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Abstract

Compared to Krylov space methods based on orthogonal or oblique projection, the Cheby-

shev iteration does not require inner products and is therefore particularly suited for massively

parallel computers with high communication cost. Here, six different algorithms that imple-

ment this method are presented and compared with respect to roundoff effects, in particular,

the ultimately achievable accuracy. Two of these algorithms replace the three-term recurrences

by more accurate coupled two-term recurrences and seem to be new. It is also shown that, for

real data, the classical three-term Chebyshev iteration is never seriously affected by roundoff,

in contrast to the corresponding version of the conjugate gradient method. Even for complex

data, strong roundoff effects are seen to be limited to very special situations where convergence

is anyway slow.

The Chebyshev iteration is applicable to symmetric definite linear systems and to nonsym-

metric matrices whose eigenvalues are known to be confined to an elliptic domain that does

not include the origin. Also considered is a corresponding stationary 2-step method, which

has the same asymptotic convergence behavior and is additionally suitable for mildly nonlin-

ear problems. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Chebyshev iteration [2–4] has been one of the favorite Krylov space methods
for solving a large sparse linear system of equations in a parallel environment, since,
unlike methods based on orthogonalization (such as the conjugate gradient (CG)
and biconjugate gradient (BICG) methods and GMRES – to name a few), it does
not require to compute communication-intensive inner products for the determina-
tion of the recurrence coefficients. Only the monitoring of the convergence, that is,
the determination of the norm of the residuals requires inner products, and even this
norm needs to be evaluated only occasionally because its time-dependence, that is,
the convergence rate, can be forecast reliably.

The Chebyshev iteration, which in the older literature has often been referred to
as Chebyshev semiiterative method, requires some preliminary knowledge about the
spectrum rðAÞ of the coefficient matrix A: an elliptic domain E � rðAÞ with 0 62 E is
normally assumed to be known in advance. Denote the center of the ellipse by a, its
foci by a � c, and the lengths of the large and the small semi-axes by a and b. When
b ¼ 0, the elliptic domain turns into a straight line segment (or, interval) I :	
½a � c; a þ c
. At this point, both a and c may be complex. Manteuffel [1] devised a
technique to determine a suitable ellipse from a given nonsymmetric matrix.

Mathematically, the method can be defined by translating the Chebyshev polyno-
mials Tn from the interval ½�1; 1
 to the interval I and scaling them so that their
value at 0 is 1. On R the Chebyshev polynomials are defined by 1

TnðnÞ :	
cosðn arccos ðnÞÞ if jnj6 1;
coshðnarcosh ðnÞÞ if nP 1;
ð�1Þn coshðnarcosh ð�nÞÞ if n6 � 1:

8<
:

Tn is even or odd if n is even or odd, respectively. All three formulas are valid when
we extend the definition to the complex plane, which we will indicate by using the
variable f. For example, we may define

TnðfÞ :	
1

2
f

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q �n

þ f

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q �n	
:

The translated and scaled residual polynomials pn that characterize the Chebyshev
iteration are

pnðfÞ :	
Tnððf � aÞ=cÞ
Tnð�a=cÞ : ð1Þ

If we let x0 be an initially chosen approximation of the solution of the linear sys-
tem Ax ¼ b that has to be solved, and if r0 :	 b � Ax0 denotes the corresponding re-
sidual, then, by definition, the nth approximation and residual satisfy

1 Definitions are marked by the symbol :	, while :¼ is used for algorithmic assignments; often either

one of the symbols could be used.
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b � Axn ¼ rn ¼ pnðAÞr0:

The classical case for applying the method is when A is symmetric positive definite
(spd) – as assumed in CG – and, therefore, the intervalI lies on the positive real axis
and contains the spectrum of A. In this case Chebyshev iteration is known to be op-
timal in the sense that it yields, for every n, the smallest nth maximum residual if the
maximum is taken over all normal matrices with spectrum on I; see [2–4].

Due to a wrong claim in [5] it has often been assumed that this optimality also
holds for the class of matrices with spectrum inside or on an ellipse whose foci lie
on the positive real axis, but Fischer and Freund [6,7] have shown that this is not
true in general; the exceptional cases are rather ill-conditioned, however. In any case,
for any elliptic compact set not containing 0 the correspondingly chosen Chebyshev
iteration is asymptotically optimal, as its recurrence coefficients approach those of a
second order Richardson iteration, which is a stationary 2-step method based on
conformal mapping [8–11] and can be viewed as the limit of the Chebyshev iteration;
see our discussion in Section 6.

Of course, in practice we need an algorithm that generates the approximations xn

recursively. The usual approach is to derive a three-term recurrence from the stan-
dard recursion for the Chebyshev polynomials. However, as has recently been shown
by Gutknecht and Strako�ss [12], Krylov space methods based on three-term recur-
sions for iterates and residuals may suffer from a large gap between recursively com-
puted residuals rn and true residuals b � Axn, and, therefore, may stagnate early with
relatively large true residuals. In other words, the ultimately achievable accuracy
may be quite low. In particular, this effect may even occur when CG is applied to
an spd problem.

We will show here that the Chebyshev iteration, even in this implementation, is
not seriously affected by roundoff. Moreover, we will discuss five other implementa-
tions that produce even more accurate solutions, that is, stagnate ultimately with
smaller true residuals. We also point out that the aforementioned stationary second
order Richardson iteration can as well be realized by six analogous different algo-
rithms.

We note that similar analytical techniques have been applied by Golub and Over-
ton [13] for the analysis of the behavior of the Chebyshev iteration when a precon-
ditioner is applied inexactly.

2. Chebyshev iteration with three-term recursion

Recursions for the residuals rn and the iterates xn of the Chebyshev iteration are
easily found from the standard three-term recursions for the classical Chebyshev
polynomials Tn,

Tnþ1ðfÞ :¼ 2fTnðfÞ � Tn�1ðfÞ ðn > 1Þ: ð2Þ

The following first realization of the method results.
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Algorithm 1 (Three-term Chebyshev iteration). For solving Ax ¼ b choose x0 and let
r0 :¼ b � Ax0. Also set r�1 :¼ x�1 :¼ o. Choose the parameters a and c so that the
spectrum of A lies on the straight line segment I :	 ½a � c; a þ c
 or on an elliptical
domain E with foci a � c that does not contain 0.Then let g :	 �a=c,

b�1 :	 0; b0 :	
c
2

1

g
¼ � c2

2a
; c0 :	 �a ð3Þ

and compute for n ¼ 0; 1; . . . until convergence,

bn�1 :	
c
2

Tn�1ðgÞ
TnðgÞ

¼ c
2


 �2 1

cn�1

if nP 2; ð4Þ

cn :	
c
2

Tnþ1ðgÞ
TnðgÞ

¼ �ða þ bn�1Þ if nP 1; ð5Þ

xnþ1 :¼ � rnð þ xna þ xn�1bn�1Þ=cn; ð6Þ

rnþ1 :¼ Arnð � rna � rn�1bn�1Þ=cn: ð7Þ

We cannot expect that a solver produces ultimately a much smaller residual than
what we get when we insert (the machine approximation of) the exact solution
xH :	 A�1b into the definition of the residual: kflðb � AxHÞk. However, due to the
accumulation of rounding errors the achievable accuracy might be perhaps much
lower. Actually, the ultimate accuracy of Algorithm 1 (and many others) is deter-
mined by the size of the gap fn between the updated (or, recursively computed)
residual rn and the true (or, explicitly computed) residual b � Axn:

fn :	 b � Axn � rn:

Here xn and rn denote the vectors computed in floating-point arithmetic from (6) and
(7). In fact, if A satisfies the spectral assumption, then, normally, rn ! o as n ! 1
even in floating-point arithmetic. Thus,

kflðb � AxnÞk � kfnk for large n:

A general result on this gap for methods updating residuals by three-term recur-
rences was given in [12].

Theorem 1 [12]. Assume iterates and residuals are updated according to

xnþ1 :¼ � rnð þ xnan þ xn�1bn�1Þ=cn; ð8Þ

rnþ1 :¼ Arnð � rnan � rn�1bn�1Þ=cn; ð9Þ

where cn :¼ �an � bn�1. Then the gap fn :	 b � Axn � rn satisfies, up to Oð�2Þ (where �
denotes the machine epsilon),
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fnþ1 ¼ f0 � l0

� l0
b0

c1
� l1

� l0
b0b1

c1c2
� l1

b1

c2
� l2

..

.

� l0
b0b1; . . . ; bn�1

c1c2; . . . ; cn
�; . . . ;�ln�1

bn�1

cn
� ln;

ð10Þ

where

ln :	 ð�ben þ Ahn þ gnÞ
1

cn

is the local error whose components come from

rnþ1 ¼ ðArn � rnan � rn�1bn�1 þ gnÞ=cn;
xnþ1 ¼ �ðrn þ xnan þ xn�1bn�1 þ hnÞ=cn;
cn ¼ �ðan þ bn�1 þ enÞ:

ð11Þ

In (10) and (11) the quantities xk, rk, ak, bk�1, and ck are those computed in float-
ing-point arithmetic. If we assume that each row of A contains at most m nonzero
elements and that matrix–vector products with A are computed in the standard
way, then for the local error holds componentwise

jlnj6 jbjðjanj½ þ jbn�1jÞ þ ðmþ 6ÞjAjjrnj þ 3ðjAjjxnj þ jrnjÞjanj þ 4ðjAjjxn�1j

þ jrn�1jÞjbn�1j

�

jcnj
þ Oð�2Þ:

But more important than the size of the local errors is the size of the potentially
large factors bk�1=ck and of their products in (10). In Algorithm 1, the factors and
their products are (in exact arithmetic)

b0

c1
¼ 1

T2ðgÞ
; ð12aÞ

bn�1

cn
¼ Tn�1ðgÞ

Tnþ1ðgÞ
; ð12bÞ

bkbkþ1; . . . ; bn�1

ckþ1ckþ2; . . . ; cn
¼ TkðgÞTkþ1ðgÞ

TnðgÞTnþ1ðgÞ
ð06 k < n� 1Þ: ð12cÞ

Strictly speaking, we should consider here the values of bk�1 and ck that are ob-
tained in floating-point arithmetic. Then the three relations (12a)–(12c) are only cor-
rect up to a roundoff error of order Oð�Þ. However, because we are free to compute
the recurrence coefficients at little extra cost in multiple-precision arithmetic, and
since we are only concerned about quotients that are very large, it seems well justified
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to neglect these errors here. Otherwise we would have to analyze the roundoff errors
in the recursions (4) and (5), or in any other formulas used to calculate bn�1 and cn.

If 0 < c < a (as in the case when A is spd), so that g < �1 and jTkðgÞj ¼
coshðk arcoshðjgjÞÞ, we have, since cosh is monotone increasing on the positive real
axis,

jTkðgÞj < jTnðgÞj if k < n; ð13Þ

and therefore all the factors in (10) are less than 1 if the recurrence coefficients are
computed accurately enough. Since lk appears in n� k þ 1 terms of (10), it may still
get amplified by a factor smaller than n� k þ 1, but this is not too serious, in par-
ticular since typically most of the factors are rather small.

Of course, (13) does not hold in general unless g < �1 or g > 1: for example,
given m 2 N we have, for g purely imaginary and of sufficiently small absolute
value, jT2kðgÞj > jT2nþ1ðgÞj for all k; n 2 N with k; n6m, since jT2kð0Þj 6¼ 0 but
jT2nþ1ð0Þj ¼ 0. But in (12b) the index difference between the numerator and denom-
inator polynomials is 2 and hence this argument is not applicable.

We show next that also in the other case relevant for real-valued problems,
namely when a 2 R but c is purely imaginary (so that the ellipse is still centered
on and symmetric about the real axis), the quotients (12a)–(12c) are all of absolute
value smaller than 1.

For any g 2 C n ½�1; 1
, we let # be the larger solution of the quadratic equation

1

2
#

�
þ 1

#

�
¼ g: ð14Þ

Note that the solutions come in pairs #, #�1 and that j#j ¼ 1 implies that
g ¼ 1

2
ð#þ #�1Þ ¼ 1

2
ð#þ #Þ ¼ Re# 2 ½�1; 1
, which is excluded by assumption. There-

fore, we may assume that j#j > 1 here. The mapping # 7!g of (14) is the well-known
Joukowski transformation, which allows us to express the Chebyshev polynomials
simply as

TnðgÞ ¼
1

2
#n

�
þ 1

#n

�
: ð15Þ

In fact, if we let

/ :	 arcoshðgÞ with Re/ P 0;

so that e/ þ e�/ ¼ 2g ¼ #þ #�1, then, clearly, e/ ¼ #, and therefore, if gP 1,
TnðgÞ ¼ coshðnarcoshðgÞÞ ¼ 1

2
ð#n þ #�nÞ, and this relation can be seen to be valid for

any g 2 C. Consequently, the single factors from (12b) can be written as

bn�1

cn
¼ Tn�1ðgÞ

Tnþ1ðgÞ
¼ #n�1 þ #�ðn�1Þ

#nþ1 þ #�ðnþ1Þ : ð16Þ

Obviously, these factors are rational functions of both g and #.
It is well known that Tnþ1 has nþ 1 simple zeros in ð�1; 1Þ. So, Tn�1ðfÞ=Tnþ1ðfÞ

(after cancellation of the pole and zero at f ¼ 0 if n is even) has at most nþ 1 poles,
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and they lie all on ð�1; 1Þ. If considered as a function of #, the quotient has at most
2ðnþ 1Þ poles, and they all lie on the unit circle. Clearly, if we choose g close enough
to a pole, but not on ½�1; 1
, the quotient can be made as large as we want. Conse-
quently, as claimed, the factors are in general not all of absolute value less than 1. So,
amplification of a local error is possible.

If 0 < c < a, we have seen already that (13) holds, and, by symmetry, the same is
true for 0 > c > a. If a is still real, say a > 0, but c 2 iRþ, then g :	 �a=c 2 iRþ, and
since the Joukowski transformation maps the part above i of the imaginary axis on
the positive imaginary axis, we have # ¼ iv with v > 1. Then, from (16) and by set-
ting

egg :	 1

2
v

�
þ 1

v

�
;

so that egg > 1 (since the Joukowski transformation maps ½1;1Þ onto itself), we ob-
tain

bn�1

cn
¼ Tn�1ðgÞ

Tnþ1ðgÞ
¼

� vn�1þv�ðn�1Þ

vnþ1þv�ðnþ1Þ ¼ � Tn�1ðeggÞ
Tnþ1ðeggÞ if n odd;

� vn�1�v�ðn�1Þ

vnþ1�v�ðnþ1Þ ¼ � Un�1ðeggÞ
Unþ1ðeggÞ if n even:

8><
>: ð17Þ

Here, Un is the nth Chebyshev polynomial of the second kind. For egg > 1, Un can
be expressed as

UnðeggÞ ¼ sinhðnarcoshðeggÞÞ:
Noting that sinh is monotone increasing, we can conclude that Unþ1ðeggÞ >

Un�1ðeggÞ > 0 if egg > 1. As we have seen before, also Tnþ1ðeggÞ > Tn�1ðeggÞ > 0 if egg > 1.
Therefore, also in this situation, the factors bn�1=cn have an absolute value smaller
than 1. Summarizing, we have proved the following result.

Theorem 2. For an interval ½a � c; a þ c
 � R or an ellipse with foci a � c symmetric
about the real axis and not containing the origin, the factors (12a)–(12c), which appear
in (10), are of absolute value less than 1 if the recurrence coefficients bk�1 and ck have
been computed with sufficient accuracy.

In Section 8 we will come back to the question of the size of the factors (12a)–
(12c) in the case where the assumptions of this theorem do not hold, that is when
the linear system to be solved is complex and does not have a spectrum symmetric
about the real axis.

Finally, we note that a simple way to avoid the residual gap in the Chebyshev it-
eration is to replace the recursively computed residuals by explicitly computed resid-
uals:

Algorithm 2 (Three-term recursion, explicitly computed residuals). Same as Algo-
rithm 1 except that the recursion (7) for computing rnþ1 is replaced by
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rnþ1 :¼ b � Axnþ1: ð18Þ

This remedy could be applied in many Krylov solvers in order to increase the ul-
timate accuracy. However, explicitly computed residuals are known to slow down
the convergence of projection methods like CG and BICG due to stronger roundoff
effects in the Krylov space generation process [14], as they destroy the local (bi)or-
thogonality of the bases created. But here, unlike in these methods, the recurrence
coefficients a, bn�1, and cn do not depend on rn, and therefore the error of rn will only
have little influence on xm (m > n) and the convergence of the method.

3. Rutishauser’s Chebyshev iteration by updating corrections

The recursions (6) and (7) are of the form (8) and (9) with the consistency condi-
tion an þ bn�1 þ cn ¼ 0, which implies that rn ¼ b � Axn for all n if it holds for n ¼ 0.
Subtracting xn and rn, respectively, on both sides of (8) and (9), using the consistency
condition, and setting

Dxn :	 xnþ1 � xn; Drn :	 rnþ1 � rn;

yields

Dxn :¼ ð � rn þ Dxn�1bn�1Þ=cn; ð19Þ

Drn :¼ Arnð þ Drn�1bn�1Þ=cn : ð20Þ
This leads to the following reformulation of Algorithm 1.

Algorithm 3 (Chebyshev iteration by updating Dxn and Drn). Same as Algorithm 1
except that the recursions (6) and (7) for computing xnþ1 and rnþ1 are replaced by (19)
and (20) and

xnþ1 :¼ xn þ Dxn; ð21Þ

rnþ1 :¼ rn þ Drn: ð22Þ

This is how Rutishauser [4] formulated the Chebyshev iteration and other Krylov
space solvers (which he called ‘‘gradient methods’’). It is easy to also modify this
scheme so that the residuals are computed explicitly:

Algorithm 4 (Updating Dxn and explicitly computing rn). Same as Algorithm 1 except
that the recursions (6) and (7) for computing xnþ1 and rnþ1 are replaced by (19), (21),
and (18), that is,

Dxn :¼ ð � rn þ Dxn�1bn�1Þ=cn;

xnþ1 :¼ xn þ Dxn;

rnþ1 :¼ b � Axnþ1:
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4. Algorithms based on coupled two-term recurrences

For Krylov space solvers based on two-term updates for xn and rn (involving ad-
ditionally direction vectors vn) [15,16],

vn :¼ rn � vn�1wn�1;n � vn�2wn�2;n�; � � � ;�v0w0;n; ð23Þ

xnþ1 :¼ xn þ vnxn; ð24Þ

rnþ1 :¼ rn � Avnxn; ð25Þ

the gap between updated and true residuals is known to be often much smaller than
for those that update the residuals with three-term recurrences of the form (8) and (9)
or even longer ones. It does not matter whether the recursion (23) for vn is long or
just two-term as in

vn :¼ rn � vn�1wn; ð26Þ

because the same possibly inaccurate vn is used in (24) and (25). Examples for al-
gorithms of the form (24) and (25) with (26) are the standard Hestenes-Stiefel or
OMIN version of CG and the standard BIOMIN version of BICG.

The above claim about the higher ultimate accuracy of algorithms with two-term
updates (24) and (25) is based on a comparison between Theorem 1 and the follow-
ing result of Greenbaum [17], which improves on previous similar statements in [19]
and [18]. It explains why the gap between updated and true residuals is relatively
small: here, the gap is just a sum of local errors; these are not multiplied by any po-
tentially large factors.

Theorem 3 [17]. Assume iterates and residuals are updated according (24) and (25).
Then the gap fn :	 b � Axn � rn between the true and the updated residual satisfies

fn ¼ f0 � l0 � � � � � ln;

where

ln :	 Ahn þ gn

is the local error whose components come from

xnþ1 ¼ xn þ vnxn þ hn; rnþ1 ¼ rn � Avnxn þ gn:

In particular,

kfnk
kAkkxk 6 ð�þ Oð�2ÞÞ n½ þ 2þ ð1þ l þ ðnþ 1Þð10þ 2lÞÞHn
;

where � denotes the machine epsilon, l :	 m
ffiffiffiffi
N

p
with m the maximum number of

nonzeros in a row of A, N the order of A, and
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Hn :	 max
k6 n

kxkk
kxHk

:

5. Chebyshev iteration based on coupled two-term recurrences

Theorem 3 suggests to search for a coupled-two term recursion as an alternative
realization of the Chebyshev method. Recursions (24) and (25) call for the following
‘‘Ansatz’’ in a polynomial formulation:

bppnðfÞ :¼ pnðfÞ � wn�1bppn�1ðfÞ; ð27Þ

pnþ1ðfÞ :¼ pnðfÞ � fxnbppnðfÞ; ð28Þ

with p0ðfÞ :¼ bpp0ðfÞ :¼ 1, w�1 :	 0. To determine xn and wn, we insert (27) into (28),
make use of (28) with n replaced by n� 1, and then compare the result with the
polynomial reformulation of (7): if nP 1,

pnþ1ðfÞ ¼ pnðfÞ � fxnpnðfÞ þ fxnwn�1bppn�1ðfÞ

¼ pnðfÞ � fxnpnðfÞ þ wn�1

xn

xn�1

ðpn�1ðfÞ � pnðfÞÞ

¼ 1� wn�1

xn

xn�1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼�a=cn

pnðfÞ �xn|ffl{zffl}
¼1=cn

fpnðfÞþwn�1

xn

xn�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼�bn�1=cn

pn�1ðfÞ:

We obtain

bn�1 ¼
wn�1

xn�1

ðnP 1Þ; cn ¼ � 1

xn
ðnP 0Þ; ð29Þ

a ¼ �bn�1 � cn ¼
1

xn
� wn�1

xn�1

ðnP 1Þ ð30Þ

and conversely,

wn�1 ¼ � bn�1

cn�1

ðnP 1Þ; xn ¼ � 1

cn
ðnP 0Þ: ð31Þ

If n ¼ 0, we have w�1 :¼ 0 and hence just p1ðfÞ ¼ p0ðfÞ � fx0p0ðfÞ, so

x0 ¼ � 1

c0
¼ 1

a
:

Like bn�1 and cn we can express xn and wn�1 in terms of the Chebyshev polyno-
mials and derive recursions for them. First, inserting the left-hand side equations
from (4) and (5) into (31) we see that

xn ¼ � 2

c
TnðgÞ
Tnþ1ðgÞ

; wn�1 ¼ � Tn�1ðgÞ
TnðgÞ

� �2

: ð32Þ
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Then, inserting the right-hand side equations from (4) and (5) we get

xn ¼ � 1

cn
¼ ða þ bn�1Þ

�1

¼ a

�
þ c

2


 �2 1

cn�1

��1

¼
a � c

2

� �2
xn�1


 ��1

ðif nP 2Þ;

a � c2

2a


 ��1

ðif n ¼ 1Þ

8><
>:

and

wn�1 ¼ � bn�1

cn�1

¼
� c

2

� �2 1
c2
n�1

¼ � c
2

� �2
x2

n�1 ðnP 2Þ;

� c2

2a2 ðn ¼ 1Þ:

8<
:

Summarizing we obtain the following coupled two-term Chebyshev iteration [20].

Algorithm 5 (Coupled two-term Chebyshev iteration). For solving Ax ¼ b choose x0

and let r0 :¼ b � Ax0. Choose the parameters a and c so that the spectrum of A lies
on the straight line segment I :	 ½a � c; a þ c
 or on an elliptical domain E with foci
a � c that does not contain 0. Then let g :	 �a=c,

w�1 :	 0; w0 :	 � 1

2

c
a


 �2

; ð33Þ

x0 :	
1

a
; x1 :	 a

�
� c2

2a

��1

: ð34Þ

and compute, for n ¼ 0; 1; . . . until convergence,

wn�1 :	 � Tn�1ðgÞ
TnðgÞ

� �2

:¼ � c
2


 �2

x2
n�1 ðnP 2Þ; ð35Þ

xn :	 � 2

c
TnðgÞ
Tnþ1ðgÞ

:¼ a

�
� c

2


 �2

xn�1

��1

ðnP 2Þ; ð36Þ

vn :¼ rn � vn�1wn�1; ð37Þ

xnþ1 :¼ xn þ vnxn; ð38Þ

rnþ1 :¼ rn � Avnxn: ð39Þ
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Also in Algorithm 5 we can avoid the residual gap by replacing the recursively
computed residuals by explicitly computed residuals.

Algorithm 6 (Two-term recursions and explicitly computed residuals). Same as
Algorithm 5 except that the recursion (39) for computing rnþ1 is replaced by
rnþ1 :¼ b � Axnþ1.

6. The second-order Richardson iteration as limiting case

For any g 2 C n ½�1; 1
 we have according to (15) in terms of # defined by (14) and
j#j > 1

TnðgÞ
Tnþ1ðgÞ

¼ #n þ #�n

#nþ1 þ #�ðnþ1Þ ¼ #�1 1þ #�2n

1þ #�2ðnþ1Þ ! #�1 ð40Þ

as n ! 1. We can conclude that for any admissible value of g the coefficients of both
the three-term and the two-term Chebyshev iterations converge:

bn�1 !
c
2#

	: b; cn !
c#
2

	: c as n ! 1; ð41Þ

wn�1 ! �#2 	: w; xn ! � 2

c#
	: x as n ! 1: ð42Þ

(The dependence on the center a of the ellipse or interval is hidden in #.) This gives
rise to six additional related algorithms that are analogous to Algorithms 1–6 but use
the limit values of the coefficients. For example, for the iterates hold the three-term
recurrences

xnþ1 :¼ � rnð þ xna þ xn�1bÞ=c ð43Þ

and the coupled two-term recurrences

vn :¼ rn � vn�1w; ð44Þ

xnþ1 :¼ xn þ vnx: ð45Þ
These additional six algorithms are different implementations of the second-order

Euler method that can be associated with the ellipse E. This method belongs to the
class of iterative methods based on conformal mappings, introduced by Kublanovs-
kaya in 1959; see [8–11]. It is, at least in the case where the ellipse E collapses to an
interval I, better known as stationary second-order Richardson iteration; see [3]. It
can easily be generalized for mildly non-linear systems of equations, and for those it
seems more suitable than the nonlinear Chebyshev iteration; see [21,22]. Note that

b
c

����
���� ¼ #�2

�� �� ¼ e�2Re/ < 1: ð46Þ
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Therefore, for the three-term version of the second-order Richardson iteration, all
the multiplicative factors in (10) of Theorem 1 are actually smaller than 1 if b and c
are computed with sufficient accuracy.

The conformal map associated with the recursion (43) is 2

f ðfÞ :	 c
f
þ a þ bf: ð47Þ

In view of (46) f maps a neighborhood of the unit disk one-to-one onto the exte-
rior of an ellipse with the foci a � c. In particular, the disk Dq̂q around 0 with radiusbqq :	 jc=bj ¼ j#2j is mapped onto the exterior of the interval or line segment
½a � c; a þ c
. If 1 < q < bqq, the disk Dq is mapped onto the exterior of a confocal el-
lipse, and if all the eigenvalues of A lie in this ellipse, the iteration converges asymp-
totically at least with the rate 1=q. If all the eigenvalues lie on ½a � c; a þ c
, the
asymptotic rate is 1=bqq. These asymptotic rates are the same for the Chebyshev iter-
ation.

7. Numerical results

We consider first real matrices of order 500 whose eigenvalues are randomly cho-
sen as complex conjugate pairs in an ellipse with foci a � c and longer semi-axis a.
These matrices have been constructed by unitarily transforming a block-diagonal
matrix (with 2� 2 blocks) with these randomly chosen eigenvalues. Note that these
matrices are not very ill-conditioned as long as the ellipse does not come very close to
the origin: they are normal and their condition number is bounded by the quotient of
the distances from the origin of the farthest point and the closest point. However, if
we considered very ill-conditioned matrices instead, the rate of convergence would be
very slow. We report the number n12 of iterations needed to reduce the residual
norm by a factor of 1012 and the ultimate relative accuracy where the residual norm
stagnates.Table 1 summarizes the results for four such matrices for the three-term,
two-term, and Rutishauser versions of the Chebyshev iteration using recursively

Table 1

Comparison of the three-term, two-term, and Rutishauser versions of the Chebyshev iteration using recur-

sively computed residuals

Matrix 3-Term 2-Term Rutishauser

a c a ult.acc. n12 ult.acc. n12 ult.acc. n12

100 50 90 1.6e) 14 195 1.6e)15 195 2.1e) 15 195

100 70 90 5.9e) 15 159 1.7e) 15 159 2.3e) 15 159

100 70 99 4.9e) 14 1663 3.2e) 15 1663 3.9e) 15 1663

100 90 99 1.1e) 13 1040 3.1e) 15 1040 5.7e) 15 1040

Normal matrices with eigenvalues in the ellipse with foci a � c and semi-axis a.

2 In [9–11,21,22] the mapping p related to f by f ðfÞ ¼ 1� 1=pðfÞ is considered instead.
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computed residuals. Table 2 contains the corresponding results if explicitly com-
puted residuals are used instead. We see that in these examples the number of iter-
ations needed to reach relative accuracy 10�12 is not affected by the choice of the
version. The ultimate accuracy is worst for the three-term version with updated re-
siduals, and by replacing them by explicitly computed residuals we gain nearly up to
two orders of magnitude. In other words, for the three-term version with updated

Table 2

Comparison of the three-term, two-term, and Rutishauser versions of the Chebyshev iteration using ex-

plicitly computed residuals

Matrix 3-Term 2-Term Rutishauser

a c a ult.acc. n12 ult.acc. n12 ult.acc. n12

100 50 90 9.2e) 16 195 1.0e) 15 195 9.1e) 16 195

100 70 90 9.1e) 16 159 9.5e) 16 159 9.3e) 16 159

100 70 99 2.1e) 15 1663 1.7e) 15 1663 1.7e) 15 1663

100 90 99 1.8e) 15 1040 1.9e) 15 1040 1.7e) 15 1040

Normal matrices with eigenvalues in the ellipse with foci a � c and semi-axis a.

Fig. 1. Chebyshev iteration with three-term recursions.

276 M.H. Gutknecht, S. R€oollin / Parallel Computing 28 (2002) 263–283



residuals the loss of accuracy is notable, but not really serious. This reflects what
we can expect from Theorem 2. For all the other versions, the ultimate accuracy
is higher than 10�14.

In Figs. 1–3 we show for the first example with a ¼ 100, c ¼ 50, and a ¼ 90 the
residual histories for the two three-term versions, the two two-term versions, and
the two Rutishauser versions, respectively. For the algorithms with residual recur-
sions, both the true residuals and the recursively updated residuals are plotted. Need-
less to say that for the algorithms using explicitly computed residuals there is no
difference between those and the true residuals and thus only one curve is shown.

8. Discussion of the potential roundoff amplification in the three-term Chebyshev

algorithm in the case of complex data

Now we want to try to construct an example with much stronger degradation of
the ultimate accuracy in case of the three-term version with updated residuals. We
know that the influence of the roundoff hinges in this case mainly on the factors
(12a)–(12c) in (10). Clearly, the absolute value of the factor (12c),

Fig. 2. Chebyshev iteration with coupled two-term recursions.
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bkbkþ1; . . . ; bn�1

ckþ1ckþ2; . . . ; cn

����
���� ¼ TkðgÞTkþ1ðgÞ

TnðgÞTnþ1ðgÞ

����
���� ð06 k6 n� 1Þ ð48Þ

(which simplifies to the absolute value of (12b) if k ¼ n� 1) can become large, if the
absolute value of the denominator is very small, that is if g is close to a zero of Tn or
Tnþ1. All these zeros lie in the interval ð�1; 1Þ, while jTnðgÞj > 1 if g > 1 or g < �1.
Hence we need a complex g to get a small denominator. In Fig. 4, we display this
factor for k ¼ 1 and n ¼ 3 as a function of g in the domain 0 < Re g6 2, 06
Im g6 0:5. The poles of the function at the three positive zeros of T3 and T4 are well
visible, although the values of the function on Re g ¼ 0 (where the poles are) are not
plotted; the zero of T3 at g ¼ 0 cancels with the one of T1. Clearly, we can make the
fraction as large as we want by choosing g close enough to a pole. Then at least one
term in (10) will be large.

However, if g is close to such a pole (and, hence, to a point in the interval ð�1; 1Þ),
say to a zero of Tn, then the residual polynomial pn of (1) is large at some points of
the prescribed, necessarily very flat elliptic domain. (Recall that the straight line seg-
ment determined by the foci of the ellipse must come very close to the origin, but the

Fig. 3. Chebyshev iteration with Rutishauser’s recursions for updating corrections.
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ellipse must not contain the origin. If the ellipse were not flat, the quotient g ¼ �a=c
would not be close to a point in the interval ð�1; 1Þ unless the ellipse would contain
the origin.) Therefore, the residual rn of a system with a matrix whose spectrum is
spread in this ellipse or on the straight line segment will most likely have some eigen-
system components that have not been damped or have even been amplified. It is not
of importance whether the matrix is diagonalizable or not.

There is the question what happens with the other quotients in (10). To explore
that, we show in Figs. 5 and 6 the factors (48) for 06 k6 n� 1 < 100 when g ¼
0:85þ 0:05i and when g ¼ 0:865þ 0:001i, respectively. In the first case, the plot
shows a clear ridge where k ¼ n� 1, but except for small values of n, the quotient
jbn�1=cnj remains smaller than one.

In fact, since bn�1 ! b and cn ! c (see (41)), and since the asymptotic conver-
gence rate jb=cj is bounded by 1 (see (46)), this is what we must expect. Moreover,
this asymptotic rate is also the asymptotic convergence factor of both the Chebyshev
iteration and the second order Richardson iteration if the eigenvalues of A lie on the
straight line segment ½a � c; a þ c
. A rate close to 1 means that, in general (that is,
when the eigenvalues of A can be anywhere on the line segment), the iteration will
converge very slowly. In Fig. 5 this rate is around 0:83. Away from the ridge, the
factors (48) quickly decay.

Fig. 4. The factor ðb1b2Þ=ðc2c3Þ [that is, (48) for k ¼ 1 and n ¼ 3] in (10) as a function of g ¼ �a=c.
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The second plot shows a few very high peaks and a regular pattern of many smal-
ler peaks that are still higher than 1. (Note the new scale of the vertical axis!) But, in
view of what we just said, this can only mean that on the line k ¼ n� 1 the quotients
are still far away from their asymptotic value, which is around 0.996 here. So, in an
example with a matrix with this kind of spectrum we might notice a serious influence
of roundoff propagation on the ultimate accuracy, but the method would converge
so slowly that we rather do not want to apply it. In the initial phase the residuals
may strongly increase in this situation, because some of the residual polynomials
are large on the line segment.

9. Conclusions

We have compared six different implementations of Chebyshev iteration with re-
spect to convergence speed and ultimate accuracy attained. Several conclusions can
be drawn from both theoretical and experimental investigations. The same theoret-
ical conclusions also hold, and the same experimental ones can be expected to hold,
for the related stationary method, the second-order Richardson iteration.

Fig. 5. The factors (48) in (10) for g ¼ 0:85þ 0:05i as a function of k and n.
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• In our fairly well-conditioned examples, the number of iterations needed to reduce
the residual norm by 1012 did not depend on which of the six versions is applied.

• The ultimate accuracy turned out worst for the classical 3-term recursion with re-
cursively computed residuals, as had to be expected from theoretical results.

• Explicitly computed residuals yield the higher ultimate accuracy, and, for all three
types of iterations, roughly the same.

• In contrast to CG, BICG, and related methods, explicitly computed residuals do
not cause a slowdown of convergence. They also do not have higher computa-
tional cost. Therefore they should be preferred.

If the (standard) three-term recursion for the residuals is applied nevertheless, the
ultimate accuracy is still likely to be quite high, and this for the following reasons:

• If the Chebyshev iteration is applied to a matrix with spectrum on an interval
½a � c; a þ c
 � R or an ellipse with foci a � c symmetric about the real axis, then,
in contrast to CG and BICG, the loss of ultimate accuracy is never very pro-
nounced, because the multiplicative factors in (10) in front of the local errors in
the expression for the residual gap are all of absolute value smaller than one if
the recurrence coefficients are computed with sufficient accuracy.

Fig. 6. The factors (48) in (10) for g ¼ 0:865þ 0:001i as a function of k and n.
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• If the Chebyshev iteration is applied to an ellipse whose foci a � c do not lie on the
real axis, but for which the line segment ½a � c; a þ c
 passes close to the origin
(which implies that the ellipse must be very flat or must collapse to an interval),
then some local errors may amplify dramatically and might cause a large residual
gap, so that the ultimate accuracy deteriorates. However, this can only happen
when the Chebyshev iteration converges very slowly.
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