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Goals of Today’s Lecture

I See how a sequence of experiments can be performed to
optimize a response variable.

I Understand the difference between first-order and
second-order response surfaces.
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Introductory Example: Antibody Production

I Large amounts of antibodies are obtained in biotechnological
processes.

I Mice produce antibodies. Among other factors, pre-treatment
by radiation and the injection of an oil increase yield.

I Of course we want to maximize yield.

I Due to the complexity of the underlying process we can not
simply set-up a (non)linear model.

I Here we can say that

Yi = h
(
x
(1)
i , x

(2)
i

)
+ Ei ,

where x (1) = “radiation dose” and x (2) = “waiting time
between radiation and injection of the oil”.

I We do not have a parametric form for the function h.  
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Remarks

I In general, we first have to identify those factors that really
have an influence on yield.

I If we have many factors, one of the easiest approaches is to
use two levels for each factor (without replicates).

I This is also known as a 2k-design, where k is the number of
factors.

I If this is still too much effort, only a fraction of all possible
combinations can be considered, leading to so called
fractional designs.

I Identification of relevant factors can be done using analysis
of variance (ANOVA) (regression). We will not discuss this
here.
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In the following, we assume that we have already identified the
relevant factors.

Back to our example

I The simplest model with an optimum would be a quadratic
function.

I If we would know h, we could identify the optimal setting

[x
(1)
0 , x

(2)
0 ] of the process factors.

I h
(
x (1), x (2)

)
is also called the response surface.

I Typically, h must be estimated from data.
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Hypothetical Example: Reaction Analysis

Assume yield [grams] of a process depends on

I Reaction time [min]

I Temperature [◦Celsius]

An experiment is performed as follows:

I For a temperature of T = 220◦C , different reaction times are
used: 80, 90, 100, 110 and 120 minutes.

I The maximum seems to be at 100 minutes (see plot on next
slide).

I Hence, we fix reaction time at 100 minutes and vary
temperature at 180, 200, 220, 240 and 260◦C .
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I The optimum seems to be at 220◦C .

I Can we now conclude that the (global) optimal value is at
[100min, 220◦C ]?
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Left: Temperature T = 220◦C / Right: Reaction time t = 100 minutes.
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True response curve
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I We miss the global optimum if we simply vary the variables
“one-by-one”.

I The reason is that the maximal value of one variable is usually

not independent of the other one!  
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First-Order Response Surfaces

I As we don’t know the true response surface, we need to get
an idea about it by doing experiments at “the right design
points”.

I Where do we start? Knowledge of the process may tell us
that reasonable values are a temperature of 140◦C and a
reaction time of 60 minutes.

I Moreover, we need to have an idea about a reasonable
increment, say we want to vary reaction time by 10 minutes
and temperature by 20◦C (this comes from your
understanding of the process).
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I We start with a so-called first-order response surface.

I The idea is to approximate the response surface with a plane,
i.e.

Yi = θ0 + θ1x
(1)
i + θ2x

(2)
i + Ei .

This is a linear regression problem!

I We need some data to estimate the model parameters.

I By choosing the design points “right”, we get the best possible
parameter estimates (with respect to accuracy).

9 / 31



Here, the first-order design is as follows:

Variable Variable Yield
in original units in coded units

Run Temperature [◦C ] Time [min] Temperature Time Y [grams]

1 120 50 –1 –1 52
2 160 50 +1 –1 62
3 120 70 –1 +1 60
4 160 70 +1 +1 70
5 140 60 0 0 63
6 140 60 0 0 65

First-order design and measurement results for the example “Reaction

Analysis”. The single experiments (runs) were performed in random

order: 5, 4, 2, 6, 1, 7, 3.
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A visualization in coded units illustrates the special “layout” of
the design points.
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I The fitted plane, the so called first-order response surface,
is given by

ŷ = θ̂0 + θ̂1x
(1) + θ̂2x

(2).

I This is only an approximation of the real response surface.

I The plane can not give us an optimal value.  
I But it enables us to determine the direction of steepest

ascent. We denote it by [
c(1)

c(2)

]
.

I This will be the “fastest” way to get large values of the
response variable. Hence, we should follow that direction.
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I This means we should perform additional experiments along[
x
(1)
0

x
(2)
0

]
+ j

[
c(1)

c(2)

]
,

where [x
(1)
0 , x

(2)
0 ]T is the point in the center of our

experimental design and j = 1, 2, . . .

Remarks

I Observations in the center of the design have no influence on
the parameter estimates of the slopes θ1 and θ2 (and hence no
influence on the gradient).

I This is due to the special arrangement of the other points.
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Why is it useful to have multiple observations in the center?

I They can be used to estimate the measurement error without
relying on any assumptions.

I They make it possible to detect curvature.

I If there is no (local) curvature, the average of the response
values in the center and the average of the response values of
the other design points should be “more or less equal”. It’s
possible to test this.
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I If there is (significant) curvature, we don’t want to use a
plane but a quadratic function (see later).

I Otherwise we move along the direction of the gradient.

Randomization

Randomization is crucial for all experiments. Hence, we should
really perform the experiments in a random sequence, even though
it would be more convenient to e.g. do the two experiments in the
center right after each other.
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Back to our example

I The first-order response surface is

ŷ = 62 + 5x̃ (1) + 4x̃ (2) = 3 + 0.25 · x (1) + 0.4 · x (2),

where [x̃ (1), x̃ (2)]T are the coded x-values (taking values ±1).

I The steepest ascent direction is given by the gradient.

I If we calculate the gradient for the coded variables this leads
to the direction vector [

5
4

]
,

that corresponds to [
100
40

]
in original units.
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I We get a different result if we directly take the gradient for

the original variables.  

I The reason is because we do a coordinate transformation.

I Working with coded units in general makes sense because the
scale of the predictors is chosen such that increasing a variable
by one unit should have more or less the same effect on the
response for all variables.
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I Further experiments are now performed along[
140
60

]
+ k ·

[
25
10

]
, k = 1, 2, . . .

which corresponds to the steepest ascent direction with
respect to the coded x-values.

I This leads to new data

Temperature [◦C ] Time [min] Y

1 165 70 72
2 190 80 77
3 215 90 79
4 240 100 76
5 265 110 70

Experimental design and measurement results for experiments along

the steepest ascent direction for the example “Reaction Analysis”.
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I We reach a maximum at a temperature of 215◦C and at a
reaction time of 90 minutes.

I Now we could do a further first-order design around this new
“optimal” values to get a new gradient and then iterate many
times.

I In general, the hope is that we are already close to the
optimal solution. We therefore use a quadratic approach to
model a “peak”.
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Second-Order Response Surfaces

I Once we are close to the optimal solution, the plane will be
rather flat.

I We expect that the optimal solution will be somewhere in our
experimental set-up (a peak). Hence, we expect curvature.

I We can directly model such a peak by using a second-order
polynomial

Yi = θ0+θ1x
(1)
i +θ2x

(2)
i +θ11(x

(1)
i )2+θ22(x

(2)
i )2+θ12x

(1)
i x

(2)
i +Ei .

Remember: This is still a linear model!

I We now have more parameters, hence we need more
observations to fit the model.
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Two Examples of Second-Order Response Surfaces
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I We therefore expand our design by adding additional points.

-1 0 1

-1

0

1

I This is a so called rotatable central composite design. All
points have the same distance from the center.
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I Hence, we can simply add the points on the axis (they have
coordinates ±

√
2) to our first order design.

I Again, by choosing the points that way the model has some
nice theoretical properties.

I New data can be seen on the next slide.

I We use this data and fit our second-order polynomial model
(with linear regression!), leading to the second-order
response surface

ŷ = −278 + 2.0 · x (1) + 3.2 · x (2) + 0.0060 · (x (1))2

+ 0.026 · (x (2))2 + 0.006 · x (1) x (2).
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New Data

Variables Variables Yield
in original units in coded units

Run Temperature [◦C ] Time [min] Temperature Time Y [grams]

1 195 80 −1 −1 78
2 235 80 +1 −1 76
3 195 100 −1 +1 72
4 235 100 +1 +1 75

5 187 90 −
√
2 0 74

6 243 90 +
√
2 0 76

7 215 76 0 −
√
2 77

8 215 104 0 +
√
2 72

9 215 90 0 0 80

Rotatable central composite design and measurement results for the example

“Reaction Analysis”.
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I Given the second-order response surface, it’s possible to find
an analytical solution for the optimal value by taking partial
derivatives and solving the resulting linear equation system for

x
(1)
0 and x

(2)
0 , leading to

x
(1)
0 =

θ̂12 θ̂2 − 2 θ̂22 θ̂1

4 θ̂11 θ̂22 − θ̂212
x
(2)
0 =

θ̂12 θ̂1 − 2 θ̂11 θ̂2

4 θ̂11 θ̂22 − θ̂212
.

(see lectures notes for derivation).
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Summary Picture
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Back to our Original Example

I A radioactive dose of 200 rads and a time of 14 days is used as
starting point. Around this point we use a first-order design.

Variables Variables Yield
in original units in coded units

Run RadDos [rads] Time [days] RadDos Time Y
1 100 7 −1 −1 207
2 100 21 −1 +1 257
3 300 7 +1 −1 306
4 300 21 +1 +1 570
5 200 14 0 0 630
6 200 14 0 0 528
7 200 14 0 0 609

First-order design and measurement results for the example

“Antibody Production”.
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What can we observe? Yield decreases at the borders!

I If we check for significant curvature, we get a 95%-confidence
interval for the difference (µc − µf ) of

Y c − Y f ± q
tnc−1

0.975 ·
√

s2(1/nc + 1/2k) = 589− 335± 4.30 · 41.1

= [77, 431].

I As the confidence interval doesn’t cover zero there is
significant curvature.

I We therefore expand our design to a rotatable central
composite design by doing additional measurements.
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I New data:

Variables Variables Yield
in original units in coded units

Run RadDos [rads] Time [days] RadDos Time Y

8 200 4 0 −
√

2 315

9 200 24 0 +
√

2 154

10 59 14 −
√

2 0 100

11 341 14 +
√

2 0 513

Rotatable central composite design and measurement results for the

example “Antibody Production”.

I The estimated response surface is

Ŷ = −608.4 + 5.237 · RadDos + 77.0 · Time

−0.0127 · RadDos2 − 3.243 · Time2 + 0.0764 · RadDos · Time.

I We can identify the optimal conditions in the contour plot
(see next slide) or analytically: RadDosopt ≈ 250 rads and
timeopt ≈ 15 days.
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Contour Plot of Second-Order Response Surface
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Summary

I Using a sequence of experiments, we can find the optimal
setting of our variables.

I If we are “far away”, we use first-order designs, leading to a
first-order response surface (a plane).

I As soon as we are close to the optimum, a rotatable central
composite design can be used to estimate the second-order
response surface. The optimum on that response surface can
be determined analytically.
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