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@ See how a sequence of experiments can be performed to optimize a
response variable.

@ Understand the difference between first-order and second-order
response surfaces.
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Introductory Example: Antibody Production
@ Large amounts of antibodies are obtained in biotechnological
processes.

@ Mice produce antibodies. Among other factors, pre-treatment by
radiation and the injection of an oil increase yield.

o Of course we want to maximize yield.

@ Due to the complexity of the underlying process we can not simply
set-up a (non)linear model.

@ We can say that
Y:=h (X’-(l), Xl.(2)) + E;,

where x(1) = “radiation dose” and x(?) = “waiting time between
radiation and injection of the oil".

@ However, we do not have a parametric form for the function h. é
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Remarks

@ In general, we first have to identify those factors that really have an
influence on yield.

o If we have many factors, one of the easiest approaches is to use two
levels for each factor (without replicates).

e This is also known as a 2X-design, where k is the number of factors.

o If this is still too much effort, only a fraction of all possible
combinations can be considered, leading to so called fractional
designs.

o ldentification of relevant factors can be done using analysis of
variance (ANOVA) (regression). We will not discuss this here.
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In the following, we assume that we have already identified the relevant
factors.

Back to our example
@ The simplest model with an optimum would be a quadratic function.

(2)]

e If we would know h, we could identify the optimal setting [x(gl), X
of the process factors.

o h(xM,x(?) is also called the response surface.

o Typically, h must be estimated from data.



Hypothetical Example: Reaction Analysis
Assume vyield [grams] of a process depends on
@ Reaction time [min]

e Temperature [°Celsius]
An experiment is performed as follows:

@ For a temperature of T = 220°C, different reaction times are used:
80, 90, 100, 110 and 120 minutes.

@ The maximum seems to be at 100 minutes (see plot on next slide).

@ Hence, we fix reaction time at 100 minutes and vary temperature at
180, 200, 220, 240 and 260°C.
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@ The optimum seems to be at 220°C.

e Can we now conclude that the (global) optimal value is at
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Reaction time t = 100 minutes.
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True response curve
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We miss the global optimum if we simply vary the variables
“one-by-one”.

The reason is that the maximal value of one variable is usually not
independent of the other onel! é
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First-Order Response Surfaces

@ As we do not know the true response surface, we need to get an idea
about it by doing experiments at “the right design points”.

@ Where do we start? Knowledge of the process may tell us that
reasonable values are a temperature of 140°C and a reaction time of
60 minutes.

@ Moreover, we need to have an idea about a reasonable increment,
say we want to vary reaction time by 10 minutes and temperature by
20°C (this comes from your understanding of the process).
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@ We start with a so-called first-order response surface.

@ The idea is to approximate the response surface with a plane, i.e.
Yi = b0+ 01 + 6ox?) + E;.

This is a linear regression problem!
@ We need some data to estimate the model parameters.

@ By choosing the design points “right”, we get the best possible
parameter estimates (with respect to accuracy).
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Here, the first-order design is as follows:

Variable Variable Yield
in original units in coded units
Run | Temperature [°C] Time [min] | Temperature Time | Y [grams]
1 120 50 -1 -1 52
2 160 50 +1 -1 62
3 120 70 -1 +1 60
4 160 70 +1 +1 70
5 140 60 0 0 63
6 140 60 0 0 65

First-order design and measurement results for the example “Reaction Analysis".

The single experiments (runs) were performed in random order: 5, 4, 2, 6, 1, 7,
3.
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A visualization in coded units illustrates the special “layout” of the
design points.
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The fitted plane, the so called first-order response surface, is given
by L R

y==6o+ 01xY) 4+ 0,3,
This is only an approximation of the real response surface.

Note: The plane can not give us an optimal value. é

But it enables us to determine the direction of steepest ascent. We

denote it by
cM)
c?@ |-

This will be the “fastest” way to get large values of the response
variable. Hence, we should follow that direction.
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@ This means we should perform additional experiments along
D
2

where [x(gl), x(g2)]T is the point in the center of our experimental
design and j =1,2,...

ST @
T @ |

Remarks

@ Observations in the center of the design have no influence on the
parameter estimates of the slopes 61 and 6, (and hence no influence
on the gradient).

@ This is due to the special arrangement of the other points.
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Why is it useful to have multiple observations in the center?

@ They can be used to estimate the measurement error without relying
on any assumptions.

@ They make it possible to detect curvature.

@ If there is no (local) curvature, the average of the response values in
the center and the average of the response values of the other design
points should be “more or less equal”.

@ It is possible to perform a statistical test to check for curvature.
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e If there is (significant) curvature, we don't want to use a plane but a
quadratic function (see later).

@ Otherwise we move along the direction of the gradient.

Randomization

Randomization is crucial for all experiments. Hence, we should really
perform the experiments in a random sequence, even though it would be
usually more convenient to e.g. do the two experiments in the center right
after each other.
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Back to our example
@ The first-order response surface is
y=62+5x1 4 4x® =34+ 025 x +0.4.x?),
where [x(1), X]T are the coded x-values (taking values +1).
@ The steepest ascent direction is given by the gradient.

o If we calculate the gradient for the coded variables this leads to the
direction vector
5
4 )

]

that corresponds to

in original units.
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@ We get a different result if we directly take the gradient for the
original variables. é

@ The reason is because we do a coordinate transformation.

@ Working with coded units in general makes sense because the scale of
the predictors is chosen such that increasing a variable by one unit
should have more or less the same effect on the response for all
variables.
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@ Further experiments are now performed along

140 ], . [ 25
60 | /7| 10

],j:1,2,...

which corresponds to the steepest ascent direction with respect to the

coded x-values.

@ This leads to new data

Temperature [°C] Time [min] | Y
1 165 70 72
2 190 80 7
3 215 90 79
4 240 100 76
5 265 110 70

Experimental design and measurement results for experiments along the
steepest ascent direction for the example “Reaction Analysis".
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@ We reach a maximum at a temperature of 215°C and at a reaction
time of 90 minutes.

@ Now we could do a further first-order design around this new
“optimal” values to get a new gradient and then iterate many times.

@ In general, the hope is that we are already close to the optimal
solution. We therefore use a quadratic approach to model a “peak”.
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Second-Order Response Surfaces

@ Once we are close to the optimal solution, the plane will be rather flat.

@ We expect that the optimal solution will be somewhere in our
experimental set-up (a peak). Hence, we expect curvature.

@ We can directly model such a peak by using a second-order
polynomial
Yi="06o+ 91X,-(1) + 92X,-(2) + 011 (xM)? + 922(X,-(2))2 + 01 xP) + E;.

i i i

Remember: This is still a linear model!

@ We now have more parameters, hence we need more observations to
fit the model.
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Two Examples of Second-Order Response Surfaces

=

0 0

Left: Situation with a maximum / Right: Saddle

31



@ We therefore expand our design by adding additional points.

|
L 2 14 L 2
i T Cx T L g
-1 1
L 2 -1 L 2
-

@ This is a so called rotatable central composite design. All points
have the same distance from the center.



@ Hence, we can simply add the points on the axis (they have
coordinates 4+/2) to our first order design.

@ Again, by choosing the points that way the model has some nice
theoretical properties.

@ New data can be seen on the next slide.

@ We use this data and fit our second-order polynomial model (with
linear regression!), leading to the second-order response surface

y = —21842.0-xM +3.2.x) 10,0060 - (x()?
+0.026 - (x®)2 +0.006 - x™M) x(2).
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New Data

Variables Variables Yield
in original units in coded units

Run | Temperature [°C]  Time [min] | Temperature Time | Y [grams]
1 195 80 -1 -1 78
2 235 80 +1 -1 76
3 195 100 -1 +1 72
4 235 100 +1 +1 75
5 187 90 -2 0 74
6 243 90 +v2 0 76
7 215 76 0 —V2 77
8 215 104 0 +v2 72
9 215 90 0 0 80

Rotatable central composite design and measurement results for the example “Reaction

Analysis”.
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@ Given the second-order response surface, it's possible to find an

analytical solution for the optimal value by taking partial derivatives

and solving the resulting linear equation system for xél) and Xéz)’

leading to

1) 01262 — 202 61 ) 01261 — 2611 6>

X = X = e
401102 — 07, 4011 02 — 07,

(see lectures notes for derivation).
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Summary Picture
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Back to our Original Example

@ A radioactive dose of 200 rads and a time of 14 days is used as
starting point. Around this point we use a first-order design.

Variables Variables Yield
in original units in coded units

Run | RadDos [rads] Time [days] | RadDos Time Y
1 100 7 -1 -1 207
2 100 21 -1 +1 257
3 300 7 +1 -1 306
4 300 21 +1 +1 570
5 200 14 0 0 630
6 200 14 0 0 528
7 200 14 0 0 609

First-order design and measurement results for the example “Antibody

Production”.
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What can we observe? Yield decreases at the borders!

@ If we check for significant curvature, we get a 95%-confidence interval
for the difference (uc — pr) of

589 — 335 + 4.30 - 41.1
= [77, 431].

Ve~ Vet qisd - /s2(1/ne +1/24)

@ As the confidence interval doesn't cover zero there is significant
curvature.

@ We therefore expand our design to a rotatable central composite
design by doing additional measurements.
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o New data:

Variables Variables Yield

in original units in coded units
Run | RadDos [rads] Time [days] | RadDos Time Y
8 200 4 0 —v2| 315
9 200 24 0 +v2 | 154
10 59 14 -2 0| 100
11 341 14 +v2 0| 513

Rotatable central composite design and measurement results for the example

“Antibody Production”.

@ The estimated response surface is

Y = —608.4+5.237-RadDos + 77.0 - Time
—0.0127 - RadDos? — 3.243 - Time? + 0.0764 - RadDos - Time.

e We can identify the optimal conditions in the contour plot (see next
slide) or analytically: RadDos,p: ~ 250 rads and timegpr =~ 15 days.
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Contour Plot of Second-Order Response Surface
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Summary

@ Using a sequence of experiments, we can find the optimal setting of
our variables.

o If we are “far away”, we use first-order designs, leading to a
first-order response surface (a plane).

@ As soon as we are close to the optimum, a rotatable central
composite design can be used to estimate the second-order
response surface. The optimum on that response surface can be
determined analytically.
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