Multivariate Statistics

Principal Component Analysis (PCA)

10.12.2014

Goals of Today's Lecture

- Get familiar with the multivariate counterparts of the expectation and the variance.
- See how principal component analysis (PCA) can be used as a dimension reduction technique.

Introduction

- In your introductory course you started with univariate statistics. You had a look at one random variable X at a time. E.g., $X=$ "measurement of temperature".
- A random variable can be characterized by its expectation μ and the variance σ^{2} (or standard deviation σ).

$$
\mu=E[X], \quad \sigma^{2}=\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

- A model that is often used is the normal distribution: $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
- The normal distribution is fully characterized by the expectation and the variance.
- The unknown parameters μ and σ can be estimated from data.
- Say we observe n (independent) realizations of our random variable $X: x_{1}, \ldots, x_{n}$.
- You can think of measuring n times a certain quantity, e.g. temperature.
- Usual parameter estimates are

$$
\widehat{\mu}=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \widehat{\sigma}^{2}=\widehat{\operatorname{Var}}(X)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Multivariate Data

- Now we are going to have a look at the situation where we measure multiple things simultaneously.
- Hence, we have a multivariate random variable (vector) \underline{X} having m components: $\underline{X} \in \mathbb{R}^{m}$.
- You can think of measuring temperature at two different locations or measuring temperature and pressure at one location $(m=2)$.
- In that case

$$
\underline{X}=\left[\begin{array}{l}
X^{(1)} \\
X^{(2)}
\end{array}\right]
$$

where $X^{(1)}$ is temperature and $X^{(2)}$ is pressure.

- A possible data-set now consists of n vectors of dimension 2 (or m in the general case):

$$
\underline{x}_{1}, \ldots, \underline{x}_{n},
$$

where $\underline{x}_{i} \in \mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{m}\right)$.

Remark

- In multiple linear regression we already had multiple variables per observation.
- There, we had one response variable and many predictor variables.
- Here, the situation is more general in the sense that we don't have a response variable but we want to model "relationships" between (any) variables.

Expectation and Covariance Matrix

- We need new concepts to model / describe this kind of data.
- We are therefore looking for the multivariate counterparts of the expectation and the variance.
- The (multivariate) expectation of \underline{X} is defined as

$$
E[\underline{X}]=\underline{\mu}=\left(\mu_{1}, \ldots, \mu_{m}\right)^{T}=\left(E\left[X^{(1)}\right], \ldots, E\left[X^{(m)}\right]\right)^{T} .
$$

- It's nothing else than the collection of the univariate expectations.

What about dependency?

- We need a measure to characterize the dependency between the different components.
- The simplest thing one can think of is linear dependency between two components.
- The corresponding measure is the correlation ρ.
- ρ is dimensionless and it always holds that

$$
-1 \leq \rho \leq 1
$$

- $|\rho|$ measures the strength of the linear relationship.
- The sign of ρ indicates the direction of the linear relationship.
- The formal definition of the correlation is based on the covariance.
- The covariance is an unstandardized version of the correlation. It is defined as

$$
\operatorname{Cov}\left(X^{(j)}, X^{(k)}\right)=E\left[\left(X^{(j)}-\mu_{j}\right)\left(X^{(k)}-\mu_{k}\right)\right]
$$

- The correlation between $X^{(j)}$ and $X^{(k)}$ is then

$$
\rho_{j k}=\operatorname{Corr}\left(X^{(j)}, X^{(k)}\right)=\frac{\operatorname{Cov}\left(X^{(j)}, X^{(k)}\right)}{\sqrt{\operatorname{Var}\left(X^{(j)}\right) \operatorname{Var}\left(X^{(k)}\right)}}
$$

- You have seen the empirical version in the introductory course.
- The covariance matrix \mathbb{Z} is an $m \times m$ matrix with elements

$$
\boldsymbol{\Sigma}_{j k}=\operatorname{Cov}\left(X^{(j)}, X^{(k)}\right)=E\left[\left(X^{(j)}-\mu_{j}\right)\left(X^{(k)}-\mu_{k}\right)\right] .
$$

- We also write $\operatorname{Var}(\underline{X})$ or $\operatorname{Cov}(\underline{X})$ instead of $\boldsymbol{\Sigma}$.
- The special symbol \mathbb{Z} is used in order to avoid confusion with the sum sign \sum.
- The covariance matrix contains a lot of information, e.g.

$$
\boldsymbol{\Sigma}_{j j}=\operatorname{Var}\left(X^{(j)}\right) .
$$

This means that the diagonal consists of the individual variances.

- We can also compute the correlations via

$$
\operatorname{Corr}\left(X^{(j)}, X^{(k)}\right)=\frac{\operatorname{Cov}\left(X^{(j)}, X^{(k)}\right)}{\sqrt{\operatorname{Var}\left(X^{(j)}\right) \operatorname{Var}\left(X^{(k)}\right)}}=\frac{\boldsymbol{\Psi}_{j k}}{\sqrt{\boldsymbol{\Psi}_{j j} \boldsymbol{\Psi}_{k k}}}
$$

- Again, from a real data-set we can estimate these quantities with

$$
\begin{aligned}
\underline{\widehat{\mu}} & =\left[\bar{x}^{(1)}, \bar{x}^{(2)}, \ldots, \bar{x}^{(m)}\right]^{T} \\
\widehat{\boldsymbol{X}}_{j k} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}^{(j)}-\widehat{\mu}_{j}\right)\left(x_{i}^{(k)}-\widehat{\mu}_{k}\right),
\end{aligned}
$$

- Or more directly the whole matrix

$$
\widehat{\boldsymbol{Z}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\underline{x}_{i}-\underline{\widehat{\mu}}\right)\left(\underline{x}_{i}-\underline{\widehat{\mu}}\right)^{T} .
$$

- Remember: (Empirical) correlation only measures strength of linear relationship between two variables.

Illustration: Empirical Correlation

Source: Wikipedia

Linear Transformations

The following table illustrates how the expectation and the variance (covariance matrix) change when linear transformations are applied to the univariate random variable X or the multivariate random vector \underline{X}.

Univariate

$$
\begin{array}{rlrl}
\text { Univariate } & \text { Multivariate } \\
Y & =a+b X & \underline{Y} & =\underline{a}+\mathbf{B} \underline{X} \\
E[Y] & =a+b E[X] & E[Y] & =\underline{a}+\mathbf{B} E[\underline{X}] \\
\operatorname{Var}(Y) & =b^{2} \operatorname{Var}(X) & \operatorname{Var}(\underline{Y}) & =\mathbf{B} \Sigma_{X} \mathbf{B}^{T}
\end{array}
$$

where $a, b \in \mathbb{R}$ and $\underline{a} \in \mathbb{R}^{m}, \mathbf{B} \in \mathbb{R}^{m \times m}$.

Principal Component Analysis (PCA)

Goal: Dimensionality reduction.

- We have m different dimensions (variables) but we would like to find "a few specific dimensions (projections) of the data that contain most variation".
- If two specific dimensions of the data-set contain most variation, visualizations will be easy (plot these two!).
- Such a plot then can be used to check for any "structure".

Illustration of Artificial 3-Dim Data-Set

- We have to be more precise with what we mean with "variation".
- We define the total variation in the data as the sum of all individual empirical variances

$$
\sum_{j=1}^{m} \widehat{\operatorname{Var}}\left(X^{(j)}\right)=\sum_{j=1}^{m} \widehat{\sigma}^{2}\left(X^{(j)}\right)
$$

- How can we now find projections that contain most variation?
- Conceptually, we are looking for a new coordinate system with basis vectors $\underline{b}_{1}, \ldots, \underline{b}_{m} \in \mathbb{R}^{m}$.
- Of course, our data-points $\underline{x}_{i} \in \mathbb{R}^{m}$ will then have new coordinates

$$
z_{i}^{(k)}=\underline{x}_{i}^{T} \underline{b}_{k}, k=1, \ldots, m
$$

(= projection on new basis vectors).

- How should we choose the new basis?
- The first basis vector \underline{b}_{1} should be chosen such that $\widehat{\operatorname{Var}}\left(Z^{(1)}\right)$ is maximal (i.e. it captures most variation).
- The second basis vector \underline{b}_{2} should be orthogonal to the first one ($\underline{b}_{2}^{T} \underline{b}_{1}=0$) such that $\widehat{\operatorname{Var}}\left(Z^{(2)}\right)$ is maximized.
- And so on...
- The new basis vectors are the so-called principal components.
- The individual components of these basis vectors are called loadings. The loadings tell us how to interpret the new coordinate system (i.e., how the old variables are weighted to get the new ones).
- The coordinates with respect to the new basis vectors (the transformed variable values) are the so-called scores .

PCA: Illustration in Two Dimensions

- We could find the first basis vector \underline{b}_{1} by solving the following maximization problem

$$
\max _{\underline{b}:\|b\|=1} \widehat{\operatorname{Var}}(\mathbf{X} \underline{b})
$$

where \mathbf{X} is the matrix that has different observations in different rows and different variables in different columns (like the design matrix in regression).

- It can be shown that \underline{b}_{1} is the (standardized) eigenvector of $\widehat{\boldsymbol{Z}}_{X}$ that corresponds to the largest eigenvalue.
- Similarly for the other vectors $\underline{b}_{2}, \ldots, \underline{b}_{m}$.
- To summarize: We are performing a transformation to new variables

$$
\underline{z}_{i}=\mathbf{B}^{T}\left(\underline{x}_{i}-\underline{\widehat{\mu}}\right)
$$

where the transformation matrix \mathbf{B} is orthogonal and contains the \underline{b}_{k} 's as columns.

- In general we also subtract the mean vector to ensure that all components have mean 0.
- \mathbf{B} is the matrix of (standardized) eigenvectors corresponding to the eigenvalues λ_{k} of $\boldsymbol{\Sigma}_{X}$ (in decreasing order).
- Hence, we have

$$
\begin{aligned}
\widehat{\operatorname{Var}}(Z)= & \widehat{\boldsymbol{Z}}_{Z}=\mathbf{B}^{T} \widehat{\boldsymbol{Z}}_{X} \mathbf{B}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & \lambda_{m}
\end{array}\right] \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m} \geq 0
\end{aligned}
$$

- Hence, the variance of the different components of \underline{Z} is given by the corresponding eigenvalue (values on the diagonal).
- Moreover, the different components are uncorrelated (because the off-diagonal elements of the covariance matrix of \underline{Z} are all zero).

Scaling Issues

- The variance is not invariant under rescaling.
- If we change the units of a variable, that will change the variance (e.g. when measuring a length in $[\mathrm{m}]$ instead of $[\mathrm{mm}]$).
- Therefore, if variables are measured on very different scales, they should first be standardized to comparable units.
- This can be done by standardizing each variable to variance 1 .
- Otherwise, PCA can be misleading.

PCA and Dimensionality Reduction

- At the beginning we were talking about dimensionality reduction.
- We can achieve this by simply looking at the first $p<m$ principal components (and ignoring the remaining components).
- The proportion of the variance that is explained by the first p principal components is

$$
\frac{\sum_{j=1}^{p} \lambda_{j}}{\sum_{j=1}^{m} \lambda_{j}}
$$

- Sometimes we see a sharp drop when plotting the eigenvalues (in decreasing order).

NIR-spectra without 5 outliers

Variances of princ. components

- This plot is also known as the scree-plot.

PCA and Dimensionality Reduction

- For visualization of our data, we can for example use a scatterplot of the first two principal components.
- It should show "most of the variation".

Illustration

Loadings

	PC1	PC2	PC3
x1	-0.395118451	0.06887762	0.91604437
x2	-0.009993467	0.99680385	-0.07926044
x3	-0.918575822	-0.04047172	-0.39316727

Screeplot

Applying PCA to NIR-Spectra

- An NIR-spectrum can be thought of as a multivariate observation (the different variables are the measurements at different wavelengths).
- A spectrum has the property that the different variables are "ordered" and we can plot one observation as a "function" (see plot on next slide).
- If we apply PCA to this kind of data, the individual components of the \underline{b}_{k} 's (the so called loadings) can again be plotted as spectra.
- As an example we have a look at spectra measured at different time-points of a chemical reaction.

Illustration: Spectra (centered at each wavelength)

One observation is one spectrum, i.e. a whole "function".

1st Principal Component

2nd Principal Component

3rd Principal Component

Scatterplot of the First Two Principal Components

Scree-Plot

Alternative Interpretations

If we restrict ourselves to the first $p<m$ principal components we have

$$
\underline{x}_{i}-\underline{\widehat{\mu}}=\underline{\widehat{x}}_{i}+\underline{e}_{i}
$$

where

$$
\widehat{\underline{x}}_{i}=\sum_{k=1}^{p} z_{i}^{(k)} \underline{b}^{(k)}, \quad \underline{e}_{i}=\sum_{k=p+1}^{m} z_{i}^{(k)} \underline{b}^{(k)} .
$$

Linear Algebra

It can be shown that the data matrix consisting of the $\widehat{\widehat{x}}_{i}$ is the best approximation of our original (centered) data matrix if we restrict ourselves to matrices of rank p (with respect to the Frobenius norm), i.e. it has smallest

$$
\sum_{i, j}\left(e_{i}^{(j)}\right)^{2}
$$

Statistics

It's the best approximation in the sense that it has the smallest sum of variances

$$
\sum_{j=1}^{m} \widehat{\operatorname{Var}}\left(E^{(j)}\right)
$$

PCA via Singular Value Decomposition (SVD)

- We can also get the principal components from the singular value decomposition (SVD) of the data matrix \mathbf{X}.
- For that reason we require \mathbf{X} to have centered columns! \downarrow
- Why does this work?

SVD of \mathbf{X} yields the decomposition

$$
\mathbf{X}=\mathbf{U D V}^{T}
$$

where

- \mathbf{U} is $n \times n$ and orthogonal
- \mathbf{D} is $n \times m$ and generalized diagonal (containing the so-called singular values in descending order)
- \mathbf{V} is $m \times m$ and orthogonal

Properties of SVD

- The (standardized) eigenvectors of $\mathbf{X}^{T} \mathbf{X}$ make up the columns of \mathbf{V}.
- The singular values are the square roots of the eigenvalues of $\mathbf{X}^{T} \mathbf{X}$.

But what is $\mathbf{X}^{T} \mathbf{X}$? If the columns of \mathbf{X} are centered, this is the rescaled (empirical) covariance matrix $\widehat{\boldsymbol{Z}}_{X}$, because

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)_{j k}=\sum_{i=1}^{n}\left(\underline{x}_{i} \underline{x}_{i}^{T}\right)_{j k}=\sum_{i=1}^{n} x_{i}^{(j)} x_{i}^{(k)}=(n-1) \widehat{\boldsymbol{X}}_{j k} .
$$

Hence, the singular value decomposition of the centered data-matrix automatically gives us the principal components (in V).

The data-matrix in new coordinates is given in UD.

Summary

- PCA is a useful tool for dimension reduction.
- New basis system is given by (standardized) eigenvectors of covariance matrix.
- Eigenvalues are the variances of the new coordinates.
- In the case of spectra, the loadings can again be plotted as spectra.

