
Good Practices in R Programming

Martin Mächler

maechler@R-project.org

The R Core Team

maechler@stat.math.ethz.ch

Seminar für Statistik
ETH Zurich, Switzerland

useR! – July 1, 2014

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 1 / 47

Outline

1 Introduction

2 Seven Guidelines for Good Practices in R Programming

3 FAQ 7.31 — generalized: Loss of Accuracy

4 Specific Hints — to give your friends

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 2 / 47

Outline

1 Introduction

2 Seven Guidelines for Good Practices in R Programming

3 FAQ 7.31 — generalized: Loss of Accuracy

4 Specific Hints — to give your friends

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 3 / 47

Prehistoric – 10 years ago

May 2004: First UseR! conference in Vienna

8 (eight!) keynote talks by R Core members (about exciting new
features, such as namespaces)

R version 1.9.1 a month later in June

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 4 / 47

Prehistoric – 10 years ago

May 2004: First UseR! conference in Vienna

8 (eight!) keynote talks by R Core members (about exciting new
features, such as namespaces)

R version 1.9.1 a month later in June

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 4 / 47

Prehistoric – 10 years ago

May 2004: First UseR! conference in Vienna

8 (eight!) keynote talks by R Core members (about exciting new
features, such as namespaces)

R version 1.9.1 a month later in June

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 4 / 47

Prehistoric – 10 years ago

May 2004: First UseR! conference in Vienna

8 (eight!) keynote talks by R Core members (about exciting new
features, such as namespaces)

R version 1.9.1 a month later in June

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 4 / 47

This talk is . . .

not systematic and comprehensive like a book such as
John Chambers “Programming with Data” (1998),
Venables + Ripley “S Programming” (2000),
Uwe Ligges “R Programmierung” (2004) [in German]

Norm Mattloff’s “The Art of R Programming” (2011)

not for complete newbies

not really for experts either

not about C++ (or C or Fortran or . . .) programming

not always entirely serious ,

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 5 / 47

This talk is . . .

on R language programming

my own view, and hence biased

hopefully helping userR s to improve

. somewhat entertaining ?

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 6 / 47

This talk is . . .

on R language programming

my own view, and hence biased

hopefully helping userR s to improve

. somewhat entertaining ?

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 6 / 47

This talk is . . .

on R language programming

my own view, and hence biased

hopefully helping userR s to improve

. somewhat entertaining ?

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 6 / 47

“Good Practices in R Programming”

“Good”, not “best practice”

“Programming” using R :

“Practice”: What I’ve learned over the years, with examples

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 7 / 47

“Good Practices in R Programming”

“Good”, not “best practice”

“Programming” using R :

“Practice”: What I’ve learned over the years, with examples

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 7 / 47

“Good Practices in R Programming”

“Good”, not “best practice”

“Programming” using R :

“Practice”: What I’ve learned over the years, with examples

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 7 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

What is Programming ?

Is Programming

like driving a car, a skill you learn and then know to do?

a scientific process to be undertaken with care?

a creative art?

−→ all of them, but not the least an art .
−→ Your R ‘programs’ should become works of art . . . ,

In spite of this,
−→ Guidelines (or Rules) for Good Practices in R Programming:

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 8 / 47

Outline

1 Introduction

2 Seven Guidelines for Good Practices in R Programming

3 FAQ 7.31 — generalized: Loss of Accuracy

4 Specific Hints — to give your friends

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 9 / 47

Rule 1: Work with Source files!

R Source files aka ‘R Scripts’ (but more).

obvious to some,
not intuitive for useRs used to GUIs.

Paradigm (shift):
Do not edit objects or fix() them, but modify (and re-evaluate)
their source!

In other words (from the ESS manual):

The source code is real.
The objects are realizations of the source code.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 10 / 47

Rule 1: Work with Source files!

R Source files aka ‘R Scripts’ (but more).

obvious to some,
not intuitive for useRs used to GUIs.

Paradigm (shift):
Do not edit objects or fix() them, but modify (and re-evaluate)
their source!

In other words (from the ESS manual):

The source code is real.
The objects are realizations of the source code.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 10 / 47

Rule 1: Work with Source files!

R Source files aka ‘R Scripts’ (but more).

obvious to some,
not intuitive for useRs used to GUIs.

Paradigm (shift):
Do not edit objects or fix() them, but modify (and re-evaluate)
their source!

In other words (from the ESS manual):

The source code is real.
The objects are realizations of the source code.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 10 / 47

(Rule 1: Work with Source files!)

Use a smart editor or IDE (Interactive Development Environment)
I syntax-aware: parentheses matching “(..))”

highlighting (differing fonts & colors syntax dependently)
I able to evaluate R code, by line, whole selection (region), function,

and the whole file
I command completion on R objects

such as (available on all platforms):
I Emacs + ESS (Emacs Speaks Statistics)
I RStudio
I StatET (R + Eclipse)
I and more

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 11 / 47

Good source code

1 is well readable by humans

2 is as much self-explaining as possible

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 12 / 47

Good source code

1 is well readable by humans

2 is as much self-explaining as possible

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 12 / 47

Good source code

1 is well readable by humans

2 is as much self-explaining as possible

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 12 / 47

Rule 2: Keep R source well readable & maintainable

Good, well readable R source code → is also well maintainable

1 Do indent lines! (i.e. initial spaces)

2 Do use spaces!
e.g., around <− , = , <= ,. . . , +, −, ;

after ’,’ ; before ’{’
3 Do wrap long lines!

(at column 70–80; −→ do not put the editor in fullscreen mode)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 13 / 47

Rule 2: Keep R source well readable & maintainable

Good, well readable R source code → is also well maintainable

1 Do indent lines! (i.e. initial spaces)

2 Do use spaces!
e.g., around <− , = , <= ,. . . , +, −, ;

after ’,’ ; before ’{’
3 Do wrap long lines!

(at column 70–80; −→ do not put the editor in fullscreen mode)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 13 / 47

Rule 2: Keep R source well readable & maintainable

Good, well readable R source code → is also well maintainable

1 Do indent lines! (i.e. initial spaces)

2 Do use spaces!
e.g., around <− , = , <= ,. . . , +, −, ;

after ’,’ ; before ’{’
3 Do wrap long lines!

(at column 70–80; −→ do not put the editor in fullscreen mode)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 13 / 47

Rule 2: Keep R source well readable & maintainable

Good, well readable R source code → is also well maintainable

1 Do indent lines! (i.e. initial spaces)

2 Do use spaces!
e.g., around <− , = , <= ,. . . , +, −, ;

after ’,’ ; before ’{’
3 Do wrap long lines!

(at column 70–80; −→ do not put the editor in fullscreen mode)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 13 / 47

well maintainable (Rule 2 cont.)

4 Do use comments copiously! (about every 10 lines)
We recommend

‘##’ for the usually indented comments,
‘#’ for end-of-line comments, and
‘###’ for the (major) “sectioning” or beginning-of-line ones.

5 Sometimes even better (but more laborious): Use Sweave or knitr (or
org-mode or another “weave & tangle” system (noweb))

6 E.g., R source in R Markdown (*.Rmd) format.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 14 / 47

well maintainable (Rule 2 cont.)

4 Do use comments copiously! (about every 10 lines)
We recommend

‘##’ for the usually indented comments,
‘#’ for end-of-line comments, and
‘###’ for the (major) “sectioning” or beginning-of-line ones.

5 Sometimes even better (but more laborious): Use Sweave or knitr (or
org-mode or another “weave & tangle” system (noweb))

6 E.g., R source in R Markdown (*.Rmd) format.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 14 / 47

well maintainable (Rule 2 cont.)

4 Do use comments copiously! (about every 10 lines)
We recommend

‘##’ for the usually indented comments,
‘#’ for end-of-line comments, and
‘###’ for the (major) “sectioning” or beginning-of-line ones.

5 Sometimes even better (but more laborious): Use Sweave or knitr (or
org-mode or another “weave & tangle” system (noweb))

6 E.g., R source in R Markdown (*.Rmd) format.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 14 / 47

... well readable code and the assignment operator

Beware: this is very controversial, and I am severely biased!

Some (including me, but by far not all!) believe that
using <− instead of = leads to far easier readable code:

‘ = ’ is also used much in function calls (incl.
list(a=.., b=..) and definitions (argument defaults)

<− stands out visually

<− can be marked up (by font/color) quite easily

something hard to achieve correctly with = (distinguishing
assignment from function arguments (both calls and formals)

Keyboard shortcut for <−: Alt + - in both Rstudio and ESS
(configurable)

\end{really-controversial}

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 15 / 47

... well readable code and the assignment operator

Beware: this is very controversial, and I am severely biased!

Some (including me, but by far not all!) believe that
using <− instead of = leads to far easier readable code:

‘ = ’ is also used much in function calls (incl.
list(a=.., b=..) and definitions (argument defaults)

<− stands out visually

<− can be marked up (by font/color) quite easily

something hard to achieve correctly with = (distinguishing
assignment from function arguments (both calls and formals)

Keyboard shortcut for <−: Alt + - in both Rstudio and ESS
(configurable)

\end{really-controversial}

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 15 / 47

... well readable code and the assignment operator

Beware: this is very controversial, and I am severely biased!

Some (including me, but by far not all!) believe that
using <− instead of = leads to far easier readable code:

‘ = ’ is also used much in function calls (incl.
list(a=.., b=..) and definitions (argument defaults)

<− stands out visually

<− can be marked up (by font/color) quite easily

something hard to achieve correctly with = (distinguishing
assignment from function arguments (both calls and formals)

Keyboard shortcut for <−: Alt + - in both Rstudio and ESS
(configurable)

\end{really-controversial}

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 15 / 47

... well readable code and the assignment operator

Beware: this is very controversial, and I am severely biased!

Some (including me, but by far not all!) believe that
using <− instead of = leads to far easier readable code:

‘ = ’ is also used much in function calls (incl.
list(a=.., b=..) and definitions (argument defaults)

<− stands out visually

<− can be marked up (by font/color) quite easily

something hard to achieve correctly with = (distinguishing
assignment from function arguments (both calls and formals)

Keyboard shortcut for <−: Alt + - in both Rstudio and ESS
(configurable)

\end{really-controversial}

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 15 / 47

. well maintainable (Rule 2 (end))

2 x. Do follow naming conventions for function argument
names, and if available also for new functions and/or classes.

But do not impose rigid rules here, since

1 programming is art (,)
2 The S language has a long history with many

contributers:
Live with some historical misnomers . . .

2 . . . Modularity, Clarity: “refine and polish your code”
(V&R): More on “well maintainable” in the following rules

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 16 / 47

. well maintainable (Rule 2 (end))

2 x. Do follow naming conventions for function argument
names, and if available also for new functions and/or classes.

But do not impose rigid rules here, since

1 programming is art (,)
2 The S language has a long history with many

contributers:
Live with some historical misnomers . . .

2 . . . Modularity, Clarity: “refine and polish your code”
(V&R): More on “well maintainable” in the following rules

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 16 / 47

. well maintainable (Rule 2 (end))

2 x. Do follow naming conventions for function argument
names, and if available also for new functions and/or classes.

But do not impose rigid rules here, since

1 programming is art (,)
2 The S language has a long history with many

contributers:
Live with some historical misnomers . . .

2 . . . Modularity, Clarity: “refine and polish your code”
(V&R): More on “well maintainable” in the following rules

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 16 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 3: Do read the documentation

and read it again and again
(and—only then—submit bug reports ,)

1 Books (see above), . . .

2 The manuals “An Introduction to R” (early),
“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3 R package vignettes

4 The help pages! and try their examples

5 Use help.search() (and read its help page to find out about fuzzy
matching and the agrep argument!)

6 Websearch (‘G..gl.’) Blogs, etc — are dated. Compare with “official”
docs: help pages, vignettes: The package authors’ reference.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 17 / 47

Rule 4: Do learn from the masters

An art is learned from the master artists:
Picasso, Van Gogh, Gauguin, Manet, Klimt . . .
John Chambers, Bill Venables, Bill Dunlap, Luke Tierney, Brian Ripley,
R-core in general :-), Dirk Eddelbuettel, Hadley Wickham . . .

Read others’ source — Learning by examples

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 18 / 47

Rule 4: Do learn from the masters

An art is learned from the master artists:
Picasso, Van Gogh, Gauguin, Manet, Klimt . . .
John Chambers, Bill Venables, Bill Dunlap, Luke Tierney, Brian Ripley,
R-core in general :-), Dirk Eddelbuettel, Hadley Wickham . . .

Read others’ source — Learning by examples

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 18 / 47

Rule 4: Do learn from the masters

An art is learned from the master artists:
Picasso, Van Gogh, Gauguin, Manet, Klimt . . .
John Chambers, Bill Venables, Bill Dunlap, Luke Tierney, Brian Ripley,
R-core in general :-), Dirk Eddelbuettel, Hadley Wickham . . .

Read others’ source — Learning by examples

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 18 / 47

. . . learn from the masters – Read the Source:

Obi-Wan Kenobi . . . :

“Use the source, Luke!”

> install.packages("fortunes")

> fortune(250)

As Obi-Wan Kenobi may have said in Star Wars: "Use the source,

Luke!"

-- Barry Rowlingson (answering a question on the

documentation of some implementation details)

R-devel (January 2010)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 19 / 47

Reading Source for ’?’ . . .→ Find Easter egg

> Anybody ? there ???

?

’’

(Demo)

Contacting Delphi...the oracle is unavailable.

We apologize for any inconvenience.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 20 / 47

Reading Source for ’?’ . . .→ Find Easter egg

> Anybody ? there ???

?

’’

(Demo)

Contacting Delphi...the oracle is unavailable.

We apologize for any inconvenience.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 20 / 47

Read the source – of packages

Note: The R source of an R package (in source state) is inside
〈pkg〉/R/*.R, and not what you get when you display the function in
R(by typing its name).

R FAQ 7.40 How do I access the source code for a function?
−→ Uwe Ligges (2006), “Help Desk: Accessing the sources”, R News,

6/4, 43–45 (http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf)

Download the source package, 〈pkg〉 〈n.m〉.tar.gz typically from
CRAN, unpack it and

I read it,
I experiment with it, and
I learn from it,

Or browse the package source code on R-forge or github, or . . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 21 / 47

Read the source – of packages

Note: The R source of an R package (in source state) is inside
〈pkg〉/R/*.R, and not what you get when you display the function in
R(by typing its name).

R FAQ 7.40 How do I access the source code for a function?
−→ Uwe Ligges (2006), “Help Desk: Accessing the sources”, R News,

6/4, 43–45 (http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf)

Download the source package, 〈pkg〉 〈n.m〉.tar.gz typically from
CRAN, unpack it and

I read it,
I experiment with it, and
I learn from it,

Or browse the package source code on R-forge or github, or . . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 21 / 47

Read the source – of packages

Note: The R source of an R package (in source state) is inside
〈pkg〉/R/*.R, and not what you get when you display the function in
R(by typing its name).

R FAQ 7.40 How do I access the source code for a function?
−→ Uwe Ligges (2006), “Help Desk: Accessing the sources”, R News,

6/4, 43–45 (http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf)

Download the source package, 〈pkg〉 〈n.m〉.tar.gz typically from
CRAN, unpack it and

I read it,
I experiment with it, and
I learn from it,

Or browse the package source code on R-forge or github, or . . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 21 / 47

Read the source – of packages

Note: The R source of an R package (in source state) is inside
〈pkg〉/R/*.R, and not what you get when you display the function in
R(by typing its name).

R FAQ 7.40 How do I access the source code for a function?
−→ Uwe Ligges (2006), “Help Desk: Accessing the sources”, R News,

6/4, 43–45 (http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf)

Download the source package, 〈pkg〉 〈n.m〉.tar.gz typically from
CRAN, unpack it and

I read it,
I experiment with it, and
I learn from it,

Or browse the package source code on R-forge or github, or . . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 21 / 47

Read the source – of packages

Note: The R source of an R package (in source state) is inside
〈pkg〉/R/*.R, and not what you get when you display the function in
R(by typing its name).

R FAQ 7.40 How do I access the source code for a function?
−→ Uwe Ligges (2006), “Help Desk: Accessing the sources”, R News,

6/4, 43–45 (http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf)

Download the source package, 〈pkg〉 〈n.m〉.tar.gz typically from
CRAN, unpack it and

I read it,
I experiment with it, and
I learn from it,

Or browse the package source code on R-forge or github, or . . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 21 / 47

Read the source – of packages

Note: The R source of an R package (in source state) is inside
〈pkg〉/R/*.R, and not what you get when you display the function in
R(by typing its name).

R FAQ 7.40 How do I access the source code for a function?
−→ Uwe Ligges (2006), “Help Desk: Accessing the sources”, R News,

6/4, 43–45 (http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf)

Download the source package, 〈pkg〉 〈n.m〉.tar.gz typically from
CRAN, unpack it and

I read it,
I experiment with it, and
I learn from it,

Or browse the package source code on R-forge or github, or . . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 21 / 47

Read the source – of packages

Note: The R source of an R package (in source state) is inside
〈pkg〉/R/*.R, and not what you get when you display the function in
R(by typing its name).

R FAQ 7.40 How do I access the source code for a function?
−→ Uwe Ligges (2006), “Help Desk: Accessing the sources”, R News,

6/4, 43–45 (http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf)

Download the source package, 〈pkg〉 〈n.m〉.tar.gz typically from
CRAN, unpack it and

I read it,
I experiment with it, and
I learn from it,

Or browse the package source code on R-forge or github, or . . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 21 / 47

Rule 5: Do not Copy & Paste !

because the result is not well maintainable:
Changes in one part do not propagate to the copy!

1 write functions instead

2 break a long function into several smaller ones, if possible

3 Inside functions : still Rule 5: “Do not Copy & Paste !!”
−→ write local or (package) global helper functions
−→ use many small helper functions (nicely hidden in NAMESPACE).

“Use functions”, e.g., use

1 mat [c o m p l i c a t e d , compcomp] <−
i f (A) A . e x p r e l s e B . e x p r

instead of

i f (A) mat [c o m p l i c a t e d , compcomp] <− A . e x p r
2 e l s e mat [c o m p l i c a t e d , compcomp] <− B . e x p r

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 22 / 47

Rule 5: Do not Copy & Paste !

because the result is not well maintainable:
Changes in one part do not propagate to the copy!

1 write functions instead

2 break a long function into several smaller ones, if possible

3 Inside functions : still Rule 5: “Do not Copy & Paste !!”
−→ write local or (package) global helper functions
−→ use many small helper functions (nicely hidden in NAMESPACE).

“Use functions”, e.g., use

mat [c o m p l i c a t e d , compcomp] <−
2 i f (A) A . e x p r e l s e B . e x p r

instead of

i f (A) mat [c o m p l i c a t e d , compcomp] <− A . e x p r
2 e l s e mat [c o m p l i c a t e d , compcomp] <− B . e x p r

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 22 / 47

Rule 5: Do not Copy & Paste !

because the result is not well maintainable:
Changes in one part do not propagate to the copy!

1 write functions instead

2 break a long function into several smaller ones, if possible

3 Inside functions : still Rule 5: “Do not Copy & Paste !!”
−→ write local or (package) global helper functions
−→ use many small helper functions (nicely hidden in NAMESPACE).

“Use functions”, e.g., use

mat [c o m p l i c a t e d , compcomp] <−
2 i f (A) A . e x p r e l s e B . e x p r

instead of

i f (A) mat [c o m p l i c a t e d , compcomp] <− A . e x p r
2 e l s e mat [c o m p l i c a t e d , compcomp] <− B . e x p r

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 22 / 47

Rule 5: Do not Copy & Paste !

because the result is not well maintainable:
Changes in one part do not propagate to the copy!

1 write functions instead

2 break a long function into several smaller ones, if possible

3 Inside functions : still Rule 5: “Do not Copy & Paste !!”
−→ write local or (package) global helper functions
−→ use many small helper functions (nicely hidden in NAMESPACE).

“Use functions”, e.g., use

mat [c o m p l i c a t e d , compcomp] <−
2 i f (A) A . e x p r e l s e B . e x p r

instead of

i f (A) mat [c o m p l i c a t e d , compcomp] <− A . e x p r
2 e l s e mat [c o m p l i c a t e d , compcomp] <− B . e x p r

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 22 / 47

Rule 5: Do not Copy & Paste !

because the result is not well maintainable:
Changes in one part do not propagate to the copy!

1 write functions instead

2 break a long function into several smaller ones, if possible

3 Inside functions : still Rule 5: “Do not Copy & Paste !!”
−→ write local or (package) global helper functions
−→ use many small helper functions (nicely hidden in NAMESPACE).

“Use functions”, e.g., use

mat [c o m p l i c a t e d , compcomp] <−
2 i f (A) A . e x p r e l s e B . e x p r

instead of

i f (A) mat [c o m p l i c a t e d , compcomp] <− A . e x p r
2 e l s e mat [c o m p l i c a t e d , compcomp] <− B . e x p r

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 22 / 47

Rule 5: Do not Copy & Paste !

because the result is not well maintainable:
Changes in one part do not propagate to the copy!

1 write functions instead

2 break a long function into several smaller ones, if possible

3 Inside functions : still Rule 5: “Do not Copy & Paste !!”
−→ write local or (package) global helper functions
−→ use many small helper functions (nicely hidden in NAMESPACE).

“Use functions”, e.g., use

mat [c o m p l i c a t e d , compcomp] <−
2 i f (A) A . e x p r e l s e B . e x p r

instead of

i f (A) mat [c o m p l i c a t e d , compcomp] <− A . e x p r
2 e l s e mat [c o m p l i c a t e d , compcomp] <− B . e x p r

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 22 / 47

Use Functions

Everything you do in R is calling functions anyway: In R,

Everything that exists is an object;
Everything that happens is a function call.

(John Chambers — this morning, first two of three principles)

Quiz:

When if(*) ... is regarded as function with three
arguments, the last being optional with a default,
What is the default?

i f (C) A
2 i f (C) A e l s e B

Answer: NULL: if (FALSE) A returns NULL invisibly

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 23 / 47

Use Functions

Everything you do in R is calling functions anyway: In R,

Everything that exists is an object;
Everything that happens is a function call.

(John Chambers — this morning, first two of three principles)

Quiz:

When if(*) ... is regarded as function with three
arguments, the last being optional with a default,
What is the default?

i f (C) A
2 i f (C) A e l s e B

Answer: NULL: if (FALSE) A returns NULL invisibly

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 23 / 47

Use Functions

Everything you do in R is calling functions anyway: In R,

Everything that exists is an object;
Everything that happens is a function call.

(John Chambers — this morning, first two of three principles)

Quiz:

When if(*) ... is regarded as function with three
arguments, the last being optional with a default,
What is the default?

i f (C) A
2 i f (C) A e l s e B

Answer: NULL: if (FALSE) A returns NULL invisibly

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 23 / 47

Use Functions

Everything you do in R is calling functions anyway: In R,

Everything that exists is an object;
Everything that happens is a function call.

(John Chambers — this morning, first two of three principles)

Quiz:

When if(*) ... is regarded as function with three
arguments, the last being optional with a default,
What is the default?

i f (C) A
2 i f (C) A e l s e B

Answer: NULL: if (FALSE) A returns NULL invisibly

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 23 / 47

Use Functions

Everything you do in R is calling functions anyway: In R,

Everything that exists is an object;
Everything that happens is a function call.

(John Chambers — this morning, first two of three principles)

Quiz:

When if(*) ... is regarded as function with three
arguments, the last being optional with a default,
What is the default?

i f (C) A
2 i f (C) A e l s e B

Answer: NULL: if (FALSE) A returns NULL invisibly

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 23 / 47

Use Functions

Everything you do in R is calling functions anyway: In R,

Everything that exists is an object;
Everything that happens is a function call.

(John Chambers — this morning, first two of three principles)

Quiz:

When if(*) ... is regarded as function with three
arguments, the last being optional with a default,
What is the default?

i f (C) A
2 i f (C) A e l s e B

Answer: NULL: if (FALSE) A returns NULL invisibly

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 23 / 47

Rule 6: Strive for clarity and simplicity

first! . . . and second . . . and again, e.g.,
think about naming of intermediate results with “self-explainable” variable
names
but use short names (plus comments) for formulae

Venables & Ripley:
“Refine and polish your code in the same way you would polish
your English prose”

(prose: using as “dictionary” your reference material)

−→ modularity (“granularity”)

Optimization: much much later, see below

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 24 / 47

Rule 6: Strive for clarity and simplicity

first! . . . and second . . . and again, e.g.,
think about naming of intermediate results with “self-explainable” variable
names
but use short names (plus comments) for formulae

Venables & Ripley:
“Refine and polish your code in the same way you would polish
your English prose”

(prose: using as “dictionary” your reference material)

−→ modularity (“granularity”)

Optimization: much much later, see below

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 24 / 47

Rule 6: Strive for clarity and simplicity

first! . . . and second . . . and again, e.g.,
think about naming of intermediate results with “self-explainable” variable
names
but use short names (plus comments) for formulae

Venables & Ripley:
“Refine and polish your code in the same way you would polish
your English prose”

(prose: using as “dictionary” your reference material)

−→ modularity (“granularity”)

Optimization: much much later, see below

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 24 / 47

Rule 6: Strive for clarity and simplicity

first! . . . and second . . . and again, e.g.,
think about naming of intermediate results with “self-explainable” variable
names
but use short names (plus comments) for formulae

Venables & Ripley:
“Refine and polish your code in the same way you would polish
your English prose”

(prose: using as “dictionary” your reference material)

−→ modularity (“granularity”)

Optimization: much much later, see below

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 24 / 47

Rule 6: Strive for clarity and simplicity

first! . . . and second . . . and again, e.g.,
think about naming of intermediate results with “self-explainable” variable
names
but use short names (plus comments) for formulae

Venables & Ripley:
“Refine and polish your code in the same way you would polish
your English prose”

(prose: using as “dictionary” your reference material)

−→ modularity (“granularity”)

Optimization: much much later, see below

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 24 / 47

Rule 6: Strive for clarity and simplicity

first! . . . and second . . . and again, e.g.,
think about naming of intermediate results with “self-explainable” variable
names
but use short names (plus comments) for formulae

Venables & Ripley:
“Refine and polish your code in the same way you would polish
your English prose”

(prose: using as “dictionary” your reference material)

−→ modularity (“granularity”)

Optimization: much much later, see below

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 24 / 47

Rule 7: Test your code!

1 Carefully write (small) testing examples, for each function
(“modularity”, “unit testing”)

2 Next step: Start a ’package’ via package.skeleton(). This allows
(via R CMD check)

I auto-testing (all the help pages examples).
use example(your function)

I specific testing (in a ./tests/ subdirectory, with or without strict
comparison to previous results)

I documenting your functions (and data, classes, methods):
takes time, but almost always leads you to improve your code !

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 25 / 47

Rule 7: Test your code!

1 Carefully write (small) testing examples, for each function
(“modularity”, “unit testing”)

2 Next step: Start a ’package’ via package.skeleton(). This allows
(via R CMD check)

I auto-testing (all the help pages examples).
use example(your function)

I specific testing (in a ./tests/ subdirectory, with or without strict
comparison to previous results)

I documenting your functions (and data, classes, methods):
takes time, but almost always leads you to improve your code !

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 25 / 47

Rule 7: Test your code!

1 Carefully write (small) testing examples, for each function
(“modularity”, “unit testing”)

2 Next step: Start a ’package’ via package.skeleton(). This allows
(via R CMD check)

I auto-testing (all the help pages examples).
use example(your function)

I specific testing (in a ./tests/ subdirectory, with or without strict
comparison to previous results)

I documenting your functions (and data, classes, methods):
takes time, but almost always leads you to improve your code !

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 25 / 47

Rule 7: Test your code!

1 Carefully write (small) testing examples, for each function
(“modularity”, “unit testing”)

2 Next step: Start a ’package’ via package.skeleton(). This allows
(via R CMD check)

I auto-testing (all the help pages examples).
use example(your function)

I specific testing (in a ./tests/ subdirectory, with or without strict
comparison to previous results)

I documenting your functions (and data, classes, methods):
takes time, but almost always leads you to improve your code !

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 25 / 47

Test your code! (Rule 7 cont.)

3 Use software tools for testing:
I Those of R CMD check are in the standard R package tools, and

codetools (by Luke Tierney)
I Unit testing by packages, RUnit, testthat, etc.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 26 / 47

After Testing, maybe Optimizing

Citing from V&R’s “S Programming” (p.172):

Jackson “Principles of Program Design” (on ‘code
optimization’):

Rule 1 Don’t do it.
Rule 2 (for experts only) Don’t do it yet—not until you
have a perfectly clear and unoptimized solution.

‘to the right problem by an efficient method’.

Premature optimization is the root of all evil – Donald Knuth

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 27 / 47

After Testing, maybe Optimizing

Citing from V&R’s “S Programming” (p.172):

Jackson “Principles of Program Design” (on ‘code
optimization’):

Rule 1 Don’t do it.
Rule 2 (for experts only) Don’t do it yet—not until you
have a perfectly clear and unoptimized solution.

‘to the right problem by an efficient method’.

Premature optimization is the root of all evil – Donald Knuth

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 27 / 47

After Testing, maybe Optimizing

Citing from V&R’s “S Programming” (p.172):

Jackson “Principles of Program Design” (on ‘code
optimization’):

Rule 1 Don’t do it.
Rule 2 (for experts only) Don’t do it yet—not until you
have a perfectly clear and unoptimized solution.

‘to the right problem by an efficient method’.

Premature optimization is the root of all evil – Donald Knuth

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 27 / 47

After Testing, maybe Optimizing

Citing from V&R’s “S Programming” (p.172):

Jackson “Principles of Program Design” (on ‘code
optimization’):

Rule 1 Don’t do it.
Rule 2 (for experts only) Don’t do it yet—not until you
have a perfectly clear and unoptimized solution.

‘to the right problem by an efficient method’.

Premature optimization is the root of all evil – Donald Knuth

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 27 / 47

After Testing, maybe Optimizing

Citing from V&R’s “S Programming” (p.172):

Jackson “Principles of Program Design” (on ‘code
optimization’):

Rule 1 Don’t do it.
Rule 2 (for experts only) Don’t do it yet—not until you
have a perfectly clear and unoptimized solution.

‘to the right problem by an efficient method’.

Premature optimization is the root of all evil – Donald Knuth

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 27 / 47

After Testing, maybe Optimizing

Citing from V&R’s “S Programming” (p.172):

Jackson “Principles of Program Design” (on ‘code
optimization’):

Rule 1 Don’t do it.
Rule 2 (for experts only) Don’t do it yet—not until you
have a perfectly clear and unoptimized solution.

‘to the right problem by an efficient method’.

Premature optimization is the root of all evil – Donald Knuth

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 27 / 47

Optimizing code - 2

1 Really do clean up and test your code and think twice before you even
start contemplating optimizing the code . . .

2 do measure, not guess:

In 2001, when R was at version 1.1.x,

From: Thomas Lumley (tlumley@u.washington.edu)

To : R-help

There are two fundamental principles of optimisation
1) Don’t do it unless you need it
2) Measure, don’t guess, about speed.

The simple way to answer questions about which way is
slower/more memory intensive is to try it and see. Between
Rprof(), unix.time() and gc(), you have all the information you
need.

In 2014: Have packages rbenchmark, microbenchmark, pbdPROF,
and more.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 28 / 47

Optimizing code - 2

1 Really do clean up and test your code and think twice before you even
start contemplating optimizing the code . . .

2 do measure, not guess:

In 2001, when R was at version 1.1.x,

From: Thomas Lumley (tlumley@u.washington.edu)

To : R-help

There are two fundamental principles of optimisation
1) Don’t do it unless you need it
2) Measure, don’t guess, about speed.

The simple way to answer questions about which way is
slower/more memory intensive is to try it and see. Between
Rprof(), unix.time() and gc(), you have all the information you
need.

In 2014: Have packages rbenchmark, microbenchmark, pbdPROF,
and more.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 28 / 47

Optimizing code - 2

1 Really do clean up and test your code and think twice before you even
start contemplating optimizing the code . . .

2 do measure, not guess:

In 2001, when R was at version 1.1.x,

From: Thomas Lumley (tlumley@u.washington.edu)

To : R-help

There are two fundamental principles of optimisation
1) Don’t do it unless you need it
2) Measure, don’t guess, about speed.

The simple way to answer questions about which way is
slower/more memory intensive is to try it and see. Between
Rprof(), unix.time() and gc(), you have all the information you
need.

In 2014: Have packages rbenchmark, microbenchmark, pbdPROF,
and more.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 28 / 47

Optimizing code - 2

1 Really do clean up and test your code and think twice before you even
start contemplating optimizing the code . . .

2 do measure, not guess:

In 2001, when R was at version 1.1.x,

From: Thomas Lumley (tlumley@u.washington.edu)

To : R-help

There are two fundamental principles of optimisation
1) Don’t do it unless you need it
2) Measure, don’t guess, about speed.

The simple way to answer questions about which way is
slower/more memory intensive is to try it and see. Between
Rprof(), unix.time() and gc(), you have all the information you
need.

In 2014: Have packages rbenchmark, microbenchmark, pbdPROF,
and more.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 28 / 47

Optimizing code - 2

1 Really do clean up and test your code and think twice before you even
start contemplating optimizing the code . . .

2 do measure, not guess:

In 2001, when R was at version 1.1.x,

From: Thomas Lumley (tlumley@u.washington.edu)

To : R-help

There are two fundamental principles of optimisation
1) Don’t do it unless you need it
2) Measure, don’t guess, about speed.

The simple way to answer questions about which way is
slower/more memory intensive is to try it and see. Between
Rprof(), unix.time() and gc(), you have all the information you
need.

In 2014: Have packages rbenchmark, microbenchmark, pbdPROF,
and more.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 28 / 47

Seven Guidelines (“Rules”) – still relevant

1 Work with Source files

2 Keep R source code well readable and maintainable

3 Do read the documentation

4 Do learn from the masters — Read R (package) sources

5 Do not Copy & Paste! — Modularize into (small) Functions

6 Strive for clarity and simplicity

7 Test your code — and test, and test!

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 29 / 47

Seven Guidelines (“Rules”) – still relevant

1 Work with Source files

2 Keep R source code well readable and maintainable

3 Do read the documentation

4 Do learn from the masters — Read R (package) sources

5 Do not Copy & Paste! — Modularize into (small) Functions

6 Strive for clarity and simplicity

7 Test your code — and test, and test!

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 29 / 47

Seven Guidelines (“Rules”) – still relevant

1 Work with Source files

2 Keep R source code well readable and maintainable

3 Do read the documentation

4 Do learn from the masters — Read R (package) sources

5 Do not Copy & Paste! — Modularize into (small) Functions

6 Strive for clarity and simplicity

7 Test your code — and test, and test!

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 29 / 47

Seven Guidelines (“Rules”) – still relevant

1 Work with Source files

2 Keep R source code well readable and maintainable

3 Do read the documentation

4 Do learn from the masters — Read R (package) sources

5 Do not Copy & Paste! — Modularize into (small) Functions

6 Strive for clarity and simplicity

7 Test your code — and test, and test!

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 29 / 47

Seven Guidelines (“Rules”) – still relevant

1 Work with Source files

2 Keep R source code well readable and maintainable

3 Do read the documentation

4 Do learn from the masters — Read R (package) sources

5 Do not Copy & Paste! — Modularize into (small) Functions

6 Strive for clarity and simplicity

7 Test your code — and test, and test!

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 29 / 47

Seven Guidelines (“Rules”) – still relevant

1 Work with Source files

2 Keep R source code well readable and maintainable

3 Do read the documentation

4 Do learn from the masters — Read R (package) sources

5 Do not Copy & Paste! — Modularize into (small) Functions

6 Strive for clarity and simplicity

7 Test your code — and test, and test!

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 29 / 47

Seven Guidelines (“Rules”) – still relevant

1 Work with Source files

2 Keep R source code well readable and maintainable

3 Do read the documentation

4 Do learn from the masters — Read R (package) sources

5 Do not Copy & Paste! — Modularize into (small) Functions

6 Strive for clarity and simplicity

7 Test your code — and test, and test!

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 29 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

New Guidelines:

8 Maintain R code in Packages (extension of “Test!”)

9 → Source code management, e.g., subversion(svn) or github(git)

10 Rscript or R CMD BATCH 〈mysource〉.R should “always” work!
−→ Reproducible Data Analysis and Research

I → Do not use .RData no, really, not ever! . . .
I Rather, use save() explicitly only for expensive parts.
I Consider attach("myStuff.rda") instead of load("myStuff.rda")
I Use the following outline:

s a v e f i l e <− "<myThings >.rda"

2 i f (f i l e . e x i s t s (s a v e f i l e)) attach (s a v e f i l e) e l s e {
.

4
save (o1 , o2 , . . . , o . n , f i l e = s a v e f i l e)

6 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 30 / 47

Outline

1 Introduction

2 Seven Guidelines for Good Practices in R Programming

3 FAQ 7.31 — generalized: Loss of Accuracy

4 Specific Hints — to give your friends

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 31 / 47

FAQ 7.31 — Floating Point Numbers are Limited

R FAQ 7.31

Why doesn’t R think these numbers are equal?

The only numbers that can be represented exactly in R’s numeric type
are integers and fractions whose denominator is a power of 2. Other
numbers have to be rounded to (typically) 53 binary digits accuracy.
As a result, two floating point numbers will not reliably be equal unless
they have been computed by the same algorithm, and not always even
then. For example

> a <- sqrt(2)

> a * a == 2 # mathematically, yes, ...

[1] FALSE

> a * a - 2

[1] 4.440892e-16

For more, . . . David Goldberg (1991), “What Every Computer Scientist
Should Know About Floating-Point Arithmetic”, ACM Computing
Surveys, 23/1, 5–48.. . .

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 32 / 47

FAQ 7.31 — Floating Point – 2 –

R FAQ 7.31

Why doesn’t R think these numbers are equal?

To quote from “The Elements of Programming Style” by Kernighan and
Plauger:

10.0 times 0.1 is hardly ever 1.0.

Actually, it is in R, (always / typically (?)), nowadays.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 33 / 47

FAQ 7.31 — Floating Point – 2 –

R FAQ 7.31

Why doesn’t R think these numbers are equal?

To quote from “The Elements of Programming Style” by Kernighan and
Plauger:

10.0 times 0.1 is hardly ever 1.0.

Actually, it is in R, (always / typically (?)), nowadays.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 33 / 47

FAQ 7.31 ++ : The ”log” in the dpq-functions

All “dpq” distribution functions in R, i.e. density cumulative probability
and quantile functions, have a log or log.p argument (FALSE / TRUE).

Why ?

−→ Compute Likelihoods via d<foo>(*, log = TRUE)

−→ Probalistic Networks, MC(MC): P = P1 · P2 · · · · · Pn quickly
underflows to zero.

Solution: Work in “log space”: logP =
∑

j logPj , where logPj are
computed via R’s d〈foo〉(*, log=TRUE) or p〈foo〉(*, log.p=TRUE),
rather than taking logs

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 34 / 47

FAQ 7.31 ++ : The ”log” in the dpq-functions

All “dpq” distribution functions in R, i.e. density cumulative probability
and quantile functions, have a log or log.p argument (FALSE / TRUE).

Why ?

−→ Compute Likelihoods via d<foo>(*, log = TRUE)

−→ Probalistic Networks, MC(MC): P = P1 · P2 · · · · · Pn quickly
underflows to zero.

Solution: Work in “log space”: logP =
∑

j logPj , where logPj are
computed via R’s d〈foo〉(*, log=TRUE) or p〈foo〉(*, log.p=TRUE),
rather than taking logs

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 34 / 47

FAQ 7.31 ++ : The ”log” in the dpq-functions

All “dpq” distribution functions in R, i.e. density cumulative probability
and quantile functions, have a log or log.p argument (FALSE / TRUE).

Why ?

−→ Compute Likelihoods via d<foo>(*, log = TRUE)

−→ Probalistic Networks, MC(MC): P = P1 · P2 · · · · · Pn quickly
underflows to zero.

Solution: Work in “log space”: logP =
∑

j logPj , where logPj are
computed via R’s d〈foo〉(*, log=TRUE) or p〈foo〉(*, log.p=TRUE),
rather than taking logs

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 34 / 47

FAQ 7.31 . . . Why R needs even more functions

1 log1p() (since R 1.0.0), expm1() (since R 1.5.0)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 35 / 47

Why log(1 + x) is not good enough, but log1p(x) is
1 + x cannot be numerically accurate when |x| � 1. In double precision
(53 bits ≈ 16 digits) accuracy, 1 + x “sees” only 2–3 digits of x when
x = 10−14,
> u <- 1 + (e <- 4e-13/9) ## then u - 1 == e mathematically:

> rbind(‘u-1‘ = u - 1, e)

[,1]

u-1 4.440892e-14

e 4.444444e-14

And the consequence for log(1 + x),
> curve(abs(1 - log(1+x) / log1p(x)), 1e-17, .2, log = ’xy’, main = "..", ..)

> sfsmisc :: eaxis(1); eaxis(2)
| relative error of log(1+x) |

x

10−17 10−15 10−13 10−11 10−9 10−7 10−5 10−3 10−1

10−16
10−14
10−12
10−10
10−8
10−6
10−4
10−2
100

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 36 / 47

Why log1p(x) beats log(1 + x)

| relative error of log(1+x) |

x

10−17 10−15 10−13 10−11 10−9 10−7 10−5 10−3 10−1

10−16
10−14
10−12
10−10
10−8
10−6
10−4
10−2
100

Solution: Expand log(1 + x) around x = 0. Well known

log(1 + x) = x− x2/2 + x3/3± . . . =
∞∑

n=1

(−1)n+1x
n

n
,

for |x| < 1.

Fast version of this expansion: typically used in log1p().
Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 37 / 47

FAQ 7.31 . . . Why R needs even more functions –2–

2 cospi(), sinpi(), tanpi() (from R 3.2.0), e.g.,

cospi(x):= cos(π · x), accurately, e.g., for x = 1
2 :

> cos(pi/2) ## mathematically == 0

[1] 6.123234e-17

> cospi(1/2)

[1] 0

3 log1mexp() . . . (my research; in R’s Rmathlib C code, named differ.)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 38 / 47

FAQ 7.31 . . . Why R needs even more functions –2–

2 cospi(), sinpi(), tanpi() (from R 3.2.0), e.g.,

cospi(x):= cos(π · x), accurately, e.g., for x = 1
2 :

> cos(pi/2) ## mathematically == 0

[1] 6.123234e-17

> cospi(1/2)

[1] 0

3 log1mexp() . . . (my research; in R’s Rmathlib C code, named differ.)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 38 / 47

Simple (semi-artificial!) Example: logit(exp(-L))
Logistic regression: Computing “logit()”s, log p

1−p accurately for very
small p, i.e., p = exp(−L), or

log
p

1− p = log p− log(1− p) = −L− log(1− exp(−L)),

and hence − log(1− exp(−L)) is needed, e.g., when p is really really close
to 0, say p = 10−1000, as then we can only compute logit(p), if we specify
L := − log(p)↔ p = exp(−L).
> curve(-log(1 - exp(-x)), 0, 10)

0 2 4 6 8 10

0.
0

1.
0

2.
0

x

−
lo

g(
1

−
 e

xp
(−

x)
)

seems fine. — — However, . . .Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 39 / 47

However, further out to 50 (and on a log scale), we observe

0 10 20 30 40 50

x

−
lo

g(
1

−
 e

xp
(−

x)
)

10−16

10−8

100

early underflow to 0

which shows early underflow.
Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 40 / 47

What did happen? Look at
> x <- -40:-35

> -log(1 - exp(x))

[1] 0.000000e+00 0.000000e+00 0.000000e+00 1.110223e-16 2.220446e-16

[6] 6.661338e-16

> log(-log(1 - exp(x)))# --> -Inf values

[1] -Inf -Inf -Inf -36.73680 -36.04365 -34.94504

> ## ok, how about more accuracy

> x. <- mpfr(x, 120)

> log(-log(1 - exp(x.)))# aha... looks perfect now

6 ’mpfr’ numbers of precision 120 bits

[1] -39.999999999999999997932904877538241734

[2] -38.99999999999999999423372196756935807

[3] -37.99999999999999998430451715981029611

[4] -36.999999999999999957331848579613165434

[5] -35.999999999999999884024061830552087239

[6] -34.999999999999999684744214015307532692

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 41 / 47

Visually, and with “high accuracy” mpfr-numbers:
> x <- seq(-40, -20, by = .5)

> plot(x,x, type="n", ylab="", ann=FALSE)

> lines(x, log(-log(1 - exp(x))), type = "o", col = "purple", lwd=3, cex = .6)

> x. <- mpfr(x, 120)

> lines(x, log(-log(1 - exp(x.))), col=2, lwd=1.5)

−40 −35 −30 −25 −20

−
40

−
35

−
30

−
25

−
20

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

The “real” solution uses a piecewise implementation of
log1mexp(x) = log(1− exp(−x)) for x > 0, see e.g., R package copula.

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 42 / 47

Outline

1 Introduction

2 Seven Guidelines for Good Practices in R Programming

3 FAQ 7.31 — generalized: Loss of Accuracy

4 Specific Hints — to give your friends

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 43 / 47

Specific Hints, Tips:

1 Subsetting (“[..]”):
1 Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !
2 tricky because of NAs

Inside “[..]”, often use %in% (wrapper of match()) or which().

2 Not x == NA but is .na(x)

3 Use ’1:n’ only when you know that n is positive:
Instead of 1:length(obj), use seq along(obj)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 44 / 47

Specific Hints, Tips:

1 Subsetting (“[..]”):
1 Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !
2 tricky because of NAs

Inside “[..]”, often use %in% (wrapper of match()) or which().

2 Not x == NA but is .na(x)

3 Use ’1:n’ only when you know that n is positive:
Instead of 1:length(obj), use seq along(obj)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 44 / 47

Specific Hints, Tips:

1 Subsetting (“[..]”):
1 Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !
2 tricky because of NAs

Inside “[..]”, often use %in% (wrapper of match()) or which().

2 Not x == NA but is .na(x)

3 Use ’1:n’ only when you know that n is positive:
Instead of 1:length(obj), use seq along(obj)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 44 / 47

Specific Hints, Tips:

1 Subsetting (“[..]”):
1 Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !
2 tricky because of NAs

Inside “[..]”, often use %in% (wrapper of match()) or which().

2 Not x == NA but is .na(x)

3 Use ’1:n’ only when you know that n is positive:
Instead of 1:length(obj), use seq along(obj)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 44 / 47

Specific Hints, Tips:

1 Subsetting (“[..]”):
1 Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !
2 tricky because of NAs

Inside “[..]”, often use %in% (wrapper of match()) or which().

2 Not x == NA but is .na(x)

3 Use ’1:n’ only when you know that n is positive:
Instead of 1:length(obj), use seq along(obj)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 44 / 47

Specific Hints, Tips:

1 Subsetting (“[..]”):
1 Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !
2 tricky because of NAs

Inside “[..]”, often use %in% (wrapper of match()) or which().

2 Not x == NA but is .na(x)

3 Use ’1:n’ only when you know that n is positive:
Instead of 1:length(obj), use seq along(obj)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 44 / 47

Specific Hints, Tips:

1 Subsetting (“[..]”):
1 Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !
2 tricky because of NAs

Inside “[..]”, often use %in% (wrapper of match()) or which().

2 Not x == NA but is .na(x)

3 Use ’1:n’ only when you know that n is positive:
Instead of 1:length(obj), use seq along(obj)

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 44 / 47

Specific Hints – 2:
4 Do not grow objects:

If you cannot avoid a for loop, replace

rmat <− NULL
2 f o r (i i n 1 : n) {

rmat <− rb ind (rmat , l o n g . computat ion (i ,))
4 }

by
rmat <− matrix (0 . , n , k)

2 f o r (i i n 1 : n) {
rmat [i ,] <− l o n g . computat ion (i ,)

4 }

and almost always, column by column instead of row by row (creating the
transpose):

tmat <− matrix (0 . , k , n)
2 f o r (i i n 1 : n) {

tmat [, i] <− l o n g . computat ion (i ,)
4 }

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 45 / 47

Specific Hints, Tips (cont.)

5 Use lapply(), sapply(), sometimes preferably vapply()
mapply() (Apply to multiple arguments), or sometimes the
replicate() wrapper:

sample <− r e p l i c a t e (1000 , median (r t (100 , df =3)))
2 h i s t (sample)

6 Use with(<d.frame>,) and do not attach data frames

7 Use TRUE and FALSE, not ‘T’ and ‘F’ !

8 know the difference between ‘|’ vs ‘||’ and ‘&’ vs ‘&&’
and inside if (....) almost always use ‘||’ and ‘&&’!

9 use which.max(), . . . , findInterval()

10 Learn about ‘Regular Expressions’: ?regexp etc

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 46 / 47

Specific Hints, Tips (cont.)

5 Use lapply(), sapply(), sometimes preferably vapply()
mapply() (Apply to multiple arguments), or sometimes the
replicate() wrapper:

sample <− r e p l i c a t e (1000 , median (r t (100 , df =3)))
2 h i s t (sample)

6 Use with(<d.frame>,) and do not attach data frames

7 Use TRUE and FALSE, not ‘T’ and ‘F’ !

8 know the difference between ‘|’ vs ‘||’ and ‘&’ vs ‘&&’
and inside if (....) almost always use ‘||’ and ‘&&’!

9 use which.max(), . . . , findInterval()

10 Learn about ‘Regular Expressions’: ?regexp etc

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 46 / 47

Specific Hints, Tips (cont.)

5 Use lapply(), sapply(), sometimes preferably vapply()
mapply() (Apply to multiple arguments), or sometimes the
replicate() wrapper:

sample <− r e p l i c a t e (1000 , median (r t (100 , df =3)))
2 h i s t (sample)

6 Use with(<d.frame>,) and do not attach data frames

7 Use TRUE and FALSE, not ‘T’ and ‘F’ !

8 know the difference between ‘|’ vs ‘||’ and ‘&’ vs ‘&&’
and inside if (....) almost always use ‘||’ and ‘&&’!

9 use which.max(), . . . , findInterval()

10 Learn about ‘Regular Expressions’: ?regexp etc

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 46 / 47

Specific Hints, Tips (cont.)

5 Use lapply(), sapply(), sometimes preferably vapply()
mapply() (Apply to multiple arguments), or sometimes the
replicate() wrapper:

sample <− r e p l i c a t e (1000 , median (r t (100 , df =3)))
2 h i s t (sample)

6 Use with(<d.frame>,) and do not attach data frames

7 Use TRUE and FALSE, not ‘T’ and ‘F’ !

8 know the difference between ‘|’ vs ‘||’ and ‘&’ vs ‘&&’
and inside if (....) almost always use ‘||’ and ‘&&’!

9 use which.max(), . . . , findInterval()

10 Learn about ‘Regular Expressions’: ?regexp etc

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 46 / 47

Specific Hints, Tips (cont.)

5 Use lapply(), sapply(), sometimes preferably vapply()
mapply() (Apply to multiple arguments), or sometimes the
replicate() wrapper:

sample <− r e p l i c a t e (1000 , median (r t (100 , df =3)))
2 h i s t (sample)

6 Use with(<d.frame>,) and do not attach data frames

7 Use TRUE and FALSE, not ‘T’ and ‘F’ !

8 know the difference between ‘|’ vs ‘||’ and ‘&’ vs ‘&&’
and inside if (....) almost always use ‘||’ and ‘&&’!

9 use which.max(), . . . , findInterval()

10 Learn about ‘Regular Expressions’: ?regexp etc

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 46 / 47

What Style is your R programming?
Perform the art, enjoy and be productive!

Martin.Maechler@R-project.org

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 47 / 47

What Style is your R programming?
Perform the art, enjoy and be productive!

Martin.Maechler@R-project.org

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 47 / 47

What Style is your R programming?
Perform the art, enjoy and be productive!

Martin.Maechler@R-project.org

Martin Mächler (R Core/ ETH Zurich) Good Practices in R Programming useR! 2014 47 / 47

