
4 Analysis of Variance and Design of
Experiments

Preliminary Remark Analysis of variance (ANOVA) and design of experiments are
both topics that are usually covered in separate lectures of about 30 hours. Here, we
can only give a very brief overview. However, for many of you it may be worthwhile
to study these topics in more detail later.
Analysis of variance addresses models where the response variable Y is a function of
categorical predictor variables (so called factors). We have already seen how such
predictors can be applied in a linear regression model. This means that analysis of
variance can be viewed as a special case of regression modeling. However, it is worth-
while to study this special case separately. Analysis of variance and linear regression
can be summarized under the term linear model.
Regarding design of experiments we only cover one topic, the optimization of a
response variable. If time permits, we will also discuss some more general aspects.

4.1 Multiple Groups, One-Way ANOVA

a We observe g groups of values

Yhi = µh + Ehi i = 1, 2, . . . , nh; h = 1, 2, . . . , g,

where Ehi ∼ N (0,σ2), independent.
The question of interest is whether there is a difference between the µh ’s.

b Null hypothesis H0 : µ1 = µ2 = . . . = µg .
Alternative HA : µh �= µk for at least one pair (h, k).
Test statistic
Based on the average of each group Y h. = 1

nh

�nh
i=1 Yhi we get the “mean squared error

between the different groups”

MSG = 1
g − 1

g�

h=1
nh(Y h. − Y ..)2.

This can be compared to the “mean squared error within the groups”

MSE = 1
n− g

�

h,i

(Yhi − Y h.)2,

leading to the test statistics of the F-test:

T = MSG
MSE

,

which follows an F -distribution with g− 1 and n− g degrees of freedom under H0 .
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Df Sum of Sq Mean Sq F Value Pr(F)

Treatment 4 520.69 130.173 1.508 0.208
Error 77 6645.15 86.301

Total 81 7165.84

Table 4.1.b: Example of an ANOVA table.
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Figure 4.2.a: Sr-89-values for the 24 laboratories

c Non-parametric tests (if errors are not normally distributed):
“Kruskal-Wallis-Test”, based on the ranks of the data.
For g = 2 groups: “Wilcoxon-Mann-Whitney-Test”, also called “U-Test”.

4.2 Random Effects, Ring Trials

Example a Strontium in Milk Figure 4.2.a illustrates the results of a ring trial (an inter-laboratory
comparison) to determine the concentration of the radioactive isotope Sr-89 in milk
(the question was of great interest after the Chernobyl accident). In 24 laboratories
in Germany two runs to determine this quantity in artificially contaminated milk were
performed. For this special situation the “true value” is known: it is 57.7 Bq/l. Source:
G. Haase, D. Tait und A. Wiechen: “Ergebnisse der Ringanalyse zur Sr-89/Sr-90-
Bestimmung in Milch im Jahr 1991”. Kieler Milchwirtschaftliche Forschungsberichte
43, 1991, S. 53-62).
Figure 4.2.a shows that the two measurements of the same laboratory are in general
much more similar than measurements between different laboratories.

b Model: Yhi = µ+Ah + Ehi . Ah random, Ah ∼ N (0,σ2
A).

Special quantities can tell us now how far two measurements can be from each other
such that it is still safe to assume that the difference is only random.
• Comparisons within laboratory: “Repeatability” 2

√
2 · �σE ,

• Comparisons between laboratories: “Comparability” 2
�

2(�σ2
E + �σ2

A)
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4.3 Two and More Factors

Example a Fisher’s Potato Crop Data Sir Ronald A. Fisher who established ANOVA (and many
other things), used to work in the agricultural research center in Rothamstead, Eng-
land. In an experiment to increase the yield of potatoes, the influence of two treat-
ment factors, the addition of ammonium- and potassium-sulphate (each having 4
levels: 1, 2, 3, 4), was studied. Figure 4.3.a illustrates the data. Source: T. Eden
and R. A. Fisher, Studies in Crop Variation. VI. Experiments on the Response of the
Potato to Potash and Nitrogen, J. Agricultural Science, 19, 201-213, 1929; available
through Bennett, 1971.

Potassium-sulphate K
1 2 3 4

1 404 308 356 439
Ammonium- 2 318 434 402 422
sulphate N 3 456 544 484 504

4 468 534 500 562
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Figure 4.3.a: Fisher’s Potato Crop Data.

b Model:
Yh,k = µ+ αh + βk + Ehk ,

�

h

αh = 0 und
�

k

βk = 0

c Estimates:
�µ = Y .. , �αh = Y h. − Y .. , �βk = Y .k − Y .. .

d Tests. Null-hypotheses: No influence of factor A (B ). F-Tests. See table.

DF SS MS F Pr(F)

N 3 59793 19931 10.84 0.0024
K 3 10579 3526 1.92 0.1973

Resid. 9 16552 1839

Total 15 86924

Table 4.3.d: ANOVA table for Fisher’s potato crop data.

e Interaction Effects Model 4.3.b assumes that the effect of factor B is given by βk ,
independent of the value of factor A . Or in other words, the model postulates that the
effects of the two factors are additive. In general, so called interaction effects can
occur. E.g., for fertilizers, further increasing one fertilizer is of little effect if another
substance (fertilizer) is missing.
The general model for two factors with interaction effect can be written as

Yh,k = µh,k + Eh,k = µ+ αh + βk + γhk + Eh,k .

Side constraints for the the interaction effect γhk are needed in order to obtain an
identifiable model: �h γhk = 0 for all k and �k γhk = 0 for all h .
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However, parameters can only be estimated if there are two or more observations for
each combination of (h, k) (replicates).

f It’s not difficult to extend model 4.3.b for more than two factors. The general
model then also contains “interactions of higher order”.

g For product development it’s often necessary to check the effect of several (many)
factors. In order to avoid too many experiments, it’s often useful to restrict each
factor to two levels and to avoid replicates. Such a series of experiments for k factors
is called 2k -design and will be discussed in more detail in the next section.

4.4 Response Surface Methods

Example a Antibody Production Large amounts of antibodies are obtained in biotechnological
processes: Host animals (e.g. mice) are injected with modified cells that can produce
the corresponding antibody. After a certain time these cells start to produce antibodies
that can be collected in excreted fluid for further processing.
The cells can only produce antibodies if the immune system of the host animal is
being weakened at the same time. This can be done with 4 factors. Moreover, it is
believed that the amount of injected cells and their development stage has an influence
on antibody production.
As there are no theoretical models for such complex biological processes, the relevant
process factors have to be determined by an experiment. Such an experiment needs
many mice, is time-intensive and usually costs a lot of money. Using a clever design,
we can find out the important process factors with the lowest possible effort. That’s
where statistical design of experiments comes into play.
Two relevant process factors were identified in this study: the dose of Co60 gamma
rays and the number of days between radiation and the injection of a pure oil. Now,
the question is to find the levels for these two factors such that an optimal amount
of antibodies is being produced by the modified cells.

b We have already seen a model which models a response variable Y that depends on
two factors. It was

Yh,k = µh,k + Eh,k = µ+ αh + βk + γhk + Eh,k , h, k = 1, 2.

If the two factors are based on continuous variables x(1), x(2) , as is the case here with
radiation dose and the number of days between radiation and injection, we have the
corresponding general model

Yi = h
�
x

(1)
i , x

(2)
i

�
+ Ei,

(analogous for more than two factors). The function h
�
x(1), x(2)

�
, which depends on

x(1) and x(2) , is the so-called response surface. Usually a quadratic polynomial
(see below) in the variables x(1) and x(2) is used for h (sometimes the function h is
available from theory). Once we have h , we can find the optimal setting [x(1)

0 , x
(2)
0 ] of

the process factors. Usually, h must be estimated from data.
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Figure 4.4.c: Varying the variables one by one. Left: Yield vs. reaction time, reaction tem-
perature held constant at 220◦C . Right: Yield vs. reaction temperature, reaction time held
constant at 100 minutes.

c A naive approach to find the optimum would be to optimize the variables one by one.
The weakness of such an approach is now being illustrated with an artificial example.

Example d Reaction Analysis A chemist wants to maximize the yield of a chemical reaction by
varying reaction time and reaction temperature. First, he performs an experiment
where he uses a constant reaction temperature of T = 220◦C and reaction times 80,
90, 100, 110, and 120 minutes. Results are illustrated in Figure 4.4.d. According to
this data, the maximum is attained with a reaction time of about 100 minutes.
In a second stage, reaction time is held constant at its optimal value of t = 100 minutes.
Reaction temperature is varied at 180, 200, 220, 240, and 260◦C . Now, the conclusion
is that maximal yield is attained with a reaction temperature of about 220◦C . This
is not too far away from the value that was used in the first stage. Hence, the final
conclusion is that the maximal yield of about 65 grams is attained using a reaction
time of about 100 minutes and a reaction temperature of about 220◦C .

e To see that this conclusion is wrong, we have to make use of a two-dimensional view.
Let us put time on the x- and temperature on the y -axis. Yield is illustrated by the
corresponding contours (Figure 4.4.e). In this example, maximal yield of about 70
grams is attained with a reaction time of about 85 minutes and a reaction temperature
of about 270◦C .
The approach of “varying the variables one by one” is misleading because it tacitly
assumes that the maximal value of one variable is independent of the other ones. This
assumption is usually not fulfilled.

f Even though the original setting of the process variables was “far away” from the
optimal value, an appropriate sequence of well chosen experimental set-ups leads to
the optimum. For that purpose, we start with a so called first-order design, a
2k -design with additional measurements in the center. Experience from earlier exper-
iments should guide us in selecting appropriate levels for the factors.

Example g Reaction Analysis (cont’d) From earlier experiments we know that a reaction tem-
perature of 140◦C and a reaction time of 60 minutes gives good results. Now we want
to vary reaction time by 10 minutes and reaction temperature by 20◦C . The corre-
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Figure 4.4.e: A hypothetical response surface, illustrated by contours in the diagram reaction
temperature vs. reaction time.

sponding first-order design and the corresponding measurement results can be found
in Table 4.4.g. Usually, coded variables are used in literature. They can also be found
in Table 4.4.g.

Variable Variable Yield
in original units in coded units

Run Temperature [◦C] Time [min] Temperature Time Y [grams]

1 120 50 –1 –1 52
2 160 50 +1 –1 62
3 120 70 –1 +1 60
4 160 70 +1 +1 70
5 140 60 0 0 63
6 140 60 0 0 65

Table 4.4.g: First-order design and measurement results for the example “Reaction Analysis”.
The single experiments (runs) were performed in random order : 5, 4, 2, 6, 1, 7, 3.

h Because the response surface h (see 4.4.b) is unknown, we approximate it with the
simplest possible surface, a plane. Hence, we have the model

Yi = θ0 + θ1x(1)
i + θ2x(2)

i + Ei,

which has to be fitted to the data. We have already seen how the parameter estimates
can be obtained.
The fitted plane, the so called first-order response surface, is given by

�y = �θ0 + �θ1x(1) + �θ2x(2).

Of course, this is only an approximation of the real response surface.

Example i Reaction Analysis (cont’d) The parameters with respect to the coded variables can
be found in Table 4.4.i.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 62.000 0.882 70.30 6.3e-06 ***
xt1 5.000 1.080 4.63 0.019 *
xt2 4.000 1.080 3.70 0.034 *

Table 4.4.i: Estimated coefficients for the coded variables in the example “Reaction Analysis”.

j On the first-order response surface we can find those points [x(1), x(2)]T which have a
constant yield �y = �y0 . From equation

�y0 = �θ0 + �θ1x(1) + �θ2x(2)

we find the straight line

x(2) =
�y0 − �θ0 − �θ1x(1)

�θ2
with slope b = −�θ1/�θ2 and intercept a = (�y0− �θ0)/�θ2 . Orthogonal to this straight line
is the direction of steepest ascent (descent). This straight line has slope �θ2/�θ1 .
The two-dimensional vector [�θ1, �θ2]T is called estimated gradient; this direction is the
fastest way to get large values of �y .
Of course we also get large values when following any direction that is “close” to the
gradient.

k Observations that are in the center of the 2k -design have no influence on the estimates
of the parameters θ1, . . . , θk and hence no influence on the estimated gradient, either.
This can be seen from the normal equations.
But why should we do experiments in the center?
• It’s possible to estimate the measurement error without using the assumption

that the plane is a good approximation of the true response surface if several
observations are available in the center.

• Possible curvature of the true response surface can be detected. If there is no
curvature and if the plane is a “good” approximation of the true response sur-
face in the range of the experimental set-up, the average of the observations in
the center, Y c , and the average of the observations of the 2k -design, Y f , are
estimates of the mean of Y for the set-up in the center. Hence, they should be
“more or less equal”. If the difference is obviously different from zero it’s a hint
that there is curvature.

A statistical test for curvature is as follows: The empirical variance s2 that was esti-
mated from the nc observations in the center can be used to determine the standard
deviation of the difference. The variance of Y c can be estimated by s2/nc and the
variance of Y f by s2/2k . Because Y c and Y f are independent, the variance of the
difference Y c − Y f is estimated by s2(1/nc + 1/2k). Now we can perform a t-test or
we can construct the corresponding confidence interval: If the interval

Y c − Y f ± qtnc−1
0.975 ·

�
s2(1/nc + 1/2k)

does not cover zero, the difference is statistically different from zero.
If we face relevant curvature of the true response surface (in the range of the exper-
imental set-up), a linear approximation is not appropriate. Hence, we may also have
problems determining the direction of steepest ascent. Usually we will use a second-
order response surface (see below) for such situations.
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l If the measurements of the center observations are all performed in a row, we face
the danger that the observed variation (measured by s2 ) is not really the variation
between “independent” observations. Usually we will get significant curvature, even
for cases where the response surface is a plane.
In general, it’s important to randomize the different experimental set-ups –
even though this usually needs much more effort because we always have to arrange a
new setting for each new run.

m If it’s plausible to use a linear response surface, we will search for an optimum along
the direction of steepest ascent. Along

�
x

(1)
0
x

(2)
0

�
+ k
�
c(1)

c(2)

�

we will perform additional experiments for k = 1, 2, . . . until yield starts to decrease.
[x(1)

0 , x
(2)
0 ]T is the point in the center of our experimental design and [c(1), c(2)]T is

the direction of steepest ascent.

Example n Reaction Analysis (cont’d) The first-order response surface is

�y = 62 + 5�x(1) + 4�x(2) = 3 + 0.25 · x(1) + 0.4 · x(2),

where [�x(1), �x(2)]T are the coded x-values (taking values ±1) (see Table 4.4.i). Note
that the gradient for the coded and the non-coded (original) x-values lead to different
directions of steepest ascent. An other ascent direction can be identified by observing
that individually increasing temperature by 4◦C or time by 2.5 minutes both leads to
a yield increase of 1 gram.
Further experiments are now performed along

�
140
60

�
+ k ·

�
25
10

�
,

which corresponds to the steepest ascent direction with respect to the coded x-values,
(see Table 4.4.n).

Temperature [◦C] Time [min] Y

1 165 70 72
2 190 80 77
3 215 90 79
4 240 100 76
5 265 110 70

Table 4.4.n: Experimental design and measurement results for experiments along the steepest
ascent direction for the example “Reaction Analysis”.

Based on the results in Table 4.4.n (plot the profile of yield vs. runs), the optimum
should be in the neighborhood of a reaction temperature of 215◦C and a reaction time
of 90 minutes.



42 4 Analysis of Variance and Design of Experiments

o Once the optimum along the gradient is identified, a further first-order design ex-
periment can be performed (around the optimum) to get a new gradient. However,
in general the hope is that we are already close to the optimal solution and we will
continue as illustrated in the next section.

4.5 Second-Order Response Surfaces

a Once we are close to the optimal solution, the estimated plane will be nearly parallel
to the (x(1), x(2))-plane. Hence, �θ1 and �θ2 will be nearly zero. We expect that the
optimal solution is a (flat) peak in the range of our experimental set-up and hence we
expect the difference Y c − Y f to be significantly different from zero. Such a peak can
be modelled by a second-order polynomial:

Yi = θ0 + θ1x(1)
i + θ2x(2)

i + θ11(x(1)
i )2 + θ22(x(2)

i )2 + θ12x
(1)
i x

(2)
i + Ei

b However, the 2k -design does not contain enough data to estimate the parameters of
the second-order polynomial. The reason is that we need at least 3 levels for each
factor. There are now several ways of expanding our original design. The more levels
we have for each factor, the better we can estimate the curvature. So called rotatable
central composite designs (also called second-order central composite designs) are
very famous. As can be seen from the graphical representation in Figure 4.5.b we
can get such a design by extending our original first-order design. In total we have 9
different experimental set-ups if we have two predictor variables. All points (except
the center point) have the same distance from the center (0, 0). Five levels are
used for each factor. If we use replicates at (0, 0) we get a more precise estimate of
the quadratic part of the model.

-1 0 1

-1

0

1

Figure 4.5.b: Rotatable central composite design. It consists of a 22 -design (�) with additional
experiments in the center and along the axes (�).
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Example c Reaction Analysis (cont’d) A rotatable central composite design was applied. The
results can be found in Table 4.5.c.

Variables Variables Yield
in original units in coded units

Run Temperature [◦C] Time [min] Temperature Time Y [grams]

1 195 80 −1 −1 78
2 235 80 +1 −1 76
3 195 100 −1 +1 72
4 235 100 +1 +1 75
5 187 90 −

√
2 0 74

6 243 90 +
√

2 0 76
7 215 76 0 −

√
2 77

8 215 104 0 +
√

2 72
9 215 90 0 0 80

Table 4.5.c: Rotatable central composite design and measurement results for the example “Re-
action Analysis”.

The parameter estimates lead to the estimated second-order response surface:

�y = �θ0 + �θ1x(1) + �θ2x(2) + �θ11(x(1))2 + �θ22(x(2))2 + �θ12x
(1) x(2)

= −278 + 2.0 · x(1) + 3.2 · x(2) + 0.0060 · (x(1))2 + 0.026 · (x(2))2 + 0.006 · x(1) x(2).

d Depending on the parameters, a second-order response surface can take different
shapes. The most important ones are those that have a maximum (minimum) or
a saddle (rather rare). A schematic contour plot of these two types is illustrated in
Figure 4.5.d.
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Figure 4.5.d: Contour plots of second-order response surfaces with a maximum (left) and a
saddle (right).
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Surfaces with a maximum (minimum) don’t need further explanations: Once we leave
the optimum in any direction, yield Y is decreasing (increasing). For a saddle, it
depends on the direction whether yield Y increases or decreases. Hence, the surface
is like a horse saddle.

e It’s possible to find an analytical solution for the critical point by calculating partial
derivatives. In the critical point they have to be zero:

∂ �Y
∂x(1) = �θ1 + 2 �θ11 x

(1)
0 + �θ12 x

(2)
0 = 0

∂ �Y
∂x(2) = �θ2 + 2 �θ22 x

(2)
0 + �θ12 x

(1)
0 = 0 .

Solving this linear equation system for x(1)
0 and x(2)

0 leads us to

x
(1)
0 =

�θ12 �θ2 − 2 �θ22 �θ1
4 �θ11 �θ22 − �θ212

x
(2)
0 =

�θ12 �θ1 − 2 �θ11 �θ2
4 �θ11 �θ22 − �θ212

.

Example f Reaction Analysis (cont’d) We can directly read the critical values off the contour
plot in Figure 4.5.f: (220◦C , 85 minutes).
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Figure 4.5.f: Estimated response surface and experimental designs for the example “Reaction
Analysis”. The first-order design is marked with �, the experiments along the steepest ascent
with �and those of the rotatable central composite design with ��.

Example g Antibody production (cont’d) Let’s come back to our original example. A radioactive
dose of 200 rads and a time of 14 days is used as starting point. Around this point we
use a first-order design, see Table 4.5.g.
Based on the measurements in the center we can calculate the standard deviation of
the error term: �σ = 53.9. Now we check whether there is significant curvature. The
confidence interval for the difference can be calculated as outlined in 4.4.k:

Y c − Y f ± qtnc−1
0.975 ·

�
s2(1/nc + 1/2k) = 589− 335± 4.30 · 41.1

= [77, 431].

As this interval does not cover 0, the difference is statistically different from zero on the
5% level. As yield decreases at the border of our experimental set-up, we conjecture
that the optimal value must lie somewhere within our set-up range.
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Variables Variables Yield
in original units in coded units

Run RadDos [rads] Time [days] RadDos Time Y

1 100 7 −1 −1 207
2 100 21 −1 +1 257
3 300 7 +1 −1 306
4 300 21 +1 +1 570
5 200 14 0 0 630
6 200 14 0 0 528
7 200 14 0 0 609

Table 4.5.g: First-order design and measurement results for the example “Antibody
Production”.

Hence, we expand our design to a rotatable central composite design by doing addi-
tional measurements (see Table 4.5.g).

Variables Variables Yield
in original units in coded units

Run RadDos [rads] Time [days] RadDos Time Y

8 200 4 0 −
√

2 315
9 200 24 0 +

√
2 154

10 59 14 −
√

2 0 100
11 341 14 +

√
2 0 513

Table 4.5.g: Rotatable central composite design and measurement results for the example “An-
tibody Production”.

The estimated response surface is

�Y = −608.4 + 5.237 · RadDos + 77.0 · Time
−0.0127 · RadDos2 − 3.243 · Time2 + 0.0764 · RadDos · Time.

We can identify the optimal conditions in the contour plot (Figure 4.5.g):
RadDosopt ≈ 250 rads and timeopt ≈ 15 days.

h Summary To find the optimal setting of our variables (leading to maximal yield) we
have to iteratively do experiments using special designs.
• If we are still “far away” from the optimum, we use first-order designs and we

estimate the corresponding first-order response surface (a plane).
• On the estimated response surface we determine an ascent direction. Along that

direction we do additional experiments until the response variable decreases again
(“extrapolation”).

• Further first-order experiments may be performed (hence we repeat the last two
steps).

• As soon as we are close to the optimum, we perform (e.g.) a rotatable central
composite design (or we expand our first-order design) to estimate the second-
order response surface. The optimum on that response surface can be determined
either analytically or graphically.
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Figure 4.5.g: Estimated second-order response surface for the example “antibody production”.

4.6 Experimental Designs, Robust Designs

a Here we discussed two types of experimental designs in more detail. Of course there
are books full of other designs that are useful for various scopes. The subject is called
design of experiments.
It may be worthwhile to note that for situations where little is known about the
influence of the predictors on the response, so called “screening designs” can be
very useful. They allow a (rough) analysis of k factors with less than 2k experiments.

b The idea of “robust product design” is that products should have constant quality
even if production conditions vary. To reach this goal we do not only have to optimize
the expected quality (or yield or other response variables) but also the variability.
There are special designs for that purpose, e.g. the Taguchi designs.

4.7 Further Reading

• ANOVA and Design of Experiments Short overviews of simple ANOVA
models can be found in Hartung, Elpelt and Klösener (2002, Chap. XI) and Sachs
(2004, Chap. 7). Linder and Berchtold (1982) give a more detailed introduction.

• Applied books about ANOVA and design of experiments are the famous book of
Box, Hunter and Hunter (1978) and the book of Daniel (1976).

• A special book that uses unusual ways to introduce known (and unknown) meth-
ods with focus an explorative analysis is Hoaglin, Mosteller and Tukey (1991).

• A classical mathematically oriented book about ANOVA is Scheffe (1959).
• Design of Experiments Federer (1972, 1991) is an introduction to statistics

where design of experiments often takes center stage. More details can be found
in the already mentioned book of Box et al. (1978) but also in Mead (1988).

• A systematic overview of experimental design can be found in Petersen (1985).
• A few books discuss topics about practical application of statistics that can’t
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be dealt with mathematics. Recommendations are Boen and Zahn (1982) and
Chatfield (1996).

• Response Surfaces An introduction to response surfaces is available in Box et
al. (1978, Chapter 15) or in Hogg and Ledolter (1992).
Box and Draper (1987) and Myers and Montgomery (1995) cover more details.


