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Abstract. In this paper we analyze the numerical behavior of several minimum residual meth-
ods, which are mathematically equivalent to the GMRES method. Two main approaches are com-
pared: the one that computes the approximate solution in terms of a Krylov space basis from an
upper triangular linear system for the coordinates, and the one where the approximate solutions are
updated with a simple recursion formula. We show that a different choice of the basis can signif-
icantly influence the numerical behavior of the resulting implementation. While Simpler GMRES
and ORTHODIR are less stable due to the ill-conditioning of the basis used, the residual basis is
well-conditioned as long as we have a reasonable residual norm decrease. These results lead to a
new implementation, which is conditionally backward stable, and they explain the experimentally
observed fact that the GCR method delivers very accurate approximate solutions when it converges
fast enough without stagnation.
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1. Introduction. In this paper we consider certain methods for solving a system
of linear algebraic equations

Ax = b, A ∈ R
N×N , b ∈ R

N , (1.1)

where A is a large and sparse nonsingular matrix that is, in general, nonsymmetric.
For solving such systems, Krylov subspace methods are very popular. They build
a sequence of iterates xn (n = 0, 1, 2, . . .) such that xn ∈ x0 + Kn(A, r0), where
Kn(A, r0) ≡ span{r0, Ar0, . . . , A

n−1r0} is the nth Krylov subspace generated by the
matrix A from the residual r0 ≡ b − Ax0 that corresponds to the initial guess x0.
Many approaches for defining such approximations xn have been proposed, see, e.g.,
the books by Greenbaum [9], Meurant [16], and Saad [21]. In particular, due to their
smooth convergence behavior, minimum residual methods satisfying

‖rn‖ = min
ex∈x0+Kn(A,r0)

‖b − Ax̃‖, rn ≡ b − Axn, (1.2)

are widely used, e.g., the GMRES algorithm of Saad and Schultz [22]. We recall that
the minimum residual property (1.2) is equivalent to the orthogonality condition

rn ⊥ AKn(A, r0),

where ⊥ is the orthogonality relation induced by the Euclidean inner product 〈·, ·〉.
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The classical implementation of GMRES [22] makes use of a nested sequence of
orthonormal bases of the Krylov subspaces Kn(A, r0). These bases are generated
by the Arnoldi process [2] and the approximate solution xn satisfying the minimum
residual property (1.2) is constructed from the transformed least squares problem with
an upper Hessenberg matrix. This problem is solved via its recursive QR factorization,
updated by applying Givens rotations. Once the norm of the residual is small enough
— which can be seen without explicitly solving the least squares problem — the
triangular system with the computed R-factor is solved, and the approximate solution
xn is computed. In [3, 10, 17] it was shown that this “classical” version of the GMRES
method is backward stable provided that the Arnoldi process is implemented using
the modified Gram-Schmidt algorithm or Householder reflections.

In this paper we deal with a different approach. Instead of building an or-
thonormal basis of Kn(A, r0) we look for an orthonormal basis Vn ≡ [v1, . . . , vn] of
AKn(A, r0). We will also consider a basis Zn ≡ [z1, . . . , zn] of Kn(A, r0) and assume
in our analysis that the vectors Zn have unit lengths, but they need not be orthogonal.
The orthonormal basis Vn of AKn(A, r0) is obtained from the QR factorization of the
image of Zn:

AZn = VnUn. (1.3)

Since rn ∈ r0 + AKn(A, r0) = r0 + R(Vn) and rn ⊥ R(Vn), the residual rn = (I −
VnV T

n )r0 is just the orthogonal projection of r0 onto the orthogonal complement of
R(Vn), which can be computed recursively as

rn = rn−1 − αnvn, αn ≡ 〈rn−1, vn〉 (1.4)

(R(Vn) denotes the range of the matrix Vn). Let Rn+1 ≡ [r0, . . . , rn], let Dn ≡
diag(α1, . . . , αn), and let Ln+1,n ∈ R

(n+1)×n be the bidiagonal matrix with ones on
the main diagonal and minus ones on the first subdiagonal; then the recursion (1.4)
can be cast into a matrix relation

Rn+1Ln+1,n = VnDn. (1.5)

Since the columns of Zn form a basis of Kn(A, r0), we can represent xn in the form

xn = x0 + Zntn, (1.6)

so that rn = r0 − AZntn = r0 − VnUntn. Due to rn ⊥ R(Vn) it follows that

Untn = V T
n r0 = [α1, . . . , αn]T . (1.7)

Hence, once the residual norm is small enough, we can solve this upper triangu-
lar system and compute the approximate solution xn = x0 + Zntn. We call this
approach the generalized simpler approach. Its pseudo-code is given in Figure 1.1.
It includes, as a special case, Simpler GMRES proposed by Walker and Zhou [29],
where Zn = [ r0

‖r0‖
, Vn−1]. We will be also interested in the case of the residual basis

Zn = R̃n ≡ [ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
]; we will call this case RB-SGMRES (Residual-based

Simpler GMRES). Recently this method has also been derived and implemented by
Yvan Notay (private communication).

Recursion (1.4) reveals the connection between the generalized simpler approach
and yet another minimum residual approach. Let us set pk ≡ A−1vk (k = 1, . . . , n)
and Pn ≡ [p1, . . . , pn]. Then, left-multiplying (1.4) by A−1 yields

xn = xn−1 + αnpn, (1.8)
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Generalized simpler approach

choose x0, compute r0 := b − Ax0

for n = 1, 2, . . . , m (until convergence)

compute zn (z1 = r0

‖r0‖
) and Azn;

orthonormalize Azn with respect to v1, . . . , vn−1

to obtain vn so that AZn = VnUn

αn := rT
n−1vn

rn := rn−1 − αnvn

solve Umtm = [α1, . . . , αm]T

xm := x0 + Zmtm

Fig. 1.1. Pseudo-code of the generalized simpler approach.

or, in matrix form Xn+1Ln+1,n = −PnDn with Xn+1 ≡ [x0, . . . , xn]. So, instead of
computing the coordinates tn of xn −x0 with respect to the basis Zn, we can directly
update xn from xn−1. However, this requires that we construct the direction vectors
Pn forming an AT A-orthogonal basis of Kn(A, r0). Since Un is known from (1.3), the
recursion for pn can be extracted from the formula

Zn = PnUn. (1.9)

Note that two recursions (1.3) and (1.9) can be run in the same loop and we have
to store both all the direction vectors in Pn and all the orthonormal basis vectors
in Vn. We will use the terminology generalized update approach for this case. Its
pseudo-code is given in Figure 1.2. The case Zn ≡ [ r0

‖r0‖
, Vn−1] of this method was

proposed in [19] under the name AT A–variant of GMRES and up to the normalization
of the vectors Vn in (1.3) it is equivalent to the ORTHODIR algorithm due to Young
and Jea [32, 7]. Likewise the case Zn = [r0, . . . , rn−1] corresponds to the GCR (or
full ORTHOMIN) method of Elman, Eisenstat and Schultz [6, 5] (the orthogonal
vectors vn are unnormalized in the original implementation) and it is identical to

the GMRESR method [27] of van der Vorst and Vuik (with the choice u
(0)
n = rn).

Without normalization it was also treated in [32]. As we have already mentioned here

we will analyze the choice Zn = R̃n. The importance of normalizing Zn before the
orthogonalization in (1.3) will be seen later.

Computational costs Storage requirements

Generalized
simpler

approach
(2N + 1

2 )m2 + (9N − 1
2 )m + 4N (2N + 3

2 )m + 1
2m2 + 2N + 1

Generalized
update

approach
(3N − 1

2 )m2 + (9N − 1
2 )m + 4N (2N + 1)m + 2N + 2

Table 1.1

Computational costs (without the cost of m+1 matrix-vector products) and storage requirements
(without the storage of A) of the generalized simpler and update approaches after m iteration steps.

In Table 1.1 we summarize the computational costs and storage requirements of
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Generalized update approach

choose x0, compute r0 := b − Ax0

for n = 1, 2, . . . , m (until convergence)

compute zn (z1 = r0

‖r0‖
) and Azn;

orthonormalize Azn with respect to v1, . . . , vn−1

to obtain vn so that AZn = VnUn

compute pn from zn and p1, . . . , pn−1 so that Zn = PnUn

αn := rT
n−1vn

rn := rn−1 − αnvn

xn := xn−1 + αnpn

Fig. 1.2. The pseudo-code of the generalized update approach.

performing m iteration steps in the generalized simpler approach and the generalized
update approach, where we have excluded the storage for A and the cost of m + 1
matrix-vector products. In both approaches we have to store two sets of vectors: the
bases Vm and Zm (the generalized simpler approach) or Vm and Pm (the generalized
update approach) making these schemes comparable to FGMRES [20], the (flexible)
preconditioned variant of the standard GMRES method [22]. This remains true also
in the case of preconditioned versions of our algorithms, but we do not treat these
explicitly here. In contrast to the generalized simpler approach, we do not need
to store the triangular m × m matrix of orthogonalization coefficients Um in the
generalized update approach, but we have to compute the additional set of vectors
Pm. Some savings are possible in special cases, as in Simpler GMRES with the
particular choice of the basis Zm = [ r0

‖r0‖
, Vm−1], where the last m− 1 columns of Zm

need not to be stored and normalized again. Simpler GMRES is in terms of work
and storage competitive to the GMRES method, which in addition was shown to be
backward stable and in this context should clearly be the method of choice when
preconditioning is not considered.

The paper is organized as follows. In Section 2 we analyze first the maximum at-
tainable accuracy of the generalized simpler approach based on (1.6) and (1.7). Then
we turn to the generalized update approach based on (1.9) and (1.8). To keep the text
readable, we assume rounding errors only in selected, most relevant parts of the com-
putation. The bounds presented in Theorems 2.1 and 2.3 show that the conditioning
of the matrix Zn plays an important role in the numerical stability of these schemes.
Both theorems give bounds on the maximum attainable accuracy measured by the
normwise backward error. We also formulate analogous statements for the residual
norm in terms of the condition number of the matrix Un. While for the generalized
simpler approach these bounds do not depend on the conditioning of A, the bound for
the generalized update approach is proportional to κ(A) (as we will show in our con-
structed numerical example, the bound is attained). However, the additional factor of
κ(A) in the generalized update approach is usually an overestimate; in practice, both
approaches behave almost equally well for the same choice of basis. This is especially
true for the relative errors of the computed approximate solutions, where we have
essentially the same upper bound. The situation is completely analogous to results
for the MINRES method [18] given by Sleijpen, van der Vorst and Modersitzki in [24].
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In Section 3 we derive particular results for two choices of the basis Zn. First
for Zn = [ r0

‖r0‖
, Vn−1] leading to Simpler GMRES by Walker and Zhou [29] and to

ORTHODIR. Then for Zn = R̃n, which leads to RB-SGMRES and to a variant of
GCR, respectively. It turns out that the two choices lead to a truly different behavior
in the condition number of Un, which governs the stability of the considered schemes.
Since all these methods converge in a finite number of iterations, we fix the iteration
index n such that r0 6∈ AKn−1(A, r0), that is, the exact solution has not yet been
reached. Based on this we give conditions on the linear independence of the basis
Zn. It is known that the residuals are linearly dependent (or even identical) when the
GMRES method stagnates (a breakdown occurs in GCR as well as in RB-SGMRES),
while this does not happen for [ r0

‖r0‖
, Vn−1] (Simpler GMRES and ORTHODIR are

breakdown-free). On the other hand, we show that while the choice Zn = [ r0

‖r0‖
, Vn−1]

leads to inherently unstable or numerically less stable schemes, the second selection
Zn = R̃n gives rise to conditionally stable implementations provided we have some
reasonable residual decrease. In particular, we show that the RB-SGMRES imple-
mentation is conditionally backward stable. Our theoretical results are illustrated by
selected numerical experiments. In Section 4 we draw conclusions and give directions
for future work.

Throughout the paper, we denote by ‖ · ‖ the Euclidean vector norm and the
induced matrix norm, and by ‖ · ‖F the Frobenius norm. Moreover, for B ∈ R

N×n

(N ≥ n) of rank n, σ1(B) ≥ σn(B) > 0 are the extremal singular values of B,
and κ(B) = σ1(B)/σn(B) is the spectral condition number. By I we denote the
unit matrix of a suitable dimension, by ek (k = 1, 2, . . .) its kth column, and we let
e ≡ [1, . . . , 1]T . We assume the standard model of finite precision arithmetic with the
unit roundoff u (see Higham [13] for details). In our bounds, instead of distinguishing
between several constants (which are in fact low-degree polynomials in N and n that
can differ from place to place), we use the generic name c for constants.

2. Maximum attainable accuracy of the generalized simpler and update

approaches. In this section we analyze the final accuracy level of the generalized
simpler and update approaches formulated in the previous section. In order to make
our analysis readable, we assume that only the computations performed in (1.3), (1.7)
and (1.9) are affected by rounding errors.

Different orthogonalization techniques for computing the columns of Vn can be
applied in the QR factorization (1.3). Here we focus on such implementations where
the computed R-factor Un has been obtained in a backward stable way, i.e., there
exists an orthonormal matrix V̂n so that V̂n and Vn satisfy

AZn = V̂nUn + En, ‖En‖ ≤ cu‖A‖‖Zn‖, (2.1)

AZn = VnUn + Fn, ‖Fn‖ ≤ cu‖A‖‖Zn‖. (2.2)

This is certainly true for the implementation based on Householder reflections [31],
the modified Gram-Schmidt process [17] or the Gram-Schmidt process with full re-
orthogonalization [3]. For details we refer to [13, 8]. From [30, 13] we have for the
computed solution t̂n of (1.7) that

(Un + ∆Un)t̂n = Dne, |∆Un| ≤ cu|Un|, (2.3)

where the absolute value and inequalities are understood component-wise. The ap-
proximation x̂n to x is then computed as

x̂n = x0 + Znt̂n. (2.4)
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The crucial quantity for the analysis of the maximum attainable accuracy is the
gap between the true residual b−Ax̂n of the computed approximation and the updated
residual rn obtained from the update formula (1.4) describing the projection of the
previous residual; see [9, 12]. In fact, once the updated residual becomes negligible
compared to the true one (and in all algorithms considered here it ultimately will),
the gap will be equal to the true residual divided by ‖A‖‖x̂n‖, which therefore can be
thought of as the normwise backward error of the ultimate approximate solution x̂n

(after suitable normalization). Here is our basic result on this gap for the generalized
simpler approach.

Theorem 2.1. In the generalized simpler approach, if cuκ(A)κ(Zn) < 1, the gap

between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖

≤ cuκ(Zn)

(
1 +

‖x0‖
‖x̂n‖

)
.

Proof. From (2.4), (2.2) and (2.3) we have b−Ax̂n = r0 −AZnt̂n = r0 − (VnUn +
Fn)(Un + ∆Un)−1Dne, and (1.4) gives rn = r0 − VnDne. It is clear from (2.1) and
(2.3) that the assumption cuκ(A)κ(Zn) < 1 implies the invertibility of the perturbed
matrix Un +∆Un. Using the identity I −Un(Un +∆Un)−1 = ∆Un(Un +∆Un)−1 and
the relation Zn(Un + ∆Un)−1Dne = Znt̂n = x̂n − x0 following from (2.4) and (2.3),
we can express the gap between b − Ax̂n and rn as

b − Ax̂n − rn = (Vn − (VnUn + Fn)(Un + ∆Un)−1)Dne

= (Vn(I − Un(Un + ∆Un)−1) − Fn(Un + ∆Un)−1)Dne

= (Vn∆Un − Fn)(Un + ∆Un)−1Dne

= (Vn∆Un − Fn)Z†
nZn(Un + ∆Un)−1Dne

= (Vn∆Un − Fn)Z†
n(x̂n − x0).

Taking the norm, considering (2.1) and noting that the terms in Vn∆Un and Fn can
be subsumed into the generic constant c, we get ‖Vn∆Un − Fn‖ ≤ cu‖A‖‖Zn‖ and

‖b − Ax̂n − rn‖ ≤ cu‖A‖κ(Zn)‖x̂n − x0‖.

Using the triangle inequality and division by ‖A‖‖x̂n‖ concludes the proof.
In the previous theorem we have expressed the residual gap using the difference

between the actual and initial approximations x̂n and x0, respectively. However, its
norm is strongly influenced by the conditioning of the upper triangular matrix Un.
As shown in Section 3, the matrix Un can be ill-conditioned for the particular case
Zn = [ r0

‖r0‖
, Vn−1], thus leading to an inherently unstable scheme, whereas (under some

assumptions) the scheme with Zn = R̃n gives rise to a well-conditioned triangular
matrix Un. In the following corollary we give a bound for the residual gap in terms
of the minimal singular values of the matrices Zk and norms of the updated residuals
rk−1, k = 1, . . . , n.

Corollary 2.2. In the generalized simpler approach, if cuκ(A)κ(Zn) < 1, the

gap between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖ ≤ cuκ(A)

1 − cuκ(A)κ(Zn)

n∑

k=1

‖rk−1‖
σk(Zk)

.
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Proof. The gap between the true residual b−Ax̂n and the updated residual rn can
be expressed as b−Ax̂n − rn = (Vn∆Un −Fn)(Un +∆Un)−1Dne. Since eT

k Dnek = αk

and |αk| =
√
‖rk−1‖2 − ‖rk‖2 ≤

√
2‖rk−1‖, the norm of the term (Un + ∆Un)−1Dne

can be estimated as follows:

‖(Un + ∆Un)−1Dne‖ ≤
n∑

k=1

‖(Un + ∆Un)−1Dnek‖

≤
√

2

n∑

k=1

‖rk−1‖
σk([Un + ∆Un]1:k,1:k)

,

(2.5)

where [Un +∆Un]1:k,1:k denotes the principal k×k submatrix of Un +∆Un. Owing to
(2.4), we can estimate the perturbation of [Un]1:k,1:k = Uk as ‖[∆Un]1:k,1:k‖ ≤ cu‖Uk‖.
Perturbation theory of singular values (see, e.g., [14]) shows that

σk([Un + ∆Un]1:k,1:k) ≥ σk(Uk) − cu‖Uk‖ ≥ σk(AZk) − cu‖A‖‖Zk‖ (2.6a)

≥ σN (A)σk(Zk) − cu‖A‖‖Zk‖, (2.6b)

which together with (2.5) concludes the proof.
The estimates (2.5) and (2.6a) given in the previous proof which involve the

minimum singular values of Uk (k = 1, . . . , n) are quite sharp. However, the estimate
(2.6b) relating the minimum singular values of Uk to those of Zk can be a large
underestimate as also observed in our numerical experiments in Section 3.

Next we analyze the maximum attainable accuracy of the generalized update ap-
proach. We assume that in finite precision arithmetic the computed direction vectors
satisfy

Zn = PnUn + Gn, ‖Gn‖ ≤ cu‖Pn‖‖Un‖. (2.7)

This follows from the standard rounding error analysis of the recursion for vectors Pn.
Note that the norm of the matrix Gn cannot be bounded by cu‖A‖‖Zn‖ as it can in
the case of the QR factorization (2.2). We update then the approximate solution x̂n

according to (1.8)

x̂n = x̂n−1 + αnpn. (2.8)

Theorem 2.3. In the generalized update approach, if cuκ(A)κ(Zn) < 1, the gap

between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖

≤ cuκ(A)κ(Zn)

1 − cuκ(A)κ(Zn)

(
1 +

‖x0‖
‖x̂n‖

)
.

Proof. From (2.8), (1.4), (2.2) and (2.7) x̂n = x0 + PnDne = x0 + (Zn −
Gn)U−1

n Dne and rn = r0 − VnDne = r0 − (AZn − Fn)U−1
n Dne, we have that

b − Ax̂n − rn = (AGn − Fn)U−1
n Dne (2.9)

and from (2.7) and (2.1) we get Pn = A−1V̂n + A−1EnU−1
n − GnU−1

n . The norm of
the matrix Gn in (2.7) can hence be bounded by

‖Gn‖ ≤ cuκ(A)‖Zn‖. (2.10)
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Owing to (2.8), we have the identity U−1
n Dne = U−1

n P †
nPnDne = (PnUn)†(x̂n − x0),

where ‖(PnUn)†‖ ≤ [1 − cuκ(A)κ(Zn)]−1‖Z†
n‖ as follows from (2.7). Thus we obtain

‖U−1
n Dne‖ ≤ ‖Z†

n‖
1 − cuκ(A)κ(Zn)

‖x̂n − x0‖, (2.11)

which together with (2.9), (2.10) and (2.2) leads to

‖b − Ax̂n − rn‖ ≤ cu‖A‖κ(A)κ(Zn)

1 − cuκ(A)κ(Zn)
‖x̂n − x0‖.

The proof is concluded using the triangle inequality and dividing by ‖A‖‖x̂n‖.
In the following we formulate an analogous corollary for the residual gap as in

the case of the generalized simpler approach.
Corollary 2.4. In the generalized update approach, if cuκ(A)κ(Zn) < 1, the

gap between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖ ≤ cuκ2(A)

1 − cuκ(A)κ(Zn)

n∑

k=1

‖rk−1‖
σk(Zk)

.

Proof. Considering (2.2), (2.7) and (2.10) the norm of the term AGn−Fn in (2.9)
can be bounded as ‖AGn − Fn‖ ≤ cu‖A‖κ(A), while the the term U−1

n Dne can be
treated as in Corollary 2.2.

The bound on the ultimate backward error given in Theorem 2.3 is worse than
the one in Theorem 2.1. We see that for the generalized simpler approach the norm-
wise backward error is of the order of the roundoff unit, whereas for the generalized
update approach we have an upper bound proportional to the condition number of A.
Similarly the bounds on the ultimate relative residual norms given in Corollaries 2.2
and 2.4 indicate that the relative residuals in the generalized simpler approach will
reach the level which is approximately equal to uκ(A) while in the generalized update
approach this level becomes uκ2(A).

In the previous text we have given bounds in terms of the true residual b−Ax̂n and
the updated residual rn. It should be noted that the true residual is not available in
practical computations, but for verification or for other purposes it can be estimated
by the explicit evaluation of fl(b−Ax̂n). It is clear from ‖fl(b−Ax̂n)− (b−Ax̂n)‖ ≤
cu(‖b‖ + ‖A‖‖x̂n‖) ≤ cu‖A‖(‖x‖ + ‖x̂n‖) that the error in the evaluation of the
true residual (if needed) is significantly smaller than other quantities involved in our
analysis.

In Theorems 2.1 and 2.3 we have estimated the attainable level of the normwise
backward error of both generalized simpler and update approaches. The resulting
bound is in general worse for the generalized update approach. However, as shown
below, it appears that the generalized update approach leads to an approximate solu-

tion whose forward error is essentially on the same accuracy level as the generalized

simpler approach. A similar phenomenon was also observed by Sleijpen, van der Vorst
and Modersitzki [24] in the symmetric case for two different implementations (called
GMRES and MINRES in their paper).

Corollary 2.5. If cuκ(A)κ(Zn) < 1, the gap between the error x − x̂n and the

vector A−1rn in both the generalized simpler and update approaches satisfies

‖(x − x̂n) − A−1rn‖
‖x‖ ≤ cuκ(A)κ(Zn)

1 − cuκ(A)κ(Zn)

‖x̂n‖ + ‖x0‖
‖x‖ .
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Proof. For the generalized simpler approach, the result follows directly from
Theorem 2.1. For the generalized update approach, using (2.9) we have

(x − x̂n) − A−1rn = (−A−1Fn + Gn)U−1
n Dne,

and the statement follows from (2.2), (2.10) and (2.11).
Theorems 2.1 and 2.3 indicate that as soon as the backward error of the approx-

imate solution in the generalized simpler approach gets below cuκ(A)κ(Zn), the dif-

ference between the backward errors in the generalized simpler and update approaches

may become visible and can be expected to be up to the order of κ(A). Based on our
experience it is difficult to find an example where this difference is significant. Simi-
larly to Sleijpen, van der Vorst and Modersitzki [24], we use here a model example,
where A = G1DGT

2 ∈ R
100×100 with D = diag(10−8, 2 · 10−8, 3, 4, . . . , 100) and with

G1 and G2 being Givens rotations over the angle of π
4 in the (1, 10)-plane and the

(1, 100)-plane, respectively; finally, b = e. The numerical experiments were performed
in MATLAB R© using double precision arithmetic (u ≈ 10−16) and x0 = 0. In Fig-
ure 2.1 we have plotted the normwise backward errors ‖b−Ax̂n‖/(‖A‖‖x̂n‖) (thin and
thick solid lines), and the relative 2-norms of the errors ‖x− x̂n‖/‖x‖ (thin and thick
dash-dotted lines). In all our experiments the basis Vn in (1.3) is computed with the
modified Gram-Schmidt orthogonalization process where the upper triangular factor
Un is obtained in a backward stable way satisfying (2.1). In order to ensure that the
difference is not affected by a possibly high condition number of Zn we use the imple-
mentation where the basis Zn is computed with the modified Gram-Schmidt Arnoldi
process so that κ(Zn) ≈ 1. We see that the actual backward errors are close to each
other until they stagnate: for the generalized update approach this happens approx-
imately at a level approaching uκ(A), while for the generalized simpler approach we
have stagnation on the roundoff unit level u. Similar observations could be made
also for the relative true residual norms (for better readability they are not shown
on Figure 2.1); in the case of the generalized simpler approach the final level of the
relative 2-norm of the true residual is on the level of uκ(A) while for the generalized
update approach this level is approximately one factor of κ(A) higher. In contrast,
the 2-norms of the errors stagnate on the uκ(A) level in both approaches considered.

3. Choice of basis and stability. In this section we discuss the two main par-
ticular choices for the matrix Zn leading to different algorithms for the generalized
simpler and update approaches. For the sake of simplicity, we assume exact arithmetic
here. The conditioning of Zn plays an important role in our analysis. The effect of
scaling the columns on the condition number has been analyzed by Van der Sluis in
[26], who showed that the normalization of columns is a nearly optimal strategy pro-
ducing the condition number within the factor

√
n of the minimum 2-norm condition

number achievable by column scaling.
First, we choose Zn = [ r0

‖r0‖
, Vn−1], which leads to the Simpler GMRES method of

Walker and Zhou [29] and to ORTHODIR by Young and Jea [32]. Hence, we choose
{ r0

‖r0‖
, v1, . . . , vn−1} as a basis of Kn(A, r0). To be sure that such a choice is adequate,

we state the following simple lemma.
Lemma 3.1. Let v1, . . . , vn−1 be an orthonormal basis of AKn−1(A, r0), r0 6∈

AKn−1(A, r0). Then the vectors r0

‖r0‖
, v1, . . . , vn−1 form a basis of Kn(A, r0).

Proof. The result follows easily from the assumption r0 6∈ AKn−1(A, r0).
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Fig. 2.1. The test problem solved by the generalized simpler and update approaches with the
almost orthonormal basis Zn satisfying κ(Zn) ≈ 1.

Note that if r0 ∈ AKn(A, r0), then the condition (1.2) yields xn = A−1b, rn = 0,
and any implementation of a minimum residual method will terminate. Lemma 3.1
ensures that it makes sense to build an orthonormal basis Vn of AKn(A, r0) by the
successive orthogonalization of the columns of the matrix A[ r0

‖r0‖
, Vn−1] via (1.3). It re-

flects the fact that, for any initial residual r0, both Simpler GMRES and ORTHODIR
converge (in exact arithmetic) to the exact solution; see [32]. However, as observed by
Liesen, Rozložńık and Strakoš [15], this choice of the basis is not very suitable from
the stability point of view. This shortcoming is reflected by the unbounded growth of
the condition number of [ r0

‖r0‖
, Vn−1] discussed next. The upper bound we recall here

was also derived in [29].
Theorem 3.2. Let r0 6∈ AKn−1(A, r0). Then the condition number of [ r0

‖r0‖
, Vn−1]

satisfies

‖r0‖
‖rn−1‖

≤ κ([ r0

‖r0‖
, Vn−1]) ≤ 2

‖r0‖
‖rn−1‖

.

Proof. Since rn−1 = (I − Vn−1V
T
n−1)r0, it is easy to see that rn−1 is the residual

of the least squares problem Vn−1y ≈ r0. The statement therefore follows from [15,
Theorem 3.2].

The conditioning of [ r0

‖r0‖
, Vn−1] is thus related to the convergence of the method;

in particular, it is inversely proportional to the actual relative norm of the resid-
ual. Small residuals lead to the ill-conditioning of the matrices A[ r0

‖r0‖
, Vn−1] and Un

and this affects negatively the accuracy of computed approximate solutions. This

10



essentially means that, after some initial residual reduction, Simpler GMRES and
ORTHODIR can behave unstably, which makes our analysis on maximum attainable
accuracy inapplicaple.

As a remedy, we now turn to the second choice, Zn = R̃n, which leads to RB-
SGMRES (proposed here as a more stable counterpart of Simpler GMRES) and to a
version of GCR due to Eisenstat, Elman and Schultz [6, 5] (see also [28]). Hence, we
choose normalized residuals r0, . . . , rn−1 as the basis of Kn(A, r0). To make sure that
such a choice is adequate, we state the following result.

Lemma 3.3. Let v1, . . . , vn−1 be an orthonormal basis of AKn−1(A, r0), r0 6∈
AKn−1(A, r0) and rk = (I − VkV T

k )r0, where Vk ≡ [v1, . . . , vk], k = 1, 2, . . . , n − 1.
Then the following statements are equivalent:

1. ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n − 1,
2. r0, . . . , rn−1 are linearly independent.

Proof. Since r0 6∈ AKn−1(A, r0) = R(Vn−1), we have rk 6= 0 for all k =
0, 1, . . . , n − 1. It is clear that ‖rk‖ < ‖rk−1‖ if and only if 〈rk−1, vk〉 6= 0. If that
holds for all k = 1, . . . , n − 1, the diagonal matrix Dn−1 is nonsingular. Using the
relation (1.5) we find that Rn[Ln,n−1, en] = [Vn−1Dn−1, rn−1]. Since rn−1 ⊥ Vn−1,
the matrix [Vn−1Dn−1, rn−1] has orthogonal nonzero columns, and hence its rank
equals n. Moreover, rank([Ln,n−1, en]) = n and thus rank(Rn) = n, i.e., r0, . . . , rn−1

are linearly independent. Conversely, from the same matrix relation we find that if
r0, . . . , rn−1 are linearly independent, then rank([Vn−1Dn−1, rn−1]) = n, and hence
Dn−1 is nonsingular, which proves that ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n − 1.

Therefore, if the method does not stagnate, i.e., if the 2-norms of the residuals
r0, . . . , rn−1 are strictly monotonously decreasing, then r0, . . . , rn−1 are linearly inde-
pendent. In this case, we can build an orthonormal basis Vn of AKn(A, r0) by the

successive orthogonalization of the columns of AR̃n via (1.3). If r0 ∈ AKn−1(A, r0),
we have an exact solution of (1.1), and the method terminates with xn−1 = A−1b.

Several conditions for the non-stagnation of the minimum residual method have
been given in the literature. For example, Eisenstat, Elman and Schultz [5, 6] show
that GCR (and hence any minimum residual method) does not stagnate if the sym-
metric part of A is positive definite, i.e., if the origin is not contained in the field of
values of A. See also Greenbaum and Strakoš [11] for a different proof, and Eiermann
and Ernst [4]. Several other conditions can be found in Simoncini and Szyld [23] and
the references therein. If stagnation occurs, the residuals are no longer linearly inde-
pendent, and thus the method prematurely breaks down. In particular, if 0 ∈ F(A),
choosing x0 such that 〈Ar0, r0〉 = 0 leads to a breakdown in the first step. This was
first pointed out by Young and Jea [32] with a simple 2 × 2 example.

However, as shown in the following theorem, when the minimum residual method
does not stagnate, the columns of R̃n are a reasonable choice for the basis of Kn(A, r0).

Theorem 3.4. If r0 6∈ AKn−1(A, r0) and ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n− 1,

the condition number of R̃n satisfies

1 ≤ κ(R̃n) ≤
√

nγn, γn ≡

√√√√1 +

n−1∑

k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2
. (3.1)

Proof. From (1.5) it follows that

R̃n[L̃n,n−1, en] = [Vn−1,
rn−1

‖rn−1‖
], L̃n,n−1 ≡ diag(‖r0‖, . . . , ‖rn−1‖)Ln,n−1D

−1
n−1.
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Since [Vn−1,
rn−1

‖rn−1‖
] is an orthonormal matrix, we have from [14, Theorem 3.3.16]

1 = σn([Vn−1,
rn−1

‖rn−1‖
]) ≤ σn(R̃n)‖[L̃n,n−1, en]‖

≤ σn(R̃n)‖[L̃n,n−1, en]‖F .

The value of ‖[L̃n,n−1, en]‖F can be directly computed as

‖[L̃n,n−1, en]‖F =

√√√√1 +
n−1∑

k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2
= γn,

since α2
k = ‖rk−1‖2 − ‖rk‖2. The statement follows using ‖R̃n‖ ≤ ‖R̃n‖F ≤ √

n.

We define the quantity γn in (3.1) as the stagnation factor. The conditioning of R̃n

is thus related to the convergence of the method, but in contrast to the conditioning
of [ r0

‖r0‖
, Vn−1], it is related to the intermediate decrease of the residual norms, not to

the residual decrease with respect to the initial residual. A different bound for the
conditioning of the matrix R̃n in terms of the residual norms of GMRES and FOM
could be derived using the approach in [25].

We illustrate our theoretical results by two numerical examples using the ill-
conditioned matrices FS1836 (‖A‖ ≈ 1.2 · 109, κ(A) ≈ 1.5 · 1011) and STEAM1
(‖A‖ ≈ 2.2 · 107, κ(A) ≈ 3 · 107) obtained from the Matrix Market [1] with the right-
hand side b = Ae and with the initial guess x0 = 0. In Figures 3.1, 3.2, 3.4 and 3.5
we show the normwise backward error ‖b−Axn‖/(‖A‖‖xn‖), the relative norm of the
residual ‖b−Axn‖/‖b‖ and ‖rn‖/‖b‖, and the relative norms of the error ‖x−xn‖/‖x‖
for the choice Zn = [ r0

‖r0‖
, Vn−1] that corresponds to Simpler GMRES and ORTHODIR

(Figures 3.1 and 3.4), and for Zn = R̃n corresponding to RB-SGMRES and GCR
(Figures 3.2 and 3.5), respectively. In Figures 3.3 and 3.6 we report the condition
numbers of the system matrix A, the basis Zn and the triangular matrix Un multiplied
by the unit roundoff u. We see that the backward errors, residual norms and the
error norms are almost identical for corresponding implementations of the generalized
simpler and update approach. This can be observed in most cases: the differences
between Simpler GMRES and ORTHODIR, and RB-SGMRES and GCR, respectively,
are practically negligible. Figures 3.1 and 3.4 illustrate our theoretical considerations
and show that, after some initial reduction, the backward error of Simpler GMRES

and ORTHODIR may stagnate at a significantly higher level than the backward error

of RB-SGMRES or GCR, which stagnates at a level proportional to the roundoff unit,
as shown in Figures 3.2 and 3.5. Due to Theorem 3.2, after some initial phase, the
norms of the errors start to diverge in Simpler GMRES and ORTHODIR, while for
RB-SGMRES and GCR we have a stagnation on a level approximately proportional
to uκ(A). The difference is clearly caused by the choice of the basis Zn, which has an

effect on the conditioning of the matrix Un. We see that R̃n remains well-conditioned
up to the very end of the iteration process, while the conditioning of [ r0

‖r0‖
, Vn−1] is

linked to the convergence of Simpler GMRES and may lead to a very ill-conditioned
triangular matrix Un. Consequently the approximate solution xn computed from (1.7)
becomes inaccurate and its error starts to diverge. This problem does not occur in the
RB-SGMRES method and GCR, since the matrix Un remains well-conditioned due
to the low stagnation factor. These two implementations behave almost equally to
the backward stable MGS-GMRES method. For numerical experiments with MGS-
GMRES on the same examples we refer to [10] and[15].
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Fig. 3.1. The test problem FS1836 solved by Simpler GMRES and ORTHODIR: Normwise
backward error ‖b − Axn‖/(‖A‖‖xn‖) (thick solid line – Simpler GMRES, thin solid line – OR-
THODIR), relative true residual norm ‖b − Axn‖/‖b‖ (thick dashed line – Simpler GMRES, thin
dashed line – ORTHODIR), relative norm of the updated residual ‖rn‖/‖b‖ (dotted line), relative
norms of the error ‖x− xn‖/‖x‖ (thick dash-dotted line – Simpler GMRES, thin dash-dotted line –
ORTHODIR).

4. Conclusions. In this paper we have studied the numerical behavior of sev-
eral minimum residual methods mathematically equivalent to GMRES. Two general
formulations have been analyzed: the generalized simpler approach that does not re-
quire an upper Hessenberg factorization and the generalized update approach which
is based on generating a sequence of appropriately computed direction vectors. It has
been shown that for the generalized simpler approach our analysis leads to an upper
bound for the backward error proportional to the roundoff unit, whereas for the gen-
eralized update approach the same quantity can be bounded by a term proportional
to the condition number of A. Although our analysis suggests that the difference
between both may be up to the order of κ(A), in practice they behave very similarly,
and it is very difficult to find a concrete example with a significant difference in the
limiting accuracy measured by the normwise backward error of the approximate so-
lutions xn. Our first test problem displayed in Figure 2.1 is such a rare example.
Moreover, when looking at the errors, we note that both approaches lead essentially
to the same accuracy of xn.

We have indicated that the choice of the basis Zn is the most important issue
for the stability of the considered schemes. Our analysis supports the well-known
fact that even when implemented with the best possible orthogonalization techniques
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Fig. 3.2. The test problem FS1836 solved by RB-SGMRES and GCR: Normwise backward
error ‖b − Axn‖/(‖A‖‖xn‖) (thick solid line – RB-SGMRES, thin solid line – GCR), relative true
residual norm ‖b − Axn‖/‖b‖ (thick dashed line – RB-SGMRES, thin dashed line – GCR), relative
norm of the updated residual ‖rn‖/‖b‖ (dotted line), relative norms of the error ‖x−xn‖/‖x‖ (thick
dash-dotted line – RB-SGMRES, thin dash-dotted line – GCR).

Simpler GMRES and ORTHODIR are inherently less stable due to the choice Zn =
[ r0

‖r0‖
, Vn−1] for the basis. The situation becomes significantly better, when we use

the residual basis Zn = R̃n. This choice leads to the popular GCR (ORTHOMIN,
GMRESR) method, which is widely used in applications. Assuming some reasonable
residual decrease (which happens almost always in finite precision arithmetic), we
have shown that this scheme is quite efficient, and we have proposed a conditionally
backward stable variant RB-SGMRES. Our theoretical results in a sense justify the
use of the GCR method in practical computations. In this paper we studied only the
unpreconditioned implementations. The implications for the preconditioned GCR
scheme will be discussed elsewhere.
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Fig. 3.6. The test problem STEAM1, condition numbers multiplied by unit roundoff u: uκ(A)
(dash-dotted line); uκ(Zn) (thick solid line) and uκ(Un) (thick dashed line) for Zn = [ r0

‖r0‖
, Vn−1];

uκ(Zn) (thin solid line) and uκ(Un) (thin dashed line) for Zn = eRn.
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