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Overview

• Nonparametric tests

• Randomization tests

• Asymptotic approximations of estimators

• Jackknife and Bootstrap
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Nonparametric Tests



Introduction

• Up to now we basically always used a parametric family, like
the normal distribution N (µ, σ2) for modeling random data.

• Based on observed data x1, . . . , xn we were able to
• calculate parameter estimates µ̂, σ̂2.
• derive confidence intervals for the parameters.
• perform tests, e.g. H0 : µ = µ0,HA : µ 6= µ0.

• All calculations were based on the assumption that the
observed data comes from the corresponding parametric
family.

• This is a strong assumption that has to be checked, e.g. by
using QQ-plots.
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• Why did we need that parametric family/model?

• Remember: a probability model describes our ideas about
the possible outcomes of a random variable and the
corresponding probabilities.

• The model is needed for determining the statistical
uncertainty of an estimate or for deriving the rejection region
of a test.

• Remember: Derivation of rejection region for Z -Test (based
on normal assumption!).

• Wouldn’t it be nice to have a method that would need
(basically) no parametric assumptions?
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Nonparametric Statistics

• The field of nonparametric statistics is about methods that
do not make parametric assumptions about the data
generating process.

• It includes (among others):
• Nonparametric regression models
• Nonparametric tests / distribution free tests
• Nonparametric density estimation
• . . .
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Example: Nonparametric Regression

• Regression model so far

Yi = β0 + β1x (1)
i + · · ·+ βpx (p)

i︸ ︷︷ ︸
structural part

+ Ei︸︷︷︸
random part

• The structural part can be written as a function h(xi ;β).

• Nonparametric regression relaxes the assumptions about the
function h. Can be any “smooth” function, “no formula
required”.

• See picture on next slide.

• This will be treated in the block course “Nonparametric
Regression”.
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Nonparametric Tests

• Nonparametric tests are tests that do not assume that the
random variables follow a parametric family (normal,
exponential, . . . ).

• More precise term: distribution free tests.

• Distribution free also means: The test statistic has the same
distribution for all distributional assumptions for the
observations.

• We will have a look at
• Rank-based tests
• Rank correlation
• Goodness-of-fit tests
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Rank-Based Tests: Overview

• Remember: rank = position of observation in ordered sample.

• Therefore, the ranks are always the numbers 1 to n (with the
exception of ties)

• Overview
• Signed-rank test of Wilcoxon (as seen in introductory course)

for a simple sample or for paired samples.
• Rank-sum test of Wilcoxon, Mann and Whitney (Mann

Whitney U-Test) for 2 independent samples.
• Extensions for ANOVA

• one-way: Kruskal-Wallis test
• block designs: Friedman test

• Rank correlations
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Signed-Rank Test of Wilcoxon

• First, back to basics: sign-test (see blackboard)

• Observations xi are interpreted as i.i.d. realizations of random
variables Xi , i = 1, . . . , n.

• Assumption: Xi ∼ F , where F(µ) is a continuous and
symmetric distribution with median (=mean) µ.

• No parametric assumption such as normal, exponential,
log-normal, etc. is needed here.

• H0 : µ = µ0, HA : µ 6= µ0 (or one-sided alternative)
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Signed-Rank Test of Wilcoxon: Details

• Determine differences to “reference value” µ0: Di = Xi − µ0.

• Calculate absolute values: |D1|, . . . , |Dn|.

• Replace by the corresponding ranks Ri = rank(|Di |)

• Test statistic = sum of all Ri ’s that have a corresponding
positive Di .
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• The distribution of the test statistic under H0 does not
depend on the distribution F .

• Why? The sign of Di does not depend on F (under H0).

• The ranks are always the numbers 1 to n.

• Due to the symmetry assumption, “the left and the right-hand
side should show the same mixture of ranks” (under H0).

• I.e., under H0 we can go through the numbers 1 to n and
“toss a coin” whether it goes to “the left or the right-hand
side of µ0”. This determines the distribution under H0!

• Check rejection region in table or use computer.
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Signed-Rank Test of Wilcoxon: Toy-Example

• H0 : µ = 9,HA : µ 6= 9.

• Data and calculations:
i 1 2 3 4 5 6 7 8
xi 7.0 13.2 8.1 8.2 6.0 9.5 9.4 8.7
di −2.0 4.2 −0.9 −0.8 −3.0 0.5 0.4 −0.3
|di | 2.0 4.2 0.9 0.8 3.0 0.5 0.4 0.3
ri 6 8 5 4 7 3 2 1

• Value of test statistic:

8 + 3 + 2 = 13.

• Rejection region is (see e.g. table in book of Stahel)

{0, 1, 2, 3} ∪ {33, 34, 35, 36}
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Signed-Rank Test of Wilcoxon: R

• In R: wilcox.test(x, mu = 9)

• Output:
Wilcoxon signed rank test
data: x
V = 13, p-value = 0.5469
alternative hypothesis: true location is not equal to 9
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Signed-Rank Test of Wilcoxon: Technical Details

• If there are ties (in the |di |’s), we assign each of the elements
the average of the applicable ranks.

• If there are zeros (in the |di |’s), we ignore them and adjust
the sample-size accordingly.
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Mann-Whitney U-Test

• Test to compare two independent samples (like two-sample
t-test)

• Data: x1, . . . , xn1 and y1, . . . , yn2 (two groups).

• H0 : Xi ,Yj i.i.d. ∼ F where F is any continuous distribution,
the same for all observations.

• HA : Xi ∼ FX ,Yj ∼ FY , where

FX (x) = FY (x − δ).

I.e. the distribution functions are simply shifted versions of
each other (“location shift”).
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Mann-Whitney U-Test: Details

• Combine data from both groups.

• Replace every observation with its rank (with respect to the
combined data).

• Calculate sum of ranks of each group  S(1),S(2).

• Define T (k) = S(k) − nk(nk + 1)/2, k = 1, 2.

• Use
U = min

{
T (1),T (2)

}
as test statistic (R uses T (1)).

• Compare with table.
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Mann-Whitney U-Test: Toy-Example

• Data
i 1 2 3 4 5 6 7 8
xi 6.2 9.9 7.3 6.4 10.3 11.1 10.6 10.0

j 1 2 3 4 5 6 7 8 9 10
yj 7.4 11.7 6.7 11.0 8.1 6.5 4.3 10.2 10.7 7.1

• Ranks with respect to combined groups:
i 1 2 3 4 5 6 7 8

rxi 2 10 7 3 13 17 14 11

j 1 2 3 4 5 6 7 8 9 10
ryj 8 18 5 16 9 4 1 12 15 6

• Rank sum group X : S(1) = 2 + 10 + · · ·+ 11 = 77
Rank sum group Y : S(2) = 8 + 18 + · · ·+ 6 = 94.
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Mann-Whitney U-Test: Toy-Example

• T (1) = S(1) − 8 · 9/2 = 77− 36 = 41
T (2) = S(2) − 10 · 11/2 = 94− 55 = 39.

• U = min {41, 39} = 39.

• Test decision: See R-output on next slide.
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Mann-Whitney U-Test: R

• In R: wilcox.test(x, y, paired = FALSE)

• Output:
Wilcoxon rank sum test

data: x and y
W = 41, p-value = 0.9654
alternative hypothesis: true location shift is not
equal to 0
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Kruskal-Wallis Test

• What if we have g > 2 groups? I.e., if we are in the one-way
ANOVA situation?

• There, the typical (global) null-hypothesis is

H0: All groups come from the same (continuous) distribution.
HA: At least one group has a shifted distribution function.

• The same idea as in the previous examples is applicable.

• We “pool” all our data together and replace it with the
corresponding ranks.

• The test is known as Kruskal-Wallis Test.
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Kruskal-Wallis Test: Details

• Combine all observations of all g groups.

• Calculate the corresponding ranks (with respect to the
combined sample).

• Sum up ranks in each group:  S(1), . . . ,S(g).

• Calculate test statistic that is based on S(1), . . . ,S(g)

(without details).
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Kruskal-Wallis Test: R

• In R:
kruskal.test(Ozone ∼ Month, data = airquality)

• Output:
Kruskal-Wallis rank sum test

data: Ozone by Month
Kruskal-Wallis chi-squared = 29.2666, df = 4,
p-value = 6.901e-06

• Also have a look at boxplot...
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Friedman Test

• Consider the case of an (unreplicated) complete block
design.

• Example: Sales of 5 products (A to E ) in 7 stores
A B C D E

1 5 4 7 10 12
2 1 3 1 0 2
3 16 12 22 22 35
4 5 4 3 5 4
5 10 9 7 13 10
6 19 18 28 37 58
7 10 7 6 8 7

• Here: blockfactor = stores, treatment factor = products.
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• The corresponding model is

Yij = µ+ αi + βj + Eij

i = 1, . . . , a (treatments), j = 1, . . . , b (blocks).

• H0 : αi = 0 for all i (“treatment has no effect”)
HA: at least one αi 6= 0.

• If the products show a consistent difference, the rankings
within the blocks (= stores) are expected to be similar.

• E.g., in every store the same product is best-selling.

• On the other side, if there is no “product effect”, the rankings
within each store are random.

• This is the idea of the so-called Friedman Test.
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Friedman Test: Details

• Replace Yij with the corresponding rank within the same
block  Rij .

• Sum up ranks for every level of the treatment factor (=
products)  Sk .

• Define

U =
a∑

k=1

Sk − b · (a + 1)/2︸ ︷︷ ︸
avg. rank of treatm.


2

.

• Standardize
T = 12

b · a · (a + 1)U

• Fact: T ≈ χ2
a−1 under H0.
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Friedman Test: R

• R-function: friedman.test

• Use formula interface (see help file) or a data matrix.

• If a matrix is used in the call, the treatments are given by the
different columns and the blocks by the different rows
(check details in help file).

• friedman.test(m)

• Output:
Friedman rank sum test

data: m
Friedman chi-squared = 8.3284, df = 4, p-value = 0.08026
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More Complex Designs

• Ideas also applicable for more complex ANOVA-designs.

• Methods not very common...

• See also approaches with randomization tests (later).

• So far for tests...what about measures of dependence?
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Rank Correlation

• Ranks can also be used to describe the relationship between
two variables.

• Remember: “Ordinary” (Pearson) correlation measures the
strength of the linear relationship between two variables.

• Rank correlation of Spearman is defined as the Pearson
correlation of the rank-transformed data.

• I.e., replace every observation with its rank and calculate
Pearson correlation. That’s all!
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• In R: cor(x, y, method = "spearman")

• If we transform one or both variables with a monotone
transformation, the Spearman correlation will not change!

• Hence, it measures the strength of a monotone relationship
between two variables.

• See example on next slide.
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• Pearson: Left: 0.84 / Right: 0.85

• Spearman: Left: 0.84 / Right: 1
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Goodness-of-Fit Tests

• Problem in parametric statistics: Are the data compatible
with the assumption about their distribution?

• Good approach: Visual inspection (QQ-plots) instead of
formal tests.

• QQ-plot: Empirical quantiles vs. theoretical quantiles.

• Theoretical quantiles based on model distribution F (x).

• Empirical quantiles based on empirical distribution function

F̂n(x) = 1
n# {i | Xi ≤ x} .
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Kolmogorov-Smirnov Test

• We can also try to use a statistical test.

• H0 : Data comes from a certain pre-specified distribution.
HA: Data comes from (any) other distribution.

• I.e., we are a situation where we are trying to “prove” H0.

• If we can’t reject H0 we cannot be confident that H0 really
holds. The test might simply have low power.

• The Kolmogorov-Smirnov test is based on the comparison
of the two distribution functions

T = max
x

{∣∣∣F̂n(x)− F (x)
∣∣∣} .
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• The distribution of T under H0 does not depend on the
distribution of F (if F is continuous).

• Reason: We can apply any monotone transformation and the
result will not change.

• The Kolmogorov-Smirnov test is interesting from a theoretical
point of view, but typically has low power.

• Hence, if it does not reject, we can basically say nothing!

• If it rejects, we can of course believe HA, as the type I error
rate is controlled (as usual).

• Alternative: χ2-test (typically more powerful).
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Kolmogorov-Smirnov Test: R

• In R: ks.test

• ks.test(x, "pnorm", mean = 0.5, sd = 1)

• Output:
One-sample Kolmogorov-Smirnov test

data: x
D = 0.3347, p-value = 0.01687
alternative hypothesis: two-sided
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Kolmogorov-Smirnov Test: Problems

• Problem: The parameters of the theoretical distribution have
to be pre-specified and should not be estimated from the
data (!).

• E.g., we have to specify the values of µ and σ2 for the normal
distribution.

• From the help file of ks.test:
If a single-sample test is used, the parameters specified
in ’...’ must be pre-specified and not estimated from the
data. There is some more refined distribution theory for
the KS test with estimated parameters (see Durbin, 1973),
but that is not implemented in ’ks.test’.

• Not a problem with normalplots...
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Summary

• Overview of discussed rank-based tests:

2 groups More than two groups
paired Wilcoxon Friedman
unpaired Mann-Whitney U Kruskal-Wallis

• Use rank correlation to measure strength of monotone
dependence.

• Kolmogorov-Smirnov Test not very powerful.
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