fm07 (Fig. 3.5) show that confidence
intervals on o1 and o9 will be slightly skewed; those for log(o) will be symmetric and
well-approximated by methods based on quantiles of the standard normal distribution
and those for the fixed-effects parameters, 51 and [y will be symmetric and slightly over-
dispersed relative to the standard normal. For example, the 95% profile-based confidence
intervals are

> confint (pr07)
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Figure 3.5: Profile zeta plot for each of the parameters in model fm07. The vertical lines
are the endpoints of 50%, 80%, 90%, 95% and 99% profile-based confidence intervals for
each parameter.

2.5 % 97.5 %
.sig01 0.7342354 2.287261
.sigma 0.8119798 1.390104
(Intercept) 7.4238425 9.687269
TypeT2 2.8953043 4.882473
TypeT3 1.2286377 3.215807
TypeT4 -0.3269179 1.660251

The profile pairs plot (Fig. 3.6)
shows, for the most part, the usual patterns. First, consider the panels below the diagonal,
which are on the ({;,(;) scales. The ( pairs for log(c) and Sy, in the (4, 3) panel, and for
log(o) and S, in the (5,3) panel, show the ideal pattern. The profile traces are straight
and orthogonal, producing interpolated contours on the ( scale that are concentric circles
centered at the origin. When mapped back to the scales of log(c) and 3y or 31, in panels
(3,4) and (3, 5), these circles become slightly distorted, but this is only due to the moderate
nonlinearity in the profile ¢ plots for these parameters.

Examining the profile traces on the ( scale for log(c) versus oy, the (3,1) panel, or
versus oy, the (3,2) panel, and for o1 versus o9, the (2,1) panel, we see that close to the
estimate the traces are orthogonal but as one variance component becomes small there is
usually an increase in the others. In some sense the total variability in the response will
be partitioned across the contribution of the fixed effects and the variance components. In
each of these panels the fixed-effects parameters are at their optimal values, conditional
on the values of the variance components, and the variance components must compensate
for each other. If one is made smaller then the others must become larger to compensate.

The patterns in the (4,1) panel (o1 versus [y, on the ¢ scale) and the (5,2) panel
(oo versus 1, on the ( scale) are what we have come to expect. As the fixed-effects
parameter is moved from its estimate, the standard deviation of the corresponding random
effect increases to compensate. The (5,1) and (4, 2) panels show that changing the value
of a fixed effect doesn’t change the estimate of the standard deviation of the random
effects corresponding to the other fixed effect, which makes sense although the perfect
orthogonality shown here will probably not be exhibited in models fit to unbalanced data.

In some ways the most interesting panels are those for the pair of fixed-effects param-
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Figure 3.6: Profile pairs plot for the parameters in model £fm07. The contour lines corre-
spond to marginal 50%, 80%, 90%, 95% and 99% confidence regions based on the likelihood
ratio. Panels below the diagonal represent the ((;, (;) parameters; those above the diagonal
represent the original parameters.
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eters: (5,4) on the ¢ scale and (4,5) on the original scale. The traces are not orthogonal.
In fact the slopes of the traces at the origin of the (5,4) (¢ scale) panel are the correlation
of the fixed-effects estimators (—0.194 for this model) and its inverse. However, as we
move away from the origin on one of the traces in the (5,4) panel it curves back toward
the horizontal axis (for the horizontal trace) or the vertical axis (for the vertical trace).
In the ( scale the individual contours are still concentric ellipses but their eccentricity
changes from contour to contour. The innermost contours have greater eccentricity than
the outermost contours. That is, the outermost contours are more like circles than are the
innermost contours.

In a fixed-effects model the shapes of projections of deviance contours onto pairs of
fixed-effects parameters are consistent. In a fixed-effects model the profile traces in the
original scale will always be straight lines. For mixed models these traces can fail to be
linear, as we see here, contradicting the widely-held belief that inferences for the fixed-
effects parameters in linear mixed models, based on T or F distributions with suitably
adjusted degrees of freedom, will be completely accurate. The actual patterns of deviance
contours are more complex than that.

3.4 Examining the Random Effects and Predictions

The result of applying ranef to fitted linear mixed model is a list of data frames. The
components of the list correspond to the grouping factors in the random-effects terms, not
to the terms themselves. Model £m07 is the first model we have fit with more than one
term for the same grouping factor where we can see the combination of random effects
from more than one term.

> str(rrl <- ranef (fm07))

List of 1
$ Subject:'data.frame': 18 obs. of 2 variables:
..$ (Intercept): num [1:18] 1.85 -40.02 -38.72 23.9 22.4 ...
..$ Days : num [1:18] 9.24 -8.62 -5.43 -4.86 -3.1 ...
- attr(x, "class")= chr "ranef.mer"

The plot method for "ranef.mer" objects produces one plot for each grouping factor.
For scalar random effects the plot is a normal probability plot. For two-dimensional
random effects, including the case of two scalar terms for the same grouping factor, as
in this model, the plot is a scatterplot. For three or more random effects per level of
the grouping factor, the plot is a scatterplot matrix. The left hand panel in Fig. 3.7 was
created with plot(ranef (fm07)).

The coef method for a fitted 1mer model combines the fixed-effects estimates and the
conditional modes of the random effects, whenever the column names of the random effects
correspond to the names of coefficients. For model £m07 the fixed-effects coefficients are
(Intercept) and Days and the columns of the random effects match these names. Thus
we can calculate some kind of per-subject “estimates” of the slope and intercept and plot
them, as in the right hand panel of Fig. 3.7. By comparing the two panels in Fig. 3.7 we
can see that the result of the coef method is simply the conditional modes of the random

effects shifted by the coefficient estimates.

It is not entirely clear how we should interpret these values. They are a combination
of parameter estimates with the modal values of random variables and, as such, are in
a type of “no man’s land” in the probability model. (In the Bayesian approach (Box
& Tiao, 1973) to inference, however, both the parameters and the random effects are
random variables and the interpretation of these values is straightforward.) Despite the
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Figure 3.7: Plot of the conditional modes of the random effects for model £m07 (left panel)
and the corresponding subject-specific coefficients (right panel)

difficulties of interpretation in the probability model, these values are of interest because
they determine the fitted response for each subject.

Because responses for each individual are recorded on each of ten days we can determine
the within-subject estimates of the slope and intercept (that is, the slope and intercept
of each of the lines in Fig. 3.1). In Fig. 3.8 we compare the within-subject least squares
estimates to the per-subject slope and intercept calculated from model £fm07. We see that,
in general, the per-subject slopes and intercepts from the mixed-effects model are closer to
the population estimates than are the within-subject least squares estimates. This pattern
is sometimes described as a shrinkage of coefficients toward the population values.

The term “shrinkage” may have negative connotations. John Tukey chose to charac-
terize this process in terms of the estimates for individual subjects “borrowing strength”
from each other. This is a fundamental difference in the models underlying mixed-effects
models versus strictly fixed-effects models. In a mixed-effects model we assume that the
levels of a grouping factor are a selection from a population and, as a result, can be
expected to share characteristics to some degree. Consequently, the predictions from a
mixed-effects model are attenuated relative to those from strictly fixed-effects models.

The predictions from model fm07 and from the within-subject least squares fits for

each subject are shown in Fig. 3.9.
It may seem that the shrinkage from the per-subject estimates toward the population
estimates depends only on how far the per-subject estimates (solid lines) are from the
population estimates (dot-dashed lines). However, careful examination of this figure shows
that there is more at work here than a simple shrinkage toward the population estimates
proportional to the distance of the per-subject estimates from the population estimates.

It is true that the mixed model estimates for a particular subject are “between” the
within-subject estimates and the population estimates, in the sense that the arrows in
Fig. 3.8 all point somewhat in the direction of the population estimate. However, the
extent of the attenuation of the within-subject estimates toward the population estimates
is not simply related to the distance between those two sets of estimates. Consider the
two panels, labeled 330 and 337, at the top right of Fig. 3.9. The within-subject estimates
for 337 are quite unlike the population estimates but the mixed-model estimates are very
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Figure 3.8: Comparison of the within-subject estimates of the intercept and slope for each
subject and the conditional modes of the per-subject intercept and slope. Each pair of
points joined by an arrow are the within-subject estimates and conditional modes of the
random for a particular subject. The arrow points from the within-subject estimate to
the conditional mode for the mixed-effects model. The subject identifier number is at the
tail of each arrow.
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Figure 3.9: Comparison of the predictions from the within-subject fits with those from
the conditional modes of the subject-specific parameters in the mixed-effects model.

close to these within-subject estimates. That is, the solid line and the dashed line in that
panel are nearly coincident and both are a considerable distance from the dot-dashed line.
For subject 330, however, the dashed line is more-or-less an average of the solid line and
the dot-dashed line, even though the solid and dot-dashed lines are not nearly as far apart
as they are for subject 337.

The difference between these two cases is that the within-subject estimates for 337
are very well determined. Even though this subject had an unusually large intercept and
slope, the overall pattern of the responses is very close to a straight line. In contrast, the
overall pattern for 330 is not close to a straight line so the within-subject coefficients are
not well determined. The multiple R? for the solid line in the 337 panel is 93.3% but
in the 330 panel it is only 15.8%. The mixed model can pull the predictions in the 330
panel, where the data are quite noisy, closer to the population line without increasing the
residual sum of squares substantially. When the within-subject coefficients are precisely
estimated, as in the 337 panel, very little shrinkage takes place.
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Figure 3.10: Prediction intervals on the random effects for model £m07.

We see from Fig. 3.9 that the mixed-effects model smooths out the between-subject
differences in the predictions by bringing them closer to a common set of predictions, but
not at the expense of dramatically increasing the sum of squared residuals. That is, the
predictions are determined so as to balance fidelity to the data, measured by the residual
sum of squares, with simplicity of the model. The simplest model would use the same
prediction in each panel (the dot-dashed line) and the most complex model, based on
linear relationships in each panel, would correspond to the solid lines. The dashed lines
are between these two extremes. We will return to this view of the predictions from mixed
models balancing complexity versus fidelity in sec. 5.3, where we make the mathematical
nature of this balance explicit.

> dotplot(ranef (fm06,condVar=TRUE) ,scales = list(x = list(relation = "free")))[[1]]

We should also examine the prediction intervals on the random effects (Fig. 3.10) where
we see that many prediction intervals overlap zero but there are several that do not. In
this plot the subjects are ordered from bottom to top according to increasing conditional
mode of the random effect for (Intercept). The resulting pattern in the conditional modes
of the random effect for Days reinforces our conclusion that the model fm07, which does
not allow for correlation of the random effects for (Intercept) and Days, is suitable.

3.5 Chapter Summary

Problems

Check the structure of documentation, structure and a summary of the Orthodont data
set from the MEMSS package.

(a) Create an xyplot of the distance versus age by Subject for the female subjects only.
You can use the optional argument subset = Sex == "Female" in the call to xyplot to
achieve this. Use the optional argument type = c("g","p","r") to add reference lines
to each panel.
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(b)

()

Distance from pituitary to pterygomaxillary fissure (mm)

(f)

(2)

Enhance the plot by choosing an aspect ratio for which the typical slope of the refer-
ence line is around 45°. You can set it manually (something like aspect = 4) or with
an automatic specification (aspect = "xy"). Change the layout so the panels form one
row (layout = c(11,1)).

Order the panels according to increasing response at age 8. This is achieved with the
optional argument index.cond which is a function of arguments x and y. In this case

you could use index.cond = function(x,y) y[x == 8]. Add meaningful axis labels.
Your final plot should be like
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Figure 3.11: Distance versus age for the female subjects in the Orthodont data

Fit a linear mixed model to the data for the females only with random effects for
the intercept and for the slope by subject, allowing for correlation of these random
effects within subject. Relate the fixed effects and the random effects’ variances and
covariances to the variability shown in the figure.

Produce a “caterpillar plot” of the random effects for intercept and slope. Does the
plot indicate correlated random effects?

Consider what the Intercept coefficient and random effects represents. What will
happen if you center the ages by subtracting 8 (the baseline year) or 11 (the middle
of the age range)?

Repeat for the data from the male subjects.

Fit a model to both the female and the male subjects in the Orthodont data set, allowing
for differences by sex in the fixed-effects for intercept (probably with respect to the centered
age range) and slope.
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##
## Attaching package: ’lme4’

## The following object ts masked from ’package:sfsmisc’:

##
## factorize
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Chapter 4

Building Linear Mixed Models

In the previous chapter we incorporated the time covariate of longitudinal data in both the
fixed-effects terms and the random-effects terms of linear mixed models. In this chapter
we will extend the use of covariates, both numeric and categorical, in linear mixed models
and discuss general approaches to building and assessing these models.

Statistical model building is still somewhat more of an art than a science and there
are many practical issues that we should bear in mind while engaged in it. We discuss
how some of the optional arguments to the 1mer function can be used to check for possible
problems.

We begin with a discussion of categorical covariates and how they are incorporated in
the fixed-effects terms.

4.1 Incorporating categorical covariates with fixed levels

As we have seen in the earlier chapters, each random-effects term ina linear mixed model
is defined with respect to a grouping factor, which is a categorical covariate whose levels
are regarded as a sample from a population of possible levels. In some cases we may have
other categorical covariates with a fixed set of levels (such as gender, with fixed levels
male and female) that we wish to incorporate into the model. Although incorporating
such covariates into the model formula is straightforward, the interpretation of coefficients
and the model’s structure can be subtle.

4.1.1 The Machines Data

Milliken & Johnson (2009, Table 23.1) discuss data from an experiment measuring pro-
ductivity on a manufacturing task according to the type of machine used and the operator.
No further details on the experiment are given and it is possible that these data, which
are available as Machines in the MEMSS package, were constructed for illustration and are
not observed data from an actual experiment.

> str(Machines)

'data.frame': 54 obs. of 3 variables:

$ Worker : Factor w/ 6 levels "1","2m 3" "4" . . 1112223334 ...
$ Machine: Factor w/ 3 levels "A","B","C": 1111111111 ...

$ score : num 52 52.8 53.1 51.8 52.8 53.1 60 60.2 58.4 51.1 ...

> xtabs(” Machine + Worker, Machines)

73
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Figure 4.1: A quality and productivity score for each of six operators (the Worker factor)
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The cross-tablulation shows that each of the six operators used each of the three
machines on three occasions producing replicate observations of the “subject-stimulus”
combinations. Although the operators represent a sample from the population of potential
operators, the three machines are the specific machines of interest. That is, we regard the
levels of Machine as fixed levels and the levels of Worker as a random sample from a
population. In other subject/stimulus studies we may regard the levels of the stimulus as

a random sample from a population of stimuli.
We can see in Fig. 4.1

that, while the scores for each machine-operator combination are tightly clustered,
there are considerable, apparently systematic, differences between machines and some-
what smaller differences between operators. The pattern across operators for each of the
machines is similar except for one unusual combination, operator 6 on machine B. For
the other five operators the scores on machine A are less than those on machine B which
are less than those on Machine C but for operator 6 the scores on machine B are less
than those on machine A. We expect our models to show a significant interaction between
the Worker and Machine factors because of this unusual pattern. As we will see, we can
incorporate such an interaction into a linear mixed model in two different ways.

4.1.2 Comparing models with and without interactions

We fit and compare three models for these data: fm08 without interactions, fm09 with
vector-valued random effects to allow for interactions, and fm10 with interactions incorpo-
rated into a second simple scalar random-effects term.

> fm08 <- lmer(score ~ Machine + (1|Worker), Machines, REML=FALSE)

> fm09 <- lmer(score ~ Machine + (Machine|Worker), Machines, REML=FALSE)
> fm10 <- lmer(score ~ Machine + (1|Worker) + (1|Machine:Worker),

+ Machines, REML=FALSE)
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> anova(fm08, fm09, fmi10)

Data: Machines
Models:
fm08: score ~ Machine + (1 | Worker)
fm10: score ~ Machine + (1 | Worker) + (1 | Machine:Worker)
fm09: score ~ Machine + (Machine | Worker)

Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
fm08 5 303.70 313.65 -146.85 293.70
fm10 6 237.27 249.20 -112.64 225.27 68.4338 1 < 2e-16
fm09 10 236.42 256.31 -108.21 216.42 8.8516 4 0.06492

Notice that in the anova summary the order of the models has been rearranged ac-
cording to the complexity of the models, as measured by the number of parameters to
be estimated. The simplest model, fm08, incorporates three fixed-effects parameters and
two variance component parameters — a total of 5 parameters, the number displayed in
the column labeled Df. Model fm10, with scalar random effects for Worker and for the
Machine:Worker combination incorporates one additional variance component for a total
of six parameters, while model fm09 adds five variance-component parameters to those in
fmo08, for a total of 10 parameters.

In the comparison of models fm08 and £m10 (i.e. the line labeled £m10 in the anova table)
we see that the additional parameter is highly significant. The change in the deviance of
68.4338 (in the column labeled Chisq) at a cost of one additional parameter is huge; hence
we prefer the more complex model fm10. In the next line, which is the comparison of
the more complex model fm09 to the simpler model fm10, the change in the deviance is
8.8516 at a cost of 4 additional parameters with a p-value of 6.5%. In formal hypothesis
tests we establish a boundary, often chosen to be 5%, below which we regard the p-value
as providing “significant” evidence to prefer the more complex model and above which
the results are regarded as representing an “insignificant” improvement. Such boundaries,
while arbitrary, help us to assess the numerical results and here we prefer model fm10, of

intermediate complexity.
A display of this fitted model,

> fm10

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: score ~ Machine + (1 | Worker) + (1 | Machine:Worker)
Data: Machines

AIC BIC loglik deviance df.resid
237.2694 249.2034 -112.6347 225.2694 48
Random effects:
Groups Name Std.Dev.
Machine:Worker (Intercept) 3.3970
Worker (Intercept) 4.3645
Residual 0.9616

Number of obs: 54, groups: Machine:Worker, 18; Worker, 6
Fixed Effects:
(Intercept) MachineB MachineC

52.356 7.967 13.917

shows that the estimated standard deviations for the Worker random-effects and for
Machine:Worker random effects are comparable and both are larger than the estimated
residual standard deviation. This is consistent with our discussion of the patterns in
Fig. 4.1.
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Figure 4.2: 95% prediction intervals on the random effects for model fm10 fit to the
Machines data. The intervals in the upper panel are those for levels of the Worker factor.
Those in the lower panel correspond to levels of the Machine:Worker interaction.

Furthermore, a plot of the prediction intervals on the random effects (Fig. 4.2)
shows that B:6 is the dominant interaction. In fact, the prediction interval for this level
of the interaction is the only prediction interval that does not contain zero.

For model £fm10 the interpretation of the random effects parameter estimates and the
random effects themselves is similar to those for the models in Chap. 2. The interpretation
of the fixed-effects coefficients is somewhat different.

4.1.3 Coeflicients for factors in the fixed effects

The models fit in previous chapters incorporated categorical covariates, represented as
factors, in the random effects but not in the fixed effects. We have seen that a simple,
scalar random effects term contributes one coefficient to the linear predictor, X 5 +Z l_;, for
each level of the grouping factor. For many of these models there was a single fixed-effects
coefficient, labeled (Intercept), in the parameter 5 This coeflicient represents a typical
response value when it is the only fixed-effect coefficient.

When we have a factor in the fixed-effects part of the model formula, however, we
cannot simultaneously estimate an (Intercept) coefficient and “effects” for each of the
levels of the factor because there would be a redundancy in the coefficients. Suppose
we had an (Intercept) coefficient and three separate effects for the levels of the Machine
factor. If we were to add a constant, say 2.6, to each of the effects coefficients and subtract
2.6 from the (Intercept) we would generate the same set of fitted values and hence the
same likelihood. We would not be able to define a unique set of maximum likelihood

estimates, f3.
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In R this redundancy is removed by applying contrasts to the levels of a factor when
it is incorporated in the fixed-effects part of a linear predictor formula, and we can choose
which contrasts are used when fitting a model. To show the effect of changing the contrasts
we will refit model fm10 with different contrasts for the Machine factor and examine the
estimated fixed effects. We can either extract the fixed-effects coefficient estimates by
themselves

> fixef (fm10)

(Intercept) MachineB MachineC
52.355556 7.966667 13.916667

or extract the coefficients and their standard errors and t ratios
> coef (summary (fm10))

Estimate Std. Error t value
(Intercept) 52.355556 2.269242 23.071824
MachineB 7.966667 1.987298 4.008794
MachineC 13.916667 1.987298 7.002809

for comparisons. To save on typing we will use update to fit the modified models. Recall
that update applied to a fitted model allows us to re-fit the model with changes that we

specify in subsequent arguments.

First let’s consider how the model changes if we suppress the intercept coefficient,
which we can do by appending - 1 to the model formula. The update function allows us
to do this by writing a model formula with dots indicating “what was there in the original
fit”. Thus

> (fm10a <- update(fm10, . ~ . - 1))

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: score ~ Machine + (1 | Worker) + (1 | Machine:Worker) - 1
Data: Machines
AIC BIC loglik deviance df.resid

237.2694 249.2034 -112.6347 225.2694 48
Random effects:

Groups Name Std.Dev.

Machine:Worker (Intercept) 3.3970

Worker (Intercept) 4.3645

Residual 0.9616

Number of obs: 54, groups: Machine:Worker, 18; Worker, 6
Fixed Effects:
MachineA MachineB MachineC

52.36 60.32 66.27

Notice that there are three fixed-effects coefficients in this model fit, just as there are in
model fm10. All we have done by suppressing the intercept is to estimate a different set of
coefficients in the fixed effects. The log-likelihood and the various statistics summarizing
the fit are the same — for example,

> AIC(fm10a,fm10)
df AIC

fm10a 6 237.2694
fm10 6 237.2694
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Even the fitted values are the same

> all.equal(fitted(fm10a), fitted(fm10))

[1] TRUE

There are several things to note about model fm10a compared to model fm10. First,
we can see that the To see some of the approaches to removing this redundancy, including
the defau If we suppress the intercept we can estimate one coefficient for each level of the
factor

> coef (summary (update(fm10, . ~ . + 0)))

Estimate Std. Error t value
MachineA 52.35556 2.269242 23.07182
MachineB 60.32222 2.269242 26.58254
MachineC 66.27222 2.269242 29.20456

unless we impose additional estimability conditions on the coefficients.

only one of the prediction intervals for the interaction that does not

In both models £fm09 and £m10 we incorporate the Machine factor is in fit models having
different configurations of simple, scalar random effects but always with the same fixed-
effects specification of an intercept, or overall mean response, only.

It is common in practice to have several fixed-effects terms involving one or more
covariates in the specification of a linear mixed model. Indeed, the purpose of fitting a
linear mixed model is often to draw inferences about the effects of the covariates while
appropriately accounting for different sources of variability in the responses.

In this chapter we demonstrate how fixed-effects terms are incorporated in a linear
mixed model and how inferences about the effects of the covariates are drawn from a
fitted linear mixed model.

4.2 Models for the ergoStool data

Problems 2.4 and 2.4 in Chap. 2 involve examining the structure of the ergoStool data
from the MEMSS package

> str(ergoStool)

'data.frame': 36 obs. of 3 variables:

$ effort : num 12 15 12 10 10 14 13 12 7 14 ...

$ Type : Factor w/ 4 levels "T1","T2","T3",..: 123 4123412 ...
$ Subject: Factor w/ 9 levels "A","B","C","D",..: 1111222233 ...

and plotting these data, as in Fig. 4.3.

These data are from an ergometrics experiment where nine subjects evaluated the
difficulty to arise from each of four types of stools. The measurements are on the scale
of perceived exertion developed by the Swedish physician and researcher Gunnar Borg.
Measurements on this scale are in the range 6-20 with lower values indicating less exertion.

From Fig. 4.3 we can see that all nine subjects rated type T1 or type T4 as requiring
the least exertion and rated type T2 as requiring the most exertion. Type T3 was perceived
as requiring comparatively little exertion by some subjects (H and E) and comparatively
greater exertion by others (F, C and G).
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Figure 4.3: Subjective evaluation of the effort required to arise (on the Borg scale) by 9
subjects, each of whom tried each of four types of stool.

Problem 2.4 involves fitting and evaluating a model in which the effects of both the
Subject and the Type factors are incorporated as random effects. Such a model may not be
appropriate for these data where we wish to make inferences about these particular four
stool types. According to the distinction between fixed- and random-effects described in
sec. 1.1, if the levels of the Type factor are fixed and reproducible we generally incorporate
the factor in the fixed-effects part of the model.

Before doing so, let’s review the results of fitting a linear mixed model with random
effects for both Subject and Type.

4.2.1 Random-effects for both Subject and Type

A model with random effects for both Subject and Type is fit in the same way that we fit
such in Chap. 2,

> (fm06 <- 1lmer(effort ~ 1 + (1|Subject) + (1|Type), ergoStool, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: effort ~ 1 + (1 | Subject) + (1 | Type)
Data: ergoStool

AIC BIC logLik deviance df.resid
144.0224 150.3564 -68.0112 136.0224 32
Random effects:

Groups  Name Std.Dev.
Subject (Intercept) 1.305
Type (Intercept) 1.505
Residual 1.101

Number of obs: 36, groups: Subject, 9; Type, 4
Fixed Effects:
(Intercept)

10.25

from which we determine that the mean effort to arise, across stool types and across
subjects, is 10.250 on this scale, with standard deviations of 1.305 for the random-effects
for the Subject factor and 1.505 for the Type factor.
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Figure 4.4: Profile zeta plot for the parameters in model £fm06 fit to the ergoStool data

One question we would want to address is whether there are “significant” differences
between stool types, taking into account the differences between subjects. We could
approach this question by fitting a reduced model, without random effects for Type, and
comparing this fit to model £fm06 using a likelihood-ratio test.

> fmO6a <- lmer(effort ~ 1 + (1|Subject), ergoStool, REML=FALSE)
> anova(fm0O6a, fm06)

Data: ergoStool
Models:
fmO6a: effort ~ 1 + (1 | Subject)
fm06: effort ~ 1 + (1 | Subject) + (1 | Type)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
fm06a 3 164.15 168.90 -79.075  158.15
fm06 4 144.02 150.36 -68.011  136.02 22.128 1 2.551e-06

The p-value in this test is very small, indicating that the more complex model, £fm06,
which allows for differences in the effort to arise for the different stool types, provides a
significantly better fit to the observed data.

In sec. 2.2.4 we indicated that, because the constraint on the reduced model, o9 = 0, is
on the boundary of the parameter space, the p-value for this likelihood ratio test statistic
calculated using a x? reference distribution will be conservative. That is, the p-value one
would obtain by, say, simulation from the null distribution, would be even smaller than
the p-value, 0.0000026, reported by this test, which is already very small.

Thus the evidence against the null hypothesis (Hy : oo = 0) and in favor of the
alternative, richer model (H, : o2 > 0) is very strong.

Another way of addressing the question of whether it is reasonable for o5 to be zero is
to profile fm06 and examine profile zeta plots (Fig. 4.4)

and the corresponding profile pairs plot (Fig. 4.5).

We can see from the profile zeta plot (Fig. 4.4) that both oy, the standard deviation
of the Subject random effects, and, o9, the standard deviation of the Type random effects,

are safely non-zero. We also see that o9 is very poorly determined. That is, a 95%
profile-based confidence interval on this parameter, obtained as
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Figure 4.5: Profile pairs plot for the parameters in model fm06 fit to the ergoStool data

> confint (pr06) [".sig02",]

2.5 % 97.5 Y,
0.7925051 3.7958573

is very wide. The upper end point of this 95% confidence interval, 3.796, is more than
twice as large as the estimate, o3 = 1.505.

A plot

of the prediction intervals on the random effects for Type (Fig. 4.6) confirms the im-
pression from Fig. 4.3 regarding the stool types. Type T2 requires the greatest effort and
type T1 requires the least effort. There is considerable overlap of the prediction intervals
for types T1 and T4 and somewhat less overlap between types T4 and T3 and between types
T3 and T2.

In an analysis like this we begin by asking if there are any significant differences between
the stool types, which we answered for this model by testing the hypothesis Hy : 02 = 0
versus H, : 09 > 0. If we reject Hy in favor of H, — that is, if we conclude that the
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Figure 4.6: 95% prediction intervals on the random effects for Type from model £fm06 fit to
the ergoStool data

more complex model including random effects for Type provides a significantly better fit
than the simpler model — then usually we want to follow up with the question, “Which
stool types are significantly different from each other?”. It is possible, though not easy,
to formulate an answer to that question from a model fit such as fm06 in which the stool
types are modeled with random effects, but it is more straightforward to address that
question when we model the stool types as fixed-effects parameters, which we do next.

4.2.2 Fixed Effects for Type, Random for Subject

To incorporate the Type factor in the fixed-effects parameters, instead of as a grouping
factor for random effects, we remove the random-effects term, (11Type), and add Type to
the fixed-effects specification.

> (fm07 <- lmer(effort ~ 1 + Type + (1|Subject), ergoStool, REML = 0))
Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: effort ~ 1 + Type + (1 | Subject)
Data: ergoStool

AIC BIC logLik deviance df.resid
134.1444 143.6456 -61.0722 122.1444 30
Random effects:

Groups  Name Std.Dev.
Subject (Intercept) 1.256
Residual 1.037

Number of obs: 36, groups: Subject, 9

Fixed Effects:

(Intercept) TypeT2 TypeT3 TypeT4
8.5556 3.8889 2.2222 0.6667

It appears that the last three levels of the Type factor are now modeled as fixed-
effects parameters, in addition to the (Intercept) parameter, whose estimate has de-
creased markedly from that in model fm06. Furthermore, the estimates of the fixed-effects
parameters labeled TypeT2, TypeT3 and TypeT4, while positive, are very much smaller than
would be indicated by the average responses for these types.

It turns out, of course, that the fixed-effects parameters generated by a factor covari-
ate do not correspond to the overall mean and the effect for each level of the covariate.
Although a model for an experiment such as this is sometimes written in a form like

yij:u—i—ai—i—bj—i—eij, 1=1,...,4,7=1,...9 (4.1)

where 7 indexes the stool type and j indexes the subject, the parameters {p, a1, a2, a3, as},
representing the overall mean and the effects of each of the stool types, are redundant.
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Given a set of estimates for these parameters we would not change the predictions from the
model if, for example, we added one to p and subtracted one from all the «’s. In statistical
terminology we say that this set of parameters is not estimable unless we impose some other
conditions on them. The estimability condition Z:‘L:1 a; = 0 is often used in introductory
texts.

The approach taken in R is not based on redundant parameters that are subject to
estimability conditions. While this approach may initially seem reasonable, in complex
models it quickly becomes unnecessarily complex to need to use constrained optimization
for parameter estimation. Instead we incorporate the constraints into the parameters that
we estimate. That is, we reduce the redundant set of parameters to an estimable set of
contrasts between the levels of the factors.

The default contrasts generated for a factor

Although the particular set of contrasts used for a categorical factor can be controlled
by the user, either as a global option for a session (see 7options) or by the optional
contrasts argument available in most model-fitting functions, most users do not modify
the contrasts, preferring to leave them at the default setting, which is the “treatment”
contrasts (contr.treatment) for an unordered factor and orthogonal polynomial contrasts
(contr.poly) for an ordered factor. You can check the current global setting with

> getOption("contrasts")

unordered ordered
"contr.treatment" "contr.poly"

Because these were the contrasts in effect when model fm07 was fit, the particular
contrasts used for the Type factor, which has four levels, correspond to

> contr.treatment (4)

DWW N -
O O ON
O, OO W
= O O O b

In this display the rows correspond to the levels of the Type factor and the columns
correspond to the parameters labeled TypeT2, TypeT3 and TypeT4.
The values of Type in the data frame, whose first few rows are

> head(ergoStool)

effort Type Subject

1 12 T1 A
2 15 T2 A
3 12 T3 A
4 10 T4 A
5 10 T1 B
6 14 T2 B

combined with the contrasts produce the model matrix X , whose first few rows are
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> head(model.matrix(fm07))

(Intercept) TypeT2 TypeT3 TypeT4

1 1 0 0 0
2 1 1 0 0
3 1 0 1 0
4 1 0 0 1
5 1 0 0 0
6 1 1 0 0

We see that the rows of X for observations on stool type T1 have zeros in the last three
columns; the rows for observations on stool type T2 have a 1 in the second column and
zeros in the last two columns, and so on. As before, the (Intercept) column is a column
of 1’s.

When we evaluate X 5 in the linear predictor expression, X E + Zg, we take the p
elements of the fixed-effects parameter vector, ,5, whose estimate is

> fixef (fm07)

(Intercept) TypeT2 TypeT3 TypeT4
8.5555556 3.8888889 2.2222222 0.6666667

and the p elements of a row of the matrix X , multiply corresponding components
and sum the resulting products. For example, the fixed-effects predictor for the first
observation (stool type T1) will be

8.5556 x 1+ 3.8889 x 0+ 2.2222 x 0+ 0.6667 x 0 = 8.5556
and the fixed-effects predictor for the second observation (stool type T2) will be
8.5556 x 1 + 3.8889 x 1+ 2.2222 x 0 + 0.6667 x 0 = 12.4444

We see that the parameter labeled (Intercept) is actually the fixed-effects prediction for
the first level of Type (i.e. level T1) and the second parameter, labeled TypeT2, is the
difference between the fixed-effects prediction for the second level (T2) and the first level
(T1) of the Type factor.

Similarly, the fixed-effects predictions for the T3 and T4 levels of Type are 8.5556 +
2.2222 = 10.7778 and 8.5556 + 0.6667 = 9.2222, respectively, as can be verified from

> head(as.vector (model.matrix(fm07) %*% fixef (fm07)))

[1] &8.555556 12.444444 10.777778 9.222222 8.555556 12.444444

The fact that the parameter labeled TypeT2 is the difference between the fixed-effects
prediction for levels T2 and T1 of the Type factor is why we refer to the parameters as being
generated by contrasts. They are formed by contrasting the fixed-effects predictions for
some combination of the levels of the factor. In this case the contrast is between levels T2
and T1.

In general, the parameters generated by the “treatment” contrasts (the default for
unordered factors) represent differences between the first level of the factor, which is
incorporated into the (Intercept) parameter, and the subsequent levels. We say that the
first level of the factor is the reference level and the others are characterized by their shift
relative to this reference level.
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Figure 4.7: Profile zeta plot for the parameters in model £fm06 fit to the ergoStool data

Profiling the contrasts

Because some of the contrasts that are of interest to us correspond to fixed-effects param-
eter values, we can profile the fitted model
(Fig. 4.7) and check, say, the confidence intervals on these parameters.

> confint(pro7, c("TypeT2", "TypeT3", "TypeT4"))

2.5 % 97.5 7
TypeT2 2.8953043 4.882473
TypeT3 1.2286377 3.215807
TypeT4 -0.3269179 1.660251

According to these intervals, and from what we see from Fig. 4.7, types T2 and T3 are
significantly different from type T1 (the intervals do not contain zero) but type T4 is not
(the confidence interval on this contrast contains zero).

However, this process must be modified in two ways to provide a suitable answer. The
most important modification is to take into account the fact that we are performing mul-
tiple comparisons simultaneously. We describe what this means and how to accomodate
for it in the next subsection. The other problem is that this process only allows us to
evaluate contrasts of the reference level, T1, with the other levels and the reference level
is essentially arbitrary. For completeness we should evaluate all six possible contrasts of

pairs of levels.

We can do this by refitting the model with a difference reference level for the Type
factor and profiling the modified model fit. The relevel function allows us to change the
reference level of a factor.

> prO7a <- profile(lmer(effort ~ 1 + Type + (1|Subject),

+ within(ergoStool, Type <- relevel(Type, "T2")),
+ REML=FALSE))

> prO7b <- profile(lmer(effort ~ 1 + Type + (1|Subject),

+ within(ergoStool, Type <- relevel(Type, "T3")),
+ REML=FALSE) )

The other constrasts of interest are
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> confint(pr07a, c("TypeT3", "TypeT4"))

2.5 % 97.5 %
TypeT3 -2.660251 -0.6730821
TypeT4 -4.215807 -2.2286377

> confint (pr07b, "TypeT4")

2.5 % 97.5 %

from which would conclude that type T2 requires significantly greater effort than any of
the other types at the 5% level (because none of the 95% confidence intervals on contrasts
with T2 contain zero) and that types T3 and T4 are significantly different at the 5% level.

However, we must take into account that we are performing multiple, simulataneous
comparisons of levels.

Multiple comparisons

In the technical definition of a confidence interval we regard the end points as being random
(because they are calculated from the random variable which is the observed data) and the
value of the parameter or the contrast of interest as being fixed (because it is determined
from the fixed, but unknown, values of the parameters). Thus we speak of the probability
that an interval covers the true parameter value rather than the probability that the
parameter falls in the interval. The distinction may seem, and probably is, somewhat
pedantic. We introduce it here simply to clarify the term “coverage probability” used
throughout this section.

We have evaluated six possible pairwise comparisons of the four levels of the Type
factor. A 95% confidence interval on a particular contrast has, in theory, a 5% probability
of failing to cover the true difference. That is, if the difference between two levels was
in fact zero, there would still be a 5% probability that a 95% confidence interval on
that contrast would not include zero. When we consider the coverage of the six intervals
contrasting all possible pairs of stool types we usually have in mind that there should
be a 95% probability of all six intervals covering the true, but unknown, differences in
effort for the stool types. That is, we think of the coverage probability as applying to
the simultaneous coverage of the family of intervals, not to the coverage of one specific
interval.

But the intervals calculated in the previous section were based on 95% coverage for
each specific interval. In the worst case scenario the family-wise coverage could be as low
as 1 —0.05% 6 = 0.70 or 70%. For factors with more than four levels there are even more
possible pairwise comparisons (for k levels there are k(k — 1)/2 possible pairs) and this
worst-case coverage probability is even further from the nominal level of 95%.

Several methods have been developed to compensate for multiple comparisons in the
analysis of linear models with fixed effects only. One of the simplest, although somewhat
coarse, compensations is the Bonferroni correction where the individual intervals are cho-
sen to have a greater coverage probability in such a way that the “worst-case” probability

is the desired level. With six comparisons to get a family-wise coverage probability of 95%
the individual intervals are chosen to have coverage of

> (covrge <- 1 - 0.05/6)

[1] 0.9916667



4.2 Models for the ergoStool data 87

or a little more than 99%. We can specify this coverage level for the individual intervals
to ensure a family-wise coverage of at least 95%.

> rbind(confint (pr07, c("TypeT2","TypeT3","TypeT4"), covrge),
+ confint (prO7a, c("TypeT3","TypeT4"), covrge),
+ confint (pr07b, "TypeT4", covrge))

0.417 %  99.583 %
TypeT2 2.5109497 5.2668280
TypeT3 0.8442830 3.6001613
TypeT4 -0.7112726 2.0446058
TypeT3 -3.0446059 -0.2887275
TypeT4 -4.6001614 -1.8442831

We again reach the conclusion that the only pair of stool types for which zero is within
the confidence interval on the difference in effects is the (T1,T4) pair but, for these intervals,
the family-wise coverage of all six intervals is at least 95%.

There are other, perhaps more effective, techniques for adjusting intervals to take into
account multiple comparisons. The purpose of this section is to show that the profile-based
confidence intervals can be extended to at least the Bonferroni correction.

The easiest way to apply other multiple comparison adjustment methods is to model
both the Type and the Subject factors with fixed effects, which we do next.

4.2.3 Fixed Effects for Type and Subject

Even though the subjects in this study are chosen as representatives of a population,
many statisticians would regard Subject as a blocking factor in the experiment and fit a
model with fixed-effects for both Type and Subject. A blocking factor is a known source of
variability in the response. We are not interested in the effects of the levels of the blocking
factor—we only wish to accomodate for this source of variability when comparing levels

of the experimental factor, which is the Type factor in this example.

We will discuss the advantages and disadvantages of the fixed- versus random-effects
choice for the Subject factor at the end of this section. For the moment we proceed to fit
the fixed-effects model, for which we could use the 1m function or the aov function. These
two functions produce exactly the same model fit but the aov function returns an object of
class "aov" which extends the class "1m", providing more options for examining the fitted
model.

> summary (fm08 <- aov(effort ~ Subject + Type, ergoStool))

Df Sum Sq Mean Sq F value Pr(>F)
Subject 8 66.50 8.312 6.866 0.000106
Type 3 81.19 27.065 22.356 3.93e-07
Residuals 24 29.06 1.211

As seen above, the summary method for objects of class "aov" provides an analysis of
variance table. The order in which the terms are listed in the model formula can affect
the results in this table, if the data are unbalanced, and we should be cautious to list
the terms in the model in the appropriate order, even for a balanced data set like the
ergoStool. The rule is that blocking factors should precede experimental factors because
the contributions of the terms are assessed sequentially. Thus we read the rows in this
table as measuring the variability due to the Subject factor and due to the Type factor
after taking into account the Subject. We want to assess the experimental factor after
having removed the variability due to the blocking factor.
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If desired we can assess individual coefficients by applying the summary method for
"Im" objects, called summary.1lm to this fitted model. For example, the coefficients table is

available as

> coef (summary.1lm(£fm08))

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.055556e+01 0.6352554 1.661624e+01 1.146367e-14
SubjectB 6.005604e-15 0.7780258 7.719029e-15 1.000000e+00
SubjectC -1.500000e+00 0.7780258 -1.927957e+00 6.577394e-02
SubjectD -3.000000e+00 0.7780258 -3.855913e+00 7.577323e-04
SubjectE -3.750000e+00 0.7780258 -4.819892e+00 6.565314e-05
SubjectF -2.000000e+00 0.7780258 -2.570609e+00 1.678081e-02
SubjectG -1.500000e+00 0.7780258 -1.927957e+00 6.577394e-02
SubjectH -4.000000e+00 0.7780258 -5.141218e+00 2.907651e-05
SubjectI -2.250000e+00 0.7780258 -2.891935e+00 8.010522e-03
TypeT2 3.888889e+00 0.5186838 7.497610e+00 9.753420e-08
TypeT3 2.222222e+00 0.5186838 4.284348e+00 2.562927e-04
TypeT4 6.666667e-01 0.5186838 1.285304e+00 2.109512e-01

but often the individual coefficients are of less interest than the net effect of the vari-
ability due to the levels of the factor, as shown in the analysis of variance table. For
example, in the summary of the coefficients shown above the (Intercept) coefficient is
the predicted response for the reference subject (subject A) on the reference stool type
(type T1). Other coefficients generated by the Subject term are the differences from the
reference subject to other subjects. It is not clear why we would want to compare all the

other subjects to subject A.
One of the multiple comparison methods that we can apply to fm08 is Tukey’s Honest
Significant Difference (HSD) method

> TukeyHSD(fm08, which = "Type")

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = effort ~ Subject + Type, data = ergoStool)
$Type
diff lwr upr p adj
T2-T1 3.8888889 2.4580431 5.3197347 0.0000006
T3-T1 2.2222222 0.7913764 3.6530680 0.0013709
T4-T1 0.6666667 -0.7641791 2.0975125 0.5807508
T3-T2 -1.6666667 -3.0975125 -0.2358209 0.0182037
T4-T2 -3.2222222 -4.6530680 -1.7913764 0.0000115
T4-T3 -1.555565666 -2.9864013 -0.1247098 0.0295822

from which we reach essentially the same conclusions as before, although perhaps less
arduously.

4.2.4 Fixed Effects Versus Random Effects for Subject

These three analyses provoke the question of whether to use fixed-effects parameters or
random effects for the Subject factor. That is, should Subject be treated as a blocking
factor or as a sample of levels from a population. If the sole purpose of the experiment is
to rate the stool types relative to each other then it may be more convenient to consider
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Subject as a blocking factor in the experiment and incorporate it as the first term in
a fixed-effects model for this completely balanced data set from a designed experiment.
Strictly speaking, the inferences about the stool types that we would draw apply to these
particular nine subjects only, not to a general population, but in practice it is not too
much of a stretch to think of them as applying to a population unless we want to predict
the score that a general member of the population would give to a particular stool type.
We can formulate the prediction but assessing the variability in the prediction is difficult
when using fixed-effects models.

Random effects are preferred, perhaps even necessary, if we wish to make inferences
that apply to the population of potential users. Also, when we have unbalanced data
or large samples, the flexibility of mixed models becomes important in stabilizing the
estimation of parameters. The estimation of parameters in fixed-effects models by least
squares is somewhat rigid. In theory it requires that the columns of the model matrix,
X , are linearly independent. In practice, it is very difficult to determine if the columns
of a large model matrix are indeed linear independent or, equivalently, if the rank of X is
exactly p. The best we can do is determine if the condition number, s, of X (the ratio
of the largest to smallest singular values — see ?kappa) is sufficiently small to trust the
numerical linear algebra results. One way of thinking of x is as a “magnification factor”
for numerical perturbations. In the worst-case scenario, perturbations of relative size € in
the elements of ¢ results in perturbations of relative size ke in the coefficients B\

When the number of columns, p, of X is small the condition number tends to be small.

> kappa(fm08, exact = TRUE)
[1] 10.76924

However, when p is large the condition number of X tends to become very large
and evaluation of fixed-effects parameter estimates and their standard errors is an ill-
conditioned problem.

Calculations involving the random effects model matrix, A , are not as sensitive to
ill-conditioning. The numerical accuracy is determined by the condition number of the

sparse Cholesky factor, Eg, defined in (1.5) which is less than the condition number of
A-OFZTZAQ, even when Ag is singular.

> kappa.tri(as(as(fm06@re@L, "sparseMatrix"), "matrix"), exact = TRUE)

Error in kappa.tri(as(as(fm06@re@L, "sparseMatrix"), "matrix"), exact = TRUE): could
not find function "kappa.tri"

The evaluation of Eg is an example of regularization methods for solving ill-posed
problems or to prevent overfitting.

4.3 Covariates Affecting Mathematics Score Gain

West et al. (2007) provides comparisons of several different software systems for fitting
linear mixed models by fitting sample models to different data sets using each of these
software systems. The lmer function from the lme4 package is not included in these

comparisons because it was still being developed when that book was written.

In this section we will use lmer to fit models described in Chap. 4 of West et al. (2007)
to data on the gain in mathematics scores for students in a selection of classrooms in
several schools.
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> str(classroom)

'data.frame': 1190 obs. of 11 variables:

$ sex : Factor w/ 2 levels "M","F": 2121121121 ...

$ minority: Factor w/ 2 levels "N","Y": 2222222222 ...

$ mathkind: int 448 460 511 449 425 450 452 443 422 480 ...

$ mathgain: int 32 109 56 83 53 65 51 66 88 -7 ...

$ ses :num 0.46 -0.27 -0.03 -0.38 -0.03 0.76 -0.03 0.2 0.64 0.13 ...

$ yearstea: num 1112222222 ...

$ mathknow: num NA NA NA -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 ...

$ housepov: num 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 ...
$ mathprep: num 2 2 2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 ...

$ classid : Factor w/ 312 levels "i","2" "3" "4" .. : 160 160 160 217 217 217 217 217 ..
$ schoolid: Factor w/ 107 levels "i","2" "3", "4 . .: 1111111111

The response modeled in Chap. 4 of West et al. (2007) is mathgain, the difference
between a student’s mathematics score at the end of grade one and at the end of kinder-
garten. To allow comparisons with the results in West et al. (2007) we will use that
response in this section.

There is one observation per student. In the terminology of the multilevel modeling
literature the levels of variability correspond to student (level 1), classroom (level 2) and
school (level 3) with the assumption that classroom is nested within school. The concept
of “levels” can only be applied to models and data sets in which the grouping factors of
the random effects form a nested sequence. In crossed or partially crossed configurations
there are no clearly defined levels.

At this point we should check if there is implicit nesting. That is, are the levels of
the classid factor nested within schoolid factor. We could simply create the interaction

factor to avoid the possibility of implicit nesting but it saves a bit of trouble if we check
before doing so

> with(classroom, isNested(classid, schoolid))

[1] TRUE

A model with simple, scalar random effects and without any fixed-effects terms (other
than the implicit intercept) is called the “unconditional model” in the multilevel modeling
literature. We fit it as

> (fm09 <- lmer(mathgain ~ (1|classid) + (1|schoolid), classroom))

Linear mixed model fit by REML ['lmerMod']
Formula: mathgain = (1 | classid) + (1 | schoolid)
Data: classroom

REML criterion at convergence: 11768.76
Random effects:

Groups  Name Std.Dev.

classid (Intercept) 9.961

schoolid (Intercept) 8.803

Residual 32.066
Number of obs: 1190, groups: classid, 312; schoolid, 107
Fixed Effects:

(Intercept)

57.43

The results from this model fit using the REML criterion can be compared to Table
4.6 (page 156) of West et al. (2007).
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Figure 4.8: Comparative dotplots of gain in the mathematics scores in classrooms within

schools.

It seems that the housepov value is a property of the school. We can check this by
considering the number of unique combinations of housepov and schoolid and comparing
that to the number of levels of schoolid. For safety we check the number of levels of

factor(schoolid) in case there are unused levels in schoolid.

> with(classroom, length(levels(factor(schoolid))))
[1] 107
> nrow(unique (subset(classroom, select = c(schoolid, housepov))))

[1] 107

In some formulations of multilevel models or hierarchical linear models it is important

to associate covariates with different levels in the hierarchy.
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Figure 4.9: Profile plot of the parameters in model fm4.

> (fm7 <- lmer(mathgain ~ 1 + I(mathkind-450) + sex + minority + ses
+ + housepov + (1|classid) + (1|schoolid), classroom))

Linear mixed model fit by REML ['lmerMod']
Formula: mathgain ~ 1 + I(mathkind - 450) + sex + minority + ses + housepov +
(1 | classid) + (1 | schoolid)
Data: classroom

REML criterion at convergence: 11378.06
Random effects:

Groups  Name Std.Dev.

classid (Intercept) 9.031

schoolid (Intercept) 8.818

Residual 27.100
Number of obs: 1190, groups: classid, 312; schoolid, 107
Fixed Effects:

(Intercept) I(mathkind - 450) sexF minorityY
73.1708 -0.4709 -1.2346 -7.7559
ses housepov
5.2397 -11.4392

A profile plot of the parameters in model fm7
is shown in Fig. 4.9

4.4 Rat Brain example

> ftable(xtabs(activate ~ animal + treatment + region, ratbrain))

region BST LS VDB
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Figure 4.10: Activation of brain regions in rats
animal treatment
R100797 Basal 458.16 245.04 237.42
Carbachol 664.72 587.10 726.96
R100997 Basal 479.81 261.19 195.51
Carbachol 515.29 437.56 604.29
R110597 Basal 462.79 278.33 262.05
Carbachol 589.25 493.93 621.07
R111097 Basal 366.19 199.31 187.11
Carbachol 371.71 302.02 449.70
R111397 Basal 375.58 204.85 179.38
Carbachol 492.58 355.74 459.58

Description of the Rat Brain data should go here.

R100797
R100997
R110597
R111097
R111397
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Chapter 5

Computational Methods for
Mixed Models

In this chapter we describe some of the details of the computational methods for fitting
linear mixed models, as implemented in the 1me4 package, and the theoretical development
behind these methods. We also provide the basis for later generalizations to models for
non-Gaussian responses and to models in which the relationship between the conditional
mean, (i, and the linear predictor, ¥ = X 5 +Zb=7 Aot + X B , is a nonlinear relationship.

This material is directed at those readers who wish to follow the theory and methodol-
ogy of linear mixed models and how both can be extended to other forms of mixed models.
Readers who are less interested in the “how” and the “why” of fitting mixed models than
in the results themselves should not feel obligated to master these details.

We begin by reviewing the definition of linear mixed-effects models and some of the
basics of the computational methods, as given in sec. 1.1.

5.1 Definitions and Basic Results

As described in sec. 1.1, a linear mixed-effects model is based on two vector-valued random
variables: the ¢-dimensional vector of random effects, B, and the n-dimensional response
vector, Y. Equation (1.1) defines the unconditional distribution of B and the conditional
distribution of Y, given B = 5, as multivariate Gaussian distributions of the form

(VIB=1b) ~ N(XS+ Zb,0°I)
B~ N(0,%).

The ¢ X ¢, symmetric, variance-covariance matrix, Var(B) = Xy, depends on the
variance-component parameter vector, 0, and is positive semidefinite, which means that

b'Spb >0, Vb#0. (5.1)

(The symbol V denotes “for all”.) The fact that 3y is positive semidefinite does not
guarantee that 29_1 exists. We would need a stronger property, b7 295 > 0, Vb #* 0, called
positive definiteness, to ensure that E;l exists.

Many computational formulas for linear mixed models are written in terms of E;l.
Such formulas will become unstable as ¥y approaches singularity. And it can do so. It is
a fact that singular (i.e. non-invertible) 3y can and do occur in practice, as we have seen
in some of the examples in earlier chapters. Moreover, during the course of the numerical
optimization by which the parameter estimates are determined, it is frequently the case
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that the deviance or the REML criterion will need to be evaluated at values of § that

produce a singular 4. Because of this we will take care to use computational methods

that can be applied even when Yy is singular and are stable as ¥y approaches singularity.
As defined in (1.2) a relative covariance factor, Ay, is any matrix that satisfies

Yo = 02 AgAJ.

According to this definition, ¥ depends on both ¢ and 6 and we should write it as X, 4.
However, we will blur that distinction and continue to write Var(BB) = Xy. Another
technicality is that the common scale parameter, o, can, in theory, be zero. We will show
that in practice the only way for its estimate, o, to be zero is for the fitted values from

the fixed-effects only, X 5, to be exactly equal to the observed data. This occurs only
with data that have been (incorrectly) simulated without error. In practice we can safely
assume that o > 0. However, Ay, like Yy, can be singular.

Our computational methods are based on Ay and do not require evaluation of ¥y. In
fact, X is explicitly evaluated only at the converged parameter estimates.

The spherical random effects, U ~ N (6, 021::]), determine B as

B = AglU. (5.2)

Although it may seem more intuitive to write U as a linear transformation of B, we cannot
do that when Ay is singular, which is why (5.2) is in the form shown.

We can easily verify that (5.2) provides the desired distribution for B. As a linear
transformation of a multivariate Gaussian random variable, B will also be multivariate
Gaussian. Its mean and variance-covariance matrix are straightforward to evaluate,

E[B] = AgE[U] = Ag0 =0 (5.3)

and

Var(B) = E [(B —E[B])(B - E[B])T} —E [BBT] (5.4)
=E [Ag uuTAﬂ = A BIUUTIA] = Ag Var(U)A}
= Ago?I, A = o®AgA] = %y
and have the desired form. _
Just as we concentrate on how 6 determines Ag, not Xy, we will concentrate on prop-

erties of U rather than B. In particular, we now define the model according to the

distributions o . .
(YU =) ~ N(ZAgii + X B,0°1,)

U~ N(0,0°1).

To allow for extensions to other types of mixed models we distinguish between the
linear predictor

(5.5)

5= ZAgii + X8 (5.6)

and the conditional mean of Y, given U = w, which is

=BV = . (5.7)
For a linear mixed model i = 7. In other forms of mixed models the conditional mean, [,
can be a nonlinear function of the linear predictor, 4. For some models the dimension of
v is a multiple of n, the dimension of /i and ¢, but for a linear mixed model the dimension
of 4 must be n. Hence, the model matrix Z must be n x ¢ and X must be n X p.
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5.2 The Conditional Distribution (U|Y = ¥)

In this chapter it will help to be able to distinguish between the observed response vector
and an arbitrary value of . For this chapter only we will write the observed data vector
as Yobs, With the understanding that ¢ without the subscript will refer to an arbitrary
value of the random variable Y.

The likelihood of the parameters, 5, E, and o, given the observed data, s, is the
probability density of Y, evaluated at yops. Although the numerical values of the prob-
ability density and the likelihood are identical, the interpretations of these functions are
different. In the density we consider the parameters to be fixed and the value of ¥ as
varying. In the likelihood we consider i to be fixed at i,,s and the parameters, 5, B and
0, as varying.

The natural approach for evaluating the likelihood is to determine the marginal dis-
tribution of Y, which in this case amounts to determining the marginal density of Y, and
evaluate that density at ¢,ns. To follow this course we would first determine the joint
density of U and Y, written fi4y (4, %), then integrate this density with respect to @ to
create the marginal density, fy(¥), and finally evaluate this marginal density at yobs.

To allow for later generalizations we will change the order of these steps slightly.
We evaluate the joint density function, fy y (4, %), at §ops, producing the unnormalized
conditional density, h(i). We say that h is “unnormalized” because the conditional density

is a multiple of h
L h()
obs) = N = 5.8

In some theoretical developments the normalizing constant, which is the integral in the
denominator of an expression like (5.8), is not of interest. Here it is of interest because
the normalizing constant is exactly the likelihood that we wish to evaluate,

L(8, B, 0 |Jobs) = ” h(@) d. (5.9)
For a linear mixed model, where all the distributions of interest are multivariate Gaus-
sian and the conditional mean, ji, is a linear function of both @ and 5, the distinction
between evaluating the joint density at ops to produce h(@) then integrating with respect
to u, as opposed to first integrating the joint density then evaluating at ¢,ps, is not terri-
bly important. For other mixed models this distinction can be important. In particular,
generalized linear mixed models, described in Chap. 6,are often used to model a discrete
response, such as a binary response or a count, leading to a joint distribution for Y and U
that is discrete with respect to one variable, ¥/, and continuous with respect to the other,
4. In such cases there isn’t a joint density for Y and U. The necessary distribution theory
for general i and # is well-defined but somewhat awkward to describe. It is much easier to
realize that we are only interested in the observed response vector, s, not some arbitrary
value of 7/, so we can concentrate on the conditional distribution of U given Y = ¢,ps. For
all the mixed models we will consider, the conditional distribution, (U|Y = Yops), is con-
tinuous and both the conditional density, fysy (u|Jobs), and its unnormalized form, h(),
are well-defined.

5.3 Integrating h(@) in the Linear Mixed Model

The integral defining the likelihood in (5.9) has a closed form in the case of a linear mixed
model but not for some of the more general forms of mixed models. To motivate methods
for approximating the likelihood in more general situations, we describe in some detail how
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the integral can be evaluated using the sparse Cholesky factor, Ee, and the conditional
mode,

i@ = arg max Juy (U] Jobs) = arg max h(i) = arg max Ty (Gobs|@) fu (). (5.10)

The notation arg max; means that i is the value of @ that maximizes the expression that
follows.

In general, the mode of a continuous distribution is the value of the random variable
that maximizes the density. The value @ is called the conditional mode of i, given Y = Yobs,
because % maximizes the conditional density of U given Y = ops. The location of the
maximum can be determined by maximizing the unnormalized conditional density because
h(i) is just a constant multiple of fiy(u|yobs). The last part of (5.10) is simply a re-
expression of h(i) as the product of fyjs(Jobs|®) and fyy(@). For a linear mixed model
these densities are

SN = 2
ng— X3 — Zhgit

Pl = e | (511)
L J)?
Juli) = We?{p <— 952 ) (5.12)

with product

) 1 |

On the deviance scale we have

Because (5.14) describes the negative log density, @ will be the value of @ that minimizes
the expression on the right hand side of (5.14).

The only part of the right hand side of (5.14) that depends on 4 is the numerator of
the second term. Thus

N - 2
Gobs — X7 = Zgit| "+ ]2

— 2log (h(@)) = (n + q) log(276?) + 5 (5.14)

g

RN N 2
Jobs — X5 — ZAeﬁH + 12 (5.15)

i = arg min ’
u

The expression to be minimized, called the objective function, is described as a penalized
residual sum of squares (PRSS) and the minimizer, u, is called the penalized least squares
(PLS) solution. They are given these names because the first term in the objective,

penalty on the length, ||i||, of 4. Larger values of @ (in the sense of greater lengths as
vectors) incur a higher penalty.

The PRSS criterion determining the conditional mode balances fidelity to the observed
data (i.e. producing a small residual sum of squares) against simplicity of the model (small
|@]|). We refer to this type of criterion as a smoothing objective, in the sense that it
seeks to smooth out the fitted response by reducing model complexity while still retaining
reasonable fidelity to the observed data.

oo - 2
Yobs — X8 — ZAgﬂ'H , is a sum of squared residuals, and the second term, ||, is a
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For the purpose of evaluating the likelihood we will regard the PRSS criterion as a
function of the parameters, given the data, and write its minimum value as

SN N 2
Jobs — X B — ZAgil]| + |||, (5.16)

2 . ‘
T — min
07/3 ﬁ

Notice that E only enters the right hand side of (5.16) through the linear predictor ex-
pression. We will see that @ can be determined by a direct (i.e. non-iterative) calculation
and, in fact, we can minimize the PRSS criterion with respect to & and E simultaneously
without iterating. We write this minimum value as

= - _, 2
Govs — X B = Zhot| + 1) (5.17)

'rg = min ‘
EMB

The value of 5 at the minimum is called the conditional estimate of E given 5, written 59.

5.4 Determining the PLS Solutions, @ and 59

One way of expressing a penalized least squares problem like (5.16) is by incorporating the
penalty as “pseudo-data” in an ordinary least squares problem. We extend the “response
vector”, which is §ops — X 5 when we minimize with respect to # only, with ¢ responses
that are 0 and we extend the predictor expression, Z Apii with I;ﬁ. Writing this as a least
squares problem produces

i = arg min [y‘)bs ~ XB} _ | %D (5.18)
a 0
with a solution that satisfies
(A}ZTZAQ n fq) i=AJZT (gobs - Xﬁ) . (5.19)

To evaluate @ we form the sparse Cholesky factor, Eg, which is a lower triangular ¢ x ¢
matrix that satisfies
LoLy = Ay ZVZ Mg + I, (5.20)

The actual evaluation of the sparse Cholesky factor, Eg, often incorporates a fill-reducing
permutation, which we describe next.

5.4.1 The Fill-reducing Permutation, P

In earlier chapters we have seen that often the random effects vector is re-ordered before
E@ is created. The re-ordering or permutation of the elements of & and, correspondingly,
the columns of the model matrix, ZAg, does not affect the theory of linear mixed models
but can have a profound effect on the time and storage required to evaluate I_:g in large
problems We write the effect of the permutation as multiplication by a g x g permutation
matrix, P although in practice we apply the permutation without ever constructing P.
That is, the matrix P is a notational convenience only.

The matrix P consists of permuted columns of the identity matrix, fq, and it is easy
to establish that the inverse permutation corresponds to multiplication by PT. Because
multiplication by P or by PT simply re-orders the components of a vector, the length of
the vector is unchanged. Thus,

1Pa)* = |1@)* = || PTa|? (5.21)
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and we can express the penalty in (5.17) in any of these three forms. The properties of P
that it preserves lengths of vectors and that its transpose is its inverse are summarized by
stating that Pis an orthogonal matriz.

The permutation represented by P is determined from the structure of AJZTZAQ + fq
for some initial value of §. The particular value of g does not affect the result because
the permutation depends only the positions of the non-zeros, not the numerical values at
these positions.

Taking into account the permutation, the sparse Cholesky factor, Ee, is defined to be
the sparse, lower triangular, ¢ X ¢ matrix with positive diagonal elements satisfying

Lol = P (A}ZTZAQ + f[,) PT. (5.22)

(Problems 5.8 and 5.8 outline the steps in showing that we can require the diagonal
elements of Ay to be positive, not just non-negative.) Problems 5.8 and 5.8 indicate why
we can require this. Because the diagonal elements of Ay are positive, its determinant, |Ag|,
which, for a triangular matrix such as Ay, is simply the product of its diagonal elements,
is also positive.

Many sparse matrix methods, including the sparse Cholesky decomposition, are per-
formed in two stages: the symbolic phase in which the locations of the non-zeros in the
result are determined and the numeric phase in which the numeric values at these po-
sitions are evaluated. The symbolic phase for the decomposition (5.22), which includes
determining the permutation, ]3, need only be done once. Evaluation of Eg for subse-
quent values of g requires only the numeric phase, which typically is much faster than the
symbolic phase.

The permutation, ]3, serves two purposes. The first, and more important purpose, is
to reduce the number of non-zeros in the factor, Eg. The factor is potentially non-zero at
every non-zero location in the lower triangle of the matrix being decomposed. However,
as we saw in Fig. 2.4 of sec. 2.1.2, there may be positions in the factor that get filled-in
even though they are known to be zero in the matrix being decomposed. The fill-reducing
permutation is chosen according to certain heuristics to reduce the amount of fill-in. We
use the approximate minimal degree (AMD) method described in Davis (1996). After the
fill-reducing permutation is determined, a “post-ordering” is applied. This has the effect
of concentrating the non-zeros near the diagonal of the factor. See Davis (2006) for details.

The pseudo-data representation of the PLS problem, (5.18), becomes

gjobs o XB _
0

and the system of linear equations satisfied by i is

ZAyPT

2
A Pi (5.23)

ISR

= arg min
7

LI} = P (N[ ZT 20 + 1) PP = PAJZT (i — XB) . (5:24)

Obtaining the Cholesky factor, Eg, may not seem to be great progress toward determin-
ing @ because we still must solve (5.24) for ii. However, it is the key to the computational
methods in the 1me4 package. The ability to evaluate Ly rapidly for many different values
of § is what makes the computational methods in 1me4 feasible, even when applied to very
large data sets with complex structure. Once we evaluate E@ it is straightforward to solve
(5.24) for @ because Ly is triangular.

In sec. 5.6 we will describe the steps in determining this solution but first we will show
that the solution, 13,’, and the value of the objective at the solution, ra 8 do allow us to
evaluate the deviance.
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5.4.2 The Value of the Deviance and Profiled Deviance

After evaluating E@ and using that to solve for 1:1', which also produces r% g We can write
the PRSS for a general 4 as

which finally allows us to evaluate the likelihood. We plug the right hand side of (5.25)
into the definition of h(#) and apply the change of variable

ovs — X5 — Zgidl| + 0l = 12 5 + | LT (@ — D) 5.25
Jobs — X3 ot + [|El]” =15+ [|Lg (@ — @) (5.25)

Ly (7 — )

7= (5.26)
o
The determinant of the Jacobian of this transformation,
dz| |Ly|  |Lg|
(U 2 S bl A} 5.27
du o o4 ( )

is required for the change of variable in the integral. We use the letter Z for the transformed
value because we will rearrange the integral to have the form of the integral of the density
of the standard multivariate normal distribution. That is, we will use the result

L P 5.28
/Rq G E=1 (5.28)

Putting all these pieces together gives

L(0, B, 0) = /R (i) dii

- 1 b I E— DI
= Jra 2ro2)mraz CP T 202 “

exp _7’3775 o - 5
2 / 1 1L (@ — @)||* | |Lo| dit
= exp | — =
(2mo2)n/2  Jpe (27)9/2 P 202 |Lg| o4 (5.29)

2
_Top
eXP( 2a2> o—l1212/2
dz

(2r02)n/2|Ly| Jra (27)7/2

2 3
exp ( — 505

 (2r0?)/2| Ly

The deviance can now be expressed as

2
"5,6
o2’

d(@j B:O"gobs) = -2 log (L(é: Ea U|gobs)> = nlog(27r02) + 210g ’E0| +

as stated in (1.6). The maximum likelihood estimates of the parameters are those that
minimize this deviance.

Equation (1.6) is a remarkably compact expression, considering that the class of models
to which it applies is very large indeed. However, we can do better than this if we notice
that 5 affects (1.6) only through 7”,%’,97 and, for any value of g, minimizing this expression
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with respect to E is just an extension of the penalized least squares problem. Let 39 be
the value of 5 that minimizes the PRSS simultaneously with respect to § and @ and let 7"3

be the PRSS at these minimizing values. If, in addition, we set 02y = 7“3 /m, which is the
value of 2 that minimizes the deviance for a given value of rg, then the profiled deviance,
which is a function of only, becomes

T - 27r7“3
d(0|Yons) = 21og |Lg| +n |1+ log - : (5.30)

Numerical optimization (minimization) of d(6]|7,ps) with respect to  determines the
MLE, g. The MLEs for the other parameters, E and o, are the corresponding conditional

estimates evaluated at 6.

5.4.3 Determining 72 and j

To determine @ and 59 simultaneously we rearrange the terms in (5.23) as
2

~ | = argmin [y%bs] - ZAff X Pa (5.31)
/30 @,5 0 P 0 ﬂ
The PLS values, @ and 59, are the solutions to
P(NJZTZ0g+1y) BT PAJZTX| [Pi] _ [PA] 77 jos (5:32)
XTZAgﬁT XTX: 59 XTgobs '
To evaluate these solutions we decompose the system matrix as
P (A;—ZTZAQ + I_;]) PT ﬁAgZTX _ ?9 g I_;_-Qr R;ZX (5.33)
XTZN,PT XTX Ryx Ry||0 Rx

where, as before, E@, the sparse Cholesky factor, is the sparse lower triangular ¢ x ¢ matrix
satisfying (5.22). The other two matrices in (5.33): Rzx, which is a general ¢ x p matrix,
and ﬁX, which is an upper triangular p X p matrix, satisfy
LyRyx = PN ZTX (5.34)
and
FLiy = XTX - R By, (5.35)

Those familiar with standard ways of writing a Cholesky decomposition as either LLT
or RTR (I_; is the factor as it appears on the left and R is as it appears on the right) will
notice a notational inconsistency in (5.33). One Cholesky factor is defined as the lower
triangular fractor on the left and the other is defined as the upper triangular factor on
the right. It happens that in R the Cholesky factor of a dense positive-definite matrix
is returned as the right factor, whereas the sparse Cholesky factor is returned as the left
factor.

One other technical point that should be addressed is whether XTX - R}Xﬁzx is
positive definite. In theory, if X has full column rank, so that XTXis positive definite, then
the downdated matrix, XTX — R} XEZX, must also be positive definite (see Prob. 5.8).
In practice, the downdated matrix can become computationally singular in ill-conditioned
problems, in which case an error is reported.

The extended decomposition (5.33) not only provides for the evaluation of the profiled
deviance function, d(6), (5.30) but also allows us to define and evaluate the profiled REML
criterion.
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5.5 The REML Criterion

The so-called REML estimates of variance components are often preferred to the maximum
likelihood estimates. (“REML” can be considered to be an acronym for “restricted” or
“residual” maximum likelihood, although neither term is completely accurate because
these estimates do not maximize a likelihood.) We can motivate the use of the REML
criterion by considering a linear regression model,

—

Y~ N(XB,0%1,), (5.36)

in which we typically estimate o2 as

i — XAI2

even though the maximum likelihood estimate of o2 is

15obs — X5

- (5.38)

2 _
o7 =

The argument for preferring o—%{ to o2 as an estimate of o2 is that the numerator in both
estimates is the sum of squared residuals at 3 and, although the residual vector, ¥ops - X 5 ,
is an n-dimensional vector, it satisfies p linearly independent constraints, X T (Gobs -X 5) =

0. That is, the residual at 3 is the projection of the observed response vector, ¥obs, into
an (n — p)-dimensional linear subspace of the n-dimensional response space. The estimate

01%2 takes into account the fact that o? is estimated from residuals that have only n — p
degrees of freedom.

Another argument often put forward for REML estimation is that cr%2 is an unbiased
estimate of o2, in the sense that the expected value of the estimator is equal to the
value of the parameter. However, determining the expected value of an estimator involves
integrating with respect to the density of the estimator and we have seen that densities
of estimators of variances will be skewed, often highly skewed. It is not clear why we
should be interested in the expected value of a highly skewed estimator. If we were to
transform to a more symmetric scale, such as the estimator of the standard deviation or
the estimator of the logarithm of the standard deviation, the REML estimator would no
longer be unbiased. Furthermore, this property of unbiasedness of variance estimators
does not generalize from the linear regression model to linear mixed models. This is all
to say that the distinction between REML and ML estimates of variances and variance
components is probably less important than many people believe.

Nevertheless it is worthwhile seeing how the computational techniques described in

this chapter apply to the REML criterion because the REML parameter estimates/é' r and
012% for a linear mixed model have the property that they would specialize to a% from
(5.37) for a linear regression model, as seen in sec. 1.3.2.

Although not usually derived in this way, the REML criterion (on the deviance scale)
can be expressed as

—

AR (0, 0| Fons) = —2log/ L8, 3, 0|Fops) dB. (5.39)
Rp

The REML estimates § and 0% minimize dg(f, o|gops)-
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To evaluate this integral we form an expansion, similar to (5.25), of rj 5 about 59

ro.5 =13 + |1 Ex (8= Byl (5.40)

In the same way that (5.25) was used to simplify the integral in (5.29), we can derive

'
[ exp (=57
Rp

if = P (_%>

= == (5.41)
(2mo2)"/2| Ly (2ma?)(n=P)/2| Lo|| Rx|
corresponding to a REML criterion on the deviance scale of
2
) i = T
dr (0, 0lGons) = (n — p) log(2ma?) + 2log (|L9|\RX\) +5. (5.42)

—

Plugging in the conditional REML estimate, 02g = r3/(n—p), provides the profiled REML
criterion

. = = 2712
(@) = 2108 (1Eall ) + (0= 14108 (Z72)] . oy

The REML estimate of 0 is

~

Ok = arg min dg (0] Fobs ), (5.44)
0

and the REML estimate of o2 is the conditional REML estimate of o2 at 0, R,

—

o =15 /(n—p). (5.45)

It is not entirely clear how one would define a “REML estimate” of ,6_" because the REML
criterion, dgr(6,oly), defined in (5.42), does not depend on . However, it is customary

(and not unreasonable) to use 3 R= 55 as the REML estimate of /.
R

5.6 Step-by-step Evaluation of the Profiled Deviance

An object returned by lmer is an S4-classed object (Chambers, 2008) of class "merMod".
A special utility function, mkdevfun, creates a function to evaluate the deviance from such
an object. Because the deviance evaluation function may be called many, many times for
different values of the model parameters and may need to handle large data structures
very efficiently, the default deviance evaluator uses compiled code, that is written in C++
using the facilities of the Repp package (Eddelbuettel, 2013). As such, this function is not
very illuminating

> fm08 <- lmer(Reaction ~ 1 + Days + (1+Days|Subject),
+ sleepstudy, REML=FALSE)
> (df1l <- as(fm08, "function"))# calls hidden mkdevfun() --> =2= mkdeuvfun(fm08)

function (theta)
.Call(lmer_Deviance, pp$ptr(), resp$ptr(), as.double(theta))
<environment: Oxace99f8>

unless you are willing to go digging into the source code for the compiled function
called merDeviance.

However, if we set the optional argument compDev=FALSE and suppress the compiled
deviance evaluation then the deviance function follows the deviance evaluation in more
easily understood R constructions.
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> df2 <- as.function(fm08, control=list(compDev=FALSE))## needs lme4-devel (>= 2018-02-08)
> ## or mkLmerDevfun(fr, ... ?22) ## was mkdevfun(fm08, compDev=FALSE)

> head(df2)

1 function (theta)

2 .Call(lmer_Deviance, pp$ptr(), resp$ptr(), as.double(theta))

Providing for an R-based evaluation of the deviance, in addition to the compiled code,
allows us to check for consistent results. For example, suppose that we wished to check that
the compiled and R-based deviance functions agreed at the initial values of the parameter

6=11,0,1]7
> all.equal(df1(c(1,0,1)), df2(c(1,0,1)))

[1] TRUE

Without going into detail let us just point out that, because the function df2 is created
within another function, mkdevfun, df2 has access to the structures in the model, fm08,
which internally is identified as mod. The deviance evaluation uses the value of 91 called th,
and information in three of the model slots: the random-effects structure, called re, the
fixed-effects structure, called fe, and the response structure, called resp. There is also a
diagonal matrix of weights, called WtMat, available to this function but for our evaluation

that matrix is the identity and we will ignore it.
The function, with line numbers, is

1 function (theta)
2 .Call(lmer_Deviance, pp$ptr(), resp$ptr(), as.double(theta))

Lines 3 to 9 create local versions of A and L from the information in the re slot and
the argument th.

In lines 3 to 5 the argument th is checked for correct mode and length and whether it
violates the lower bounds stored in the lower slot.

In lines 6 and 7 the current value of A is created from a template, stored in the Lambda
slot, the value of th and the Lind index vector, which maps elements of 6 to the non-zero
elements of A.

As mentioned above, WtMat is the identity in this case so line 8 amounts to assigning
the matrix in the Zt slot to the local variable Ut. Then line 9 evaluates the sparse Cholesky
factor, L, by updating the template in the L slot. The optional argument, mult=1, to the
update method is the multiple of the identity matrix to add to the tcrossprod of the second
argument. This produces the factor Ly defined in (5.22).

Lines 10 to 14 produce A T X T and ZTX , taking into account possible weights, from
the sqrtrwt (square root of the residual weights) slot, and/or an offset, from the offset
slot. To avoid confusion when incorporating weights, these values are stored as Utr, Vtr
and UtV.

Because the R-based evaluation function, df2, must be able to handle non-default values
of arguments such as weights and offset to the lmer function, we will skip over some of the
details and concentrate on the parts that correspond to formulas in the previous section.

First we derive the matrix Ay from 0. A template version of A is stored in the random-
effects structure slot, called re, of the model object. The Lind slot contains an index
vector indicating which element of theta is to be used to replace an element of the x slot
in Lambda
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> theta <- c(1, 0, 1)
> Lambda <- getME(fm08, "Lambda")
> Lambda@x <- getME(fm08, "Lind")

object (Chambers, 2008) containing a set of well-defined “slots”. For evaluation of the
devai environment, accessed with the env extractor. This environment contains several
matrices and vectors that are used in the evaluation of the profiled deviance. In this
section we use these matrices and vectors from one of our examples to explicitly trace the
steps in evaluating the profiled deviance. This level of detail is provided for those whose
style of learning is more of a “hands on” style and for those who may want to program

modifications of this approach.
Consider our model fm08, fit as

> fm08 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy,

+ REML=FALSE, verbose=1)

start par. = 1 0 1 fn = 1784.642

At return

eval: 64 fn: 1751.9393 par: 0.929225 0.0181656 0.222645
NA

The environment of the model contains the converged parameter vector, g (theta), the
relative covariance factor, Ay (Lambda), the sparse Cholesky factor, Ly (L), the matrices

Rzx (RzX) and Rx (RX), the conditional mode, @ (u), and the conditional estimate, §,
(fixef). The permutation represented by P is contained in the sparse Cholesky represen-
tation, L.

Although the model matrices, X (X) and ZT (zt), and the response vector, Fops (¥),
are available in the environment, many of the products that involve only these fixed values

are precomputed and stored separately under the names XtX (X TX ), Xty, ZtX and Zty.
To provide easy access to the objects in the environment of fm08 we attach it to the
search path.

> attach(as.environment (fm08@pp), name="fm08@pp")

The following object is masked from package:methods:
wnitialize

The following object is masked from package:base:
beta

> attach(as.environment (fm08@resp), name="fm08Qresp")

The following objects are masked from fmO8@pp:

.—>Ptr, .refClassDef, .self, initialize, initializePtr, ptr, Ptr
The following objects are masked from package:stats:

offset, wetghts
The following object is masked from package:methods:

wnitialize

Please note that this is done here for illustration only. The practice of attaching a list
or a data frame or, less commonly, an environment in an R session is overused, somewhat
dangerous (because of the potential of forgetting to detach it later) and discouraged. The
preferred practice is to use the with function to gain access by name to components of



5.6 Step-by-step Evaluation of the Profiled Deviance 107

such composite objects. For this section of code, however, using with or within would
quickly become very tedious and we use attach instead.

To update the matrix Ay to a new value of g we need to know which of the non-zeros
in A are updated from which elements of 0. Recall that the dimension of § is small (3, in
this case) but A is potentially large (18 x 18 with 54 non-zeros). The environment contains
an integer vector Lind that maps the elements of theta to the non-zeros in Lambda.

Suppose we wish to recreate the evaluation of the profiled deviance at the initial value

of @ = (1,0,1). We begin by updating Ag and forming the product U7 = A;—ZT

> str(getME(fm08, "Lambda"))

Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

I : int [1:54] 0112334556 ...
..@p : int [1:37] 0235689 11 12 14 ...
..0 Dim : int [1:2] 36 36
Q@ Dimnames:List of 2
..$ : NULL
.. ..$ : NULL
..0 x : num [1:54] 0.9292 0.0182 0.2226 0.9292 0.0182 ...

..@ factors : 1list()
> str(getME(fm08, "Lind"))
int [1:54] 1 231231231 ...

> ##_FIXME __ TODO __ of course, cannot use getME() inm  LHS <- ...

> ##_F getME(fm08, "Lambda")@z[] <- c(1,0,1) [getME(fm08, "Lind")]
> ##_F str(getME(fm08, "Lambda")@x)
> Ut <- crossprod(getME(fm08, "Lambda"), getME(fm08, "Zt"))

The Cholesky factor object, L, can be updated from Ut without forming U0 + T
explicitly. The optional argument mult to the update method specifies a multiple of the
identity to be added to UTU
> L <- update(getME(fm08, "L"), Ut, mult = 1)

Then we evaluate RZX and RX according to (5.34) and (5.35)

> RZX <- solve(L, solve(L, crossprod(getME(fm08, "Lambda"),

+ getME(fm08, "Zt") %*}% getME(fm08, "X")),
+ sys = "P") R
+ sys = ngn )

> #RX <- chol(crossprod(getME(fm08, "X")) - crossprod(RZX))

Solving (5.32) for @ and 59 is done in stages. Writing ¢, and ¢3 for the intermediate
results that satisfy
Cul|
sl

> #cu <- solve(L, solve(L, crossprod(getME(fm08, "Lambda"), getME(fm08, "Utr")), sys = "P"), sys = "I
> #cbeta <- solwve(t(RX), getME(fm08, "Vtr") - crossprod(RZX, cu))

PA_:QI—ZTgobS
XT:Jobs-

Ly 0

0 (5.46)
Ryx Rk

we evaluate
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The next set of equations to solve is

Ly Rzx| D) [C:U} (5.47)
0 Rx | |8 €8

> #fizef <- as.vector(solve(RX, cbeta))
> #u <- solve(L, solve(L, cu - RZX }*} fizef, sys = "Lt"), sys = "Pt")

We can now create the conditional mean, mu, the penalized residual sum of squares,

prss, the logarithm of the square of the determinant of E, 1dL2, and the profiled deviance,
which, fortuitously, equals the value shown earlier.

#mu <- gamma <- as.vector(crossprod(Ut, w) + getME(fm08, "X") J*} fizef)
#prss <- sum(c(getME(fm08, "y") - mu, as.vector(u)) 2)

#ldL2 <- 2 * as.vector(determinant (L)£mod)

#nobs <- length(mu)

#(deviance <- ldL2 + nobs * (1 + log(2 * pi * prss/nobs)))

vV V V V VvV

The last step is detach the environment of fm08 from the search list
> #detach()

to avoid later name clashes.

In terms of the calculations performed, these steps describe exactly the evaluation of
the profiled deviance in 1mer. The actual function for evaluating the deviance, accessible as
fm08@setPars, —FIXME— is a slightly modified version of what is shown above. However,
the modifications are only to avoid creating copies of potentially large objects and to allow
for cases where the model matrix, X , is sparse. In practice, unless the optional argument
compDev = FALSE is given, the profiled deviance is evaluated in compiled code, providing a
speed boost, but the R code can be used if desired. This allows for checking the results
from the compiled code and can also be used as a template for extending the computational
methods to other types of models.

5.7 Generalizing to Other Forms of Mixed Models

In later chapters we cover the theory and practice of generalized linear mixed models
(GLMMs), nonlinear mixed models (NLMMs) and generalized nonlinear mixed models
(GNLMMs). Because quite a bit of the theoretical and computational methodology cov-
ered in this chapter extends to those models we will cover the common aspects here.

5.7.1 Descriptions of the Model Forms

We apply the name “generalized” to models in which the conditional distribution, (YU =
), is not required to be Gaussian but does preserve some of the properties of the spherical
Gaussian conditional distribution

(YV|U = @) ~ N(ZAgii + X5, 01,

from the linear mixed model. In particular, the components of Y are conditionally indepen-
dent, given U = 4. Furthermore, @ affects the distribution only through the conditional



5.7 Generalizing to Other Forms of Mixed Models 109

mean, which we will continue to write as (i, and it affects the conditional mean only
through the linear predictor, ¥ = AN X 5 .

Typically we do not have i = 7, however. The elements of the linear predictor, v, can
be positive or negative or zero. Theoretically they can take on any value between —oo and
oco. But many distributional forms used in GLMMs put constraints on the value of the
mean. For example, the mean of a Bernoulli random variable, modeling a binary response,
must be in the range 0 < g < 1 and the mean of a Poisson random variable, modeling
a count, must be positive. To achieve these constraints we write the conditional mean,
i, as a transformation of the unbounded predictor, written 7. For historical, and some
theoretical, reasons the inverse of this transformation is called the link function, written

7= g(i), (5.48)

and the transformation we want is called the inverse link, written §—.

Both § and §~! are determined by scalar functions, g and ¢!, respectively, applied
to the individual components of the vector argument. That is, 77 must be n-dimensional
and the vector-valued function ji = §~!(7) is defined by the component functions p; =
g Y(m),i = 1,...,n. Among other things, this means that the Jacobian matrix of the
inverse link, %’ will be diagonal.

Because the link function, g, and the inverse link, g—*, are nonlinear functions (there
would be no purpose in using a linear link function) many people use the terms “generalized
linear mixed model” and “nonlinear mixed model” interchangeably. We reserve the term
“nonlinear mixed model” for the type of models used, for example, in pharmacokinetics
and pharmacodynamics, where the conditional distribution is a spherical multivariate
Gaussian

1

(VI = @) ~ N(ji,0°I,) (5.49)

but [ depends nonlinearly on 4. For NLMMSs the length of the linear predictor, ¥, is a
multiple, ns, of n, the length of f.

Like the map from 77 to [i, the map from # to i has a “diagonal” property, which we
now describe. If we use 7 to fill the columns of an n x s matrix, I', then u; depends only
on the ith row of I'. In fact, u; is determined by a nonlinear model function, f, applied
to the ¢ row of I'. Writing i = f () based on the component function f, we see that the
Jacobian of f, %z, will be the vertical concatenation of s diagonal n X n matrices.

Because we will allow for generalized nonlinear mixed models (GNLMMs), in which
the mapping from ¥ to [ has the form

¥ =i - (5.50)

we will use (5.50) in our definitions.

5.7.2 Determining the Conditional Mode, i

For all these types of mixed models, the conditional distribution, (U|Y = ¥obs), is a
continuous distribution for which we can determine the unscaled conditional density, h().
As for linear mixed models, we define the conditional mode, 1:1', as the value that maximizes
the unscaled conditional density.

Determining the conditional mode, {I, in a nonlinear mixed model is a penalized non-
linear least squares (PNLS) problem

@ = arg min||Zops — ji|* + || (5.51)
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which we solve by adapting the iterative techniques, such as the Gauss-Newton method (Bates
& Watts, 1988, Sect. 2.2.1), used for nonlinear least squares. Starting at an initial value,
a0, (the bracketed superscript denotes the iteration number) with conditional mean, 79,
we determine an increment 6() by solving the penalized linear least squares problem,

5 _ arganin | [0 = 797 _ [09] o 5.52
= arg m(sln G0 |~ I (5.52)
where dii
go = 2 (5.53)
du 7(0)
Naturally, we use the sparse Cholesky decomposition, E(go), satisfying
- - - - T . > | =

LY (L((,O)) =P [(U(O)) oo 4 Iq} PT (5.54)

to determine this increment. The next iteration begins at
@ = @O 4 kgt (5.55)

where k is the step factor chosen, perhaps by step-halving (Bates & Watts, 1988, Sect. 2.2.1),
to ensure that the penalized residual sum of squares decreases at each iteration. Conver-
gence is declared when the orthogonality convergence criterion (Bates & Watts, 1988,
Sect. 2.2.3) is below some pre-specified tolerance.

The Laplace approximation to the deviance is

RN . T@
d(0, 5. 0l{iovs) ~ nlog(2m0?) o (5.56)

where the Cholesky factor, 59,5, and the penalized residual sum of squares, 1“3 4, are both

evaluated at the conditional mode, @. The Cholesky factor depends on é; ,6_" and 4 for
these models but typically the dependence on 8 and # is weak.

5.8 Chapter Summary

The definitions and the computational results for maximum likelihood estimation of the
parameters in linear mixed models were summarized in sec. 1.4.1. A key computation is
evaluation of the sparse Cholesky factor, Ay, satisfying (5.22),

EoL] = P (N[220 + 1,) P,
where P represents the fill-reducing permutation determined during the symbolic phase
of the sparse Cholesky decomposition.

An extended decomposition (5.33) provides the g x p matrix Ry x and the p x p upper
trlangular R x that are used to determine the conditional mode 4y, the conditional estimate

Bg, and the minimum penalized residual sum of squares, 7"9, from which the profiled

deviance )
- o - 2nr
(0e) = 2108 ol + 1 |1+ 10 (7770

or the profile REML criterion
~ = = — 2777‘
r(017e) = 2108 (1Eall Fx) + (0 =) | 1-+10g (272 )]

can be evaluated and optimized (minimized) with respect to 6.
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Exercises

Unlike the exercises in other chapters, these exercises establish theoretical results, which
do not always apply exactly to the computational results.

Show that the matrix fT@ = ﬁAgZTZAgﬁT + I_;J is positive definite. That is, bT Ab >
0, Vb +# 0.

(a) Show that Ag can be defined to have non-negative diagonal elements. (Hint: Show
that the product AgD where D is a diagonal matrix with diagonal elements of £1 is
also a Cholesky factor. Thus the signs of the diagonal elements can be chosen however
we want.)

(b) Use the result of Prob. 5.8 to show that the diagonal elements of Ay must be non-zero.
(Hint: Suppose that the first zero on the diagonal of Ay is in the ith position. Show
that there is a solution Z to A-erf = 0 with 2; = 1 and z; =0,7=14+1,...,q and that
this Z contradicts the positive definite condition.)

Show that if X has full column rank, which means that there does not exist a 5 #* 0 for
which X5 =0, then X "X is positive definite.

Show that if X has full column rank then

BTG

ZAgPT X’]

also must have full column rank. (Hint: First show that # must be zero in any vector [

™ Sy

satisfying

Use this result and (5.33) to show that

Ly 0

ST 3
LG Rzx
Rl R}

zZX X

0 Ry

is positive definite and, hence, Ry is non-singular.)
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Chapter 6

Generalized Linear Mixed Models
for Binary Responses

In this chapter we consider mixed-effects models for data sets in which the response is
binary, representing yes/no or true/false or correct/incorrect responses.

Because the response can only take on one of two values we adapt our models to
predict the probability of the positive response. We retain the concept of the linear
predictor, X B +Z 5, depending on the fixed-effects parameters, 5, and the random effects,
l_;, with the corresponding model matrices, X and Z , determining the conditional mean, fi,
of the response, given the random effects, but the relationship is more general than that
for the linear mixed model. The linear predictor, which we shall write as 77, determines ji
according to a link function, g. For historical reasons it is the function taking an element
of [i to the corresponding element of 77 that is called the link. The transformation in the
opposite direction, from 7j to fi, is called the inverse link.

As described in earlier chapters, models based on a Gaussian distribution for the re-
sponse vector with its mean determined by the linear predictor are called linear models.
Models incorporating coefficients in a linear predictor but allowing for more general forms
of the distribution of the response are called generalized linear models. When the lin-
ear predictor incorporates random effects in addition to the fixed-effects parameters we
call them generalized linear mized models (GLMMs) and fit such models with the glmer
function. As in previous chapters, we will begin with an example to help illustrate these
ideas.

6.1 Artificial contraception use in regions of Bangladesh

One of the test data sets from the Center for Multilevel Modelling, University of Bristol
is derived from the 1989 Bangladesh Fertility Survey, (Huq & Cleland, 1990). The data
are a subsample of responses from 1934 women grouped in 60 districts and are available
as the Contraception data set in the mlmRev package.

> str(Contraception)

'data.frame': 1934 obs. of 6 variables:

$ woman : Factor w/ 1934 levels "1","2" "3","4" . .: 123456789 10 ...
$ district: Factor w/ 60 levels "1","2","3","4" ,.: 1111111111

$ use : Factor w/ 2 levels "N","Y": 1 111111111 ...

$ livch : Factor w/ 4 levels "O","1","2" "3+": 4 1 34114424 ...

$ age : num 18.44 -5.56 1.44 8.44 -13.56 ...

$ urban : Factor w/ 2 levels "N","Y": 2222222222 ...

113
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Figure 6.1: Contraception use versus centered age for women in the Bangladesh Fertility
Survey 1989. Panels are determined by whether the woman is in an urban setting or not.
Lines within the panels are scatterplot smoother lines for women with 0, 1, 2 and 3 or
more live children.

The response of interest is use — whether the woman chooses to use artificial contra-
ception. The covariates include the district in which the woman resides, the number of
live children she currently has, her age and whether she is in a rural or an urban setting.

Note that the age variable is centered about a particular age so some values are neg-
ative. Regretably, the information on what the centering age was does not seem to be
available.

6.1.1 Plotting the binary response

Producing informative graphical displays of a binary response as it relates to covariates
is somewhat more challenging that the corresponding plots for responses on a continuous
scale. If we were to plot the 1934 responses as 0/1 values versus, for example, the woman’s
centered age, we would end up with a rather uninformative plot because all the points
would fall on one of two horizontal lines.

One approach to illustrating the structure of the data more effectively is to add scat-
terplot smoother lines (Fig. 6.1) to show the trend in the response with respect to the
covariate. Once we have the smoother lines in such a plot we can omit the data points
themselves, as we did here, because they add very little information.

The first thing to notice about the plot is that the proportion of women using contra-
ception is not linear in age, which, on reflection, makes sense. A woman in the middle of
this age range (probably corresponding to an age around 25) is more likely to use artificial
contraception than is a girl in her early teens or a woman in her forties. We also see
that women in an urban setting are more likely to use contraception than those in a rural
setting and that women with no live children are less likely than women who have live
children. There do not seem to be strong differences between women who have 1, 2 or
3 or more children compared to the differences between women with children and those
without children.

Interestingly, the quadratic pattern with respect to age does not seem to have been
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noticed. Comparisons of model fits through different software systems, as provided by
the Center for Multilevel Modelling, incorporate only a linear term in age, even though
the pattern is clearly nonlinear. The lesson here is similar to what we have seen in other
examples; careful plotting of the data should, whenever possible, precede attempts to fit
models to the data.

6.1.2 Initial GLMM fit to the contraception data

As for the 1mer function, the first two arguments to the glmer function for fitting gener-
alized linear mixed models are the model formula and the name of the data frame. The
third argument to glmer, named family, describes the type of conditional distribution of
the response given the random effects. Actually, as the name family implies, it contains
more information than just the distribution type in that each distribution and link are
described by several functions. Certain distributions, including the binomial, have canon-
ical link functions (described in sec. 6.2.2) associated with them and if we specify just
the distribution type we get the family with the canonical link. Thus our initial fit is
generated as

> fm10 <- glmer(use ~ 1l+age+I(age”2)+urban+livch+(1|district),
+ Contraception, binomial)

When displaying a fitted model like this that has several fixed-effects coefficients it
is helpful to specify the optional argument corr=FALSE to suppress printing of the rather
large correlation matrix of the fixed effects estimators.

> print (fm10, corr=FALSE)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [
glmerMod]
Family: binomial ( logit )
Formula: use ~ 1 + age + I(age”2) + urban + livch + (1 | district)
Data: Contraception

AIC BIC loglik deviance df.resid
2388.729 2433.267 -1186.364 2372.729 1926
Random effects:
Groups  Name Std.Dev.

district (Intercept) 0.4752
Number of obs: 1934, groups: district, 60
Fixed Effects:

(Intercept) age I(age~2) urbanY livchi livch2

-1.035027 0.003535 -0.004562 0.697285 0.814977 0.916459
livch3+
0.915027

convergence code 0; 2 optimizer warnings; O lme4 warnings

The interpretation of the coefficients in this model is somewhat different from the linear
mixed models coefficients that we examined previously but many of the model-building
steps are similar. A rough assessment of the utility of a particular term in the fixed-
effects part of the model can be obtained from examining the estimates of the coefficients
associated with it and their standard errors. To test whether a particular term is useful we
omit it from the model, refit and compare the reduced model fit to the original according
to the change in deviance.

We will examine the terms in the model first and discuss the interpretation of the
coefficients in sec. 6.2.
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Recall from Chap. 4 that the default set of contrasts for a factor such as livch is
offsets relative to the reference level, in this case women who do not have any live children.
Although the coefficients labeled 1ivchi, 1ivch2 and 1livch3+ are all large relative to their
standard errors, they are quite close to each other. This confirms our earlier impression
that the main distinction is between women with children and those without and, for those
who do have children, the number of children is not an important distinction.

After incorporating a new variable ch — an indicator of whether the woman has any
children — in the data

> Contraception <- within(Contraception,
+ ch <- factor(livch != 0, labels = c("N", "Y")))

we fit a reduced model, fm11, with summary

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model
failed to converge with max|grad| = 0.00158653 (tol = 0.001, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model

is nearly unidentifiable: very large eigenvalue
- Rescale variables?

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [
glmerMod]
Family: binomial ( logit )
Formula: use ~ age + I(age”2) + urban + ch + (1 | district)
Data: Contraception

AIC BIC loglLik deviance df.resid
2385.186 2418.590 -1186.593 2373.186 1928
Random effects:
Groups  Name Std.Dev.

district (Intercept) 0.474

Number of obs: 1934, groups: district, 60

Fixed Effects:

(Intercept) age I(age™2) urbanY chY
-1.006374 0.006256 -0.004635 0.692922 0.860382

convergence code O; 2 optimizer warnings; O lme4 warnings

Comparing this model to the previous model

> anova(fml1l,fm10)

Data: Contraception

Models:

fmll: use ~ age + I(age™2) + urban + ch + (1 | district)

fm10: use ~ 1 + age + I(age”2) + urban + livch + (1 | district)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)

fm1l 6 2385.2 2418.6 -1186.6 2373.2

fm10 8 2388.7 2433.3 -1186.4 2372.7 0.4571 2 0.7957

indicates that the reduced model is adequate.

A plot of the smoothed observed proportions versus centered age according to ch and
urban (Fig. 6.2) indicates that all four groups have a quadratic trend with respect to age
but the location of the peak proportion is shifted for those without children relative to
those with children. Incorporating an interaction of age and ch allows for such a shift.
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Figure 6.2: Contraception use versus centered age for women in the Bangladesh Fertility
Survey 1989. Panels are determined by whether the woman is in an urban setting or not.
Lines within the panels are scatterplot smoother lines for women without children and
women with one or more live children.

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model
failed to converge with max|grad| = 0.00442383 (tol = 0.001, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model

is nearly unidentifiable: very large eigenvalue
- Rescale variables?

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [
glmerMod]
Family: binomial ( logit )
Formula: use ~ age * ch + I(age™2) + urban + (1 | district)
Data: Contraception

AIC BIC loglik deviance df.resid
2379.181 2418.153 -1182.591 2365.181 1927
Random effects:
Groups  Name Std.Dev.

district (Intercept) 0.4723

Number of obs: 1934, groups: district, 60

Fixed Effects:

(Intercept) age chy I(age™2) urbanY age:chY
-1.323298 -0.047294 1.210757 -0.005757 0.714007 0.068354

convergence code O; 2 optimizer warnings; O lme4 warnings

Comparing this fitted model to the previous one

> anova(fmll, fm12)

Data: Contraception
Models:
fmll: use ~ age + I(age”2) + urban + ch + (1 | district)
fml12: use ~ age * ch + I(age”™2) + urban + (1 | district)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
fm1l 6 2385.2 2418.6 -1186.6 2373.2
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fm12 7 2379.2 2418.2 -1182.6  2365.2 8.0045 1 0.004666

confirms the usefulness of this term.

Continuing with the model-building we turn our attention to the random effects spec-
ification to see whether urban/rural differences vary significantly between districts and
whether the distinction between childless women and women with children varies between
districts. We fit a succession of models, described in the exercises for this chapter, before
settling on model fm13,

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model

failed to converge with max|grad| = 0.00232732 (tol = 0.001, component 1)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model

is nearly unidentifiable: very large eigenvalue
- Rescale variables?

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [
glmerMod]
Family: binomial ( logit )
Formula: use ~ age * ch + I(age”2) + urban + (1 | urban:district)
Data: Contraception

AIC BIC loglik deviance df.resid
2368.475 2407.446 -1177.237 2354.475 1927
Random effects:
Groups Name Std.Dev.

urban:district (Intercept) 0.5682
Number of obs: 1934, groups: urban:district, 102
Fixed Effects:
(Intercept) age chy I(age~2) urbanY age:chyY
-1.340723 -0.046155 1.212848 -0.005626 0.786689 0.066463
convergence code O; 2 optimizer warnings; O 1lme4 warnings
Data: Contraception
Models:
fm12: use ~ age * ch + I(age”™2) + urban + (1 | district)
fm13: use ~ age * ch + I(age”2) + urban + (1 | urban:district)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
fm12 7 2379.2 2418.2 -1182.6  2365.2
fm13 7 2368.5 2407.4 -1177.2  2354.5 10.706 0 < 2.2e-16

Notice that although there are 60 distinct districts there are only 102 distinct combi-
nations of urban:district represented in the data. In 15 of the 60 districts there are no
rural women in the sample and in 3 districts there are no urban women in the sample, as
shown in

> xtabs(™ urban + district, Contraception)

district
urban 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
N 54 20 19 37 58 18 35 20 13 21 23 16 17 14 18 24 33 22
Y 63 0 2 11 2 7 0 2 3 0 0 6 8 101 8 2 0 14 4
district
urban 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
N 10 20 15 14 49 13 39 45 25 45 27 24 7T 26 28 14 13 T 24
Y 8 0 0 0 18 0 5 4 7 16 6 0 7 9 20 3 0 7 2
district
urban 41 42 43 44 45 46 47 48 49 50 b1 b2 53 55 56 57 58 59 60
N 23 6 28 27 34 74 9 26 4 15 20 42 0 0 24 23 20 10 22
Y 3 5 17 0 5 12 6 16 0 4 17 19 19 6 21 4 13 0 10

o

20
15

40
12
29

61
31
11
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6.2 Link functions and interpreting coefficients

To this point the only difference we have encountered between glmer and lmer as model-
fitting functions is the need to specify the distribution family in a call to glmer. The
formula specification is identical and the assessment of the significance of terms using
likelihood ratio tests is similar. This is intentional. We have emphasized the use of
likelihood ratio tests on terms, whether fixed-effects or random-effects terms, exactly so
the approach will be general.

However, the interpretation of the coefficient estimates in the different types of models
is different. In a linear mixed model the linear predictor is the conditional mean (or
“expected value”) of the response given the random effects. That is, if we assume that we
know the values of the fixed-effects parameters and the random effects then the expected
response for a particular combination of covariate values is the linear predictor. Individual
coefficients can be interpreted as slopes of the fitted response with respect to a numeric
covariate or as shifts between levels of a categorical covariate.

To interpret the estimates of coefficients in a GLMM we must define and examine the
link function that we mentioned earlier.

6.2.1 The logit link function for binary responses

The probability model for a binary response is the Bernoulli distribution, which is about
the simplest probability distribution we can concoct. There are only two possible values:
0 and 1. If the probability of the response 1 is p then the probability of 0 must be 1 —p. It
is easy to establish that the expected value is also p. For consistency across distribution
families we write this expected response as p instead of p. We should, however, keep in
mind that, for this distribution, g corresponds to a probability and hence must satisfy
0<pu<l

In general we don’t want to have restrictions on the values of the linear predictor so
we equate the linear predictor to a function of u that has an unrestricted range. In the
case of the Bernoulli distribution with the canonical link function we equate the linear
predictor to the log odds or logit of the positive response. That is

n = logit(u) = log <1ﬁ‘u> . (6.1)

To understand why this is called the “log odds” recall that p corresponds to a prob-
ability in [0, 1]. The corresponding odds ratio, ﬁ, is in [0, 00) and the logarithm of the
odds ratio, logit(u), is in (—o0, 00).

The inverse of the logit link function,

1

" 1+ exp(—n) 02

"

shown in Fig. 6.3, takes a value on the unrestricted range, (—oo,00), and maps it to
the probability range, [0,1]. It happens this function is also the cumulative distribution
function for the standard logistic distribution, available in R as the function plogis. In
some presentations the relationship between the logit link and the logistic distribution
is emphasized but that often leads to questions of why we should focus on the logistic
distribution. Also, it is not clear how this approach would generalize to other distributions
such as the Poisson or the Gamma distributions.
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Figure 6.3: Inverse of the logit link function. The linear predictor value, 1, which is on an
unrestricted scale, is mapped to p on the probability scale, [0, 1].

6.2.2 Canonical link functions

A way of deriving the logit link that does generalize to a class of common distributions
in what is called the exponential family is to consider the logarithm of the probability
function (for discrete distributions) or the probability density function (for continuous
distributions). The probability function for the Bernoulli distribution is p for y = 1 and
1—p for y = 0. If we write this in a somewhat peculiar way as ¥ +(1—pu)'~Y for y € {0, 1}
then the logarithm of the probability function becomes

bgmy+ﬂ—ufﬂ)=bﬁ1—m+wk%(luu)- (6.3)
Notice that the logit link function is the multiple of y in the last term.

For members of the exponential family the logarithm of the probability or probability
density function can be expressed as a sum of up to three terms: one that involves y
only, one that involves the parameters only and the product of y and a function of the
parameters. This function is the canonical link.

In the case of the Poisson distribution the probability function is e_y# for y €
{0,1,2,...} so the log probability function is

—log(y!) — 1+ ylog(p). (6.4)

and the canonical link function is log(u).

6.2.3 Interpreting coefficient estimates

Returning to the interpretation of the estimated coefficients in model fm13 we apply exactly
the same interpretation as for a linear mixed model but taking into account that slopes
or differences in levels are with respect to the logit or log-odds function. If we wish
to express results in the probability scale then we should apply the plogis function to

whatever combination of coefficients is of interest to us.

For example, we see from Fig. 6.2 that the observed proportion of childless women
with a centered age of 0 living in a rural setting who use artificial contraception is about
20%. The fitted value of the log-odds for a typical district (i.e. with a random effect of
zero) is -1.34072 corresponding to a fitted probability of
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Figure 6.4: 95% prediction intervals on the random effects in fm13 versus quantiles of the
standard normal distribution.

> plogis(fixef (fm13) [[1]])

[1] 0.2073911

or 20.7%.
Similarly the predicted log-odds of a childless woman with a centered age of 0 in an
urban setting of a typical district using artificial contraception is

> sum(fixef (fm13) [c(" (Intercept)","urban¥Y")])

[1] -0.5540341
corresponding to a probability of

> plogis(sum(fixef (fm13) [c(" (Intercept)","urban¥")]))

[1] 0.364929

The predicted log-odds and predicted probability for a woman with children and at
the same age and location are

> logodds <- sum(fixef (fm13) [c(" (Intercept)","chY","urban¥")])
> c("log-odds"=logodds, "probability"=plogis(logodds))

log-odds probability
0.6588136  0.6589938

We should also be aware that the random effects are defined on the linear predictor
scale and not on the probability scale. A normal probability plot of the conditional modes
of the random effects for model fm13 (Fig. 6.4) shows that the smallest random effects
are approximately -1 and the largest are approximately 1. The numerical values and
the identifier of the combination of urban and district for these extreme values can be
obtained as
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> head(sort(ranef (fm13, drop=TRUE) [[1]]), 3)

N:1 N:11 N:24
-0.9407429 -0.9080613 -0.5862548

and
> tail(sort(ranef (fm13, drop=TRUE) [[1]]), 3)

N:58 Y:14 N:34
0.6843406 0.6947686 1.0847164

The exponential of the random effect is the relative odds of a woman in a particu-
lar urban/district combination using artificial birth control compared to her counterpart
(same age, same with/without children status, same urban/rural status) in a typical dis-
trict. The odds of a rural woman in district 1 (i.e. the N:1 value of the urban:district
interaction) using artifical contraception is

> exp(ranef (fm13, drop=TRUE) [[1]]["N:1"])

N:1
0.3903378

or about 40% of that of her rural counterpart in a typical district.

Notice that there is considerable variability in the lengths of the prediction intervals
in Fig. 6.4, unlike those from previous model fits (e.g. Fig. 1.11, p. 21 or Fig. 2.2, p. 2.2).
This is to be expected with data from a highly unbalanced observational study.

Consider the cross-tabulation of counts of interviewees by district and urban/rural
status presented at the end of sec. 6.1.2. The data contains responses from 54 rural
women in district 1 but only 21 rural women from district 11. Thus the bottom line in
Fig. 6.4, from the N:1 level of the urban:district interaction, and based on 54 responses,
is shorter than the line second from the bottom, for N:11 and based on 21 women only.



Appendix A

Examining likelihood contour
projections

A.0.1 Profile Pairs Plots

A profiled deviance object, such as pr01, not only provides information on the sensitivity
of the model fit to changes in parameters, it also tells us how the parameters influence
each other. When we re-fit the model subject to a constraint such as, say, o1 = 60, we
obtain the conditional estimates for the other parameters — o and [y in this case. The
conditional estimate of, say, o as a function of o; is called the profile trace of o on oy.
Plotting such traces provides valuable information on how the parameters in the model
are influenced by each other.
The profile pairs plot, obtained as

> splom(pr01)

and shown in Fig. A.1 shows the profile traces along with interpolated contours of the
two-dimensional profiled deviance function. The contours are chosen to correspond to the
two-dimensional marginal confidence regions at particular confidence levels.

Because this plot may be rather confusing at first we will explain what is shown in
each panel. To make it easier to refer to panels we assign them (z,y) coordinates, as in a
Cartesian coordinate system. The columns are numbered 1 to 3 from left to right and the
rows are numbered 1 to 3 from bottom to top. Note that the rows are numbered from the
bottom to the top, like the y-axis of a graph, not from top to bottom, like a matrix.

The diagonal panels show the ordering of the parameters: o first, then log(o) then
Bo. Panels above the diagonal are in the original scale of the parameters. That is, the
top-left panel, which is the (1,3) position, has o1 on the horizontal axis and Sy on the
vertical axis.

In addition to the contour lines in this panel, there are two other lines, which are the
profile traces of o1 on fy and of By on o;. The profile trace of Sy on o; is a straight
horizontal line, indicating that the conditional estimate of [y, given a value of oy, is
constant. Again, this is a consequence of the simple model form and the balanced data
set. The other line in this panel, which is the profile trace of o1 on fp, is curved. That
is, the conditional estimate of o1 given By depends on Fy. As [y moves away from the
estimate, B\o, in either direction, the conditional estimate of o1 increases.

We will refer to the two traces on a panel as the “horizontal trace” and “vertical trace”.
They are not always perfectly horizontal and vertical lines but the meaning should be clear
from the panel because one trace will always be more horizontal and the other will be more
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Figure A.1: Profile pairs plot for the parameters in model fm01. The contour lines cor-
respond to two-dimensional 50%, 80%, 90%, 95% and 99% marginal confidence regions
based on the likelihood ratio. Panels below the diagonal represent the ((;, (;) parameters;
those above the diagonal represent the original parameters.

vertical. The one that is more horizontal is the trace of the parameter on the y axis as a
function of the parameter on the horizontal axis, and vice versa.

The contours shown on the panel are interpolated from the profile zeta function and
the profile traces, in the manner described in Bates & Watts (1988, Chapter 6). One
characteristic of a profile trace, which we can verify visually in this panel, is that the
tangent to a contour must be vertical where it intersects the horizontal trace and horizontal
where it intersects the vertical trace.

The (2, 3) panel shows fy versus log(c). In this case the traces actually are horizontal
and vertical straight lines. That is, the conditional estimate of By doesn’t depend on
log(o) and the conditional estimate of log(c) doesn’t depend on fy. Even in this case,
however, the contour lines are not concentric ellipses, because the deviance is not perfectly
quadratic in these parameters. That is, the zeta functions, ((fp) and ((log(o)), are not
linear.

The (1,2) panel, showing log(o) versus o1 shows distortion along both axes and nonlin-
ear patterns in both traces. When o is close to zero the conditional estimate of log(o) is
larger than when o is large. In other words small values of o; inflate the estimate of log(o)
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because the variability that would be explained by the random effects gets incorporated
into the residual noise term.

Panels below the diagonal are on the ( scale, which is why the axes on each of these
panels span the same range, approximately —3 to +3, and the profile traces always cross
at the origin. Thus the (3,1) panel shows ((o1) on the vertical axis versus ((f8y) on
the horizontal. These panels allow us to see distortions from an elliptical shape due to
nonlinearity of the traces, separately from the one-dimensional distortions caused by a poor
choice of scale for the parameter. The ( scales provide, in some sense, the best possible set
of single-parameter transformations for assessing the contours. On the { scales the extent
of a contour on the horizontal axis is exactly the same as the extent on the vertical axis
and both are centered about zero.

Another way to think of this is that, if we would have profiled o? instead of oy, we
would change all the panels in the first column but the panels on the first row would
remain the same.

Exercises

Create a profile pairs plot for model fmO1ML fit in Chap. 1 to the Dyestuff data. Does
the shape of the deviance contours in this model mirror those in Fig. A.17
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