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Editor's Foreword 

The present book is an edition of the manuscripts to the courses 
"Numerical Methods I" and "Numerical Mathematics I and II" which 
Professor H. Rutishauser held at the E.T.H. in Zurich. The first-named 
course was newly conceived in the spring semester of 1970, and intended 
for beginners, while the two others were given repeatedly as elective 
courses in the sixties. For an understanding of most chapters the funda­
mentals of linear algebra and calculus suffice. In some places a little 
complex variable theory is used in addition. However, the reader can get 
by without any knowledge of functional analysis. 

The first seven chapters discuss the direct solution of systems of 
linear equations, the solution of nonlinear systems, least squares prob­
lems, interpolation by polynomials, numerical quadrature, and approxima­
tion by Chebyshev series and by Remez' algorithm. The remaining 
chapters include the treatment of ordinary and partial differential equa­
tions, the iterative solution of linear equations, and a discussion of eigen­
value problems. In addition, there is an appendix dealing with the qd­
algorithm and with an axiomatic treatment of computer arithmetic. 

For a few algorithms, also problems of programming are discussed 
and fragments of ALGOL-programs are given. It should be pointed out 
that a number of complete and safe procedures to the methods described 
here are to be published (also with Birkhiiuser, as Vol. 33 of the Interna­
tional Series of Numerical Mathematics) by W. Gander, L. Molinari and 
H. §vecova under the title "Numerische Prozeduren aus Nachlass und 
Lehre von Prof. Heinz Rutishauser". 

When Professor H. Rutishauser died on November 10, 1970, at the 
age of 52, he left behind, among other things, the manuscripts to the 
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courses mentioned above. These notes, which Mrs. M. Rutishauser 
kindly made available to us, have in the course of the years been repeat­
edly revised and updated to reflect progress in research. His desire to 
publish them later as a text book was known; some sections were already 
finished in an almost ready-to-print form. Unfortunately, however, he did 
not live to see the book completed. In view of the quality of these 
manuscripts, and given the world-wide reputation of the author, we 
deemed it more than justified that these manuscripts be published, even 
though in form and volume they certainly did not yet fully come up to the 
high demands of their author. From the beginning it was our intention to 
change the text as little as possible and to make no extensive reorganiza­
tions or additions. We were equally intent on not altering the character of 
the work and, for example, on preserving the occasionally pictorial 
language, which facilitates reading and understanding. Nevertheless, 
much remained to be done, especially in those parts which were only 
drafted by the author. Also, individual chapters which in part were avail­
able in several versions had to be merged as smoothly as possible into a 
seamless whole. The numerical examples were almost all newly recom­
puted. Finally, the figures needed to be prepared; the drawing of 
mathematically defined curves was generally done by a plotter. 

Throughout the editing of the text, I was assisted above all by the 
coeditors Profs. P. Henrici, P. Uiuchli and H.R. Schwarz, who read the 
entire manuscript and who consulted with me during many hours on ques­
tions of principles and details. Many further colleagues also helped me 
through their criticism; to be mentioned are particularly Prof. R. Jeltsch, 
Dr. R. Bloch and Dr. J. Waldvogel. Thanks go also to Miss G. Bonzli 
and Mrs. L. Gutknecht, who typed large parts of the text, and to Dr. V. 
Sechovcov, who drew the figures in ink. I am also very pleased that Mr. 
Stutz and others agreed to help me with the correction of the galley 
proofs. 

My editing work for the most part was financed by the Swiss 
National Science Foundation. Finally, I wish to thank the publisher for 
the very careful and speedy printing. 

Vancouver, B.C., February 1976 M.GUTKNECHT 



Preface 

Heinz Rutishauser is one of the pioneers of modem numerical 
mathematics. Educated originally as a function theorist, he in 1950 joined 
as a collaborator the Institute of Applied Mathematics, founded shortly 
before at the Federal Institute of Technology. There, his extraordinary 
algorithmic talent soon became evident. With concisely written publica­
tions he introduced methods and directions of research into numerical 
mathematics which later on proved to be fundamental. The stability 
theory in the numerical solution of ordinary differential equations, 
"economization" of power series by the use of Chebyshev polynomials, 
the quotient-difference algorithm,. the LR-method, the exact justification 
of the Romberg algorithm, and many other contributions all go back to 
Rutishauser. He was also one of the first to recognize that the computer 
itself could be used for the preparation of computer programs, and he 
played a leading role in the development of the programming language 
ALGOL. In the last years of his life, Rutishauser concerned himself with 
the axiomatization of numerical computation and as a result gave perhaps 
the most satisfactory treatment, from a theoretical point of view, of the 
propagation of rounding errors. His health-related aversion to travel and, 
no doubt, a touch of introversion, prevented all these achievements from 
becoming known and appreciated as they deserved to be. 

After Rutishauser's death in 1970, his widow, Mrs. Margrit 
Rutishauser, asked the undersigned to sift through his unpublished 
scientific notes. It became immediately clear to us that Rutishauser's lec­
tures on numerical mathematics constituted an important part of these 
notes. The lectures, which in quality and originality far excel the average 
presentations in this area, were already intended for publication by 
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Rutishauser himself, but have only partly been prepared in detail for pub­
lication. It so happened that Dr. Martin Gutknecht, who still heard these 
lectures as a student, and who also has the necessary technical knowledge, 
could be prevailed upon to successfully complete the preparation for pub­
lication. Commendably, the work of Dr. Gutknecht has been supported 
by the Swiss National Science Foundation. We are pleased, thanks to the 
cooperation of the Birkhauser publishing house, to be able to present the 
outcome to the public. 

Zurich, February 1976 P. HENRICI 
P. LAUCHLI 
H.R. SCHWARZ 



Translator's Preface 

Rutishauser's Vorlesungen iiber numerische Mathematik appeared in 
1976 in two volumes. Even though more than twelve years have elapsed 
since the work was first published, it has retained much of its freshness 
and timeliness. The material treated, though no longer entirely up-to-date 
in some areas, still provides a sound and stimulating introduction to the 
field of scientific computing. It was felt desirable, therefore, to make the 
work accessible to a wider audience by providing an English translation. 

The undersigned was happy to undertake this task, as he has known 
Rutishauser personally and has great admiration for his scientific achieve­
ments. In preparing the translation, he has combined the original two 
volumes into a single volume. He has refrained from making any major 
changes to the text itself, other than correcting a fair number of typo­
graphical errors. However, following a suggestion already made by G.W. 
Stewart in his review of the German original (cf. Bull. Amer. Math. Soc., 
v. 84, 1978, pp. 660--663), he has supplemented each chapter with notes 
designed to make the reader aware of significant developments in compu­
tational techniques that occurred since the original volumes have 
appeared, and to direct him to appropriate sources for further study. The 
preparation of these notes took considerably longer than anticipated, and 
in fact would never have been completed, were it not for the invaluable 
assistance he has received from a number of colleagues. John K. Reid 
helped with the notes to Chapters 2 and 3, Florian A. Potra and Hermann 
Brunner with those to Chapters 4 and 5, and Chapters 8 and 9, respec­
tively. The notes to Chapters 10 and 11 were contributed entirely by Lars 
B. Wahlbin, those to Chapters 12 and 13 in large part by Beresford N. 
Parlett. Comments from Carl de Boor pertaining to the notes for Chapters 
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6 and 7, and from Hans J. Stetter on the notes for Chapter 8, were also 
incorporated. The help of all these colleagues is herewith gratefully ac­
knowledged. 

Thanks are also due to Ms. Connie Heer, who capably and unremit­
tingly prepared the photo-ready copy of the manuscript on a computer of 
the Department of Computer Sciences at Purdue University, using 
UNIX's troft system. Finally, we thank the publisher for patiently wait­
ing for the completion of this project and for assisting us in the produc­
tion of this volume. 

West Lafayette, Ind., November 1989 WALTER GAUTSCHI 
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CHAPTER 1 

An Outline of the Problems 

§ 1.1. Reliability of programs 

The object of numerical mathematics is to devise a numerical 
approach for solving mathematically defined problems, i.e., to exhibit a 
detailed description of the computational process which eventually pro­
duces the solution of the problem in numerical form (for example, a 
numerical table). In so doing, one must, of course, be cognizant of the 
fact that a numerical computation almost never is entirely exact, but is 
more or less perturbed by the so-called rounding errors. The computing 
process, indeed, is executed in finite arithmetic, for example in fioating­
point arithmetic (number representation: z = a x lOb), where only a finite 
number of digits are at disposal both for the mantissa a and for the 
exponent b. 

Depending on how well the effects of finite arithmetic are taken into 
consideration, a computational process is classified as: 

(a) a formal algorithm 

(b) a naive program 

(c) a strict program. 

By aformal algorithm we mean a description of the basic course of 
computation. It represents the first step towards the solution of a prob­
lem, which, however, need not yet consider any limitations in arithmetic. 

For example, in 
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one has a formal algorithm for Newton's method for determining zeros of 
a function f (x). Note that this algorithm offers no protection against 
division by O. (To forbid dividing by 0, of course, is also an arithmetic 
limitation.) 

One speaks of a naive program when one has an unequivocal 
definition of the computational process. The word "naive" is meant to 
convey the notion that although the finiteness of arithmetic is taken into 
account, the provisions made are based more on empirical grounds than 
on solid theory. From a naive program, therefore, one can generally 
expect reasonable results, but this cannot be guaranteed with absolute cer­
tainty. 

Of a strict program we require not only that it should run correctly 
in spite of the finiteness of arithmetic, but also that it should do so on the 
basis of a rigorous proof. 

Now a strict program still offers only sequential reliability, that is, 
one guarantees only the correctness of execution - in particular, correct 
termination - with no assertions being made concerning the accuracy of 
the results. If, however, one can guarantee in addition that the errors of 
the results lie within certain bounds (which are either produced along with 
the results, or can be preimposed together with the initial data), then the 
program is said to be numerically reliable. 

Obviously, numerical reliability presupposes sequential reliability; if 
a naive program is still claimed to be numerically reliable, then this can 
only be meant conditionally. 

§ 1.2. The evolution of a program 

Given an applied mathematics problem, it is one of the tasks of 
numerical mathematics to first of all set up a formal algorithm for the 
solution procedure, and then from this develop a naive or, if possible, a 
strict program. (Here we shall be satisfied, however, with naive pro­
grams.) Such a program, i.e., the detailed computational steps for the 
solution of a problem, is always written in an internationally standardized 
algorithmic language (e.g., IFIP-ALGOL, AS A-FORTRAN, etc.). 
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The whole process can be explained by the following scheme. 

Basic scheme for the solution of a problem on a computer 

Point of departure Activity Domain of relevance 

i mathematical domain of analysis 
<Zl 

problem u ..... 
~ discretization 
5 discrete math- domain of algebra .g 

ematical problem 
S 
'0 development of a 
.~ numerical method ...... 
0.. 

formal algorithm numerical computation 0.. 
< in exact arithmetic 

I 
consideration of 
finite arithmetic 

<Zl 
naive program numerical computation .~ 

~ (quality of program in finite arithmetic S 
<J) ascertained only .g 

empirically) 
S 

...... 
strict program sequential reliability ro 

u 
'i:: (quality of program u 
S guaranteed by ;:s 
Z rigorous proofs) 
J., strict program numerical reliability 

with a priori or 
a posteriori error 
estimates 

§ 1.3. Difficulties 

Just what kind of difficulties we may encounter in constructing a 
program, i.e., in defining a computational process, will now be explained 
in the case of a few miniature problems. 
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A) To be solved is the quadratic equation 

x2 - 742 x + 2 = O. 

Proceeding quite naively, one obtains with 6-digit computation 

x = 371 ± "';137639 = 371 ± 370.997, 

Xl = 741.997, X2 = .003, 

where X2, as a small difference of large numbers, i.e., owing to cancella­
tion, has poor relative accuracy. However, one can easily determine X2 

more accurately, namely according to 

X2 = 21xl = 2/741.997 = .00269543. 

For the solution of a quadratic equation 

x 2 + px + q = 0 

we thus note: The absolutely largest root must be computed first; then the 
smaller one can be determined by Vieta's rule. 

This leads to the following piece of ALGOL program: 

X 1: = abs(p 12) + sqrt(p i2/4 - q); 
if P > 0 then x 1: = - x 1; 
x2: = qlx 1; 

However, this is still a naive program; it can only be applied as long as 

1) the roots are real, 

2) one does not have p = q = 0 (Xl = X2 = 0), 

3) p 2 is still representable in machine arithmetic. 

The last cannot be taken for granted: in the example 

the coefficients and the two roots xl = 10200 , X2 ,; 10-150 are represent­

able on a CDC-6000 computer, but p 2 = 10400 is not. 

B) As a further example, we briefly touch on the solution of linear 
systems of equations: Suppose one has to solve 

lOO2x + 1003y = 1000 
1003x + 1005y = 1000. 
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In 4-digit arithmetic one obtains with Gauss elimination 

x = 1.999, Y = -1.000, 

where these values, however, are quite uncertain because of cancellation. 
Now, perhaps, the client persists on physical grounds that the solution is 
sharply defined. One can react in two ways: 

(a) Compute with more digits, which in the case at hand leads to 

x = 1.998000, Y = -.998999. 

This is meaningful if one deals with a purely mathematical problem, that 
is, if the coefficients 1002, 1003, etc. are exact numbers. How absurd 
this easy expedient of higher precision can be, is shown by the other 
recourse: 

(b) One returns to the origin of the problem. Perhaps it was 

lOOOz + 2.2x + 2.9y = .2 

1000z + 2.9x + 5.4y = -.2, 

where z = x + y - 1. By substituting for z and rounding to four decimals, 
one recovers the system of equations mentioned in the beginning. How­
ever, if the above double precision result is inserted into the original sys­
tem, one obtains, first of all, z = x + y - 1 = -.000999; but then, substitu­
tion into the left-hand side of the first equation yields .4995 instead of .2, 
and in the second equation one finds -.5994 instead of -.2. 

It would have been far better, here, to work with three unknowns: 

2.2x + 2.9y + 1000z = .2 

2.9x + 5.4y + 1000z = -.2 

x+ y z=1. 

From this system one obtains, even with slide rule precision, 

x = 1.61, y = -.61, z = -.00157, 

which is a much better solution, since substitution into the left-hand side 
of the first equation yields .203, and into that of the second equation, 
-.195. 
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The initially given system of equations also might have been the 
nonnal equations of a least squares problem. In this case one would do 
better to solve it by orthogonalization (see Chapter 5). 

C) To be solved is a differential equation with strong damping: 

y' = 5xy3 -l00Dy + sin x, y(O) = O. 

Here, one would first look around for available programs for the numeri­
cal integration of differential equations. Most computing centers have for 
this purpose a program for the so-called Runge-Kutta method. This (1) in 
fact produces with stepsize h = .005 the useless results given in the 
column YA of Table 1.1. In a case like this, only an extreme reduction of 
the integration step will help - which entails an equally severe increase in 
computational effort - , or one develops completely new methods. One 
such method e), indeed, yields the values in the column YB and with dou­
ble the stepsize h = .01 even the practically identical values in column Ye. 
The exact solution, incidentally, is close to the function 

Table 1.1. Numerical integration of a differential equation 
with strong damping 

x YA YB Ye 

0.000 0 0 0 
0.005 1.77083010-5 4.006721 10-6 
0.010 1.96917810-4 8.99990810-6 8.99989510-6 
0.015 2.59004110-3 1.39995210-5 
0.020 3.53322210-2 1.89988210-5 1.89987810-5 
0.025 4.84053910-1 2.39976510-5 
0.030 6.463935 2.89958810-5 2.89958210-5 
0.035 -1.882310102 3.39933810-5 
0.040 -3.4378261049 3.89900410-5 3.89899510-5 
0.045 overflow 4.39857210-5 
0.050 4.89803010-5 4.89801910-5 

(1) Procedure rksstp in the program library of the ALCOR users group. 

(2) Procedure damint in the program library of the ALCOR users group. 

YD 

0 
4.00672610-6 
8.99992010-6 
1.39995410-5 
1.89988510-5 
2.39976810-5 
2.89959210-5 
3.39934310-5 
3.89901010-5 
4.39857810-5 
4.89803710-5 
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1000 sin x - cos x + e-1OOOx 

y(x) = 1000001 ' 

which satisfies the differential equation y' = -1 OOOy + sin x. Its values 
are given in column YD of Table 1.1. 

D) When devising a computational process, one constantly has to 
keep in mind that something that is correct in pure mathematics can be 
totally absurd in a numerical context. For example, (a - b)2 and 
a2 - 2ab + b2 are not the same at all, numerically; in 3-digit computation 
one has, say, for a = 15.6, b = 15.7, 

(a - b)2 = .12 = .01, 

a2 -2ab +b2 =243-490+246=-1, 

that is, the expanded fonu not even guarantees a positive result. 

Likewise, in the expression 

s = i -Val: - 2akbk cos Yk + bl: 
k=l 

one cannot be sure that the root radicands tum out to be positive; even if 
this were the case, individual tenus of the sum may become rather inaccu­
rate because of cancellation. For example, with a = 15.6, b = 15.7, 
Y= 5°, and again 3-digit computation, we have 

thus 

a 2 = 243, b2 = 246, 2ab = 490, 

cos Y= .996, 2ab cos Y= 488, 

"a 2 - 2ab cos Y+ b 2 = 1 

instead of the more accurate value"" 1.87399 = 1.36894. 

One might of course argue that these inaccurate tenus are relatively 
small, and hence in effect contribute little to the total error. This would 
be quite true if it weren't for the fact that through the square root the 
small tenus (and their errors) are enhanced in an undesirable way. 

How, then, should one remedy this obvious deficiency? We use the 
identity 
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and thus compute 

s = ± -V (ak - bk)2 + 4akbk sin2(l/2 Yk) . 
k=l 

In this way, every cancellation is eliminated. One obtains for the above 
example, in 3-digit computation, 

(a - b)2 = .01, 4ab = 980, sin2(l/2 Y) = .00190, 

thus, in all, ...J.Ol + 1.86 = 1.37, which lies well within the computing pre­
cision. 

In summary, we conclude that in numerical computation many ways 
of thinking that have become dear to us must be thrown overboard. In 
extreme situations, for each individual problem, a method especially 
appropriate for it must be developed from scratch. Under no cir­
cumstances is it advisable to copy formulas from books of pure 
mathematics and use them indiscriminately for programming. 

Notes to Chapter 1 

§ 1.3 A detailed and unusually thorough discussion of the floating-point number sys­
tem and its implications can be found in Sterbenz [1974]. There, the reader will learn, for 
example, that computing the average of two floating-point numbers, or solving a quadratic 
equation, can be fairly intricate tasks, if they are to be made foolproof. The quadratic 
equations problem is also considered at some length in Young & Gregory [1972, §3.4], 
where further references are given to earlier work of W. Kahan and G.E. Forsythe. 

The fact that thoughtless use of mathematical formulae and numerical methods, or 
inherent sensitivities in the problem, can lead to disastrous results, is illustrated by well­
chosen examples in Stegun & Abramowitz [1956] and Forsythe [1970]. Sometimes, 
nearby singularities will also cause the accuracy to deteriorate, unless corrective measures 
are taken; Forsythe [1958] has an interesting discussion of this. 

To assess the errors in the final answers of a long computation is still a formidable 
task. There are two general approaches that deserve to be briefly mentioned here - back­
ward error analysis and interval arithmetic. In the first, one attempts to interpret the 
computed answers as the exact answers to a slightly perturbed problem and one seeks to 
estimate the perturbation involved. If one knows, then, how strongly the solution of the 
problem reacts to small perturbations, one can estimate the error in the computed solution. 
The reader is referred to Wilkinson [1963] for a systematic and skillful application of this 
idea to problems in algebra and linear algebra. The goal of interval arithmetic, on the 
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other hand, is to produce intervals that are guaranteed to contain the desired answers. 
This is achieved (at a cost) by operating consistently on floating-point intervals, rather 
than floating-point numbers. Enclosing also the initial data in appropriate intervals allows 
one to study the effect of uncertainties in the data. Good accounts of interval analysis and 
some of its applications can be found in Moore [1966], [1979]. Interval analysis is basi­
cally an a posteriori approach, i.e., error bounds are produced only after the computation 
has been completed. For generating a priori bounds, a new version of error arithmetic, 
developed by Olver [1978], appears to be more promising. 
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CHAPTER 2 

Linear Equations and Inequalities 

The solution of systems of linear equations (briefly called equations) 
is probably the most important type of numerical computer application, 
because countless problems in applied mathematics ultimately - if only 
approximately - can be reduced to linear equations. Not surprisingly, 
therefore, interest in this problem has grown enormously in the computer 
age; what previously was viewed as tedious work has since become a leg­
itimate and actively pursued area of mathematical research.(l) 

The problem itself is rather simple: Desired are n numbers, denoted 
by Xl ,X2, ••• , Xn , which are subject to n conditions in which, however, 
they enter only linearly: 

allxl + a12X2 + 
a2lxI + a22x 2 + 

+ a lnxn + a 10 = 0 

+ a2nXn + a20 = 0 

(1) 

Here the coefficients aid have prescribed values and the Xt are to be deter­
mined numerically. The akO are the constant terms which are sometimes 
given a different name, say b I ,b 2 , ... , bn , or are sometimes appended to 
the coefficient matrix as (n+l)st column al,n+l ,a2,n+l, ... , an,n+l' 

It is customary to write down such equations in a compact form, 
say: 

I Compare, e.g., Forsythe G.E., Moler C.B.: Computer Solution of Linear Algebraic Sys­
tems, Prentice-Hall, Englewood Cliffs, N.J., 1967. 
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n 

L aktXt + akO = 0 (k = 1,2, ... , n), 
t = 1 

which can also be written in matrix fonn as 

Ax + v = o. 
Here, 

x= 

denotes the desired solution vector, 

all 

A= 

is the coefficient matrix, and 

v= 

the constant vector. From (3) one obtains the solution at once as 

x =-A-1v. 

11 

(2) 

(3) 

(4) 

From a purely mathematical point of view, the problem is solved by 
(4), but for numerical purposes nothing is gained by it; on the contrary, 
the fonnula (4) em~odies a suggestive force that has often misled uncriti­
cal programmers in unpleasant ways. Indeed, the inverse matrix is inap­
propriate as a tool for the numerical solution of linear equations, and the 
computation of A-I is more a detour than a help. Of course, also the 
numerical analyst often, and gladly, makes use of the inverse matrix as an 
aid for theoretical investigations; he may even compute it once in a while, 
but hardly ever to detennine the solution of a large system of linear 



12 Chapter 2. Linear Equations and Inequalities 

equations by means of (4)(1). 

§2.1. The classical algorithm of Gauss 

The linear equations (1) to be solved are written as a tableau: 

Xl X2 Xn 1 

0= all a12 a In alO 

0= a2l a22 aln a2D 
(5) 

0= anI an2 ann anD 

Such a tableau - filled with concrete numbers when actually used - is to 
be understood in the following sense: The sum of the products of the 
entries in a row and the corresponding quantities on top of the tableau 
(the so-called header row) is always to yield the value at the left margin 
of the row. If the prescribed row values, as here, are equal to 0, they can 
also be omitted. According to this convention, the tableau (5) indeed 
means the same thing as the system of equations (1); the latter, however, 
is to be solved now with the help of the tableau. 

Since the row values of the tableau are equal to 0, the rows can be 
permuted at will, multiplied by constants, and added to one another. We 
begin by dividing the first row by -a II (where we tacitly assume that 
all¢. 0): 

Xl X2 Xn 1 

-1 c 12 cln clO 

a2l a22 a2n a2D 
(6) 

anI an2 ann anD 

with cIt =-alt/all (t = 1,2, ... , n, 0) 

and then add (for k = 2,3, ... , n) akl-times the new first row to the kth 
row; we obtain: 

1 On some parallel computers there may be an advantage in computing A-I explicitly 
when solutions for many vectors v are desired. (franslator's note) 
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-1 C12 
,;-o I a22 

. I 

. I 
o I a~2 

1 

Cln ClO 
-f---

aZn aZD 

with aZt = akt + aklclt (k = 2,3, ... , n; e = 2,3, ... , n,O). 

This tableau, which is equivalent to (6), contains: 

and 

a) a terminal equation, which can also be given the form 
n 

Xl = ClO + L CltXe, 
t=2 

13 

(7) 

(8) 

b) a reduced tableau which corresponds to n-I equations in the 
n -1 unknowns X 2 ,X 3, ... , Xn. As soon as the latter have been solved, 
(8) immediately yields also the missing unknown Xl. 

The reduced tableau is now treated in the same way: its first row 
(the second of (7» is divided by -aZ2, which produces another terminal 
equation with coefficients Cze = -au JaZ2. Through addition of multiples 
of this terminal equation to the remaining rows, one obtains a further 
reduced tableau with n-2 unknowns and coefficients aU, etc. Eventually, 
one arrives at a scheme of n terminal equations 

Xl X2 X3 X4 xn 1 

-1 C12 C13 C14 Cln ClO 

0 -1 c23 C24 c2n c2D 

0 0 -1 c34 C3n C3D 
(9) 

0 0 0 0 -1 CnD 

from which one successively determines Xn,Xn-l, •.. ,X2,Xl according to 
n 

Xk = CkD + L CktXt (k = n, n - 1, ... , 1). (10) 
t = k+l 

The procedure described by (10), which follows immediately from the 
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equation (9), is called back substitution. 

Example. A polynomial ao + alx + a2x2 of degree 2 is to be con­
structed in such a way that it agrees at x = 1,2,3 with y(x) = l/x. This 
problem is solved by the following tableaus: 

problem statement: 

ao 

0= 1 
0= 1 

0= 1 

first reduced tableau: 

ao 

-1 
0 
0 

second reduced tableau: 

-1 
0 

0 

third reduced tableau: 

-1 
0 

0 

11 
6 

al 

1 
2 

3 

al 

-1 
1 

2 

-1 
-1 

0 

-1 
-1 

0 

-1 

a2 

1 
4 

9 

a2 

-1 

-1 
-3 

2 

-1 
-3 
-1 

1 
6 

3 

8 

1 

-1 
1 (11) 
2 
1 
3 

1 

1 
1 
2 
2 
3 

1 

1 
1 
2 
1 
3 

1 

1 
1 
2 
1 
6 

From the third reduced tableau (with the terminal equations) the a2,al,aO 
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can be determined one after another by (10); it is expedient to write them 
in tum at the bottom of the terminal tableau. As a result, we obtain the 
polynomial 

! (x2_ 6x + 11). 

Row interchanges. Up until now, the possibility was ignored that 
one of the quantities by which one must divide (a 11 ,a22,a33, etc.) could 
be O. In the example 

Xl X2 X3 X4 I 

1 2 3 4 0 
1 2 4 6 -1 (12) 
1 3 6 9 -1 
1 4 9 16 0 

this situation is encountered after the first step: 

Xl X2 X3 X4 1 

-1 -2 -3 -4 0 
0 0 1 2 -1 
0 1 3 5 -1 
0 2 6 12 0 

Since we now have aZ2 = 0, one interchanges the second and third equa­
tion, and then proceeds with the computation. The second reduced 
tableau (after the interchange) reads: 

Xl X2 X3 X4 1 

-1 -2 -3 -4 0 
0 -1 -3 -5 1 
0 0 1 2 -1 
0 0 0 2 2 

Since a43 accidentally became 0, the third and fourth step can be carried 
out together; one obtains directly the terminal equations: 
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-1 -2 -3 -4 0 
0 -1 -3 -5 1 
0 0 -1 -2 1 
0 0 0 -1 -1 

1 -3 3 -1 

At the bottom of this tenninal tableau we again have the solution. 

Note: If the matrix A is indeed nonsingular, one always gets through 
with suitable row interchanges. Nevertheless, interchanges should be 
made not only when a divisor becomes 0, but already when it has become 
small. We shall return to this point in §2.4. 

§2.2. The triangular decomposition 

The scheme (9) of tenninal equations contains all the infonnation 
necessary for the calculation of the unknowns. Still, with a view towards 
the computer organization of the computation, one has to ask oneself 
whether filling in the lower half of the scheme with zeros is really mean­
ingful. After all, one knows that there have to be zeros in those places 
and numbers -Ion the diagonal. 

As a matter of fact, in passing from the scheme (5) to the scheme 
(7), one realizes that by inserting the -1 and the zeros into the first 
column one pushes away precisely those row factors a 11 ,a 21, .•. , an 1 

which could provide infonnation as to how the scheme (7) has been com­
puted. Likewise, in the next elimination step, one displaces the row fac­
tors a22,a:h, ... , a~2 which have served for the calculation of the second 
tenninal equation and the coefficients a Zt of the n -2 reduced equations. 

Considering that this history of successive generation is of impor­
tance in many respects, it surely would be more appropriate not to replace 
these row factors al1,a21, ... , anI, a22, ... , a~2' a:h , ... by 0 and -1, 
respectively. We rather leave them at their places, but henceforth denote 
them by b instead of a, and without asterisks (but with the same indices). 
In this way the tenninal scheme takes on the fonn 
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Xz 1 

bll 
I 
I C12 Cl3 ... 

C In ClO 

b 21 -b2-:;: j C23 C2n C20 

b 31 b32 
b 33- 1 

C3n C30 
I 
'-

(13) 
'--- -

b~l b n2 b n3 b nn CnO 

It is called the BC-scheme(l). The pth elimination step evidently consists 
in renaming the elements in the first column of the reduced equations by 
b pp ' b p +1,p"'" b np ' and letting them stay where they are, while the 
coefficients of the first of these reduced equations are divided by -bpp , 

thus giving rise to the terminal equation coefficients Cp,p+l, 

Cp,p+2, ... , cpn ' cpo: 

x" 1 

bpp Cp,p+l' •• 

~p+l,p 
(14) 

Thereafter, to each element in the hatched region one adds a product 
b x c, namely bkpcpt to the element in position [k,t]. With that, the pth 
system of reduced equations is completed. 

The element in the position [k, t] during the course of the complete 
elimination eventually will end up in the first row or column of a system 
of reduced equations, namely 

(a) if k ~ t, in the first column of the (t - l)st system of reduced 
equations, and remains there unchanged as bkt , 

(b) if k < t, in the first row of the (k - 1 )st system of reduced 
equations, and then becomes after division by -bkk the termi­
nal equation coefficient Ckt. 

Consequently, for k ~ e, 
t-l 

b kt = akt + L bkpcpt 
p=l 

(15) 

I This scheme of course must not be read according to our convention of §2.1. (Editors' 
note) 



18 

or 

Chapter 2. Linear Equations and Inequalities 

11 
aid = - L bkpCpl' 

p=1 

provided one sets C It = -1 and Cpt = 0 for p > t. For k < t one has 

or 

k-l 
cld = -(aid + L bkpcpt )/bkk 

p=1 

11 
aid = - L bkpCpl' 

p=l 

(16) 

(17) 

(18) 

if one defines bkp = 0 for p > k. By (16) and (18), A is a matrix product, 

A=-BC, (19) 

where the matrices B and C are defined as follows: 

b ll 0 0 0 -1 C 12 C 13 C 111 

b21 b22 0 0 0 -1 C23 c2n 

b 31 b 32 b 33 0 0 0 -1 C311 

B= C= 

o o o -1 

One thus has: 

Theorem 2.1. The Gauss elimination algorithm, if it can be com­
pleted without row interchanges, achieves the decomposition of the coeffi­
cient matrix A into a product of two triangular matrices. 

or 

The equations (17) and (18), of course, are valid also for t = 0: 
k-l 

CkO = -(akO + L bkpcpo)!bkk, 
p=1 

11 
akO = - L bkpcpo. 

p=1 

(20) 
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This can be interpreted as 

v=-Bw, (21) 

if in addition to the constant vector v = [a 1O,a20, ... , anof one intro­
duces also the vector w = [ClO,C20, ... , cnof. (The superscript T means 
"transposed".) Therefore, during the elimination process one also solves 
the additional system 

Bw+ v=O. (22) 

If one now substitutes A = -BC and (21) into the original system of 
equations, one obtains - BCx - Bw = 0 and thus 

Cx + w = O. (23) 

These, however, are precisely the terminal equations to which the elimina­
tion process has reduced the given system. 

We now recognize how Gauss's algorithm works: 

(1) The matrix A is decomposed into the factors B and -CO (This 
operation takes place solely in the space of the matrix, and is called tri­
angular factorization.) 

(2) The system of equations Bw + v = 0 is solved. Owing to the tri­
angular form of B, one can give explicit formulae [cf. (20)] for this pro­
cess, calledforward substitution: 

k-l 
Wk = - (Vk + ~ bkpwp)/bkk (k = 1,2, ... , n). (24) 

p=l 

(3) The terminal equations Cx + w = 0 are solved, which is called 
back substitution and can also be described by explicit formulae [cf. (10)]: 

n 
xk = wk + ~ CklXt (k = n, n-1, . .. , 2,1). (25) 

t = k+l 

One can carry out these three processes either separately, or, by 
including the constant vector in the tableau and subjecting it to the same 
transformation - as was done above - one can fuse the triangular decom­
position and forward substitution into one process (the so-called elimina­
tion); then only back substitution remains to be done, for which the 
matrix B is not required. 
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Example. To the system of equations 

xl X2 X3 x4 1 

0= 5 7 9 10 -1 
0= 6 8 10 9 -1 (26) 
0= 7 10 8 7 -1 
0= 5 7 6 5 -1 

we first apply the second of the two variants, that is, the constant vector is 
carried along. We let the row factors stay in their places. After four 
elimination steps 

Xl X2 1 . 
5 I -1.4 -1.8 -2 .2 
6 -.4 -.8 -3 .2 
7 .2 -4.6 -7 .4 
5 0 -3 -5 0 

X2 1 

5 
I -1.8 -2 .2 L-1.4 

6 
- -, 

-2 -7.5 .5 -.4 
7 .2 -5 -8.5 .5 
5 0 -3 -5 0 

X2 1 

5 
I 

-1.4 -1.8 -2 .2 I 

6 ---A- I -2 -7.5 .5 
7 .2 -5 1 -1.7 .1 
5 0 -3 I .1 -.3 

X2 1 

5 
I 

-1.4 -1.8 -2 .2 I 
- -.4 - l..=2_ -7.5 .5 6 (27) 

7 .2 -5 I -1.7 .1 
5 0 -3 

- -,--
.1 3 

there results the Be-scheme, from which one infers the matrices 
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5 0 0 0 -1 -1.4 -1.8 -2 

6 -.4 0 0 0 -1 -2 -7.5 
B= 7 .2 -5 0 , c= 0 0 -1 -1.7 (28) 

5 0 -3 .1 0 0 0 -1 

and the vector w = [.2, .5, .1, 3f. Back substitution according to (25) 
then yields the solution: 

X4 = 3, 

X3 =.1 + (-1.7) x 3 =-5, 

Xz = .5 + (-7.5) x 3 + (-2) x (-5) = -12, 

Xl = .2 + (-2) x 3 + (-1.8) x (-5) + (-1.4) x (-12) = 20. 

If the constant vector - according to the first variant - would not have 
participated in the transformations, that is, if in (27) the last column were 
missing, one could produce it by the forward substitution (24): 

WI =- (-1)/5 = .2, 

Wz = - (-1 + 6 x .2)/(-.4) = .5, 

w3 =- (-1 + 7 x.2 +.2 x .5)/(-5) = .1, 

W4 =- (-1 + 5 x.2 + (-3) x .1)/.1 = 3. 

Subsequently, back substitution, as above, would again give the solution 
vectorx. 

§2.3. Iterative refinement 

The separate treatment of the three processes: triangular decomposi­
tion, forward substitution, and back substitution, is especially useful 
when, at some later time, a system of equations with the same coefficient 
matrix, but new constant terms, has to be solved again. Then the second 
solution in fact requires only forward and back substitution, for which the 
matrices B and C obtained in the first solution by decomposition of A can 
be reused without change. In this sense, the matrices B and C together 
are equivalent to the inverse matrix A-I. 

As an example, we consider the so-called iterative refinement: sup­
pose we test the computed solution vector x of the system Ax + v = 0, 
i.e., simply evaluate this expression through substitution. Because of the 
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inaccuracies of the computation one obtains a residual vector 

Ax + v = vI, (29) 

which will be different from 0 in general. Thus, x is not the correct solu­
tion. One therefore tries a new corrected x + Xl, with the aim of making 
A(x + Xl) + V = O. In view of (29), this is equivalent to 

(30) 

This system of equations for the correction X I indeed has the same 
coefficient matrix A and can be solved by forward and back substitution: 

BWI + VI = 0 ~ WI, 

eXI + WI = 0 ~ Xl. 

Numerical example. Suppose X = [-.052, .2, .004, .184f has 
already been computed as a solution of the system of equations 

Xl X2 X3 X4 1 

0= 5 7 9 10 -3 
0= 6 8 10 9 -3 
0= 7 10 8 7 -3 
0= 5 7 6 5 -2 

One has Ax = [3.016, 2.984, 2.956, 2.084f and thus VI = Ax + V = 
[.016, -.016, -.044, .084f. The matrix A was already used in (26), and 
its triangular decomposition has been noted in (28). Forward and back 
substitution results in the values of WI = [wP), ... , wil) f and 
Xl = [xP) , ... , xil)f shown, respectively, at the bottom of the two fol­
lowing tableaus: 

1 

5 0 0 0 .016 
6 -.4 0 0 -.016 
7 .2 -5 0 -.044 
5 0 -3 .1 .084 

-.0032 -.088 -.0168 -1.184 
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1 

-1 -1.4 -1.8 -2 -.0032 
0 -1 -2 -7.5 -.088 
0 0 -1 -1.7 -.0168 
0 0 0 -1 -1.184 

-7.948 4.8 1.996 -1.184 

We thus obtain the improved solution x + Xl = [-8, 5, 2, -If. As one 
easily checks, this solution satisfies the equation exactly. 

Here the correction is substantially larger than the original solution 
x, and this in spite of the small residual vector VI = Ax + v. One sees 
that even for a rather inaccurate solution, the equations can be almost 
satisfied.( I) 

§2.4. Pivoting strategies 

Until now, the terminal equations have been obtained by always 
dividing the first of the reduced equations by its first coefficient. These 
divisors, which appear as diagonal elements b ll ,b22 , ... , b nn in the BC­
scheme, are called pivot elements and must of course be different from 
zero. If, however, in the pth elimination step it turns out that bpp = 0, 
then the first reduced equation must be exchanged with another, whose 
first coefficient does not vanish. If, say bkp #; 0, then rows k and p of the 
scheme (14) are exchanged - the whole rows, of course. Therefore, the 
old bkp will be used as pivot element; yet, it has been brought to the posi­
tion of bpp • 

The question now arises as to what criteria are to be used for select­
ing the substitute pivot element bkp. For numerical computation, it is 
indeed not only the case bpp = 0 which is troublesome, but also the case 
where bpp is very small in absolute value. We must not wait, therefore, 
until bpp = 0, before we look for a substitute; rather, the question is 
always which of the elements b pp ' bp+l,p' ... , b np in the first column of 
the reduced system is the best pivot element in the pth elimination step 
(and this for all p). 

I To have such a large correction is not typical for practical computer computations where 
more significant figures are held, but the small residual is typical. (Translator's note) 
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Every selection criterion for deciding this question is called a pivot­
ing strategy. Up until now, we used the diagonal strategy, i.e., we 
selected as pivot elements in tum the diagonal elements, without any 
interchanges whatsoever. The diagonal strategy of course is not generally 
applicable, since at any time it can trigger division by 0, even if in the 
original coefficient matrix all diagonal elements are '* O. Besides, also 
small diagonal elements are dangerous, as the following example (in 
four-digit computation) shows: 

System of equations: 

Xl X2 I 

0= .00031 1 

I =; I 0= 1 1 

Be-scheme: 

Xl x2 1 

.00031 
I 
1-=322L 9677 

1 -3225 2.998 

One obtains X2 = 2.998, then Xl = 9677-3266 x 2.998 = 5.000, 
which, owing to cancellation, is totally unreliable. 

Nevertheless, one has: 

Theorem 2.2. The diagonal strategy is always acceptable, if the 
coefficient matrix A is diagonally dominant, i.e., if in each row the diago­
nal element is larger in absolute value than the sum of the moduli of the 
off-diagonal elements.( I) (The proof by mathematical induction is 
straightforward.) 

Partial pivoting strategy. In order to safely avoid the dangerous 
zero in the choice of pivots, most programmers select as pivot element in 
the pth elimination step simply the absolutely largest of the elements bpp' 
bp+I,p' ... , bnp in question. If bkp denotes this pivot element, one then 

I It would suffice to assume that the matrix A is regular and weakly diagonally dominant 
(i.e., in each row the diagonal element is not smaller in absolute value than the sum of the 
moduli of the off-diagonal elements). (Editors' note) 

Another instance in which the diagonal strategy is permissible is when A is symmetric 
and positive definite; see Chapter 3. (franslator's note) 
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interchanges the kth and pth row of the scheme, and carries out the elimi­
nation step. If, however, among those elements none is different from 
zero, the matrix A is singular and, at any rate, a unique resolution of the 
system of equations is not possible. 

In the above example, this simple partial pivoting strategy yields the 
BC-scheme 

1 
.00031 

X2 

-1 -- --
.9997 

1 

7 
2.999 

from which there follows Xl = 4.001, X2 = 2.999, exact to four decimals. 

Complete pivoting strategy. This strategy consists in locating the 
pivot element not just in the first column of the matrix of reduced equa­
tions, but determining instead the absolutely largest element in the whole 
matrix of reduced equations. This maximum element is then brought into 
the position of app by an interchange of rows and columns. 

Now, while the partial as well as the complete pivoting strategies 
are much better than the diagonal strategy, they are not effective in all 
cases. For example, in 

2 
1 
1 

X2 

1 
10-10 

o 

1 1 
o 0 

10-10 0 

the element a 11 is clearly the absolutely largest element in the first 
column as well as in the whole coefficient matrix. Both strategies there­
fore would select this element as pivot element; after one step one then 
obtains the scheme 

X2 1 

2 I -.5 -.5 -.5 
1 -.5 -.5 -.5 
1 -.5 -.5 -.5 

since -.5, added to 10-10, in 8-digit arithmetic, again gives -.5. Thus, the 
reduced equations have become linearly dependent (in fact identical); a 
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unique solution is impossible. 

After an interchange of rows 1 and 2, on the other hand, we obtain 
in the first step 

1 

1 I - 10-10 0 0 
2 

I 
1 1 1 

1 - 10-10 10-10 0 

and at the end the Be-scheme 

1 

1 
I 
I - 10-10 0 0 

2 --I-
I -1 -1 - ---

I - 10-10 210-10 -.5 

As solution one obtains x = [510-11, -.5, -.5f. 

Why is the pivot element 1 here better than the 2? Rather conspicu­
ously, the 1 dominates the elements in the same row much more than is 
the case with the 2. This fact suggests the next strategy: 

Relative partial pivoting strategy. In the first column of the matrix 
of reduced equations one selects the element as pivot element which, rela­
tive to the other elements in the same row, is the largest, i.e., one deter­
mines 

max 
p Sj Sn n 

L lajk l 
k=p+l 

where ajk (j,k = p, ... , n) are the coefficients of the reduced equations at 
the beginning of the pth elimination e). (One has of course ajp = bjp for 
j = p, ... , n.) 

For the example above, the quotients in the first elimination step 
(p=I) are 1 (j=I), 1010 (j=2), 1010 (j=3). As first pivot one therefore 
has to take a21 or a31. 

2 If i I aj/t I = 0 for some j, it is true that the maximum becomes infinitely large, but 

then Wo:1in this case, one has to select the jth row as pivot ro,",:. (Editors' note) 
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Relative complete pivoting strategye). It is natural to seek a combi­
nation of the relative partial pivoting strategy and the complete pivoting 
strategy and to select among all elements of the matrix of reduced equa­
tions that one as pivot which, relative to the sum of the moduli of all ele­
ments in the same row, is the largest. It moreover turns out to be espe­
cially advantageous to include in the row sum also the elements bjk with 
k < p, which, after all, are known at the beginning of the pth elimination 
step. For determining the pivot element, one thus selects an index pair 
U, e] for which the maximum 

is attained. 

§2.5. Questions of programming 

One has to keep in mind that the solution of the system of equations 
(1) is carried out on a computer and that, therefore, the coefficient matrix 
A together with the constant terms have first to be stored as array a[l:n, 
1:n+1]. (The constant terms are now denoted by a[k, n+1].) 

The schemes derived from the initial tableau, placed in the array a, 
which always consist of terminal equations, row factors and reduced equa­
tions, are now stored in the same array a, and, naturally, this is true also 
for the BC-scheme obtained after n steps. At the end of the elimination, 
a [k, e] therefore contains the element bkt or ckt of the BC-scheme, 
depending on whether k ~ e or k < e, respectively. 

At the beginning of the pth elimination step, on the other hand, one 
has [replacep by p-1 in (14)] 

{ 
bkt if k ~ e and e < p, 

a [k,e] = ckt if k < e and k < p ; 

in all other cases (k ~ p and e ~ p), a [k, e] is a coefficient of a reduced 

3 Section added by the Editors. This strategy has been used by H. Rutishauser in the pro­
cedure liglei. which he has programmed for the computing center of the ETH, and which 
is published in: Gander W., Molinari L., SVecovR H.: Numerische Prozeduren aus 
Nachlass und Lehre von Prof Heinz Rutishauser. Birkhauser Verlag, Basel, 1977. 
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equation. 

In this way, the whole Gauss elimination process takes place in the 
array a[1:n, l:n+l], which means that one can get by with n2 + n 
storage cells. 

However, the transition from the given scheme to the BC-scheme 
can be accomplished in different ways, quite apart from the fact that one 
can treat the constant terms either concurrently as (n+l)st column of the 
array a, or divorced from the coefficient matrix (now stored as array 
a[l:n, l:n]) as vector array v[l:n]. Eventually, back substitution still has 
to be carried out. 

The classical method of Gauss reduces the given equations step by 
step to reduced equations with less and less unknowns and at the same 
time builds up the terminal equations; the pth step has the form: 

begin 
for e := p+ 1 step 1 until n+ 1 do 

a[p,e]:= -a [p,e]la [P,p]; 
for k := p+l step 1 until n do 

end; 

for e := p+1 step 1 until n+1 do 
a[k,e]:= a[k,e] + a[k,p] x a[p,l] 

The first for-loop here sets up the new terminal equation, while in the 
second part of this compound statement the reduced equations are being 
transformed. As to the row factors a [k,p], we don't have to worry, since 
they remain unchanged at their places. Note also that the transformation 
of the constant terms is accomplished by always letting the index e run up 
to n+1 [cf. (14)]. 

The complete elimination consists in executing this statement for 
p = 1,2, ... , n, where it is to be noted that for p=n only the single opera­
tion a [n,n+ 1]: = - a [n,n+ l]/a[n,n] occurs. 

An important variant, the columnwise elimination, exploits the fact 
that by (15) and (17) each element of the BC-scheme can be built up 
directly from the corresponding coefficient aid and certain products bkjcjt 
of b- and c-elements. Since only c-elements above aid and b-elements to 
the left of it are required, one can compute in tum, first by (17) with 
k = 1, ... , e -1, and then by (15) with k =e,e + 1, ... , n, the quantities 
cIt, cu, ... , Ct-l,t, bet, bt + l,t, ... , bnt , once all b-elements in columns 
1 to e - 1 are known. This is accomplished, for example, by the program 
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begin 
for k := 1 step 1 until t - 1 do 
begin 

s := a [k,t]; 
for j := 1 step 1 until k - 1 do 

s:= s+a[k,j] x aU,n 
a [k, t] := - s / a [k, k] 

end; 
for k := t step 1 until n do 
begin 

end 
end; 

s := a [k,t]; 
for j := 1 step 1 until t - 1 do 

s := s+a [k,j] x a U,t]; 
a [k,t] := s; 
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For complete elimination, this is executed for t = 1,2, ... , n+1. 
Since here, for t = n+1 (and only in this case), one treats precisely the 
constant tenns, a possibility is indicated of computing separately the BC­
scheme and the vector w. (Note that for t = n + 1 the second k-Ioop is 
empty.) 

This separation is achieved by executing the above statement only 
fort = 1, ... , n, and then, fort = n+1, by writing vU] in place of a u,n 
This corresponds precisely to the forward substitution according to for­
mula (24): 

for k := 1 step 1 until n do 
begin 

s := v[k]; 
for j := 1 step 1 until k-l do 

s := s+a[k,j] x VU]; 
ll[k] :=-s/a[k,k] 

end; 

Here also, one works "in place". 

Finally, there comes the back substitution according to (25): 

for k := n-l step -1 until 1 do 
begin 

s := ll[k]; 
for j := k+1 step 1 until n do 
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s := s+a [k,j] X vU]; 
v[k] := s 

end; 

(Here, v is already the solution vector; the original constant terms are des­
troyed.) 

Interchanges. If one has to interchange two rows p and t, one has to 
keep track of the indices. For that purpose one introduces an integer vec­
tor integer array z[l :n] which initially is filled with z[k]:=k. Later, 
z[k]=p is to signal that the original pth row resides in position k. In order 
that this always works, the interchange of the rows t and p is done as fol­
lows (only in the matrix part, for the time being): 

for j := 1 step 1 until n do 
begin 

h := a [t,j]; 
a [t,j] := a [p,j]; 
a [p,j] := h 

end; 
i := z [t]; 
z[t] := z[P]; 
z [P] := i; 

Now, given a constant vector v, one will first reload: 

for k := 1 step 1 until n do 
x[k] := v[z[k]]; 

and then work with the constant vector x. In summary, we obtain the fol­
lowing procedure gaukos for the solution of linear systems of equations: 

procedure gaukos(n, a, v,x,z,sing); 
value n; 
integer n; array a, v,x; integer array z; label sing; 
comment if n > 0: building - up of the be-matrix columnwise 

from left to right. pivot choice according to the partial 
pivoting strategy. row interchanges to bring the pivots into 
the diagonal. thereafter forward and back substitution. 
if n < 0: only forward and back substitution, it being 
assumed that the be-matrix is already stored in a and the 
row interchange vector in z; 

begin 
real h,s,max; 
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integer i,j,k, e ,p; 
boolean rep; 
rep := (n <0); 
n := abs(n); 
if rep then goto con; 
for k := 1 step 1 until n do z [k] := k; 
comment triangular decomposition; 
for e := 1 step 1 until n do 
begin 
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comment first the coefficients of the terminal equations 
are computed in column e; 

for k := 1 step 1 until e-l do 
begin 

s := a [k,t]; 
for j := 1 step 1 until k-l do 

s := s+a [k,j] x a U,e]; 
a [k,e] := -s/a [k,k]; 

end; 
comment the remaining coefficients of column e are computed 

and at the same time their largest is determined as pivot; 
max:= 0; 
for k := e step 1 until n do 
begin 

s := a [k,t]; 
for j := 1 step 1 until e-l do 

s:= s+a[k,j] x aU,e]; 
a [k,e] := s; 
if abs (s) > max then 

begin max := abs (s); p := k; end; 
end for k; 
if max = 0 then go to sing; 
comment if necessary, interchange rows e and p; 
if p :¢: e then 
begin 

for j := 1 step 1 until n do 
begin h := a [e ,j]; a [e ,j] := a [p,j]; a [p,j] := h; end; 
i:= z[e]; z[t]:= z[P]; z[P] := i; 

end ifp; 
end for l; 
comment forward substitution; 

con: for k:= 1 step 1 until n do x[k]:= v[z[k]]; 
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for k := 1 step 1 until n do 
begin 

s:=x[k]; 
for j:= 1 step 1 until k-l do s := s+a [k,j] x xU]; 
x[k] := -s/a[k,k]; 

end/or k; 
comment back substitution; 
for k := n-l step -1 until 1 do 
begin 

s := x[k]; 
for j:= k+l step 1 until n do s:= s+a[k,j] x xU]; 
x [k] := s; 

end/or k; 
end gaukos; 

§2.6. The exchange algorithm 

We consider s linear fonns in t independent variables: 

I 

Yk = L akf,xt (k = 1, ... , s). (31) 
t = I 

For the time being, this should not be taken as a system of equations but 
merely as a fixed relationship between the s +t variables x I, ... , X,, 
Y I, ... , YS' by means of which the Y I, ... , Ys can be computed from the 
Xl, ... ,X,. Written as a tableau: 

YI = 
Y2 = 

Ys = 

X2 

(32) 

From this, one can now obtain a new tableau by solving, say, the 
pth linear fonn for the variable Xq: 

Xq = _1_ [YP - L aptxt] , 
apq t cF q 

(33) 



§2.6. The exchange algorithm 33 

and subsequently substituting this expression in the remaining equations: 

(k "# p) 

or (34) 

(k"#p). 

This exchange assumes that apq "# O. 

Example. The tableau 

a b e 

d= 3 [ZJ I 
e = 5 -1 -3 

corresponds to the relations 

d = 3a + 2b + e, e = 5a - b - 3e. 

For the exchange of b and d, one obtains from the former relation first 
b = -1.5a + .5d - .5e, and then from the latter, e = 6.5a - .5d - 2.5e. 
Written as a tableau: 

b= 
e= 

a d 

-1.5 .5 
6.5 -.5 

e 

-.5 
-2.5 

The above formulae for Xq and the Yk (excluding yp) are again s 
linear forms in t variables. only the variables Yp and Xq have exchanged 
their roles. Yp is now an independent, Xq a dependent variable. This can 
be expressed in the form of a new tableau: 
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Xl Xq-l Yp Xq+l Xt 

YI = ail aiq ait 

(35) 
Yp-l = 

Xq = a;l a;q * apt 
Yp+l = 

Ys = a;l * asq a;t 

By exammmg the fonnulae (33) and (34), one sees that the 
coefficients aZt of the new scheme (35) are defined as follows: 

a;q = l/apq 

a;t = - apdapq 

akq = akq/apq 

akqapt 
aZt = akf, - -:.......:..­

apq 

(e = 1, ... , q - 1, q + 1, ... , t) 

(k = 1, ... , p - 1, p + 1, ... , s) (36) 

(k = 1, ... , p - 1, p + 1, ... , s; 

e = 1, ... , q - 1, q + 1, ... , t). 

It is true, though, that in practice one proceeds differently: Since akt 
and aZt are always stored as a [k,e] , one must be careful to no longer use 
any akf, for which the corresponding aZt has already been fonned. This is 
the case with the following arrangement: 

a;q = Vapq 

a;t = - apt a;q 

aZt = aid + akqa;t 

(e = 1, . . . , q - 1, q + 1, . . . , t) 

(k = 1, ... , p - 1, P + 1, ... , s; 

e = 1, ... , q - 1, q + 1, ... , t) 

(k = 1, ... , p - 1, P + 1, ... , s). 

(37) 
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The transItIon described by the fonnulae (36), resp. (37), from 
scheme (32) to the scheme (35) is called exchange step with pivot element 
apq • 

Applications. The idea of the exchange step can be exploited in 
many different ways: 

A) Let a tableau be given with s = t = n dependent and independent 
variables: 

Xl x2 xn 

Yl = all a12 aln 
Y2 = a21 a22 a2n 

(38) 

Yn = anI an2 ann 

This corresponds to the relation y = Ax with the square matrix A = [akt]. 

Now after a variable xql has been exchanged for YP1 ' one can apply 
to the resulting tableau {ake} an additional exchange step, by further 
exchanging, say, x q2 for YP2 ' provided a;2q2 "# o. 

Under appropriate conditions this process can be repeated so often 
until all variables Xt have turned into dependent, and all Yk into indepen­
dent variables. In the final scheme we then have on top only y-variables, 
and on the left only x-variables, both, to be sure, in arbitrary order. How­
ever, by appropriately pennuting the rows and columns of the final 
scheme, it will assume the following fonn: 

Yl Y2 Yn 

n 
One thus has Xt = ~ Cf.tkYk, i.e., the matrix {Cf.tk} is the inverse A-I of A. 

k=l 
We have found a numerical method of matrix inversion. 

[ I 10] Example. We compute the inverse of A = I 5. The pivot ele-
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ments are put in boxes. 

YI= 

Y2 = 

Xl x2 

11 ITQJI;> X2 ; 

1 5 Y2 = 

Permuted: 

Xl = 

X2 = 

YI Y2 

!=12l 
~' 

Xl YI 

=> lliJJ.l .l x2 = 

[]J.5 Xl = 

Y2 YI 

I-22l 
~ 

i.e., A-I =[-1 21. .2 -.2J 
This inversion, naturally, is subject to certain conditions: In each of 

the n exchange steps one must be able to find a suitable pivot element, 
which can only be an element different from 0 at the intersection of an x­
column and a y-row (one wants, after all, exchange an independent X for a 
dependent y). 

This last condition, as the exchange proceeds, restricts the possible 
choices more and more, until in the last (nth) step one has no choice 
whatsoever, since there is only one column headed by an X and one row 
labeled on the left by a y; the element at the intersection therefore must 
be taken as pivot. 

It goes without saying that also for the matrix inversion one must 
develop suitable pivot strategies. The points of view are the same as in 
Gauss's algorithm (diagonal strategy, partial pivoting strategy, etc.), 
although in practice one does not bring the pivot elements into the diago­
nal, through interchanges, but lets them stay in place. Only in the final 
tableau are rows and columns permuted to obtain the inverse. 

In the following example we apply the complete pivoting strategy: 
in the tableau 

YI = 
Y2 = 
Y3 = 

I 
2 
3 

X2 

2 
3 
4 

3 
4 

rn 
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the 5 is the absolutely largest element. A first exchange step with this 
pivot yields: 

Xl X2 Y3 

YI = GjJ -.4 .6 
Y2 = -.4 -.2 .8 
X3 = -.6 -.8 .2 

Here, among the four elements located in x-columns and y-rows, -.8 is the 
absolutely largest. It becomes the second pivot: 

YI X2 Y3 

Xl = -1.25 -.5 .75 
Y2 = .5 0 .5 
X3 = .75 -.5 -.25 

Now only one x-column and one y-row remain; hence 0 at the intersection 
must be taken as pivot element. Since this is not possible, the process at 
this point breaks down; no inverse can be computed. The matrix is singu­
lar. 

There is something, however, that can still be done. The 0 in ques­
tion is obtained from 3 by subtraction, and therefore, in general, is subject 
to rounding errors, which in 6-digit computation, ought to be of the order 
of magnitude 10-6. We therefore make things only a little worse if on top 
of this expected error we graft an additional error 10-8 and replace 0 by 
10-8. After that, one can go on with the computation and finds: 

Yl Y2 Y3 

Xl = 2.5107 -5107 2.5107 
x2 = -5107 108 -5107 
X3 = 2.5 10 7 -5107 2.5107 

Of course, this is not the actual inverse, which here does not even exist, 
but it is a matrix B for which AB-I agrees with the zero matrix within 
the error bounds to be expected. (The elements are sums of products of 
the order of magnitude 108 in 6-digit computation.) The practical 
significance of the final tableau here lies in the fact that it makes the 
dependence of the columns and rows of the matrix A evident. 
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B) Let a tableau be given with s=n dependent, and t = n+l indepen-
dent variables: 

Xl X2 Xn Xn+l 

Yl = all a12 aln al,n+l 
Y2 = a2l a22 a2n a2,n+l 

(39) 

Yn = anI an2 ann an,n+l 

If now the variable xn+l is given the fixed value 1 and in addition, 
one requires that the Y all assume the value 0, then this means that 

n 
L a/ctxt + ak,n+l = 0 (k = 1, ... , n), 

t=l 

i.e., we are dealing with a linear system of equations in which the 
unknowns xl, ... ,Xn are to be determined in such a way that indeed 
Yl = Y2 = ... = Yn = O. 

Now in order to obtain these x-values, we in tum exchange them all 
for the Y, which requires n exchange steps. It must be observed, however, 
that Xn+l is not to be exchanged, i.e., that no pivots are selected from the 
last column. 

There results a scheme which carries as labels on the left all the x, 
and on top all the Y, in some arbitrary order; the last column, now as 
before, is labeled with Xn+l = 1; for example (with new afct): 

Y3 Y7 Ys 1 

x7 = all aiz aln 
, 

al,n+l 
Xl = aZI ah a2n 

, 
a2,n+1 

X4 = a~l a~2 a~n 
, 

an,n+l 

True to our convention, this scheme is to be read as 

X7 = ahY3 + atzY7 + 

Xl = aZlY3 + ahY7 + 

+ alnYs + al,n+l 

+ a2nYs + az n+l , 
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since, however, all y=O, there thus follows X7 = al,n+l, Xl = aZ.n+I' etc. 

Consequently: The values in the last column of the final tableau 
represent the solution of the system of equations. 

The course of computation, however, still permits a reduction in 
work: with each exchange step there appears a new column, effectively 
labeled by 0; the elements of this column, therefore, are unimportant for 
the subsequent computation, since they are always multiplied by O. 

As a consequence, the exchange formulae need only be implemented 
for the elements of the x-columns; in the y-columns one can leave what­
ever numbers one wants. Inasmuch as fewer and fewer x-columns remain, 
the computational effort in this way is reduced by half. This procedure is 
known as the Gauss-Jordan method. 

Example. In the tableau 

Xl X2 X3 I 

0 = 2.2 2.9 1000 -.2 
0 = 2.9 5.4 1000 .2 
0 = I I -1 -1 

using the relative partial pivoting strategy, the first step is carried out with 
the pivot a31 = 1 (4-digit computation): 

0 x2 X3 1 

0 = .7 1002 2 
0 = 2.5 1003 3.1 
Xl = -1 1 1 

The second step with the pivot ai2 = 2.5 yields: 

0 0 x3 1 

0 = 721.2 1.132 
X2 = -401.2 -1.24 
Xl = 402.2 2.24 

The third step with the pivot ai3 = 721.2 leads to the result: 
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0 0 0 1 

x3 = -.001570 
x2 = -.6101 
Xl = 1.609 

C) There is one more possibility for savings: not only is it no longer 
necessary to compute the y-columns, but one can also freeze the newly­
formed x-rows in the form in which they were created. 

Thus, in the above example, one first freezes the xl-row, i.e., no 
further exchange operations are applied to it: 

(Xl) X2 X3 1 

0 = .7 1002 2 
0 = 2.5 1003 3.1 
Xl = -1 1 1 

Further exchanges therefore take place only in the O-rows; for the frozen 
rows the old labels (in parentheses) are still valid. 

Third step: 

(Xl) (X2) x3 1 

o = 721.2 1.132 
X2 = -401.2 -1.24 
Xl = -1 1 1 

-1 
-401.2 

1 

1 

-.00157 
-1.24 

1 

It is not difficult to see that with this last modification one has 
recovered Gauss's elimination. Since here the exchange formulae need 
only be applied to elements at the intersection of O-rows and x-columns, it 
is evident that Gauss's elimination gets by with fewer operations than, 
say, the Gauss-Jordan method; in the former, one merely has to put up 
with the inconvenience of back substitution. 
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§2.7. Questions of programming 

The exchange algorithm is very easy to program. The tableau is 
stored in the computer as array a[l :S, 1 :t]. The notation a [i,j] desig­
nates the element located in the position i,j of the tableau, and this 
regardless of the labeling on the left and on top and of the number of 
already completed exchange steps. Then for an exchange step with pivot 
element a [p,q] the formulae (37) give rise to the following piece of pro­
gram (s and t denote the number of rows and columns, respectively, of the 
tableau): 

aa: a [p,q] := l/a [p,q]; 
bb: for e := I step I until q-l, q+l step I until t do 

a [p,e] := - a [p,e] x a [p,q]; 
dd: for k:= I step I untilp-l,p+l step I until s do 

for e := I step I until q-l, q+l step I until t do 
a[k,e] :=a[k,e]+a[k,q]xa[p,e]; 

cc: for k:= I step I untilp-l,p+l step I until s do 
a[k,q] := a[k,q] x a[p,q]; 

The labels, here, serve only for the purpose of explanation: at aa: the 
pivot element, at bb: the pivot row, at cc: the pivot column, and at dd: the 
field of the (s-l) . (t-l) remaining elements are processed. Of course, 
these operations presuppose that the pivot element a [p,q] has been 
selected appropriately. 

The exchange step has been programmed here in such a way that the 
new tableau overwrites the old one; one therefore had to carefully make 
sure that no elements of the new tableau were computed as long as the 
corresponding elements of the old one were still needed. (Hence the order 
aa:, bb:, dd:, cc:.) 

Now any such tableau is completely identified only together with 
the labeling on top and on the left. In order to represent this labeling in 
the computer, one introduces two integer vectors 

integer array left [l:s], top [l:t] 

with the following meaning: 

left [k] = e > 0: the kth row is labeled on the left by Yt. 

left [k] = - e < 0: the kth row is labeled on the left by Xt • 

top [k] = e > 0: the kth column is labeled on top by Ye. 
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top [k] = - t < 0: the kth column is labeled on top by Xt. 

These conventions require additional operations, namely 

a) before the first exchange step, since at this point, all rows are still 
labeled by y, and all columns by x: 

for k := I step 1 until s do left [k] := k; 

for t := 1 step 1 until t do top [t] := - t; 

b) after each exchange step, if a fp,q] is the pivot element: 

k := left fp]; 
left fp] := top [q]; 
top [q] := k; 

(That is, left fp] and top [q] are exchanged.) 

By means of the labeling now available in this fonn, one can also 
easily check the admissibility of an element as pivot element: in matrix 
inversion, for example, only an element at the intersection of a y-row and 
an x-column is pennissible, which can be expressed by the condition 

if left [k] > 0 A top [t] < 0 then. 

The labeling simulated in this way also pennits, after n exchange 
steps, to transfonn the final array An by row- and column-pennutation 
into the inverse A-I. Note, in this connection, that with left [k] = - tone 
also must have top [t] = k. Therefore, if the kth row of An has to be put 
in place of the -left [k]th row, then this is equivalent to having to make 
the top [t]th row of An the tth row of A-I. 

In order that this pennutation can be carried out within the matrix A, 
one has first of all to layaway the tth row into a vector b, so 
that the top[t]th row finds place in the tth one; then the top[top[t]]th row 
is reloaded into the top[t]th one, etc., until eventually top[top[top[ ... [top[t 
]] ... ]]] = t and the vector b can be inserted exactly at the right place. 
Then one looks for further cycles, i.e., rows t with top[e] *" e. Subse­
quently, also the columns would have to be pennuted. 

For row pennutation, one has the following program: 

for e := 1 step 1 until n do 
if top [e] *" e then 
begin 

comment lay away e th row in b; 
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for j := 1 step 1 until n do b [j] := a [e ,j]; 
q := e; 
for p := top [q] while p "* e do 
begin 

top [q] := q; 
for j := 1 step 1 until n do a [q,j] := a [p,j]; 
q :=p; 

end for p; 
top [q] := q; 
comment insert vector b, cycle completed; 
for j := 1 step 1 until n do a [q,j] := b U]; 

end for e; 

§2.8. Linear inequalities (optimization) 

43 

A merchant has 4 lbs. of silver and 7 Ibs. of gold, from which he 
can produce and sell the following alloys: 

1) 50% gold, 50% silver at $3200/lb. 

2) 75% gold, 25% silver at $6000/lb. 

3) 100% gold at $5000/lb. 

Which alloys should he produce in order to achieve a maximum return? 

In view of the amounts of metal available one obtains certain ine­
qualities. If the amounts of the 3 alloys produced are denoted by Xl, X2, 
X3, one must have: 

.5XI + .75x2 + x3 $; 7 (supply of gold), 

.5x I + .25x 2 $; 4 (supply of silver) . 

The return on the sale, i.e, 

3200Xl + 6000X2 + 5000X3, 

then is to be made a maximum. 

All this can be summarized in the tableau: 

YI = 
Y2 = 

z = 

-.5 
-.5 

3200 

-.75 -1 
-.25 0 

6000 5000 

1 

7 
4 

0 

(40) 
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where the value of z, under the constraints x 1 ~ 0, X 2 ~ 0, X 3 ~ 0, Y 1 ~ 0, 
Y2 ~ 0 has to be maximized. 

The problem is solved by arranging, through a sequence of exchange 
operations, that the maximum for z becomes explicitly evident. Under the 
stated conditions, this maximum is clearly achieved when the coefficients 
of z in the matrix part are all negative, e.g. 

Yl 1 

z = -800 -8000 -3000 56000 

since in this case the maximum of z under the constraints x 1 ~ 0, Y 1 ~ 0, 
x3 ~ 0 obviously occurs for xl = Yl = X3 = 0 and has the value 56000. 
All other admissible Xl, Y 1> X3 - values yield a smaller z-value. It is to be 
noted, however, that X2 and Y2 are then equal to the values in the 1-
column (Le., the column of constants); these values must not become 
negative. If this condition were violated, one would have achieved the 
maximum 56000 for an inadmissible combination (namely X2 < 0 or 
Y2 < 0). This would mean, that one would have to sell a negative amount 
of alloy 2 or that more than 4 lbs. of silver had been used, respectively. 

The goal, therefore, is to achieve, by means of exchange steps, that 
the I-column ends up with nonnegative elements and the z-row (disre­
garding the corner element at the lower right) with negative elements. 

The exchange operations must therefore be chosen in such a way 
that the elements in the I-column remain nonnegative, while at the same 
time the elements in the z-row are made negative. Pivot elements must 
not be selected either in the I-column or in the z-row. 

We now consider, more generally, s-llinear inequalities 
1-1 

Yk= L a/dxt +akt~O (k=l, ... ,s-l) (41) 
t = 1 

in t-l nonnegative variables Xt ~ 0 (t = 1, ... , t - 1), where the values 
of akt are assumed nonnegative. Subject to these inequalities, we wish to 
maximize the linear form 

1-1 
Z = L astxt + ast· 

t = 1 

The associated tableau reads: 

(42) 
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x I x t x 'q x t-l 1 

YI = all 
.. . au .. . alq ... a l,t-l a It 

Yi = ai 1 ait aiq ai,t-l ait 

Yp = apl apt apq ap,t-l apt 

Ys-I = as-l,l as-l,t as-l,q as-l,t-l as-l,t 

z = asl ast asq as,t-l ast 

Observation 1: According to the exchange rules (36) the sign of the 
element at the intersection of the pivot row and the I-column is preserved 
precisely if the pivot element apq is negative, since we have 
a;t = - aptlapq. 

Rule 1. The pivot element must be negative. 

Observation 2: If the pivot element is negative, then by virtue of 
a;q = asq/apq the sign of the element in the z-row below the pivot element 
is reversed. Since one wants to make the z-row negative, there follows 

Rule 2. The pivot element must be chosen above a positive z-row 
element. 

Observation 3: The new element a~ of the I-column, which again 
must be nonnegative, is obtained as 

aptaiq 
a~ = ait - ---. 

apq 

If aiq ~ 0, the condition is certainly fulfilled, since apt ~ 0 and apq < O. If 
aptaiq 

aiq < 0, then for all such i (1::; i ::; s-l) one must have ait ~ --, 
apq 

I The argument here is a simplification of the argument given in the original. 
(franslator's remark) 
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Rule 3. The pivot element apq , among all negative elements of the 
same column q, must have the property that ait1aiq (t is the index of the 
I-column) is maximum for i=p (i.e., minimum in absolute value). Having 
selected the pivot column q, one thus forms the characteristic quotients 
ait1aiq (i = 1, ... ,s - 1; aiq < 0) and determines their largeste). 

As a consequence of these rules one obtains: 

Theorem 2.3. As long as the pivot selection proceeds in accor­
dance with the Rules I, 2 and 3e), the value of the corner element at the 
lower right increases monotonically; if, for some exchange step, apt = 0, 
then, however, that value remains unchanged during this step(4). 

Proof. For an exchange step with pivot element apq (where, as 
always, p *" s, q *" t) one obviously has a;t = ast - asqaptiapq' but asq > 0 
according to Rule 2, and apq < 0 according to Rule 1. Owing to the 
Rules 1 and 3, the conditions akt ~ 0 (k = 1, ... , s - 1) remain intact. 

Example. The gold and silver problem, posed at the beginning, is 
already represented as tableau (40): 

YI = 
Y2 = 

z = 

-.5 
-.5 

3200 

X2 

-.75 
-.25 

6000 

1 

-1 7 
0 4 

5000 0 

We choose the first pivot from the first column. The characteristic quo­
tients here are 7/(-.5) = -14, 4/(-.5) = -8; the second row gives the abso­
lutely smaller quotient, hence a21 is the pivot element: 

2 It can happen that in the chosen pivot column q (with a sq > 0) no element aiq 

(i = I, ... ,s - 1) is negative. Then the linear form z is unbounded on the set of admissi­
ble points x = [Xl> ••• ,xt-d (i.e., points satisfying the constraints), and the problem has 
no finite solution. (Editors' remark) 
3 The exchange algorithm, resulting from these rules is called the Simplex Algorithm. 
~Editors' remark) 

This value of z would also remain stationary if one selected a sq = O. Such steps, howev­
er, can be disregarded. If in the z-row of the final tableau there would occur, next to 

negative coefficients, also coefficients that are 0 and in whose column there is a pivot ele­
ment satisfying the Rules 1 and 3, this would mean that the maximum is not unique. (Ed­
itors' remark) 
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Y2 1 

1 -.5 -1 3 
-2 -.5 0 8 

z = -6400 4400 5000 25600 

Now we select the pivot from the second column (the third would also be 
possible). The characteristic quotients are 3/(-.5) and 8/(-.5); the first 
row gives the absolutely smaller quotient, hence one takes a 12 as pivot 
element: 

Y2 Yl 1 

X2 = 2 -2 -2 6 
Xl = -3 1 1 5 

z = 2400 -8800 -3800 52000 

There is still a positive element in the z-row. To remove it, a further 
exchange step with pivot in the first column is required, whereby only the 
element a21 = -3 qualifies as pivot: 

Yl 1 

_2- _.i. _.i. 28 
3 3 3 3 

Y2 = 1 1 1 5 
3 3 3 3 

z = -800 -8000 -3000 56000 

Evidently, z = 56000 - 800Xl - 8000Yl - 3000X3 is now maximum for 
Xl = Y 1 = X3 = 0, and from this, one also gets X2 = ~8 > 0, Y2 = ; > 0, 
so that the maximum of z under the given constraints is found. The solu­
tion means: 

X -x -Ox _28. 1 - 3 - , 2 - T· 

Yl = 0: 

Y2 = ;: 

z = 56000: 

Produce only 9+ lbs. of the 75% gold-silver alloy. 

The gold supply is exhausted. 

; lbs. of silver remain unused. 

The return on the sale is $56000. 

On the basis of this result one also recognizes that one could have 
arrived from the initial to the final tableau in a single exchange step, 
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namely with a 12 as the pivot element. 

Minimization (point of view of the consumer). If the problem, in 
contrast to the one posed at the beginning, has as objective the purchase 
of certain materials at a minimum cost, then a reformulation is necessary. 

Let's suppose we go to our goldsmith and want to stock up on gold 
and silver in the amounts of at least 2 lbs. and lIb., respectively, by buy­
ing his alloys. If again XI, X 2, X 3 denote the amounts of the three alloys, 
then the following conditions are to be satisfied: 

Schematically: 

.5Xl + .75x2 + X3 ~ 2 (gold) 

.5Xl + .25x2 ~ 1 (silver) 

3200Xl + 6000X2 + 5000X3 = minimum. 

Yl = 
yz = 
z = 

.5 

.5 

-3200 

X2 

.75 

.25 

-6000 

1 

1 -2 
0 -1 

-5000 0 

Here, z means the negative costs, which are to be made a maximum, sub­
ject to the constraints Xi ~ 0, Yi ~ O. 

While the coefficients of the z-row are already negative, the 1-
column, contrary to the rules, contains negative elements, so that 
Xl = X 2 = X 3 = 0 is not a solution. (We would have a deficit of 2 lbs. in 
gold and 1 lb. in silver.) 

The normal process, therefore, must be prefaced by an extra step in 
which the I-column can be made positive. For that purpose, we proceed 
according to the following recipe. 

Select a pivot column (index q) in which all elements above the z­
row are positive(5), determine among all quotients aitfaiq the smallest 

5 If no such column exists, this recipe, which can be derived in the same way as Rule 3, 
is not applicable. There exist, then, more general and more complicated methods to make 
the I-column positive. Compare for this, as also for the Simplex Algorithm in general, 
Collatz L., Wetterling W.: Optimization Problems, Springer, New York, 1975, Section 
3.4, or Kiinzi H.P., Tzschach H.G., Zehnder C.A.: Numerical Methods of Mathematical 
Optimization with ALGOL and FORTRAN Programs, Academic Press, New York, 1971, 
Section 1.3, or Stiefel E.: An Introduction to Numerical Mathematics, Academic Press, 
New York, 1963, Section 2.41. (Editors'remarks) 
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(most negative) and - if apr/apq denotes this smallest quotient - make an 
exchange with pivot apq . Then the I-column becomes positive, and one 
can continue nonnally. 

In our example, we may take q=l; the quotients then are -2/.5 = -4, 
-1/.5 = -2, hence an exchange with pivot a 11 must be made: 

Xl = 
Y2 = 

z = 

YI 

2 
1 

-6400 

-1.5 
-.5 

-1200 

1 

-2 +4 
-1 +1 

1400 -12800 

This scheme would indicate that one should buy 4 lbs. of alloy 1 
and nothing else. Then one indeed has 2 lbs. of gold and 2 lbs. of silver, 
thus a surplus of 1 lb. in silver, which is also signaled by Y 2 = 1. The 
costs, however, are not minimum, since aZ/aX3 = a33 > O. Therefore, one 
now makes a nonnal simplex exchange step with pivot column 3. The 
characteristic quotients are 4/-2 = -2 and 1/-1 = -1; one thus must select 
a23 as pivot: 

YI Y2 1 

0 -.5 2 2 
1 -.5 -1 1 

z = -5000 -1900 -1400 -11400 

Minimum cost, with $11400, is now achieved: one buys 2 lbs. of 
alloy 1 and 1 lb. of pure gold. Since the solution is obtained with 
YI = Y2 = 0, we don't have any surplus in gold or silver. 

Notes to Chapter 2 

The work of Wilkinson has had a profound effect on our understanding of the 
roundoff properties of Gaussian elimination; his book (Wilkinson [1965]) has become a 
classical reference work. Other useful reference books are Stewart [1973], Strang [1980], 
and Golub & Van Loan [1989]. 

§2.3 The residuals for iterative refinement are often calculated in double precision, 
while the rest of the calculation is performed in single precision. Typically, the iterates 
converge rapidly to a solution that is accurate to single precision; see Stewart [1973] or 
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Golub & Van Loan [1989]. Underlying this mode is the assumption that the matrix 
coefficients are exactly represented by single-precision values. If this is not the case, one 
has to be content with the residual Ax + v being small. Skeel [1980] shows that iterative 
refinement, without double-precision computation of residuals, is very effective at produc­
ing a small relative residual 

IAx+vl; 
max --:--:-:--:--:----:--:--

; ( I A I I x I + I v I); , 

where the modulus signs applied to a vector or matrix refer to the corresponding vector or 
matrix having each element replaced by its absolute value. Skeel shows that one iteration 
is sufficient under certain reasonable conditions. 

§2.4 The backward error analysis of Wilkinson (cf. Notes to §1.3) gives us a better 
appreciation of the effects of pivoting. He has shown that the solution obtained is exact for 
a perturbed system, where the perturbations are small compared to the coefficients of the 
reduced matrices. Partial pivoting limits the growth in the size of the largest matrix 
coefficient to the factor 2 at each stage, and it is thought that complete pivoting limits it 
overall to the factor n. (As far as we know, this result has not been proved, though Wil­
kinson has demonstrated a slightly weaker result) This is a satisfactory situation for a 
well-scaled matrix, and the first example gives a good illustration of its success. Unfor­
tunately, we know of no totally satisfactory pivotal strategy for matrices whose 
coefficients vary widely in size and are all known with good relative accuracy. The second 
example illustrates the problem. Our recommendation is to rescale the problem, for 
instance by the algorithm of Curtis & Reid [1972]. This would rescale the second example 
to 

where a. = 1010/3 :::: 2154. 

For large sparse problems, it is also desirable to choose pivots that preserve as 
many as possible of the zero entries. For a discussion of this aspect, see George & Liu 
[1981] for the symmetric and positive definite case, and Duff, Erisman & Reid [1986] for 
the general case. Fortran software for sparse problems is available in the Yale Sparse 
Matrix Package (Eisenstat, Gursky, Schultz & Sherman [1977]), SPARSPAK (Chu, 
George, Liu & Ng [1984]), and the Harwell Subroutine Library (Hopper [1989]). 

§2.5 There are many good Algol 60 codes for linear equations in the handbook of 
Wilkinson & Reinsch [1971]. They have provided the ba&is for many of the Fortran sub­
routines in the IMSL and NAG libraries and in UNPACK (Dongarra, Moler, Bunch & 
Stewart [1979]). We strongly recommend the use of one of these sources of reliable and 
efficient codes. LINPACK is becoming a de facto standard; many vendors provide optim­
ized versions of the most popular routines to exploit their particular hardware. 
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§2.8 This section provides an introduction to the solution of linear programs by the 
simplex method. For further reading, see Dantzig [1963] and Chvatal [1983]. We note 
here, especially, that the exploitation of sparsity is essential in many practical problems, 
and that many of the numbers apl are often zero, which leads to real problems with degen­
eracy (steps for which the objective value remains unchanged), mentioned in Theorem 2.3. 
There are several large commercial packages available for the linear programming prob­
lem. 

Some versions of the simplex algorithm are known to have a worst-case running 
time which, in certain contrived examples, can be exponential in the number of variables 
and constraints. On most problems of practical interest, nevertheless, the simplex method 
behaves like a polynomial-time (in fact, quadratic-time) algorithm. Truly polynomial algo­
rithms for solving the linear programming problem have only recently been discovered, 
the first by Khachiyan [1979], and another by Karmarkar [1984]. The latter, in particular, 
has the potential of becoming a serious competitor to the simplex algorithm. For these, 
and other interior-point methods, the reader is referred to Schrijver [1986, Chs. 13 and 15] 
and Goldfarb & Todd [1989]. 

References 

Chu, E., George, A., Liu, J. and Ng, E. [1984]: SPARSPAK: Waterloo Sparse Matrix 
Package User's Guide for SPARSPAK-A, Report CS-84-36, Department of Computer 
Science, University of Waterloo, Ontario, Canada. 

Chvatal, V. [1983]: Linear Programming, W.H. Freeman, New York. 

Curtis, A.R. and Reid, J.K. [1972]: On the automatic scaling of matrices for Gaussian 
elimination, J. Inst. Math. Appl. 10, 118-124. 

Dantzig, G.B. [1963]: Linear Programming and Extensions, Princeton University Press, 
Princeton, N.J. 

Dongarra, J.J., Moler, C.B., Bunch, J.R. and Stewart, G.W. [1979]: UNPACK Users' 
Guide, SIAM, Philadelphia. 

Duff, I.S., Erisman, A.M. & Reid, J.K. [1986]: Direct Methods for Sparse Matrices, 
Clarendon Press, Oxford. [Paperback edition, 1989]. 

Eisenstat, S.C., Gursky, M.C., Schultz, M.H. and Sherman, A.H. [1977]: Yale Sparse 
Matrix Package, I: The Symmetric Codes, J/: The Nonsymmetric Codes, Reports 112 
and 114, Computer Science, Yale University. 

George, A. and Liu, lW.H. [1981]: Computer Solution of Large Sparse Positive Definite 
Systems, Prentice-Hall, Englewood Cliffs, N.J. 

Goldfarb, D. and Todd, M.J. [1989]: Linear Programming, in Handbooks in Operations 
Research and Management Science, Vol. 1: Optimization (G.L. Nemhauser, A.H.G. 
Rinnooy Kan and M.l Todd, eds.), pp. 73-170. North-Holland, Amsterdam. 

Golub, G.H. and Van Loan, C.F. [1989]: Matrix Computations, 2nd ed., The Johns Hop­
kins University Press, Baltimore. 



52 Chapter 2. Linear Equations and Equalities 

Hopper, M.l, ed. [1989]: Harwell Subroutine Library: A Catalogue of Subroutines, 
Report AERE R9185, Computer Science and Systems Division, Harwell Laboratory. 

Karmarkar, N. [1984]: A new polynomial-time algorithm for linear programming, Com­
binatorica 4,373-395. 

Khachiyan, L.G. [1979]: A polynomial algorithm in linear programming (Russian), Dold. 
Akad. Nauk SSSR 244, 1093-1096. [English translation in Soviet Math. Dold. 20, 
1979, 191-194.] 

Schrijver, A. [1986]: Theory of Linear and Integer Programming, Wiley, Chichester. 

Skeel, R.D. [1980]: Iterative refinement implies numerical stability for Gaussian elimina­
tion, Math. Compo 35, 817-832. 

Stewart, G.W. [1973]: Introduction to Matrix Computations, Academic Press, New York. 

Strang, G. [1980]: Linear Algebra and Its Applications, 2nd ed., Academic Press, New 
York. 

Wilkinson, I.H. [1965]: The Algebraic Eigenvalue Problem, Clarendon Press, Oxford. 
[Paperback edition, 1988]. 

Wilkinson, lH. and Reinsch, C. [1971]: Linear Algebra, Handbook for Automatic Com­
putation, Vol. II, Springer, New York. 



CHAPTER 3 

Systems of Equations With Positive Definite 
Symmetric Coefficient Matrix 

We have seen that in the general case the solution of a linear system 
of equations may present difficulties because of pivot selection. These 
difficulties disappear when the coefficient matrix A of the system is sym­
metric and positive definite. We therefore wish to examine this class of 
matrices in more detail. 

§3.1. Positive definite matrices 

With a symmetric matrix A (satisfying ajk = aki) one can associate 
in a one-to-one fashion a quadratic fonne) 

n n 
Q(x) = Q(XloX2, ... , xn) = (x,Ax) = L L aikxixk (1) 

i=l k=l 

(Le., a homogeneous quadratic function of the independent variables 
xl,x2,"" xn)· 

Definition. The matrix A (and also the form Q) is called positive 
definite if the function Q(x), with the sole exception Q(O,O, ... , 0) = 0, 
can assume only positive values, i.e., if 

Q(x) > ° for x"* [0,0, ... , O]T. (2) 

1 (x,y) = xTy = VtYl here and in the sequel denotes the Euclidean scalar product of the 
vectors x and y. (Editors'remark) 
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For a positive definite matrix, therefore, Q(x) is a function of the n 
variables xl,' .. ,Xn which at the point Xl = X2 = '" = Xn = 0 (and 
only there) assumes its minimum. 

First the question arises whether positive definite matrices, accord­
ing to this definition, indeed exist. This we can answer in the affinnative: 
for A = I (unit matrix), for example, we have 

n n n 
Q(x) = ~ ~ 8ijXiXj = ~x.t 

i=l j=l k=l 

and this is 0 only for X 1 = X2 = ... = Xn = O. But also 

A= [ : 

1 

2 

3 ~l 
is positive definite, because here we have Q(x) = xr + 2xIX2 + 2XIX3 + 

2xr +6X2X3 + 6xf = (Xl + X2 + X3)2 + (X2 + 2X3)2 + x~, and this cannot 
be < 0 and also not = 0, as long as one of the Xi *' O. 

There are also symmetric matrices, however, which are not positive 
definite, for example 

A= [~ 
2 

5 
2 

for, with x = [l,O,-lf, we have here Q =-4. Also the zero matrix is not 
positive definite, as it yields Q == 0, hence also, e.g., Q(l,l, ... , 1) = O. 
On the other hand, the zero matrix is insofar a limit case as the associated 
Q (x) at least cannot become negative. 

Definition. A symmetric matrix is called positive semidefinite if it is 
not positive definite, but the quadratic form associated with it satisfies 
Q(x) ~ Ofor all x. 

For example, 

1 

1 

1 



§3.1. Positive definite matrices 55 

is positive semidefinite, for we have Q(x) = (x 1 + X2 + X3)2, and this is 
always ~ 0, but = ° for x = [l,-l,of. 

Note: The concepts "positive definite" and "positive semidefinite" 
are only applicable for symmetric matrices.e) 

An important property is contained in the following 

Theorem 3.1. A positive definite matrix is nonsingular. A positive 
semidefinite matrix is singular. 

Proof. a) If for some x '* 0 we had Ax = 0, then we would also 
have (x,Ax) = L L aijXiXj = 0, which for a positive definite matrix is 

i j 
impossible. b) If, on the other hand, A is positive semidefinite, then 
(x,Ax) = ° for some x '* 0. Now either Ax = 0, in which case A is singu­
lar, or y = Ax is orthogonal to x. We then consider z(t) = x + ty and find 

Q(z(t» = (x + ty,Ax + tAy) 

= (x,Ax) + t(y,Ax) + t(y,Ax) + t 2(y,Ay) 

= 2t(y,y) + t 2(y,Ay). 

If now y were '* 0, then Q(z(t» would be negative for t < ° and I t I 
sufficiently small, contrary to our assumption; q.e.d. 

§3.2. Criteria for positive definiteness 

There are a number of simple criteria for the positive definiteness of 
matrices, which, however, are only necessary or only sufficient, and there­
fore do not always permit a definitive settlement. 

Criterion 3.1. For a symmetric matrix A to be positive definite, all 
diagonal elements must necessarily be positive.(l) 

2 In principle, one could use (1) and (2) also to define positive definite nonsymmetric ma­
trices A. The following would then be true: A is positive definite precisely if the sym­
metric part 1- (AT + A) is positive definite (in the usual sense). (Editors' remark) 

1 Proof: From au ~ 0, with x = ith coordinate vector, there would follow Q (x) ~ o. (Editors' 
remark) 
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Criterion 3.2. For a symmetric matrix A to be positive definite, the 
absolutely largest element must necessarily lie on the diagonal, more pre­
ciselye), 

max lai·1 
i *i 'J 

< max ak/c. 
k 

(3) 

Examples. The matrix 

[! 
1 !] , 2 
3 

by virtue of Criterion 3.1, cannot be positive definite, even though Cri-
terion 32 is fulfilled, while 

[~ 
2 

~] 5 
2 

satisfies 3.1 but not 3.2. For 

[ : 1 

:] 2 
4 (4) 

both criteria are fulfilled, and still the matrix is not positive definitee); 
the criteria are simply not sufficient. 

Criterion 3.3 (Strong row sum criterion). If in each row of a sym­
metric matrix the diagonal element exceeds the sum of the absolute values 
of all other elements in the row, that is, if 

n 
ak/c> L lakt l (k=1,2, ... ,n), 

t = 1 
t*k 

then A is positive definite. 

(5) 

2 A still sharper result is: al < aiiakA (i * k); see, e.g., Schwarz H.R., Rutishauser H., Stiefel 
E.: Numerical Analysis of Symmetric Matrices, Prentice-Hall, Englewood Cliffs, N.J., 
1973, Theorem 1.3. (Editors'remark) 
3 One has, e.g., Q(2,-3,l) = -5. (Editors'remark) 
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Proof(4). We have by (5), for x "# 0, 

Q(x) = "'" "'" a··x·x· > "'" a··x'l- - "'" "'" la··IIx-llx·1 £.oJ £.oJ IJ I J - £.oJ II I £.oJ £.oJ IJ I 'j 

i j i i jct.i 

> "",.{ "'" la .. I} 1x-12_"", "'" la··llx·llx·1 £.oJ £.oJ IJ I £.oJ £.oJ IJ I 'j 

i jct.i i jct.i 

= L L I aij I I xi I { I Xi I - I Xj I } = L L I ajj I I Xj I { I Xj I - I Xi I } 
jct.i i j ct. i 

= ~ ~ .L.I aij I { I Xi I - I Xj I } 2 ~ 0, q.e.d. 
I J ct. I 

It is to be noted, however, that the row sum criterion is only 
sufficient, not necessary. Thus, for example, the matrix 

is positive definite, with 

2 

3 

2 

although Criterion 3.3 is not satisfied. 

~l 

Thus, there are numerous matrices for which the Criteria 3.1, 3.2, 
3.3 do not bring about any conclusive answer. In such cases, one must 
reach for the methods of §3.3. One can, however, still weaken somewhat 
the Criterion 3.3, thereby extending its domain of applicability: 

By examining the conditions under which Q(x) = 0 can hold if in 
place of (5) one only requires ak1c ~ L I akl I , one finds that for every pair 

tct.k 

i,j (i "# J) it would have to be true that 

{
either 'IXil = IXjl (6) 

or aij = O. 

4 After N. Rauscher, personal communication. 
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Besides, according to the proof above, Xk "# 0 can only hold if for this k­
value akk = L I akt I. From this, there follows: 

t*-k 

Criterion 3.4 (Weak row sum criterion). If the symmetric matrix A 
is irreducible, i.e., for each pair i,j (i "# j) there is a sequence of nonvan­
ishing elements 

and if 
n 

akk;::: L I akt I (k = 1,2, ... , n), 
t = I 
t*-k 

(7) 

(8) 

where equality, however, is not permitted for all k, then A is positive 
definite. 

Indeed, by (7) and (6), Q could only be = 0 if IXII = IX21 = ... 
= I xn I; since in (8), however, strict inequality holds for at least one k, the 
corresponding Xk must be 0, hence Xl = X2=· •• =Xn = 0, q.e.d. 

On the basis of Criterion 3.4, the frequently used matrix 

2 -1 
-1 2 -1 0 

-1 2 -1 
(9) 

0 -1 2 -1 
-1 2 

turns out to be positive definite, since (8) always holds, with strict ine­
quality for k=1 and k=n. Furthennore, for each pair i,j U > i) there 
exists the chain (7) of nonvanishing elements with k t = i + t 
(t = 1,2, ... , j - i-I). 
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§3.3. The Cholesky decomposition 

We now wish to develop a necessary and sufficient criterion for the 
positive definiteness of a symmetric matrix A. 

Suppose the matrix A is positive definite, hence all> O. In the 
quadratic form Q(x) = L L aijXiXj all terms which depend on Xl, that is, 

i j 

a11X[, alkxlxb aklxkxl (k = 2, ... , n), 

can then be eliminated by subtracting the expression 

(10) 

where rlk = alk/~ (k = 1, ... , n). (We choose~ to be positive.) 
One so obtains 

which is again a quadratic form, 

n n 
Q 1 (x) = L L a ijXiXj , 

i=2 j=2 

in the variables X2, X3, ... , Xn ' and in fact 

aij = aij - rlirlj (i,j = 2,3, ... , n). 

(11) 

(12) 

(13) 

Theorem 3.2. With Q (x), also the quadratic form Q 1 (x) is positive 
definite. 

Proof If for certain values X2, X3,' .. ,Xn (not all = 0) we had 
1 n 

Q 1 (x) ::; 0, then with Xl = - - L r lkXk we would also have 

Q (x) = Q 1 (x) + [ i: r lkXk] 
2 

::; 0, ~~~;:~ to the assumption; q.e.d. 
k=l 

Since, therefore, Q 1 (x) is again positive definite, we have ah > 0, 
so that a further splitting off becomes possible: one subtracts 
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where r2k = aVcA[(i'h (k = 2, ... , n), which produces a new quadratic 
fonn Q2 in the variables X3, X4, ... , X,,: 

(14) 

This fonn, again, must be positive definite. Similarly, one obtains the 
positive definite fonns 

Q3(X) = Q2(X) - [ ±r3kXk] 2, 
k=3 

(15) 

(Qk is a quadratic fonn in the variables Xk+l' Xk+2' ... ,x".) Q,,-l (x) then 
depends only on the variable x" and therefore (being homogeneous qua­
dratic) must necessarily be of the fonn 

Q,,-l (x) = ex;. 
Since also this quadratic fonn must still be positive definite, we have 
e > 0, so that r"" =...JC > 0 can be computed. We thus have 
Q,,-l (x) = (r""x,,)2. Together with (11) to (15), there finally results the 
representation 

(16) 
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(where rjj > 0 for j = 1,2, ... n). 

A positive definite quadratic form can thus be represented as a sum 
of pure squares, where in addition, rjj > O. On the other hand, one has: 

Theorem 3.3. If the representation (16) with positive coefficients 
r11, r22, ... ,rnn is possible, then the form Q (x) is positive definite. 

Proof If not all Xk = 0, there is a last one, xP' which is still 
different from 0 (usually, this will be xn). Then 

n 

Lrpkxk = rppxp ::t: 0, 
k=p 

and, according to (16), Q(x) is a sum of nonnegative terms, among which 
is (rppxp)2 > 0; q.e.d. 

From this it follows that for a form which is not positive definite the 
decomposition (16) is not possible. Yet, one can have all> 0, so that a 
splitting Q(x) = Q 1 (x) + ( )2 (perhaps several such) can still be carried 
out. But it is not possible to carry out all n reduction steps; in other 
words, among the n quantities all, a22' a33' ... , from which roots are 
to be taken, necessarily one must be ~ 0, at which point the process 
breaks down. 

Matrix interpretation. We arrange the coefficients rlk, r2k, ... , rnn 
generated during the various splittings in the form of a matrix and fill the 
empty spaces with zeros. This matrix will be denoted by R. Thus, 

r 11 r 12 r 13 r In 

o r22 r23 r2n 

o 0 r33 r3n 

R= (17) 

o o o 

(The coefficients from the jth splitting lie in the jth row of R.) 
n 

The quantities LrjkXk occurring in the relation (16) are obviously 
k=j 

the components of the vector Rx; therefore, the value of the quadratic 
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fonn, according to (16), becomes(l) 

Q(x) = j~ [~?Xk12 = IIRxI12. (18) 

But now, IIRxl12 = (Rx,Rx) = (RTRx,x); on the other hand, 
Q(x) = L L aijXiXj = (Ax,x), and therefore one has identically in x: 

i j 
(Ax,x) == (RTRx,x). This identity, however, can only hold if 

This means: the representation (16) of a quadratic fonn as a sum of 
squares is equivalent to a decomposition of the matrix A into two factors 
which are transposed of each other. This decomposition is called Chole­
sky decomposition of the matrix A. We thus have: 

Theorem 3.4. The Cholesky decomposition, i.e., the construction of 
the triangular matrix R (with positive diagonal elements) according to 
(19), is possible precisely if A is positive definite. 

The Cholesky decomposition is considered as having succeeded only 
if all rjj are positive. There are also decompositions for positive 
semidefinite matrices, but then the rjj can no longer be all positive. For 
example, 

1 

1 
1 : 1 

is positive semidefinite, but one has A = RTR with 

[ 
1 1 1 1 

R= 0 0 0 . 
000 

1 Ilxll =v(x,x) =..JiTX =",,~>: denotes the Euclidean norm of the vector x; cf. §1O.7. 
(Editors' remark) 
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§3.4. Programming the Choiesky decomposition 

The elimination of the variable xp from the quadratic fonn 

is described by(l) 

n n 

Qp-l (x) = L L aijXiXj 
i=p j=p 

Qp(X) = Qp-l (x) - [ ± rPkXk]
2 

k=p 

63 

(20) 

(21) 

According to our earlier discussion of splitting off (L r lkXk)2 and 
(L r2kxk)2, one clearly has rpk = apkI-Vapp, and the splitting itself has the 
effect 

(22) 

where now the new aij are the coefficients of Qp(x). One thus obtains the 
following program for the splitting (2l)e): 

r [P,p] := sqrt(a[p,p D; 
for k := p+l step 1 until n do r[p,k] := a [p,k]/r[p,p]; 
for i := p+l step 1 until n do 

for j := i step 1 until n do (23) 
a [i,j] := a [i,j] - r [p, i] x r [p,j]; 

This piece of program destroys the coefficients of Qp-l (x) and 
replaces them by those of Qp(x). This makes sense, since the fonn Qp-l 
is no longer used in the subsequent course of the computation. 

The Cholesky decomposition now proceeds as follows. The given 
quadratic fonn Q(x) = Qo(x), each time through a splitting (23), is 
reduced to Ql(X), Q2(X), etc., until Qn(x) == 0, which is evidently 
described by 

1 Actually, the aij would have to be distinguished by an upper index p-l, since they 
depend on p. It will transpire, however, that this is only a "conceptual" index, and for 
this reason we omit it here. 
2 As can be seen from the index range of j, only the matrix elements on and above the di­
agonal are processed, which is all that is needed because of symmetry. 
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for p := 1 step 1 until n do 
begin 

if a [P,p] :::; 0 then goto indef, (24) 
comment insert here the piece of program (23); 

end for p; 

The test for a [P,p] :::; 0 is necessary in order to guarantee - through 
excluding matrices which are not positive definite - the safe progression 
of the computation. For this pUIpose there must be a label indef at the 
end of the program: 

indef: end of program; 

Even with this provision, the program is not yet strict, since this test 
is not completely adequate. Finite arithmetic, namely, entails that only 
numbers below a certain bound M are representable. The program (24), 
however, may well lead outside of this range, which will manifest itself in 
overflow. (For the CDC-6500 system, e.g., one has M - 10320 .) 

Examples. For the matrix 

10-250 10250. 

10250 

A= 

one gets r 11 = 10-125 , r 12 = 10375 , and thus already the computation of 
the rlk yields overflow. For 

10-180 10180 . 

10180 10200 

A= 

one finds r 11 = 10-90 , r 12 = 10270 , a:h = 10200 - 10540 ; thus, overflow 
first occurs during the attempt of computing a:h. 

Both phenomena are possible only for matrices which are not posi­
tive definite to begin with. (This follows from Criterion 3.2). Therefore, 
the irregular termination of the computing process, for once, can be 
tolerated. 
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Programming hints 

1. Remark. Occasionally, one finds fault with the Cholesky decom­
position because it requires the computation of n square roots. One could 
indeed avoid these square roots by means of a suitable rearrangement of 
the computing process (L T DL-decomposition); however, the extra effort 
for the n square roots is not significant enough to be worthwhile to trade 
it for other disadvantages. 

2. Remark. Since the original matrix elements aij are destroyed 
anyhow by the program (23), (24), one may just as well use the storage 
locations for other purposes. From (23) it indeed transpires that after the 
computation of r [p,k], the variable a [P,k] is never used again; one there­
fore can store the newly computed quantity r [P,k] in the place of a [P,k]. 
This can be achieved in the program (23) by systematically replacing the 
name r by a. At the end, the array a[l:n, l:n] then contains the matrix 
R in place of A, i.e., the Cholesky decomposition is carried out "in 
place"e). 

3. Remark. The program (23), (24) computes in tum the 
coefficients of the quadratic forms Q 1, Q2, ... , Qn-l, which actually are 
not needed at all. Indeed, one can improve the program by rearranging 
the run of the indices. 

One observes that in (23), (24), for fixed i, j U ~ i), in the course of 
computation one subtracts from a [i,j] the products r [P,i] x r [p,j] 
(p = 1,2, ... , i-I) before one executes (for p=i) r[i,i]: =sqrt(a[i,iD or 
r [i,j] := a [i,j]/ r [i, i], respectively. However, one can also finish com­
puting a r [i,j] before one starts on the next one: 

for i := I step I until n do 
for j := i step I until n do 
begin 

s := a [i,j]; 
for p := I step I until i-I do 

s := s-r[p,i] x r[p,j]; 
comment here, s is the (i,j)-coefficient of the (25) 

quadratic form Qi-l; 
if i=j then 
begin 

if s ~ a then go to indef; 

3 The triangular matrix R of course occupies only the storage locations a [i,k] with k <: i. 

Those with k <i are neither used nor changed. (Editors' remark) 
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r [i, i] := sqrt(s); 
end 
else r[i,j] := s/r[i,i]; 

end for i,j; 

Note that in this arrangement the elements of the original matrix A 
are not destroyed. But here, too, one could dispense with A and replace r 
consistently by a. 

§3.5. Solution of a linear system 

The system of equations 

Ax=b (26) 

with positive definite symmetric matrix A, once the Cholesky decomposi­
tion has been completed, can be solved very easily. Indeed, with 
A = RTR one has (RTR)x = RT (Rx) = b, so that (26) can be replaced by 
the two systems 

RT V = b, Rx=v. (27) 

One thus first solves 

VI V2 vn 1 

0= rll 0 0 - b i 

0= rl2 r22 0 -b2 
(28) 

0= 

in the order VI, V2, .•. , Vn (forward substitution). Thereafter, one solves 

Xl X2 Xn 1 

0= rll rI2 rln - VI 

0= 0 r22 r2n - V2 
(29) 

0= o o 

in the order xn, xn-lt ... , Xl (back substitution). Thanks to the triangular 
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fonn of R, these systems of equations are fairly unproblematic(l ). 

In computational practice, one usually exploits the fact that the three 
vectors b, v, x can be stored in the same array s [l:n], which then yields 
the following program: 

for i :== I step I until n do 
begin 

for j := I step I until i-I do 
s [i) := s [i) - r U,i] x s U]; 

s[i] :=s[i]/r[i,i]; 
end for i; 
for i := n step -1 until 1 do (30) 
begin 

for j := i+ 1 step 1 until n do 
s [i] := s [i] - r[i,j] x s U]; 

s [i] := s [i ]/r[i,i]; 
end for i; 

If one enters this program with s [i] == bi, then the s [i] at the end are 
the desired Xi. 

§3.6. Influence of rounding errors 

It must not be concealed that the Cholesky decomposition can be 
significantly disturbed through rounding errors. 

Example. The matrix 

37 5 12 2 
62 58 -1 

A= sym- 66 17 (31) 

metric 30 

is positive definite; one has, indeed, 

Q(x) = (6XI + X3)2 + (6X2 + 5X3 - X4)2 + (Xl + 5X2 + 6X3 + 2X4)2 

+ (-X2 + 2X3 + 5X4)2. 

I Compare with §2.2, where the same solution technique is used. (Editors'remark) 
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The computing process (23), if computations are carried out with 4 
decimal digits after the decimal point, here yields for p=l (AI is the 
matrix belonging to the form Q I): 

for p=2: 

for p=3: 

r 1k = {6.0828, .8220, 1.9728, .3288}, 

[ 
61.3243 56.3784 -1.2703] 

Al = 62.1081 16.3513 

sym. 29.8919 

r2k = {7.831O, 7.1994, -.1622}, 

_ [10.2767 17.5190]. 
A2 - sym. 29.8656' 

r3k = {3.2057, 5.4650}, 

A3 = [-.0006] ; 

thus, the decomposition has failed. 

(32) 

How is this to be interpreted? In certain circumstances a positive 
definite matrix may be viewed by the Cho1esky method as being not posi­
tive definite. When this happens, however, it means that the matrix A 
cannot be distinguished from a singular matrix within the computer preci­
sion, because the continuous transition from a positive definite to a 
indefinite matrix goes through a semidefinite matrix; such a matrix, how­
ever, is singular. In other words, the failure of the Cho1esky decomposi­
tion owing to rounding errors is only possible if the solution of the sys­
tem Ax = b is threatened anyhow by rounding errors (which does not 
mean that in case of success the accuracy could not also be imperiled). 

The following counter measures are available. 

a) Increasing the precision. This is not always meaningful, but in 
the above example the Cho1esky decomposition indeed succeeds with 7 
decimals after the decimal point and yields 

R= 

6.0827625 

o 
o 
o 

.8219949 

7.8309849 

o 
o 

1.9727879 

7.1993982 
3.2057407 

o 

.3287980 
-.1622108 
5.4649371 

.0064885 

(33) 
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Comparison with (32) shows that in 4-digit arithmetic, r34 in fact became 
slightly too large, which then led to 29.8656 - 5.46502 < 0 (29.8656 -
5.46492 would have become positive). 

b) Search for the origin of the problem. If it turns out that the prob­
lem can also be formulated as a least squares problem, one obtains better 
results with the methods of Chapter 5. 

c) Investigate the rounding errors. In the numerical computation 
according to the program (25), the way the element rij (i ~ j) of the 
matrix R comes about, is by subtracting from aij (of the original matrix 
A) the products rlirlj, r2ir2j, . .. , ri-l,iri-l,j; with the remainder s one 
forms 

for i=j: 

for j>i: 

so that in each case s = riirij, i.e. (theoretically), 
i 

"" U > .) aij = £.oJ rpirpj - Z , 
p=l 

which establishes (19) in a new way. 

(34) 

(35) 

In practice, the two sides of (35) differ by the rounding errors which 
one commits in the arithmetic operations(l) 

a lP) - alP-I) - r ·r· (p - 1 2 z'-l) IJ - IJ pi PJ -, , ••• , 

and finally in the operations (34). 

These rounding errors are (in floating-point arithmetic)e): 

1) For the product in (36): 

<Olrpirpjl, 

(36) 

where e is the smallest machine number for which 1 + e > 1. 

2) For the subtraction in (36)e): 

1 Ap = [a~)J here and in the sequel denotes the (n-p) x (n-p)-matrix associated with the 
quadratic fonn Qp (cf. the preceding example). In particular, Au = [air>J = A. (Editors' re­
mark) 
2 Cf. Appendix, §A3.4, where, however, the rounding error bound for addition and sub­
traction is somewhat larger. Further literature: Wilkinson I.H.: Rounding Errors in Alge­
braic Processes, Prentice-Hall, Englewood Cliffs, N.J., 1963; Stoer J., Bulirsch R.: Intro­
duction to Numerical Analysis, Springer, New York, 1980, Ch. 1. (Editors' remark) 
3 Terms of order 0(92), here and in the sequel, are neglected. (Editors'remark) 
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< 9{ I afj-I) I + I 'pi'pj I} (p = 1,2, ... , i-I). 

3) For the operations (34) the rounding errors have the effect that 
for the computed values 'ii, 'ij: 

I "f,. - S I < 29s, I , .. , .. - s I <9s 'J II • 

Altogether, one therefore obtains, in place of (35): 
i 

aij - 'L'pi'pj =-llij, 
p=1 

i 
Illij I < 9 'L {Iafj-I) 1+ 2I'pi'pj l}. 

p=l 

(37) 

Thus, it is as if the Cholesky decomposition were applied exactly to 
a matrix A + II with elements aij + llij; in other words, not the matrix A, 
but A + II is tested for positive definiteness and decomposed in RTR. 
This leads to wrong results, which are particularly disturbing when 

{
A is positive definite } 

A + II is not positive definite or vice versa. (38) 

Here, II is not known; what is available is only the estimate (37), with the 
help of which one must determine whether (38) can actually occur. 

This determination can be made with the aid of the eigenvalues of 
A: A symmetric matrix A, as is well known, is characterized as positive 
definite by the fact that all its eigenvalues are not only real, but positive. 
Since, on the other hand, for symmetric matrices A, ll(4), 

Amin(A) = min (x,Ax), Amin(A + ll) = min ((x,Ax) + (x,llx)), 
Ilxll = 1 Ilxll = 1 

max I I llx I I = max I Ai(ll) I = max I (x,llx) I , 
Ilxll=l i Ilxll=1 

one has 

4 See, e.g., Schwarz H.R., Rutishauser H., Stiefel E.: Numerical Analysis of Symmetric 
Matrices, Prentice-Hall, Englewood Cliffs, N.J., 1973, Theorem 4.3 and Example 1.3. 
(Editors' remark) 
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if the spectral nonn of ~ is defined by 

I I ~ I I = max I I ~x I I . (40) 
Ilxll = I 

It is clear, therefore, that (38) can only occur if 

I Amin(A) I ~ II~II. (41) 

To detennine I I ~ I I, we note that the nonn is subadditive, i.e., one 
always has I I A + B I I ~ I I A I I + I I B I I, hence, according to (37), 

n 
I I~ II ~ 8 L { I lAp_II I + 211 Zp II }, 

p=l 

(42) 

where Ap- l is the matrix with elements I air-I) I and Zp the one with ele­
ments I rpirpj I. As above, 8 stands for the smallest machine number with 
1+8>1. 

We now have, if the trace of A is denoted by tA: 

1) IIAII ~ tA' if A is positive definite, and IIAII ~ tA = tA' even 
if A is no longer positive definite(5). 

2) The trace of Ap is smaller than the trace of Ap- l because, first, 
the element app is no longer present and, secondly, the remain­
ing diagonal elements aqq are decreased by r;q (or at least not 
increased). 

n 
3) Zp has a single eigenvalue(l) different from zero, namely Lr;i. 

i=p 

5 The first estimate holds because of 

IIAII= max IIAxll="-.(A):S;tAo 
11:111 =1 

The second can be proved as follows: 
- - - -2 -2 

IIAI12 = max (Ax,Ax) = max (x,A x) = "-.(A ) 
I Ixll = 1 11K II = 1 

~Editors' remark) 
Since zp is a dyadic product, i.e., a product of a column vector times a row vector, zp has 

rank I, and the only eigenvalue different from 0 is equal to the trace. (Editors'remark) 
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n 
Therefore, II Zp II = Lr;j, and C) 

j=p 

By 1) and 2) we have I I Ap I I ::5 tA, so that from (42) there finally fol­
lows: 

IIL\II ::5 8(n+2)tA. (43) 

For a reliable determination of positive definiteness, one thus must have 

Amin(A) > 8(n+2)tA' i.e, 8 < Amin(A) 
(n+2)tA 

(44) 

For the matrix (31) considered above as an example, one has 
tA = 195, Amin(A) = 6.610-6; therefore, a safe determination is possible 
only for 

6.610-6 
8 < 6 x 195 = 5.6410-9, (45) 

that is, if the computation is carried out with at least 9 digits (floating­
point). In fact, the Cholesky decomposition succeeded even with 9 
fixed-point digits (7 of which after the decimal point). 

The smallest eigenvalue of A in (44), however, is generally not 
known. In the subsequent discussion, we use only the quantity 

(46) 

which (for a positive definite matrix A) by (43) is an upper bound for the 
falsification of the eigenvalues of A through the rounding errors of the 
Cholesky decomposition. If the Cholesky decomposition succeeds, we 

7 The second equality, by (37), is valid up to a tenn of 0(9), hence (43) up to a tenn of 
OW). (franslator's remark) 
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know that Amin > - 9 A; if it fails, then Amin < + 9 A. In other words, we 
have the 

Theorem 3.5. If the Cholesky decomposition A - 9AI succeeds, 
then A is guaranteed to be positive definite(8); if it fails for A + 9 AI, then 
A is guaranteed to be not positive definite. 

Example. For the matrix (31) one has tA = 195, thus with 
9 = 510-9, i.e., with a 9-digit mantissa, 9A = 610-6. The Cholesky 
decomposition of A - 610-6 I (in floating-point arithmetic) yields 

R= 

6.08276204 .821995003 1.97278801 .328798001 

o 
o 
o 

7.83098450 7.19939850 -.162210806 
o 3.20573903 5.46493998 ; (33) 

o o .002144761 

therefore, the matrix A is guaranteed to be positive definite. 

§3.7. Linear systems of equations as a minimum problem 

The system (26) is equivalent to a minimum problem: 

Theorem 3.6. For a linear system of equations Ax + b = 0 with 
positive definite symmetric matrix A the following is true. The system is 
uniquely solvable, and its solution is also the unique minimum of the qua­
dratic function 

lIn n n 
F(x) = 2"(x,Ax) + (x,b) = 2" L L aijXiXj + Lbixi (47) 

i=l j=l i=l 

taken over all x = [XloX2, ... , xnf. 

8 For the proof of the first assertion of the theorem one has to argue more precisely as fol­
lows: In deriving (43), it was assumed that A is positive definite. If, however, one only 
knows that the Cholesky decomposition of A - SAl succeeds, there follows at first only that 
A - SAl +.L\ is positive definite (where .L\ is the rounding error matrix associated with this 
decomposition.) But from this it follows easily that (43) continues to hold up to terms of 
O(S2). The eigenvalUes of A - SAl therefore are shifted at most by SA in first approxima­
tion. (Editors' remark) 



74 Chapter 3. Systems With Positive Definite Coefficient Matrix 

Proof This assertion will be proved without the use of previous 
knowledge and also without utilizing theorems on determinants and the 
like, solely on the basis of the definition of positive definiteness. 

1) Every solution of the linear system of equations is also a (relative 
and absolute) minimum of F (x): For a symmetric matrix A one has, in the 
notations of (1) and (47), the identity 

F(x + y) = F(x) + ~Q(y) + (Ax + b,y), (48) 

because 

~ (x + y, Ax + Ay) + (b,x + y) 

1 1 = "2(x,Ax) + (Ax,y) + "2(y,Ay) + (b,x) + (b,y). 

Therefore, if x is a solution of the system Ax + b = 0, then for all y there 
holds 

F(x + y) = F(x) + ~Q(Y), (49) 

where by assumption Q(y) > 0 for y '* 0, so that F(x + y) > F(x). 

2) Every relative minimum of F(x) is a solution of the linear system 
of equations: If c = Ax + b '* 0, so that, say, the first component C I '* 0, 
then by (48) one has for a vector y = [t, 0,0, ... , of 

F(x + y) = F(x) + ~allt2 + cIt. 

This, however, is smaller than F(x) for all t between 0 and - 2cIiall, so 
that F(x) at the point x cannot have a relative minimum. 

3) F(x) has at least one relative minimum: Indeed, the quadratic 
form Q(x) = L L aijXiXj on the compact set L xl = 1 certainly assumes 
a minimum Il, which by virtue of the positive definiteness of A must be 
positive. Thus, for arbitrary x = [XI,X2, ... , xnf, 

n n n 
L L aijXiXj ~ Il L xl = III I x I 12. 
i=l j=l i=l 

n 

Furthermore, I Lbixi I ~ I I b I I I I x I I, and thus 
i=l 

F(X)~f Ilxl12_llbll Ilxll, 

hence 
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F(x) ~ 4 II b 112 
J.l 

for I I x I I = P = 4 I I b I I 
J.l 

But since F(x) = 0 for x = 0, and F (x) in the sphere I I x I I $ P is con­
tinuous, there follows the existence of at least one relative minimum of 
F(x) in the interior of the sphere. 

4) There is only one relative minimum of F (x): If x is a relative 
minimum for F(x), then by 2), x is a solution of Ax + b = O. By 1), x is 
then an absolute minimum; more precisely, according to (49), there holds 
F (z) > F (x) for all z :F- x. In particular, for a second relative minimum 
x' :F- x, there of course would also have to be F(z) > F(x') for all Z:F- x', 
which is not possible. 

With this, the theorem is proved. 

The minimum problem and the linear system of equations are thus 
equivalent; both have exactly one, and in fact the same, solution. We will 
see in Chapter 10 how this fact can be usefully exploited for the solution 
of a linear system of equations based on the minimum property. 

Example. Let the system of equations be 

137x - 100y 11 = 0 

-100x + 73y + 8 = O. 

The function to be minimized here is 

F(x,y) = ~ (137x2 - 200xy + 73y2) - 11x + 8y . 

The minimum is attained for x=3, y =4 and is equal to - ~. Consider a 

few points in the neighborhood of the solution: 

(a) x = 1.9, Y = 2.5 (distance to the solution approx. 1.86). Here we 
get F (x,y) = -.49, which is .01 above the minimum. 

(b) x = 2.85, y = 4.11 (distance to the solution approx .. 186). Here 
we getF(x,y) = 3.1329, which is 3.63 above the minimum. 

Therefore, as one moves away from the minimum in different directions, 
F increases with different speed, a fact that has something to do with the 
condition of the matrix A (cf. § 10.7). 

Note: If the matrix A is not positive definite, the function F(x) 
defined in (47) has no minimum (or at least not a uniquely determined 
one). 
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Notes to Chapter 3 

§3.6 This section takes a somewhat pessimistic view of the roundoff properties of 
Cholesky factorization, which is a very stable process. Apart from diagonal scaling, it is 
equivalent to Gaussian elimination (cf. Chapter 2, Eq. (19» in the sense that the equations 

B = RT diag(rii), C = -diag(r;;l)R 

are satisfied. When regarded as Gaussian elimination, the process is very stable, since Wil­
kinson has shown (Wilkinson [1961]) that no entry in any reduced matrix ever exceeds in 
absolute value the largest absolute value of an entry of A. Scaling is innocuous, since 
exactly the same computations (unless underflow or overflow occurs) are performed if the 
scaling is by powers of the radix, and other scalings perturb this result only by very minor 
roundoff effects. 

Reference 

Wilkinson, I.H. [1961]: Error analysis of direct methods of matrix inversion, 1. Assoc. 
Comput. Mach. 8, 281-330. 



CHAPTER 4 

Nonlinear Equations 

To introduce the subject, we consider a few examples of nonlinear 
equations: 

x 3 +x + 1 = 0 

is an algebraic equation; there is only one unknown, but it occurs in the 
third power. There are three solutions, of which two are conjugate com­
plex. 

2x-tanx=O 

is a transcendental equation. Again, only one unknown is present, but 
now in a transcendental function. There are denumerably many solutions. 

sin x + 3 cos x = 2 

is a transcendental equation only in an unessential way, since it can be 
transformed at once into a quadratic equation for e ix • While there are 
infinitely many solutions, they can all be derived from two solutions 
through addition of multiples of 21t. 

x3 + y2 + 5 = 0 

2x + y3 + 5y = 0 

is a system of two nonlinear algebraic equations in two unknowns x and 
y. It can be reduced to one algebraic equation of degree 9 in only one 
unknown. This latter equation has nine solutions which generate nine 
pairs of numbers (Xi,Yi), i = 1, ... ,9, satisfying the given system. 
(There are fewer if only real x,Y are admitted.) 
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In general, every system of n algebraic equations in n unknowns, 
according to a theory of Bezout(l), can be reduced to one algebraic equa­
tion in one unknown, but the degree of this equation is often very high. 
The solution after Bezout, therefore, is usually not practicable, numeri­
cally. 

A solution of a system of transcendental equations by similar means 
is even less practical. The only option left, as a rule, is linearization, 
which however leads to an infinite· iterative process. 

§4.l. The basic idea of linearization 

We consider the following general problem: Given are n functions 

(1) 

of n variables, and these variables Xl, X2, ... , Xn are to be determined in 
such a way that II = 12 = ... = In = O. One has to distinguish, in this 
connection, between the case where only real, and the case where also 
complex values of the unknowns are admitted. 

We start from some point x = [X1,X2, ... , xnf and compute the 
vector f= [/1,12, ... , Inf, where /j =/j(XloX2, ... , xn). We now seek 
a correction dx such that for j = 1,2, ... , n 

In a first approximation, we have 

one can therefore determine approximate values for the correction by 
solving the system of equations 

n af: 
L -a ] dxk + /j = 0 (j = 1, ... , n). 

k=l Xk 
(2) 

1 See, for example, Walker R.I.: Algebraic Curves, Dover, New York, 1950, Ch. 3, §3. 
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This system for At 1, At 2, ... , Atn is linear, and can therefore be solved 
by Gauss elimination. The corresponding tableau is given by: 

Atl At2 Atn I 

0= 
all all all 

11 aXl aX2 aXn 

0= 
afz afz afz 

fz aXl aX2 aXn 

0= In 

Introducing the matrix F = [afj/aXk], which depends on x, we can write 
the system in matrix form as 

F ~x+f=O. (3) 

Once these equations are solved, the corrected point x + ~x is again 
denoted by x, and the process repeated with this new point, etc., until all 
fj are sufficiently small. 

In this way, the solution of a nonlinear system of equations is 
reduced to the solution of a sequence of linear systems of equations. This 
method is therefore called linearization; it represents an abundant source 
of linear systems of equations in computational practice. 

Of course, there arises the question of convergence of the method, 
that is, whether the fj indeed ever become sufficiently small. This, how­
ever, even in the case n=l, is a difficult question, and can be fully 
answered only in special cases. The difficulty, in fact, is that the matrix F 
may become singular, in which case the process falters. 

Example. For the system 

the matrix F becomes 

F= 

X3 + y2 + 5 = 0 

2x + y3 + 5y = 0, 

[
3X2 

2 
2y 1 

3y2 + 5 
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Starting at the point x =-2, y=l, we get f= [-2,2f, and the system of 
equations for the first correction reads 

Its solution, rounded to 2 digits, is Ax = .22, l1y = -.30. As corrected 
point one thus obtains x = -1.78, Y = .70, which leads to 
f= [-.1498,.2830f. Second correction: 

l1y 

9.5052 1.4 

2 6.47 

1 

-.1498 

.2830 
Ax = .02326 
l1y = -.05093 

[
-.00025] 

x = -1.75674, Y = .64907 => f = .00532 

One last, rather crude, correction with the same matrix F (actually, F 
should be computed anew)(l): 

Ax l1y 

9.5052 1.4 

2 6.47 

1 

-.00025 

.00532 
Ax = .00015 
l1y = -.00087 

_ [ .000014] 
x = -1.75659, Y = .64820 => f - .000170 

1 If the matrix F in a neighborhood of the desired solution changes only little - as is gen­
erally the case -, it makes no sense to compute it anew in each step. The system of equa­
tions for the corrections can then be solved simply by forward and back substitution. (Ed­
itors' remark) 



§4.1. The basic idea of linearization 81 

Derivative-free linearization. For the elements of the coefficient 
matrix F in (3) one requires derivatives of the functions /j(X 1, ... , Xn ), 

j = 1, ... ,n. One must point out, however, that in certain cases the 
function values themselves are already extremely difficult to compute, so 
that derivatives can no longer be formed for all practical purposes. 

An example for this is 

In such cases one substitutes difference quotients for derivatives, 
thus for the (k,e)-element of F, for example, 

/k(XloX2, ... , Xl + h, ... , xn) - fk(Xl ,x2, ... , Xt, ... , xn) 

h 

(in place of CJ/k/OXt). Here, whenever possible, h should be of the order 
of magnitude of the probable correction of the variable Xt .CZ) 

Example. Let us again solve the simple system 

f (x,y) = x3 + y2 + 5 = 0 

g (x,y) = 2x + Y 3 + 5y = 0, 

but now without the use of derivatives of f and g. First, f and g must be 
evaluated in three points: 

X =-2, Y =1 => f=-2, g=2 

x+h =-1.5, Y =1 => f= 2.625, g=3 

X =-2, y+h = 1.5 => f=-·75, g = 6.875. 

Then the difference quotients can be formed: 

M =925 M =2.5 ~ =2 ~ -975 Ax ., fly 'Ax 'fly - . . 

2 Because of the danger of cancellation, however, h must not be chosen too small. (Edi­
tors' remark) 



82 Chapter 4. Nonlinear Equations 

The system of equations for the first corrections therefore becomes: 

ax fiy 1 

9.25 2.5 -2 ax = .28760 
=> 

2 9.75 2 fiy = -.26412 

The corrected values are x =-1.71240, y = .73588 and give f= .520, 
g = .653. With these, the iteration would then be continued. 

§4.2. Newton's method 

For an equation f (x) = ° in one unknown, the vector f reduces to a 
scalar f and the matrix F to a scalar f'(x). The system of equations (3) 
consists only of one equation, 

f'(x) ax + f(x) = 0, 

and has the solution ax = -f (x)/f'(x). This is Newton's method: starting 
with a suitable initial value xo, one determines a sequence XI,X2,X3 , ... 

in accordance with 

f(Xk) 

Xk+l = Xk - f'(Xk)' k = 0,1,2, .... (4) 

Example. In the case of the equation x 2 - 2 = 0, the recursion for­
mula (4) reads 

xl -2 

2Xk 

Starting with Xo = 1, one obtains successively 

Xl = 1 - (-1)/2 = 1.5, 

X2 = 1.5 - .25/3 = 1.4166667, 

x3 = 1.4142157, 

X4 = 1.4142135623747. 

(The correct digits are underlined.) The convergence, here, is obviously 
quite fast. 

Geometrically, Newton's method can be interpreted very simply: 
linearization here means replacing the curve of f (x) by its tangent at the 
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point (Xk,/(Xk»; then, the "zero" of this tangent is determined (see Fig. 
4.1). From the point xk+1 one proceeds in the same way, etc. 

Figure 4.1. Newton's method. 

We now examine the convergence of the method at least locally, 
that is, assuming that one is already near the zero. Let the zero be 
denoted by s; then (provided that / (x) can be expanded in a Taylor series 
at s)(1) 

hence 

(Xk - s)2 
/(Xk) = (Xk - s)/'(s) + 2 /"(s) + ... , 

/'(Xk) = /'(s) + (Xk - s)/"(s) + ... , 

(Xk - s)/'(s) + t (Xk - s)2/,,(s) 
Xk+1 :::: Xk-

/'(s) + (Xk - s)/"(s) 

and therefore 

/'(s) + t (Xk - s)/"(s) 

Xk+l - S :::: Xk - S - (Xk - s) /'(s) + (Xk _ s)/"(s) 

t (Xk - s)2/,,(s) 
= 

/'(s) + (Xk - s)/"(s) 

1 A simpler derivation can be found in Bjorck A., Dahlquist G: Numerical Methods, 
Prentice-Hall, Englewood-Cliffs, N.J., 1974. (Editors' remark) 
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Consequently, for small Xk - s, one has in first approximation 

_ 2 I"(s) 
Xk+I - s - (Xk - s) 2/'(s). 

This is the asymptotic error law for Newton's method; it says that the 
error in each step is essentially squared, provided that I'(s) "* 0, i.e., the 
zero s is simple. This is referred to as quadratic convergence. 

In the preceding example we had I (x) = x2 - 2, I'(s) = 2s, 
I"(s) = 2, s =...j2; therefore, 

xk+I -...j2 ::: _1_ (Xk - ...j2)2 . 
2...j2 

In addition, we had X2 -...j2 ::: .0024531, from which, by repeated appli­
cation of this fonnula, one obtains the approximations 

X3 -...j2 ::: 2.127610-6, 

x 4 -...j2 ::: 1.610-12, 

Xs -...j2 ::: .910-24 

for the successive errors. 

Naturally, if 1"(s)/2/'(s» is large, it takes a long time until qua­
dratic convergence "takes hold", if it ever is achieved, which is by no 
means guaranteed. 

On the other hand, it can happen that I'(s) "* 0, I"(s) = 0 at the 
point s; then we obtain even cubic convergence, i.e., an error law 

xk+I - S ::: C(Xk - sp 
(where c is a constant which depends on I'(s) and I"'(s». 

§4.3. The regula falsi 

If only real roots of the equation I (x) = 0 are desired, the regula 
lalsi is quite suitable; for automatic computation, however, it must be 
mOdified(I). The advantage of the method is that no derivatives need be 
computed and that a high reliability is achieved. 

1 The disadvantages of the classical regula falsi (in which at every step the secant is 
drawn between two function values with opposite signs) can be seen in the example 
f(x) = 1- x· = 0, a = .1, b = 10: In 100 steps the interval [a,b] shrinks only to 

[.10000002,10]. The modified version given here, in contrast, produces the solution x = 1 
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For initialization one computes the values f (Xk) at a sequence of 
points xo, xl, X2' ... (say, at Xk = Xo + kh with constant h). As soon as 
one finds a sign change in these function values, for example f(Xk) > 0, 
f(Xk+l) < 0, one switches over to a bracketing procedure for the zero: 

Denote Xk by a, and Xk+l by b; then f (a) > 0, f (b) < 0, and we 
compute 

c = -::a}-'-(b.....:.)_-_b..::....if(.>....a ..... ) 
feb) - f(a) 

(5) 

(the denominator is not 0), as well as f (c). Geometrically, c can be inter­
preted as the "zero" of the secant from (a,f(a» to (b,f(b» (cf. Fig. 
4.2). If now, for example, f (c) > 0, there lies a zero between b and c. 
However, we seek yet another point d between b and c with f (d) < 0. 
The first trial is made with d = (b + c )12; if this still yields f (d) > 0, one 
chooses a new c: = d, d: = (b + d)/2 and repeats this (in the figure 
unnecessary) bisection until f (d) < 0. Then one sets a: = c, b: = d and, 
as above, determines a new c according to fonnula (5), etc. 

This algorithm can be programmed in the fonn of the following pro­
cedure regfal. It assumes that two points a,b are already known with 
f(a) > O,f(b) < ° or f(a) < O,f(b) > 0. 

Figure 4.2. The regula falsi. 

in 12 steps (24 evaluations of lex». A similar modification, converging more rapidly, 
asymptotically, is the lllinois algorithm; see Wilkes M.V., Wheeler D.l., Gill S.: The 
Preparation of Programs for an Electronic Computer, Addison-Wesley, Reading, Mass. 
1951, and Anderson N., Bjorck A.: A new high order method of regula falsi type for com­
puting a root of an equation, BIT 13,253-264 (1973). (Editors'remark) 
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real procedure regfaI( a,bf); 
value a,b; 
real a,b; real procedure f, 
begin 

realfa,fb,fe,fd, e, d; 
fa := f(a); fb:= f(b); 
if fa < 0 then 
begin 

e := a; fe:= fa; a:= b; fa:= fb; b:= e; fb:= fe 
end; 

start: 

Id: 

Ie: 

e := (b x fa - a x fb)/(fa - fb); 
fe :=f(e); 
if fe = 0 /\ (e ~ a /\ e ~ b) /\ (e ::;; a /\ e ::;; b) then goto ex;e) 
if fe > 0 then 
begin 

d := (b + e)/2; 
fd :=f(d); 

if fd > 0 then 
begin 

if e = d then goto ex; 
e := d; fe := fd ; 
d := (d + b)12; 
fd :=f(d); 

end 
end 
else 
begin 

goto Id; 

d := e; 
fd :=fe; 
e := (a + d)/2; 
fe :=f(e); 

if fe < 0 then 

2 Note that the stopping rule used here is programmed machine-independently and leads 
automatically - except in extreme special cases - to the maximum attainable accuracy. 
(Editors' remark) 
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ex: 

begin 
if e = d then goto ex; 
d := e; fd :=fe; 
e := (a + e)/2; 
fe :=f(e); 

end 
end; 

goto Ie; 

a := e; fa := fe; b := d; fb := fd; 
goto start; 

regfal := e; 
end regfal; 

Example. We return to the equation f (x) = x 2 - 2 = 0, for which 
a = 2, b = 1 are admissible initial values. The subsequent course of com­
putation is reproduced in Table 4.1. (The values of e, d, fee) are always 
rounded to 4 digits after the decimal point. Numbers in parentheses were 
obtained as a result of storage transfers.) 

Table 4.1. Regula falsi for x 2 - 2 = 0 

a f(a) b feb) 

2.0 2.0 1.0 -1.0 

(1.6667) (.7779) (1.3333) (-.2223) 

(1.5370) (.3624) (1.4074) (-.0192) 

(1.4754) (.1768) (1.4139) (-.0009) 

e fee) d fed) 

1.3333 -.2223 (1.3333) (-.2223) 
1.6667 .7779 

1.4074 -.0192 (1.4074) (-.0192) 

1.5370 .3624 

1.4139 -.0009 (1.4139) (-.0009) 

1.4754 .1768 

1.4142 .0000 
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§4.4. Algebraic equations 

A particular class of equations in one unknown are algebraic equa-

n 

L Ckzk = 0, with Co '* 0, Cn '* 0, 
k=O 

(6) 

as they have (in the domain of complex numbers) exactly n solutions z 1, 

z2, ••. , zn' all of which are usually sought. It is necessary, then, to com­
pute also in the complex domain. 

There are, however, some questions that need to be raised in the 
case of algebraic equations which for more general equations are perhaps 
less relevant. These concern the purpose which the solutions z 1, ... , zn 

are expected to serve, and the origin of the coefficients Ck. 

First of all, one must realize that the roots of an algebraic equation 
are poorly defined through the coefficients; small changes in the 
coefficients can cause large changes in the roots. This fact prompts many 
people to compute the roots in double precision. But then they only 
obtain accurate roots to an inaccurate equation, which is not of much 
help. A lot more important is to make sure that after the computation of 
all root approximations slo s2 , ••• , sn the product cn(z - SI) (z - S2) 

. .. (z - sn) agrees with L Ckzk as much as can be expected within the 
machine precision. To demand more is not reasonable, but that much at 
least can be achieved. 

Example. In solving the equation 

z4 - 4z 3 + 6z 2 - 4z + 1 = 0, 

the four-fold root at z = 1 certainly gives difficulties, inasmuch as only a 
root accuracy of one fourth of the total number of digits can be expected 
(thus 5-digit root accuracy in 20-digit computation). 

We consider two computers: 

A computes with 16 digits and thus obtains roots accurate to 4 
digits: 

1.00005, 1, .9999, .99995. 

B computes with only 8 digits and therefore must expect errors of 
the order of magnitude .01; he obtains 
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1.01, .99, I+.OIi, I-.OIi. 

Which are now the better results? The products of the linear factors 
in case A produces (up to errors which are smaller than 10-8) 

Z4 - 3.9999 z3 + 5.9997z 2 - 3.9997z + .9999, 

and in case B (exactly) 

Z4 - 4z 3 + 6z 2 - 4z + .99999999. 

We must therefore regard the results of B, in a certain sense, as the better 
ones; the way this was achieved, in spite of the lower computing preci­
sion, was that B had been mindful of suitably correlating the errors, while 
A computed the roots independently from each other, without attempting 
to do anything beyond that. 

The crucial device for correlating the errors in the roots, which may 
result in the smallest possible reconstruction errors, is deflation: If z 1 is 
an exact root of the polynomial I (z) in (6), then 

11(Z) = I(z) 
z - ZI 

is a polynomial of degree n - 1, from which the remaining n - 1 roots 
can be determined. 

Now, however, one has computed only an approximate root s 1 :::: Z 1, 

for which one knows only that 
n 

I(SI)::::O L 1CkSfl, 
k=O 

where 0 denotes a unit in the last position of the mantissa. To make 
I(SI) smaller is not possible, in general, since the sum of terms Ckzk is 
affected with an error which somehow is approximately proportional to 
L 1 Ckzk I. The division I(z)/(z - SI), which, as is well known, is carried 
out by means of the Horner scheme(I), thus produces not only an inaccu­
rate 11 (z), but also a remainder I (s 1). Indeed, what the Homer scheme 

1 The (simple) Horner scheme allows one to compute the polynomial value l(sl) and the 
coefficients of the polynomial II defined by (7). Putting 

" 11-1 

I(z) = 1>.-.tZ1 , II (z) = L b._I-.tZ1, l(sl) = b., 
1=0 1=0 
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does is nothing but the decomposition 

I (z) = I(SI) + (Z - sl)/l (z), 

while the reconstruction later produces 

I*(z) = (z - sl)/~ (z) 

(7) 

(where I~ denotes the already reconstructed polynomial corresponding to 
11). Therefore, one obtains as reconstruction error 

01 (z) = I (z) - f"(z) 

= I (s 1) + (z - S 1)0/1 (z) + errors arising in the 

performance of the multiplication (z - S 1 )/~ (z) . 

Apart from the third term, which has the order of magnitude of rounding 
errors, one commits during the first deflation the reconstruction error 
I(s 1), which however falsifies only the constant term. If, in particular, s 1 
is very small, then I/(SI) I = 91: lckS} I =9Ico l, that is, the reconstruc­
tion error, as far as it comes from I(SI), is small compared to co. (The 
first term, after all, affects only the constant term.) One has therefore 
established the rule that the absolutely smallest root of an algebraic equa­
tion should always be determined first; then one carries out the deflation, 
and afterwards the absolutely smallest root of II (z) is computed, etc. 

Example. Substituting s 1 = .0026 in the left-hand side of the equa­
tion (cf. § 1.3) 

Z2 - 742z + 2 = 0, 

the Homer scheme becomes (in 6-digit computation): 

it has the form 

a,,_2 Q,,-l 

bft _ 2 bft _1 

Computational rule for the usual construction from left to right (comparison of coefficients 
in (7»: 

If bft =/(s\) is already known (e.g. /(s\) = 0), then the scheme can be built up from the 
right: 

(Editors' remark) 
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I ~ -742 2 
-741.997 "'-1.-=07-08-1--1 

One therefore finds I (s 1) = .07081 and S2 = 741.997, which is exact to 6 
digits, even though we had s 1 '* Z 1 = .00269543. .. . 

If, on the other hand, one starts with the deflation of sl = 741.997, 
one obtains the Homer scheme 

1
11 -742 2 I 

. -.003 I -.22599 

and, with I(s 1) = -.22599, a substantially larger reconstruction error. 
Besides, s 2 = .003 is a poor approximation for the second root, even 
though s 1 was exact to 6 digits. 

Unfortunately, the stated rule by no means guarantees that the recon­
struction errors remain small, as is shown in the following example of an 
algebraic equation of degree 10, for which the Homer scheme for the 
deflation of sl = .951 in 3-digit computation looks as follows: 

1 8.1 27.8 50.8 47.6 
1 9.05 36.4 85.4 129 

7 -36.4 -45.2 -26.2 -7.9 
130 87.6 38.1 10.0 1.61 

Thus the reconstruction error here amounts to .53, with the constant term 
being -1, which certainly lies no longer within the computing precision. 
In order to obtain better results, the Homer scheme must be built up also 
from right to left, putting first 0 in place of .53 and then running the com­
putation backwards: 

1 8.1 27.8 50.8 47.6 7 -36.4 -45.2 -26.2 -7.9 
-0.116 7.99 35.4 84.5 128 129 86.9 37.4 9.41 1.05 

If one replaces 87.6 in the first scheme by 86.9 in the second, and further 
to the right uses the values of the second scheme, one obtains 

11 (z) = z9 + 9.05z 8 + 36.4z 7 + 85.4.z 6 + 129z5 + 130z 4 

+ 86.9z 3 + 37.4z2 + 9.41z + 1.05 

and thereby commits a reconstruction error .7z4 , which however for the 
larger coefficient c 4 = -36.4 is tolerable (actually, .7 ought to be com­
pared even with 86.9). 
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§4.S. Root squaring (Dandelin-Graeffe) 

Let I (z) be a polynomial of degree n. Then I (z)1 (-z) is a polyno­
mial of degree 2n and moreover an even function, so that the odd powers 
of z cannot occur. For example, I (z) = z2 - 3z + 1 produces the polyno­
mial I (z)1 (-z) = z4 - 7z2 + 1. Hence, 11 (z2) = I (z)1 (-z) is a polyno­
mial of degree n in the variable z 2. If s is a root of I (z) = 0, then 
11 (s2) = 0, thus s2 is a zero of 11 (z). If one next forms f2(z2) = 
11 (Z)/l (-Z), one obtains a new polynomial h(z), which again has degree 
n and whose zeros are the fourth powers of the zeros of I (z), etc. 

If, for example, we start with I (z) = Z 2 - Z - 1, we can form in this 
way successively: 

Z2 Z 1 
I(z) = 1 -1 -1 
I (-z) = 1 1 -1 
11 (z) = 1 -3 1 
11 (-z) = 1 3 1 
f2(z) = 1 -7 1 
h(-z) = 1 7 1 
!J(z) = 1 -47 1 
!J(-z) = 1 47 1 
14(Z) = 1 -2207 1 

14(Z) (in 6-digit computation) evidently has the zeros SI = 2207 and 
S2 = 112207; the zeros are tom apart so much that they can be read off 
directly as quotients of the coeffi.cients(1 ). 

Now the roots of the original equation are the 16th roots of 2207 
and 1/2207, respectively (one has squared four times), thus 1.618034 and 
.618034; but there are 16 different 16th roots, and all would now have to 
be examined whether they also satisfy the original equation. In our case, 
the solutions are 1.618034 and -.618034. 

1 Plausibility argument: as is well known, 

f (z) = z· - er,z'-' + er2z·-2 - .,. + (-l)"er., 

where erl>' .. ,er. are the elementary symmetric functions of the zeros Zl> ... ,z.: 

il <i2 < ... <ii; 
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Let us consider a further 

Example. In order to solve the algebraic equation z3 - 9z2 -

8z + 2 = 0, one fonns: 

z3 z2 z 1 
I(z) = 1 -9 -8 2 
I (-z) = -1 -9 8 2 

II (z) = -1 97 -100 4 
II (-z) = I 97 100 4 
Jz(z) = -1 9209 -9224 16 
Jz(-z) = 1 9209 9224 16 
!3(z) = I 84787233 -84787488 256 

For the polynomial !3(z) one now computes the negative quotients 
-Ck/ck+l (k = 2,1,0) of successive coefficients and subsequently their 
(positive) 8th root. Here, these roots are 

9.795832, 1.0000005, .2041684. 

Provided one still supplies them with the correct argument, they agree 
very well with the exact roots 

-1, 5 +"'-f23 = 9.795832 ... , 5 -"'-f23 = .2041685 .... 

This method of root squaring, however, suffers from serious draw­
backs: 

1) Repeated squaring produces such large (or extremely small) 
numbers that one has to worry about over- or underflow. 

2) One obtains only the 2Pth powers of the zeros (if Ip(z) is used) 
and must therefore still take roots. After that, one has to decide 
which of the 2P root values is the correct one, i.e., a zero of 
I (z). 

3) Conjugate complex pairs of roots cause difficulties. 

Only through extremely complicated programming can these drawbacks 
be overcomeCZ). The method, therefore, is not used frequently. It can 
serve, however, as a stopgap for other methods. 

2 For a variant of the Graeffe method in which the occurrence of very large and very 
small numbers is avoided, see Grau A.A.: On the reduction of number range in the use of 
the Graeffe process, J. Assoc. Comput. Mach. 10,538-544 (1963). 
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§4.6. Application of Newton's method to algebraic equations 

First of all, we try to locate the roots of the given equation (6) in the 
complex plane. One has, in this connection: 

Theorem 4.1. All n solutions of (6) lie in the circle 

Izi Sp= 2 max 
lSkS" 

11k 

Proof. If for all k 
11k 

Izl > 2 

then (also for all k) 

C,,-k 

There follows 

" " l:Ckzk ~ Ic"z"I.-l: 1c,,_k11zl,,-k 
k~ k~ 

" ~ I c"z" I - l: Z-k I c" I I z I" 
k=l 

~ I c"z" I { 1 - ± Z-k} > 0, 
k=l 

i.e., z cannot be a solution, q.e.d. 

This theorem serves as a basis for a simple recipe for using 
Newton's method to at least come close to a root: 

One chooses at random an initial point z 0 on the circle I z I = P and 
generates a sequence of complex numbers Zit Z2, Z3 , ... according to 
the fonnula of Newton's method: 

f(zt) 
Zt+l=Zt-f'(Zt)' t=0,l,2,.... (8) 

This is continued as long as the modulus If(zt) I of the polynomial is 
reduced to less than half its value. As soon as this no longer holds, two 
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possible cases are to be distinguished: 

a) If(zt) I is already so smail, that it is seriously affected by round­
ing errors; this occurs when 

(thus, for example, when the quantity on the left has the order of 
magnitude of 10 units in the last position of the mantissa). 

b) Zt lies near a zero of the derivativeff(z) of the polynomial. 

In Case a) one stops, in Case b) one can try to start afresh with another 
point on the circle I z I = p. 

A more reliable method, however, consists in re-expanding the poly­
nomial f (z) in a Taylor series about the last computed point (with the 
absolutely smallest If(z) I): 

n 

fez, + w) = L dkw k = g(w), 
k=O 

and then in applying Newton's method, beginning with w = 0, to 

(9) 

(10) 

for as long as the function value I g(z) I is halved at each step(l). One 
then has again the alternatives a) and b). In Case a), a zero has been 
found, and it can be removed (deflation). In Case b), one proceeds with 

1 The transition from g to gl is Graeffe's root squaring (cf. §4.5). If g'(O) = 0 (or small), 
butg"(O)"I: 0, theng; (0)"1: 0, and one can apply Newton's method to gl. (Editors'remark) 
2 The convergence of the procedure described here has not yet been investigated. Tests, 
however, show that global convergence is not achieved. (Editors' remark) 
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Example. For the equation 

zS + 1000z2 + 1000 = 0 (11) 

one finds 

112 113 
C4 

= 0, 
C3 

=0, 
C2 

=0, 
Cs Cs Cs 

114 liS 
Cl 

=0, 
Co 

::::4, thus p= 20. 
Cs Cs 

(It is to be noted that one could almost always find a smaller p, here, for 
example, p = 11.) Starting with Zo = 20i, Newton's method in the first 6 
steps produces the points shown in Table 4.2. Thus, in the last step, 
If(z) I even grows, which is connected with the fact that If'(zs) I is small 
(f'(z) = 0 for z :::: 3.68 + 6.36i). But already in the 5th step, If (z) I has 
no longer been halved, so that one could have saved oneself the last step. 
We have indeed argued, in this situation, to re-expand f (z) in a Taylor 
series with origin at z s. For simplicity we make the new development at 
the point z = 4 + 6i: 

g(w) = f(z +w) 

Then one gets 

= -15096 + 28896i + (-1520 + 2400i)w 

+ (-2680 + 720i)w 2 + (-200 + 480i)w3 

+ (20 + 30i)w 4 + w S . 

g (w) = - 607089600 - 872428032i + (42753920 - 169324800i)w 

+(6022400-1189920i)w 2 + (43040+55200i)w 3 

+ (-100+ 240i)w 4 _ws. 
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Table 4.2. Application of Newton's method to the algebraic equation (11) 

z, I[(z,) I 
20.000i 3224779 

.298 + 15.985i 1061312 

.704 + 12.760i 352628 
1.298 + 1O.146i 121198 
2.245 + 7.956i 47382 
4.250 + 5.740i 33618 

-2.750 + 6.056i 56131 

This yields immediately wI = - g 1 (0)/ gl (0) = -3.992560 + 4.593463i. 
If only this first approximation to g 1 (w) = 0 is used, one already obtains 
...rw;- = ± (1.023114 + 2.244844i) as Newton correction for g (w), and 
with it the approximation z = 5.023114 + 8.244844i for the desired solu­
tion of f (z) = O. (The other root gives nothing useful.) Now already 
If (z) I :::: 10389, which, compared with If (4 + 6i) I :::: 32602, is reduced 

to less than a third. From here on, the method converges rapidly (in 4 
steps, with 14-digit precision) towards the solution z = 5.017003 + 
8.631391i. 

Notes to Chapter 4 

§4.1 The "method of linearization" discussed in this section is often referred to in 
the literature as Newton's method for systems of nonlinear equations. It is a natural gen­
eralization of Newton's method for a single equation (see §4.2) and, in fact, can be 
extended to equations in infinite-dimensional (function) spaces. The first such generaliza­
tion was done in the context of nonlinear operator equations in Banach spaces by L.V. 
Kantorovich in 1948 (see Kantorovich & Akilov [1964]). This generalization is often 
called the Newton-Kantorovich method. Another important generalization was given by 1. 
Moser [1961] for the case of operators acting on a continuous scale of Banach spaces with 
properties similar to the properties of Sobolev spaces. The above generalizations provide 
useful tools in the study of the solution of nonlinear differential and integral equations. 
For a recent analysis of the Newton-Kantorovich and Newton-Moser methods, see Potra & 
Ptak [1984]. 

The principal difficulty with Newton's method is its local character of convergence: 
the initial approximation has to be sufficiently close to the desired solution for conver­
gence to take place. In practice, therefore, the initial phase of Newton's method, or indeed 
the entire iteration process, is modified to make sure that initially the approximations 
move closer to the solution. One might insist, for example, that the functions in question 
decrease in some suitable nonn. There are many ways to do this, which guarantee 
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convergence even if the initial approximation is far away from the desired solution. Some 
of these modified methods. in fact, automatically turn into Newton's method in the vicin­
ity of the solution, thus sharing with Newton's method quadratic convergence, but unlike 
Newton's method, possess qualities of global convergence. It is also possible to dispense 
with derivative evaluations and build up the required matrix of derivatives gradually from 
information gained during the iteration. Such methods are usually described in the context 
of optimization problems; for example, to minimize fT (x)f(x), which is equivalent to 
f(x) = 0, if f and x are of the same dimension and solutions are known to exist. For a dis­
cussion of such "Newton-like" methods, and other methods that have proven effective in 
practice, the reader is referred to Gill, Murray & Wright [1981], Dennis & Schnabel 
[1983], Fletcher [1987]. Among software packages for solving systems of nonlinear equa­
tions we mention MINPACK-1 (More, Garbow & Hillstrom [1980]), which implements a 
modification of Powell's hybrid method (Powell [1970]). The hybrid method is a varia­
tion of Newton's method which takes precautions to avoid large steps or increasing resi­
duals. The subroutine HYBRD1 of MINPACK uses a finite difference approximation of 
the Jacobian (a sort of "derivative-free linearization" like the one described in §4.1), while 
HYBRDJ employs a user-supplied Jacobian. The subroutine SNSQE described in 
Kahaner, Moler & Nash [1989] is an easy-to-use combination of both subroutines above. 
The IMSL subroutines NEQNF and NEQNJ are also based on the MINP ACK routines 
(see IMSL [1987, Vol. 2]). 

Other methods with global convergence properties have been developed by using 
continuation algoritluns. In this approach one considers a family of equations depending 
continuously on a parameter t belonging to the interval [0,1]. The equation corresponding 
to t = 0 has a known solution. while the equation corresponding to t = 1 is the equation 
whose solution is sought. The problem then is to construct an increasing sequence of 
parameters so that the solution of the equation corresponding to a parameter of this 
sequence is a good starting point for an iterative method to solve the equation correspond­
ing to the next parameter in the sequence. A portable software implementation of this 
approach is available (Watson, Billups & Morgan [1987]). 

§4.2 Newton first applied his iterative method in 1669 for solving a cubic equation. 
The procedure was systematically discussed in print by J. Raphson as early as 1690. 
Therefore, the method is sometimes referred to as the Newton-Raphson method. For more 
details on the history of Newton's method, see Goldstine [1977] and Ostrowski [1973]. 

By contrast with the regula falsi described in §4.3, Newton's method does not pro­
duce a convergent sequence of nested intervals containing the solution. However, for con­
vex functions, this can be accomplished by using Fourier's modification of Newton's 
method (see Ostrowski [1973, Ch. 9]). For nonconvex functions, one may use interval 
arithmetic and some interval variants of Newton's method in order to construct such a 
sequence of nested intervals (see Alefeld & Herzberger [1983]). 

The notions of quadratic and cubic convergence introduced in §4.2 can be general­
ized as follows. Letting ek denote the distance between the kth term of a convergent 
sequence and its limit, the q-order of convergence of the sequence is defined as the limit 
m = lim inf [log ehl 1 log ek], whenever this limit is greater than one. If ehl is propor­
tional to the mth power of ek, then the q-order of convergence is obviously equal to m, but 
the above definition uniquely defines the q-order of a sequence in much more general 
situations. One says also that the sequence is q-superlinearly convergent if 
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lim sup [el+l I el] = O. If m > 1, then the sequence is q-superlinearly convergent, but the 
converse is not true. Finally, one says that the sequence is q-linearly convergent if 
o < lim sup[ek+l I el] < 1. The speed of convergence of sequences can also be measured 
by their r-orders of convergence. For the definition of the r-order and its relationship with 
the q-order, see Ortega & Rheinboldt [1970], Potra [1989]. 

§4.3 The regula falsi originates in medieval Arabic mathematics, perhaps even ear­
lier in China (see Maas [1985]). Leonardo Pisano, alias Fibonacci, in the early 13th cen­
tury calls it "regula duarum falsarum positionum" (rule of two false positions). It received 
this strange name, since for linear equations (a problem in the forefront of medieval arith­
metic!) the method produces from two approximations ("false positions") the exact root 
by linear interpolation. Peter Bienewitz (1527) explains it thus (cf. Maas [1985, pp. 
312-313]): "Vnd heisst nit darum falsi dass sie falsch vnd unrecht wehr, sunder, dass sie 
auss zweyen falschen vnd vnwahrhaftigen zalen, vnd zweyen liigen die wahrhaftige vnd 
begehrte zal finden lernt". 

In its original form, in which at every step the secant is drawn between two func­
tion values of opposite signs, the regula falsi is only linearly convergent. By taking a and 
b in (5) to be the latest two iterates, even if f does not change sign at those points, one 
obtains the so-called secant method. The q-order of convergence of this method is 
(1 + ..[5)12 = 1.618 . ... Because it requires only one function evaluation per iteration, 
its numerical efficiency is ultimately higher than that of Newton's method (see Ostrowski 
[1973]). 

There are a great number of methods that have been proposed for solving single 
equations in one unknown. Many of them combine bisection and interpolation devices 
with various safeguarding measures designed not only to guarantee convergence, but also 
to yield fast convergence in cases of well-behaved equations, and at least the speed of 
bisection in other more difficult cases. A thorough study of some such methods can be 
found in Brent [1973]. One of the first methods of this type, originally published by 
Dekker [1969], is incorporated in the subroutine FZERO described in Kahaner, Moler & 
Nash [1989]. The IMSL subroutine ZBREN (cf. IMSL [1987, Vol. 2]) is based on 
Brent's improvement of Dekker's algorithm (Brent [1973]), which is a combination of 
linear interpolation, inverse quadratic interpolation and bisection. A Fortran implementa­
tion of Brent's method, the real function ZEROIN, can be found in Forsythe, Malcolm & 
Moler [1977]. All subroutines above find a zero of a function in a given interval that has 
to be specified by the user. Some popular subroutines which do not require the prescrip­
tion of such an interval are based on Muller's method (cf. Muller [1956]). Such is the 
IMSL subroutine ZREAL (IMSL [1987, Vol. 2]). 

While there is basically a unique generalization of Newton's method for ~olving 
systems of nonlinear equations, this is no longer the case for the secant method. For the 
nonlinear system f(x) = 0 of (1), the generalization of Newton's method described in §4.1 
is based upon locally approximating the mapping f(x) by the affine mapping 
f(xl ) + A(x - Xl), where A is the Jacobian of f at Xl. The secant method could be general­
ized by considering a similar affine approximation, but where this time the matrix A 
should satisfy the "secant condition" A(Xl - xl-d = f(Xl) - f(Xl_l). This condition, how­
ever, does not uniquely determine the matrix A (except when n=I). One way of determin­
ing the matrix A was proposed by Schmidt [1963] and led to a generalization of the secant 
method that, in the general case, has the same r-order of convergence as in the one­
dimensional case. Nevertheless, this method is rather expensive and sometimes 
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computationally unstable. A more efficient generalization of the secant method has been 
proposed by Broyden, who computes the matrix A at each step via a rank-one update (see 
Dennis & Schnabel [1983, Ch. 8]). The nonlinear systems arising in convex optimization 
problems have symmetric positive definite Jacobians, and in such cases the matrix A 
should also be symmetric positive definite. This can be accomplished by various rank-two 
updates. One of the most successful generalizations of the secant method is based on the 
BFGS update, independently discovered by Broyden, Fletcher, Goldfarb and Sharmo in 
1970 (see Dennis & Schnabel [1983, Ch. 9]). Both Broyden's method and the BFGS 
method are q-superlinearly convergent. 

§4.4 A quantitative discussion of the sensitivity of roots of algebraic equations to 
small perturbations in the coefficients is given in Wilkinson [1963, pp. 38ff]. One finds 
there, in particular, Wilkinson's famous example of an ill-conditioned equation, with roots 
at the integers I, 2, ... , 20. This is further discussed in Wilkinson [1984] and Gautschi 
[1984]. The cited book of Wilkinson is also a good source for the effects of rounding 
errors in polynomial evaluation, in Newton's method, and in polynomial deflation. For 
further practical remarks concerning the solution of polynomial equations, in particular for 
an analysis of forward and backward deflation, and a combination thereof, see Peters & 
Wilkinson [1971]. 

While Newton's method possesses some special properties when applied to alge­
braic equations (see, e.g., Stoer & Bulirsch [1980, §5.5]), it does not allow for the compu­
tation of complex roots from real starting values. A method that overcomes this deficiency 
is Laguerre's method (see, e.g., Froberg [1985, §11.5]). This method has global conver­
gence for real roots, local cubic convergence to a simple root, and local linear conver­
gence to a multiple root. The IMSL subroutine ZPLRC is based on Laguerre's method, 
while the other IMSL subroutine (cf. IMSL [1987, Vol. 2]) for solving polynomial equa­
tions, ZPORC, is based on the Jenkins-Traub three-stage algorithm (cf. Jenkins & Traub 
[1970]). 

§4.5 Wilkinson [1963, pp. 67ff] discusses stability aspects of the rootsquaring pro­
cess in the presence of rounding errors. He makes the point that "squaring" a polynomial 
may in some cases result in a worsening of the condition of the polynomial (with respect 
to rootfinding), although, as a rule, one should expect the opposite to happen - a steady 
improvement of the condition. 
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CHAPTER 5 

Least Squares Problems 

§5.1. Nonlinear least squares problems 

We consider once again a system of nonlinear equations 

fl(Xl,X2, ... , xp) = 0 

f2(Xl ,x2, ... , xp) = 0 

fn(Xl,X2, ... , xp) = 0, 

but now assume that the number n of equations is larger than the number 
p of unknowns. 

If, for example, the system 

x +y = 1 

x2 + y2 = .8 

x3 +l = .68 

is to be solved, one must note that this is an impossible task, since from 
the first two equations there follows immediately xy = .1, thus 

X= 

But then, 

1 ±...[6 
2 

1 ±...[6 
y= 

2 
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X3 + y3 = (X + y)3 - 3xy(x + y) = 1 - .3 = .7 ;f:. .68. 

The way we have treated here an overdetennined system fk(X I' ... , Xp) 
= 0 is to solve the first p equations fI = ... = fp = 0, but completely 

ignore the others. Clearly, this is not the correct approach; rather, one 
ought to try to satisfy as many equations as possible, if only approxi­
mately. 

In order to achieve this, we first recall the concept of residual: If in 
the left-hand side of the kth equation fk(X I, ... , Xp) = 0 one substitutes 
arbitrary, but fixed values x I, ... , Xp ' one does not obtain 0 in general, 
but a residual sk; through substitution in all n equations one obtains the n 
residuals s I, S2, ... , sn' which all depend on xl, ... , xp. 

Ideally, one would like to make all residuals sk equal to 0 by a suit­
able choice of the Xt. However, this cannot be done; one can only try to 
make the residuals as unifonnly small as possible. But what should this 
mean? The residuals, indeed, can be made small with respect to several 
points of view: 

a) make the sum of the absolute values, that is L I Sk I , as small as 
possible; 

b) make the sum of squares L st as small as possible (method of 

least squares); 

c) make the absolutely largest, i.e., max I Sk I, as small as possible 
(Chebyshev approximation). 

In the following we shall deal with the method of least squares, and 
thus compute the minimum 

min cr(XI, ... , Xp) 
Xl'·· . t Xp 

and the corresponding values of x I, ... , xp ' where 

n n 
cr(XI,···, xp) = L [fk(XI,··., Xp)]2 = L S'{ 

k=l k=l 

For the example above, this would mean, e.g., that one determines 
min cr(x,y) with 

cr(x,y) = (x + y - 1)2 + (X2 + y2 - .8)2 + (x3 + y3 - .68i. 
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There is a direct method to deal with this problem: In the 
"landscape" (in (p + I)-dimensional space RP+I) defined by z = 
cr(XI, ... , xp) one goes constantly downhill (cf. Fig. 5.1). To do this, 
one needs the gradient of the function cr(XI, ... , xp ), 

Figure 5.1. Method of steepest descent 

dcr n dfk(xI, ... , xp) 
(grad cr)t = -a = 2 L fk(xI, ... , xp) d 

Xt k=l Xt 

one then varies the Xt according to 

dcr 
Xt :=Xt +~Xt, where &t =-t -- . 

dXt 

(The choice of t is a problem in itself.) 

In the above example one obtains 

dcr 2 
dX = 2s 1 + 4XS2 + 6x S3, 

dO 2 
dy = 2s 1 + 4ys2 + 6y s3· 

One can start at the point 

1 +-{.6 
x = 2 = .88730 ... , 

1 --{.6 
Y = 2 = .11270 ... , 

and choose, say, t = .05. The resulting first ten steps are summarized in 
Table 5.1 (rounded results of the 14-digit computation). 
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Table 5.1. Method of steepest descentfor a nonlinear 
least squares problem 

x y cr X 104 acr x 102 

ax 
acr x 102 
cry 

.88730 .11270 4.0000 9.448 .152 

.88257 .11263 1.7242 .242 -1.270 

.88245 .11326 1.6440 .199 -1.173 

.88235 .11385 1.5760 .183 -1.081 

.88226 .11439 1.5183 .169 -.995 

.88218 .11489 1.4693 .156 -.917 

.88210 .11534 1.4278 .144 -.845 

.88203 .11577 1.3925 .133 -.778 

.88196 .11615 1.3626 .123 - .717 

.88190 .11651 1.3372 .113 -.661 

.88184 .11684 1.3156 .104 - .609 

After 100 steps one would get 

x = .88117, Y = .12073, cr= 1.19401810-4, 

which, to the number of digits shown, agrees with the exact solution. The 
convergence, however, is very Slow(I). 

This method of steepest descent is indeed not quite the right thing. 
Rather than just linearizing, we really ought to "quadratize"; 

cr(XI + LUI, ... , xp + dXp);:: 

p acr P 
cr(x 10 ••• , xp) + I, !!:.xj -a . + I, !!:.xj!!:.xj 

j=I 'Xl j,j=I 

a2cr 
ax·ax· I J 

However, in the following, we shall tum our attention to the case of 
linear equations, which (apart from rounding errors) can be solved 
exactly. The given error equations then have the form 

1 Also a doubling of the stepsize to t =.1 would not bring the expected improvement in 
convergence. On the contrary, one quickly runs into an oscillatory regimen, and after 100 
steps one is only as far as after 39 here. See also §1O.3. (Editors'remark) 
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p 

/k(Xl, ... ,Xp )= L //ctXt +gk=Sk (k= 1, ... , n). 
t = 1 

But first, we describe this linear least squares problem in yet another 
way. 

§5.2. Linear least squares problems and their classical solution 

a) Unconstrained least squares approximation deals with the prob­
lem of approximating a vector g in R n by means of m vectors fl' 
f2' ... , fm (m < n) in the sense ofleast squares, i.e., to find a vector 

m 

h = L Xkfk 
k=l 

such that the Euclidean error nonn I I h - g I I becomes as small as possi­
ble. Desired, especially, are also the coefficients xl, ... , Xm . This prob­
lem can be fonnulated also as 

I I Fx - g I I = minimum, 

or, after squaring, as 

(Fx - g, Fx - g) = minimum, (1) 

if one collects the coefficients Xk into a vector x (in Rm) and the vectors 
fl' f2' ... , fm into a matrix F with m columns and n rows (cf. Fig. 5.2). 

Figure 5.2. Shape o/F,x and g in unconstrained least squares 
approximation 

The problem can be phrased geometrically as follows: In the hyper­
plane of Rn , spanned by fl' ... , fm' one seeks that vector h for which 
h - g becomes shortest. This vector h, as is well known, can be con­
structed by dropping the perpendicular (from g) to the plane (cf. Fig. 5.3). 
One therefore has, for i = 1, ... , m, (fj,Fx - g) = 0, i.e., in matrix fonn, 
FT(Fx - g) = O. 
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Figure 5.3. Unconstrained least squares problem as approximation 
problem in R" 

Indeed, from (l) there first follows 

(Fx,Fx) - (Fx,g) - (g,Fx) + (g,g) = minimum, 

thus 

(x,FTFx) - 2(x,FT g) = minimum, (2) 

where FTF is positive definite, provided the columns fj of F are not 
linearly dependent. But now, according to §3.7, the minimum problem 

~ (x,Ax) + (x,b) = minimum 

(with A positive definite) is equivalent to Ax + b = O. Here, A = FTF, 
b = - FT g, and (2) is thus equivalent to the linear system (normal equa­
tions) 

(3) 

as we asserted above on geometrical grounds. FTF is a symmetric 
m x m-matrix which, as mentioned, is positive definite in general, and 
FT g is an m-vector (cf. Fig. 5.4). 
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~x[~}r?J ~X0=GFTg 
r?J X B = [}FTg 

Figure 5.4. Structure of the normal equations in unconstrained 
least squares approximation 

b) In constrained least squares approximation one deals with the 
following type of problem: Given m measurements gl,g2,' .. , gm' the 
"corrected" values Xl ,X2, ••• , Xm are to be determined such that 

m 
1) there are satisfied p « m) linear conditions L CjjXj - d j = 0 

j=l 
(i = 1,2, ... , p), 
m 

2) L 1 Xk - gk 12 becomes minimum. 
k=l 

In other words: the m measurements glo ... , gm' through corrections 
which are as small as possible, are to be changed in such a way that the p 
conditions are satisfied. 

In vector-matrix notation: desired is a vector x such that 1 1 x - gil 
is minimum subject to the constraint Cx - d = O. Here, C is a p x m­
matrix (p < m), d a p-vector, and x,g are vectors of dimension m (cf. Fig. 
5.5). 

Figure 5.5. Shape ofC, x, g and d in constrained 
least squares approximation 
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Example. If one measures the altitude g(t) of a freely falling body 
at equal time intervals, that is, for tk = to + kilt, k = 1, ... , m, the values 
gk = g (tk) must lie on a parabola and therefore, in particular, the third 
differences of the numerical sequence glo g2,"" gm must vanish. 
Because of measurement errors, this is not the case exactly; one therefore 
determines adjusted values Xi for which the third differences are indeed 
equal to O. This means Cx = 0, with (say, for m=7, p=4)(I): 

C= 

1 
o 
o 
o 

-3 
1 

o 
o 

3 
-3 

1 

o 

-1 

3 
-3 

1 

o 
-1 

3 
-3 

o 
o 

-1 

3 

o 
o 
o 

-1 

In constrained approximation, therefore, one has to determine a 
minimum of 1 1 x - g 1 12 with side conditions; this is done, according to 
Lagrange, by computing the stationary values of 

where t = [tl, ... ,tp]T is the vector of the p Lagrange multipliers. 
Through partial differentiation with respect to all variables Xj' ti one 
obtains from this immediately the system of equations in Fig. 5.6. The 
matrix is symmetric, but not positive definite (because of the Lagrange 
multipliers). 

I x g 
x = 

c o t d 

Figure 5.6. System of equations for the "corrected" values x and the 
Lagrange multipliers t 

1 In the manuscript of this chapter all matrices are written as rectangular tableaus. Here 
we use instead the usual notation. (Editors' remark) 
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This can also be written as 

x + CTt = g 

Cx =d (4) 

from which, by elimination of x, there follows the system of nonnal equa­
tions 

ccT t - (Cg - d) = O. (5) 

Here, CCT is a symmetric matrix of order p which, as a rule, is positive 
definitee) (cf. Fig. 5.7). From t one then obtains 

x = g - CTt. 

EJ x 0 = gCg-d 
Figure 5.7. Structure of the normal equations in constrained 

least squares approximation 

(6) 

c) The most general case: desired is a vector x such that 
I I Fx - g I I becomes minimum subject to the side condition Cx - d = O. 

This problem can be reduced to Case b); indeed, given the Cholesky 
decomposition RTR of FTF, and introducing the vector y = Rx, one has 

(Fx - g,Fx - g) = (FR-1y,FR-1y) - 2(g,FR-1y) + const. 

2 Namely precisely in the case when the constraint equations are linearly independent. 
(Editors' remark) 
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Since 

one thus obtains 

I IFx - gl12 = (y,y) - 2(R-1TFT g,y) + const. 

= Ily - R-1TFT gl12 + const. 

This is to be minimized under the requirement that Cx - d = CR-1 Y - d 
= O. The problem, therefore, is reduced to the case b), with 

R-1TFTg in place of g, 

in place of x, 

in place of C. 

(7) 

d) The curse of the classical methods. The solution methods treated 
here all work with normal equation matrices, i.e., matrices of the form 
FTF or CCT, where the first matrix in the product is "wide", and the 
other "high". While, theoretically, such matrices are indeed positive 
definite, they nevertheless have often undesirable properties (ill­
conditioning), so that one really should not use them in computational 
work. 

The matrix 

[ 
1.07 

F = 1.07 

1.07 

1.10] 1.11 

1.15 

(8) 

may serve as an example. Here the normal equations matrix, in strictly 
3-digit computation, is 

T [ 3.42 
F F = 3.60 

3.60 j. 
3.76 ' (9) 

however, this is not a positive definite matrix; already for x = [-1, If one 
finds that the value of the quadratic form is -.02. 

We therefore propose to solve the problems a), b), c) with different 
methods, which we now discuss. 
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§5.3. Unconstrained least squares approximation through orthogonal­
ization 

The solution of the minimization problem can be simplified by sub­
jecting the vectors f1' f2' ... , fm' g to a Schmidt orthogonalization pro­
cess; this generates orthogonal vectors U1, ... , Urn' S with the following 
properties: 

f1 = r11 u 1 

f2 = r12u 1 + r22u 2 

f3 = r13 u 1 + r23 u 2 + r33 u 3 

(10) 

fm = r1mu 1 + r2mu 2 + ... + rmmUm 

g =Y1 u 1 +Y2U2+ ... +Ymum- s , 

where rpp > 0 for p = 1, ... ,m. The vectors U1, ... , Urn are also nor­
malized, but s is not. The coefficients rpq with q > p and Yj are deter­
mined such that the vectors Uj, s become orthogonal, while the rpp are 
normalization factors which are used to make the lengths of the Uj equal 
to 1. 

Collecting the vectors Ul, ... , Urn into a n x m-matrix U, and the 
rpq into an upper triangular(l) m x m-matrix R, the relations (10) can be 
written as follows: 

F=UR (11) 

Figure 5.8. UR-decomposition ofF 

1 Upper triangular matrix = matrix [rpq] with rpq = 0 for p > q. (Editors'remark) 
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i.e., F is to be decomposed into a matrix U with orthononnal columns and 
an upper triangular matrix R (UR~decomposition; cf. Fig. 5.8). Further­
more, 

g = Uy - s, where y = UT g. (12) 

We then have identically in x, 

1 1 Fx - g 1 12 = 1 1 URx - Uy + s 1 12 = (U(Rx - y) + s, U(Rx - y) + s) 

= (UTU(Rx - y),Rx - y) + 2(Rx - y, UT s) + (s,s). 

Since UT s = 0 and UTU = 1m (= unit matrix of order m), one obtains 
identically in x, 

IIFx-gI1 2 = IIRx-yI12 + Ils11 2, 

where s = (UUT - I)g is constant, so that the minimum is obviously 
attained for Rx = y. One thus has to solve the system of equations 

Rx = y, (14) 

which is quite easy, since R is a triangular matrix. For the solution x, one 
has from (11), (12) 

Fx - g = U(Rx - y) + s = s, (15) 

i.e., s is precisely the residual vector, which is often more important than 
x. 

We note in passing that this matrix R is the same as the one that 
results from the Cho1esky decomposition of the matrix FTF. Indeed, 

FTF = RTUTUR = RTR, (16) 

and the assertion follows from the uniqueness of the Cholesky decomposi­
tion. 

This is valid only in theory, however. In computational work, the 
matrix R obtained through orthogonalization, and hence also the solution 
of the least squares approximation problem, is more accurate. 

Example. The UR-decomposition (computed in 3-digit fioating­
point arithmetic) of the matrix (8) reads: 

[ 
1.07 

1.07 

1.07 

1.10 ]_ [ .578 
1.11 - .578 

1.15 .578 

-.535] 
-.267 

. 802 

1.94 1 
.0374 . 
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The values obtained are correct to 3 digits, while the triangular decompo­
sition of FTF could not even have been executed. 

The pseudoinverse. From Rx = y = UT g there follows 

x = R-1UT g, (17) 

so that the matrix R-1 UT has the property that it yields, through multipli­
cation into the vector g, directly the solution x, just like the solution of 
the linear system of equations Ax - b = 0 is obtained directly as A-I b. 
Because of this analogy, the m x n-matrix 

Z = R-1UT (18) 

is called the pseudoinverse of F. It has the property 

ZF = R-1 UTUR = R-1 R = 1m. (19) 

Figure 5.9. The pseudoinverse Z ofF 

On the other hand, FZ is a n x n-matrix, but not the unit matrix. 

Nevertheless, the pseudoinverse is more of theoretical interest than 
of practical significance for numerical computation. (There is also still a 
more general definition; see below.) 

Orthogonalization without normalization. In smaller examples, 
computed by hand, the necessity of normalizing the vectors in the 
Schmidt orthogonalization process is annoying. One can indeed dispense 
with normalization: one determines orthogonal vectors VI, ... , vm with 

fl = VI 

f2 = S12Vl + V2 

here, 
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(fj,Vi) 
Sij = (i < j). 

(Vi, Vi) 

Thus, F is decomposed into F = VS, where V is a n x m-matrix with the 
orthogonal columns Vb ..• , vm and S is an upper triangular m x m 
matrix with diagonal elements 1. Then I I Fx - g I I is minimum when 

VT(VSx - g) = o. 

After the VS-decomposition, it remains therefore to solve the system 
of equations 

Sx = (VTVrl VT g 

for x (back substitution). Note that VTV is a diagonal matrix; the right­
hand side of the system can therefore be computed very easily. 

This approach has the advantage of requiring only rational opera­
tions. One trades this, however, for the disadvantage of uncontrolled 
growth in the elements of the matrix V. 

The matrix 

Z = S-l(VTVrlVT 

(generalizing the preceding definition) is also referred to as pseudoinverse 
of F. It again has the property 

ZF=Im , x=Zg. 

§S.4. Computational implementation of the orthogonalization 

The orthonormalization process, starting from the vector fl proceeds 
to the vector fm' whereby after the computation of Uk all remaining vec­
tors (fk+1 ,fk+2, .•. , fm) are immediately made orthogonal to Uk through 
the addition of suitable multiples of Uk. We therefore make the 

Assumption: let Ul, .•. ,Uk-:} be already determined and orthonor­
mal; let further fhfk+b ... , fm be orthogonal to Ul, ... 'Uk-l (but not 
among themselves). Then one computes: 

(20) 
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In this way, the Ul, U2,"" Uk are now determined, and the new 
fk+1, ..• , fm are also orthogonal to Uk' The step from k - 1 to k is thus 
completed. The whole UR-decomposition therefore requires the execution 
of the above equations (20) for k = 1,2, ... , m. 

Subsequently one computes 

Yk := (Ukog) } 
k = 1,2, ... , m, 

g := g - YkUk 
(21) 

and then solves the system Rx - y = O. The latter is exactly the same 
computing process as the back substitution in the Cholesky method for 
the solution of the system FTFx - FT g = O. 

Two difficulties now arise: 

a) Orthogonality of the Uk. The orthonormalization process assumes 
that the generated vectors are orthogonal to machine precision. However, 
in orthogonalizing vectors which are almost parallel, rather oblique vec­
tors Uk may be produced due to rounding errors (see Fig. 5.10). In other 
words: the inner products (Ui,Uj) (i *' j) are substantially larger than a few 
units in the last position, which also adversely affects the accuracy of the 
solution x. (The latter, to be sure, is still better than in direct solution of 
the normal equations.) 

r2 

'1~=~~~-=~=--===:=tt2 L- • • u, f, 

Figure 5.10. Orthogonalization of two almost parallel vectors 

In order to guard against such inaccuracies in the orthogonalization 
process, it is advisable to repeat the orthogonalization of the vector fk as 
soon as it becomes evident, during the computation of ru, that the length 
of fk has been reduced by the orthogonalization process to less than 1/10 
of its original value. One executes, in this case, the following additional 
operations: 

dj := (uj,fk ) } 

f f d j = 1,2, ... , k - 1, 
k := k - jUj 

(22) 

ru := 1 1 fk 1 I. 
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Of course, this does not help if the vector fk becomes exactly 0 (e.g., if 
the matrix F consists of all ones). This case will be treated later under b). 

Numerical example (4-digit computation). For the matrix 

8 21 
13 34 

F = 21 55 

34 89 

one first obtains r 11 = I I fl I I = 42.78 and 

Ul = [.1870, .3039, .4909, .7948f; 

then r12 = (U1of2) = 112.0, 

f2 := f2 - 112.0 ul = [.06, - .04, .02, - .02f . 

The components of the new vector f2' owing to cancellation, have become 
I-digit numbers (ca. 1000-fold reduction). The inner product d 1 = (Ul,f2) 

is -.007022. By adding .007022 Ul to f2' a change still occurs in 4-digit 
precision, because the first component, e.g., is stored in floating point 
arithmetic as .06000, to which is added .007022 x .1879 = .00131. One 
so obtains a corrected vector: 

f~ = f2 + .007022 Ul = [.06131, - .03787, .02345, - .01442]T . 

Then, r22 = I I f~ I I = .07713, 

U2 = [.7949, - .4910, .3040, - .1879f . 

Hence, altogether, 

.1870 .7949 

.3039 -.4910 [ 42.78 112.0 1 U= .4909 .3040 , R= 0 .07713 . 

.7948 -.1870 

One must not expect, however, that through reorthogonalization the 
exact values of U and R are obtained. Rather, one merely achieves that 
the columns of U are orthonormal to machine accuracy and that UR 
agrees with F to machine accuracy. Nevertheless, with these U and R one 
will obtain a vector x which almost yields the minimum value for 
I I Fx - g I I, even though x may be far from the theoretical value of the 
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vector. For example, with g = [13, 21, 34, 55f, one gets (in exact com­
putation) UT g = [69.2175, .0737]T; one thus has to solve the system 

42.78 Xl + 112.0 X2 = 69.2175 

.07713 X2 = .0737, 

from which one obtains 

X2 = .9555; Xl = -.8836. 

This gives Fx = [12.9967, 21.0002, 33.9969, 54.9971f, which, within 
the computing precision, agrees with g. Here, in fact, the exact solution 
is X I = -1, X 2 = 1, and this gives exactly Fx = g, i.e., the minimum of 
IIFx - gil here is actually O. 

b) Dependence of the columns of F. In many cases, also reorthogo­
nalization does not help, or does not help sufficiently, for example when 
the columns of F are linearly dependent, or become so during the course 
of the computation due to rounding errors. This is revealed - as for 
example in the case fk = 0 - by the fact that reorthogonalization remains 
ineffective. 

One can avoid such occurrences from the start by replacing the 
minimum problem by 

I I Fx - g I 12 + £2 I I x I 12 = minimum, (23) 

where £ is a sufficiently small number, so that the given problem is not 
changed in any practical sense. 

For the computational implementation, this means that to the matrix 
F of the error equations one appends below the square matrix Elm of order 
m, and to the vector g the zero vector in Rm; the resulting vector in Rn+m, 
depicted in Fig. 5.11, is to be made as short as possible. The appended 
matrix Elm indeed corresponds to the tenn £2 I I x I 12 in (23). 

F 

Figure 5.11. Extended residual vector 
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Note that in this case the occurrence of a linear dependence is 
impossible; for, even after orthogonalization, the extended vector fk has 
still at least length e. As a consequence, one also has rjj ~ e. 

Numerical example (5-digit computation). To be orthogonalized is 
the matrix 

F= 

1 
1 

1 

1 

1 

1 
1 

1.01 

1 
1 
1 

.99999 

The vectors Uk> fj and fJ determined according to (20) and - through 
reorthogonalization - by (22), are recorded in Table 5.2 in the order of 
their computation( 1). (At the bottom are appended the coefficients r 11 , 

r12, r13, r22, r23, d 1, d2, r33.) Since the resulting f2' in spite of its 
reduction, becomes exactly orthogonal to U 1, it does not need to be 
reorthogonalized. 

Table 5.2. Orthogonalization of a matrix with nearly linearly 
dependent columns 

Ul f2 f3,1 U2 f 3,2 fj,1 fh U3 

0.5 -.0025 0 -.28867 -2.499910-6 0 -4.999810-11 -.49998 
0.5 -.0025 0 -.28867 -2.499910-6 0 -4.999810-11 -.49998 
0.5 -.0025 0 -.28867 -2.499910-6 0 -4.999810-11 -.49998 
0.5 .0075 -10-5 .86602 -2.500110-6 -210-10 -5.001010-11 -.50010 

2 2.005 2 8.660310-3 -8.660210-6 -4.999910-6 -1.73210-10 10-10 

One thus finds: 

.5 -.28867 -.49998 

.5 -.28867 -.49998 
u= .5 -.28867 -.49998 

.5 .86602 -.50010 

1 The additional second index in f3 and fj refers to the respective value of k in (20), resp. j 
in (22). (Editors' remark) 
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R=[~ 2.005 
8.660310-3 

o 
-8.66~21O-61 ; 

10-10 

but in spite of reorthogonalization, the first and last column of U are prac­
tically paralle1. In addition, the small element r33 immediately causes 
difficulties in the solution of the least squares problem. For example, 
g = [1, 1, 1, 2f leads to the system of equations 

Xl X2 x3 -1 

0= 2 2.005 2 2.5 
0= 0 8.660310-3 -8.660210-6 .86603 
0= 0 0 10-10 -2.5001 

2.5026 10 10 -2.5107 -2.5001 10 10 

with the solution indicated at the bottom of the tableau. This solution, 
however, is totally meaningless, since in 5-digit computation the opera­
tion Fx results in complete cancellation. 

On the other hand, the extended matrix F, in the sense of Fig. 5.11 
(with E = 10-3), has the following decomposition: 

1 1 1 .5 -.28486 .023311 
1 1 1 .5 -.28486 .023311 
1 1 1 .5 -.28486 .023311 

F= 1 1.01 .99999 U= .5 .85471 -.069224 

10-3 0 0 510-4 -.11424 -.70066 

0 10-3 0 0 .11396 -.0085431 

0 0 10-3 0 0 .70897 

R= [ ~ 2.005 

1.05:910-4] 8.775310-3 

0 1.410510-3 
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Now, with g = [1, 1, 1, 2]T, there results: 

x = [-48.414, 97.997, -48.S76f , 

Fx - g = [.007, .007, .007, -.o13f . 

§S.S. Constrained least squares approximation through orthogonalization 

The constrained least squares problem 

min Ilx-gll 
Cx-d=O 

(24) 

can be reduced by means of an arbitrary vector xo, with the property 
CXo - d = 0, to 

min Ily-hll; 
Cy=o 

simply put y = x - xo, h = g - XQ. 

(2S) 

The solution of the reduced problem, according to §S.2, is deter­
mined by the equations (S), (6), where now d := 0, g := h, x := y: 

CCTt- Ch=O, 

y = h - CTt. 
(26) 

A comparison with the normal equations (3) and the relation (1S) of 
unconstrained approximation shows the equivalence of the two problems, 
if one makes the following correspondences: 

h~g 

-y~s. 

One can thus proceed as follows: first orthonormalize the columns 
of CT and then make also -h orthogonal to these columns, but no longer 
normalized. The resulting vector, according to the above correspon­
dences, is -yo One obtains of course directly y by making h orthogonal to 
the columns of CT. The procedure is summarized in Fig. S.12. 
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EJ~C~}~ B~~x~ 

~=~-t}B 
Figure 5.12. Constrained least squares approximation through 

orthogonalization 

Numerical example. We are given the values of f (t) = 105 In(t), 
rounded to integers, for t = 10, 11, 12, 13, 14: 

t (t) 

10 230259 
11 239790 
12 248491 
13 256495 
14 263906 

These values are to be modified in such a way that they come to lie on a 
parabola (polynomial of degree 2 in the variable t). This simply means 
that the third differences of the corrected values must vanish: 

Yk - 3Yk+l + 3Yk+2 - Yk+3 = 0 for k = 1,2, ... , m - 3 . 

In our example, m = 5, so that this condition needs to be written down 
only for k = 1,2. Thus, P = 2, and 

-3 
1 

3 
-3 

-1 

3 
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Orthogonalization: 

CT h u 
1 0 230259 .223607 .253546 

-3 1 239790 -.670820 -.422577 
3 -3 248491 => .670820 -.253546 

-1 3 256495 -.223607 .760639 
0 -1 263906 0 .338062 

ZT = 29.74 68.88 

The last column contains the adjusted values. 

Still a few words about the general problem 

min IIFx-gll, 
Bx=O 

y 

230283.11 
239740.94 
248493.49 
256540.74 
263882.71 

(27) 

where F is a n x m-matrix, and B a p x m-matrix. According to §5.2, 
this is reduced to the preceding problem (25) by means of the substitution 
[cf. (7)] 

h = R-1T FT g, C = BR-1, Y = Rx . 

Since after the UR-decomposition of F there holds: R-1TFT = UT , one 
obtains C as in Fig. 5.13. 

Figure 5.13. Computation ofC during the orthogonalization ofF 

One thus makes a UR-decomposition of F, but executes the same opera­
tions with the columns of B as with the columns of F. After that, 
h = UT g; once y is computed as above, one finally obtains x from the 
equation 

Rx-y=O 
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Notes to Chapter 5 

§5.1 Minimizing the sum of the squares of nonlinear functions is a special optimi­
zation problem which can be solved by methods applicable to general optimization prob­
lems, such as the methods discussed in Gill, Murray & Wright [1981], Dennis & Schnabel 
[1983], Fletcher [1987]. Methods tailored especially to least squares problems, however, 
are preferable. Among the more popular ones are the Gauss-Newton method and the 
Levenberg-Marquardt algorithm; see Dennis & Schnabel [1983, Ch. 10] or Fletcher 
[1987, Ch. 6]. The Gauss-Newton method is derived by considering a local affine model 
of the objective function around the current point, and by choosing the next point as the 
solution of the corresponding linear least squares problem. The Gauss-Newton method is 
locally q-quadratically convergent (cf. Notes to §4.2) on zero-residual problems, i.e., prob­
lems for which the function (1 vanishes at the solution. For problems which have a small 
positive residual value at and around the solution, and which are not highly nonlinear, the 
Gauss-Newton method converges fast q-linearly. However, it may fail to converge on 
problems that are highly nonlinear and/or have large residuals. Nevertheless, it can be 
shown that the Gauss-Newton direction is always a descent direction, so that the method 
can be "globalized" by incorporating into the algorithm either a line search or a trust 
region strategy. The necessity of introducing such strategies is due to the fact that the 
model of the objective function is only locally valid. For a given descent direction, a line 
search algorithm will produce a shorter step in the same direction, while the trust region 
strategy first determines a shorter step length, and then produces a new step direction 
which gives the optimum of the model within a ball centered at the current point and hav­
ing radius equal to the determined step length. The first approach leads to the so-called 
"damped Gauss-Newton" method, while the second underlies different variants of the 
Levenberg-Marquardt method. In particular, the modification of the Levenberg-Marquardt 
method due to More [1977] uses a scaled trust region strategy. The MINPACK subrou­
tines LMDIF and LMDER are based on this modification (cf. More, Garbow & Hillstrom 
[1980]). The IMSL versions of these subroutines are named UNLSF, UNLSJ, respec­
tively (cf. IMSL [1987, Vol. 3]). The subroutine NL2S0L developed by Dennis, Gay and 
Welsch (see Dennis & Schnabel [1983]) is a more sophisticated algorithm for solving 
nonlinear least squares problems. It is based on a local quadratic model of the objective 
function. The explicit quadratic model requires the Hessians of the residuals, which may 
be very expensive in general. In NL2S0L the second-order information is accumulated by 
a secant update approximation. NL2S0L is an adaptive procedure which uses either the 
Gauss-Newton or the Levenberg-Marquardt steps until sufficient information is obtained 
via secant updates, and then switches to the quadratic model, thus ensuring q-superlinear 
convergence on a large class of problems. Another very successful method has been 
recently developed by Fletcher and collaborators (see Fletcher [1987, Ch. 5]). Theirs is a 
hybrid method between the Gauss-Newton and the BFGS method. It uses a line search 
descent method defined by a positive definite approximate Hessian matrix. This matrix is 
either the Gauss-Newton matrix or a matrix obtained by using the BFGS update formula 
to the approximate Hessian matrix obtained in the previous step. 

§5.2 One reason why the normal equations (3) are unsuitable for solving the least 
squares problem is the fact that the (Euclidean) condition number K(FTF) of the matrix 
FTF is the square of the condition number K(F), where for any rectangular matrix A one 
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defines K(A) = max 1 1 Ax 1 1 I min 1 1 Ax 1 I, the maximum and minimum being taken over 
all vectors x with (Euclidean) length 1 1 xii = 1. Indeed, K(F) can be considered, under 
certain restrictions, to represent the condition of the least squares problem; see Bjorck 
[1967]. In spite of this, the normal equations method is almost universally used by statis­
ticians. This is in part due to the lower computational complexity (see the floating-point 
operations count for different methods in the notes to §5.3), and in part to the fact that in 
most problems solved by statisticians the elements of the regression matrix are contam­
inated by errors of measurement which are substantially larger than the rounding errors 
contemplated by numerical analysts (cf. Higham & Stewart [1987]). 

§5.3 Alternative methods for solving linear least squares problems use orthogonal 
matrix decomposition methods, based on Householder transformations (see §12.8), Givens 
rotations (called Jacobi rotations in §12.3) or singular value decomposition. A detailed dis­
cussion of such methods, including perturbation and rounding error analyses, as well as 
computer programs, can be found in Lawson & Hanson [1974]. For more recent develop­
ments, see Golub & Van Loan [1989]. The Householder and the Givens orthogonal 
transformations are used to factorize the matrix F into a product of an n x n orthogonal 
matrix and an n x m upper triangular matrix. By taking only the first m columns from the 
first matrix, and the first m rows of the second, one obtains a factorization of the form 
(11), and the solution of the least squares problem is then solved as indicated in (12) -
(15). This yields the unique solution of the least squares problem whenever F has full 
rank. In case F is rank-deficient, one could use Householder transformations with column 
pivoting. However, in this case the solution is not unique, and additional work is needed 
to find the solution of minimal Euclidean norm (see Golub & Van Loan [1989, Ch. 6]). 
The method above, while working well on most rank-deficient problems, fails to detect 
near rank deficiency. The only fully reliable methods for handling near rank deficiency are 
based on the singUlar value decomposition of the matrix F, such as the Golub-Reinsch 
method and Chan's method (see Golub & Van Loan [1989, Ch.6]). 

§5.4 Algorithm (20) is known as the modified Gram-Schmidt algorithm. Its supe­
rior stability properties, compared to classical Gram-Schmidt orthogonalization (10), have 
been noted experimentally by Rice [1966] and established theoretically by Bjorck [1967]. 
Nevertheless, both the classical and the modified Gram-Schmidt methods are considered 
of less practical importance nowadays, and mainly of historical interest (cf. Higham & 
Stewart [1987]). The reason is that the classical Gram-Schmidt algorithm is numerically 
unstable and modified Gram-Schmidt is slightly more expensive than Householder orthog­
onalization. The respective floating-point operations counts, indeed, are as follows: normal 
equations nm212 + m3 /6; Householder orthogonalization nm2 - m3/3; modified Gram­
Schmidt nm2; Givens 2nm2 - (2/3)m3; Golub-Reinsch 2nm2 + 4m3; Chan 
nm2 + (17/3)m3 (cf. Golub & Van Loan [1989, Ch.6]). While Givens orthogonalization is 
twice as expensive as Householder orthogonalization for dense matrices, it is often more 
efficient in treating sparse matrix problems. Dense matrix least squares solvers can easily 
be assembled by calling the corresponding factorization subroutines and triangular systems 
solvers from UNPACK (cf. Dongarra et al. [1979]). The SQRLS subroutine from 
Kahaner, Moler & Nash [1989, Ch. 6] is such a program, which can solve overdeter­
mined, underdetermined or singular systems of equations in the least squares sense. The 
IMSL subroutines LSQRR and LQRSL are also based on LINP ACK. The LSBRR 
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subroutine uses the iterative refinement of Bjorck [1967], described also in Golub & Van 
Loan [1989, Ch. 6]. 

§5.5 Linearly constrained least squares problems, including problems involving 
linear inequality constraints, are treated in Lawson & Hanson [1974] by orthogonal 
decomposition methods. 
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CHAPTER 6 

Interpolation 

Interpolation is the art of reading between the lines of a mathemati­
cal table. It can be used to express nonelementary functions approxi­
mately in tenns of the four basic arithmetic operations, thus making them 
accessible to computer evaluation. 

There is, however, a new point of view that emerges here: while an 
ordinary table of logarithms provides a dense enough tabulation so that 
one can interpolate linearly between two tabular values, it is our endeavor 
to tabulate as loosely as possible in order to avoid storing an excessive 
amount of numbers, for example: 

x lOX 
o 1 

0.01 1.023293 
0.02 1.047129 

1 10 

These 101 values ought to be sufficient to interpolate to lOX, and thus 
also, indirectly, to log x. True, we then have to compute a little more 
until a function value f (x) at an intennediate point x is detennined with 
sufficient accuracy, but this surely can be entrusted to a computer. 

The actual interpolation always proceeds as follows: the function 
f (x) to be interpolated (ad hoc, or for pennanent use) is replaced by 
another function which 
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a) deviates as little as possible from 1 (x), 

b) can be easily evaluated. 

Normally, one replaces 1 (x) by polynomials which agree with 1 (x) at 
certain points; but rational functions or trigonometric polynomials are also 
used for interpolation. 

§6.l. The interpolation polynomial 

If at n + 1 pairwise distinct points xo, Xl, ..• ,Xn (nodes) we are 
given the function values Yo, Y I, ... ,Yn (ordinates), then, as is well 
known, there is exactly one polynomial P (x) of degree $ n such that 

P(Xk) = Yk (k = 0,1, ... , n) (1) 

(cf. Fig. 6.1). In general, P (x) has degree n, but in the case 
Yo = YI = ... = Yn = 1, for example, the uniquely determined polyno­
mial is the constant 1. 
For this existence and uniqueness theorem there is a constructive proof: 

5 

4 

3 

2 

o~--~----~----~----~----~----~--~ 
2 3 4 5 6 7 

Figure 6.1. An interpolation polynomial 01 degree 4 
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We consider the Lagrange polynomial 

tk(x) = n [ x - Xj 1 
j=(J Xk - X· . k '] 
J'# 

(2) 

As a product of n linear factors, this is a polynomial of exact degree n; 
furthermore, 

tk(Xk) = 1, 

tk(Xj) = 0, i ¢ k. 

For n = 4, for example, the graph oft 2 (x) looks as in Fig. 6.2. 

5 

4 

3 

2 

Or----~----~----~--~~~~----~--~ 
7 

-, 

-2 

-3 

-4 

Figure 6.2. A Lagrange polynomial t2(X) of degree 4 
(xo = 1, Xl = 3, X2 = 4, X3 = 4.5, X4 = 6) 

(3) 
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Altogether, n + 1 such Lagrange polynomials can be constructed, 
namely for k = 0,1, ... , n. Using them to form the linear combination 

n 
P(x) = LyJk(X), (4) 

k=O 

the following then holds: 

1) P(x) again is a polynomial of degree:::; n. 
n 

2) P (Xj) = L Yke iXj), where now, among all factors e k(Xj) U 
k=O 

fixed), only e /Xj) "# 0 (namely = 1), so that P(Xj) = Yj 
U = 0, ... ,n). [P (x) thus satisfies the conditions (1).] 

3) If there is another polynomial Q (x) of degree :::; n, which 
satisfies (1), then P(x) - Q(x) is also a polynomial of degree 
:::; n, which vanishes at the n + 1 points xo, Xl, ... , Xn; there­
fore, necessarily, P (x) - Q (x) == o. 

Hence (4), or, what is the same, the so-called Lagrange interpola­
tion formula 

n {n X -x· } P (x) = L Yk.II I, 

k=O 1.=0 xk - Xi 
I"#k 

(5) 

yields the uniquely determined interpolation polynomial of degree n 
corresponding to the given nodes and ordinates. 

Example. For Xo = 1, Xl = 2, X2 = 4, the Lagrange polynomials (2) 
are: 

eo(x) 

e2(X) 

Therefore, 

= x - 2 . x - 4 =..!.. (x2 _ 6x + 8), 
1-2 1-4 3 

= x - 1 . x - 4 = _ ..!.. (x2 _ 5x + 4) 
2-1 2-4 2 ' 

= x-I . x - 2 =..!.. (x2 _ 3x + 2). 
4-1 4-2 6 

Yo 2 Yl 2 Y2 2 
P (x) = 3"" (x - 6x + 8) - T (x - 5x + 4) + (; (x - 3x + 2). 
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Unfortunately, for large n this formula becomes rather involved; not 
only do we have n + 1 terms, but each is a product of n linear factors. A 
simplified form will be discussed later. 

Vandermonde matrix. It may be tempting to seek the polynomial 
P(x) in the form L Ckxk and to determine the Ck by means of a linear sys­
tem of equations 

n 

L ckxj - Yj = 0 (j = 0,1, ... , n) 
k=O 

in the n + 1 unknowns Co, Cl, ... , Cn: 

0= 

0= 

0= 

1 

1 

1 

Xo 

Xl 

x8 
xf 

(6) 

1 

The coefficient matrix V here is a Vandermonde matrix, and therefore, as 
is well known, nonsingular as long as Xi '* Xj for i '* j. The system (6), 
however, has only theoretical significance, since its solution by numerical 
methods is ill-advised on all counts (computational effort, storage require­
ment, accuracy). The solution of (6), indeed, is already accomplished by 
the Lagrange formula (4); even the following is true: the coefficients of 
the Lagrange polynomial tk(x) are the elements in the kth column of ,,1. 
The latter means that, say in the preceding example (where Xo = I, 
Xl = 2, X2 = 4), one can read off 

8 -2 1 

V= [ : 

1 

~l 
3 3 

2 V-I = -2 5 1 --
2 2 

4 1 1 1 
3 2 6 
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§6.2. The barycentric formula 

In order to make the Lagrange fonnula (5) more palatable for 
n 

numerical computation, one divides it through by II (x - Xi) (this is the 
i=O 

product of all n + 1 linear factors), 

P(X) n 
-n---"-"---- = L 

k=O 

n 

II (x - Xi) 
i=O 

Yk i"#k 
~---

n n 

II (Xk - Xi) II (X - Xi) 
i=O i=O 
i"#k 

Observing that the second factor reduces to 1/ (x - Xk), and introducing 
the constants 

(k = 0, 1, ... , n), (7) 

one gets 

{ n } {n WkYk} P(x) = .IT (x - Xi) L --
1=0 k=O X - Xk 

(8) 

(first form of the barycentric interpolation formula). This is certainly true 
also in the case P (x) == 1, that is, Yo = Y 1 = ... = Yn = 1 (since every 
polynomial of degree ~ n is faithfully reproduced). Thus, 

and dividing (8) by this identity, there follows 

n wk 
L Yk 
k=O X - xk 

P(x)=----
n Wk 
L--
k=O X - Xk 

(9) 

[that is, P (x) is a weighted average of the Yk with, to be sure, partly 
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negative weights]. This is the second (proper) form of the barycentric 
formula. 

Once the Wk have been computed (which requires an expense pro­
portional to n2 ), only 0 (n) operations are necessary for the evaluation of 
P(x), as long as the nodes are not changed. 

Programming. The Wk are given as array w[O:n], the Xko Yk as 
array x,y[O:n], and x as real xx. Then (9) can be programmed as follows: 

real procedure baryz2(n, x, y, w, xx); 
value n, XX; 

integer n; real xx; array x, y, w; 
begin 

real den, num, s, t; 
integer k; 
den := num := 0; 
for k := 0 step 1 until n do 
begin 

s := xx - x[k]; 
if s = 0 then s := 10-30;(1) 
t = w[k]/s; 
den := den + t; 
num := num + t x y[k] 

end; 
baryz2 := numlden 

end baryz2; 

§6.3. Divided differences 

The inteIpolation problem, already solved in principle by the 
Lagrange fonnula, is intimately related to the divided differences of a 
function f (x). Given fixed nodes xo, xl> ... , xn ' one first fonns the first 
difference quotients 

f(xo) - f(Xl) f(Xl) - f(X2) 
f(XO,XI) = , f(XloX2) = , etc., 

xO-xl XI-X2 

I Avoiding the division by 0 and maintaining the correct result, without the use of a jump 
command. (Editors'remark) 
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and then the higher difference quotients 

!(XO,XI) - !(XI,X2) 
!(XO,XI,X2) = , etc. 

Xo -x2 

These values are arranged in a scheme: 

Xo !(Xo) 

!(XO,XI) 

xl !(XI) !(XO,XI,X2) 

!(XI,X2) !(XO,XI,X2,X3) 

X2!(X2) !(XI,X2,X3) 

!(X2,X3) 

X3 !(X3) 

, , , , , , 
'>!(XO,XI,···, Xn), 

! (Xn-3 ,Xn-2,Xn-1 ,Xn) , 

, , , 

! (Xn-2,Xn-1 ,Xn) 

!(Xn-I,Xn) 

Xn !(Xn) 

the general rule of formation being as follows: 

(i,j = 0, ... , n, i < j) . 

(10) 

The formula (11) means that a new element E of the scheme (10) is 
formed by computing the difference of the two elements E I and E 2 above 
and below immediately to the left of E; the denominator is the difference 
of those arguments Xi and Xj which one finds on the left margin by 
proceeding from E diagonally to the upper and lower left, respectively: 
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Definition. One calls (10) the scheme of divided difference of the 
function f (x) for the nodes XO'XI' ...• Xn; specifically. f(xj • ...• Xj) is 
called a divided difference of order j - i. 

Example. Suppose we are given the function f (x) = eX at the nodes 
Xo = -A. Xl = -.2. X2 = O. X3 = .2. X4 = A (i.e .• n = 4): 

Xj f(xj) 

-A .670320 
.742055 

-.2 .818731 0410725 
.906345 .151583 

0 1.000000 .501675 .041900 
1.107015 .185103 

.2 1.221403 .612737 
1.352110 

A 1.491825 

Here. for example. f (XloX2.X3.X4) is computed as 

The Xj. however. need by no means be equally spaced. in fact not 
even ordered; for example. we can fonn also the following scheme: 

X· I f(xj) 

0 1.000000 
.906345 

-.2 .818731 .501675 
1.006680 .151588 

.2 1.221403 0441040 .041885 (12) 
.918472 .168342 

-A .670320 .542045 
1.026881 

A 1.491825 
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One notices here that the underlined values occur in both schemes. 
although with minor differences caused by rounding errors. This is no 
accident but follows from the 

Theorem 6.1 (Symmetry property). The divided difference 
f(Xj.Xj+I •...• Xj) is a symmetric function of its arguments. 

In the above example. e.g .• one has 

f(0.-.2 •. 2) =f(-.2.0 •. 2) = .501675. 

A first difference can be written in the form 

a second analogously as 

from which the symmetry is evident. In general. one has: 

j f(xlJ.) 
f(Xj.Xj+I.···. Xj)= L --:-. --'--­

. J 
J.I.=I ll. (xlJ. -xv) 

V=I 

WIJ. 

(13) 

Proof by mathematical induction: The induction basis has already 
been established. Now (13) is assumed for f(Xj.Xj+I •...• Xj-l) and 
f (Xj+l ••••• Xj); then (11) is applied: 

j-l f(xlJ.) j f(xlJ.) 
L. -:"j--:'"l--=---- - L -J:-. -""""'---

J.L=I ll. (xlJ. - xv) IJ.'= j+l II (xlJ. - xv) 
V=I v= j+l 
V~IJ. V~IJ. 

Xj -Xj 
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= X- ~ X. { -:-"j--:-l f_(X_i)_ 

1 J II (Xi - Xv) 
v=i 
v#i 

j-l [ 1 
+ l; f(xlJ) j-l 

J.l=l+l II (x -X) 
. J.l v 

V=I 

V#J.l 

j 
q (Xj-xv) 

V= 1+1 
v#j 

The expression in brackets, however, is equal to 

j 

II. (XJ.l - xv) 
V=I 

wJ.l 

one therefore obtains 

f(Xi) f(Xj) 
j + j 
II. (Xi - Xv) II. (Xj - xv) 
V=I V=I 
v#i wj 

j-I f(xJ.l) 
+ L j 

J.l= i+l II. (XJ.l - xv) 
V=I 

v#J.l 

and this is, up to notations, exactly the asserted fonnula (13). From its 
validity for j - i arguments thus follows the correctness for j - i + 1 
arguments. The symmetry property can now be read off immediately 
from (13). 

§6.4. Newton's interpolation formula 

In order to represent f (x), one can add yet an (n+2)nd node X (for 
the present, X is a fixed, but arbitrary, node different from x 0, 

XI, ..• , xn ), by means of which the scheme (10) is enlarged to 
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x f(x) 
f(x,xo) 

Xo f(xo) f (X,XO,Xl) 
f(XO,Xl) 

xl f(Xl) f(xo,X loXZ) .... 
f(Xl'XZ) .. > f (x,Xo, ••• , x,,). .. .. .. xzf(xz) 

f (X,,_3 ,X,,_Z,X,,_loX,,) .. 
.. 

f (X,,_2,X,,_l,X,,) 
f(X,,-loX,,) 

x"f(x,,) 

We then have 

f(x)-f(xo) . 
f (x,xo) = , I.e., f (x) = f (xo) + (x - xo)f(x,xo) , 

X-Xo 

f(X,XO,Xlo' .• , XII-l) - f(XO,Xlo ••• , XII) 
f (X,XO,Xlo ... , x,,) = , 

x-x" 

Putting this together yields 

" f (x) = p (x) + f (x,xo • ...• x,,) n (x - Xt) . (14) 
t=o 
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Here, P (x) is a polynomial which at the nodes xo, xl, ... , Xn agrees with 
f (x), since the second term evidently vanishes(l) at these points, i.e., 
P (x) is the uniquely determined interpolation polynomial for the ordinates 
Yk = f (Xk); it is given by Newton's interpolation formula 

n k-l 
P(x) = !: f(XO,XI,"" Xk) II (x -Xt). 

k=O t = ° (15) 

The coefficients f (xo, ... , Xk) in this formula lie precisely on the top 
(descending) diagonal of the scheme (10) of divided differences. Now 
when f (x) is replaced by P (x), one commits an error which is exactly 
determined by the remainder term 

n 

f(x)-P(x)=f(x,xO,Xl"'"xn) II (x-Xt). (16) 
t=O 

Observing thatf(x) - P(x) has the n+l zeros Xo, Xl,"" xn, it fol­
lows from the theorem of Rolle that the nth derivative fn)(x) - p(n)(x), 
too, must have at least one zero I; between the Xi (i.e., between min {Xi} 
and max {Xi})' One then has fn)(I;) = p(n)(I;), but in differentiating (15) 
n times, only the term with k = n gives a contribution, 

(which of course is independent of x); therefore, 

where I; is a certain point between the xo, ... ,xn• Now of course, one 
has likewise 

(18) 

I It is easily shown by induction that a divided difference tends to a finite limit as two 
nodes merge into one, provided/has a derivative at the point of merger. (Translator's re­
mark) 
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where n is a certain point between the arguments x, xo, ... , Xn , from 
which, together with (16), there follows the error estimate 

n 
I/(x) - P(x) I:::; IT (x - Xt) max 

t=o 11 
(19) 

Here the maximum is to be taken over all possible n, thus over the inter­
val between the smallest and largest of the values x, xo, Xl"", xn• 

Example. Let eX be interpolated at the nodes -.4, -.2, 0, .2,.4. On 
the basis of the scheme (12) of divided differences, one obtains 

eX ::: P(x) = I + .906345x + .501675x(x + .2) 

+ .151588x(x + .2)(x - .2) 

+ .041885x(x + .2)(x - .2)(x + .4). 

The maximum error I eX - P(x) I can be estimated by (19): 

e
A I I I eX - P(x) I < 120 x(x2 - .04)(x2 - .16) . 

In the interval Ix I <.4 this error remains below .00005. 

Programming. Denoting the divided difference I (Xi, Xi+l , ... , 

Xi+p) by I[i,p]' hence the given function values I (Xk) accordingly by 
I [k, 0], one has in 

for p := 1 step 1 until n do 
for i := 0 step 1 until n - p do (20) 

j[i,p] := if [i + 1, p - 1] - I [i,p - IJ)/(x[i + p] - x[i J); 

a possible algorithm for the construction of the scheme of divided 
differences. Since, however, for Newton's interpolation formula one does 
not need the whole scheme, but only its top diagonal, one can get by with 
fewer storage locations: in fact, I [i + l,p - 1] is no longer needed, once 
the quantities 

I [q,p -1] 

I[q,p] 
(q = 0,1, ... , i), 

(q = i, ... , n - p) (21) 

have been computed. At this point in time, therefore, one can overwrite 
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I [i + 1,p - 1] by I [i,p], which is realized by storing the quantities 
I [O,k], I [l,k - 1], ... , I [k, 0] all as g[k]. The index i, however, must 
be run backwards in order to conform with the assumption (21): 

for p := 1 step 1 until n do 
for i := n - p step -1 until 0 do (22) 

g[i + p] := (g [i + p] - g[i + P - l])/(x[i + p] - x[i]); 

or, with j := i + p, 

for p := 1 step 1 until n do 
for j := n step -1 until p do (23) 

gU] := (g U] - g U - l])/(xU] - xU - p]); 

Note: At the beginning, the g [k] must be the function values I (Xk); 
at the end, they are the desired coefficients Ch by means of which the 
value of the polynomial P(z), here denoted by fw, can be computed as 
follows: 

fw := g[n]; 

for k := n - 1 step -1 until 0 do (24) 

fw := g[k] + fw x (z - x[k]); 

It is true, though, that this algorithm is not optimal with respect to round­
ing errors. 

§6.5. Specialization to equidistant Xi 

If Xk = Xo + kh, it is convenient to introduce a new variable 
t = (x - xo)/h; to the point x = Xk then corresponds the value t = k. 
Using the abbreviation Ik = I (k), the divided differences now are 

I (k,k + 1) = Ik+l - Ik = l!./h 

ll.~ ll.~ ll.2~ 
l(kk+1k+2)= ~k+l- Jk =_JJ_k 

" 2 2 

and in general, 

ll.Plk 
I (k,k + 1, ... , k +p)= -,-, 

p. 
(25) 
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having introduced in the usual way the ordinary difference scheme 

10 
fl/o 

/1 fl2/0 

fl/l fl3/0 ... 

fz fl2/1 ... 
!lf2 : > flnlo (26) 

h " 
fl3In_3" " " 

fl21n_2 

flln- 1 

In 

(Differences here are always understood as lower value minus upper 
value.) 

The interpolation polynomial therefore becomes 

!:l2fo 
P (xo + th) = fo + t!:lfo + t(t - 1) -2- + 

!:lnfo n [t] +t(t-1)(t-2) ... (t-n+1) -,-= L !:lPfo· 
n. p=(J P 

(27) 

This is the interpolation formula of Newton and Gregory. There is still a 
multitude of specializations of the classical Newton formula, which are 
named after Bessel, Stirling, Everett, Gauss, but they all, in the end, still 
only produce one and the same interpolation polynomial. 

§6.6. The problematic nature of Newton interpolation 

What we still want to discuss here is interpolation after Newton­
Gregory in an extensive mathematical table(l). Suppose, for example, we 
are given the rounded function values 

1 The problems exhibited here are independent of the chosen representation of the interpo­
lation polynomial, but not of the choice of nodes. (Editor's remark) 
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log 1 = 0 
log 1.01 = .0043214 
log 1.02 = .0086002 

log 1.03 = .0128372 

log 10 = 1. 

It would be foolish, with these 901 values, to set up the interpolation 
polynomial of degree 900, since it behaves completely pathologically, 
fluctuating between nodes by amounts of up to ± 10100 • Rather, interpo­
lation polynomials of high degree must be avoided as a matter of princi­
ple; one should proceed instead as follows: 

Having determined that x lies in the interval Xk S x < Xk+l' one 
extracts from the table the nodes and ordinates 

Xk-m+l Yk-m+l 

Xk-m+2 Yk-m+2 

(thus m of them on each side of the point x); with these, one then con­
structs the difference scheme and evaluates the Newton-Gregory formula: 
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Here, m should not be too large; perhaps 2 to 5, depending on the accu­
racy of computation. 

Regardless, however, of how one effects this interpolation, in each 
of the intervals (XbXk+l) one uses a different interpolation polynomial 
Pk(x), so that the global interpolation function F(x) is piecewise com­
posed of polynomials of degree 2m - 1; more precisely, given the ordi­
nates f (xo), ... , f(xN), one has 

{ 

Pm-l (x), if x < Xm-l, 

F (x) = Pk(x), if Xk ~ x < Xk+l (k = m - 1, ... , N - m) ,(29) 

PN-m(x), if x ~ XN-m+l . 

But now, the following holds: 

Theorem 6.2. If the 2m + 1 ordinates f (Xj), j = k - m, k - m + 1, 
... , k + m - 1, k + m, do not belong to a polynomial of degree 2m - 1, 
then F'(x) is discontinuous at the node Xk. 

Proof F (x) in the interval (Xk-l, Xk+l) is composed of Pk- 1 (x) and 
Pk(x) (both of degree 2m - 1), which adjoin at the node Xk. For their 
difference d(x), on account of Pk(Xj) = Pk- 1 (Xj) U = k - m + 1 , ... , 
k + m - 1), one clearly has 

d(x) = 0 for x = Xk-m+l, Xk-m+2' ... , xk+m-l . 

Since d (x) is of degree 2m - 1, and these are already 2m - 1 zeros, either 
d(x) = 0 or d'(xk) *" 0, q.e.d. 

The global interpolation function F (x), therefore, is not everywhere 
continuously differentiable if the ordinates f (Xj) (j = 0, ... ,N) do not 
already belong to a polynomial of degree 2m - 1. Thus F (x), for exam­
ple, can have the appearance shown in Figure 6.3. 
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Figure 6.3. Interpolation by polynomial pieces of degree 3 

If one interpolates a smooth function, the kinks are very small for 
sufficiently small h, but if one has to interpolate empirical data, large 
kinks are unavoidable. 

§6.7. Hermite interpolation 

For a function f (x), which we assume to be (p - I)-times continu­
ously differentiable, let the following data be given: 

thus p pieces of data at each node. If we consider only two nodes Xb 

Xk+l, then for both together we have 2p data elements, from which a poly­
nomial Pk(x) (as interpolation polynomial for the interval xk ~ x ~ Xk+l) 
of degree 2p - I can be constructed. Since this polynomial agrees at the 
points Xb xk+l with f (x) and all its P - I first derivatives, the polynomial 
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constructed similarly for the neighboring interval has the same p - I 
derivatives at the transition point. The global interpolation function F (x) 
obtained by combining the Pk(x) for the intervals [xtoxk+d 
(k = 0,1, ... , N - 1) is then everywhere (p - I)-times continuously 
differentiable. In this way, the disadvantage mentioned in §6.6 of Newton 
interpolation can be avoided. 

For the actual construction of the Hermite interpolation polynomial 
corresponding to the data f (Xk), f'(Xk) , ... , fP-1)(Xk), f(Xk+l)' f'(Xk+l), 
... , f(P-l)(Xk+l), a new variable 

(31) 

is introduced, so that the nodes Xk and Xk+l are transformed to 0 and 1. 
The problem is then reduced to the task of constructing the polynomial 
Q (t) of degree 2p - 1 subject to the "boundary conditions" 

Q U)(O) = h j fU)(Xk) } 

QU)(I) = h j jU)(Xk+l) j = 0,1, ... , p - 1 . (32) 

Then, approximately, 

f(Xk + th) = Q(t) (0 S t S 1). 

As a preliminary exercise we first determine the interpolation poly-
nomial Q (t) of degree 2p - 1 for the ordinates Q (tj) 
U = 0,1, ... , 2p - 1), and we do this by means of the difference scheme 

tp-l Q(tp-l) 
Q(tp_l.tp) 

Q(tp.tp_2) 

Q(tp-2) Q(tp.tp-2. tp+l) 
Q(tp-2. tp+l) 

Q(tp+l) 

Q(tO.t1p-l)'" ... 
t2p-l Q(t1p-l) 

, , , , , , , 
... ... > Q (tp_lttp • ...• t1p-d . 
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The numbers in the top diagonal we denote by Co, Cl,"" C2p-l, i.e., we 
let (in view of the symmetry property) 

C21 = Q(tp~_l,tp~, •.. , tp+t-l), 

C21+l = Q(tp~_lotp~, ... , tp+t) 

(t = 0, ... , p - 1). Then, by (15), 

Q(t) = Co + Cl(t - tp-l) + C2(t - tp_l)(t - tp) + 
+ C2p-l (t - tp-l)(t - tp) ... (t - to). 

If one constructs the usual scheme of divided differences 

to Q(to) 
Q (to,tt) .. 

Q(tl) 
.. 

tl .. .. .. .. .. .. .. 
tp-l Q(tp-l) 

.. .. 
Q (tp-l ,t2) _ : > Q (to, ... , t2p-l), 

tp Q(tp) 
.... 

(33) 

the coefficients are found in it again, namely the C2j in the same row as 
tp-l, the C2j+l half a row lower: 

C2 

* * * 

Now, finally, we carry out the limit processes 

to,tl,t2,"" tp-l ~ 0 

tp,tp+l , ... , t2p-l ~ 1, 

C2p-l . (34) 

* 

(35) 
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QU-i)(O) 

U - i)! 

QU-i)(1) 

U - i)! 
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if j $", p - 1, 

(36) 

if i ~ p, 

while for i $", p - 1, j ~ p, the difference relationships remain preserved 
also in the limit, since in the denominator we always have the difference 
of an element of the first group (which tend to 0) and an element of the 
second group (which tend to 1), so that the difference relationship in the 
limit takes on the form 

The quantities Co' CI, ... , C2p-l, therefore, can be computed as fol­
lows: the values 

U = 0,1, ... , p - 1) (38) 

are arranged as shown below, and the lozenge-shaped area between them 
filled in by ordinary differencing: 

"" ap-l, 
"" 

, 
"" "" 

, , 
"" , 

a2 * 
, , 

al 
, ... , ... 

ao = Co c2 C2p-2 

ci C3 C2p-1 (39) 
bo * 

b l * * 
b 2 , , , 

"" , 
"" 'b "" p-l" 
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Then the c2f, are the quantities at the level of ao in this Hermite scheme, 
while the c2f, + 1 are located half a row below. 

Finally, also the interpolation polynomial 

Q(t) = Co + CI(t - tp-I) + C2(t - tp_I)(t - tp) + 
tends in the limit to 

Q (t) = Co + cIt + C2t(t - 1) + C3t2(t - 1) + ... + C2p-ItP(t - 1)p-I, 

or 
p-I 

Q (t) = L (C2f, + c2f, + It)[t(t - 1)]t , (40) 
t=O 

still with t = (x - xk)lh. 

The remainder term also follows from the general Newton formula; 
one obtains with the same considerations as in §6.4 (with a certain ~ 
betweenxk and Xk+I): 

f(Xk + th) - Q(t) = t~)~S) h2p[t(t -1)]P. (41) 
p. 

Programming. In the following we assume the abscissae 
Xk = Xo + kh equidistant (which up to now was not really necessary), and 
we assume that the derivatives 

for all k = 0,1, ... , N; e = 0,1, ... ,p are stored as f [k,e].(I) Then the 
following piece of program yields the computation of Q (t) for a given x: 

begin 
t := (x - xO)lh; 
k := entier (t); 
t := t - k; 
for e := 0 step 1 until p do 
begin 

1 The program which follows produces the Hermite interpolation polynomial of degree 
2p + I, not of degree 2p - I, as previously discussed. (franslator's remark) 
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a [t] := f [k,t]; 
b[t] :=f[k + I,t] 

end for t; 
for t := 0 step 1 until p do 
begin 

if t = 0 then goto t 1; 
a[t] := b[t - 1] - a[t]; 
for j := t + 1 step 1 until p do 

aU]:= aU -1] -aU]; 
t1: b [t] := b [t] - a [t] 

for j := t + 1 step 1 until p do 
b U] := b U] - b U - 1]; 

endfort; 
x := t x (t - 1); 
s:= 0; 
for t := p step - 1 until 0 do 

s := s x x + a [t] + b [t] x t; 
end; 
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(42) 

It is perhaps worth noting how (in the second t-Ioop) the Hermite 
scheme is built up from the at, bt . It is indeed possible to get by with 
2p storage locations through systematically overwriting quantities that are 
no longer needed, as is shown below for p = 4: 

At the end one has Cu = at, Cu + 1 = bt • 

Numerical example. Suppose the function f (x) = In(x) together 
with the quantities ft)(x)lt! fort = 1,2,3 is tabulated for x = 1,2,3, ... : 
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X / /' /"/2! /"'/3! 

1 .000000 1.000000 -.500000 .333333 
2 .693147 .500000 -.125000 .041667 
3 1.098612 .333333 -.055556 .012346 
4 1.386294 .250000 -.031250 .005208 
5 1.609438 .200000 -.020000 .002667 

Here the Hermite scheme for the interval (2,3) reads as follows (every­
thing rounded and in units of the 6th position after the decimal point): 

41667 
-125000 -11202 

500000 30465 3140 
693147 - 94536 - 8062 -904 

405465 22403 2235 226 
1098612 - 72132 - 5827 -639 

333333 16576 1596 
- 55556 - 4231 

12346 

Therefore, 

Q (t) = .693147 + .405465t 

+ (-.094535 + .022403t)t(t - 1) 

+ (-.008062 + .002235t)[t(t - 1)]2 

+ (-.000904 + .000266t)[t(t - 1)]3. 

Evaluation (with 14-digit coefficients) at the point t =.5 then gives 
.91629110, while the 8-digit value of In (2.5) is .91629073. 

§6.8. Spline interpolation 

Hermite interpolation can only be applied for functions whose 
derivatives up to a certain order are known. To let also empirical func­
tions partake in the favorable properties of Hermite interpolation, the 
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given function values f(xj) must be supplemented in a suitable way by 
derivatives: 

Xo f(xo) 

xl f(XI) 

X2 f(X2) 

f'(xo) f"(xo) 

f'(XI) f"(XI) 

f'(X2) f"(X2) 

fP-I)(Xo) 

fP-l)(XI) 

fP- I) (X2) 

to be supplemented 

Of course, these additions should not be made arbitrarily, but according to 
certain principles. A very elegant method of supplying the missing 
derivatives is spline interpolation which derives from the following type 
of problem: 

We are given function values f(Xk) at N + 1 nodes Xk 
(k = 0,1, ... ,N). Desired is a function g (x) with the following proper­
ties (where p ::;; N + 1): 

a) g (Xk) = f(Xk) for k = 0, 1, ... , N; 

b) except at the nodes xo, xl, ... , XN, g (X) is 2p-times continu­
ously differentiable, but even at the nodes, g (x) is still (p - 1)­
times continuously differentiable and g(P)(x) is bounded; 

c) E = ~ fx:N I g(P)(x) 12dx is minimal. 

One thus seeks the smoothest function g (x) through the prescribed points 
in the sense that the mean square of the pth derivative is minimal. 

Now integrating p-times by parts the variation of E, one obtains 
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Since, with the exception of Og(Xk), all variations og U)(Xk) are free, there 
follows from the minimality requirement: 

1) g(P)(x) = g(P+I)(x) = ... = g(2p-2) (x) = 0 for x = Xo, x = XN. 

2) gU>(Xk + 0) - gU> (Xk - 0) = 0 for j = p, p + 1, ... , 2p - 2, k = 
1,2, ... , N - 1; i.e., g(x) is actually (2p - 2)-times continu­
ously differentiable in the whole interval (XO.XN). 

3) But g(2p-I)(x) (since the values g(Xk) cannot be varied) may be 
discontinuous at the nodes Xlt X2, ... , XN-lt and its boundary 
values at Xo and XN need not vanish. 

4) g(2p)(X) = 0 for x '¢ Xo,X I, ... , XN. 

Therefore, g(x) is piecewise made up of polynomials of degree 
2p - 1 in such a way that at the joints xl, x2' ... ' xN-I only the 
(2p - l)st derivatives has jumps. 

As to the determination of the component polynomials of g(x), note 
that: 

a) yields N + 1 conditions, 

1) yields 2p - 2 conditions, 

3) involves N - 1 degrees of freedom, namely the jumps of the 
(2p - l)st derivative at the nodes Xl, .•• , XN-lt 
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4) involves 2p degrees of freedom (differential equation of order 
2p). 

Altogether one thus has 2p + N - 1 conditions and equally many 
degrees of freedom, so that one can hope for uniqueness of the solution. 
Now, since g (x) in each of the intervals (Xi,Xi+l) is a polynomial Pi(X) of 
degree 2p - 1, one can express this polynomial uniquely in terms of gi, 
'" (P-l) I (P-l) ~ 1 b f th gi,gi, ... ,g, ,gi+l,gi+l,···,g,+l ,.Lorexampe ymeanso e 

Hermite interpolation formula. Obviously, Pi(x), and hence also p¥')(x), 
is linear in the gfk), g:!!l. This means, however, that JIP¥') 12dx is a qua­
dratic form in the same quantities. By still summing over all N subinter­
vals, one obtains the following fact: E is a quadratic form in all 
gfk) = g(k)(Xi) (i = 0,1, ... , N; k = 0,1, ... , p - 1), thus 

(43) 

Since the N +1 quantities gi = gfO) = g(Xi) are prescribed, only a 
reduced quadratic function, 

has in fact to be minimized with respect to the g }k) (k *" 0), which leads to 
the linear system of equations 

N p-l N 
1: 1: aikjtg;O + 1: aikjO =0 (i =0, 1, ... , N; k = 1,2, ... , P -1) (45) 
j=Ot=l j=O 

with positive definite symmetric coefficient matrix 

A = {aikjt, i,j = 0, ... , N; k,e = 1, ... , p - I} 

(cf. §3.l). While symmetry is obvious, positive definiteness is obtained 
as follows: The quadratic form for A is nothing but 2E, if one puts there 
all g :0) = 0, thus 

Q attains a minimum ° for g == 0; this minimum, however, cannot be 
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attained for any other (p - I)-times continuously differentiable function g, 
since Q = 0 would mean that g is a polynomial of degree p - 1 which 
then could not be 0 at N + 1 > P - 1 points, q.e.d. 

The system of equations (45) therefore admits a unique solution; as 
a result, one has in each of the subintervals Xi :5 X :5 Xi+l the necessary 2p 
data elements for Hermite interpolation according to §6.7. 

Practical implementation!or p = 2 and equidistant nodes. 

Here, g (x) in each subinterval is a polynomial of degree 3. As one 
easily verifies on the basis of (38), (39), (40), this polynomial, in 
(Xl,Xi+l), is given by 

Pi(X) = gi(l- t)2(1 + 2t) + hgi(1 - t)2t 

+ gi+l (3t2 - 2t3 ) + hgi+lt2(t - 1), 

where t = (x - xi)/h. Therefore, 

(46) 

h2pi' (x) = (l2t - 6)gi + (6t - 4)hgi + (6 - 12t)gi+l + (6t - 2)hgi+l, 

and thus finally 

where the form Q, up to a constant factor, has the following coefficient 
matrix: 

6 3 -6 3 gi 

3 2 -3 1 hgi 
Mi = -6 -3 6 -3 gi+l 

3 1 -3 2 hgi+l 

gi hgi gi+l hgi+l 

The matrix of the quadratic form E is obtained through summation over i, 
whereby the matrices Mi add up with overlaps; e.g., for N = 3: 
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6 3 -6 3 
3 2 -3 1 

-6 -3 12 0 -6 3 
3 1 0 4 -3 1 

-6 -3 12 0 -6 3 
3 1 0 4 -3 1 

-6 -3 6 -3 
3 1 -3 2 

In the matrix of the reduced quadratic form E* the rows corresponding to 
the gi drop out [cf. (44), (45)]; therefore, the following system of equa­
tions results (1): 

hgo hgi hg2 hgN-1 hgN 
2 1 = 3g 1 - 3go 
1 4 1 = 3g 2 - 3go 

1 4 1 = 3g 3 - 3g 1 

(47) 

1 4 1 = 3gN- 1 - 3gN-3 

1 4 1 = 3gN - 3gN- 2 
1 2 = 3gN - 3gN-l 

The solution of this system, even for large N, does not cause any 
difficulties, since the matrix is banded and very well-conditioned. (Cf. 
§ 10.6; the eigenvalues lie between 1 and 6.) 

Nwnerical example. We are given 7-digit logarithms to the base 10 
(see 2nd column of Table 6.1). 

1 A simpler derivation of (47) can be had by starting with (46) and imposing on g"(x) the 
following conditions, earlier recognized as necessary: continuity in XI> ••• ,XN_I' vanishing 
aLto,xN. (Editors'remark) 
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Table 6.1. Spline interpolation of logarithms 

Xk fk hg" hh 

2 .3010300 .0214011 .0217147 
2.1 .3222193 .0207657 .0206807 
2.2 .3424227 .0197143 .0197407 
2.3 .3617278 .0189028 .0188824 
2.4 .3802112 .0180402 .0180956 
2.5 .3979400 .0175731 .0173718 

The system of equations for the hg" reads here as follows: 

hgo hgi hgz hg3 hg;' hgs 

2 1 = .0635679 
1 4 1 = .1241781 

1 4 1 = .1185255 
1 4 1 = .1133655 

1 4 1 = .1086366 
1 2 = .0531864 

and has the hg ,,-values given in the third column of Table 6.1 as solution. 
(For comparison, the corresponding exact derivatives are quoted in the 
last column.) 

In the interval 2.1 ~ x ~ 2.2 one obtains as Hermite difference 
scheme to g 1, hgi, g2, hgz (in units of the 7th position after the decimal 
point): 

207657 
3222193 -5623 

202034 732, 
3424227 -4891 

197143 

and thus, 

g(2.1 + .It) = .3222193 + .0202034t + (-.0005623 + .0000732t)[t(t - 1)], 
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in particular, for example, g (2.15) = .3324524, while log (2.15) = 
.3324385. 

As a further example, we show in Figure 6.4 the interpolating spline 
g (x), together with its derivatives g' (x) and gil (x), which belongs to the 
support points already used in Figure 6.3. gil (x) is piecewise linear, 
g III (x) therefore would be piecewise constant. 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0t---......L---+-'.,---J1---+--+--+--1r--r--t-----'-+----' 

-0.5 

-1.0 

-1.5 

-2.0 

Figure 6.4. Spline interpolation: the interpolating function g 
and its derivatives g' and g" 

Physical interpretation. Spline interpolation in the case p = 2 
admits the following simple interpretation: given N + I points (Xi,Yi), the 
deflection of a thin beam ("spline") placed through these points is 
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characterized by the following conditions, provided the linear theory of 
elasticity is applicable: 

a) Y (Xi) = Yi, 

b) Y, y', y" everywhere continuous, 

c) y(4)(x) = 0 for X :I:- Xi. 

These, however, are precisely the conditions imposed on the func­
tion g (x) in spline interpolation with p = 2. One can therefore accom­
plish spline interpolation also with a spline (and actually does so). 

§6.9. Smoothing 

If the ordinates !(xo), !(Xl) , ... , !(XN) to be interpolated are inac­
curate measurements and exhibit an irregular behavior, one can try, 
through small changes in the !(Xi), to enforce a somewhat smoother 
behavior of the interpolated function, in short: to first smooth the values 
!(Xi). 

The interpolation function g (x) therefore - regardless of how one 
wants to interpolate - will not be forced through the prescribed ordinates 
! (Xj) = Ii, but deviations are tolerated, though such that [if gj = g(Xj)] 

N 
a) 1: 1 gk - !k 12 remains small . 

k=O 

On the other hand, in case of equidistant nodes, the second differences 
gk+l - 2gk + gk-l presumably will be a measure for the smoothness of the 
new sequence of ordinates go, g1> . .. ,gN. One thus will have to be 
careful that 

N-l 
~) 1: 1 gk+l - 2gk + gk+l 12 remains small . 

k=l 

A compromise between the conflicting requirements a), ~) can be 
achieved by determining the adjusted ordinates gj such that 

N N-l 
1: (gk - fk)2 + "( L (gk+l - 2gk + gk_l)2 (48) 
k=O k=l 
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becomes minimal. Here, y is the so-called smoothing coefficient, about 
which we have to say more later. The above minimum requirements 
immediately leads to a linear system of equations 

(I + yA)g = f, 

where f, g denote the vectors [f0.!1' ... ' fNf and [gO,gl,···, gNf 
formed with the old and new ordinates, respectively, and 

1 -2 1 

-2 5 -4 1 

I -4 6 -4 I 

1 -4 6-4 1 

A= (49) 

1 -4 6 -4 1 
1 -4 5 -2 

1 -2 1 

The matrix 1+ yA is positive definite; the eigenvalues lie in the inter­
val(l) 1 $; A, $; 1 + 16y. Having determined the gko one can interpolate 
with them by whatever method, for example by means of spline interpola­
tion. 

The choice of the smoothing coefficient is completely free, to begin 
with, but the following should be observed: y < .01 means weak smooth­
ing; the new values gk follow the given values fa, ... , fN essentially still 
point for point. y > 10 produces a strong smoothing; the shape of the 
curve determined by the gk follows the given values fk only globally. For 
still larger y also the condition of the matrix I + yA gradually worsensCZ). 

1 As matrix of the quadratic fonn of the second sum in (48). A is positive semidefinite; on 
the other hand. the upper limit of the interval follows from the row sum nonn, cf. §1O.7. 
~Editors' remark) 

The stepsize h of the nodes. too, has an influence on the choice of y : starting with the 
problem of minimizing 

J.:N (g (x) - f(x)'fdx + y J.:N (g"(x)'fdx. 

discretization indeed yields (48), but with y = Ylh4. Small h therefore requires very strong 
smoothing y. (Editors' remark) 
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Numerical example. We consider the 5-digit values of the common 
logarithm of the numbers 1.001, 1.002 , ... , 2.000. This function 
defined on 1000 nodes is of course slightly irregular, if one considers the 
rounded values as exact. We therefore want to subject them to the 
smoothing process described. The result is summarized in Table 6.2 for 
various y. 

Table 6.2. Smoothing of rounded logarithms 

od given function smoothed function values gj X lOS 7-digit 
n es values logarithms 

Xj /; x lOS r= .01 r= .1 r=l r= 10 r= 100 x lOS 

1.001 43 43.01 43.07 43.17 43.31 43.65 43.41 
1.002 87 86.98 86.87 86.69 86.69 86.88 86.77 
1.003 130 130.00 130.01 130.03 130.03 130.12 130.09 
1.004 173 173.03 173.16 173.35 173.35 173.34 173.37 
1.005 217 216.97 216.86 216.73 216.63 216.54 216.61 
1.006 260 260.01 260.02 259.95 259.84 259.72 259.80 
1.007 303 303.00 303.01 303.02 302.97 302.86 302.95 
1.008 346 346.00 346.00 346.03 346.05 345.97 346.05 
1.009 389 389.00 389.00 389.02 389.08 389.03 389.12 
1.010 432 432.00 432.00 432.01 432.09 432.07 432.14 

1.041 1745 1745.00 1745.00 1745.02 1745.07 1745.11 1745.07 
1.042 1787 1786.97 1786.84 1786.71 1786.75 1786.80 1786.77 
1.043 1828 1828.03 1828.16 1828.31 1828.40 1828.46 1828.43 
1.044 1870 1870.00 1870.00 1870.02 1870.05 1870.09 1870.05 
1.045 1912 1911.97 1911.85 1911.71 1911.67 1911.68 1911.63 

1.501 17638 17638.00 17638.00 17638.02 17638.03 17638.01 17638.07 
1.502 17667 17667.00 17667.00 17667.03 17666.99 17666.94 17666.99 
1.503 17696 17696.00 17696.01 17696.02 17695.93 17695.86 17695.90 
1.504 17725 17725.01 17725.02 17724.93 17724.81 17724.74 17724.78 
1.505 17754 17753.97 17753.85 17753.70 17753.64 17753.61 17753.65 

1.995 29994 29994.03 29994.15 29994.34 29994.38 29994.33 29994.29 
1.996 30016 30015.99 30015.99 30016.10 30016.14 30016.10 30016.05 
1.997 30038 30038.01 30038.01 30037.93 30037.89 30037.87 30037.81 
1.998 30060 30059.97 30059.86 30059.69 30059.62 30059.63 30059.55 
1.999 30081 30081.03 30081.15 30081.28 30081.31 30081.38 30081.28 
2.000 30103 30102.99 30102.95 30102.94 30103.01 30103.14 30103.00 
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§6.1O. Approximate quadrature 

For the determination of J f (x)dx one uses different methods, 
depending on whether the integral is a definite or an indefinite one. In the 
first case, a number is produced, in the second a numerical table (the 
integral as function of the upper limit). 

If the definite integrall b f(x)dx is to be computed, one could begin 
a 

by subdividing the interval [a,b] into n subintervals [Xi-l ,Xi] 
(i = 1, ... , n) of equal length h, then from the n + 1 ordinates f (Xi) con­
struct the interpolation polynomial P (x) of degree n, and finally integrate 
the latter from a to b: 

Examples. For n = 1, because of 

one obtains the formula 

(XI h h 
Jxo f (x)dx ::: hfo + "2l1fo = "2 (fo + fl)· (51) 

Now, of course, one can joint together m such individual intervals, which 
leads to 

(X.. h 
Jxo f (x)dx ::: "2 {fo + 2fl + 212 + ... + 2fm-l + fm}· (52) 

This is the so-called trapezoidal rule. 

Similarly, in the case n = 2, from 
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there first follows the fonnula 

r~ h 2 
Jxo f(x)dx :::: 2hfo + 2hllfo + 3" II fo 

h = 2hfo + 2h(/1 - fo) + 3" (/2 - 2fl + fo) 

h = 3" (/0 + 4fl + fz)· 

Now by joining together m such interval pairs (cf. Fig. 6.5) one obtains 
the Simpson rule 

Figure 6.5. Quadrature according to Simpson 

One can also pass through five consecutive ordinates a polynomial 
of degree four and integrate it; in this way one obtains the Newton-Cotes 
formula 

rX4 2h 
Jxo f(x)dx:::: 45 {7fo + 32fl + 12fz + 3213 + 7f4}· (54) 
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But all these efforts of increasing the accuracy are by far outdone by 
the following consideration: 

Dividing the interval [a,b], as above, in n subintervals of length 
h = (b - a)/n and applying the trapezoidal rule, then - provided that the 
function I is 2m-times continuously differentiable - the error will satisfy 
an asymptotic expansion for h ~ 0 (n ~ 00) of the following form.(l): 

l bl(x)dx - T(h) = c1h2 + c2h4 + ... + cmh2m + o(h Zm ), (55) 
a 

where of course 

h 
T(h) = "2 {fa + 2/1 + 21z + ... + 2ln-l + In} (56) 

denotes the approximate value of the integral computed by the trapezoidal 
rule. 

Now this holds for all h; hence 

l b [h] h2 h2 I(x)dx - T - = C 1 - + c2 - + 
a 2 4 16 

Multiplying this by ~ and subtracting a third of (55), one gets 

f.' f(x)<Ix - [ : T [ ~ ]- : T(h) 1 = C I [ : h4
2 

- : h 2] + 

and one sees that the first term on the right drops out. With the definition 

4 T [!]- T(h) 
T 1 (h) = _-,,-2--,,-__ 

3 
(57) 

1 This can be derived from the Euler-Maclaurin summation formula; see, e.g., Stoer J., 
Bulirsch R.: Introduction to Numerical Analysis, Springer-Verlag, New York 1980, Sec­
tions 3.3 and 3.4. (franslator's remark) 
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one thus obtains 

and likewise, if T [ :] is the result of the trapewidal rule applied with 

step hi 4, with 

(59) 

,h2m 2m 
+cm -- +o(h ). 

4m 

Now again, one combines linearly: the relation (58) is to be multiplied by 
1 16 - 15' the last one by 15: 

f b [ 16 [ h] 1 l' [16 h 4 
1 4] f(x)dx - - T 1 - - - T 1 (h) = C2 - -- - - h + 

a 15 2 15 15 16 15 

C3 [~ ~ - _1 h6 ] + ... + o(h2m); 
15 64 15 

thus, 

if one introduces 

16 T, [ ~ ]- T, (h) 

T2 (h) = 15 (61) 

The next step would employ 

(62) 
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In this way one obtains approximations to 1 b I(x)dx which converge 
very rapidly to the exact value. It is convenient to arrange these approxi­
mations in the following Romberg scheme: 

T(h) 

(63) 

12 dx 
Example. Let us compute 1 ~. One first determines 

T(l)= ~{/(1)+/(2)}=.75, 

T [ ~ ] = ! (f (1) + 2/(1.5) + 1 (2)} = .708333, 

T [ ! ] = .697024, 

T [ ! ] = .694122. 

These numbers are put into the first column of the Romberg scheme, 
which can now be built up by utilizing (57), (61) and (62): 
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.750000 
.694444 

.708333 .693175 
.693254 .693147 

.697024 .693148 
.693155 

.694122 

The value T 3 (h) at the tip is exact to 6 digits. (With an additional row, 
the result would be obtained to 9 correct digits.) 

Of course, one also has to pay for this: for each new value that is 
added at the bottom in the first column of the Romberg scheme (in order 
to be able to add a new value also in every other column), one must apply 
the trapezoidal rule with twice as many terms as before. For 

10 10 dx 2 = tan-l (10) = 1.4711276743037, 
l+x 

for example, the expense, as can be seen from Table 6.3, is rather substan­
tial. It must be remarked, though, that we are dealing here with a patho­
logical casee). 

In contrast, when dealing with a well-behaved case, the accuracy of 
the value at the tip, with each halving, can be enormously enhanced. For 

2 For the improper integral 

there indeed holds 

1t 1t 1t [21t] T(h)-I=-coth---:::1texp --2 2 2 h ' 

so that 

If the infinite series for the T(h) were evaluated exactly, the first column of the associated 
Romberg scheme would thus converge quadratically. [In contrast, (55) implies linear con­
vergence of this column in the general case.] Romberg extrapolation, therefore, does not 
make sense. The finite interval considered, behaves similarly in practice. Compare Sec­
tion 8 in Bauer F.L., Rutishauser H., Stiefel E.: New aspects in numerical quadrature, 
Proc. Symp. Appl. Math. 15, 199-218 (1963), Amer. Math. Soc., Providence, R.I. (Edi­
tors' remark) 
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example, in the computation of 12 dx errors: 1 x' these values have the following 

error of T 1 (h): .0013 .. . 

error of T 2 (h): .000027 .. . 

error of T 3(h): .00000030 .. . 

error of T 4(h): .0000000014 .. . 

Table 6.3. Romberg scheme/or 110 dx 
. 0 1 +x2 

(The. tnangle at the bottom must be th the nght to the trapezoid above it.) ought of as the tip, to be joined on 

5.0495049504951 
2.7170601675552 1.9395785732420 
1.7470257922553 1.4236810004886 1.3892878289717 
1.4916226095488 1.4064882153133 1.4053420296350 1.4055968582170 
1.4711991596046 1.4643913429565 1.4682515514661 1.4692501153047 1.4694997359207 
1.47l1117Z/8096 1.4710825838780 1.471'286666061 1.471'806843067 1.471'898237930 1.471591866889' 
1.4711236856579 1.4711276716073 1.4711306774559 1.4711243601678 1.4711225706614 1.4711221139135 
1.4711266771069 1.4711276742565 1.4711276744332 1.4711276267661 1.4711276395763 1.4711276445313 
1.4711274250023 1.4711276743008 1.4711276743037 1.4711276743017 1.4711276744881 1.4711276745222 
1.4711276119782 1.4711276743036 1.4711276743037 1.4711276743037 1.4711276743037 1.4711276743036 
1.4711276587223 1.4711276743037 1.4711276743037 1.4711276743037 1.4711276743037 1.4711276743037 

1.4711219991997 
1.4711276458818 1.4711276462265 
1.4711276745295 1.4711276745313 1.4711276745317 
1.4711276743035 1.4711276743035 1.4711276743035 1.4711276743035 
1.4711276743037 1.4711276743037 1.4711276743037 1.4711276743037 1.4711276743037 
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Notes to Chapter 6 

§6.1 The basic Lagrange polynomials lk of Eq. (2) not only enter in Lagrange's 
interpolation formula (4), but also play an important role in metric properties of the 
Lagrange interpolation operator. Assuming a :;;; Xo < Xl < X2 < ... < X" :;;; b, the inter­
polation process may be viewed as a projector P,,: C[a,b] ~ P" from the space of con­
tinuous functions on [a,b] to polynomials of degree :;;; n. The norm of this projector, 
liP" II = sup (I IP"fl 1/1 If I I), where I If I I = max If(x) I, can be expressed in terms 

aSxSb 

" of the "Lebesgue function" A,,(X) = l:llk(x)1 as IIP"II = IIA"II. A study of this 
k=O 

norm is of both theoretical and practical interest. It yields, for example, information about 
the interpolation error, by virtue of Ilf-PJII :;;;(1+ IIP"II) dist(f,P,,), where 
dist(f, P ,,) is the distance (in the norm I 1·1 I) of f to P", i.e., the error of best uniform 
approximation of f by polynomials of degree :;;; n (see §7.6). Therefore, if this error, as 
n ~ 00, goes to zero faster than I I P" I I tends to 00, the interpolation process converges 
uniformly. This is so, e.g., if f has a continuous first derivative on [a,b] and Xi are the 
zeros of the Chebyshev polynomial TIl+I (defined in §7.2), adjusted to the interval [a,b]. 
Points Xi that are uniformly spaced on [a,b], on the other hand, may yield divergence, 
even for functions analytic on [a,b], as is shown by a famous example of Runge; see, e.g., 
Todd [1962, p. 148], Epperson [1987]. It is known indeed, for equidistant points Xi, that 
liP" II - 2,,+I/(enlogn) as n ~oo (cf. Trefethen & Weideman [to appear]). By its very 
definition, the norm liP" I I also measures the sensitivity of the interpolation polynomial 
to perturbations in/. since IIP"f* -PJII:;;; liP" 11'11/* - fll. 

In the light of these remarks, the following problem is of interest, and in fact, has 
had a long history: Determine nodes Xi such that liP" I I = I I A" I I is as small as possible. 
The problem has recently been solved by de Boor & Pinkus [1978], following work of 
Kilgore [1978]. To state their principal result, which confirms long outstanding conjec­
tures of Bernstein and Erdos, one should first note that A,,(X) ~ 1 for all X, and that A,,(X), 
for n ~ 2, on each interval [Xi_I,XJ, has a unique local maximum, say at X = ~i' 
i = 1,2, ... , n. Then the optimal nodes Xi are characterized, and uniquely determined, by 
the "equioscillation property" A"(~l) = A"(~2) = ... = A,,(~,,). The computation of these 
optimal nodes, of course, is not quite easy; numerical values for n :;;; 15, however, have 
already been obtained by Hayes & Powell [1969], who took the validity of Bernstein's 
conjecture for granted. On the other hand, very good approximations (yielding the 
minimum of II A." II within a margin of .201, and even, very likely, of .02; see Brutman 
[1978], Giinttner [1980]) are given by the. Chebyshev nodes adjusted to the interval [a,b] 
and expanded such that the smallest and the largest node coincides with the respective 
endpoint of [a,b]. 

Other interpolation processes are sometimes more appropriate. For periodic func­
tions, one often employs trigonometric interpolation. This consists in passing a tri­
gonometric polynomial of degree n (that is, a linear combination of I, cos x, sin x, ... , 
cos nx, sin nx, if the period is 21t) through given ordinates Yk at 2n + 1 distinct points Xk in 
[0, 21t). The analogue of Lagrange's interpolation formula, due to Gauss, is now 

2n 2n sin l/2(x - x.) 
T(x) = l: Yktk(X), where tk(x) = n . 1/ ( ) . The corresponding projector has 

k=O j=O sm 2 Xk - X)' 
j#; 

minimum norm precisely if the points Xk are equally spaced on [0, 21t); see de Boor & 
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Pinkus [1978]. In this case, there exists also an extensive convergence theory (Zygmund 
[1968, Ch. 10]). The interpolation process converges, for example, if the function fto be 
interpolated has an absolutely convergent Fourier series; see also Theorem 7.3. The error, 
then, can be estimated by I IT - fl I :s; 2 L I Ck(f) I, where Ck(f) are the complex 

III >n 

Fourier coefficients of f(Zygmund [1968, Thm. 5.16]). 

For interpolation by rational functions there are known continued fraction represen­
tations for the interpolant, if numerator and denominator have the same degree, and algo­
rithmic procedures in the general case; see, e.g., Bulirsch & Rutishauser [1968]. The 
interpolation problem, however, does not always admit solution, and even if it does, the 
interpolant may have undesirable poles between the nodes. For rational interpolation with 
prescribed poles in the complex plane, see Walsh [1969, Ch. 8]. 

Lagrange's interpolation formula (4) remains valid without change for complex­
valued functions and arbitrary distinct nodes in the complex plane. Interpolation in 
several (real) variables, on the other hand, is more complicated. The problem then 

involves nd = [n ~ d] points in d-dimensional space R d, there being exactly nd monomi­

als of degree :s; n in d variables. A unique solution exists whenever the given points do 
not lie on an algebraic hypersurface of degree n. A Lagrange-type formula, involving 
determinants, can then be constructed (Thacher [1960], Thacher & Milne [1960], 
Mysovskih [1981, §3.1]). In practice, however, it will be simpler to numerically solve the 
linear system of equations which express the interpolation property in a convenient basis 
of polynomials. Nevertheless, to require the interpolant to have total degree :s; n places 
severe restrictions both on the kind of data that can be interpolated and on the number of 
data points. It seems more natural to associate with any given set of points a suitable 
space of polynomials from which interpolation is possible, and indeed uniquely so. For a 
theory developing such spaces, see de Boor & Ron [to appear]. 

For linear systems, like (6), whose coefficient matrix is a Vandermonde matrix, the 
triangular decomposition (see §2.2), and more generally, block-triangular decompositions, 
can be carried out explicitly. For recent work on this subject, see Tang and Golub [1981]. 
The accuracy attainable, however, is often limited on account of ill-conditioning; see 
Gautschi [1990] for a survey on the condition ofVandermonde matrices. 

§§6.2, 6.4 Computations for the barycentric formula can be arranged so that it 
becomes easy, just as in Newton's formula, to add one interpolation point at a time; see 
Werner [1984]. The number of arithmetic operations required is indeed the same for both 
formulae. 

Barycentric formulae are also known for trigonometric interpolation (Salzer [1948], 
Berrut [1984]); they assume a particularly simple form in the case of equally-spaced nodes 
(Henrici [1979]). 

The remainder term of Lagrange interpolation in the form (16) is valid for arbitrary 
functions f, but in conjunction with (18) requires continuity of the (n+l)st derivative of f 
For functions f with low smoothness properties one can apply the theory of Peano kernels 
to obtain alternative representations and estimates of the remainder; see, e.g., Hiimmerlin 
& Hoffmann [1989, Ch. 5, §2.4]. If, on the other hand, f can be extended to a function 
holomorphic in a domain of the complex plane that includes all interpolation points, then 
derivative-free estimates of the remainder are available based on contour integrals; see 
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Walsh [1969, Ch. m, §3.1]. 

§6.8 The spline function derived in this paragraph is sometimes referred to as the 
"natural" spline interpolant, or the spline interpolant with "free end conditions" [the 
conditions 1) on p. 154]. If, at the endpoints, one interpolates not only to the function 
values, but in addition to the first p - 1 derivative values (assumed known), and then 
again solves the extremal problem a) - c), one is led to the "complete" spline interpolant 
Its approximation properties near the end zones of the interval are superior to those of the 
natural spline. 

Spline functions are widely used today, not only for interpolation, but also in con­
nection with other approximation processes (least squares approximation, smoothing of 
data, harmonic analysis, collocation methods in differential equations, to name a few). In 
many of these applications, it is important to have good basis functions for representing 
splines (or more general piecewise polynomial functions). A very elegant, and computa­
tionally effective, basis is provided by the normalized B-splines. For these, and for a 
thorough discussion of computational and approximation-theoretic aspects of splines, see 
de Boor [1978]. This source also contains many useful Fortran subroutines for computa­
tion with splines. 

§6.9 The idea of smoothing according to (48) goes back to Whittaker [1922/23], 
who uses the sum of the squares of the third differences as a measure of smoothness. 
Minimizing (48), in which the second differences are replaced by the second derivative, 
and summation by integration, allows one to solve the variational problem analytically, 
and yields the cubic smoothing spline of Schoenberg and Reinsch; see de Boor [1978, Ch. 
14]. 

§6.10 The Romberg scheme, of course, is pointless if in the expansion (55) of the 
error all coefficients Cj are zero. This turns out to be the case if the integrand f is a 
periodic function with period b - a. The trapezoidal rule then integrates exactly tri­
gonometric polynomials of the largest possible degree, and therefore can hardly be 
improved upon when a smooth periodic function is to be integrated over the full period. 
This is exploited in Fourier analysis; see §7.4, Eq. (15). 

The expansion (55), as stated in the text, holds only for sufficiently smooth func­
tions f Alternative expansions, and modified Romberg schemes, are known if f exhibits 
certain types of singularities at one or both endpoints of the interval; see Fox [1967]. 

Singularities, to be sure, can sometimes be removed by an appropriate change of 
variables, or can be attenuated by "subtracting them out". Alternatively, one may 
account for the singularity by introducing an appropriate weight function and by using 
weighted quadrature rules, particularly those of Gaussian type. The latter are based on 
unequally spaced nodes (the zeros of appropriate orthogonal polynomials) and achieve the 
highest algebraic degree of exactness; see Stroud & Secrest [1966], Gautschi [1981]. A 
detailed treatment of the subject of numerical integration, also in higher dimensions, can 
be found in Davis & Rabinowitz [1984]. Specialized texts on the numerical evaluation of 
multiple integrals are Stroud [1971], Sobolev [1974], Mysovskih [1981]. 
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CHAPTER 7 

Approximation 

While interpolation attempts to approximate a function piecewise by 
polynomials which pass exactly through prescribed support points, we 
shall now try to approximate a given function f (x) on a (relatively large) 
interval I by one polynomial. Such an approximation polynomial, natur­
ally, must be of a higher degree than in the case where f(x) is approxi­
mated by polynomial pieces. 

We limit ourselves here to polynomial approximation and do not 
consider approximation by rational and still more general functions. 

§7.1. Critique of polynomial representation 

A general fact about the approximation by polynomials is furnished 
by the following 

Theorem 7.1(1) (Weierstrass approximation theorem). Iff (x) is a 
continuous function on the interval a S; x S; b, then for each E > 0 there 
exists (at least) one polynomial P(x) such that 

If(x) - P(x) I < E for a S; x S; b. 

Every continuous function thus can be approximated arbitrarily 
closely by polynomials. 

1 Proof, e.g., in Achieser N.!.: Theory of Approximation, F. Ungar Publ. Co., New York 
1956, §20. 



176 Chapter 7. Approximation 

Example. For f (x) = e-x on the interval [O,a], the polynomial 

P(x) = f (_x)k 
k=O k! 

achieves the desired approximation, provided N is chosen so large that 
aN IN! < e ($; 1). 

But the approximating polynomial now is to be used in a numerical 
calculation as substitute for f (x); this requires that P (x) be represented in 
a form suitable for computation. If one simply writes P (x) in the form 

n 

P(x) = L CkXk 
k=O 

(1) 

(with given Ck), this requirement is not necessarily met, as is shown by 
the following example: 

P(x) = .9869 -11.8245x + 86.4317x 2 - 352.9509x3 

+ 807.1695x4 - 1025.4367x5 + 674.8324x6 - 179.1590x7 . 

This looks like an awful polynomial, but is nothing but a polynomial 
which approximates f (x) = 1/(1 + 15x) on the interval [0,1] with a max­
imum deviation of .0132. 

The polynomial is thus quite harmless; it has gotten such large 
coefficients only through the unfortunate choice of powers 1, x, x 2 , •.. as 
polynomial basis. In this way, indeed, the numerical evaluation of the 
polynomial becomes inaccurate; as a matter of fact, the function values in 
this example, in 5-digit computation, will exhibit errors up to 5% in the 
vicinity of x = 1. 

This situation can be significantly improved upon by means of other 
representations of polynomials, that is, through a choice of other bases for 
spanning the polynomial space. Indeed, L Ckxk is only one of many pos­
sible ways of representing a polynomial, and by no means the best when 
it comes to approximating a function f (x) on an interval a $; x $; b by a 
polynomial. Better for this purpose are always the Chebyshev polynomi­
als. Further possibilities are: Legendre polynomials, Newton's interpola­
tion formula. In the latter case, the polynomial is determined by the 
divided differences. 
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§7.2. Definition and basic properties of Chebyshev polynomials 

The Chebyshev polynomials (T-polynomials) arise from the fact that 
cos (n<\» can be expressed as a polynomial in cos <\>; we have indeed, for 
example, 

cos (2<\» = 2 cos2<\> - 1, 

cos (3<\» = 4 cos3 <\> - 3 cos <\>, 

cos (4<\» = 8 cos4 <\> - 8 cos2 <\> + 1, etc. 

In general, cos (k<\» is a polynomial of degree k in cos <\>, which we denote 
by Tk (cos <\». After the substitution x = cos <\> one has 

To(x) = 1, 

(2) 

Because of Tk (cos <\» = cos (k<\», many properties of trigonometric func­
tions can be carried over to T-polynomials, namely: 

1) I Tk(x) I ::::; 1 for Ixl::::; l. 

2) T,(x) bas (relative) extreme values ± I at x ~ Xj ~ cos [ ~ j 1 
(j = 1,2, ... , k - 1). 

3) T,(x) has zeros at x ~ Zj ~ cos [ ~ j - ;k 1 (j ~ 1,2, ... , k). 

It follows from this that all zeros of these polynomials are simple 
and real, and lie in the interval I x I < 1. One obtains, for example, the 
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-1 

Figure 7.1. The Chel:Jyshev polynomial T4(x) and Ts(x) 

curves depicted in Figure 7.1. (The parts contained in the square are spe­
cial Lissajous figurese ).) 

4) From the trigonometric identity 

cos (k + I)<\> + cos (k - I)<\> = 2 cos <\> cos (k<\» 

there follows immediately the identity 

Tk+l (x) = 2xTk(x) - Tk- 1 (x), (3) 

which can be used for the recursive computation of the Tk . For example, 
with k = 4, one obtains [cf. (2)]: 

2xT4 
- T3 

Ts 

= 16xs 

= 
= 16xs 

16x3 + 2x 
4x3 + 3x 

20x3 + 5x 

1 Cf., e.g., French A.P.: Vibrations and Waves, W.W. Norton and Co., New York 1971, 
pp. 34f. (Translator's remark) 
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furthermore: 

2xTs = 32x6 40x4 + lOx2 

-T4 = 8x4 + 8x2 -1 

T6 = 32x6 48x4 + 18x2 -1, etc. 

5) From the recurrence formula one also notes at once the general 
fact that Tk(x) is a polynomial of degree k with leading coefficient 2k-l, 

[exception: T o(x) == 1], and that Tk(x) for even (odd) k is an even (odd) 
function. 

Now the idea of the recurrence formula, however, is not to express 
the polynomials Tk(x) in terms of powers of x. One would then, in fact, 
create the very calamity that one has tried to avoid by means of the T­
polynomials. For example, 

T 20(x) = 524288x 20 - 2621440x 18 + 5570560X 16 - '" + ... , 

which is a polynomial with large coefficients, but small function values. 

The T k, therefore, should not be expressed in powers of x, but 
should be considered as irreducible basic elements through which one 
expresses other polynomials, as for example in 

x S = .0625Ts + .31l5T3 + .625T1 ; 

the recurrence formula, on the other hand, should be used to evaluate 
numerically the Tk(x) for given x. 

Example. Computation of T 6(.7): for x = .7 the recurrence formula 
(3) reads: Tk+l = 1.4Tk - Tk- 1. This is applied for k = 1,2,3,4,5, setting 
initially To=l, Tl=.7. One obtains T 2 =-.02, T3=-.728, 
T 4 = -.9992, T 5 = -.67088, T 6 = .059968. 

It is possible to also accelerate the computation by means of 

(4) 

(for example, above, with T 6 = 2Tr - To = 2 X .7282 - 1). 
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The Chebyshev polynomials are also defined for I x I > 1; the rela­
tion Tk (cos G» = cos (kG» is continued outside of Ix I ~ 1 as followsCZ): 

Tk (cosh",) = cosh (k",), for x = cosh 'II ~ 1, 

Tk (- cosh",) = (_I)k cosh (k",), for x = - cosh 'II ~-1. 
(5) 

The recurrence fonnula holds there unchanged. For x = 1.1, e.g., it reads: 
T k+ 1 = 2.2 T k - T k-l' and thus yields the following values (To = 1, 
Tl=1.1): T 2 =1.42, T3=2.024, T 4 =3.0328, T5=4.64816, 
T6 = 7.19315, T7 = 11.1768, etc. One can see from this that the Tk(x) of 
high degree grow very rapidly outside of Ix I ~ 1 [T7(1) = 1, 
T 7 (1.1) = 11.1768], just as inside of I x I ~ 1 they strongly oscillate. 

We note in passing that the T-polynomials can also be defined in 
tenns of the expression 

One has indeed, as can be seen immediately by multiplying out, 

(6) 

The polynomials Uk- 1 (z) (T-polynomials of the second kind) are of 
degree k - 1 and satisfy the identity 

U ( "') - sin (kG» 
k-l cos'!' - . '" . 

SIll,!, 

Example. For k = 4 one has 

+ (z2 - 1)2 = (8z 4 - 8z2 + 1) +""z2 - 1 (8z 3 - 4z), 

thus, T4 = 8z 4 - 8z 2 + 1, U 3 = 8z 3 -4z. 

2 For the T-polynomials one has (cf. (12) in §7.3): 

1 l -.t. w + w-I 
Tl (z)="2(w +w ), if z=-2-' 

(7) 

For, with w = eO., there follows Tl (cos $) = cos (k$); with w = ± eV one obtains precisely (5). 
(Editors' remark) 
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§7.3. Expansion in T-polynomials 

By T-expansion of a functionf (x) on the interval(l) [-1,1] we mean 
a representation 

(8) 

The convergence properties of this series on the interval I x I ::; 1 can be 
read off at once from the coefficients (T-coefficients): 

Theorem 7.2. If 

(9) 

converges, then the series in (8) converges uniformly and absolutely for 
all x with I x I ::; 1. 

On the other hand, convergence of (9) is not a necessary condition 
for convergence of the series in (8). For example, 

is convergent for all x with Ix I ::; 1 [to f (x) = : sign (x)], although not 

uniformly. Nevertheless, only those T-expansions for which (9) con­
verges are useful in practice. 

The practical importance of a T-expansion, in fact, derives precisely 
from the convergence of this series (9): for any e > 0, we can then indeed 
find a N C€.) such that 

hence also 

00 

L. CkTk(X) < €. for Ix I ::; 1. 
k=N + 1 

1 Every other finite interval can be transformed to [-1,1] in a trivial way. 
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Now 

as sum of polynomials of degrees at most N, is itself a polynomial in x of 
degree ~ N, and, if (8) holds, one has 

thus 

I (x) - p (x) = L CkTk(X), 
k=N+ 1 

I I(x) - p (x) I < e for I x I ~ 1. 

By truncating the T-expansion of I (x) one thus obtains arbitrarily accu­
rate approximations to I (x) over the whole interval I x I ~ 1. It is true, 
however, that the truncated T-expansion, as a rule, is not the best approxi­
mation in the sense of Chebyshev (cf. §7.6). 

Example. For I x I ~ lone has (derivation later) 

4 1 00 [ 3 ] k 
I (x) = 17 + 15x ="2 + l:l -"5 Tk(x). 

Truncating the series after the T 6-term yields 

p (x) = .5 - .6T 1 (x) + .36T 2(X) - .216T 3 (x) 

+ .1296T 4(X) - .07776T sex) + .046656T 6(X), 

a polynomial which, since LIck I = .069984, deviates from I (x) on the 
k=7 

interval Ix I ~ 1 by at most .07. 

Our efforts, in the following, will be directed towards obtaining T­
expansions in as simple a way as possible. To begin with, we remark that 
from Fourier series one obtains T-expansions in a trivial way. Through 
the substitution x = cos <\>' indeed, (8) transforms into 

Co 00 

I (cos <\» = """2 + L Ck cos (k<\». 
k=l 

(10) 

On the left we have a periodic even function of <\>, which is developed into 
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a pure cosine-series. As is evident from the right-hand side, the Fourier 
coefficients of this function are the desired T-coefficients. 

Example. T-expansion of sin x in Ix I ::; ~. The interval Ix I ::; ~ 
must first be transformed to I x I ::; 1, which is done by seeking a 
representation 

One then has indeed 

Co 00 [2X] sin x = - + L CkTk -
2 k=l 1t 

1t 
for Ix I ::; 2"' 

Now, with x = cos <\>, we have 

with 

sin [ ~ cos <\>] = c20 + i: Ck cos (k<\», 
k=l 

211t [1t 1 { 0 if k is even, 
Ck = -:;; 0 sin 2"cos <\> cos (k<\»d<\> = [ ] 

2(-1)nJk ~ ifk=2n+lisodd, 

where Jk is the Bessel function of order kCZ). One thus obtains 

sin [ ~ x] = 1.13364818T I (x) - .13807178T ,(x) + .00449071T ,(x) 

- .00006770T7(X) + .00000059T9(x) - ... + ... 

Because of the rapid convergence of this series one has, already with the 

tenns given here. an approximation of sin [ ~ x] accurate to about 8 

2 Cf., e.g., Watson G.N.: A Treatise on the Theory of Bessel Functions, 2nd ed., Universi­
ty Press, Cambridge, 1948, Section 2.2. (Editors'remark) 
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digits. 

T-expansions can also be obtained easily with the help of Laurent 
series. Let indeed f (z) be real for real z and analytic in an ellipse with 
foci at -1 and +1. By means of 

z=~[w+!J 
this ellipse, whose larger half axis shall be a, is mapped into the annulus 

whereby to each z there correspond two points (wand w-1). Then 

(11) 

is analytic in this annulus and has the additional property g(w) = g(w-1), 
so that the Laurent series 

1 00 

g(w) ="2 L Ckwk 
k=-oo 

has real coefficients with Ck = Lk. Consequently, 

1 00 w k + w-k 

g (w) = "2 Co + L Ck 2 
k=l 

Now with w = ei~ one obtains z = cos <\>, hence 

Co 00 

fez) = T + L CkTk(Z) . 
k=l 

Example. Let us derive the T-expansion of 

4 
f(z)= 17+15z 

(12) 
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Here we get 

( ) f[ W+w-l 1 4 gw- -
- 2 -17+ 1; [w+W-l] 

8w 
5 3 
2 2 -----

3w+5 5w+3 15w2 + 34w + 15 

= 1- [1 - 2. w + [2.] 2 w 2 - ... ] _ 1- [2. .1 - [2.] 2 _1 + ... J 
2 5 5 2 5 w 5 w2 

+ ... , 

thus 

1 OO[ 3]k 
J(z) ="2 + k~ -5 Tk(Z). (13) 

§7.4. Numerical computation of the T-coefficients 

Since the Fourier coefficients of the periodic function f (cos q,) are 
the desired T-coefficients of J (z), one finds the latter by 

2 I1t 
Ck = -; 0 J (cos q,) cos (kq,) dq,. (14) 

[We used here the fact that (10) is a pure cosine-series.] The integrals can 

be evaluated with the trapezoidal rule: by introducing the nodes q,j = j ~ 
(j = 0,1, ... , N) one gets 

(15) 

where " means that the tenns for j = 0 and j = N are to be added with 
only half their values. 
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If the expression on the right of (15) is denoted by CN,to one has, if 
f (cos <1» is Riemann integrable: 

lim CN Jc = CJc (k = 0,1 , . . . ). 
N-+oo ' 

(16) 

Based on this relation (16), there is a primitive method for the calcu­
lation of the T-coefficients: 

If the first m + 1 coefficients co, C l' ... 'Cm of the T-expansion of 
f (x) are desired, one computes for an increasing sequence of N-values 
(e.g. N = 4, 8, 16, 32, ... ) the CN,Jc (k = 0,1, ... ,m) and one continues 
to do so until the CN,Jc practically no longer change. 

More precise infonnation about the quality of the convergence 
CN,Jc ~ CJc can be obtained from the following representation, in which the 
CN,k are expressed in tenns of the exact T-coefficients. (This relation 
always holds when LIck I < 00, which is the case, e.g., if f (x) is twice 
continuously differentiable(l ).) 

CN,k = Ck + C'1N-k + C'1N+k + C4N-k + C4N+Jc + C6N-k + .... (17) 

One sees from this that, in general, cN,k can be a good approximation to 
Ck only if 1C'1N-kl « lek 10 If the Ck have a tendency to decrease, this 
means that in any case k must be < N; in other words: with the fonnula 
(15) one can at best approximate the coefficients co, Cl, ... , CN-l. 

Connection with interpolation. The function 

is a polynomial of degree N, for which (17) yields the following represen­
tation: 

1 Derivation, e.g., in Fox L., Parker lB.: Chebyshev Polynomials in Numerical Analysis, 
Oxford University Press, London 1968, Section 4.3. (Editors'remark) 
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N-l 

+ L (Ck+ C2N-k+ C2N+k+ C4N-k+ .,. )Tk(x) 
k=l 

187 

In this expression every coefficient ck occurs exactly once, only Ck is not 
multiplied by Tk(x), but by T t (x), where e = e(k) is the function depicted 
in Fig. 7.2. 

l( k) 

~-o 2N 4N 6N k 

Figure 7.2. The index function e (k) 

Therefore, 

and 

Co 00 

PN(x) = "2 + L CkTt (k) (x), 
k=l 

PN(X) - f (x) = L ck[Tt(k)(X) - Tk(x)] 
k=N+l 

(note thate(k) = k for k ~ N). 

From this, there follow two facts: 

00 

1) If LIck I < 00, then lim PN(x) = f (x), uniformly for 
k=l N~oo 

Ix I ~ 1. 

2) For x = Xj = cos [ ~ lone has PN(Xj) = f(xj). 
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Proof of 2): One has 

Tt(k)(X) - Tk(x) = cos (t(k)e!» - cos (ke!» 

2 . [t(k) - k.t.] . [t(k) + k .t.] =- sm 2 'I' sm 2 '1" 

or, for x = Xj' 

T,(,)(xj) - T,(xj) = - 2 sin [ t(k];; k jlt] sin [ t(k]; k jlt]. 
However, since always eithert(k) - k ort(k) + k is a multiple of 2N, one 
has for all k 

The statement 2) means that the polynomial PN(x) is nothing but the 
interpolation polynomial of the function f (x) for the nodes 

Xj = cos [ ~] (j = 0 •...• N). tI1C so-called Chebyshev abscissas. One 

could therefore compute PN also with one of the known interpolation pro­
cedures. The route via the coefficients CN,k is called Chebyshev interpola­
tion. 

Together with statement 1) one obtains 

Theorem 7.3. The interpolation polynomial PN(x) of degree N for 

the nodes Xo, ... ,xN, where Xj = cos ~, tends to f (x) as N ~ 00 (uni­

formly in xfor Ix I ~ 1), providedf has the expansion (8) and the series 
(9) converges. 

We are witnessing here the remarkable fact that the interpolation 
polynomial for a suitable distribution of the nodes converges towards the 
function, and in fact unifonnly on a certain interval (here Ix I ~ 1). This 
theorem would not be true for an arbitrary distribution of nodes, espe­
cially not for 

1 2. 
X· =- + - J 

J N ' j = 0, ... ,N (N ~ 00). 
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Numerical illustration. The T-expansion for the function f (z) = 
4/(17 + 15z) was already computed analytically and given in (13); one has 
Ck = (_.6)k. For comparison we give in Table 7.1 approximations CN,k for 
these coefficients, computed numerically according to formula (15), 
whereby for various N the CN,O,"" CN,N were determined each time 
from N + 1 ordinates. At the bottom of the table one finds the (rounded) 
exact Ck (k = 0, ... , 20). 

Table 7.1. Numerical computation of the T-coefficients 

N CN,O, ... ,CN,N 

1 2.1250000 -.9375000 
2 1.2977941 -.9375000 .4136029 
3 1.0978786 -.7109291 .5135607 -.2265709 
4 1.0341662 -.6387217 .4136029 -.2987783 .1318140 
5 1.0121668 -.6137890 .3790884 -.2454779 .1773282 -.0782330 
6 1.0043631 -.6049448 .3668452 -.2265709 .1467155 -.1059843 

.0467578 

7 1.0015685 -.6017776 .3624608 -.2198002 .1357530 -.0879006 
.0635019 -.0280156 

8 1.0005644 -.6006396 .3608855 -.2173674 .1318140 -.0814109 
.0527175 -.0380820 .0168009 

9 1.0002031 -.6002302 .3603187 -.2164922 .1303969 -.0790741 
.0488377 -.0316248 .0228451 -.0100787 

10 1.0000731 -.6000829 .3601147 -.2161772 .1298869 -.0782330 
.0474414 -.0293007 .0189736 -.0137062 .0060468 

20 1.0000000 -.6000000 .3600000 -.2160000 .1296000 -.0777600 
.0466560 -.0279936 .0167962 -.0100778 .0060468 -.0036283 
.0021774 -.0013071 .0007853 -.0004730 .0002868 -.0001772 
.0001147 -.0000829 .0000366 

00 1.0000000 -.6000000 .3600000 -.2160000 .1296000 -.0777600 
.0466560 -.0279936 .0167962 -.0100777 .0060466 -.0036280 
.0021768 -.0013061 .0007836 -.0004702 .0002821 -.0001693 
.0001016 -.0000609 .0000366 
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§7.5. The use of T-expansions 

If the T-coefficients decrease rapidly enough, the polynomial P (x) 
obtained by truncating the T-expansion can be reexpanded in powers of x. 
Consider, for example, the T-expansion for tan-I x in the interval I x I :5: 1: 

1 co k (-.f2 - 1)2k+I 
tanx=2k~(-1) 2k+1 T2k + I (X). (19) 

Truncating this series after the T 9-term and rounding the coefficients to 4 
places after the decimal point, one obtains 

P(x) = .8284TI - .D474T3 + .0D49T5 - .0006T7 + .0001T9. 

The deviation P (x) - I (x) comes from two sources: 

a) Omission of the terms with T 11, T 13, TIS, . .. . The sum of 
the moduli of the omitted coefficients equals 13810-7. 

b) Rounding of the remaining coefficients c 1> c 3, C 5, c 7, c 9 to 4 
places after the decimal point. The sum of the moduli of the 
changes equals 93010-7. 

The total change amounts to 106810-7, hence 

I P (x) - I(x) I <.00011 for I x I :5: 1. 

For the transformation into a power series one considers the rounded 
coefficients as exact and also makes use of the exact integer coefficients of 
the Tk ; then the transformation becomes exact. 

8284TI = 8284x 
-474T3 = 1422x - 1896x3 

49T5 = 245x - 980x3 + 784x5 

- 6T7 = 42x - 336x3 + 672x5 - 384x7 

T9 = 9x - 120x3 + 432x5 - 576x7 + 256x9 

P(x) = 1.0002x - .3332x3 + .1888x5 - .0960x7 + .0256x9 

This is now a polynomial of degree 9 which for I x I :5: 1 deviates from 
tan-Ix by at most .00011. Note that it does not agree with the beginning 
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of the tan-1 series; the small deviations, indeed, are of enormous impor­
tance, because for 

Q(x) =x - .3333x3 + .2x s - .1429x7 + .1111x9 

the maximum error at x = 1 is Q (1) - 1t/4 = .8349 - .7854 = .0495, 
which is about as poor as the first term alone of the T-series, i.e., 
P 1 (x) = .8284x. 

Reexpansion in powers of x, however, becomes disadvantageous as 
soon as the T-coefficients decrease more slowly than (...[2 - 1)k; more pre­
cisely: as soon as 

m 
L (2.414)k I Ck I 

r = _k_=O ____ _ 
(20) 

becomes much larger than 1. In the case of 

!(x)=_1_ tan- 1 [...f48xJ = i: (_1)k .75k T 2k + 1(X), 
-{3 k=O 2k + 1 

for example, one obtains a rough approximation by 

P(x) = T1 - .25T3 + .11Ts - .06T7 + .03T9 - .02T l1 + .01T13 , 

from which by reexpansion as above there results 

P(x) = 3.34x - 18.20x3 + 75.20xs - 177.28x7 + 230.40x9 

_ 153.60x 11 + 40.96x 13 . 

Since here IP(x) I < 1 (for Ix I ~ 1) , upon evaluation of this polynomial 
one obtains the value as a difference of large numbers, hence with cancel­
lation. This danger is already signaled by the fact that 

13 
L (2.414)k I Ck I 

r = k=1 13 = 943.85 . 

L ICk l 
k=1 
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Computation with T-expansions. In cases where r is large, reexpan­
sion in powers of x is ill-advised, numerically; in such cases one should 
rather compute directly with the polynomial given in the form 

We mention here only two operations: 

a) Computation of a function value. Introducing the auxiliary func-
tions 

Ct 00 

Pt(X)=T+LCt+kTk(X) (t=0,1, ... ), (21) 
k=l 

where cN+l = CN+2 = ... = 0, one obtains [by using (3)] 

Ct-l [ Ct] [ Ct+l] = -2 - + Ct x + 2x Pt (x) - T - Pt + 1 (x) + -2 - , 

or 

Noting that PN+l = PN+2 = 0, and applying this formula of 
C Ie nshaw( 1 ) (with a fixed numerical value of x) for e = N + 1, N, ... , 1, 

1 Clenshaw C.W.: A note on the summation of Chebyshev series. Math. Tables Aids 
Comput. 9, 118-120 (1955). 



§7.S. The use ofT-expansions 193 

one obtains directly the desired function value P(x) = Po(x). The algo­
rithm corresponds to the Homer schemeCZ). The derivative P'(x) = Po (x) 
is computed analogously by the recursion 

PI, -1 (x) = 2pt (x) + 2xpt'(x) - PI, + 1 (x), (23) 

which is obtained by differentiation of (22). 

b) Multiplication of two T-expansions: 

When multiplying out this product, there occur terms of the kind 
Tk(x)Tt (x); according to (4), however, 

TkTt = ~ [Tk+ t +Tk- t ], 

where one has to define T _/x) = T/x). In this way one finds 

eo 00 • 1 +00 

f(x)g(x)=T+ L ekTk(x) WIth ek="2 L dlk-tICltl· (24) 
k~ t=-oo 

c) The remaining operations can be carried out in the same way; 
only the expansion of a quotient 

2 With the notation analogous to (21), 
-

p,(x) = L C'+lXl , where CN+1 = CN+2 = ... = 0, 
l~l 

the formation rule of the Horner scheme (cf. footnote (1) in §4.4) reads: P'_I(X) = 
C'_l +xp,(x). (Editors'remark) 
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again in a T-series, gives some trouble. Division with remainder of two 
polynomials, on the other hand, does not present any particular 
difficulties. 

§7.6. Best approximation in the sense of Chebyshev (T-approximation) 

In contrast to the T-expansion, which aims at a representation 

of the given function, and from which by truncation one obtains a rough 
approximation P (x) of f (x), we now propose to solve the following prob­
lem (T-approximation): 

Let f (x) be continuous on the interval I = [a,b]. From among all 
polynomials P (x) of degree ~ n determine the one for which 
I I £ I I = I I p - f I I becomes minimum. Here, I I £ I I is defined by 

I I E I I = max I e(x) I , 
xel 

i.e., I I· I I denotes the maximum norm(l). 

This problem, as we shall see, has exactly one solution e), which as 
a rule, however, does not coincide with the T-expansion truncated after 
the Tn-term. 

Theorem 7.4 (Alternation theorem). Let P (x) be the nth degree 
polynomial of best approximation for the (continuous) function f (x) on 
the interval I. Then there exist in I (at least) n + 2 points 
Xo > Xl > x2 > ... > Xn+l in which the error function 
£(x) = P (x) - f (x) alternately attains its extreme values ± I I £ I I. That 
is, 

£(Xk) = (-lih, k = 0, ... , n + 1, with h =± 11£11 . (25) 

I Here and in analogous cases the author wrote I I £(x) I I in place of I I £ I I . 

2 The existence of the polynomial of best approximation, not actually proved below, fol­
lows from a standard compactness argument in functional analysis; see, e.g., Todd J. (ed.): 
Survey of Numerical Analysis, McGraw-Hill, New York, 1962, pp. 129f. (Translator's re­
mark) 
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These n + 2 points xo, Xl, ... 'Xn+l are called an alternation of f 
Even though P(x) is uniquely detennined, there can be several alterna­
tions. 

Example. Let 1= [-1,1], f(x) = Tn+l(x). The nth degree polyno­
mial of best approximation is here P (x) E 0. The alternation (here the 
only one) consists of the points 

in which 

xk = cos [~l (k = 0,1, ... , n + 1), 
n+I 

one thus has I I e. I I = 1. 

Proof of the alternation theorem. It is always possible to subdivide 
I, beginning from the upper end, into subintervals 1o, 110 • •• , It, such 
that e.(x) in Ik assumes only extrema (-I)kh, whereby for all k either 
h = I I E I I or h = - I I e. II (cf. Figure 7.3). Now either there exists the 
asserted alternation with n + 2 points, or such a subdivision is possible 
with e s:; n, thus with at most n + 1 subintervals. If e.(x) has the form 
shown in Figure 7.3, then 3 intervals suffice, since the 3 consecutive 
extrema of equal sign can be collected in one interval. 

-[hi '====f=.~~~~===~==*..~=.-"= 

Figure 7.3. 
12 11 10 

To the proof of the alternation theorem: subdivision 
of I into subintervals 

If now a subdivision with e s:; n is possible, there is a polynomial 
R (x) of degree e s:; n with the property 

sign (R(x» = (_I)k sign (h) for x E flo k = 0, ... , e, 
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(sign (h) is the sign of the extrema in 10, thus +1 in the above figure) and 
therefore one has for each y > 0: 

E(X) - yR (x) < E(X) in the intervals with positive extrema; 

E(X) - yR (x) > E(X) in the intervals with negative extrema. 

Consequently, for sufficiently small y> 0, 

IE(X)-yR(x)1 < IIEII forall XE I, i.e., 
I I P - yR - fl I < I I P - fl I, 

so that the polynomial P (x) - yR (x), contrary to the assumption, is a 
better approximation. 

Theorem 7.5. (Uniqueness theorem). If a polynomial of degree n 
has the property that in n + 2 points Xo > Xl :> X2 > ... > Xn+l of the 
interval I 

and in addition 

IP(x) - f(x) I ~ Ih I for all x E I, 

then P (x) is the uniquely determined nth degree polynomial of best 
approximation for the (continuous) function f (x) on the interval I. 

Proof The curve y = E(X) = P(x) - f (x) traverses the strip 
I x (-I h I ~ Y ~ I hi) at least (n + I)-times, if it has n + 2 extrema ± h 
(cf. Fig. 7.4). The function El (x) = PI (x) - f(x) fonned with another 
polynomial must intersect each of these n + I branches at least once, if 
one wants I I El I I ~ I I E I I; we therefore have, at n + I points, 

El (x) = E(x), PI (x) - f(x) = P (x) - f(x), 

thus PI (x) = P (x). Since both polynomials are of degree n, it follows, 
necessarily, that PI (x) == P(x). 
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+Ihl ,...--,.__,.,-------"-------7.....:__-------.,, 

Figure 7.4. To the proof of the uniqueness theorem: points of 
intersection of £(x) and £1 (x) 

There remains the possibility that £1 (x) intersects two branches at 
the same time (in an extremum), so that these two branches then contri­
bute only one point of intersection S (cf. Figure 7.5). Near S, however, 
one has £1 (x) ~ £(x), hence also PI (x) ~ P(x), so that S is a double point 
of intersection. With this, the uniqueness is proved. 

Figure 7.5. To the proof of the uniqueness theorem: double 
point of intersection of £(x) and £1 (x) 

As to the construction of the polynomial of best approximation, we 
first need some terminology: n + 2 points Xo > Xl> ... > Xn+1 in I are 
called a reference, and a polynomial R (x) of degree n which at these 
points alternately has the same (in absolute value) deviations ± h from 
f (x), hence the property 

(26) 

is the associated reference polynomial. (h can be positive or negative.) 
I h I is called the reference deviation for the reference xo, xl, ... , Xn+1. 

Theorem 7.6. The reference polynomial R (x) (and with it also h) is 
uniquely determined by f (x) and the reference xo, xl, ... , xn+1. 
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Proof The ordinates S (Xk) = f(xk) (k = 0,1, ... , n + 1) determine 
uniquely a polynomial S of degree n + 1; let a. be its leading coefficient. 
Furthermore, the n + 2 conditions T(Xk) = (_1)k also determine uniquely a 
polynomial T of degree n + 1; let (3 be its leading coefficient. We have 
(3"# 0, since T(x) already has n + 1 sign changes between Xo and Xn+l 

and therefore cannot degenerate to a polynomial of degree n. But then 

R (x) = S (x) - ~ T(x) 

is a polynomial of degree n which at the points Xk assumes the following 
values: 

We thus have 

i.e., R (x) is a reference polynomial with h = - ~. A second reference 

polynomial R* (x) cannot exist, since otherwise R - R* would be a poly­
nomial of degree n with n + 1 zeros; q.e.d. 

It is to be noted, however, that the extrema of the error function 
£(x) = R(x) - f(x) in general exceed ± h, as for example in Fig. 7.6. 

Figure 7.6. Reference and error function 

Indeed, if the reference deviation I h I is at the same time the max­
imum deviation I I R - f I I, then by the uniqueness theorem, R (x) must 
be the polynomial of best approximation. More precisely, one has: 

Theorem 7.7. If the reference polynomial R (x) has the reference 
deviation I h I and the maximum deviation I I R - f I I > I hi, then the 
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polynomial P (x) of best approximation satisfies 

Ih I < liP - fll S;; IIR - fll (27) 

Proof In the same way as in the proof of the uniqueness theorem 
7.5 one can refute the existence of a polynomial Q of degree n with 
I I Q - fl I S;; I hi; such a polynomial, namely, would have at least n + 1 
points of intersection with R (x) and therefore would have to be identical 
to R, which however is not possible. Therefore, P(x) has a maximum 
deviation larger than I hi, but of course at most equal to I I R - f I I. 

Corollary: Among all polynomials of degree n the polynomial of best 
approximation is the one that has the smallest maximum deviation, but 
the largest reference deviation. 

§7.7. The Remez algorithm 

Since the polynomial of best approximation has the largest reference 
deviation, one proceeds as follows to construct it: Choose an arbitrary 
reference Xo > Xl> ... > Xn+l (Xk E l) and determine the reference 
polynomial R and its reference deviation I h I. Then vary the reference in 
such a way that I h I increases. This yields an iterative process which 
generates a sequence of reference polynomials R t with monotonically 
increasing reference deviations I h t I. One hopes that 

lim R t (x) = P(x), 
t~oo 

where P is the polynomial of best approximation. 

Note that the reference deviation is I h I = I - alJ3l , where a and ~ 
are the leading coefficients of the polynomials S and T (introduced in the 
proof of Theorem 7.6). One can compute a and ~ by means of the 
Lagrange interpolation fonnula (see §6.1): 

n+l n+l 1 
a= L WJ(Xk) , ~= L wk(-li, where Wk = ---.;;.--
~ ~ ~~-~ 

But since Wk = (_l)k I Wk I, hence 
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(28) 

h is a weighted mean of the quantities - (-1)k!(Xk). 

Denoting_by Xo > Xl> ... > Xn+l (xk E l) a second, new, refer­
ence, and by I h I the corresponding reference deviation, one has of course 
likewise(l ): 

(29) 

Since the polynomial R belonging to the first reference has only degree n, 
the leading coefficient of the (n + 1)st-degree interpolation polynomial for 
the ordinates R (xk), k = 0, ... , n + 1, vanishes, that is, 

n+l 
L WkR(xk) = O. 
k={) 

With E(X) = R (x) - lex), one thus has 

n+l 
L (-1)kE(xk) IWk l 

Ii = _k_={)_~ ___ _ 
n+l 
L IWkl 
k=O 

(30) 

(31) 

Therefore, h may be viewed not only as weighted mean of the quantities 
_(-1)k!(xk) (cf. (29)), but also as weighted mean of the quantities 
(_1)k E (xk), where E(X) is the error function belonging to the old refer­
ence polynomial R. 

Because of h = (_1)k E (Xk), k = 0, ... , n + 1, we have in addition, 
trivially, 

1 The editors here had to slightly deviate from the original. 



§7.7. The Remez algorithm 

n+l 
L (-Il e (Xk)lwk l 

h= _k_=O ____________ __ 
n+l 

L IWkl 
k=O 
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(32) 

Comparison with (31) now_ shows immediately how the Xk are to be 
changed in order to have I hi> I h I when passing to the new reference 
xo, ... ,Xn+l' For this it suffices, e.g., to replace one of the Xb say Xj' by 
an x for which 

Then, indeed, the new reference, consisting of xo, xl, ... , Xj-l, 

Xj+l' ''':'' , Xn+l and x (in place of Xj), is such that the new reference devia­
tion I h I is the weighted mean of quantities which, with the only excep­
tion of one, occur also in the weighted mean (32) for I hi; this latter, 
missing, quantity has been replaced by a lar,g:er one, causing the mean to 

increase in absolute value, so that indeed I hi> I hi. It is to be noted, 
however, that eCi) and e(Xj) must have the same sign. 

In this way we obtain a particularly transparent variant of the so­
called Remez algorithmCZ); it consists of the following steps: 

1) Take any reference Xo > X I > ... > Xn+l and determine h 
according to formula (28); thereupon, the reference polynomial R (x) can 
be evaluated through interpolation at n + 1 of the n + 2 reference points, 
in which one knows, after all, that R (Xk) = !(Xk) + (-Ilh. 

2) Determine the maximum I I e I I of the modulus of the error func­
tion e(X) = R (x) - ! (x) on the interval I. Either this maximum is equal 
to I hi; then it is attained at n + 2 points with alternating signs of e(X), so 
that R is the polynomial of best approximation. Or one has 
I I e I I > I hi; then this maximum of I e(X) I is attained at a point x 
(:;i: Xj' j = 0, ... , n + 1). 

2 In the most common variant of the Remez algorithm one chooses all reference points 
afresh when passing to a new reference, and in fact alternately equal to the maximum and 
minimum abscissas of the error function (or first approximations thereof). See, e.g., Mur­
naghan F.D., Wrench J.W., Jr.: The determination of the Chebyshev approximation poly­
nomial for a differential function. Math. Tables Aids Comput. 13, 185-193 (1959). (Edi­
tors' remark) 
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3) Construct a new reference xo, xl, ... ,Xn+l consisting of X and 
n + 1 of the current reference points, i.e., a reference point Xj is replaced 
by X. The choice of Xj is dictated by the conditions 

(_I)k e (Xk), k = 0, ... , n + 1, have the same sign . 

We distinguish three cases: 

a)Xt >X>Xt+I' 

In the sequence e(Xt), e(X), e(Xt + I) we then have two equal signs in suc­
cession; in order to reestablish the alternating sign sequence, that point of 
the pair Xt, Xt + I must be dropped for which e(X) has the same sign as 
e(X), thus: 

Xt =X if sign (e(Xt» = sign (e(X», 

Xt + 1 = x if sign (e(xt + 1» = sign (e(X). 

b) x > x 0, sign (e(Xo» '* sign (e(X». 

Since the sequence e(X), e(Xo), e(Xl), ... already has alternating signs, 
only Xn+l can be dropped in order to satisfy the sign condition. Then 

Xo = x, Xk = Xk-l (k = 1, ... , n + 1) . 

In this case, by the way, one has sign (h) = - sign (h). 

c) X > x 0, sign (e(Xo» = sign (e(X». 

Since here the sequence e(X), e(Xo), e(Xl), ... has two equal signs at the 
beginning, the sign condition is fulfilled by dropping Xo. Thus: 

Xo = x, Xk = xk (k = 1, ... , n + 1) . 

If x < Xn+l' one proceeds similarly as in the cases b) and c). 

The new reference, of course, then again undergoes the same pro­
cess, etc.; in this way one obtains a sequence of references with the pro­
perty that the corresponding reference deviations I he I form a 
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monotonically increasing sequence, which therefore converges (I e(X) I is 
an upper bound for all I he I). It can be proved that lim I he I is equal to 
the reference deviation of the polynomial of best approximation, which, as 
we know, coincides with the maximum error of this polynomial. A more 
detailed analysis even shows that the reference polynomials Re converge 
uniformly to the polynomial of best approximatione). 

Nwnerical example. Approximate the function 

1 I (x) = -­
l+x 

on the interval [0,1] by a polynomial of degree 2. As initial reference we 
choose 

Xo = 1, Xl = .75, X2 = .25, X3 = o. 

The quantities occurring during the computation of the reference polyno­
mial are summarized in the following schema: 

Xk I (Xk) Wk R(Xk) 

1 .5 5.33333 .50714 
.75 .57143 -10.66667 .56429 
.25 .8 10.66667 .80714 
0 1 - 5.33333 .99286 

(X = -.22857 13 = 32.00000 => h = .00714 

One gets R (x) = .99286 - .82858x + .34285x2. The error function 
e(x) = R (x) - I (x) has its maximum, in absolute value, approximately at 
x = .2 with the value e(X) = .00752 (cf. Fig. 7.7). 

3 See, e.g., Meinardus G.: Approximation of Functions: Theory and NU11I£rical Methods, 
Springer-Verlag, New York 1967, Theorem 83. (franslator's remark) 
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0.01 

-0.01 

Figure 7.7. The error function E(X) for the initial reference 

Since E (.25) = .00714, one must replace X2 = .25 by x = .2: 

Xk f(Xk) Wk R(Xk) 

1 .5 5 .50728 
.75 .57143 -9.69697 .56415 
.2 .83333 11.36364 .84061 
0 1 -6.66667 .99272 

a = -.23814 ~ = 32.72728 => h = .00728 

The extremum of IE(X) I lies approximately at x=.7, where 
E(X) = - .00755. One must replace Xl = .75 by x = .7: 

xk f(Xk) wk R(Xk) 

1 .5 4.166667 .50735 
.7 .58824 -9.52381 .58088 
.2 .83333 12.50000 .84068 
0 1 -7.14286 .99265 

a = -.24510 ~ = 33.33333 => h = .00735 

At this point, the error function E(X) is practically leveled. The resulting 
polynomial is 

R (x) = .99265 - .82849x + .34321x2 . 
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Notes to Chapter 7 

§7.1 While Weierstrass's theorem is of considerable theoretical interest, it is of lit­
tle use in practice, since it gives no indication of how large a degree the polynomial P (x) 
may have to have in order to achieve a given accuracy, let alone how one might go about 
constructing it. The questions alluded to near the end of this section are related to the 
condition of polynomial bases; for this, see, e.g., Gautschi [1984]. 

§7.2 The classical source on Chebyshev polynomials and their applications is 
Lanczos's introduction in National Bureau of Standards [1952]. More recent accounts can 
be found in the books of Fox & Parker [1968], Rivlin [1974] and Paszkowski [1975], the 
last containing the most extensive treatment of computational methods related to Che­
byshev polynomials and Chebyshev series. 

§7.3 For many special functions in current use, the T-coefficients have been tabu­
lated extensively; see Clenshaw [1962], Clenshaw & Picken [1966], Luke [1969, Vol. II, 
Ch. 17]. Gautschi [1975, § 1.2.3] has references to more recent tables. An important tech­
nique of computing T-coefficients is based on the fact that these coefficients often satisfy a 
linear difference equation of some given order and, in fact, constitute a solution of 
minimum growth. They can therefore be computed very effectively by backward 
recurrence algorithms; see, e.g., Paszkowski [1975, §15]. 

§7.4 The approximation in Eq. (15) is a special instance of the discrete Fourier 
transform. For large and highly composite integers N (for example, powers of 2), the 
discrete Fourier transform can be evaluated very efficiently by algorithms which have 
come to be known as Fast Fourier Transforms (Brigham [1974], Nussbaumer [1981]). 
Rather than the N 2 operations that one would expect, they require only of the order of 
N log2 N operations, and therefore have found important applications in many problems of 
applied analysis and engineering; see, e.g., Henrlci [1979]. In numerical weather predic­
tion it is not uncommon to compute as many as 15 million real Fourier transforms with 
N = 192, just to arrive at a lO-day forecast (femperton [1983]). 

The polynomial (18) interpolates to f at the extreme values on [-1,1] of the Che­
byshev polynomial TN. The polynomial interpolating at the zeros of TN+l can be similarly 
expressed; see Fox & Parker [1968, p. 32]. 

§7.6 There is an analogous theory of best approximation by rational functions 
(Achieser [1956, Ch. 2]). One again has uniqueness of the best rational approximant, for 
arbitrary prescribed numerator and denominator degrees. It can be characterized by an 
alternation property analogous to the one in Theorem 7.4, but slightly more complicated 
because of the possibility of common factors in numerator and denominator. Also 
Theorem 7.7 has its analogue in rational approximation and so does, therefore, the Remez 
algorithm; see, e.g., Ralston [1967]. 

§7.7 In practice, best rational approximations are usually preferred over best poly­
nomial approximations, because they yield better approximations for the same degree of 
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freedom. A collection of best (or nearly best) rational approximations to some of the 
common special functions can be found in Hart et al. [1968], and additional references in 
Gautschi [1975, §1.1.2]. A number of computer programs for generating best rational 
approximations are available and are referenced in Gautschi [1975, §1.1.3]. 

While the construction of best approximations (by polynomials or rationals) is 
cost-effective for functions that are to be evaluated many times, good approximations such 
as those described in the earlier sections of this chapter usually suffice for occasional use. 
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CHAPTER 8 

Initial Value Problems For Ordinary Differential Equations 

It is a well-known fact that differential equations occurring in sci­
ence and engineering can generally not be solved exactly, that is, by 
means of analytical methods. Even when this is possible, it may not 
necessarily be useful. For example, the second-order differential equation 
with two initial conditions, 

y" + 5y' + 4y = 1 - eX, yeO) = y'(O) = 0, (1) 

has the exact solution 

1 1 -x 2 -x 1 -4x y=---xe --e --e 
4 3 9 36 ' 

(2) 

but when this fonnula is evaluated, say at the point x = .01, one obtains 
with 8-digit computation 

y = .25 - .00330017 - .22001107 - .02668860 = .00000016 , 

which is no longer very accurate. 

In such cases, and in others where an "exact" solution, i.e., a solu­
tion in closed fonn, does not exist, one must resort to numerical methods 
which admittedly yield the solution only approximately, but then right in 
finished tabular fonn. With such "inaccurate" methods one indeed 
succeeds in obtaining a much more accurate approximation to y(.OI) = 
.000000164138 .... 
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§8.1. Statement of the problem 

As a basic model we consider a differential equation of the first 
order with one initial condition, 

y' = I(x,y), Y (xo) = Yo· (3) 

Given here are the value Yo and the function f (x,y), which, depending on 
the context, must be required to have certain continuity properties (e.g., 
continuity and Lipschitz condition in the case of Euler's method). 

However, we treat also systems 01 differential equations, 

dye 
dx =le(X,Yl(X),Y2(X), ... , Yn(x» (t = 1, ... , n), (4) 

with initial conditions Ye (xo) = YOt (t = 1, ... , n), where n unknown 
functions Yl (x), Y2(X), . .. ,Yn(x) are to be determined. We are given 
here the n initial values YOt and the n functions It(X,Yl,Y2,··· ,Yn). 
Such a system (4) can also be written in vector form as 

y' = f(x,y), yeO) = Yo. (5) 

The higher-order differential equation 

yen) = I(x,y,y', ... , y(n-l) (6) 

with initial conditions for y(xo), y'(xo), ... , y(n-l)(xo) can be reduced to 
the case (4) by introducing new variables: one puts 

Y Y Y Y' Y -y" Y y(n-l). 1=' 2= , 3- , ... , n= , 

then Yt = (y(t-l), = yet) = Yt + 1 (t = 1, ... , n - 1) and y~ = (y(n-l), = 
yen) = I (x,y,y', ... , yen-I)~, that is, one obtains 
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11 (X,Yl,···, Yn) ==Y2 

h (X,Yl,···' Yn) ==Y3 

In-l (X,Y 1, ... , Yn) == Yn 

In (x,Yl,·.·, Yn) ==/(X,Yb···, Yn). 

(7) 

Example. From the second-order differential equation with initial 
conditions, 

y"+xy=O, y(O)=O, y'(O) = 1, 

one obtains in this way the system 

, 
Yl = Y2, 
, 

Y2 =- XYb 

Yl(O) = 0, 

Y2(0) = 1. 

§8.2. The method of Euler 

Now in order to integrate Y' = I (x,y), Y (xo) = Yo numerically, the 
x-axis is discretized, that is, partitioned regularly or also irregularly, 
beginning with Xo (see Fig. 8.1). 

r I I I I I I -Xo x, Xl X3 X4 Xs Xs 

Figure 8.1. Discretization 01 the x-axis 

The subdivision points Xk are called support points, while the support 
values Y 1, Y2 , . .. are now precisely the desired quantities. Often, the 
support points are chosen equally spaced; one then has Xk = Xo + kh. 

In general, a numerical method for the integration of (3) consists of 
a computational rule for determining the function value Yk+l (at the point 
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Xk+l) from the values Yh Yk-l,"" Yl,YO which are assumed already 
computed. 

In the method of Euler one determines Yk+l by extending the tangent 
of the slope field at the point (XhYk) until it intersects the ordinate at xk+l 
(see Fig. 8.2). 

~--- - Yk.+l -----

v 
XI h XI.1 

Figure 8.2. The method for Euler 

In formulae, this means that 

Yk+l = Yk + hfk (where fk = f(xk,yk», (8) 

where h denotes the length of the subinterval (Xk,Xk+l)' 

Example. For y' = e-Y, yeO) = 0, Euler's method with constant 
stepsize h = .1 yields the function table 

x Y y' 

0 0 1 
.1 .1 .90484 
.2 .19048 .82656 
.3 .27314 

The exact solution here would be y(x) = In (1 + x) with In (1.3) = .26236. 
The method is thus, unfortunately, rather inaccurate. 

The inaccuracy of Euler's method is especially transparent in the 
example y' = y. With the initial condition Y (0) = 1 and the constant step­
size h, thus Xk = kh, one obtains 
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Yk+l = Yk + hfk = Yk (1 + h), 

hence in general, 

Yn = (1 + h)n . 

At a fixed point x, therefore, one finds upon integration with n steps of 
equal length h = xl n, 

As n ~ 00, h ~ 0, this indeed converges toward the exact value 
Y (x) = eX, but convergence is slow. In first approximation, 

This shows: the numerical integration yields the solution with a relative 
error of hx/2; thus, in order to obtain y(l) with an error of 1 %, one must 
choose h = .02 and thus needs 50 steps (Le., 50 applications of the for­
mula (8)); but in order to bring down the relative error to lcr, one 
already needs 500 000 steps. Upon further reduction of h - and thus 
increase in the number of steps - the rounding errors begin to become 
more and more noticeable, so that eventually the accuracy again 
deteriorates. 

If we have a system (4) that is to be integrated by Euler, we must 
first establish some notation, namely the indexing of the integration steps 
on the one hand, and of the unknown functions Yt (x) on the other: 

We let Ykt denote the numerically computed value of the function 
Yt (x) at the support point Xk; in other words: if we denote the solution 
vector at the point Xk by Yb then Ykt is its tth component. Similarly, we 
let fkt be the tth component of f(Xb Yk), i.e., fkt = ft (Xk' Ykl' Yk2 , ... , 
Ykn)' 
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In place of (8) we then have the fonnula 

Yk+l,t = Ykt + hIke . (9) 

This has to be evaluated in the computer for all e and all k. 

As an example, we once again treat the differential equation 
Y' = e-Y, yeO) = 0, which, for the purpose of eliminating the transcenden­
tal function e-Y , is now transfonned into a system of two differential 
equations. With Y2 = e -YI we have indeed 

so that 
, 

Yl = Y2, 
, 2 

Y2 =- Y2, 

In the first three steps we now get: 

X Yl Y2 

0 0 1 
.1 .1 .9 
.2 .19 .819 
.3 .2719 .75192 

Yl(O) = 0, 

Y2(0) = eO = l. 

, , 
Yl Y2 

1 -1 
.9 -.81 
.819 -.67076 
.75192 -.56538 

Here, an important principle becomes apparent: it is often 
worthwhile to put up with an inflated system of differential equations, if it 
is possible, in this way, to eliminate complicated functions. The evalua­
tion of such a function in a computer takes more time than carrying along 
an additional unknown function. The fact that Y2 = e -YI is here also 
integrated inaccurately is of no consequence, since the integration of the 
function Y 1 is inaccurate anyway. Incidentally, Y 1 (.3) = .2719 turns out 
to be even a bit more accurate than above with direct integration. 

Instability. Stability is a concept that in the theory of differential 
equations has been in use for a long time. A solution of a differential 
equation is said to be unstable, if there are neighboring solutions which 
diverge away from it. For example, 

y" = 6y2, y(1) = 1, y'(1) = -2, 
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has the unstable solution y = l/x2 . There are solutions which diverge 
away from l/x2 ; eight of them are depicted in Fig. 8.3, where those 
traced as solid curves belong to initial conditions y (1) = 1 + E, y' (1) = -2, 
the dotted curves to y(1) = 1, y'(l) =-2(1 +E), with E=± .01, ± .001 in 
each case. 

I 
I 

3.0 I 
I 
I 
I 

2.5 I 
I 
I 
I 
I 

2.0 I 
I 
I 
I 
I 

1.5 I 
I 
I 
I 
I 

1.0 I 
I 

/ 
I 

/ 
0.5 / 

/ 
:--...--_/ 

0.0 
6 

-0.5 

Figure 8.3. Instability for a differential equation of 2nd order 

Here, however, we are not concerned with this kind of instability; 
what we have in mind, rather, is the phenomenon whereby a numerically 
computed solution during the process of integration almost explosively 
diverges away from the exact solution, without the latter being in any way 
unusual. 

If one integrates, for example, 

y' + lOy = 0, yeO) = 1, 

with the constant steplength h = .2, one obtains the following completely 
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absurd values (the exact solution is y (x) = e-1Ox): 

x y 

o 1 
.2 -1 
.4 1 
.6 -1 

-10 1 
10 .13534 

-10 .01832 
10 .00248 
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This is what we call instability of the numerical integration method. 
It occurred here only because the step h was too large. For h sufficiently 
small, Euler's method is stable; as we are about to show, the numerical 
solution as h ~ 0 would indeed converge toward the exact solution, if at 
the same time the number of decimal digits were continually increased. 

Convergence of Euler's method. We want to show now, in the case 
of a single first-order differential equation (3), that the solution deter­
mined by Euler's method converges to the exact solution of the 
differential equation if one chooses all subintervals equally long and lets 
their length h tend to zero (and disregards rounding errors). 

Let Y(x) be the exact solution of (3), i.e., 

y' = f(x,Y), Y(xo) = Yo, (10) 

and y (x) the numerical solution obtained by the method of Euler with 
steplength h. For the proof of the assertion Iy(x) - Y(x) I ~ 0 as h ~ 0, 
we must first of all make a few assumptions: We assume that numbers K, 
L, M> 0 exist such that for Xo :::; x:::; Xo + L, Iy - Yo I :::; 1M the follow­
ing is true: 

If(x,y) I :::; M, 

If(x,y) - f(x, 11) I :::; K Iy -111 , 

If(x,y) - f(~,Y) I :::; K Ix - ~ I 

(11) 

Putting xk = Xo + kh, Y(Xk) = Yk' Y(Xk) = Yk and Ek = Yk - Yk> one 
obtains first from (8) and (10): 
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from which there follows(l): 

(X1+1 

I ilCk I S. h 1!(Xt>Yk) - !(Xt>Yk) I + I h!(Xk,Yk) - J"" ! (x,Y)dx I 

S. hK I Ck I + 11""+1 1!(xt>Yk) - !(x,Y) I dx . 
(12) 

(' 'h!(Xt>Yk) is smeared over the whole interval".) Now, however, 

which, because of (11), reduces to 

Furthermore, 

thus I Y - Yk I S. hM, as long as Xk S. x S. Xk+l S. Xo + L. Therefore, 

hence by (12), 

1 The first assumption in (11), as is easily seen, implies IY1- Yo 1 S.LM for Xl S.Xo +L and 
1 Y(x) - Yo 1 s. LM for Xo S. x S. Xo + L. (Translator's remark) 
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(with C = KM + 10. This means that 

or, with q = 1 + hK, 

lenl ~qlen-ll +Ch2 , 

qlen-11 ~q2ICn_21 +Ch 2q, 

Addition of these inequalities, with £0 = 0, yields 

But now, q - 1 = hK, and, if x = Xo + nh, 

Therefore, 

217 

Thus, en ~ 0 as h ~ 0 (n and h are related by x - Xo = nh), in fact uni­
formly for all x in the interval Xo ~ x ~ Xo + L. Moreover, the error 
bound as a function of h goes to 0 proportional to h. 
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§8.3. The order of a method 

The basic fonnu1a for Eu1er's method, 

Yk+l = Yk + hfk = Yk + hYk , 

simply corresponds to the beginning of the Taylor series 

which, in case of convergence, wou1d yield the exact value of Yk+l. One 
cou1d just as well take more than two tenns of this series and, for exam­
ple, compute Yk+l according to the fonnu1a (Taylor polynomial) 

(16) 

Admittedly, this requires Y;:, y;:', ... , y1N ), which can only be obtained 
by differentiating the differential equation analytically. 

Example. If the differential equation Y' =x2 + y2, y(O) =-1, is to 
be integrated by the fonnu1a (16) with N = 3, one needs 

y"=2x+2yy', y"'=2+2yy"+2(y,)2. 

The first three steps (with h = .1) then give: 

x Y 

o -1 
.1 -.9086667 
.2 -.8307271 
.3 -.7610454 

Y' 

1 
.8356752 
.7301075 

Y" 

-2 
-1.3187004 
-.8130402 

Y'" 

8 
5.7932244 
4.4169430 
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These Yk are correct to 3-4 digits; the exact values are: 

Y(.l) = -.90877245 ... , Y(.2) = -.83088131..., Y(.3) = -.76121865 ... 

Such differentiation, however, is often tedious or even impossible; 
therefore, this method is not in use, and also not recommended. It will 
serve us, however, as a model. 

We apply it to y' = Y, y(O) = 1, and integrate with stepsize h = xln 
from 0 to x. One gets 

hN [ hN 1 Yk+l = Yk + hYk + ... + N! y'f) = Yk 1 + h + ... + N! ' 

thus 

[ 
h2 hN 1 n 

Y = l+h+-+ ... +-
n 2 N!' 

(17) 

[ 
h2 

In Yn = n In 1 + h + """2 + + N
hN

., 1 = n In [e h - i h~ 1 
k=N+l k. 

[ 
00 hk 1 = nh + n In 1 - e-h L, -, . 

k=N+l k. 

For h ~ 0, one therefore has in first approximation: 

hN+1 hN 
In Yn :: nh - n = x - x ---

(N + I)! (N + I)! ' 
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The relative error at the point x therefore is xhN/(N + I)!, that is, propor­
tional to hN. 

Quite generally, one finds that by integrating a given differential 
equation with different stepsizes h (but over the same interval) the error of 
the integration method is proportional, in first approximation, to a certain 
power of h. 

Definition. A numerical integration method has order N, if the 
integration error upon integration from Xo to a fzxed point x has the 
order of magnitude 0 (hN)( 1). 

The reason why a knowledge of this order N, which is characteristic 
for the method in question, is of importance, is that it allows us to tell by 
how much the results are improved when the step is reduced. In general, 
one prefers methods with a large N, since then a reduction of h promises a 
larger gain in accuracy. One should not overlook, however, that such 
methods also make the error grow much more rapidly when h is increased 
(which, of course, is what one wants, in order to reduce the number of 
steps). 

Our analysis for the differential equation y' = y suggests the follow-
ing 

Theorem 8.1. The Euler method has order 1, the method (16) 
order N. 

For the determination of the order of a method, we begin, first of 
all, by considering the local error, that is the error in one integration step. 

Let Y (x) again be the exact solution of the differential equation 
(determined by the initial condition Y(xo) = Yo), YO,Yl , ... the numeri­
cal solution obtained by stepwise integration (with support points xO,Xl , 
... ), whereas y(x) is the exact solution of the differential equation deter­
mined by the initial condition 

Y(xk) = Yk (k fixed) (19) 

(cf. Fig. 8.4). 

1 And this must be true for every differential equation (3) with a right-hand side lex,y) 
which is sufficiently often differentiable. (Editors' remark) 
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Y(x) 

y(x) 

Yoi""'= ;:: ry;. }hBk 
Yk.' 

Figure 8.4. To the definition of the local error 8k 

Then the quotient 

(20) 

is called the local errore) of the method at step k (from Xk to Xk+l). If, 
for the moment, one assumes 8k known and makes use of the fact that 
51k+l as the solution of the differential equation 51' = f (x,y) with initial 
condition (19) can be written in the form 

one obtains 

The numerical solution, therefore, is at the same time the exact solution of 
a differential equation 

y' = f (x,y) + 8k 

2 In the literature one usually designates the quantity Yl+l - Yl+l = hal as local error, 
whereas al in (20) is called local error per unit step. (Editors' remark) 
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on the interval Xk ~ X ~ Xk+l' On that interval, this solution y(x) thus 
satisfies y' - y' = a k; therefore, I y - Y I ~ h I ak I, and, existence and uni­
fonn boundedness of afray being assumed, f (x,y) - f(x,'j) = O(hak ), that 
is, 

y' = f (x,y) + ak + O(hak ) . 

Consequently, for all k and x (Xk ~ X ~ Xk+l) one has 

y' - Y' = f (x,y) - f(x,y) + ak + O(hak ); (22) 

the error E = Y - Y thus satisfies in first approximation (for small h) the 
differential equation 

E'= af 
ay 

y=y 

where k = [(x - xo)/hJ. The following now holds: 

Theorem S.2. If there exists a natural number N such that 

ak 
lim N = cl>(x) 

h--+O h 
kh =X -Xo 

(23) 

(24) 

is a (not identically vanishing) continuous function, then the method in 
question has order N, and one has in first approximation 

E(x) ::: hN E(x), (25) 

where E(x) is the solution of the differential equation 

dE af 
dx = ay (x,Y(x)) E + cl>(x), E(xo) = 0 . (26) 
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What is not being said here, however, is the fact that the order N 
depends only on the method, and not on the differential equation, pro­
vided f satisfies a Lipschitz conditione). 

Example. In the method of Euler, the local error is 

(yk+hyk)- (Yk+hYk+ ~ h2Yk + ... ) 
ek=--------------h------------- h " h 2 

III --Yk --Yk -'" 
2 6 

Therefore (considering that convergence has already been proved), 

e 
lim -hk = - 21 Y"(x). 
h~O 

kh =x -Xo 

The method has thus order 1, and 

lim Y (x) - Y (x) = E(x), 
h~O h 

where E (x) is the solution of 

E' = ~; (x,Y(x)) E - Y';(X), E(xo) = O. 

Note: The statement concerning the order is not valid if Y" is not 
continuous, as for example in the differential equation 

which has, among others, the solution Y(x) = 1.4l5l37653 ... x 312 . 

3 Actually, one needs sufficient smoothness of f. (franslator's remark) 
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§8.4. Methods of Runge-Kutta type 

A general approach for constructing methods of higher order 
proceeds as follows: 

In each integration interval [XtoXk+l] a number of auxiliary support 
points XA, XB, Xc , . . . are chosen, whose relative positions within the 
interval are defined by factors PA, PB, Pc , ... (which for the method in 
question are fixed once and for all): 

XA = Xk + PAh, 

xB =Xk+PBh, 

Xc = Xk + Pch, etc. 

--- --------- Yc 

YB 

Figure 8.5. Method of Runge-Kutta type (Example with 3 
auxiliary points A,B,C) 

One then defines (cf. Fig. 8.5) 

YA = Yk + ha~Yk' 
YB = Yk + h(agYk + a~YA)' 

Yc = Yk + h(a~Yk + a XYA + a fYB), 

until, finally, 

YA = f(xA,YA), 

YB = f(xB,yB), 

Yc = f(xc,Yc), etc. 

(27) 

(28) 

The a's are determined such that the final value Yk+l' the only one used 
later on, agrees as closely as possible with the exact value, that is, in such 
a way that the method achieves as high an order as possible. For this, it 
is necessary, first of all, that 
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PA = ag 
PB = aU + a1 
Pc =a€ +ax +a~ 

(30) 

which is equivalent to the differential equation y' = 1 having intennediate 
values YA. YB. Yc •... and final value Yk+l that are all exact. 

A method of Runge-Kutta type is therefore uniquely detennined by a 
triangular matrix(4) 

ag 
aU a1 o 
a€ ax a~ 

l:= (31) 

a~ af aN af 
ao aA aB ay az 

the p-values are simply the row sums. 

Examples. a) The method of Heun is given by the matrix 

(32) 

There is only one auxiliary point (cf. Fig. 8.6). 

4 In the literature a row of zero elements is usually added on top of the matrix to indicate 
that the evaluation off at (xl.Yl) utilizes no auxiliary values. (Translator's remark) 
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and the final value is computed according to 

h (y' ') Yk+l = Yk + '2 k + YA . (34) 

------ Yk+l 

Figure 8.6. Method of Heun 

Determination of the order of this method: Let yex) again denote the 
exact solution for the initial condition yeXy) = Yk' Then, with 
Yk+l = Y(Xk+l), one first has 

YA 

I 

YA 

h (y' ') h (y' _, h 2 "af ) 
Yk+l = Yk + '2 k + YA = Yk + '2 k + Yk+l - 2 Yk ay - ... . 

In comparison, as is easily verified, 

(Beginning with the h 3-term, the terms of this series, by the way, 
correspond precisely to the error of the trapezoidal rule, cf. §8.6.) There­
fore, 
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Yk+l - Yk+l = h2 [Yk' _ af Yk 1 + O(h 3 ) . 
h 12 ay 4 

On the right we have the local error Ok; since 

. Ok Y'" Y" af 11m -=-----
h ~ 0 h 2 12 4 ay (35) 

y=y 

the method of Heun, according to Theorem 8.2, has order 2. Byestimat­
ing the expressions occurring on the right in (35) one can determine a 
suitable stepsize. 

One occasionally recommends as a criterion for the choice of h the 
agreement between YA and Yk+l. The fact that one can be taken in, that 
way, is shown by the example y' = x2 + y2 with Y (0) = -1, h = 1. 
Indeed, for k = 0 one obtains YA = Yk+l = 0, even though the value of the 
exact solution is Y (1) = -.23 . .. . 

b) The classical Runge-Kutta method is defined by the matrix 

1 
2 

0 1 
2 

LRK = 0 0 1 

Interpretation (cf. Fig. 8.7): 

1 1 1 - -
6 3 3 

h , 
YA = Yk +"2 Yko 

0 

1 
6 

(36) 

(37) 
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(38) 

This method has order 4 (without proof(I )). 

Yc ---
----

Figure 8.7. Classical Runge-Kutta method 

Example. We consider again the differential equation Y' = X2 + y2, 
Y (0) = -1, but now choose the step h = .2: 

Xo =0, Yo =-1, Yo = 1, 

XA = .1, YA =-.9, YA = .82, 

XB = .1, YB =-.918, YB = .852724, 

Xe = .2, Ye = -.8294552, Yc = .727995929, 

Xl = .2, Yl =-.830885202. 

The exact value would be Y(.2) = -.830881313772; the error of Y I is thus 
about -3.910-6. It is remarkable how much better Y 1 is, compared to the 
auxiliary values YA, YB, Ye, whose errors are 9.77210-3, -9.28810-3, 
1.42610-3, respectively. 

c) The method of Nystrome) uses 5 auxiliary points (Le., the matrix 
has order 6) and has a local error of order 5: 

1 For a proof see Bieberbach L.: On the remainder of the Runge-Kutta formula in the 
theory of ordinary differential equations, Z. Angew. Math. Phys. 2, 233-248 (1951). 
2 Nystrom EJ.: Uber die numerische Integration von Differentialgleichungen, Acta Soc. 
Sci. Fenn. 50, 13, 1-55 (1925). 
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1 
3 
4 6 
25 25 0 
1 

-3 15 
4 4 

LN= 6 90 50 8 
81 81 81 81 
6 36 10 8 

75 75 75 75 0 
23 

0 125 81 125 0 192 192 192 192 

For the example above, one obtains with this method Y 1 = 
.830882010, which is five times as accurate as the result with the Runge­
Kutta method. 

d) There is a method of Hutae) which uses 7 auxiliary points and 
has order 6. 

Questions of implementation. If the system of differential equations 

yj = /j(X,Yl,y2, ... , Yn) (j = 1,2, ... , n) 

with given initial values Yj(xo) is to be integrated numerically by means 
of a method detennined by the matrix 

o~ 
og o~ o 

L= 

o~ of of 
00 OA Oy Oz 

3 Huta A.: Une amelioration de la methode de Runge-Kutta-Nystrom pour la resolution 
numerique des equations differentielles du premier ordre. Acta Fac. Nat. Univ. Comenian. 
Math. 1. 201-224 (1956); Huta A.: Contribution a la formule de sixieme ordre dans la 
methode de Runge-Kutta-Nystrom. Acta. Fac. Nat. Univ. Comenian. Math. 2. 21-24 
(1957). 
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one has to proceed as follows (where Ykj will denote the value of the func­
tion Yj at the point Xk): 

Beginning with the given initial values Yixo) = YOj, compute for 
k = 0,1, ... : 

1) From Xb Ykl, Yk2, ... , Ykn the derivatives 

2) The auxiliary values at the point XA = Xk + PAh: 

(for all j). 

3) The derivatives 

4) The auxiliary values at the point XB = xk + PBh: 

5) The derivatives 

YBj = h(XB 'YB 1, ... , YBn) (for all j). 

6) Etc., until finally 

h( ' " , Yk+l,j = Ykj + (JOYkj + (JAYAj + (JBYBj + ... + (JzYZj (for all j). 

While "for all j" is dealt with by a for-statement (for j := 1 step 1 until 
n do), the auxiliary points A,B,C must be programmed out explicitly. A 
loop running also over the auxiliary points would actually be possible, but 
is not very economical: indeed, by storing 
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a~ as sigma[l,O], 

aU as sigma[2,O], a~ as sigma [2, 1], 

ao as sigma[m, 0], aA as sigma[m, 1], ... , 

PA as rho[l], PB as rho[2], . .. , 
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and furthennore the intennediate values Ykj' YAj' YBj , . .. (for all J) as an 
array z[O:m - 1, l:n], an integration step can be described as follows 
(The procedure jct describes the differential equation; upon exit, z 1 con­
tains the vector f(x, y).): 

x:=xk; 
for j := 1 step 1 until n do y1 U] := yU]; 
for p := 1 step 1 until m do 
begin 

jct(n,x,y,zl); 
x := xk + h x rhofp]; 
for j := 1 step 1 until n do 
begin 

z [p - 1,j] := zlU]; 
s:= 0; 
for q:= 0 step 1 untilp - 1 do 

s := s + sigmafp,q] x z [q,j]; 
Y U] := Y 1 U] + h x s 

endjor j 
endjor p; 

§8.S. Error considerations for the Runge-Kutta method when applied to 
linear systems of differential equations 

For a linear system 

!tI. = A(x)y, yeO) - y dx - 0, (39) 
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the method of Runge-Kutta offers no particular advantages; in each step 
one must compute four times the derivatives, which in this case means 4 
multiplications of a matrix by a vector. 

This holds true even in the case where A(x) = A is a constant matrix 
(linear differential equation with constant coefficients), but at least one can 
then better obselVe the numerical behavior of the method. If the n com­
ponents of the solution at the points Xb XA , • •• are collected into respec­
tive vectors Yb YA , ... , one indeed has for the kth step: 

, [ h2 2 h3 3] Yc = Yk + hYB = 1+ hA + 2 A + 4 A Yb (40) 

h [, 2' 2' 'J Yk+l = Yk + 6' Yk + YA + YB + Yc 

= [I+hA+ h 2 A2 + h 3 A3 + h4 A4] Yk' 
2 6 24 

The solution vector Y in each step is thus multiplied by the factor 

(without this matrix being actually computed). In contrast, for the exact 
solution Vex) one has 
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Therefore, the local error (20), now a vector ak, becomes 

or in first approximation, 

(41) 

as is consistent with the order 4 of the method. Evidently, one must make 
h4 A5/l20 small, if one wishes to keep the error small. 

Further insights are provided by the example of the oscillator equa­
tion y" + y = 0, which of course will serve here only as a model, since 
the exact solution is known. With z = y' one can write it as a system 

[ ~ l' = [-~ ~ 1 [~l 
thus, 

Since A5 = A, it is h 4/l20 that must be made small here. One indeed 
obtains with 

h =.1: 10-4 = 10-6 
120 ' 

i.e., about 6-digit accuracy, 

h = .3: 81 X 10-4 :::: 10-4, 120 -- i.e., about 4-digit accuracy . 
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Since a complete oscillation amounts to integration from 0 to 21t, there 
follows: With the Runge-Kutta method one needs about 20 steps per oscil­
lation, if 4-digit accuracy is required, 60 steps for 6 digits, 200 steps for 
8 digits. 

If the solution is a superposition of different oscillations, then the 
number of integration steps has to be related to a full oscillation of the 
highest frequency. For example, if 

y(4) + 101y" + lOOy = 0 

(frequencies 1 and 10, i.e., sin x + sin (lOx) is a solution) is to be 
integrated with 4-digit accuracy, one must choose h = .03. 

Actually, this severe requirement can be somewhat alleviated, if the 
high frequencies contribute only weakly. Thus, h =.1 ought to be 
sufficient for 4-digit accuracy if one wants to integrate the special solution 
sin x + .01 sin (lOx) of the above equation. In no case, however, is it 
permissible to increase h at will, even if the presence of sin (lOx) is arbi­
trarily weak. This is shown by the following analysis. 

Componentwise analysis of the error. The content of formula (40) 
can be refined if one introduces the eigenvalues A.j (assumed to be all sim­
ple) and the eigenvectors Vj of the matrix A. Then there exists for y(x) a 
unique representation 

n 
y(x) = L dk(x)vk , 

k=l 

where dj(x)vj is called the component of y belonging to the eigenvalue 
A.j. Therefore, 

n n 
Ay(x) = L dk(x)Avk = L A.kdk(x)vk , 

k=l k=l 

from which it follows, first of all, that dk(x) = ck exp (A.kX), hence that 

n ~ 

y(x) = L Cke k'Vk (42) 
k=l 
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is the general solution ofy' = Ay. The coefficients Ck can be obtained by 
expanding the initial vector y(O) in the Vj (for simplicity we assume 
Xo = 0): 

11 

y(O) = L Ckvk . (43) 
k=l 

It then follows further that 

11 11 

A2y(x) = L I..kdk(x)Avk = L I..fdk(x)vk , 
k=l k=l 

etc., and in general for any analytic function F, that 

11 

F(A)y(x) = L F(I..k)dk(x)vk . (44) 
k=l 

When multiplying by F (A), the component of the solution vector belong­
ing to the eigenvalue I..j (of A) is thus amplified by the factor F(I..j) 
(j = 1, ... , n). 

If one integrates the differential equation y' = Ay by Runge-Kutta, 
the component of the solution belonging to the eigenvalue I..j' according 
to (40), is thus multiplied in each step by the factor 

whereas the correct amplification factor would be iA-j Numerical 
integration by Runge-Kutta is therefore as good as the amplification fac­
tors (45) agree with ehA-j (for all eigenvalues I..j of the matrix A). A com­
parison of these factors for various values of hI.. is shown in Table 8.1. 
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Table 8.1. Examplesfor the amplification factor F(hA) of 
the Runge-Kutta method 

hA F(hA) eh'J.. 

2 7 7.38905610 
.5 1.64843750 1.64872127 

-.1 .90483750 .90483742 
-1 .37500000 .36787944 
-2 .33333333 .13533528 
-5 13.70833333 .00673795 
.2 i .98006667 + .19866667 i .98006658 + .19866933 i 

irrJ2 .01996896 + .92483223 i i 
iTt .12390993 - 2.02612013 i -1 

Now it is true that not all amplification factors F (hAj) 
(j = 1, ... , n) of the components djvj must agree equally well with eh'X.j • 

For an eigenvector which contributes only weakly towards the solution, 
the deviation may even be relatively large. 

Consider, for example, y" + 101y' + lOOy = 0, where 

Here one must first choose h so small that hA remains small for both 
eigenvalues; for example, h = .001, with which the amplification factor 
for Az becomes F(-.1) = .9048375 instead of e-·1 = .90483742. After 
100 steps the component of Az is reduced to the fraction e-lO == .00005 of 
the original value. If one now puts h = .005, the amplification factor for 
Az becomes .6067708 instead of e-.5 = .6065307, which is amply accu­
rate. After an additional 40 steps (i.e., at x = xo + .3), the component 
belonging to A2 is practically extinguished. If one now continues 
integrating with h = .02, the amplification factors are for 

Al =-1: 

A2 =-100: 

.98019867 (practically exact), 

.33333333 instead of .13533528 . 
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Since the large deviation for A2 can no longer do any damage, one obtains 
in this way very accurate results. To be noted, however, is the following: 

Whereas the components of the solution that are already damped 
out need no longer be integrated accurately, it is absolutely inadmissible 
that their amplification factors become larger than 1 in absolute value. 
This rule imposes severe restrictions on the possibility of enlarging the 
stepsize in the Runge-Kutta method (and also in the method of Euler and 
in the other methods of Runge-Kutta type), even if the dominant com­
ponents of the solution would permit such an enlargement of h. 

If in the above example one were to choose h = .05, the factors 
would be for 

Al = -1: .951229427 instead of .951229425, 

A2 = -100: 13.70833333 instead of .00673795. 

In this case it would be true that the component belonging to Al is still 
treated with adequate accuracy, but the component of A2 would again be 
magnified and would poison the solution in a short time. 

§8.6. The trapezoidal rule 

If Y (x) again denotes the exact solution of the given differential 
equation (3), and if one puts Y (Xk) = Yh Y'(Xk) = Yk, etc., one has (under 
suitable regularity conditions)(I): 

By neglecting here the h 3 -term, one obtains the trapezoidal rule 

I Derivation, e.g., in Krylov V.I: Approximate Calculation of Integrals, MacMillan, New 
York 1962, §6.3. (Translator's remark) 
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h (y' , 
Yk+l - Yk = 2" k + Yk+l) , (47) 

which is to be supplemented by the relation 

(48) 

in order to have two equations for the two unknowns Yk+l and yk+l. This 
system of equations, in principle, must be solved in each step. 

In the general case, that is, when! (x,y) is nonlinear in Y, one con­
veniently solves it approximately with a predictor-corrector combination, 
first determining, by means of a predictor 

an approximate value for Yk+l, and then substituting the derivative 
YA = !(Xk+bYA) in place of Yk+l into the corrector, that is, into the tra­
pezoidal rule (47). One easily recognizes in this combination the method 
of Heun, which thus has arisen from the trapezoidal rule. 

In contrast to the method of Runge-Kutta, one indeed gains some­
thing here, when the differential equation is linear, since the two equa­
tions (47), (48) for Yk+l and Yk+l are then also linear, and therefore can be 
solved without the detour via a predictor. This simplification, in particu­
lar, applies also to a system of linear differential equations. Let 

y' = A(x)y + b(x), y(xo) = Yo, (49) 

be such a system with initial conditions, where A(x) is a matrix depend­
ing on x and b(x) a vector depending on x. For this system, the tra­
pezoidal rule becomes 

or 

[ 1- ~ A,+'] y,+, ; [I + ~ A,] y, + ~ (h, + b,+,). (50) 
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The integration step from Xk to Xk+l thus requires the solution of a linear 
system of equations with the coefficient matrix I - ~ hA(Xk+l)' which for 

small h is usually very well-conditioned (cf. § 10.7). 

The fact that in each step one must solve a linear system of equa­
tions should not be held against the trapezoidal rule, since it is precisely 
in this way that great advantages are realized which other methods do not 
have. In order to better analyze these advantages, we first examine the 
special case 

A(x) = A (constant), b = O. 

Then 

is the relation for one integration step, while for the exact solution one 
has 

The method is therefore as good as the matrices 

agree with one another. The local error is essentially 
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so that the order is equal to 2e). 

For the componentwise analysis of the error we can resume our con­
siderations of §8.5: The component of the solution belonging to an eigen­
value').. (of A) in each step of the trapezoidal rule is multiplied by 

1+!!.').. 
2 

F(h')..) = h ' 
1- - ').. 

2 

the exact amplification factor being ehi... But the quantities 

h 
1 + - ').. 

2 
h 1- - ').. 
2 

and lehi..l, 

(51) 

depending on the value of hA, are now either both < 1, or both = 1, or 
both > 1. In other words: The trapezoidal rule reproduces damping and 
magnification in a qualitatively correct way. In particular, therefore, a 
damped component of the solution of the system of differential equations, 
when integrated numerically by the trapezoidal rule, is always going to be 
damped, even if the damping factor is inaccurate. Some examples for the 
value of the amplification factor (51) are indicated in Table 8.2 and are 
compared with the exact factor ehi... Notice how much more inaccurate 
these values are, as compared with the Runge-Kutta method (see Table 
8.1), but also how the factor remains less than 1 in absolute value even 
for h')..=-5. 

2 For linear multistep methods (see §8.7), hence in particular for the trapezoidal rule, it 
suffices for the determination of the order to consider the linear differential equation 
y' = i..y (or the system y' = Ay). (Editors'remark) 
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Table 8.2. Examples for the amplification factor F (h'A.) 
of the trapezoidal rule 

h'A. F(h'A.) e h').. 

.5 1.66666667 1.64872127 
-.1 .90476190 .90483742 
-1 .33333333 .36787944 
-2 0 .13533528 
-5 -.42857143 .00673795 
.2i .98019802 + .19801980 i .98006658 + .19866933 i 

= exp(.19933730 i) 
i1t12 .23697292 + .97151626 i i 

= exp(1.33154750 i) 
i1t -.42319912 + .90603670 i -1 

= exp(2.00776964 i) 
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As to the accuracy of reproducing the various components of the 
solution, we can first of all make the same observation as in the case of 
the Runge-Kutta method: When choosing h, the components belonging to 
the various eigenvalues must be taken into consideration within the con­
text of their strengths. Components already damped out need no longer 
be integrated accurately, so long as the corresponding factor continues to 
satisfy IF (h'A.) I < 1. This last condition, in case of the trapezoidal rule, 
however, is fulfilled automatically for all damped components, since for 
h > 0 and Re('A.) < 0, we always have I F(h'A.) I < 1. In the trapezoidal 
rule, h can thus be increased as much as the accuracy of the components 
which still contribute significantly allows it, otherwise, there are no limits 
set to the increase of h. 

Example. To be solved is the system of differential equations 
y' = Ay, yeO) = Yo, with 

A = [-~ -~ -~ 1 Yo = [ ~ 1 
1 -1 -10 1 

The eigenvalues of A are 'A.1 = -.213 and Az,3 = -9.39 ± .87i. The system 
is to be integrated with an accuracy of 3 to 4 digits. 
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Since at the beginning all eigenvalues presumably contribute to the 
solution, and since max IAI =:: 10, one must make h2 l03/l2 =:: 10-4 , that 
is, choose h = 10-3 • After integrating with this stepsize over 200 steps 
(to x = .2), the components of A2 and ~ are multiplied by the factor 
I e-2OOhA.1 = e-1.878 =:: .l6. Since the order is 2, this permits approxi­
mately a doubling of the stepsize, more precisely, a multiplication by 
-{fTI6 = 2.5. With h = .0025, one can for example carry out 120 addi­
tional steps (to x = .5), reducing to components of A2,3 further to 
e-4.7 =:: .01; thus, h can be increased to .01 (to lO-times the initial value). 
After 50 additional steps (to x = 1) the components of ~,3 already drop 
to 1/10000 of their initial values. In 4-digit computation they can there­
fore be neglected, that is, during further integration, h needs to conform 
only with the eigenvalue Al = -.213, and this allows h = .35 (in 4-digit 
computation). For example, one can integrate with 100 more steps up to 
x = 36; the total number of steps is only 200 + 120 + 50 + 100 = 470. 

§8.7. General difference formulae 

Euler's formula, written in the form 

Yk - Yk-l = hYk-l , 

and the trapezoidal rule (47), are special cases of the general class( 1 ) 

m m 
L fJ.jYk-j = h L PjYk-j , (52) 
j=O j=O 

namely with 

m = 1, 

ao = 1, fJ.l =-1, 

Po = 0, PI = 1 

and 

1 Customary name: linear multistep methods. (Editors'remark) 
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m = 1, 

ao = 1, 0,1 =-1, 
1 

~O =~1 = -, 2 
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Generally, a difference fonnula (52), when Yk-m' Yk-m+l , ... , Yk-l 
(and the derivatives Yk-m = f (Xk-m, Yk-m) , ... , Yk-l = f (Xk-l, Yk-l» 
are known, is used in such a way that one looks at this fonnula as a linear 
equation in the unknowns Yb Yk: 

aoYk - h~oYk = given, (53) 

from which, together with the differential equation 

(54) 

one can detennine Yk. This is particularly easy in two cases: 

a) When, as in the Euler method, ~o = 0, one obtains Yk directly 
from (53) (so-called explicit methods). 

b) When the differential equation is linear, one has only to solve 
two linear equations in two unknowns. 

On the other hand, when, as for example in the trapezoidal rule, ~o *" 0 
(implicit methods) and the function f(x,y) is nonlinear in Y, then one 
solves the two equations by iteration, alternately detennining Yk from (53) 
and Yk from (54). For sufficiently small h, this iteration is guaranteed to 
converge; after its tennination, the integration step is completed. 

One further speaks of a predictor-corrector method if one succeeds 
with a predictor fonnula to detennine such a good approximation Yk that a 
single substitution in (54), and subsequently in (53), already yields a 
sufficiently accurate Yk-value. 

Additional examples of such methods: 
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The secant rulee) is an explicit method, defined by 

Yk - Yk-2 = 2hYk-1 . (55) 

Here, 

m = 2, 

ao = 1, al =0, a2 =-1, 

~o = 0, ~l = 2, ~2 =0. 

Simpson's rule 

h (y' 4' ') Yk - Yk-2 ="3 k + Yk-l + Yk-2 , (56) 

on the other hand, is implicit: 

m = 2, 

ao = 1, al = 0, a2 =-1, 

~O 
4 

~2 = 
1 = 3' ~l = 3' 3 

One can ask, of course, how such formulae are obtained in general; 
there is actually a rather simple answer to this. 

We apply formula (52) to the differential equation y' = Y, yeO) = 1; 
then eX, that is, Yk = ekh , should be a solution. One must therefore deter­
mine the aj' ~j at least in such a way that the two sides of (52) agree for 
Yk = ekh "as much as possible". If we substitute Z = eh , this desideratum 
takes on the form 

m m 
I, ajzk-j :::: log z I, ~jZk-j (for all k) , 
j=O j=o 

2 Also called midpoint rule. (franslator's remark) 
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m . L UjZm-, 

log z ::: ..::...j=O ___ = _A_(z_) 

:i: I3jZm-j B(z) 
(57) 

j=O 

The problem is thus reduced to the task of approximating log z as well as 
possible by a rational function, that is, by the quotient of the two polyno­
mials 

A(z) = aozm + alz m- l + ... + am , 

B(z) = 130zm + 131zm-l + ... + 13m . 
(58) 

The only question is in which domains of the z-plane this approximation 
is supposed to be good. If one is interested only in a large order of the 
method, the approximation must be good in the neighborhood of h = 0, 
thus near z = 1. 

A very crude approximation at z = 1 is 

log z ::: Z - 1, (59) 

that is, 

A(z) = z - 1, B(z) = 1, 

<Xo = 1, al =-1, 130 = 0, 131 = 1, 

wherein one recognizes again the Euler method. For an improvement, 
one averages (59) with 

log z = - log ! = - [ ! -I] = I - ! . 
One so obtains 
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1 
z - -;- z2 _ 1 

logz:::: ---= 
2 2z 

A (z) = z2 - 1, B (z) = 2z, 

<Xo = 1, <Xl = 0, ~ =-1, 

~o = 0, ~l = 2, ~ = 0, 

which is the secant rule. 

(60) 

As a further experiment, we take the series of log z and truncate it 
after the second term: 

Then, 

that is, 

(z - 1)2 
log z :::: Z - 1 - 2 = Z2 - 4z + 3 

2 

A(Z)=Z2 -4z +3, B(z) =-2, 

<Xo = 1, <Xl = -4, ~ = 3, 

~o = ~l = 0, ~2 = -2, 

Yk - 4Yk-l + 3Yk-2 = -2hYk-2 . (61) 

If we substitute in this formula the exact solution Yk = ekh of the 
differential equation y' = Y, yeO) = 1 (h = .1), then the resulting difference 
between the left-hand and right-hand side is indicated in the 3rd column 
of Table 8.3. If, on the other hand, one resorts to this equation (61) for 
the numerical solution of the differential equation, that is, if one uses it as 
a recurrence formula for Yk, one obtains the Yk noted in the 4th column, 
which diverge to - 00. The method is thus useless, like all formulas 
which are produced by series expansion of log z. 
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Table 8.3. Application of the difference formula (61) to y' = y, y (0) = 1 

exact difference in (61) numerical 
solution upon substitution solution 

Xk = kh Y _ kh 
k- e ofYk Yk 

0 1 1 
.1 1.105171 1.105171 
.2 1.221403 .000719 1.220684 
.3 1.349859 .000795 1.346188 
.4 1.491825 .000878 1.478563 
.5 1.648721 .000971 1.606452 
.6 1.822119 .001073 1.694406 
.7 2.013753 .001186 1.636979 
.8 2.225541 .001310 1.125814 
.9 2.459603 .001448 -.735075 
1.0 2.718282 .001600 -6.542905 

.!-
- 00 

Useful, however, are those methods in which B (z) is formed 
through truncation of the series of 1!1og z. We have, first of all, 

t -t ---=---- ~ k 11213 ~ Okt =1--t--t --t - ... 
log-l- log(1-t) 

I-t 
k=O 2 12 24 

(converge radius 1). Now one substitutes 

and finds 

1 
Z =--, i.e., 

1 - t 

1 
t=I--, 

Z 

_1_-_~_ = i Ok [1 -1..] k , 

log Z k=O Z 

(62) 
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1 - 1.. 
z 

log z = ---,---.--'-"k . 
1 L Ok 1--

k=O z 

log z can thus be approximated by 

1 - 1.. 
z 

log z ::: ---,---.--'-"k . 
m 1 
L Ok 1--
k=O z 

Multiplying numerator and denominator by zm, there finally results 

with 

log z ::: A(z) 
B(z) 

A(z) = zm _ zm-l, 

m 
B (z) = L OkZm-k(z - l)k . 

k=O 

Example. For m = 3 one obtains 

1 1 1 
00 = 1, 01 = - "2' °2 = - 12' 03 = - 24 ' 

A (z) = z3 - z2, B (z) = 2~ (9z 3 + 19z2 - 5z + 1) , 

ao = 1, (Xl = -1, (X2 = (X3 = 0 , 

thus the integration formula 

(63) 

(64) 
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Yk - Yk-l = ~ (9Yk + 19Yk-l - 5Yk-2 + Yk-3) . (65) 

It defines the implicit method of Adams-Moulton with m = 3. It has order 
4. 

The order of the method can be deduced directly from the order of 
approximation of log z: For the polynomials (64), in fact, one has for 
z ~ 1,e) 

(66) 

A more detailed analysis shows that 0((1- lIz)m+2)/h corresponds to the 
local error e, which, since I-liz:::: log z = h, is thus of the order 
O(hm+l); the order therefore is equal to m + l. 

In order to produce an explicit method, one first multiplies numera­
tor and denominator in the representation (63) for log z by z = 11(1 - t): 

log z = ____ z_[;:....l_-_~....:;..l_r_-___.rT" 
~1 1 k~ Ok [ 1 - ~ 1 k ' 

1- 1--
z 

which yields 

(67) 

3 The relation (66) follows readily from (63) and the approximation stated immediately 
thereafter. (franslator's remark) 
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with 

One thus obtains, approximately, 

m-l 1 log z ::: z[- Ilk ' 
L 'tk 1 -­

k=O z 

and, multiplying numerator and denominator by zm-l, finally 

with 

log z ::: A (z) 
B(z) 

A(z) = zm _ zm-l , 
m-l 

B (z) = L 'tkZm-1-k(z - 1/ . 
k=O 

Here, B (z) is a polynomial of degree m - 1, so that ~o = O. 

Example. For m = 3, one gets 

A(Z)=Z3_ Z2, B(z)= 112 (23z 2 -16z+S), 

from which one obtains the integration formula 

(68) 

(69) 

Yk - Yk-l = Ih2 (23Yk-l - 16Yk-2 + SYk-3) , (70) 

known as the method of Adams-Bashforth with m = 3. Because of 
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A(z) = logz + O((z _ 1)4) , 
B(z) 
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this method has order 3. 

The start-up computation. Every difference formula of the type 

m m 

L ajYk-j = h L BjYk-j 
j=O j=O 

presupposes that the values Yk-m' Yk-m+l , ... , Yk-l are already known. 
This however, when k = 1, is the case only for methods with m = 1 (Euler 
method, trapezoidal rule). Otherwise, the previous history, consisting of 
the values Y-l' Y-2 , ... , Yl-m' is nonexistent. There are two ways out 
of this dilemma: 

1) Integrate with this difference formula only from k = m onward, 
having previously computed Y 1, ... ,Ym-l by means of a 
method of the Runge-Kutta type. 

2) The missing information is made available artificially. Note, in 
this connection, that in the methods of Adams-Bashforth and 
Adams-Moulton only the derivatives Y~l' Y~2 , ... , Yt-m are 
actually needed, which facilitates the problem considerably. 

We illustrate the second approach with the example of the Adams­
Bashforth method with m = 2. For this method one has 

A(Z)=Z2_ Z, 3 1 B(z) = - z --
2 2 ' 

thus 

Yk - Yk-l = ~ (3Yk-l - Yk-2) . (71) 

Let the equation to be integrated be again y' = Y, yeO) = 1, with h = .1. 
The missing information here consists soley of Y~l. We first put Y~l = 
Yo = 1 and integrate over m = 2 steps: 
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k 
, 

Il.y' 1l.2y' 1l.3y' Xk Yk Yk 

-1 -.1 1 /extrapolated backwards 
.085 

0 0 1 1 - - .015 
.1 1 0 ---

I .1 1.1 1.1 .015 I -- - --
.115 

2 .2 1.215 1.215 

From the values Yo, yl. Y2 one then extrapolates Y':l in such a way that 
the third (in general, the (m + l)st) difference becomes O. This yields 
here the value Y':l = 1 - .085 = .915, with which one integrates once 
more. (In the general case one would have to extrapolate back to yl-m.) 

k Xk Yk 
, 

Yk Il.y' 1l.2y' 1l.3y' 

-1 -.1 .915 /extrapolated backwards 
.092862 

0 0 1 1 -- - .011388 , 
.10425 - - - - 0 

1 .1 1.10425 1.10425 .011388 
1 __ - __ 

.115638 
2 .2 1.219888 1.219888 

From these values one obtains, again by backward extrapolation, 
Y':l = .907138, whereupon one integrates forward once more, etc. (The 
exact value would be Y'(-.l) = e-·1 = .90483742 .... ) 

§8.8. The stability problem 

As we have seen, some difference formulae derived from rational 
approximations of log z, for example (61), are useless. We thus tum to 
the question of stability of an integration method of type (52). 

We apply the integration method to be examined to the differential 
equation y' = 'Ay, where 'A can be arbitrary complex. This covers also the 
behavior of a system y' = Ay, because the solution component of this sys­
tem belonging to the eigenvalue 'A behaves in every respect like the 
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solution of y' = 'A.y. The difference formula (52) then becomes 

m m 

L CXjYk-j = h'A. L ~jYk-j , (72) 
j=O j=O 

from which one infers that for the behavior of the numerical solution only 
the product h'A. is important. We therefore may as well integrate the 
differential equation y' = Y with the "reduced steplength" s = h'A., where 
s, however, can be complex. The difference formula then becomes 

m 

L (CXj - S~j)Yk-j = O. 
j=O 

(73) 

This is a linear difference equation with constant coefficients, whose gen­
eral solution can be sought in the form 

Substitution into the preceding equation (73) yields at once 

or 

m m 

L L (CXj - S~j)gvz~-j = 0, 
j=O \'=1 

(74) 

where the expression in braces is independent of k. Since this relation 
must hold for all k, there follows 

m . 
L (CXj - S~j)z~-J = 0, 
j=o 

or, introducing again the polynomials (58), 
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A(z)-sB(z)=O for z=zv, v=I, ... ,m. (75) 

The basic numbers z 1, z 2 , ... , zm thus are solutions of this alge­
braic equation, and the numerical solution has the fonn (74) (with certain 
coefficients gv), while for the exact solution Y(x) = cex with x = sk one 
has 

Now for large k, however, the numerical solution (74) consists practically 
only of the tenn glzf, where Zl denotes the largest in modulus of the 
roots z 1, ... ,Zm. Thus, if the numerical solution is more or less to fol­
low the exact solution, the dominant root z 1 of the equation (75) must lie 
in the vicinity of eS • 

There is one root of (75) which always lies near eS , because the 
coefficients Uj' ~j were detennined in §8.7 such that 

A(z) ::: log z 
B(z) , 

so that, with s = log z, also A (z) - sB(z) ::: O. However, this is not 
enough; this root near eS must also be the largest in absolute value. 

Example. For the secant rule (55) we have A (z) = z2 - 1, 
B (z) = 2z; the equation (75) thus becomes 

A (z) - sB(z) = z2 - 2sz - 1 = 0 

and has the solution 

(76) 

The product of the two roots is -1; for the larger in absolute value one 
therefore has I z 1 I > 1. This larger root, in fact, defines a confonnal 
mapping of the s-plane, cut along the segment from s = i to s = - i, onto 
Iz I > 1: 
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B 
B 

o 
o 

Figure 8.8. Mapping of the z-plane to the w-plane defined 
by the larger of the two solutions (76) 

while w = eS yields the following picture: 

B 

o 
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Figure 8.9. Mapping of the z-plane to the w-plane by means ofw = eS 

Only for the part of the neighborhood of the origin lying in the right half 
of the s-plane is the root 

z = s + ""s2 + 1 = 1 + S + 1.. s2 - 1.. s4 -
2 8 

near eS the larger one in absolute value. In the left half-plane, however, 
one has z 1 :::: e -s for the larger root. The secant rule is therefore unstable 
for Re s < 0 (though only weakly unstable). 

Now in order to obtain a measure for the error, we note that for 
large k one has approximately Yk+l = Ykz 1, while in the notations of §8.3, 
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hence for the local error (20), 

For us, however, it is more meaningful to consider the local relative error, 
that is, the local absolute error of the logarithm: 

log Yk+l - log Yk+l 

S 

log Zl - S 
= s 

Its absolute value is introduced as universal error measure: 

",(s) = 
10gZl-s 

S 
(77) 

Here, Z 1 continues to denote the dominant root of (75), and log Z 1 is that 
value of the logarithm which lies closest to s. ",(s) is a real function of 
the complex variable s, which for each value of the reduced stepsize s 
indicates the relative error per unit integration step. 

In order now to arrive at a criterion for stability, we first require that 
",(0) = 0 and ",(s) is small for I s I small (i.e., for small h one should 
nearly obtain the exact solution). This requires that for all sufficiently 
small I s I the root Z near eS is the largest in absolute value, that is, for 
s --7 0 we must have 

log Z 1 (s) - s = 0 (s) (78) 

and in particular, log Z 1 (0) = 0, thus Z 1 (0) = I, or 

A(l) = O. (79) 

Furthermore, by (78), 



d log Zl 

ds 
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-1 =0, i.e., 
s=O 

From A (z 1) - sB (z 1) = 0, however, there follows 

thus, for s = 0, zl = 1, 

A'(l) - B(l) = O. 
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= 1 . 
s=O 

(80) 

(79) and (80) are merely necessary conditions for the stability of a 
method (so-called consistency conditions). 

Now since the roots of an algebraic equation, as is well known, 
depend continuously on the coefficients, the root z of A (z) - sB (z) = 0 
lying in the vicinity of eS is for all sufficiently small I s I the largest in 
absolute value, if this is the case for s = 0, that is, if z = 1 is the root of 
maximum modulus of A (z) = 0, and besides is simple. Consequently, as 
a condition for the stability of the difference fonnula (52) we have 

A (z) :;t 0 for I z I ~ 1 . 
z -1 

This condition guarantees the so-called strong stability of the method. 

(81) 

Examples. 1) The method of Adams-Bashforth with m = 3 is 
defined by the difference fonnula (70). One has 

A(z) = z3 - z2, B(z) = 112 (23z 2 - 16z + 5), 

and therefore 

A(l) = 0, A'(l) = 1 = B(l) . 

Furthennore, 
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A(z) 2 
--=Z, 
z -1 

which is certainly different from 0 for 1 z 1 ~ 1. The method is thus stable 
for all sufficiently small 1 s I. The same is true for all Adams-Bashforth 
methods, which according to §8.7 are characterized by the polynomials 
(69). If, however, s is made more and more negative, then sooner or later 
the root lying in the "vicinity" of eS is no longer the largest in absolute 
value, and the method becomes unstable. This happens the sooner (that 
is, already for smaller 1 s I) the larger m. For example, if m = 16, the 
method is unstable already for s = - .05. 

2) As a second example we consider the fantasy method defined by 
(61), that is, by the polynomials 

A(Z)=Z2_4z+3, B(z)=-2. 

Here, A (1) = 0, A'(I) = - 2 = B (1), but A (z)/(z - 1) = z - 3 has a root 
outside the unit circle; the method is therefore unstable. The solution for 
small 1 s 1 and large k behaves about like Yk = 3k , and this almost indepen­
dently of the differential equation. 

But 

3) For the secant method we have 

A(z)=z2-1, 

A(I) = 0, 

B(z) = 2z, 

A'(1) = 2 = B(I). 

A(z) = z + 1 
z -1 

has a root precisely on the unit circle. While the stability condition is not 
satisfied, we have here a limit case which must be examined more care­
fully. To this end, we consider the differential equation Y' = - Y, 
Y (0) = 1, which is to be integrated numerically by the secant rule, 
whereby the steplength h is assumed to be positive. The reduced 
steplength is here s = - h. The numerical solution therefore has the form 
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where gl and g2 remain to be determined. By means of the substitution 
h = sinh Tl one obtains 

z 1 = - sinh Tl - cosh Tl = - e 11 , z 2 = - sinh Tl + cosh Tl = e -11 , 

and thus 

To construct the second starting value Y 1, we may first carry out one step 
according to Euler, with Yo = 1. Then, 

from which there follows 

cosh Tl- 1 
gl = 2 cosh Tl 

_ cosh 1) + 1 
g2 - 2 cosh Tl 

For small h, however, one now has 

and furthermore, 

cosh Tl - 1 = ...J 1 + h 2 - 1 h 2 

2 cosh Tl 2...J 1 + h 2 -""4' 

cosh Tl + 1 
2 cosh Tl 

= ...J1 + h2 + 1 ::: 1 _ !C. 
2:\j1 + h2 4 

For small Tl, on the other hand, Tl/sinh Tl ::: 1, hence e 11k ::: eXt , 
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e-Tlk :::: e -Xk , so that for the numerical solution one obtains approximately 

One sees that the solution is made up of an oscillatory increasing, and a 
decreasing teITIl. The first, to be sure, is small, but if one integrates long 
enough it will eventually dominate, and further integration becomes 
illusory (cf. Fig. 8.10). 

1.0 

6 

-0.5 

-1.0 

Figure 8.10. Integration oly' = - y, y (0) = 1, with the 
secant rule and h = .1 

The point Xk at which a negative y-value is to be expected for the first 
time is approximately given by 

-Xk h e =-
2' 

i.e., 

The onset of the oscillation, therefore, is further and further delayed upon 
decreasing h. It is even true that in every finite interval the numerical 
solution converges to the exact solution as h ~ 0, that is, the instability -
provided one considers only a finite interval - can be eliminated by 
decreasing h. 

One calls this phenomenon weak instability. It is characterized, 
according to Dahlquist, by the following two conditions: 
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a) A (z) ;t 0 for I z I > 1. 
z - 1 
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b) The zeros of A (z)/(z - 1) located on the circumference of the 
unit circle are simple. 

Here, 

4) As a further example we consider the difference formula 

Yk - Yk-3 = : (9Yk-l + 3Yk-3) . 

A(Z)=Z3_1, 

A(l) = 0, 

A (z) = z2 + z + 1 . 
z -1 

B (z) = ! (3z 2 + 1) , 

A'(l) = 3 = B (1) , 

Both roots of A (z)/(z - 1) lie on the unit circle and are simple. The 
method is thus weakly unstable. 

A case study for stability. For a more detailed discussion of stabil­
ity we select the method of Adams-Bashforth with m = 2: 

h (3 ' , Yk - Yk-l = '2 Yk-l - Yk-2) , 

which has order 2. Here, 

A(Z)=Z2 -z, B (z) = 1. z - ~ . 
2 2 ' 

the roots of the equation A (z) - sB (z) are thus 

(82) 

and this function z (s) has the branch points (-2 ± 412i)19. 
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., 

. i 

Figure 8.11. To the definition ofz(s) in (82) 

Now cutting open the Riemann surface of this function along the 
circular arc Is I = ; between the branch points (see Fig. 8.11), one finds 

that z (s) in the sheet belonging to the value z 1 (0) = 1 is larger in absolute 
value than in the other sheet determined by Z2(0) = O. (On the cut one 
has I z 1 (s) I = I z 2 (s) I.) To the right of the circular arc, thus in particular 
for I s I < ;, the root lying in the vicinity of eS is therefore the larger one 

in absolute value; it of course deviates more and more from eS for larger 
I s I. Upon crossing the circular arc, the other root (which is quite 
different from eS ) suddenly becomes larger in absolute value. The 
method is unstable as soon as s = h')..lies in that domain. Note, however, 
that along a path around the cut one can pass continuously from the stable 
to the unstable domain. The error then increases from tiny to huge 
values. In Table 8.4 a few function values are given for illustration. 

Table 8.4. Some values Zl(S) and Z2(S) of the function (82) 

s z 1 (s) Z2(S) eS 

2 3.7321 .2679 7.3891 
.5 1.5931 .1569 1.6487 
0 1 0 1 

-.5 .6404 -.3904 .6065 
-.66 .5795 -.5695 .5169 
-.68 -.5932 .5732 .5066 

-2 -2.4142 .4142 .1353 
i 2/3 .7887 + .2113 + .7859 + 

.7887 i .2113 i .6184 i 
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§8.9. Special cases 

A) Treatment 01 extremely strong damping. If a differential equa­
tion such as 

y' + 10000 Y = eX - y2, yeO) = 0, (83) 

must be integrated numerically, then the large coefficient 10000 requires 
an extremely small integration step (about 10-5). In order to discuss how 
one can escape from this restriction, we consider more generally the case 

y' + my = g(x,y) , (84) 

where we assume m to be a large positive constant, but the function 
values of g to be "normal". 

Let us learn from the way we integrated y' = I (x,y) numerically by 
Euler. The formula Yk+l = Yk + hYk, indeed, can be interpreted by saying 
that one integrates exactly the differential equation y' = fko in which 
Yk = Ik = I(XkoYk) is held fixed, from Xk to Xk+l. 

An analogous method can be obtained for the differential equation 
(84), if for fixed gk = g(XkoYk) one integrates exactly the equation 

y' + my = gk (85) 

from Xk to Xk+l. The exact general solution of (85) is 

With Y(Xk) = Yk one obtains c = Yk - gk/m and thus the formula of 
integration 

(86) 
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This is a generalization of Euler's fonnula and reduces to it when m ~ o. 
In the above example (83) we first obtain, with h = .01, 

= 
1 - e-IOO 

10000 ::: 10-4 

for the constants in (86), and then in tum, 

Xo == 0, 

Xl == .01, 

X2 == .02, 

X3 == .03, 

Yo == 0, 

YI == 10-4, 

Y2 == 1.0100510-4, 

Y3 == 1.0202010-4, 

go == 1, 

g I == 1.01005, 

g 2 == 1.02020, 

etc. 

This is not very accurate, but the usual Euler method immediately incurs 
heavy instability, whenever h is not < 10-4. 

Similarly, one can adapt the method of Heun to the given problem: 
its fonnulae 

mean that, having detennined the predicted value YA (by Euler), the 
differential equation 

is integrated exactly from Xk to Xk+l. 

For the differential equation (84) the analogue of Heun's method 
therefore is: having computed 

(87) 
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the differential equation 

is integrated exactly from Xk to Xk+l. The general solution is 

where, on account of Y(Xk) = Yk, 

The corrector formula therefore becomes 

or 

where 

1 - (1 + mh)e-mh 

Co = (mh)2 
e-mh -1 + mh 

(mh)2 
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(88) 

(89) 

Since for mh ~ 0 both Co and Cl tend to 1/2, one obtains also here as 
limit case indeed the method of Heun. 
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In the example (83), one now first obtains, with h = .01, 

1 - (l + loo)e-1OO 

Co = 10000 ::: 10-4, 

e-1OO - 1 + 100 
Cl = 10000 ::: 9910-4· 

The first 10 integration steps are summarized in Table 8.5. The Yk agree 
with the exact solution up to one unit in the last decimal digit given. 

Table 8.5. Integration of the differential equation (83) with a 
special predictor-corrector method 

k Xk Yk gk YA gA 

0 0 0 1 1.00000010-4 1.010050 
1 .01 1.00995010-4 1.010050 1.01005010-4 1.020201 
2 .02 1.02010010-4 1.020201 1.020201 10-4 1.030455 
3 .03 1.03035210-4 1.030455 1.03045510-4 1.040811 
4 .04 1.04070710-4 1.040811 1.04081110-4 1.051271 
5 .05 1.05116610-4 1.051271 1.05127110-4 1.061837 
6 .06 1.061731 10-4 1.061837 1.06183710-4 1.072508 
7 .07 1.072401 10-4 1.072508 1.07250810-4 1.083287 
8 .08 1.08317910-4 1.083287 1.08328710-4 1.094174 
9 .09 1.09406510-4 1.094174 1.09417410-4 1.105171 
10 .10 1.10506110-4 

B) Treatment of a differential equation of the form 

y" + f (x) Y = 0, (90) 

where f (x) for all x is very large (positive) and slowly varying. With 
numerical integration in the usual style one does not get very far, since 
per unit length about 10 "'f (x) integration steps would be required (for 
6-digit accuracy). It is much better to introduce a new function 
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z (X) = y (X) - i y' (X) , 
"';1 (X) 
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(91) 

which may be thought of as a curve in the complex plane, where X serves 
as the parameter. With y (x) a solution of the differential equation (90), 
one clearly has 

dz = '(x) _ i y"(x) + i y'(x)/'(x) 
dx y "';1 (x) 2(f(x»3/2 

= y'(x) + iy(xNI (x) + i y'(x)f(x) , 
2(f(x»3/2 

hence, because of z(x) - z(x) = 2i y'(x)NI (x), 

dz .• ~( ) () ZTx) - z(x) I'(x) 
dx = l'O \.x) Z X + 4 I (x) . (92) 

Since by assumption, 1'/1 is to be small, one obtains as first approxi­
mation in the neighborhood of x = Xo (with t = x - Xo, Zo = z(xo), 
10 =/(xo» 

that is, the point z (x) describes in first approximation a circular path with 
radius I Zo I and circular frequency Wo. An improvement is obtained on 
the basis of the approximation 

tto 
-.f1=Wo+-, 2Wo 

if, in addition, in all teITIlS in which z is multiplied by small coefficients, z 
is replaced by z ° exp (it.yTo). Then the differential equation (92) 
becomes 
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, ,-I-"' - -it{!o it{!o r 
dz '_rT: ztJO it{!o ZOe -zoe JO 
- = lv'fo z + -- e z 0 + /0 ' 
dt 2-{To 4 

This differential equation can be solved exactly by the method of variation 
of constants; one obtains 

it-{To Z o.tO , 
z(xo + t) = Zoe 0 + -m sm (t-{To) 

4/0 

, .to 2 i~1T /0 i~1T + lZO -- t e ''1Jo - Zo -- te '"'VJo 

4-{To 4/0 

(93) 

Apart from the periodic perturbation caused by the sine tenn, one 
has the following tenns which deviate from the hannonic oscillation: 

it2 ~ Z (phase shift due to tangential acceleration) , 
4-{To 

.to 
-t -- Z (decrease of amplitude due to radial acceleration) . 

4/0 

Now at time t = 21tk/-{To (k an integer), however, one evidently has 

that is, 

[ 
i.tO 

z(xo + t) = Z 0 1 + --
4-{To 

fa 21tk 1 
4/0 -{To , 

* [ 21tk 1 fa [. 2 2 1t 1 Zk = Z Xo + -{To = Zo + Zo /8 /2 l1t k -"2 k, (94) 

so that the points zi, zi, z3' , ' .. assume the positions depicted in Fig. 
8.12 (z 0 is assumed real). 
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Imz I I 
10 tZ4 

I 
I 

I I 
I I 
I I 
I I I I 

tZ
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Figure 8.12. Position of the points Zk 

Determination of the crossings of the real axis of the z-plane: Since 
in first approximation, dzldt = i~ z, and since at time t = 21Ck/~ one 
has overshot the real axis by the amount 

ifo 2 2 
Zo 2i3 1C k , 

fo 

the crossings take place, in first approximation, at the times 

and one has approximately 

(95) 

(96) 
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If f' is relatively large, one perhaps merely manages in this way to 
compute from Zo the next crossing Zlo and then must choose 

21t rr:-Jo 
Xl =Xo + -- ---

Wo lis 

as new initial point (and there again compute I (xl), I'(XI» ,etc. If, 
however, I' is very small, one can in one stroke carry out a great many 
revolutions, and in this way, for example, compute from zo directly ZIOO 

and X 100 = Xo + two· 
Now a crossing of the real axis by z(x), however, means that 

y'(x) = 0, i.e., that we are at a maximum of the function y(x). Our 
method, therefore, allows us to compute from one maximum of the func­
tion directly the next, or even - provided I (x) varies sufficiently slowly­
to determine only every hundredth maximum. In a similar manner one 
could also jump from zero to zero (crossings of the imaginary axis by 
z(x». In view of the fact that one always fixes attention only to the 
crossing of the point z (x) through a ray, one calls this procedure the stro­
boscopic method. 

Numerical example. For the differential equation 

y" + (10000 + x)y = 0, y(O) = 1, y'(O) = 0, 

we have at the beginning Xo = 0,10 = 10000, fa = 1, Zo = 1, and there­
fore, according to (95), (96), 

Here, one can easily choose k = 100, and finds 

XIOO = 6.282198, ZIOO = .999843 . 

From now on, one continues with 1100 = 10006.282, floo = 1: 
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2001t 104~ 
x200 = X 100 + - -2- = 12.562425 , 

"/100 1100 

[ 501t 1 z200 = ZI00 1 - 3i2 = .999686. 
/100 

Notes to Chapter 8 

§8.1 Most computer codes for solving ordinary differential equations assume the 
initial value problem given in standard form, as in Eq. (5), or in autonomous form 
(without the independent variable appearing explicitly), to which it can easily be 
transformed by adding an equation dyo/dx. = 1. In certain applications, for example in 
network analysis and simulation, one encounters also systems of implicit differential 
equations, or differential equations coupled with nonlinear algebraic equations. The 
numerical treatment of such problems is briefly discussed in Gear [1971, §11.2] and has 
received considerable attention in recent years; see , e.g., Gear & Petzold [1984], LOtstedt 
& Petzold [1986], Griepentrog & Miirz [1986], and Hairer, Lubich & Roche [1989]. 

The user should always be mindful of the fact that differential equations can often 
be rendered more manageable, hence their numerical integration more effective, if one 
applies a preliminary transformation of variables. See §8.9 B) for an elementary example 
and Daniel & Moore [1970, Part 3] for further examples. Interesting transformations are 
those of Levi-Civita and of Kustaanheimo and Stiefel used in celestial mechanics to regu­
larize and linearize the Newtonian equations of motion. An extensive treatment of these, 
including numerical aspects, can be found in Stiefel & Scheifele [1971]. 

Among the textbooks specifically devoted to the numerical solution of ordinary 
differential equations we mention the classical work of Henrici [1962], [1963], the book 
by Gear [1971], the very readable treatment of Lambert [1973], as well as recent mono­
graphs by Hairer, N<I>rsett & Wanner [1987] and Butcher [1987]. (Butcher's book con­
tains a comprehensive list of references up to 1983; a planned sequel is to continue this 
list from 1983 onwards.) Surveys of developments during the last 15 years can be found 
in Hall & Watt [1976], Gladwell & Sayers [1980], and IserIes & Powell [1987, Chs. 
14-16]. 

§8.2 Euler proposed his method in the Institutiones Calculi Integralis (Euler [1768, 
§650]), where it is presented as a purely computational procedure. The convergence of 
the method, and its use for establishing existence and uniqueness theorems for ordinary 
differential equations, is due to Cauchy (1844) and Lipschitz (1880). 

§8.3 The Taylor's series method for solving ordinary differential equations was pro­
posed already by Euler [1768, §656]. Rutishauser's perception of the method as too 
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cumbersome for practical use is still widely held. The required analytic differentiations, at 
least in the case of differential equations with arithmetic expressions as right-hand func­
tions, nevertheless can be carried out systematically by recursion, and programs have been 
written to implement this; see Moore [1979, §3.4] and Butcher [1987, §24] for relevant 
remarks. 

A proof of Theorem 8.2, for single differential equations as well as for systems, can 
be found in Henrici [1962, §§2.2-6, 3.3-6]. 

§8.4 The derivation of Runge-Kutta type methods by conventional means requires 
extremely tedious computations. Using appropriate notational devices, in particular, the 
formalism of rooted trees, Butcher [1965], [1975] succeeds in carrying through these com­
putations in a transparent manner and obtains important results concerning the attainable 
order of Runge-Kutta formulae (compare also Butcher [1987, Ch.3] and Hairer, Ncprsett & 
Wanner [1987, Ch. TIl] for detailed expositions). IT s denotes the number of stages of an 
explicit Runge-Kutta formula [that is, the number of rows in the matrix 1: of Eq. (31)] 
and p* (s) the maximum attainable order for arbitrary smooth differential equations, it has 
been known for some time that p* (s) = s when 1 ~ s ~ 4. For more than four stages, I.C. 
Butcher proves, among other things, that p* (s) = s - 1 for 5 ~ s ~ 7, p* (s) = s - 2 for 
8 ~ s ~ 9, and p* (s) ~ s - 2 for s ~ 10. The longstanding question of whether 10 or 11 
stages are needed to attain order 8 was settled by Butcher [1985]: ten-stage explicit 
Runge-Kutta methods of order 8 do not exist; indeed, p* (10) = 7. 

Eqs. (28), (29) define what are known as explicit Runge-Kutta methods. One can 
also define implicit methods, for which the matrix 1: in Eq. (31) is no longer triangular. 
The advantages of implicit Runge-Kutta methods are two-fold. In the first place, they can 
be made to have exceptionally high order. For each s, there exists, in fact, an s-stage 
method of maximum order p* (s) = 2s (Butcher [1964]). Secondly, this maximum-order 
implicit method also possesses favorable stability properties (cf. the notes to §8.6). On 
the other hand, implicit Runge-Kutta methods require the solution of nonlinear equations 
at each step, typically by Newton's method, which makes them more costly to use and of 
interest only in special situations. For a discussion of reasons why in recent years implicit 
Runge-Kutta methods have received serious attention, see Butcher [1987, §34]. 

Further developments of Runge-Kutta type formulas have been prompted by a 
desire to economically estimate the local discretization error and thus control the stepsize. 
In particular, Fehlberg [1969], [1970] develops what are now called embedded Runge­
Kutta methods. These consist of pairs of (explicit) Runge-Kutta formulae, one of order p 
with s stages, the other of order p* = p + 1 with s* > s stages, both having identical first 
s stages. They require therefore s* evaluations of the differential equation per step, which 
is more than in conventional methods, but they allow an easy estimation of the local 
discretization error. The formulas developed by Fehlberg correspond to the following 
values of the parameters p, s and s*: 
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p 345678 

s 4 5 6 8 11 15 

s* 5 6 8 10 13 17 

Embedded Runge-Kutta methods, including more recent methods by Verner and by Prince 
and Dormand, are studied in Butcher [1987, §37] and in Hairer, Nq,rsett & Wanner [1987, 
§§II.4, II.6] (this book contains Fortran listings of two of the Prince-Dormand methods.) 
An illuminating comparison of embedded Runge-Kutta methods is given in Shampine 
[1986]. 

Additional information on various aspects of Runge-Kutta methods is provided in 
Dekker & Verwer [1984] (where the focus is on the stability of implicit Runge-Kutta 
methods; see also the notes to §8.6), Hairer, Nq,rsett & Wanner [1987], and Butcher 
[1987]. 

Gear [1971, pp. 83-84] lists a Fortran program implementing the classical fourth­
order Runge-Kutta method, with stepsize and error control. Further codes can be found in 
standard software libraries such as IMSL or NAG. 

§8.6 Considerations of the type indicated in §§8.5-8.6 have given rise to a number 
of stability concepts and related theories of numerical stability. Basically, one wants to 
make sure that a problem which is Lyapunov stable remains so when approximated by a 
numerical method. A simple, but instructive, model problem is the linear system (39) 
with constant coefficient matrix A. This problem is Lyapunov stable if all eigenvalues of 
A have negative real part. If A is diagonalizable, the problem can be reduced to a system 
of uncoupled equations of the form dy/dx = AY, where A runs through the eigenvalues of 
A. Assuming, therefore, Re A < 0, the exact solution on an interval of length h is damped 
by the factor e iJa, whereas the corresponding factor for the numerical method is F (Ah), 
where the function F is characteristic of the method (for example, the function F in (45) 
for any explicit fourth-order Runge-Kutta method, or the function F in (51) for the tra­
pezoidal rule). The method is said to be A-stable (Dahlquist [1963]) if I F(z) I < 1 for all 
complex z with Re z < o. Somewhat less restrictive is the notion of A (a)-stability, 
0< a < Tt/2 (Widlund [1967]), which requires IF(z)1 < 1 for all complex z in the angu­
lar opening I arg(-z) I < a, z *" O. Clearly, explicit Runge-Kutta methods cannot be 
A(a)-stable, for any a, let alone A-stable, since F(z) is a polynomial. If F is a rational 
function, on the other hand, and in particular a Pade approximant of eZ on the diagonal of 
the Pade table, the corresponding method is A-stable (Birkhoff & Varga [1965]). The tra­
pezoidal rule, see Eq. (51), is an example of this, and so is the implicit s-stage Runge­
Kutta method of maximum order 2s (cf. the notes to §8.4). Other Pade approximants of 
e Z also give rise to A-stable methods, viz. those with denominator degree exceeding the 
numerator degree by one or two (Ehle [1973]). Then, in fact, one has not only 
I F(z) I < 1 for Re z < 0, but also F (z) ~ 0 as Re z ~ - 00, a useful property referred to 
as L-stability. 
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A powerful and elegant tool for analyzing the A-stability property of numerical 
methods for ODE's, the so-called order star, was introduced by Hairer, Nc!lrsett and 
Wanner in 1978; a good account of this theory may be found in Wanner [1987]. 

The mid-1970's saw the generalization of the concept of A-stability to nonlinear 
problems. A detailed study of nonlinear stability properties, such as B-stability and alge­
braic stability, of implicit Runge-Kutta methods can be found in Dekker & Verwer 
[1984]; see also Butcher [1987] and the survey paper of Lambert [1987]. 

A differential equations problem is called stiff if there are solution components 
with widely varying decay rates. In the model problem mentioned a,bove, this would 
mean that all eigenvalues of A have negative real parts, some, but not all, having very 
large absolute values. For the numerical integration of stiff problems, it is essential that 
the method be A-stable, or at least A (a)-stable for some appropriate a. The survey arti­
cles of Lambert [1980] and Curtis [1987], as well as §1.1 in Dekker & Verwer [1984], 
provide much insight into the nature of stiffness. As far as stiff ODE solvers are con­
cerned, the reader is referred to the comprehensive review article by Byrne & Hindmarsh 
[1987]. It describes in great detail current software for stiff ODE's (and for differential­
algebraic systems), and it contains numerous computational results and an extensive 
bibliography. 

§8.7 Adams predictor and corrector formulae, properly implemented, are among the 
most effective methods for integrating nonstiff differential equations, particularly in cases 
where the equations are expensive to evaluate. The full potential of these methods, how­
ever, is only realized when one allows for variable stepsize and variable order. A great 
deal of thought must go into devising sound strategies for controlling the stepsize and the 
order of the method so as to meet given error criteria. Once such strategies have been 
designed, there will no longer be any need for special starting procedures. One simply 
starts with Euler's method and a sufficiently small step, and from then on lets the control 
mechanisms take over to arrive at a proper order and proper step size. Such matters, in 
the context of Adams predictor-corrector methods, are thoroughly discussed in Shampine 
& Gordon [1975], which contains also a computer program. 

Another useful class of difference formulae are the so-called backward differentia-
1ft , 

tion formulae, which are of the form ~ ajYl-j = h~OYl [i.e., ~j = 0, all j> 0, in Eq. 
j=4J 

(52)]. They are usually chosen to have order m, and then have the useful property of 
being A (a)-stable for appropriate a = am' at least when m S 6. This makes these 
methods attractive for integrating stiff differential equations, and they are in fact used for 
this purpose in a program written by Gear [1971, p. 159] and in the respective codes of 
the IMSL and NAG libraries. 

In addition to Runge-Kutta methods (§§8.4-8.5) and difference methods 
(§§8.7-8.8), the extrapolation methods of Gragg and of Bulirsch and Stoer form another 
class of competitive integration methods. The basic idea here is to extend Richardson 
extrapolation, used for example in Romberg integration (cf. §6.10), to differential equa­
tions. A good exposition can be found in Stoer & Bulirsch [1980, §7.2.14], and com­
puter programs in Gear [1971, p. 96] and in the IMSL and NAG libraries. 
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§8.8 According to a theory of Dahlquist [1956], the conditions a) and b), also 
referred to as zero-stability, together with the conditions of consistency (79), (80), are 
necessary and sufficient for convergence of the m-step method associated with the polyno­
mials A and B. By convergence one means that whenever the starting values at x = a, 
a + h, ... , a + (m - l)h tend to y(a) as h -70, one has Yn -7 y(x) for any x in some 
finite interval [a,b], where n -700 and h -70 such that x = a + nh. Moreover, this is to 
hold for all differential equations satisfying a uniform Lipschitz condition. An important 
result of Dahlquist states that the order of a zero-stable m-step method is at most equal to 
m + 1 if m is odd, and at most equal to m + 2 if m is even. The latter holds precisely if 
all zeros of A (z) lie on the unit circle and are simple. For an exposition of Dahlquist's 
theory, see Henrici [1962, §5.2]. 

Considerably more restrictive is the requirement of A-stability (cf. the notes to 
§8.6), which in fact limits the maximum possible order of a linear multistep method to 2 
(Dahlquist [1963]). For all a with 0 < a < 1t/2 there exist, however, A (a)-stable m-step 
methods of order p with m = p = 3 and m = p = 4 (Widlund [1967]). The backward 
differentiation m-step formulae (cf. the notes to §8.7) are also A (a)-stable for m as large 
as 6, but only for restricted values am of a. 

Nevanlinna & Liniger [1978] study standard stability properties of linear multistep 
methods as they relate to the (stronger) concept of contractivity; the latter allows the 
derivation of stability results for nonlinear ODE's. See also the survey article of Lambert 
[1987] for more recent developments in nonlinear stability. 
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CHAPTER 9 

Boundary Value Problems For Ordinary Differential Equations 

For a differential equation of order n, or a system of differential 
equations whose orders add up to n, one needs n conditions in order to 
single out one solution from among a family of oon. If these n conditions 
refer to a single point xo, one speaks of an initial value problem, since -
apart from singular cases - one has enough information to integrate away 
from Xo. 

If, on the other hand, these n conditions refer to more than one 
point, then at no point x does one have sufficient information to start the 
integration. One then speaks of a boundary value problem. A typical 
case is one in which for a differential equation of the form y" = I(x,y,y') 
one seeks a solution y (x) on the interval a ~ x ~ b which at each of the 
two end points a and b of the interval must satisfy a condition involving y 
and y'. An example is 

y" + y = 0, with yea) = 0, y(b) = 1. 

A somewhat more general case is a linear differential equation of order 
2m, 

with m conditions involving y, y', ... , y(2m-l) at each of the points a and 
b. 
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§9.1. The shooting method 

As an example, let us consider a flexible beam clamped on a rotat­
ing shaft parallel to it, which under the influence of the rotation bends 
away from the shaft (cf. Fig. 9.1). 

.------
X'O 

..... ..... ---
X" 

Figure 9.1. Flexible beam mounted on a rotating shaft, in 
resting position and during rotation (dotted) 

If m is the mass of the beam per unit length, JE its bending stiffness, ro 
the circular frequency of the shaft rotation, then the corresponding 
differential equation is 

(1) 

and the boundary conditions are 

reO) = 1, r'(O) = 0, r"(1) = 0, r"'(l) = O. (2) 

Neither at x = 0, nor at x = 1, does one have sufficient information to start 
the integration. There still are, for example, 002 solutions which satisfy 
the boundary conditions at left. 

The shooting method now simply consists in finding, through sys­
tematic trials, that one of the 002 solutions which also satisfies the boun­
dary conditions at x = 1. The method can be very tedious, but still 
succeeds with a tolerable amount of effort for 

1) linear differential equations, and 

2) differential equations of the 2nd order. 
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a) Differential equations of the 2nd order. If for a differential equa­
tion of the fonn 

y" = f(x,y,y') (3) 

there is one boundary condition at x = a, then only a one-dimensional 
family of solutions remains that satisfies this condition. We denote this 
solution family by y (t,x); all functions y (t,x) thus satisfy (3) and the 
boundary condition at x = a. Let the boundary condition at x = b be 

R[y(b),y'(b)] = O. (4) 

Upon integrating all solutions y (t,x) of the family from a to b, we obtain 
through substitution in this boundary condition the equation 

R [y(t,b),y'(t, b)] = o. (5) 

The left-hand side of this equation is now a function H (t) of the 
variable t, whose zeros detennine the desired solutions among the family 
y (t,b). 

In computational practice one actually integrates only.a few selected 
solutions of the family from a to b; through substitution of the 
corresponding values y (b) and y' (b) into the function R one obtains a few 
points of the curve z = H (t) from which one tries to detennine zeros of 
H (t) approximately by interpolation. 

Example. To be solved is the boundary value problem 

y" + 2y,3 + 1.5y + .5y2 = O.05x, y(-5) = -1, y(5) = O. 

All solutions y (t,x) satisfying the boundary condition at left can be 
characterized by 

y(t, -5) = -1, y'(t,-5) = t; (6) 

to each value of t there corresponds a different solution through the point 
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x =-5, Y =-1. If one imagines all solutions of this family integrated 
from -5 to 5, one obtains at the point x = 5 the condition 

H (t) = Y (t, 5) = 0, 

which thus must be solved. 

Now, however, the function y (t, 5) can only be constructed point­
wise; each function value y (t, 5) requires a numerical integration of the 
differential equation from -5 to 5 with the initial values (6). One so 
obtains, for example, 

t (t,5) 

o .049115 
.25 .002123 
.5 -.021683 

The interpolation polynomial of degree 2 for these three points is .049115 
- .23434t + .185488t2 , from which there results as first approximation t = 
.2653. (The second root t = .998 is useless, since it does not lie in the 
interval 0 $; t $; .5.) Of course, t = .2653 is still inaccurate since, for one, 
the parabola represents only an approximation to H (t), and then also the 
numerical integration, after all, is only an approximation. One should 
therefore repeat the integration for additional t-values in the vicinity of 
.2653 and with smaller stepsize h. 

b) Differential equations of order 4. If we consider the example (1), 
(2), we find that 002 solutions of the differential equation r(4)(x) = cr(x) 
satisfy the boundary conditions at the point x = 0, namely all solutions 
with the initial conditions 

reO) = 1, r'(O) = 0, r"(O) = s, r"'(O) = t. 

This solution family therefore has the form r(s,t,x), and, in particular, the 
boundary values at x = 1, 

H l(S,t) = r"(s,t, 1), H 2(s,t) = r"'(s,t, 1), 
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remain still functions of s,t. 

The solution which also satisfies the boundary conditions at x = 1 is 
determined by the equations HI = H 2 = 0, and therefore corresponds to 
that point of the (s,t)-plane which is mapped by 

(7) 

into the origin of the (H 10 H 2)-plane. Having determined 3 points A, B, 
C of this mapping (by 3 numerical integrations), one can on the basis of 
the construction indicated in Fig. 9.2 already find an approximate solution 
P = (s,t) of (7). One thereby exploits the fact that the mapping 
(s,t) -7 (H 1 ,H 2) is locally affine. 

Figure 9.2. Approximate determination oj a common zero P oj 
the junctions HI (s,t) and H 2(S,t) 

Subsequently, further integrations are carried out, with s,t in the 
vicinity of the point P thus determined, which usually lead quickly to the 
desired goal. 

§9.2. Linear boundary value problems 

For linear differential equations one can apply the same prinCiple. It 
is found, then, that the mapping in question from the (s,t)-plane to the 
(H 1,H 2)-plane in the above example (1), (2) (which is indeed linear) is an 
affinity not only locally, but globally, provided that also the boundary 
conditions are linear. Thanks to this circumstance, we are in a position to 
treat rather more general cases. 
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We consider the general linear differential equation of order n with n 
boundary conditions: 

Ly(x) = I(x), (8) 

where L is a linear homogeneous differential operator of order n, 

L = ± ak(x)D k with D = .!!:.... , 
k=O dx 

(9) 

so that, for example, with L = x 2D2 + 1, the differential equation reads 

The boundary conditions are likewise assumed to be linear; they 
may refer to an arbitrary number of points xl, ... , xm: 

Rj[y(x)] = aj U = 1,2, ... , n), (10) 

each Rj being a linear combination of y and its derivatives up to order 
n - 1 at the m points Xi, thus 

m n-l 
Rj[y(X)] = L L rM)y(k)(Xi). 

i=l k=O 

(11) 

These sums, with increasing m, can even become integrals; for example, 
the following "boundary condition" would be conceivable: 

J b Y (x)dx = 1. 
a 

On the other hand, since the differential equation is linear, we can 
write down the general solution; it is given by 

n 

y(x) = Yo(x) + L tkYk(X), 
k=l 
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where Yo is a particular solution of the inhomogeneous equation, while 
y 1, ... ,Yn are n independent solutions of the homogeneous equation. 
Such n independent solutions Yk(X) are characterized by the fact that their 
Wronskian matrix 

is nonsingular for all x. For this, it suffices that it be nonsingular for one 
x. A system of independent solutions can thus be obtained by fixing ini­
tial conditions for the Yk such that W(xo) is the unit matrix. Since these 
n + I functions can be determined by numerical integration, the general 
solution of the differential equation in this special case can therefore also 
be obtained numerically (in tabular form). 

We now substitute the general solution so obtained into the boun­
dary conditions (10) and get 

n 
Rj[y (x)] = Rj[yo] + L tkRj[Yk] = aj U = 1,2, ... , n). 

k=I 

One thus obtains for the unknowns tI, t2, . .. , tn the linear system of 
equations 

n 
L tkRj[Yk] = aj - Rj[yo] (j = 1,2, ... , n). (12) 
k=I 

It is worth noting that all quantities that enter into the coefficient 
matrix and the right-hand side of this system can be determined by 
numerical integration, since through an appropriate arrangement of the 
numerical integration all derivatives of the integrated solution up to the 
(n-l)st become automatically available at each support point. It suffices, 
therefore, to see to it that all "boundary points" Xl, X2, • •• , Xm become 
support points. 

Example. 

y" + xy = 1, yeO) + y'(O) = 1, y(1) - y'(1) = O. 
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One first has to compute by numerical integration a particular solu­
tion Yo(x), say the one with Yo(O) = Yo (0) = 0, and then two independent 
solutions Y 1 (x), Y2(X) of the homogeneous equation, for example those 
with Y 1 (0) = 1, yi (0) = 0 and Y2(0) = 0, yz (0) = 1. One so obtains the 
functions depicted in Fig. 9.3, with boundary values 

Yo(1) = .476199, 

Yl(l) = .840057, 

Y2(1) = .919273, 

Yo (1) = .878403, 

yi (1) = -.468088, 

yz (1) = .678265. 

(For these functions one first gets of course only the values (and the 
derivatives) at the points Xk = Xo + kh = .1k; in the figure these were con­
nected by a curve.) 

Figure 9.3. The/unctions Yo(x), Yl(X), Y2(X) 

The boundary operators 

Rdy(x)] = yeO) + y'(O), R2 [y(x)] = y(l) - y'(l) 

for these special solutions take on the values 

R1[yo] = 0, 

R1[ytl = 1, 

R 1[Y2] = 1, 

so that the equations (12) become: 

R 2 [yo] = -.402204, 

R 2[Y tl = 1.308145, 

R 2[Y2] = .241008, 
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1 
1.308145 

1 
.241008 

= 1 
= .402204 

and have the solution tl = .151055, t2 = .848945. Therefore, 

Y (x) = Yo(x) + .151055 Yl (x) + .848945 Y2(X) 

is the desired solution, which is thus detennined by the initial conditions 

y(O) = .151055, y'(O) = .848945. 

The correctness of the solution can be checked by integrating once more 
with these initial conditions. One then finds indeed Y (1) = y'(l) = 
1.38351. 

It must not be concealed, however, that the coefficient matrix 
{Rj[Yk]} of the system of linear equations (12) for the tk can be ill­
conditioned, or even practically singular. This could be due to an inept 
choice of the particular solution Yo and of the independent solutions 
y 1, ... , Yn' but may possibly also lie in the nature of the problem. An 
appropriate choice of the Yi or, what is the same, of the initial conditions 
defining them, may remedy the predicament. Not infrequently, it is even 
possible, in this way, to reduce the very number of unknowns tk that 
occur. 

In the above example one could, say, prescribe for the particular 
solution Yo of the inhomogeneous system the initial conditions Yo(O) = 1, 
Yo (0) = 0, in which case the initial condition at left is already satisfied. 
One then gets Yo(l) = 1.31625, Yo(l) = .410315 (cf. Fig. 9.4). 
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y(x) 

x-a 

Figure 9.4. Better selectedfunctions Yo(x), Y 1 (x) and 
the solution y(x) of the boundary value problem 

.287 

x -1 

If one further subjects y 1 (x) to the initial conditions y 1 (0) = 1, 
yi(O)=-l, which yields Yl(l) =-.079216, yi(l) =-1.14635, then 
y = Yo + t lY 1 is already the one-parameter family of all solutions which 
satisfy Y (0) + y'(O) = 1. In this case one obtains through substitution in 
the other boundary condition 

R 2 [yo] = .905940, R 2 [ytl = 1.06713, 

and thus only one equation, 

which has the solution tl = -.848945. The desired solution of the boun­
dary value problem can now be written in the simpler form 

y(x) = Yo(x) - .848945Yl (x). 

It is depicted on the right in Fig. 9.4. 

Postprocessing. We consider the problem 

y" - y + 1 = 0, yeO) = y(lO) = o. (13) 

Here the differential equation can be solved exactly, but the characteristic 
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difficulties inherent in satisfying the boundary conditions are essentially 
the same. 

The particular solution of the inhomogeneous equation with 
Yo(O) = Yo (0) = 0 is 

Yo(x) = I - cosh x. 

Furthermore, Y 1 (x) = cosh x and Y2(x) = sinh x are two independent solu­
tions of the homogeneous equation, thus 

Y (x) = 1 - cosh x + t 1 cosh x + t 2 sinh x 

the general solution. 

Because of Y (0) = 0, there follows at once t 1 = 0; then from 
y(lO) = 0, 

1 - cosh 10 + t2 sinh 10 = 0, 

or 

cosh 10 - 1 
t2 = sinh 10 = tanh 5 = .999909 (to 6 digits) . 

Thus, in 6-digit precision, 

y(x) = 1 - cosh x + .999909 sinh x 

would be the desired solution. Now, regardless of whether this formula is 
evaluated for Hall" x, or whether one integrates again from x = 0 to 
x = 10 with the corresponding initial conditions y (0) = 0, 
y'(O) = .999909, the boundary value y (10) obtained at x = 10 will in fact 
deviate considerably from O. With numerical integration, for example, 
one obtains y (10) = -.002254, which is explained by the fact that y (x) for 
large x depends very sensitively on y'(O). 

In order to arrive at a more accurate solution, the solution thus far 
obtained is denoted by yo(x), and we seek the improved solution y(x) in 
the form 
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y(x) = YO(x) + [1 cosh X + [2 sinh X. 

As above, one gets [1 = 0, since the boundary condition at the left boun­
dary then is indeed satisfied; thereafter, 

y(lO) = yo(lO) + [2 sinh 10, 

hence 

- Yo (10) 
t 2 = - sinh 10 = 

.002254 
11013 :::: 2.04710-7. 

In this way, one now gets for the initial condition at x = 0 

y'(O) = y'(O) + [2 = .999909 + 2.04710-7, 

but in 6-digit computation one again obtains y'(O) = .999909. 

The boundary condition at the point x = 10, therefore, was poorly 
satisfied by Yo(x) not because Yo(x) was determined incorrectly, but 
because within 6-digit accuracy no value y'(O} exists which would pro­
duce a sufficiently small y (10). One therefore cannot, in this case, obtain 
a better y (x) by numerical integration, but only through linear combina­
tion (which is to be carried out for each x): 

y(x) = Yo (x) + 2.04710-7 sinh x. 

This then yields, say, 

y(l) = .632014 + 2.04710-7 x 1.17 = .632014, 

y(9) = .631187 + 2.04710-7 x 4051.54 = .632016, 

y(lO) = - .002254 + 2.04710-7 x 11013 = .000000. 
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It remains to observe, though, that also in this example a more skill­
ful choice of the particular solution could have led us to the correct solu­
tion without postprocessing (this is, however, not always possible). If one 
puts, in fact, 

one first obtains for the two boundary operators R Ify] = y(O), 
R 2 [y] = y(lO): 

R 1[Yo]=1, 

R 1[YIl=1, 

R 1[Y2]=1, 

R 2 [yo] = 1, 

R 2 [Yll = elO, 

R 2[Y2] = e-lO , 

so that the equations (12) now become 

tl + t2 =-1, 

Their solution is tl = -4.5397910-5, t2 = -.999955, giving 

y(x) = 1 - 4.5397910-5 e~ - .999955e-~, 

a function which satisfies both boundary conditions with an error of about 
10-6. 

§9.3. The Floquet solutions of a periodic differential equation 

A special type of boundary value problem arises in connection with 
differential equations of the form 

y" + <I>(x)y = 0, (14) 
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where <\lex) is a periodic function with <\l(x + 21t) = <\lex). The differential 
equation need not necessarily have periodic solutions, but it always 
possesses solutions of a special type. If, in fact, 

y(21t) = ky(O), 

y'(21t) = ky'(O), 

where k is a constant, then for all x, 

Y (x + 21t) = ky(x). 

(15) 

(16) 

(One calls this a Floquet solution.) Indeed, Z (x) = Y (x + 21t) is defined as 
solution of z" + <\l(x + 21t)z = 0, with the initial conditions z (0) = y(21t), 
z'(O) = y'(21t). Since, then, z" + <\l(x)z = 0, and in addition, z(O) = ky(O), 
z'(O) = ky'(O), one concludes at once from the homogeneity of the 
differential equation that z (x) == ky(x), q.e.d. 

In order to obtain a Hoquet solution, one must evidently find a solu­
tion of the differential equation which satisfies the boundary conditions 
(15). Letting 

where Y l' Y2 are defined by the initial conditions 

it follows from (15) that 

Yl (0) = 1, 

Y2(0) = 0, 

Yl (0) = 0, 

Yz(O) = 1, 

ClYl(21t) + C2Y2(21t) = ky(O) = kCl, 

ClY! (21t) + c2Yz(21t) = ky'(O) = kC2· 

Therefore, k and [c 1 ,c2f are eigenvalue and corresponding eigenvector 
of the matrix 
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[
Yl(21t) 

Yl (21t) 
(17) 

which allows us to construct Y (x). We note that the determinant of this 
matrix is 1, since 

d 
dx 

Yl(X) Y2(X) 

Yl (x) yz(x) 
= 0 and 

Yl(O) Y2(0) 

Yl (0) yz (0) 
=1. 

This means that the product of the two eigenvalues is 1; only A. = 1 or 
A. = -1 can thus be a double eigenvalue. 

Example. If 
1 1 

<I>(x) = '4 - 8" cos x, 

one obtains for Y 1 (x), with Y 1 (0) = 1, Yl (0) = 0: 

Y 1 (21t) = -1.07694, Yl (21t) = -.197774, 

and for Y2(X), with Y2(0) = 0, yz (0) = 1: 

Y2(21t) =-.808140, yz(21t) =-1.07694. 

The eigenvalues and eigenvectors of the matrix 

are 

[
-1.07694 
-.197774 

-.808140 1 
-1.07694 

kl =-1.47673, k2 =-.677154, 

[ :: 1 ~ [ ~9470 1 ' [:: 1 ~ [ ~.49470 1 

(18) 
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Thus, Y = Y 1 - .4947Y2 is a Floquet solution. It is depicted in Fig. 9.5; 
Table 9.1, in addition, contains some function values. 

1.0 

2n 

Figure 9.5. The Floquet solution/or the example (18) 

Table 9.1. Values o/the Floquet solution/or (18) 

x 

o 
'Tt/3 
2'Tt/3 
'Tt 
4'Tt/3 
5'Tt/3 
2'Tt 

y 

1 
.42192 

-.23189 
-.79768 

-1.05532 
-.96890 
-.67717 

y' 

-.49470 
-.60207 
-.62015 
-.41995 
-.06688 

.20530 

.33499 

§9.4. Treatment of boundary value problems with difference methods 

We consider, as a model, the problem 

y" - y + 1 = 0, y (0) = y (lO) = 0, (19) 
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which has the exact solution Y (x) = (e 10 - eX) (1 - e-X)/(e 10 + 1). 

For numerical solution, the intelVal [0,10] is subdivided into n equal 
subintelVals of length h = 10/ n. At each of the resulting abscissas 
Xk = kh the differential equation is written down, whereby in place of 
y"(x) one substitutes the approximate expression 

y"(x)::: y(x + h) - 2y(x) + y(x - h) 
h 2 

There results the equation 

1 [2 1 1 - -2 Yk+l + -2 + 1 Yk - -2 Yk-l - 1 = 0, 
h h h 

(20) 

(21) 

which can be written down for k = 1,2, ... , n - 1, yielding, on account 
of the boundary conditions y(O) = y(lO) = 0, a system of n - 1 linear 
equations in the same number of unknowns. 

Examples. For n = 5, h = 2, the system of equations (21) reads: 

Yl Y2 Y3 Y4 

1.5 -.25 0 0 
-.25 1.5 -.25 0 
0 -.25 1.5 -.25 
0 0 -.25 1.5 

.827586207 .965517241 .965517241 .827586207 

= 1 
= 1 
= 1 
= 1 

It has the solution shown at the bottom of the tableau. With n = 10, 
h = 1, one obtains the system 
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Yl Y2 Y3 Y4 Ys 

3 -1 = 1 
-1 3 -1 =1 

-1 3 -1 = 1 
-1 3 -1 =1 

-1 3 =1 

.617886179 .853658537 .943089431 .975609756 .983739837 

For reasons of symmetry one has here Y9 = Yl, Ys = Y2, Y7 = Y3, 
Y6 = Y4· With n = 1000, h = .01, one finally would have: 

Yl 

20001 
-10000 

Y2 

-10000 
20001 

-10000 
-10000 

20001 

= 1 
= 1 
= 1 

Such systems of equations are rather easily solved, since the matrix is 
occupied only around the diagonal. One can apply the Gauss algorithm; 
the computational work for n = 1000 is roughly equivalent to the work 
involved in solving 18 linear equations in 18 unknowns with a dense 
matrix. 

But how about accuracy? After all, the relation (20) does not hold 
exactly. Rather, 

y(x + h) - 2y(x) + y(x - h) = y"(x) 

h 2 

h2 h4 + - y(4)(x) + - y(6)(x) + 
12 360 

so that in place of the equation 

Y" + f(x)y = g(x) 

(22) 

(23) 



296 Chapter 9. Boundary Value Problems For Ordinary Differential Equations 

we integrate in first approximation the differential equation 

h 2 
Y" + f (x)y = g(x) - 12 y<4)(X). 

Since the forcing term here is perturbed only by O(h2), the solution, by 
the superposition principle, is off by an amount of O(h2); the method 
therefore has order 2. 

While the error for h = 1 is still about .1, it will thus for h = .1 be 
only about 10-3 , and for h = .01 one could already expect 5-digit accu­
racy. 

There are now limits set, however, to refinements of the subdivision 
h; such a refinement, namely, increases not only the computational work, 
but also the sensitivity to rounding errors. In fact, for n = 1000 (h = .01), 
where the computational work is still modest, the difference between the 
differential equations Y" - Y + 1 and y" + 1 = 0 consists only in the 
diagonal elements of the coefficient matrix being 20001 in the first case, 
and 20000 in the second. But if such a small difference between the 
coefficient matrices can change the solution that much, this solution 
necessarily must be sensitive to rounding errors. (The exact solution of 
y"+1=0, y(O) =y(10) =0, is Y(x)=x(lO-x)l2, so that, e.g., 
Y(5) = 12.5, as opposed to Y(5) = .986524718 ... for the given prob­
lem.) 

An enhancement of the accuracy, therefore, cannot be forced by an 
excessive increase of n, but only by a refinement of the method. One can 
observe, namely, on the basis of the expansion (22) that the error of the 
numerical solution of the differential equation (23) is expressible in terms 
of even powers h 2, h4 , ... only, that is, as 

where Cl, c2 , .•. are certain functions of x not further specified. 

Whenever the error of a numerical process exhibits this behavior for 
decreasing h, one can proceed according to Romberg (cf. §6.10): Denot­
ing by Ya(x) the numerical solution obtained with h = ha, by Yl (x) the 
one with h = hl = ha/2, in general by Yk(X) the one obtained with 
h = hk = hark, then one forms with them the additional functions 
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4YI(X) - YO(X) 
Y~l~)= 3 ' 

4Y2(X) - Y I (X) 
YI.I(X) = 3 ' 

etc., then 

etc., in general 

(X) _ 4kYv+I,k_1 - Yv,k-l 
Yv,k - 4k _ 1 (24) 

Of course, YO,I (x) is defined only at the common abscissas of YI (x) 
and Yo(x), likewise Yl,l(x) only at the common abscissas of Y2(X) and 
Y I (x), etc. In general, Yv,k is defined only at the same abscissas as Yv(x), 
that is, at the multiples of hv = hoTv. 

In our example, one first obtains with h 0 = 2 (subdivision of the 
interval in 5 equal parts) the "basic solution" Yo(x): 

Then, with hI = 1: 

Yo(2) = .827586207 

Yo(4) = .965517241 

Yo(6) = .965517241 

Yo(8) = .827586207 
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Yl(l) = .617886179 

Y 1 (2) = .853658537 

Y 1 (3) = .943089431 

Yl (4) = .975609756 

Y 1 (5) = .983739837 

symmetric 

etc. Considering only the function values at the points x = 2 and x = 4, 
one obtains the following Romberg schemes: 

Yv(2) Yv.l (2) Yv.2(2) Yv.3(2) 

.827586207 
.862349313 

.853658537 .864283902 
.864162990 .864334966 

.861536877 .864334168 
.864323469 

.863626821 

Yv(4) Yv.l (4) Yv.2(4) Yv.3(4) 

.965517241 
.978973928 

.975609756 .979202493 
.979188208 .979206519 

.978293595 .979206457 
.979205316 

.978977386 

One so gets approximately 
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Y (2) = .864334966, Y (4) = .979206519, 

which is in good agreement with the exact solution 

Y(2) = .864335413 ... , Y(4) = .979206553 ... 

The problem is illustrated schematically in Fig. 9.6. 

~ 

~ J- IToJJ .-~ 
rrifuIIill.;}~ ~ K~ 
~ ~ llUJlW1J 15 lllllllllllllll K1 x-O x-2 x-tO 

-ffiJJJ 
x-O x-2 x-tO 

x-O x-2 x-tO 

Figure 9.6. To Romberg's convergence acceleration 

For the boundary value problem (19), the coefficient matrix turned 
out to be symmetric. This, to be sure, corresponds to the self-adjoint 
character of the boundary value problem, but is nevertheless kind of 
accidental. Consider as a further example the boundary value problem 

y" - xy + 1 = 0, yeO) = y'(5) = o. (25) 

Here the discretized differential equation is 

Yk+l - 2Yk + Yk-l 
-----~-h-2---.:.. - xkYk + 1 = 0 (k = 1,2, ... , n - 1), 

or 

- 2-2 Yk-l + [ .1...2 +kh] Yk- -1-2 Yk+l -1 =0 (k= 1, ... , n -1). (26) 
h h h 
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In addition, we have the equation 

, Yn+l - Yn-l = 0 
Yn= --2-h--

for the boundary condition at x=$; from this, one gets Yn+l = Yn-l' One 
therefore writes down the differential equation in addition for k = n and 
substitutes therein Yn+l by Yn-l: 

(27) 

Together with (26), this yields n equations for the n unknowns 
Yl,"" Yn' 

This system of equations for n=$, hence h=l, for example reads: 

Yl Y2 Y3 Y4 Ys 

3 -1 = 1 
-1 4 -1 = 1 

-1 $ -1 = 1 
-1 6 -1 = 1 

-2 7 =1 

The coefficient matrix is not symmetric here, but one can restore sym­
metry by dividing the last equation by 2; it then becomes 

- Y4 + 3·$ys = .5. 

This, however, is not a generally applicable method to make a matrix 
symmetric, although it always helps for tridiagonal matrices. In the fol­
lowing §9.$ we discuss a method which - to the extent that one can 
expect it from the nature of the problem - produces symmetry quite gen­
erally. 
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§9.5. The energy method for discretizing continuous problems 

The solution of the boundary value problem (25) discussed in §9.4, 

y" - xy + 1 = 0, yeO) = y'(5) = 0, 

is at the same time solution of the extremal problem 

1 15 12 1 15 2 15 "2 0 y dx +"2 0 xy dx - 0 y dx = extremum (28) 

subject to the side condition y (0) = O. Indeed, by treating this extremal 
problem with the methods of the calculus of variations, one immediately 
obtains again the original boundary value problem. However, it is better 
here to forgo the calculus of variations and to discretize the extremal 
problem directly. 

Having subdivided the interval 0 ~ x ~ 5 into n intervals of equal 
length h, one first approximates 

f (y'(x»2dx by h ,~ [Y'(kh - ; )]2 

y'(kh - h/2) in tum can be represented approximately as 

so that one discretizes 

The integrals 

y(kh) - y(kh - h) 

h 

1 15 2 15 "20 xydx and 0 ydx 
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are treated by the trapezoidal rule, so that altogether one obtains 

1 n 2 h [XOY6 n-l 2 XnY; 1 
- L (Yk - Yk-l) + - -- + L XkYk + --
2h k=1 2 2 k=1 2 

[
Yo n-l Yn 1 

- h - + L Yk + - = extremum . 
2 k=1 2 

After taking account of Yo = 0, and division by h, there follows 

1 n-l 2 [2 1 1 2 [1 Xn 1 - LYk -+Xk +-Y -+-
2 k=1 h 2 2 n h 2 2 

n YkYk-l n-l 1 
- L 2 - L Yk - "2 Yn = extremum. 

k=2 h k=l 

Now, as is well known, the extremal problem for a quadratic function 

~ L L aikxixk + LbiXi is equivalent to the solution of a linear system of 
n 

equations Laikxk + bi = 0 (cf. §3.7). In the present case, this system is 
k=1 

given by 

Yl Y2 y" 1 

2 1 -1 =0 -+Xl 
h2 h2 

1 2 1 -1 =0 
h 2 

-+x2 
h2 h2 

(29) 

2 1 -1 =0 -2 +X,,_l 
h2 h 

1 1 x" 1 =0 -f1 -+-
h2 2 2 
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Note, in particular, that the coefficient matrix - as matrix of a quadratic 
form - has now automatically become symmetric. 

Example. A beam with bending stiffness JE is laid on an elastic 
foundation (with spring constant k per unit length) and loaded with the 
weight p (x) per unit length (see Fig. 9.7). What is desired is the 
deflection y (x). 

x-o x-l 

Figure 9.7. Loaded beam on elastic ground 

We consider the energies: 

) d· f th 1 11 112dx 1 Ben mg energy 0 e beam: "2 0 JE y . 

1 11 2) Displacement energy of the ground: "2 0 ky 2dx. 

3) Virtual work of the exterior forces: 10 1 p(x)y dx. 

Consequently, the deflection must satisfy 

1 11 2 11 "2 0 (JE Y II + ky2)dx + 0 py dx = extremum, 

from which, with the help of the calculus of variations, one derives the 
differential equation 

(JE y")" + ky + p = 0 

with the boundary conditions y"(O) = y"'(O) = y"(l) = y"'(l) = O. If 
one tries to solve this differential equation with difference methods, one 
arrives at a linear system of equations with a nonsymmetric coefficient 
matrix. In order to avoid this, one applies difference methods directly to 
the energy, approximating it by a quadratic function whose minimum is 
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then determined. 

Let, in particular, JE == 1, k == 1. (The problem, of course, could 
then be solved exactly). The beam is subdivided into 5 subintervals of 
length h = .2 and the deflections at the subdivision points are denoted by 
Yo, Yl, Y2, Y3, Y4, Ys. To begin with, one has 

but for k::::{) and k=5 one needs other expressions which avoid Y-l and Y6: 

Computing the integrals by the trapezoidal rule, one obtains 

1 ,,2 2 11 h 4 
"2 0 Y dx::::"2 L(25Yk+l - 50yk + 25Yk-l) 

k=1 

11 [1 4 1 1 o PY dx :::: h "2 PoYo + L PkYk + "2 PsYs . 
k=1 

After deletion of the common factor h, the sum of these expressions is the 
quadratic function F (y) belonging to the system of equations 
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Yo yz Y3 
1875.5 -4375 3125 -625 

-4375 10938.5 -8750 2187.5 
3125 -8750 9063.5 -5000 
-625 2187.5 -5000 9063.5 

2187.5 -8750 
-625 3125 

Y4 Y5 

2187.5 -625 
-8750 3125 
10938.5 -4375 
-4375 1875.5 

1 

Po/2 
PI 
pz 
P3 
P4 

P5/2 

=0 
=0 
=0 
=0 
=0 
=0 

The solution of this system, therefore, yields the minimum of F and with 
it (approximately) the desired deflections. 

Notes to Chapter 9 

§9.1 Introductions to the numerical treatment of two-point boundary value prob­
lems for ordinary differential equations may be found in Fox [1957], Collatz [1960], 
Keller [1968, 1975, 1976], Bailey et al. [1968], Daniel & Moore [1970], Fried [1979], 
and Fox & Mayers [1987]. In addition, compare the survey articles in Hall & Watt [1976, 
Chapters 15-19] and in Gladwell & Sayers [1980, Chapters 9-11], as well as the contribu­
tion by Daniel in Childs et al. [1979, pp. 1-18]. These proceedings of a working confer­
ence contain some 30 contributions dealing with various aspects of computer codes for 
two-point boundary value problems, as well as an extensive bibliography. 

Boundary value problems arising in applications are frequently not in the "stan­
dard" form required by many software packages. The paper by Ascher & Russell [1981] 
gives a survey of numerous relevant conversion devices. 

Shooting methods are discussed in Keller [1968, Chapter 2], Keller [1976, Chapter 
1], Hall & Watt [1976, Chapter 16], Stoer & Bulirsch [1980, Chapter 7], Gladwell & 
Sayers [1980, Chapter 10], and Fox & Mayers [1987, Chapter 5]. The general idea under­
lying the basic shooting method, say for the boundary value problem y"(x) = f(x,y (x», 
y (a) = a, y(b) = ~, consists in determining a value for 'Y such that the solution y = y (x;'Y) 
of the initial value problem y"(x) = f (x,y (x», y (a) = a, y'(a) = 'Y, satisfies the given 
boundary condition at x=b. The resulting. nonlinear equation, y (b;y) - ~ = 0, has in gen­
eral to be solved by iteration, usually Newton's method or one of its variants (see the 
paper by Deufihard in Childs et al. [1979, pp. 40-66] for a detailed analysis of nonlinear 
equation solvers in boundary value problems). In practice, it is often difficult to obtain 
good initial estimates for Yo moreover, the initial value problem to be solved may be very 
sensitive to perturbations in the initial conditions. These difficulties motivated the search 
for more robust algorithms such as invariant imbedding methods (cf. Meyer [1973]) and 
multiple (or parallel) sMoting methods. In the latter, the given interval [a,b] is subdi­
vided into subintervals [xj,xi+d, with a = Xo < Xl < ... < XN = b; the differential equa­
tion is then considered independently over each subinterval, choosing appropriate initial 
conditions at x = Xi and integrating to x = Xi+l' The values of the solution at x = Xi 

(i = 0, ... , N) are then simultaneously adjusted so as to satisfy the boundary conditions at 
x = a and x = b and the continuity conditions at Xi (i = I, ... , N - 1). The choice of the 
"shooting points" Xi will depend on the behavior of the solution (especially in the case of 
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discontinuous or singular solutions). Details on mUltiple shooting methods may be found, 
e.g., in Osborne [1969], Keller [1976], Stoer & Bulirsch [1980], Gladwell & Sayers 
[1980], and Fox & Mayers [1987]. 

Computer codes based on shooting techniques form part of standard software 
libraries such as IMSL or NAG. Compare also the contributions by Watts and Gladwell 
in Childs et al. [1979]. 

§9.2 Although any algorithm for solving nonlinear boundary value problems can in 
principle be used to solve linear problems, one cannot expect it to perform very efficiently 
in the linear case. Thus, there exist methods and computer codes tailored specifically to 
linear boundary value problems (and focusing on the efficient solution of the resulting sys­
tems of linear algebraic equations). Various aspects of this topic are discussed in Chapter 
17 of Hall & Watt [1976]. An important source of "difficult" linear boundary value 
problems are the so-called singular perturbation problems, e.g., 

£.y" + p(:x)y' + q(x)y = r(:x), a < x < b, 

y(a) =<X, y(b) =~, 

where the parameter £. is small: 0 < £. «1. (Solutions of such problems usually exhibit a 
very rapidly changing behavior in small boundary layer regions, or they possess internal 
turning points where there are sharp spikes.) The interested reader is referred to Hemker 
& Miller [1979] or to the recent survey paper by Kadalbajoo & Reddy [1989] for details 
on theoretical and numerical aspects of such problems, as well as for additional refer­
ences. 

§9.4 Theoretical and computational aspects of finite difference methods for two­
point boundary value problems are discussed in, e.g., Fox [1957], Collatz [1960], Keller 
[1968, 1975, 1976], Hall & Watt [1976, Chapter 15], and Fox & Mayers [1987]. Russell 
[1977] compares finite difference methods with certain spline collocation methods (see the 
notes to §9.5). Approximations obtained by finite difference methods can often be 
improved iteratively (on the same mesh) by so-called (Richardson) deferred correction or 
difference correction methods. Details of these techniques (introduced originally by Fox 
in 1947) may be found in Fox [1957], Keller [1968, 1975, 1976], in the article by Fox in 
Gladwell & Sayers [1980], and in Fox & Mayers [1987]. Iterated deferred correction 
techniques form the basis of a series of computer codes developed by Pereyra and others 
for boundary value problems for first-order differential equations. The underlying discreti­
zation is the trapezoidal rule over a possibly nonuniform mesh (which is chosen adap­
tively). Descriptions of different versions of this method are given in the article by 
Pereyra in Childs et al. [1979] (see also the contribution by Fox in Gladwell & Sayers 
[1980]). A routine in the IMSL collection of codes is based on a version due to Lentini 
and Pereyra. 

§9.5 A survey of some of the theoretical developments on projection methods (such 
as collocation, Ritz-Galerkin, and least squares) for two-point boundary value problems 
may be found in Reddien [1980]. This paper also contains an extensive bibliography. 
The monographs by Strang & Fix [1973], Prenter [1975] and Fried [1979] may be con­
sulted for elementary introductions to projection methods based on spline functions. 
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Collocation methods for two-point boundary value problems are analyzed in Russell & 
Shampine [1972]; the paper also features a number of illuminating examples. As men­
tioned before, the paper by Russell [1977] investigates the relative merits of spline collo­
cation and finite difference methods. 

Spline collocation (employing Gauss points and B-spline bases together with 
automatic mesh selection) are the main ingredients of a powerful code due to Ascher et al. 
[1981]; compare also the contribution by Ascher, Christiansen & Russell in Childs et al. 
[1979] for a detailed description of this code. 
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CHAPTER 10 

Elliptic Partial Differential Equations, 
Relaxation Methods 

The classical model examples of partial differential equations are: 

a) Dirichlet problem (elliptic case): 

cPu cPu - + - =/(x,y) in the domain B of the (x,y)-plane, (1) 
ax2 ay2 

u (or au/an in the so-called Neumann problem) given on the boun­
dary of B. 

b) Heat equation (parabolic case): 

au a2u 
-a = -2- for a :::; x :::; b, t > 0, 

t ax 
(2) 

u (x,t) given at t = 0 for all x, 

u or au/ax given at x = a, x = b for all t. 

c) Wave equation (hyperbolic case): 

(3) 
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u and au/at given at t = 0 for all x, 

u or au/ax given at x = a, x = b for all t. 

Problem a), which we now propose to solve (at least numerically), 
includes also the potential problem. 

§ 10.1. Discretization of the Dirichlet problem 

If a square grid with meshsize h is laid over the domain B, then at 
each interior point P of B (cf. Fig. 10.1) 

Figure 10.1. Discretization of the Dirichlet problem 

one can approximate the second partial derivatives by difference quo­
tients: 

u(x + h,y) - 2u(iY) + u(x - h,y) + O(h 2), 

h 

a2~ = u(x,y + h) - 2u(iY) + u(x,y - h) + O(h 2). 

dy h 

The differential equation at the point (x,y) is then approximated by 

u (x + h,y) + u (x - h,y) + u (x~y + h) + u(x,y - h) - 4u(x,y) _ f(x,y) = o. (4) 
h 
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By formulating this equation at each grid point, one obtains a system of 
linear equations whose unknowns are the ordinates u(x,y) for all grid 
points. 

A certain difficulty, though, arises near the boundary of B. To avoid 
it, we assume for the time being that the boundary of B is composed of 
grid segments and that u is given on the boundary, as for example in Fig. 
10.2. 

1 2 

u·o 
'\ 3 4 

5 6 7 8 

9 10 11 

Figure 10.2. Dirichlet problem with a boundary consisting of 
grid segments 

Thus, u is unknown in each of the 11 interior grid points. In each of 
these 11 points one now sets up the equation (4). If u = 0 is prescribed 
on the boundary, and u 1, U 2, U 3, . . . denote the unknown function values 
at the points 1, 2, 3, ... , one first has, say for the point 1: 

u(X,y) = ul 

u(x + h,y) = u2 

u(x - h,y) = 0 

u(x,y + h) = 0 
u(x,y - h) = u3, 

hence the equation 

(given boundary value), 

(given boundary value), 
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U 2 + u 3 - 4u 1 = h 2 f 1 

(where fk = f (x,y) at the point with number k). Altogether one obtains 
(after a change of sign): 

Ul U2 U3 U4 Us U6 U7 Us U9 UlO Un 1 

4 -1 -1 h2fl =0 
-1 4 -1 h2h =0 
-1 4 -1 -1 h 2h =0 

-1 -1 4 -1 h2f4 =0 
4 -1 -1 h2fs =0 

-1 4 -1 -1 h2f6 =0 (5) 
-1 -1 4 -1 -1 h 2/? =0 

-1 -1 4 h 2fs =0 
-1 4 -1 h2f9 =0 

-1 -1 4 -1 h 2flO =0 
-1 -1 4 h2fll =0 

Since the coefficient matrix is symmetric and, as is easily checked, 
positive definite, the system of equations can be solved by Cholesky, 
whereby the band structure permits further simplifications. What is, and 
remains, decisive, however, is the fact that the number of equations and 
unknowns equals the number of grid points in the interior of the domain; 
one thus has to deal with extensive systems of equations, which require 
large computing times. If in the above example one would halve the 
meshsize h of the grid, one would already obtain n = 61 interior grid 
points, generally after division by p, n = 20 p2 - 10 p + 1. This rapid 
increase of n will still concern us later. 

First, however, we propose to treat 

a) more general boundaries, 

b) more general boundary conditions. 

We find the following: 

a) For a boundary which does not pass through the grid points, there 
are interior points (x,y), some of whose neighboring points (x ± h,y), 
(x,y ± h) are on the other side of the boundary. One must use, then, the 
points of intersection of the grid lines with the boundary of the domain 
(see Fig. 10.3). 
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N (x,y+h) 

Rand 

w 
(x-h,Y) 

Figure 10.3. Discretization for curvilinear boundary 

One approximates 

1 iPu :::: ..!.. { U(X - h,y) _ U(X,y) + U(X + ah,Y)} 
"2 ax2 h 2 1 + a a a(1 + a) , 

p 

1 a2u ---
2 ay2 

:::: _1_{ u(x,y +h) _ u(X,y) + u(x,y -(3h)} 
h 2 1+(3 (3 (3(1+(3)' 

P 

so that the equation for the point P becomes 

- --+--+ + - -+- U - -0 6 2 {uw UN UE Us [Ill} 
h2 1 + ex 1 + ~ ex(1 + ex) ~(1 + ~) ex ~ f' fp - ,( ) 

b) In case of a boundary condition ~: = 0, one must introduce also 

the boundary values as unknowns and for each of them set up an addi­
tional equation. 

In order, for example, to solve the problem described in Figure 10.4, 
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U'O 
bu. 

/00 o 

1 2 3 2' 
U'O 

4 5 6 5' 

u'O 

Figure 10.4. Introduction oJ virtual grid points Jar boundary segments 
with prescribed normal derivative 

one can introduce two virtual grid points 2* and 5*; then 

and on the other hand U2'" = U2. because of au/an = 0 at the point 3; 
therefore, the equation for this point becomes: 

Altogether one obtains 

1 

4 -1 -1 h 2Jl 
-1 4 -1 -1 h 2fz 

-2 4 -1 h 2!3 
-1 4 -1 h2J4 

-1 -1 4 -1 h 2fs 

-1 -2 4 h 2f6 
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Now in case a) as well as in case b), however, symmetry is lost, which is 
a great disadvantage, since symmetric systems of equations can be solved 
much more easily. 

It is possible, however, to force symmetry of the system also in case 
of more complicated boundaries and boundary conditions, by carrying out 
the discretization with the help of the energy method. For the example of 
Figure 10.4, this means the following: 

is the Euler equation for the variational problem 

with the boundary condition u = 0 on 3 of the 4 sides of the square. In a 
square, say the one with vertices 1,2,4,5, one has approximately 

Taking account of the boundary conditions, one thus has altogether 

If [ ; [ ~; ]' + ; [ ~; ]' + uf 1 dx dy 
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= ~ (u,Au)+(u,b)=Q(u), 

where 

4 -1 0 -1 0 0 It 
-1 4 -1 0 -1 0 

h 
0 -1 2 0 0 1 

2 
, b =h 2 

13/2 
A= -1 0 0 4 -1 0 14 

(8) 

0 -1 0 -1 4 -1 15 
0 0 1 0 -1 2 2 16/2 

The minimum of this function Q(u) is achieved when Au + b = 0; one 
thus has to solve this linear system. The matrix A is symmetric, even 
positive definite, the latter since (u,Au) is a sum of pure squares, which 
can only be 0 if u = 0(1). 

1 A systematic further development of the idea described here leads to the method of 
finite elements, a method which today is widely used. (Editors' remark) 
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§ 10.2. The operator principle 

If in the first example of § 10.1, depicted in Fig. 10.2, one reduces 
the meshsize by a factor of 10 (the solution then becomes 100-times as 
accurate), the number of interior grid points becomes 1901. The 
coefficient matrix of the system of equations then contains 3613801 
coefficients, which can no longer be stored in the usual high-speed 
memory. Since most of these coefficients are 0, however, this can also be 
avoided if one defines the matrix not by its n 2 coefficients, but by a com­
putational rule, which for an arbitrary vector v shows how to compute the 
vector Av. 

Example of such a computational rule: 

procedure op(n,x) res:(ax); 
value n; 
integer n; array x,ax; 
begin 

integer j; 
ax[l] := 2 x x[l] - x[2]; 
ax[n] := 2 x x[n] -x[n -1]; 

for j := 2 step 1 until n - 1 do 
ax U] := 2 x xU] - xU - 1] - xU + 1]; 

end op; 

This procedure evidently embodies the matrix 

2 -1 0 
-1 2-1 

-1 2-1 

A= 

-1 

o -1 2 

One question, though, still remains unanswered: How do I solve a 
linear system of equations Ax + b = 0, if I have at my disposal only the 
vector b and a computational rule such as the above procedure op? Nei­
ther Gauss elimination nor the Cholesky method can be applied in this 
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case, since these require an array a[l:n,l:n] explicitly. We therefore will 
have to develop new methods to deal with this situation. 

For the Dirichlet problem, the matrix A is determined by the 
difference operator in (4), which one represents most conveniently as in 
Fig. 10.5, 

-, 
Figure 10.5. The difference operator for the Dirichlet problem 

and by the shape of the domain. This operator means that when the com­
ponents of a vector x are arranged as afield in the shape of the domain B: 

Xl X2 

X3 X4 

Xs X6 X7 Xs 

X9 XlO Xu 

(9) 

then an arbitrary component of Ax is obtained by placing the difference 
operator on top of the field (the double circle on top of the component Xk 

which corresponds to the desired component (Ax)k), multiplying the 
operator coefficients with the x-values lying underneath, and then adding 
everything up; thus, for example, 

In some cases, different components of Ax are computed by 
different operators. For example, in case of the domain in Fig. 10.6, with 
the free boundary on the right, the operator valid for the interior points is 
the one in Fig. 10.5, while for the points on the right-hand boundary it is 
the one in Fig. 10.7. 



u-o 

1 
u·o 

4 

u-o 

2 

5 

§ 10.2. The operator principle 

bu 0 On-

3 

6 

319 

Figure 10.6. Domain with free 
boundary on the right 

Figure 10.7. Difference operator for 
points on the free boundary 

The same operators are valid also for half the meshsize (cf. Fig. 10.8). 

u·o 

1 2 3 4 

7 8 9 10 
u·o 

3 14 15 16 

19 20 21 22 

25 26 27 28 

u·o 

5 

11 

17 

23 

29 

6 ~.o 
1 2 

1 8 

24 

30 

Figure 10.8. Halving of the meshsizefor the domain of Fig. 10.6 

Now it is not all that simple, though, to describe to a machine the 
shape of the domain and the type of difference operator. The domain can 
be described, for example, by specifying for each interior point the four 
neighboring points N, E, S, W, as well as the type of operator (these are 
numbered). The domain above in Fig. 10.6, with 6 grid points and 10 
boundary points (with prescribed function values) is thus characterized by 
an array v[1:6, 0:4] whose meaning is as follows: 



320 Chapter 10. Elliptic Partial Differential Equations, Relaxation Methods 

v[k,O] indicates which operator is valid at the point k: 

operator 1: 4 -1 -1 -1 -1 

operator 2: 2 1 0 1 -1 
2 2 

(These numbers are stored, e.g., as array dop [1:2,0:4].) 

v[k,j] U = 1,2,3.4) denotes the neighbors of the point k in the order 
N, E, S, W. (0 means nonexisting point.) 

Therefore, v contains the following values: 

)( 0 1 2 3 4 
1 1 0 2 4 0 
2 1 0 3 5 1 
3 2 0 0 6 2 
4 1 1 5 0 0 
5 1 2 6 0 4 
6 2 3 0 0 5 

These data uniquely determine the system of equations; assuming that 
x [0] = 0, one obtains the following program (which admittedly is not par­
ticularly efficient): 

procedure op(n,x,ax); 
value n; 
integer n; array x, ax; 
begin 

integer j, k, vkO; real s; 
for k := 1 step 1 until n do 
begin 

end 
end op; 

vkO := v[k,O]; 
s := dop[vkO,O] x x[k]; 
for j := 1,2,3,4 do 

s := s + x[v[k,j]] x dop[vkO,j]; 
ax[k] := s 



§ 10.2. The operator principle 321 

If the shape of the domain is simple, as for example in the case of 
the above square with free right-hand boundary, which now, however, is 
assumed to be covered more generally by a grid of meshsize h=lIn, one 
can easily get by without the array v and dop, by introducing an auxiliary 
procedure ap which corresponds to the single application of a difference 
operator (we again assume x[O] := 0): 

procedure op(n,x) res:(ax); 
value n; 
integer n; array x, ax; 
begin 

procedure ap (k,optyp,n,e,s,w); 
value k, optyp,n,e,s,w; 
integer k, optyp,n,e,s,w; 
ax[k] := if optyp = 1 then 

4 xx[k] -x[n] -x[e] -x[s] -x[w] 
else 

2 x x [k] - (x [n] + x [s])12 - x [w]; 
comment end ap; 

integer j,k,t; 
ap(l,I,0,2,n+I,0); 
for j:= 2 step 1 until n-I do apU,I,O,j+I,j+n,j-I); 
ap(n,2,0,0,2 x n,n-I); 
for t := 2 x n step n until n x (n-2) do 
begin 

k:= t - n + 1; 
ap(k, I,k-n,k+I,k+n, 0); 
for j := k+I step 1 until t - 1 do 

apU,I,j-n,j+I,j+n,j-I); 
ap(t,2,t - n,O,t + n, t - 1); 

end t; 
k := (n-2) x n+I; 
ap(k,I,k-n,k+I,O,O); 
for j := k+I step 1 until (n-I) x n-I do 

apU,I,j-n,j+I,O,j-I); 
k := (n-I) x n; 
ap(k, 2,k-n, O,O,k-I); 

end op; 
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§ 10.3. The general principle of relaxation 

A linear system of equations Ax + b = 0 with symmetric and posi­
tive definite coefficient matrix, according to §3.7, is equivalent to the 
minimum problem for the quadratic function 

1 F(x) = "2 (x,Ax) + (b,X). (10) 

One can actually solve it by systematically searching for the minimum of 
the function F in the x-space. The general principle of such methods, 
called relaxation methods, can be described as follows: 

One chooses in the x-space an initial point Xo and a relaxation direc­
tion ho, and then moves a certain distance from Xo in the direction of ho. 
One so arrives at a point xl, chooses here again a relaxation direction hI, 
etc. (cf. Fig. 10.9). 

Figure 10.9. Relaxation methods 

Of course, one chooses the relaxation directions, and also the distances by 
which one travels along these directions, in such a way that F(x) continu­
ally decreases. One then hopes that the sequence xo, xl, x2, . . . con­
verges to the minimum point, that is, to the solution of the system of 
linear equations. 

For the practical implementation, one needs the gradient of the func­
tion F. One has 
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thus 

grad F = Ax + b = r. (11) 

The components of grad F are thus precisely the deficits (residuals) which 
are obtained when the respective x is substituted into the equations. The 
residual vector r therefore not only indicates how well x satisfies the 
equations, but also in which direction F decreases. What is important to 
note is that the rule for computing Ax from x is sufficient for computing 
this gradient, so that in a relaxation method the matrix A is not explicitly 
needed. 

When moving from x in the relaxation direction h, thus traveling 
through the points Xt = x + th, one has for the quadratic function F(xt ) in 
dependence of t: 

F(xt ) = F(x + th) = ~ (x + th,A(x + th» + (b,x + th) 

t t t 2 
= F(x) +"2 (h,Ax) + "2 (x,Ah) + "2 (h,Ah) + t(b,h), 

hence, because of (h,Ax) = (x,Ah), 

t 2 
F(xt ) = F(x) + t(h,r) + "2 (h,Ah) . (12) 

By virtue of (h,Ah) > 0, this is a quadratic polynomial in t whose only 
minimum lies at 

(h,r) 
tM =-

(h,Ah) 
(13) 

F(x ) = F(x) _ 1.. (h,r)2 
M 2 (h,Ah) 

(14) 

Actually, F(xt ) lies below F(x) in the whole interval (0,2tM)' so that it is 
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only necessary to choose t somewhere in this interval in order to go down 
"lower" (see Fig. 10.10). 

Figure 10.10. F(xt ) as afunction oft 

The residual r t at the point Xt is likewise a function of t: 

r t = AXt + b = A(x + th) + b = r + tAh. (15) 

Because of 

(h,rt ) = (h,r) + t(h,Ah) = (t - tM)(h,Ah), 

the minimum point xM is characterized by the new residual rM being per­
pendicular to the relaxation direction. 

The various relaxation methods (Gauss-Seidel, steepest descent, con­
jugate gradients, etc.) differ only in the choice of the relaxation direction 
hk (in the kth step) and the choice of t in the fonnula Xk+l = Xk + thk for 
the new point. 

One certainly would expect that the best relaxation method is the 
one in which at each point Xk one chooses the negative gradient - rk as 
relaxation direction (optimal direction) and travels in this direction to the 
minimum point xM (optimal point), that is, uses the recursion fonnula 

(where rk = AXk + b). (16) 

In reality, however, this method of steepest descent is rather poor. 
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§ lOA. The method of Gauss-Seidel, overrelaxation 

In the method of Gauss-Seidel, which is occasionally applied also to 
nonsymmetric systems of equations, one starts with a suitable approxima­
tion vector x = [XI,X2, ... , xnf. Then the n unknowns, one after 
another (for example in the order Xl, X2, ... , Xn, Xl, X2, ... , Xn, 
X I , ... ), are continually improved, whereby Xj is changed in such a way 
that, with the remaining unknowns held fixed, the jth equation is fulfilled. 

Example. In solving the system of equations 

Xl X2 x3 1 

0= 5 -2 -1 -3 
0= 2 5 -1 -2 
0= 1 1 5 -1 

one so obtains for X I, X2, X3 in tum (if one starts with x=O): 

Xl X2 X3 

0 0 0 
.6000 .1600 .0480 
.6736 .1402 .0372 
.6635 .1420 .0389 
.6646 .1419 .0387 
.6645 .1419 .0387 

This method, which for a positive definite coefficient matrix always 
converges, can be subsumed under general relaxation methods: if the 
unknown Xj is improved such that the jth equation is satisfied, one obtains 
indeed 

Xk = Xk for k '* j. (17) 

One then has 
n 

bj + L ajkXk 
, k=l rj 

Xj-Xj=- -----=--
ajj ajj 
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hence 

(18) 

One step of the Gauss-Seidel method thus corresponds to a relaxation step 
with h = ej and t = tM' The method as a whole consists in choosing suc­
cessively the relaxation directions el, e2, ... , en' el, e2, ... , en' ... and 
always traveling in the respective direction to the minimum point. 

Computational experience shows, however, that in many cases the 
method of Gauss-Seidel converges exceptionally slowly. But now, con­
vergence can be improved by traveling in the respective relaxation direc­
tion not only to the minimum point XM = x + tMh, but beyond it by a cer­
tain percentage. The extent of overshooting beyond the position tM is 
determined by an overrelaxation factor 00, that is, one selects a fixed fac­
tor 00 (> 1), and then in each relaxation step travels to the position 
t = ootM (cf. Fig. 10.10). The computational rule in the kth step therefore 
is, when k == j (mod n): 

, rj,-I' 
Xj = Xj - 00 -, Xi = Xi .lor i '# j . 

ajj 
(19) 

For this method, which contains with 00 = 1 the Gauss-Seidel 
method, the following is true: 

Theorem 10.1. If A is symmetric and positive definite, then the 
overrelaxation method for every fixed 00 with 0 < 00 < 2 converges to the 
solution of the system of equations Ax + b = O. 

Proof. For the kth step on has, when k == j (mod n): 

Therefore, 
2 2 

1 oorj 00 rj 
F(Xk+l) = "2(Xh Axk) - - (ej,AXk) + -2- (ej,Aej) 

ajj 2ajj 

oor· 
+ (b,Xk) - -' (b,ej)' 

ajj 

(20) 



§ lOA. The method of Gauss-Seidel, overrelaxation 327 

(21) 

For 0 < 0) < 2 and ajj > 0, the numerical sequence Fk = F(xk) decreases 
monotonically, and is therefore convergent, since F cannot fall below the 
minimum (guaranteed by Theorem 3.6). Therefore, lim(Fk+l - F k) = 0, 
hence also 

Here, j = j (k) denotes as before the index of the equation that is pro­
cessed in the kth step; it is defined by j == k (mod n) and 1 :::; j :::; n. 

One cannot immediately conclude, however, that 

all one knows at the moment is that 

lim rk,j(k) = O. 
k-?oo 

(Here, rk,i denotes the ith component of the residual vector rk of the kth 
step; in particular, rk,j = rj for j = j(k).) Thus, 

I r/c,j(k) I < e for k > M (e). 

Also, by virtue of (20), 

hence 
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Consequently, for each individual i: 

Irk+p,i-rk,il <pE (p=l, ... ,n) if k>N(E). 

If k is a multiple of n, k > N (E), k > M (E), we have in particular that 

I rk+l,l - rk,l I < E, I rk+l,l I < E = > Irk, 1 I < 2E, 

I rk+2,2 - rk,2 I < 2E, I rk+2,2 I < E = > Irk, 2 I < 3E, 

I rk+n,n - rk,n I < nE, I rk+n,n I < E => I rk,n I < (n+l)E. 

Therefore, I I rk I I < n 2E, and this is true for arbitrarily small E, if only k 
is made large enough. From rk ~ 0 there finally follows that xk con­
verges to the solution of the system of equations, q.e.d. 

The proof reveals nothing at all about the speed of convergence; 
what happens, actually, is that convergence is optimal for a certain ro 
between 1 and 2. For ill-conditioned matrices (cf. § 10.7) the optimum 
lies very close to 2. Unfortunately, the optimal ro is generally not known 
a priori, but must be determined experimentally. 

For the example 

137 x - 100 Y = 11 

-100 x + 73 Y = -8 

(exact solution: x=3, y=4), the following number of cycles, in dependence 
of ro, are required in order to achieve 6-digit accuracy (1 cycle = n indivi­
dual steps, i.e., each variable is corrected once): 
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ro cycles ro cycles 

1 150000 1.98 1000 
1.5 50000 1.9802 800 
1.8 16000 1.99 1600 
1.9 8000 1.995 3500 
1.95 4000 1.999 14000 
1.97 1500 1.9999 150000 

The optimal ro equals 1.9802, for which 800 cycles are required. 

Programming technique. Since in each step one needs only one 
component of r, the procedure op must be modified somewhat. Let 

real procedure axj(n,j,x); 
value n,j; 
integer n,j; array x; 
begin 

end; 

be a procedure which computes the jth component of Ax, and d U] be the 
jth diagonal element of A. Then one can program as follows: 

for j := 1 step 1 until n do xU] := 0; 
reen: 

s:= 0; 
for j := 1 step 1 until n do 
begin 

rj := bU] + axj(n,j,x); 
s := s + r j x r j; 
xU] := x[j] - omega x rj/dU]; 

end; 
if s > eps then go to reen; 
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§ 10.5. The method of conjugate gradients 

The method of steepest descent, already written off as inadequate, 
can surprisingly be improved as follows: After one has arrived at the 
minimum point xk (coming from xk-l along the straight line 
Xk-l + thk- 1), one does not simply seek the minimum along the gradient 
rk emanating from Xko but rather the minimum in the whole plane Ek 
spanned by the vectors -rk and hk- 1 which pass through the point xk (see 
Fig. to. 11). 

Figure to.11. Choice of the new relaxation direction hk conjugate to hk - 1 

If we consider the curves in which this plane Ek intersects the level 
surfaces F = const, we find that these are concentric ellipses, one of which 
touches the vector hk- 1 at Xk, and whose common center M is the desired 
minimum of F on Ek • In order to reach this center, one chooses at xk a 
new relaxation direction in the plane Ek conjugate to hk- 1 (because this 
conjugate direction passes through M): 

(22) 

(23) 

Through substitution of (22) in (23) one obtains 

(24) 



§10.5. The method of conjugate gradients 331 

which determines the relaxation direction (22). In this direction hk one 
travels to the minimum point, which necessarily is the center of the 
ellipse, and thus puts 

(25) 

where, by (l3), 

(26) 

With this, a step would now be completed, except that in the new point 
Xk+l one still has to determine the residual rk+l. For this, one obtains 
from (25): 

or 

(27) 

Since the point xk+l furnishes the minimum of the function F(x) in 
the plane Eko the gradient at this point, that is rk+l' must be perpendicular 
to Ek : 

(28) 

On the basis of this orthogonality, the formulae (24) and (26) can still be 
simplified somewhat. With (22) one first gets 

We thus obtain in place of (26): 

(30) 

Then, from (27) and (28), there follows 
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by (24), (26) and (29), however, 

so that finally 

Ak-l (rkoAhk-l) 

1 1 rk-l 1 12 

(31) 

As is shown by the new formulae (30), (31), all coefficients Ako ck are 
necessarily positive. 

The whole computing process is started with an arbitrary vector Xa, 
for which one computes ra = AXa + b and chooses ha = - ra as first 
relaxation direction. Thereafter, this method of conjugate gradients 
proceeds according to the following instructions: 

for k := 0 step 1 until m do 
begin 

if k '* 0 then begin comment evaluate here formulae (31), (22) end; 
comment compute Ahk ; 

comment evaluate in turn formulae (30), (25), (27); 
end; 

As is seen, only the products AXa, Ahk (k = 0,1, ... ) are needed 
here; one can thus apply the operator principle. 

Special properties of the method of conjugate gradients. The most 
important property of this computing process, discovered by E. Stiefel 
and M.R. Hestenes(l), is 

1 Hestenes M.R., Stiefel E.: Methods of conjugate gradients for solving linear systems, J. 
Res. Nat. Bur. Standards 49, 409-436 (1952). Cf. also Engeli M., Ginsburg Th., Ru­
tishauser H., Stiefel E.: Refined Iterative Methods for Computation of the Solution and the 
Eigenvalues of Self-Adjoint Boundary Value Problems, Mitt. Inst. f. angew. Math. ETH 
Zurich, Nr. 8, Birkhiiuser, Basel 1959. 
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(32) 

that is, the residuals are orthogonal and the relaxation directions conju­
gate. 

Proof by mathematical induction: One assumes that (32) is valid for 
i,j ~ k. It is assumed, further, that ro, ... , rk *" O. 

For i,j ~ k = 1, (32) is true, because (rO,rl) = 0 by (28) and 
(h1,Aho) = 0 by (23). What needs to be proved, therefore, is that the 
induction hypothesis implies 

(33) 

(34) 

For j=k, (33) follows directly from (28), and (34) from (23). In the case 
j < k we make use of (27), (22) and the induction hypothesis: 

(rk+l,rj) = (rhrj) + Ak(Ahk,rj) 

= 0 + Ak(Ahh - h j + cj-1hj- 1) 

= - Ak(Ahk>hj) + AkCj-1 (Ahk,hj_1) = 0 

(for j=O the term with hj- 1 is absent). This proves (33). Furthermore, 
from (22) and the assumption, there follows 

Because of rj *" 0, one has Aj *" O,thus by (27) and (33), 

q.e.d. 
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What is happening, therefore, is the following: ro, rl, ... , rk are 
mutually orthogonal and either rk+l = 0 or rk+l is also perpendicular to 
ro, ... , rk. For k + 1 = n at the latest, however, the first case must 
occur, that is, one has r n = 0 at the latest, and thus in Xn the desired solu­
tion. 

The method of conjugate gradients thus yields (theoretically) the 
solution of the system of equations after at most n steps as xn. It is there­
fore, on the one hand, a relaxation method which in each step reduces the 
function F, but on the other hand, the solution, as in elimination methods, 
is obtained in a finite number of steps (without, however, the matrix A as 
such being needed). This means that the so-called iterative methods and 
the direct methods are not mutually exclusive entities. 

Now it is true that this interesting property is considerably disturbed 
by rounding errors. The inner products (ri,rj) in practice do not become 
o exactly, especially not if i and j lie far apart. As a consequence, r n will 
not vanish, and in fact may not even be very small. If this happens, one 
simply goes on computing, without worrying too much. 

Example. We again solve the simple system of equations 

137 x - 100 Y - 11 = 0 
- 100 x + 73 y + 8 = 0 

and start at the point Xo = [O,of, for which ro = [-11,8f, 
1 1 ro 1 12 = 185. One further obtains: 

ho = [11,-8]T, Aho = [2307,-1684f, 

(ho,Aho) = 38849, Ao = .004762027, 

Xl = [.05238230,-.03809622]T, 

rl = [-.01400400,-.01925300f, 

1 1 rl 1 12 = .0005667900, Eo = .000003063730, 

hI = [.01403770,.01922849]T, 

Ahl = [.0003160,-.000090f, 

(hI ,Ahl) = .000002705349, Al = 209.5072, 

X2 = [2.993382,3.990411f, 

r2 = [.05220028,-.03810865f. 
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The computation of rl and Ahl was subject to severe cancellation. r2 
should be equal to 0, but we even have 1 1 r2 1 1 > 1 1 rill. We therefore 
continue: 

1 1 r21 12 = .004177138, £1 = 7.369816, 

h2 = [.05125500,.1798191f, 

Ah2 = [-1O.95998,8.001295f, 

(h2,Ah2) = .8770320, A,2 = .004762811, 

X3 = [2.993626,3.991267f, 

r3 = [-31O-8,1O-8f. 

At first sight, X3 does not appear to be better than x2. But in reality, X3 is 
at least at the bottom of the valley which the function F(x) forms in 
three-dimensional space. F(x3) lies only about 2.810-7 above the 
minimum value, in contrast to F(X2), which exceeds it by 210-5. Also, r3 
is noticeably shorter than r2. 

§ 10.6. Application to a more complicated problem 

To be computed is the deflection u (x,y) of a square plate, clamped 
at all four sides. If p (x,y) denotes the load on the plate at the point (x,y), 
this deflection satisfies: 

l:!,.2u = p(x,y) in the interior, (35) 

au 
u = 0, an = 0 on the boundary . (36) 
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u·o 0 0 0 0 

0 0 
1 2 3 

0 0 
~ 5 6 

0 0 
7 B 9 

0 0 0 0 0 
R 

s 

Figure to.12. Discretization for the problem of the clamped plate 

Exploiting the boundary conditions, we lay a dual net, that is a net 
whereby the boundary of the square does not run along mesh lines, but 
bisects them (see Fig. 10.12). Then u=O on the boundary means 
u (R) + u (S) = 0, while au/an = 0 means u (R) - u (S) = 0, so that we 
have to put u equal to zero at all grid points in the neighborhood of the 
boundary. There so remain only 9 interior points in which the differential 
equation (35) has to be applied. The Laplace operator 

as we know, is approximated on the grid by the operator of Fig. to.5, 
multiplied by 1/ h 2 • For the biharmonic operator 

we have to apply it twice. To that end, we choose in the u-field around 
the value Up the following notations: 
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UNN 

UNW UN UNE 

Uww Uw Up UE UEE 

Usw Us USE 

USS 

In the ~u-field one then has at the points N, W, P, E, S the values (apart 
from the factor 1Ih2); 

4UN - Up - UNW - UNN - UNE 

4uw - Up - Usw - Uww - UNW 4up - Uw - UN - UE - Us 4UE - Up - UNE - UEE - USE 

4us - Up - USE - uss - Usw 

Consequently, one has in P approximately 

2 1 
II u::: 4 (20up -8UN-8uw-8uE-8us+2uNW+2uNE+2usw+2uSE+UNN+UWW+UEE+USS), 

h 

that is, h 4 ~2 is to be replaced on the grid by the operator of Fig. 10.13. 

Figure 10.13. Difference operator for the plate problem 

(One could have obtained this result also in a simpler way, namely by 
application of the operator of Fig. 10.5 onto itself.) 
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In this way one obtains for our problem the system of equations (Pk 
is the load at the point k): 

20 -8 1 • -8 2 o . 1 
-8 : 

. 
-8 20 2 -8 2 • 0 

1 -8 20· 0 2 -8 • 0 . . . . . . ... . . . . . . . . . 
-8 2 O· 20 -8 1 .-8 

2 -8 2: -8 20 -8 • 2 

• O •• f . -8. 1 -8 20 • 0 . . . . . . . . . . . . 
1 0 O' -8 2 o ·20 
0 1 O. 2 -8 2 :-8 
0 0 1 . 0 2 -8 . 1 . 

0 0 
1 0 
0 1 . . . . . 
2 0 

-8 2 
2 -8 . . . . . 

-8 1 
20 -8 
-8 20 

- h4pl 

- h4pz 
- h4p3 
- h4p4 
- h4pS 
- h4p6 
- h4p7 
- h4pS 
- h4p9 

=0 
=0 
=0 
=0 
= 0 (37) 
=0 
=0 
=0 
=0 

The matrix here is fairly dense, but if the grid is refined, the zeros begin 
to predominate. In the general case, the matrix has the form 

A B I 0 
B A B I 

I B A B I 

I B A B I (38) 

0 

with 

20 -8 1 0 
-8 20 -8 1 

1 -8 20 -8 1 
A= 1 -8 20 -8 1 (39) 

0 
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-8 2 0 
2 -8 2 

2 -8 2 
B= 2 -8 2 (40) 

0 

But here too, it is better not to write down the equations, but instead 
indicate for each point the operator type and the neighbors: 

Op N E S W NN NE EE SE SS SW WW NW 

point 1 
point 2 

point 9 
oper. 1 

1 
1 

1 
20 

0 2 
0 3 

6 0 
-8 -8 

4 0 
5 1 

0 8 
-8 -8 

0 0 3 5 7 0 0 0 
0 0 0 6 8 4 0 0 

3 0 0 0 0 0 7 5 
1 2 1 2 1 2 1 2 

(The last row of the tableau contains the operator definition.) For large 
grids, this involves a significant reduction in data. Of course, it would 
suffice to indicate the immediate neighbors N, E, S, W, but during compu­
tation one would then lose too much time with searching this list. 

If the plate is not clamped everyWhere, matters become significantly 
more complicated. One finds the desired deflection u generally as solu­
tion of the following minimum problem: 

(41) 

The integral 
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can here be transformed into the line integral 

(42) 

(extended over the boundary aQ of the domain). When the whole boun­
dary is clamped, this term drops out, since then Ux = uy = 0 along the 
boundary. 

We now treat in particular a plate which is clamped at left, simply 
supported at right, and is free on top and bottom (see Fig. 10.14). 

----r:F---i6* 
I 1 
I I 

-!...--~ 
'14* 113* 
I I 
I 1 

-~1-; --120' 
I I 
I 1 

-+----- -I 
128* 127' 
I 1 

I I 
--t----...j 

1 1 
1 I 
I I 

-"i"- ----I 
1 1 
I I 
1 I 

r---~--_+----r_--~--~----+_+-~----~ 
I I 
I I 
I I 

-~---...j 
I 1 
I 1 
I I 
+----1 
I 1 
1 I 
I I 

~C __ ~L-~~ __ ~ __ -=~~~ __ ~ ____ L ___ ~ 
64 65 66 67 68 69 70 70* 69* 

Figure 10.14. Discretization/or a special plate problem 
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II = ~ J (Jlu)2dxdy, 
Q 

341 

(43) 

the square with center at 12 and the neighboring squares yield the follow­
ing contributions: 

These are the only squares in which the value u 12 occurs. (Around the 
point 5 there is no square, since this point lies outside the plate.) One 
therefore has 

+ 2u 18 + 2U20 + U26)· 
(44) 

Analogously for U19 (in this case the squares with the centers 12, 18, 19, 
20, 26 contribute): 

all 1 
-.... - ::: 2 (20U19 - 8U12 - 8U18 - 8U20 - 8U26 + U5 + 2U11 + 2U13 
oU19 h 

+ U 17 + U21 + 2U25 + 2U27 + U33)· 
(45) 
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Us, however, occurs only in the contribution of the square with center 12: 

Thus, in the uppennost sequence of grid points (with the exception of the 
points 1 and 7), the operator on the left in Fig. 10.15 is valid, while in the 
second sequence from the top, according to (44), it is the one on the right 
in that figure (exceptions: 8, 9, 13, 14). In the interior, according to (45), 
one uses the nonnal discrete bihannonic operator of Fig. 10.13. 

Figure 10.15. Operators for the two top grid sequences 

The same operators would be valid also at the left and right boun­
dary. One must only note that u=O to the left of the sequence 1-64, and 
that the u-values in the sequence 7*-70* are the negatives of those in the 
sequence 7-70. (An analogous statement holds also for the sequence 
6*-69*.) In this way one finds for the points 15, 16, 20,21 the operators 
depicted in Fig. 10.16 (as always up to the factor lIh 2 ). 
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Figure 10.16. Operators for the left and right boundary 

Now a corrective treatment is still required to take account of the 
tenn (1 - ~)I 2. Since on the vertical boundaries, u == 0, hence uy = 0, 
there remain in 12 only the integrals over the upper boundary r 1 and the 
lower boundary r 2 : 

12 = - J uyuxxdx + J uyuxxdx 
r 1 r 2 

= - UyUx I + J uxyuxdx + uxuy I - J uxyuxdx 
ar1 r 1 ar2 r 2 
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Now for the hatched boundary piece in Fig. 10.14, for example, one has 

Altogether, therefore: 

12 == ~ [Ur + (U2 - Ul)2 + (U3 - U2)2 + (U4 - U3)2 + (us - U4)2 + (U6 - US)2 
2h 

+ (U7 - u6i + 1.. (U7* - U7)2 - ul- (U9 - US)2 - (UlO - U9)2 
2 

- (Ul1 - UlO)2 - (U12 - Ul1)2 - (U13 - U12)2 - (U14 - U13)2 

- ~ (U 14* - U 14)2] + analogous contributions from r2 , 

where u7* = - u7, U 14* = - U 14. Furthermore: 

2 a/2 2 a/2 _ 
h -a-::::-2us+U9, h -a--us-2U9+UlO, ... , 

Us U9 

2 ill 2 2 ill 2 
h --:::: U12 - 2U13 + U14, h -- ==- 3U14 + U13· 

aU 13 aU14 

If we assume, say J..L = .167, we must thus take account of the term .833/2 

in (41). This requires that (46) and (44) be supplemented by 

a12 
.833 -a - ::::- .833u4 + 1.666u s - .833u 6, 

Us 



§ 10.6. Application to a more complicated problem 

aI2 
.833 -a- ::: .833u II - 1.666u 12 + .833u 13· 

U12 

345 

It is by these amounts that the operators at the upper boundary are to be 
corrected. Their new fonn can be seen from Fig. 10.17: above on the left 
is depicted the operator for the point 1, to the right the one for the points 
2-6, below on the left the operator for the point 7, and to the right the one 
for 10, 11, 12. 

Figure 10.17. Corrected operators for the upper boundary 

The operators belonging to the points 8, 9, 13, 14 can easily be 
detennined analogously. The operators for the points at the lower boun­
dary are of course obtained immediately by reflection. As a summary, 
Table 10.1 contains a complete list of the 13 essentially different opera­
tors (up to the factor lIh 2 ) occurring in the problem. In Fig. 10.14 the 
encircled numbers then indicate which operator belongs to what point, 
while the numbers 6',7', ... , 13' denote the operators 6, 7 , ... , 13 
reflected in the north-south direction. 
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Table 10.1. Complete list oj the operators oj a special plate problem 

Op. p N E S W NN NE EE SE SS SW WW 

1 20 -8 -8 -8 -8 1 2 1 2 1 2 1 
2 20 -8 -8 -8 -8 1 2 1 2 1 2 0 
3 20 -8 -8 -8 0 1 2 1 2 1 0 0 
4 20 -8 -9 -8 -8 1 2 0 2 1 2 1 
5 28 -10 0 -10 -9 1 0 0 0 1 2 1 
6 17.334 -4 -7.167 -8 -7.167 0 1 1 2 1 2 1 
7 17.334 -4 -7.167 -8 -7.167 0 1 1 2 1 2 0 
8 17.334 -4 -7.167 -8 0 0 1 1 2 1 0 0 
9 17.334 -4 -8.167 -8 -7.167 0 1 0 2 1 2 1 

10 24.501 -5 0 -10 -8.167 0 0 0 0 1 2 1 
11 2.666 0 -.833 -4 -.833 0 0 0 1 1 1 0 
12 2.666 0 -.833 -4 0 0 0 0 1 1 0 0 
13 3.499 0 0 -5 -.833 0 0 0 0 1 1 0 

In the total energy (41) there is still the tenn 

1-J.l2 J 
13 =- 12 - p(x,y)u(x,y)dxdy, 

Ed3 Q 
(47) 

where p (x,y) means the load. Since we have multiplied the other tenns 
(arbitrarily) by h 2 , we must do the same here and find 

Differentiation yields 

These values - YPk (k = 1, ... , 70) fonn the vector b of the system of 
equations, while the operators define the matrix A. Note, however, that 
PI, ... , P7, P64, ... ,P70 must all be equal to O. 

NW 

2 
2 
0 
2 
2 
1 
1 
0 
1 
1 
0 
0 
0 
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§1O.7. Remarks on norms and the condition of a matrix 

NOIms generalize the notion of absolute value to 
matrices. They serve, among other things, to estimate 
matrices in iterative processes. 

We consider here only vector norms of the fOIm 

[ ] 
lip 

I I x I I p = i~ I xi I p 

vectors and 
vectors and 

(48) 

with P ~ 1, so-called Holder norms. Specifically, this nOIm is called in 
the case 

p = 1: L1-noIm 

p = 2: Euclidean nOIm, 

p = 00: maximum nOIm. 

p = 00 is a limit case, for which (48) becomes 

I I x I I 00 = max I Xi I . 
lSiSn 

The following is valid in all these cases: 

I I x I I > 0 for x *" 0, 
I I kx I I = I k I I I x I I (k arbitrary scalar), 

Ilx + yll ~ Ilxll + Ilyli. 

(49) 

(50) 

The sets {x I I I x I I p ~ I} in R n have the following geometric 
meaning: 

p = 1: hyperoctahedron, 

p = 2: hypersphere, 

p = 00: hypercube. 
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Matrix norms could be defined independently. We restrict our­
selves, however, to subordinate matrix norms: one calls 

IIAxllp 
IIAllp = max ----''­

x*o Ilxllp 

the matrix norm subordinate to the vector norm I I . I I p' 

(51) 

The characteristic properties of vector norms are transmitted to 
matrix norms: 

I I A I I > 0, I I A I I = ° only for A = 0, 
I I kA I I = I k I I I A I I (k arbitrary scalar), 
IIA+BII ~ IIAII + IIBII, 

but in addition, one has 

IIABII~IIAIIIIBII, 

since 

(52) 

(53) 

IIABxl1 IA(Bx) I I 
= Ilxll IIBxl1 

I I Bx I I < [ I I Ay I I 1 [ I I Bx I I 1 --- _ max max ---
Ilxll y*O Ilyll x*o Ilxll . 

Normally, there holds strict inequality, since the two maxima are not 
attained simultaneously as a rule. 

thus, 

In the three cases p = 1, 2, 00 one can compute I I A I I p directly: 

Case p = 2: 

I I Ax I I ~ = (Ax,Ax) = (x, AT Ax), 

IIAxll~ 

Ilxll~ 

(x, AT Ax) = max , 
x*O (x,x) 

(54) 

which is the maximum Rayleigh quotient of AT A. Now it is known, 
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however, that the maximum Raleigh quotient of a symmetric matrix is 
equal to the largest eigenvalue of this matrix(I). Since AT A is positive 
definite, one thus has 

Because of 

n n 
Arnax(AT A) ~ trace (AT A) = :E :E I aij 12, 

i=1 j=1 

there further follows the estimate 

[ 
n n ]112 

I I A I 12 ~ ~ j~ I aij 12 

The bound on the right is the so-called Schur norm of Ae). 

Casep = 1: 

n n 
I I Ax I 11 = :E I :E aijXj I ~ :E :E I aij I I Xj I =:E I Xj I :E I aij I 

i=1 j=1 i j j i 

~ (m~:Elaijl):Elxjl = Ilxlllm~:Elaijl. 
J i j J i 

The bound is in fact attained, namely for 

Xi = 0 (i "* j), Xj = 1, 

if the jth column yields the largest sum. We thus have 

(55) 

(56) 

1 See, for example, Schwan H.R., Rutishauser H., Stiefel E.: Numerical Analysis of Sym­
metric Matrices, Prentice-Hall, Englewood Cliffs, N.J., 1973, Theorem 4.3. (Editors' re­
mark) 
2 Also called Frobenius nonn. (franslator's remark) 
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n 

I I A I 11 = max L I aij I , 
1 ~j ~ n i=1 

that is, I I A I 11 is equal to the largest" column sum" . 

Case p =00: 

I I Ax I 100 = m~ I LaijXj I ::;; m~ L I aij I I Xj I 
1 j 1 j 

::;; (m~x I Xj I) (m;:tx L I aij I ) = I I x I I 00 m~ L I aij I . 
] 1 j 1 j 

(57) 

Since here, too, the bound is attained when all Xj have modulus 1 and 
appropriate sign, one finds: 

n 
I I A I 100 = m~x L I aij I , 

1 ~ 1 ~ n j=l 

that is, I I A II 00 is equal to the largest "row sum". 

Example. For the matrix 

A = [~ 1~ 1 

one obtains I I A I 11 = I I A I 100 = 11. Furthermore, 

T [1 A A= 10 10 1 T 101 ' Amax(A A) = 51 + 1O...j26 = 101.990195, 

IIAI12 =~Amax = 5 +...j26 = 10.0990195. 

(58) 

Already the estimate (56) with the Schur norm gives a good bound here, 
namely "';102 = 10.099505. 
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The condition number plays an important role in the solution of 
linear systems of equations. We are guided by the following idea: The 
solution x of the system Ax + b = 0 evidently cannot be determined more 
accurately than is permitted by the inaccuracy in the computation of Ax 
near the solution. 

If the elements of the matrix A in each row have about the same 
order of magnitude, one can assume, as a rough approximation, that the 
computation of Ax, and hence also of r = Ax + b, is falsified by a or of 
the order of magnitude 

1 lor 1 12 ::: 8 1 1 A 1 12 1 Ix 1 12, 

where 8 is a unit in the last position of the mantissa of the computer (cf. 
also Appendix §A3.4). But if r cannot be determined more accurately 
than with such an error or, then also x = A-I (r - b) cannot be computed 
more accurately than with an error ox = A-lor, that is, one has, roughly, 

Iloxl12::: IIA-111211or112 :::81IA-11121IAI121IxI12. (59) 

If we introduce 

K = IIA11 211A-I 11 2 (60) 

as condition number of A, then 

IIoxl12 :::8KllxI12· (61) 

Consequently, under these circumstances, one must expect a relative error 
8K, thus an inaccuracy of about K units in the last position of the 
mantissa for the vector x. 

If A is symmetric and positive definite, 

thus 1 1 A 1 12 = Amax (A); likewise, 1 1 A-II 12 = 1/ Amin (A), and hence 



352 Chapter 10. Elliptic Partial Differential Equations, Relaxation Methods 

K = Amax(A) 
Amin(A) 

(62) 

Note: All iterative methods for the solution of Ax + b = 0 converge 
more slowly the larger K. 

Examples. 1) The matrix 

[ 
137 

A = -100 
-100] 

73 

has the eigenvalues Al == 210, A.:z == 1/210, thus K == 44100. In §1O.5, 
when we obtained with the method of conjugate gradients and 7 -digit 
computation the result (2.993626, 3.991267) in place of (3,4), we can be 
satisfied; one could in no way expect anything better. 

2) For the matrix of spline interpolation 

2 1 
141 

141 

o 

o 

141 

1 2 

as we have seen in §6.8, one has Amin > 1, Amax < 6, hence K < 6, that 
is, the condition is always good (independent of the order). 

3) For the unit matrix lone has "-min = Amax = 1, K = 1, which is 
the best possible condition. 
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4) For the matrix 

2 -1 o 
-1 2 -1 

-1 2 -1 

-1 2 -1 

o -1 2 

of order n one has e) 

'1 4 cos2 1t '1 4 sin2 1t K = cot2 1t 
"max = 2n + 2 ' '''min = 2n + 2 ' 2n + 2 

For large n, one gets approximately K ::: 4n 2/1t2 . This is a moderately 
bad condition. More or less the same holds true for the matrix of the Dir­
ichlet problem for a domain that is covered and discretized by an n x n­
grid. 

5) For the matrix 

37 5 12 2 
62 58 -1 

sym. 66 17 

30 

one has Amax ::: 125, Amin ::: 6.59 10-6, K ::: 19106; it is thus extremely ill­
conditioned. 

6) The matrix of the plate problem of Fig. 10.14 has the eigenvalues 
Amax ::: 62, Amin ::: .04, that is, K ::: 1550, which leads to a loss of accuracy 
of 3-4 digits. 

3 See ZunnUhI R.: Matrizen, 4th ed., Springer, Berlin 1964, pp. 229f. (Editors'remark) 
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7) For the nonsymmetric matrix 

1 10 
1 10 

1 10 

A= 

o 

o 

1 10 
1 

of order n, one first obtains the rough estimate(4) Amax(AT A) ::: 121. 
Moreover, 

1 -10 100 -1000 10000 (_lO)n-1 

1 -10 100 -1000 (_1O)n-2 

1 -10 100 (_1O)n-3 

A-I = 

o 1 

hence Amax(A-T A-I):::: 1.01 X 102n-2. Therefore, K::: 1.1 x lOn, even 
though all eigenvalues of A are here equal to 1. 

4 Here the fact is used that every matrix norm, thus in particular (58), is an upper bound 
for the absolute values of the eigenvalues. This follows at once from (51), (52) and the 
definition of eigenvalues. (Editors'remark) 
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Notes to Chapter 10 

A modern introduction which treats the main classes of methods available for 
approximately solving elliptic problems, including a description of the software package 
ELLPACK, is in Birkhoff & Lynch [1984]. 

§1O.1 High-order approximation at curved boundaries is cumbersome in finite 
difference methods, cf. (6). A general polynomial extrapolation type method is described 
and analyzed in Pereyra, Proskurowski & Widlund [1977]. 

The "Energy Method" involves ideas similar to the so-called Galerkin (or Ritz­
Galerkin) methods in which the energy functional in (7) is minimized over a finite­
dimensional space of functions. The method is frequently used in its finite element set­
ting, in which one first triangulates the domain into small pieces (finite elements) and then 
constructs the finite-dimensional function space to consist of (continuous) piecewise poly­
nomials of a certain degree. (On a uniform triangulation, and with piecewise linear func­
tions, this leads for the Laplace operator to the five-point formula in (4), when the func­
tions are expressed in terms of their nodal values.) To a certain extent, boundary condi­
tions at curved boundaries are easier to implement to high accuracy in finite element 
methods than in standard finite difference methods on a rectangular mesh. This is particu­
larly so for natural boundary conditions. Also, in many problems, minimization of energy 
is a basic principle, and the resulting partial differential equation is derived from the Euler 
equation for that minimization problem. In such situations, it may be argued that Galerkin 
methods are closer to the physics of the problem than finite difference methods. 

Much research in approximation of elliptic problems focuses on the selection of a 
suitable (nonuniform) mesh. This can be done either a priori, e.g. if the location of a 
singUlarity is known, or adaptively during the computation, with information drawn from 
one approximation being used to alter the mesh, after which a new, presumably better, 
approximation is computed. Reference is made to Schatz & Wahlbin [1979] and Eriksson 
& Johnson [1988] for analyses of representative examples of the two approaches - a priori 
and adaptive - in the finite element context. 

§1O.2 The "Operator Principle", which at first glance may appear to be a rather 
trivial concept, is actually quite a useful idea. Typically, in iterative methods for solving a 
discrete equation Ax = y, it is enough that one knows how to evaluate the action of the 
operator A on any vector; one does not need a matrix representation of the operator A. In 
certain applications, evaluating the operator A in itself involves the solution of one or 
more elliptic boundary value problems, cf. Bramble [1981] for a simple example. The 
corresponding matrix for A would not only be dense, but also extremely hard to compute. 

§§1O.3, 10.4, 10.5 and 10.7 When using an iterative method for solving an equation 
Ax = b with the operator (!) ill-conditioned, and hence the convergence of the iterative 
method slow, current opinion favors preconditioning. Here one iterates on the equivalent 
equation M-1 Ax = M-1 b, where the operator M-1, the preconditioner, should have the 
following two properties: (i) the equation My = d is "easy" to solve, i.e., the action of 
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M-1 is "easy" to compute; (ii) the operator M-1 A is "well" -conditioned, so that only a 
"few" iterations are necessary to solve the preconditioned problem. Preconditioners, and 
indeed solution algorithms in general, are often tailored to take advantage of a particular 
computer architecture, see Ortega & Voigt [1985] for a survey and a comprehensive list of 
references. Sometimes preconditioners are constructed from considerations of the matrix 
representation for the operator A; an example is the incomplete Cholesky factorization, 
Meijerink & van der Vorst [1977]. Other investigations adopt the operator principle and 
construct a preconditioning problem My = d having some "natural" relationship with the 
original problem, see e.g. Bramble, Pasciak & Schatz [1986], where parallel computer 
architectures are taken advantage of via substructuring of the physical domain. 

Another popular iterative method for solving the equations coming from discretiza­
tion of an elliptic problem is the multigrid method, cf. Hackbusch [1985]. 

For further details on iterative methods for solving large sparse systems of linear 
algebraic equations, the reader is referred to the texts by Varga [1962], Wachspress 
[1966], Young [1971] and Hageman & Young [1981]. The software package ITPACK 
(Kincaid, Respess & Young [1982]) contains subroutines implementing adaptive 
accelerated iterative algorithms. 

§1O.6 It should be remarked that the "Energy Method" used by Rutishauser in the 
plate bending problem, (41) et seq., is not the basis for most commonly used finite ele­
ment methods for that problem (in contrast to the situation for Poisson's problem in 
§10.1). We refer to the survey by Glowinski & Pironneau [1979] for details. 
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CHAPTER 11 

Parabolic and Hyperbolic Partial Differential Equations 

§ 11.1. One-dimensional heat conduction problems 

We consider the temperature distribution y (x, t) along a homogene­
ous rod of length L, which at one end (x=L) is held at temperature 0, 
while at the other end (x=O) the temperature is prescribed as a function 
b (t) of time. Let the thermal conductivity of the rod be f (x), the initial 
temperature be given as a (x), and let there be interior heat generation 
g(x,t) (cf. Fig. 11.1). 

y = b (t) 1-1 ___ y_(x_._O)_=_a_(_x) ___ ....J1 Y = ° 
x=O x=L 

Figure 11.1. Initial and boundary conditions for a heat conduction 
problem in a rod 

Then y (x, t) satisfies the differential equation 

ay ~ - = f (x) 2 + g(x,t) (0 ~ x ~ L, t ~ 0) (1) at ax 

with initial and boundary conditions 

y(x, 0) = a (x), y(O,t) = bet), y(L,t) == o. (2) 
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For the solution of the problem one first divides the interval 
o ~ x ~ L into n equal parts of length h and introduces the following nota­
tions: 

Xk = kh (abscissas), 

Yk(t) = Y(Xb t ) (temperature at the point xk 
as a function of time), 

ak = a (Xk) (initial temperature at the point Xk), 

Ik = I (Xk) (thermal conductivity at the point Xk), 

gk(t) = g(Xbt) (heat generation at the point Xk 
in function of time). 

Now we know that in first approximation, 

ely _ y(x + h,t) - 2y(x,t) + y(x - h,t) 
dx2 - h 2 

so that through substitution in the differential equation one obtains the 
discretization in the space coordinate, 

dyk = ~ Yk+l (t) - 2Yk(t) + Yk-l (t) ( ) (k = 1 _ 1) (3) 
dt Jk h 2 +gk t , ... ,n. 

Since Yo(t) = bet) and Yn(t) == 0 are given functions, (3) represents a sys­
tem of n -1 ordinary differential equations of the first order for the 
unknown functions Y 1 (t), ... , Yn-l (t), which describes approximately the 
temperature variations at the abscissas of the rod. 

This system is in fact linear and has a constant coefficient matrix 

2/1 -11 0 

-Iz 21z -Iz 
-13 2/3 -13 

I 
A=-- (4) 

h 2 

-In-2 21n-2 -In-2 

0 -In-l 2ln-l 
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As forcing tenns one has the functions gk(t), and the initial conditions are 
Yk(O) = ak (k = 1, ... , n - 1). In vector notation: 

i: = Ay + g(t) with y(O) = a, (5) 

where the given boundary values Yo(t), Yn(t) have been included in g(t). 

If the rod, instead, is thennally isolated at one end (e.g. at x=L), one 
has the boundary condition dy ldx = 0 for x=L and all t. The way this 
condition is realized in the discretization is by first putting Yn+l = Yn-lo 
which at the point x = Xn then yields for the 2nd derivative the approxi­
mation 

x=x" 

and thus the following differential equation for the function Yn(t), which 
is now unknown: 

dyn 2Yn-l (t) - 2Yn(t) 
dt = In h 2 + gn(t). (6) 

The system of differential equations also for this problem thus has the 
fonn (5), only A is now the n x n-matrix 

1 
A=--

h2 

2/1 -11 

-fz -2fz -/2 

-In-l 2ln-l 

-21n 

-In-l 

21n 

(7) 

Such a system of differential equations, however, can (in both cases) 
easily be integrated numerically with methods already discussed (Euler, 
Runge-Kutta, trapezoidal rule, etc.). 
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a) Numerical integration by Euler. The integration step from t = tt 
to t + 't = tt + 1 for the system (3) reads: 

(8) 

or, if Yt,k denotes the kth component of the vector y(tt), 

'tlk 
Yt + l,k = Yt,k - h 2 (-Yt,k-1 + 2Yt,k - Yt,k+1) +'tgt,k 

(k = 1,2, ... , n-1, resp. n), where Yt,O, Yt,n are to be replaced by the 
given boundary values. With this explicit recursion formula one can com­
pute all quantities Yt + l,k directly from the Yt,k and in this way carry out 
one time step (integration step with respect to the variable t). 

b) Integration with the trapezoidal rule. It is amazing how long 
people held on to Euler's method for the numerical integration of the heat 
equation, while all along no efforts were spared to improve the numerical 
integration of ordinary differential equations. It was only after 1950 that 
also the trapezoidal rule, under the name "implicit recursion formula", 
was introduced. Applied to the system (5), it reads 

which yields for the components of the unknown vector yet t + 1) the sys­
tem of equations 

These equations (written out componentwise) are called the "implicit 
recursion formulas", since they no longer permit to compute the Yt + l,k 
directly, but rather necessitate in each time step the solution of a linear 
system of equations. The disadvantage which thus accrues, however, is 
not serious, at least not for the one-dimensional heat conduction problem, 
since: 
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1) The matrix A is tridiagonal(I). 

2) The eigenvalues of the matrix A are real and negative, so that 
I - ~ 'tA is never singular. 

[ 1 ] -1 Note: One should not compute I - "2 'tA in order to obtain an 

explicit formula. This would only increase the expenditure, both in com­
puting and storage. 

§ 11.2. Stability of the numerical solution 

We first obseIVe that for the discussion of stability we can restrict 
ourselves to the homogeneous equation 

z' = Az, z(O) = a. (10) 

Assuming, indeed, that get) does not vary too rapidly, we can account for 
this by replacingg(t)_i~ (5) by go + tgl: 

y' = Ay + go + tgl with yeO) = a. 

If we now integrate the system 

u' = Au + go + tgl, u(O) =-A-1go - A-2g1, 

v' = Av, v(O) = a + A-I go + A-2g1, 

and note that u(O) + v(O) = a, one gets precisely u + v = y. As is easily 
verified, however, 

A-I A-2 A-I U = - go - gl - t gl, 

1 In addition. the coefficient matrix for fixed 't is constant. It suffices to compute its tri­
angular decomposition once; then in each step. only forward and backward substitution is 
required. (Editors' remark) . 
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that is, u is linear in t and hence is exactly integrated by the trapezoidal 
rule. The whole error of the discretized solution therefore is borne by v, a 
solution of the homogeneous equation. 

As earlier in §8.5, a solution of the homogeneous system (10) is 
analyzed componentwise: To each eigenvalue A of the matrix A there 
belongs a component VA,(t) which theoretically ought to behave like eAt . 
V). (0) , where VA,(O) depends on the initial value z(O) = a. The solution of 
the system is obtained by superposition of all these components: 

z(t) = L v).(t) = L eAtv).(O). (11) 
). ). 

Now for the one-dimensional heat conduction problem, where, 
depending on the boundary conditions, A may have the form (4) or (7), 
all eigenvalues are real, negative and simple (1); more precisely: 

0> A> - 4M/h2, where M = max fk. 
OSkSn 

(12) 

All components of the exact solution of (5) are therefore damped; 
one must thus see to it that also the numerical solution is damped. 

a) For the Euler method (8), the component of the solution belong­
ing to the eigenvalue A, when integrating with the step 't, behaves like 

vCte + 1) = (1 + 'tA)vCte), 

that is 

vCte) = (1 + 'tAi v(O), (13) 

and this is damped precisely when 11 + 'tAl < 1. This implies 
1 + 'tA > - 1 for all A, so that 't, according to (12), must satisfy 

1 A tridiagonal matrix in which all elements of the two side diagonals are positive has 
real and simple eigenvalues. In fact, such a matrix can first be symmetrized by a similari­
ty transformation with a diagonal matrix. The fact that a symmetric matrix of this type 
has simple eigenvalues then follows from Theorem 4.9 in Schwarz H.R., Rutishauser H., 
Stiefel E.: Numerical Analysis of Symmetric Matrices, Prentice-Hall, Englewood Cliffs, 
N.J. 1973. (Editors' remark) 
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1 - 4'tM/h2 ~ - 1, or 

h 2 
".<­
~- 2M . (14) 

It is to be noted, however, that this is merely the maximum stepsize 
admissible on the basis of the stability requirement, which does not yet 
produce great accuracy. 

pIe: 
We demonstrate the necessity of this restriction with a simple exam-

~ - ~ (0::;; x ::;; 1, t ~ 0), 
dt - dX 2 

y(x,O) == 0, y(O,t) = 106t, ¥X (l,t) == O. 
(15) 

(Here, f (x) == 1, hence M = 1.) We first integrate with h = .2, 1: = .01, in 
which case h 2j2M = .02 and condition (14) is thus satisfied. Then 1: is 
held fixed, but h is halved, causing (14) to be violated. The results (of 
fixed-point computation) are summarized in Tables 11.1 and 11.2. 

Table 11.1. Integration of (15) by Euler; case of stability; 
1: = .01, h 2/2M = .02 

t x 0 .2 .4 .6 .8 1.0 

0 0 0 0 0 0 0 
.01 10000 0 0 0 0 0 
.02 20000 2500 0 0 0 0 
.03 30000 6250 625 0 0 0 
.04 40000 10781 1875 156 0 0 
.05 50000 15859 3672 547 39 0 
.06 60000 21347 5937 1201 156 19 
.07 70000 27158 8605 2124 383 87 
.08 80000 33230 11623 3309 744 235 
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Table 11.2. Integration of (15) by Euler; case of instability; 
't = .01, h 2/2M = .005 

t x 0 .1 .2 .3 .4 .5 .6 

0 0 0 0 0 0 0 
.01 10000 0 0 0 0 0 0 
.02 20000 10000 0 0 0 0 0 
.03 30000 10000 10000 0 0 0 0 
.04 40000 30000 0 10000 0 0 0 
.05 50000 10000 40000 -10000 10000 0 0 
.06 60000 80000 -40000 60000 -20000 10000 0 
.07 70000 -60000 180000 -120000 90000 -30000 10000 
.08 80000 310000 -360000 390000 -240000 130000 -40000 

One recognizes immediately that in the second case the solution is 
completely unstable. The refinement of the subdivision in the space coor­
dinate, rather than giving the expected improvement, causes the accuracy 
to deteriorate catastrophically. Yet, such an improvement would be 
highly desirable, because the solution obtained with 't = .01, h = .2 is still 
very inaccurate, as is shown by a comparison with Table 11.3, which 
gives the exact (rounded) solution. 
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Table 11.3. Exact solution of the heat conduction problem (15) 

t x 0 .2 .4 .6 .8 1.0 

0 0 0 0 0 0 0 
.01 10000 568 8 0 0 0 
.02 20000 3014 231 8 0 0 
.03 30000 6707 968 85 4 0 
.04 40000 11194 2272 321 31 4 
.05 50000 16239 4093 777 109 22 
.06 60000 21700 6369 1482 272 74 
.07 70000 27488 9039 2444 547 186 
.08 80000 33542 12055 3660 956 384 

b) In the trapezoidal rule the component of the numerical solution 
belonging to the eigenvalue A. behaves like 

thus like 

1 + "tAo 
2 

vCtt + 1) = --"t-:A.- v(td, 
1--2-

1+-
[ 

"tA.] t 

vCtt) = :A. veto)· 
1--

2 

This component, therefore, is integrated as accurately as 

1 + "tAo 
__ 2_ agrees with e'tA.. 
1 _ "tAo 

2 

(16) 
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The deviation between these two quantities, and hence the approximate 
error per step for the component with eigenvalue A, is in first approxima­
tion given by A3'1:3/12. Therefore, if the error for no component is to 
exceed £ in absolute value, one must have, by (12), 

h 2 3 
'I: < - V12£ - 4M . (17) 

Thus, for example, when h = .2, M = 1, e = 10-5, one obtains the condi­

tion 'I: ~ .01 ~"".0"""0=0-:-12=-::: 510-4. 

sons: 
Now, however, this choice is overly cautious because of two rea-

1) The components corresponding to the dangerous (strongly nega­
tive) eigenvalues yield only a small contribution to the complete 
solution. 

2) As time increases, the components of the solution belonging to 
large negative eigenvalues of A are so much damped that even­
tually one has to deal only with the eigenvalues near 0; these, 
however, allow a larger '1:. 

In order to be able to account for the various components according 
to their strengths, we assume that the contributions of the eigenvalues at 
time t = 0 are uniformly distributed, so that the eigenvalues between A 
and A + dA contribute by dA. The solution at time t then is 

The total error in the step from t to t + 't would then amount to 

A '\ 3 3 1 -At _11._'1:_ dA 
D e 12 . 

Now, however, the contributions of the various eigenvalues add up 
according to the law of Pythagoras, since the eigenvectors are mutually 
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perpendicular. (The matrix A is easily symmetrized.) For the relative 
error <pet) (associated with the step from t to t + 't) one thus has: 

A '\6 6 1 e -2At _fl._'t_ dA. 
<p2(t)::: D A 144 

1 e-2'Al dA. 
D 

With the substitution 2A.t = le, 2At = K one finally gets 

from which one concludes that the condition 

(18) 

guarantees that always <pet) ~ £. The step 't must thus be chosen propor­
tional to the elapsed time, which, while allowing a large 't for large t, is 
nevertheless too severe a restriction when t is very small. The condition 
(17), after all, is sufficient in any case, and the bound occurring there is 
larger than the right-hand side of (18) when 

t < h2 '145 ::: h2 ,/1O . 
4M 4 4M 3 

This leads to the following recipe: 

1) Determine an integer v in the vicinity of 

1 
3 
-./3.6£ 

(19) 
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2) Integrate over v steps, each time with 

h 2 3 
'to = 4M "';12£ ,'to,2'to,4'to,8'to, 16'to , ... 

369 

(20) 

(After the first v steps, one reaches approximately the t-value 

3 
"';10/3 h2/4M, for which the two bounds derived for 't agree approxi-

mately.) 

In a practical example, the effect of this may be as follows: 

Let us solve the heat conduction problem (15), assuming the interval 
o ~ x ~ 1 subdivided into 100 subintervals (Le., h = .01) and an accuracy 
request of £ = 10-4. One obtains 

3 
1/ "';'-";.0=00=3-;-6 ::: 15 = v, 

3 
'to = .000025 "';.0012 ::: 2.6610-6. 

Therefore, one integrates over 30 steps with 'to, then over 15 steps each 
time with 2'to, 4'to, 8'to, etc., and thus arrives with 

30 steps at t = .00008, 
45 steps at t = .00016, 
60 steps at t = .00032, 
75 steps at t = .00064, 
90 steps at t = .00128, 

105 steps at t = .00256, 
120 steps at t = .00512, 
135 steps at t = .01024, 
150 steps at t = .02048, 
165 steps at t = .04096, 
180 steps at t = .08192. 

Euler's method on the same problem, for reasons of stability alone, 
would have required 't = .00005, hence 1600 steps till t = .08. Here, how­
ever, beyond mere stability, we still managed to achieve a certain accu­
racy. 
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§ 11.3. The one-dimensional wave equation 

When a wave equation 

(21) 

(with suitable initial and boundary conditions) has to be integrated, one 
proceeds completely analogously: The x-domain a ~ x ~ b is first subdi­
vided into n subintervals of equal length, and then the differential equa­
tion fonnulated at each subdivision point. This yields the system 

As initial conditions, Yk(O) and Yk(O) are prescribed. As to the functions 
YoU) = y(a,t) and Yn(t) = y(b,t), they are either given, or additional equa­
tions can be set up for them. (This too is completely analogous to the 
heat conduction problem.) 

In each case, there results a system of differential equations of the 
second order, 

y" = Ay + b, (22) 

where the coefficient matrix A is tridiagonal and has usually negative real 
eigenvalues A. satisfying (12). This being the case, however, one knows 
that the solution of the homogeneous equation 

y" = Ay (23) 

is composed of particular solutions of the fonn 

vet) = v(O)e±i{iIft . (24) 
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The wave character of the solution, therefore, is not destroyed by the 
discretization in the space variable. We have to see to it that also the 
discretization in the time variable, that is, the numerical integration of 
(23), does not destroy the oscillatory character. 

To this end, one first introduces a new variable z = y', with which 
the system (23) goes over into 

!!...[Y] _ [0 I] [Y] 
dt z - A 0 z (25) 

If -u} is an eigenvalue of A, then ± ioo are eigenvalues of the combined 
matrix 

[f A] , (26) 

since 

[iOOI 
det A I] [ iool 

iool =det A +0021 ~] : (-I)" det (I) det (A +(021). 

If the eigenvalues of A satisfy the relation (12), then those of (26) lie on 
the imaginary axis between ± i 21M / h. 

Now for the integration of a linear system whose coefficient matrix 
has exclusively purely imaginary eigenvalues, the trapezoidal rule is 
predestined by virtue of its amplitude fidelity. In view of the form (26) of 
the coefficient matrix, one obtains the following equation for a time step 
(with Ye = y(te), Zt = z(te »: 

{[ I 0]- ~ [0 I]} [Yt+l] ={ [I 0] ~ [0 I]} [Ye] o 1 2 A 0 Zt+l 0 1 + 2 A 0 ze' 

that is, 

't 't 
Yt + 1 - "2 Zt + 1 = Ye + "2 Zt , 
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1: 1: 
zt + 1 - "2 AYe + 1 = zt + "2 AYe . 

Multiplication of the first of these two equations by ~ 1:A and addition to 

the second yields 

or 

[ r] 1:2 
I - ""4 A !1ze = "2 Azt + 1: AYe , where !1z" = zt + 1 - zt· (27) 

We thus arrive at the following computational process for a time step: 

well 

1) 
1: 

r = Ye +"2 Zt, 

2) W =1:Ar, 

3) [r- ~ A] v=w solve for v, 

4) zt + 1 = zt + v, 

5) 1: 
Ye + 1 = Ye +"2 (zt + ze + 1)· 

As to the choice of the time step 1:, the controlling factor is how 

1 + iOYt 
2 

1 _ iOYt 
2 

agrees with e iOl't , (28) 

because these are the quantities by which the component of the solution 
belonging to the eigenvalue i co of the matrix (26) is multiplied in one 
step, the first for computation with the trapezoidal rule, the second for 
exact integration. The difference of these two quantities can be estimated 
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in first approximation by 

_1 [2--./M 1:]3 
12 h 

If this is not to exceed e, the condition 

h 3 1: ~ -- V12e 
2--./M 

(29) 

must be satisfied. The decisive difference in comparison with the heat 
conduction problem is the factor 

h h 2 
2--./M as opposed to 4M . 

This means that during the reduction of the spacial stepsize h, the time 
step 1: must be reduced only proportionally to, not quadratically in, h. 

On the other hand, there is no damping here, and therefore no pro­
gressive disappearance of those components of the solution which require 
a small time step. The integration step, therefore, cannot be continually 
doubled. 

Furthermore, the trapezoidal rule, while faithfully reproducing 
amplitudes, distorts the phase. The first factor in (28) can namely be writ­
ten as 

1 iOYt +--
2 ----=e 

1 _ iOYt 
2 

2i tan-I ~ 
2 
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Since 

the phase thus increases more slowly in the numerical solution than in the 
exact one. This difference is more pronounced in the high-frequency 
components and therefore causes those to lag behind. 

Numerical example. We consider a rope stretched between x = - 10 
and x=lO. Suppose at time t=O there exists a triangular deflection around 
the point x=O, caused by a blow to the rope. For t >0 this deflection 
divides into two triangles which move away from each other in opposite 
directions, are reflected at x=lO and x = - 10, respectively, and then again 
return towards x=O, where at time t=20 they ought to form again the ori­
ginal wave form with opposite sign. 

To be solved, therefore, is the problem 

a2 a2 
-2 y(x,t) = -2- y(x,t), -10::; x::; 10, t;:: 0, at ax 

y(-lO,t) = y(lO,t) = 0, 

y(x, 0) = 10000 max {I - Ix I ,O}, 

ay _ at (x, 0) = O. 

Because of symmetry we can restrict ourselves to the interval 0 ::; x ::; 10, 
which we subdivide into 100 parts of length.1. The resulting system of 
100 differential equations of second order is then integrated with the 
method described above, whereby 't = .025 is chosen as time step. 
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Table 11.4 contains the results, namely for x-values in the interval 
o ~ x ~ 3 (with step .1) and t-va1ues in the intervals 0 ~ t ~ 4 and 
16 ~ t ~ 20 (with step .5). At time t=20 the original wave fonn is actu­
ally no longer achieved exactly, but it is at least reproduced qualitatively. 
Owing to the lagging of the high-frequency components, the vertices of 
the triangle indeed appear rounded at x=O and x=1. 

§ 11.4. Remarks on two-dimensional heat conduction problems 

In a two-dimensional medium which fills a domain G, the heat equa­
tion reads 

(30) 

and the boundary conditions an~ in general of the fonn 

au 
a. an + ~u + Y= 0 on the boundary of G. (31) 

If now, as in § 10.1 for the Dirichlet problem, one lays a grid over the 
(x,y)-p1ane and approximates a2u/ax2 + a2y/dy 2 at the point P by 

1 
-2 (-4up + uN + UE + Us + uw) , 
h 

one obtains a system of differential equations 

dup 1 -- = - - (4up - uN - uE - Us - uw) 
dt h2 

(32) 

(namely one such for each grid point P), from which the approximate 
temperature behavior up(t) can be computed for each grid point P. 
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For points near the boundary, (32) must be modified: in the case of 
Fig. 11.2, for example, where the values of u are prescribed on the boun­
dary, one gets 

dup 1 1 
-- = - - (4up - UE - us) + -

dt h 2 h 2 ' 

which contains also a contribution (namely the term 1/ h 2) to the forcing 
term. If, however, as in Fig. 11.3, au/an = 0 is prescribed, 

N u·o 

w P E 

u·' 
S 

Figure 11.2. Point near the 
boundary 

Figure 11.3. Point on the 
boundary 

one obtains, following the model of elliptic differential equations, 

dup 1 
-- =- - (4up - uE - Uw - 2us). 

dt h2 

In each case, there results also here a system of differential equa­
tions of the form 

du 
-=Au+g, 
dt 

wherein the forcing term g incorporates boundary effects. 
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Unfortunately, the coefficient matrix A is not automatically sym­
metric. This would be unimportant for the method of Euler, but could be 
a disadvantage for the integration by means of the trapezoidal rule. It is 
therefore worthwhile trying to enforce symmetry of A, which indeed is 
possible in the following way: 

One subdivides the domain into elementary squares (one square each 
around every grid point) and sets up the heat balance, keeping the tem­
perature constant over each square (cf. Fig. 11.4). The heat flow into the 
neighboring 

oN 
UN 

oW ~p~ oE 
Uw u~ UE 

oS 
Us 

Figure 11.4. Subdivision into elementary squares with 
constant temperature 

square is always proportional to the length h of the common side and to 
the temperature drop, which equals, for example, (up - uE)/h. The fol­
lowing therefore holds for a time interval 't: 

[
Up - UN Up - uE Up - Us Up - Uw 1 

h 2 f:Jup =-'t h h + h h + h h + h h ' 

which leads again to the differential equation (32) for the interior points 
P. The same holds true for points near the boundary with prescribed tem­
perature. 

The matter is different for a true boundary point P, as in Fig. 11.3 
with boundary condition au/an = O. The corresponding elementary 
square then indeed is a "half square" which also has only half the heat 
content (cf. Fig. 11.5). The balance, therefore, is given here by 
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1.. h 28up = _ 't [.!!:... Up - UE +.!!:... Up - Uw + h UP: Us 1 ' 
2 2 h 2 h 

which yields for Up the differential equation 

1.. dup = __ 1_ [2UP - 1.. UE - 1.. Uw - us] . 
2 dt h 2 2 2 

Analogously, in the case of Fig. 11.6, one has at the vertex P 

- h 28up =-'t - + - ......:...-.....:.... 1 [h Up - Uw h Up - Us 1 
4 2 h 2 h ' 

and thus 

1.. dup = __ 1_ [up - 1.. Uw - 1.. us] . 
4 dt h 2 2 2 

w p 

Figure 11.5. Boundary point P 
with "half square" 

s 

Figure 11.6. Boundary point P 
at a vertex 

In this manner one obtains a system of differential equations of the 
form 



380 Chapter 11. Parabolic and Hyperbolic Partial Differential Equations 

du 
D-=Au+g 

dt ' 
(33) 

where D is a diagonal matrix with positive diagonal elements, and A a 
symmetric negative definite matrix, which, by the way, is the same as the 
one obtained if the boundary value problem l:!.u = 0 for the same domain 
with the same boundary conditions is discretized by means of the energy 
method. 

The ei~envalues of the matrix D-1 A lie in the interval 
o > ').. > -8/h . If one integrates by Euler (where it is convenient to work 
with the matrix D-1 A), the time step therefore is subject to the condition 

(34) 

For the trapezoidal rule, however, one writes (with Ue = uCtt )): 

D(Ut + 1 - Ut) = ~ 'tD(u; + 1 + ut ') = ~ (Aut + 1 + Aut) + ~ (~+ 1 + ~), 

't 't 't 
(D - "2 A)ut + 1 = (D + "2 A)Ut + "2 (~+ 1 + ~). (35) 

One now has to solve in each time step this linear system of equations for 
ue + 1, which is as voluminous as the one for solving the Dirichlet prob­
lem for the same domain. Nevertheless, the matrix D - ~ 'tA is sym-

metric and positive definite(l). In addition, the condition of this matrix is 
significantly better than the one of A, at least as long as 't is small. For 
the domain 0 ~ x ~ 1, 0 ~ Y ~ 1, for example, if u (x,y,t) is prescribed on 
the boundary, and this square is· subdivided into m2 small squares with 
sides h = 11m, one has, 

D = I Cm- 1? = unit matrix of order (m - 1)2, 

1 Cf. footnote( 1) in § 11.1. 
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8 2 1t max I'A(A) I = - cos -
h2 2m' 

min I'A(A) I = ~ sin2 ~, 
h 2 2m 

so that the condition of A equals 

while the one for D - ~ 'tA is (if m > 2): 

K= 

1 +4 ~ cos2 ~ 
h 2 2m 2 1t 

«cot 2m. 
1 + 4 -.!.... sin2 ~ 

h2 2m 

(36) 

Actually, K :::: 2 if't is chosen as the maximum admissible time step h2/4 
for Euler's method; for larger 't, in any case, 

This favorable condition has the consequence that the overrelaxation 
method (see §10.4) applied to the system of equations (35) converges 
very rapidly. If't is continuously doubled, then so is, approximately, the 
condition of the coefficient matrix D - ~ 'tA, which slows down the con-

vergence; but then, on the other hand, one advances more quickly. 

Example. To be solved is a heat conduction problem (30) for the 
domain of Fig. 11.7, where u == 0 is prescribed on the boundary and 
u (x,y, 0) == 1000 as initial value in the interior. 
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G 

1 2 3 4 

5 6 7 8 

9 10 

Figure 11.7. The domain G and its discretization 

We work with the grid shown (h = .2) and first carry out two steps of 
Euler's method with 't= .005. (One thus has 't= h2/8, that is, by (34), 
half of the admissible maximum.) The results are arranged in accordance 
with the geometric position of the points, and are rounded to integers: 

t= 0: 1000 1000 1000 1000 
1000 1000 1000 1000 
1000 1000 

t = .005: 750 875 875 750 
875 1000 875 750 
750 750 

t= .01: 594 766 750 578 
750 922 766 578 
578 594 

We now add one step of the trapezoidal rule with 't = .02. The sys­
tem of equations (35) is solved by overrelaxation (00 = 1.143), whereby as 
starting vector the approximation u(.01) found by Euler's method is used, 
which must also be substituted on the right-hand side of (35). After 1, 2 
and 3 cycles, respectively, there results: 
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t = .03, after one cycle: 

348 503 458 255 
456 610 447 210 
259 254 

t = .03, after two cycles: 

304 448 400 240 
402 545 423 257 
249 291 

t = .03, after three cycles: 

295 437 401 249 
397 554 434 254 
255 288 

A two-dimensional heat conduction problem with circular symmetry. 
In the following example we wish to show how a two-dimensional prob­
lem is treated that could be reduced analytically to a one-dimensional one. 

To be solved is 

on the disc x2 + y2 ~ 1, where for t=O 

U(X,y, 0) ={ ~ if x 2 + y2 ~ .01, 

if x2 + y2 > .01, 

and for x2 + y2 = 1, thus on the boundary, au/an = O. Physically, we are 
dealing here with the hot shrinking of a disc of radius 1 onto a shaft of 
radius .1 made of the same material (cf. Fig. 11.8); 
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( 
u-o 

Figure 11.8. Shrinking of a disc onto a shaft 

the edge of the disc is isolated. The question arises as to how the tem­
perature is equalizing. 

Since the disc has radial symmetry, one could transform the 
differential equation in the usual way to 

(37) 

with dU/dr = 0 on the boundary. This is a one-dimensional problem 
whose solution is given by 

u(r,t) = ~ c~o(nkr)exp(-nft)+co, (38) 
k=l 

where the nk (k = 1,2, . . . ) are the zeros of the Bessel function J 1, and 
the ck must be chosen so as to satisfy the initial conditions. The series 
(38), however, converges slowly for small t and we do not want to make 
use of it. 

We rather think of the disc 0 $; r $; 1 as being subdivided into circu­
lar rings Kp of thickness h = 1/ n, whereby the innermost and outermost, 
to be sure, are to have only thickness hJ2: 
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Kn- 1 : 

o ~ r ~ hJ2, 

hJ2 ~ r ~ 3h12, 

1 1 
(n-1)h - "2 h ~ r ~ (n-1)h + "2 h, 

1 1 --h<r<1 2 - - . 

The temperature on the ring Kp is assumed to be (spacially) constant and 
is denoted by up(t). One then draws up the heat balance, where it is to be 
noted that Ko has the area rch2/4, Kp (p = 1, ... , n - 1) the area 2rcph 2, 
and Kn the area rc(n - 1J4)h2. The heat flow between Kp and Kp+l is 
proportional to the length rc(2p + l)h of the borderline and to the tem-

perature gradient ~ (Up+l - up), so that the following equations hold: 

2rcph 28up ='trc«2p + l)(Up+l - up) + (2p - l)(Up_l - up» 

(p = 1, ... , n - 1), 

rch2 [ n - ! J BUn = 't rc(2n - l)(Un-l - un) . 

From this, one obtains the following n + 1 differential equations of first 
order for the n+ 1 unknown functions uo(t), ... , un(t): 

1 duo 1 - -- = - (u 1 - UO) 
4 dt h 2 ' 

dup 1 
2p - = 2 «2p - l)Up-l - 4pup + (2p + l)Up+l) 

dt h 

(p = 1, ... , n - 1), 

[ n - !] dUn 1 dt = hi «2n - l)Un-l - (2n - l)un) . 

(39) 
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This system has the fonn 

du 
D-=Au 

dt ' 
(40) 

where the matrix A is symmetric and negative definite and D is a positive 
diagonal matrix: 

1 
0 -

4 

2 
4 

D= (41) 

2n -2 

0 1 n--
4 

-1 1 
1 -4 3 

3 -8 5 

1 5 -12 7 
A=- (42) 

h 2 

2n - 3 -4n +4 2n -1 
2n -1 -2n + 1 

The systems of equations (35) to be solved here, describing the use 
of the trapezoidal rule, are 

For an analysis of the stability and accuracy, the controlling factor would 
be the eigenvalues of the generalized eigenvalue problem (cf. §12.1) 
ADx = Ax. 
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Numerical example. For the spacial discretization we choose 
h = .02. The system (39) then consists of 51 differential equations. We 
solve it by the trapezoidal rule, choosing at the beginning as time step 
't='to =510 -6. In analogy with the procedure in §11.2 (cf. Eq. (20)), 't 
is doubled for the first time after 40 steps, and then again after every 20 
additional steps. Table 11.5 shows the result on the interval 0::;; r ::;; .3, 
where the temperature, though, is tabulated only every 20th integration 
step. 
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Notes to Chapter 11 

For basic finite difference theory in time-dependent problems, the reader is referred 
to Richtmyer & Morton [1967] (which has aged well), and for finite element methods in 
parabolic problems to Thomee [1984]. A representative investigation of the finite element 
method in a second-order hyperbolic problem is given in Bales [1984]. Surveys of addi­
tional methods such as special finite difference methods in shock problems, spectral 
methods and particle (vortex) methods can be found in Brezzi [1985]. 

§ § 11.1, 11.2 and 11.4 Current wisdom concerning time-discretization of parabolic 
problems favors implicit methods. The reason for this is the very stringent timestep con­
straint (14) typical of explicit methods. Economical methods have been developed for 
solving the resulting systems of equations; see, e.g., the incomplete iteration idea of Doug­
las, Dupont & Ewing [1979]. 

Rutishauser's derivation of (18) is an example of an a priori attempt to find efficient 
timesteps. The problem of doing this, especially adaptively during the computation, has a 
long history in the context of ordinary differential equations. Such ideas are being 
extended to partial differential equations; see, e.g., Eriksson & Johnson [1987]. 

§ 11.3 For a comprehensive account of the questions of amplitude and phase errors 
considered by Rutishauser, see Vichnevetsky & Bowles [1982]. 

A final note to Chapters 10 and 11: the problem of assessing the accuracy of a 
numerical approximation to a partial differential equation can be rather tricky. For an 
amusing example, see Symonds & Yu [1985, Fig. 3]. 
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CHAPTER 12 

The Eigenvalue Problem For Symmetric Matrices 

§ 12.1. Introduction 

Matrix eigenvalue problems arise, for example, from Hamilton's 
principle; the latter states: A mechanical system whose kinetic and poten­
tial energy are given by 

n n 

T = :r, :r, Pij(q 1, ... ,qn)q.Ji.j' U = U(q 1, ... , qn), (1) 
i=1 j=1 

evolves between the time instances to and t1 in such a way that the func­
tions qi(t) describing the motion make the action integral 

r I. 
J = Jlo (T - U)dt 

stationary, the values qi(tO) and qj(t1) being held fixed. 

The Euler equations for this variational problem are 

d aT a 
- -- - -;-- (T - U) = 0 (k = 1, ... , n), 
dt aqk aqk 

thus, since Pij is of course symmetric, 
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If the system has a stable equilibrium point, that is, if there is a point 
qI,···, qn at which 

and 

~u (if I, ... , qn) = 0 (k = 1, ... , n) 
uqk 

are the elements of a positive definite matrix, then, as long as the quanti­
ties xi = qi - qi' Xi = qi remain small, and letting Pkj (q I, ... , qn) = bkj , 
there holds in first approximation: 

"LbkjXj+"LakjXj=O (k=l, ... ,n). 
j j 

With A = [akj], B = [bkj ], x = [Xl, . .. , xnf, one so obtains 

Bx +Ax=O. 

Here, B according to its meaning is positive definite, since a kinetic 
energy cannot be negative. 

Seeking x in the form x = eirotz, one then obtains 

that is, A. = 0)2 must be a solution of the generalized eigenvalue problem 

(A - A.B)z = 0, (2) 

where A and B are symmetric and positive definite matrices. 

If B is the unit matrix, one has an ordinary eigenvalue problem 

Az = A.Z, (3) 
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and we now show that the generalized problem can be reduced to the 
ordinary one: Since B in (2) is positive definite, it can be decomposed by 
Cho1esky: B = RTR. Letting z = R-1y, (2) becomes 

In this way the generalized eigenvalue problem is reduced to the special 
one for the matrix R-T AR-1, which is also symmetric; its eigenvectors y 
still need to be multiplied by R-1 in order to obtain those of (2). 

As an example we consider the vibrations of an elastic beam, 
clamped on the left, but free on the right. Let the bending stiffness be 
JE(x) and the mass per unit length M(x). Let the deflection of the beam 
at time t be described by q (x, t); one thus has here a continuum of degrees 
of freedom, the functions qk(t) in (1) becoming the function q (x,t), that 
is, the index k a continuous variable x. 

q(x,l) 

Figure 12.1. Discretization/or a beam clamped at one end 
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The kinetic and potential energy are equal to 

and to be discretized are these two integrals. For this purpose we select 
along the beam abscissas Xk = x 0 + kh (k = -1, 0, 1, ... , n + 1) as shown 
in Fig. 12.1. Then "(iq/ax2 is approximated in the usual way by 
(qk-l - 2qk + qk+l)/h 2 whereby the condition that the beam is clamped 
on the left can be expressed by qo = q-l = O. We furthermore use for the 
integrals the approximation 

so that (4) becomes 

U =!!:.. L JEk qk-l ; qk+l n [ _2q+ ]2 
2 k=O h 

In this way the original problem is now reduced to one with only 
finitely many degrees of freedom, though, of course, only approximately 
so. There now occurs, however, the fictitious deflection qn+l in U, which 
is not present in T. But since the actual motion must take place such that 
J (T - U)dt becomes stationary, and qn+l occurs only in the term 
(qn-l - 2qn + qn+l)2, the integral can be stationary with respect to arbi­
trary variations oqn+l (t) only if this term vanishes, that is, if 
qn-l (t) - 2qn(t) + qn+l (t) == O. If we still introduce the quantities 
Yk = JEklh 4 , then up to a common factor h/2, 

n-l 

U = L YkCqf-l - 4qk-l qk + 2qk-l qk+l + 4qf - 4qkqk+l + qf+l). 
k=O 

(5) 
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The two matrices A and B occurring in the general equation (2) are now 
determined: 

The matrix B, which contains the coefficients of the quadratic form 
for T with respect to the qko is a diagonal matrix: 

o 
M2 

B= (6) 

o 

The matrix A, which contains the coefficients of the quadratic form 
for U with respect to the qko is made up of the contributions of the indivi­
dual terms of U, whereby the one corresponding to the index k furnishes 
the following contribution, which in tum we again represent in the form 
of the matrix: 

1 k-l k k+l n 

J, J, J, J, J, 

0 0 f- 1 

Yk -2Yk Yk f- k -1 

Ak= -2Yk 4Yk -2Yk f- k 

Yk -2Yk Yk f- k + 1 

0 0 f- n 

(k = 2,3, ... , n - 1). For k=O and 1, respectively, 
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1 1 2 
J, J, J, 

Yo f-1 4YI -2YI f-1 

-2YI YI f-2 
Ao = AI= 

0 0 

(since q 0 and q -I vanish identically). Then 

A = Ao + Al + ... + An-I' 

There follows, in particular, 

ajj = Yj_1 + 4Yj + Yj+1 } 

aj,j+1 : aj+l,j : -2Yj - 2Yj+1 U = 1,2, ... , n - 2), 

aj,j+2 - aj+2,j - Yj+1 

an-I,n-I = Yn-2 + 4Yn-l, (7) 

an-I,n = an,n-I = -2Yn-l, 

ann = Yn-I' 

Knowledge of these matrices A and B now permits us to compute 
(approximately) the eigenfrequencies of the beam as the solution of the 
eigenvalue problem (A - (02B)z = O. Both matrices automatically have 
become symmetric and positive definite. 

Example. Let the beam have the form depicted in Fig. 12.2. 
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Figure 12.2. Example of a beam clamped on the left 

Comparison with Fig. 12.1 shows that n=9, and by (7) and (6), 

6 -4 1 0 
-4 6 -4 1 
1 -4 6 -4 1 

1 -4 21 -34 16 

A= 1 -34 81 -64 16 (8) 

16 -64 96 -64 16 
16 -64 96 -64 16 

16 -64 80 -32 
0 16 -32 16 

B = diag (1, 1,1,1,4,4,4,4). (9) 

In order to reduce the generalized eigenvalue problem to a special 
one, one must now first compute the Cholesky decomposition RTR of B; 
here, it clearly gives 

R = diag (1,1,1,1,2,2,2,2). 



Then 

6 
-4 

1 

o 

§12.1. Introduction 

-4 1 0 
6 -4 1 

-4 

1 
6 -4 .5 

-4 21 -17 8 

.5 -17 20.25 -16 4 
8 -16 24 -16 4 

4 -16 24 -16 4 

4 -16 20 -8 
4 -8 4 

397 

(10) 

is the matrix whose eigenvalues are (approximately) the squares of the 
frequencies of the beam. It must be observed, though, that only the smal­
lest eigenvalues of this matrix actually correspond to frequencies of the 
beam. 

§ 12.2. Extremal properties of eigenvalues 

Let A be a symmetric matrix. We consider the quadratic form 

n n 
Q(x) = (x,Ax) = L. L. ajjxjXj 

j=l j=l 
(11) 

as a function of the independent variables on the unit sphere, thus under 
the side condition 1 1 x 1 12 = 1. 

_----.1-_---, gradQ 

Figure 12.3. Decomposition of grad Q into the radial and 
tangential component 
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The gradient grad Q of Q (x) equals 2Ax, since 

The vector d in Fig. 12.3 is the projection of grad Q onto the position 
vector x, so that d = 2(x,Ax)x = 2Q(x)x; thus, 

grad*Q = 2Ax - d = 2(Ax - Q(x)x) (12) 

is the projection of the gradient onto the tangent plane. It is grad*Q, not 
grad Q, which is relevant for the variation of the function Q (x) on the 
sphere. The extremal values of Q(x) on the sphere indeed occur where 
grad*Q = O. At these points, therefore, 

Ax = Q(x)x, 

that is, x is an eigenvector of A and Q(x) the associated eigenvalue. 

Conversely, if Ax = AX and 1 1 x 1 12 = 1, then Q (x) = (Ax, x) = 
A(X,X) = A, thus 

grad*Q = 2(Ax - Q(x)x) = 2(AX - AX) = 0, 

so that Q is stationary at x. We thus have: 

Theorem 12.1. The normalized eigenvectors and the eigenvalues of 
the symmetric matrix A are precisely the stationary points and associated 
function values, respectively, of the quadratic form Q, considered as a 
function on the unit sphere. 

Corollary 12.2. The field of values of Q(x) on the unit sphere is 
the closed interval between the smallest and the largest eigenvalue of A. 

Examples. 1) The quadratic fonn associated with the matrix 

r 6 3 1 1 
A= 3 2 1 
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has the following stationary points: 

x = ± [.860, .472, .194]T, 

x = ± [-.408, .408, .816f, 
, T 

x = ± [-.306, .781, -.544] , 

Q(x) = 7.873, 

Q(x) = 1, 

Q(x) = .127. 

The second, with value 1, is a saddle point (cf. Fig. 12.4). 

2) The matrix 

Q., 

Figure 12.4. To Example 1 

1 

7 

-2 
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has the double eigenvalue A. = 8. Here, Q assumes its maximum 8 at all 
points of a certain great circle and the minimum 2 at the appertaining 
poles (cf. Fig. 12.5). 



400 Chapter 12. The Eigenvalue Problem For Symmetric Matrices 

I 
/ 

/ 

/ 

/ 
/ 

/ 

...... 

Figure 12.5. To Example 2 

The eigenvectors and eigenvalues of A are also the solution of a 
second, similar extremal problem: 

Let xl be the point at which Q(x) attains its maximum on the unit 
sphere 1 1 x 1 12 = 1. (We already know that x I is an eigenvector to the 
largest eigenvalue AI.) We now consider all points x on the sphere for 
which in addition (XloX) = O. On this set of points we again seek the 
maximum of Q(x); let it be assumed at X2. We then consider the set of 
points defined by the conditions 

and thereon determine the maximum of Q(x), giving the point X3, etc. 
We so eventually obtain a complete orthogonal system xl, X2, •.• , x n • 

One can show that these vectors Xk are again just eigenvectors of A, 
and that for the corresponding eigenvalues Ak = Q(Xk) one has 
Al ~ A2 ~ ... ~ An. For a symmetric matrix A there thus exists a com­
plete orthogonal system of eigenvectors. If this is chosen as a new coor­
dinate system, that is, if one puts 
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n n n 

Q(x) = L L ~k~ (XkoAxt) = L Ak~l. 
k=l t = 1 k=l 

In the new system, the quadratic form Q is thus represented by the diago­
nal matrix diag (1..1, ... , An) (transformation to principal axes). 

Perturbation of the eigenvalues. The extremal property of eigen­
values, furthermore, yields a statement concerning the change of the 
eigenvalues of a symmetric matrix when its elements are perturbed in a 
certain way: 

Let A and B be two symmetric matrices and C = B - A their 
difference, for which we assume that bounds a,13 can be given for the 
field of values of the associated quadratic form (considered on the unit 
sphere): 

a~ (x,Cx) ~ 13 for Ilxl12 = 1. (13) 

Then for every normalized x, 

(x,Ax) + a ~ (x,Bx) ~ (x,Ax) + 13. 

By Corollary 12.2, there now follows 

An analogous statement holds for all eigenvalues: 

Theorem 12.3. If A and B are symmetric matrices with eigenvalues 
Ak and J.lb respectively, and if for C = B - A the estimate (13) holds, 
then each interval [Ak + a,Ak + 13] contains (at least) one J.lk. 

Instead of a proof we give a plausibility argument: For the extreme 
eigenvalues, the assertion is obviously true (the maximum and minimum 
of the function QA (x) = (x,Ax) (with 1 1 x 1 12 = 1) are changed at most by 
a and 13, respectively). But the intermediate eigenvalues are saddle points 
of QA (x), say of the kind depicted in Fig. 12.6, where the lowest top P of 
the pass, traversing it from W to E, has altitude Ak (one has to climb at 
least that high up); but at the same time, P is also the lowest point on the 
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path from N to S. Therefore, P is the lowest top of the pass on the way 
from valley to valley and at the same time the highest "bottom of the 
pass" on the way from mountain to mountain. 

N 

w E 

s 

Figure 12.6. Saddle point of the quadratic form QA 

If to QA one now adds a function with values between ex and 13, then 
we can think of construction debris being dumped over the whole terrain 
to a depth of at least ex but no more than 13. The passage from valley to 
valley via P then becomes higher by at most 13, although by way of a 
detour one can perhaps find a lower maximum; at any rate, the new alti­
tude of the pass is smaller than, or equal to, Ak + 13. Likewise, the path 
from mountain to mountain via P is elevated by at least ex, thus the whole 
path is never lower than Ak + ex. By way of a detour one perhaps finds a 
still higher "bottom of the pass", but the highest possible one definitely 
has an altitude of at least Ak + ex. The eigenvalue /-lk of B, which 
corresponds to the lowest new top of the pass (and at the same time to the 
highest new "bottom of the pass"), therefore lies between Ak + ex and 
Ak + 13· 

Theorem 12.3 states that the eigenvalues of a symmetric matrix are 
changed only a little by small symmetric perturbations, namely, at most 
by ± e, if all eigenvalues of the perturbation matrix C lie in the interval 
[-e,e]; this, in particular, holds true if the Schur norm (see §1O.7, Eq. 
(56)) does not exceed e: 
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n n 
L L cO ~E2. 
i=l j=l 

Example. We consider the matrices 

B= 

19 7 7 0 
14 -8 5 

A= 14 -5 

sym. 3 

18.9992 7.0008 6.9997 .0005 

14.0010 -8.0006 4.9996 

sym. 

14.0000 -5.0007 

3.0007 

403 

A has the double eigenvalues .657281 and 24.342719. The Schur norm 
of the perturbation matrix C = B - A equals .002474, consequently the 
eigenvalues of B must lie in the intervals 

.654807 ~ Jl. ~ .659755, 24.340245 ~ Jl. ~ 24.345193 . 

B actually has the eigenvalues 

.656240, .658381, 24.341959, 24.344320. 

Perturbation of the eigenvectors. For the eigenvectors there is no 
analogous proposition. Indeed, a small change in the matrix elements can 
produce a large change in the eigenvectors. For example, 
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has the eigenvectors (not nonnalized) 

while 

[ 
1~-5 
10-5 

10-5 

1 
10-5 

10-
5

] 10-5 

1 

has the eigenvector [1,1, If corresponding to the eigenvalue 
A= 1 + 210-5. 

Nevertheless, there is a valid statement concerning the perturbation 
of an eigenvector, provided the associated eigenvalue is simple and 
sufficiently separated from the remaining eigenvalues: 

Theorem 12.4. Let x be a normalized eigenvector belonging to the 
eigenvalue A of the symmetric matrix A, and let there be no further eigen­
value A' of A with I A - A' I < te, where t> 2. In addition, let the Schur 
norm of the symmetric matrix C be no greater than e. Then B = A + C 
has a normalized eigenvector y with 

1 
Ilx-yl12 < --. 

t-1 

Proof One can assume that A has been brought to diagonal fonn 
by an orthogonal transformation and that A=AI, x = el = [1,0, ... , of. 
When C is transformed in the same way, the sum of the squares of the 
elements remains ~ e2. One thus has (in the new coordinate system) 

Al +CII cl2 

C21 ~ + c22 

B=A+C= 
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with 

Az -AI + C22 C23 

C32 ~ - Al + C33 

p= , q= 

405 

C12 

C13 

Cln 

By Theorem 12.3, P has no eigenvalue in the interval 1/.11 < (t - l)e, 
since by assumption I Ak - Al I ~ te (k = 2, ... , n) and 

n n 
~ ~ 2 < 2 ~ ~ Cij _e . 
i=2 j=2 

Now the eigenvectors of B are the same as those of 

With vT = [11 zT] being such an eigenvector corresponding to the eigen­
value /.1 one obtains 
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There follows: 

I I pz I 12 = I I (f..L - AI) z - q I 12 = (f..L - Al)2 I I z I 12 - 2(f..L - Al )(z, q) + I I q I 12 

= (f..L - A 1)2 I I z I 12 - 2(f..L - A 1 )(f..L - Al - C 11) + I I q I 12 

= (f..L - A 1)2 I I z I 12 - (f..L - A 1)2 - (f..L - Al - C 11)2 + C r 1 + I I q I 12. 

Since P has no eigenvalue smaller in modulus that (t - l)e, one has 
I I pz II ~ (t - 1) e I I z II, and furthermore, 

Therefore, 

n 
I I q I 12 + Crl = L Crj ::;; e2. 

j=1 

(t - 1)2e2 I I z I 12 - (f..L - Al)2 I I z I 12 ::;; e2 - (f..L - Al)2 - (f..L - Al - C 11)2 

::;; e2 - (f..L - Al)2. 

By Theorem 12.3, the matrix B has an eigenvalue f..L with the property 
I f..L - Al I ::;; e. For the corresponding eigenvector [11 zT], therefore, 

1 
< 2 ' (t-l) 

so long as only (t - 1)2 > 1, thus t> 2. 

It is true that vT = [1,zT] is not a normalized eigenvector, but for the 
corresponding normalized vector y the distance to the eigenvector x (here 
el) is even smaller (cf. Fig. 12.7), that is, we certainly have 
Ilx - yll < I/(t -1), q.e.d. 
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Figure 12.7. To the proof of Theorem 12.4 

§ 12.3. The classical Jacobi method 

Following Jacobi(l), the transfonnation to principal axes is carried 
out by means of an iterative process: Beginning with the matrix Ao = A, 
one perfonns a sequence of "elementary" orthogonal transfonnations 

such that the matrices Ao, AI' A2 , ... become "more and more diago­
nal". As a measure for the deviation from a diagonal matrix one chooses 
the sum of the squares of all off-diagonal elements, 

n n 
Sk = L L [a[jlf, 

i=l j=l 
j#i 

(14) 

where alf) denote the elements of the matrix Ak• We thus require that 
SO>Sl>S2> .... 

Ak is related to the original matrix A through 

1 Jacobi C.G.J.: tiber ein leichtes Verfahren die in der Theorie der Siicularstorungen vor­
kommenden Gleichungen numerisch aufzulosen, J. Reine Agnew. Math. 30,51-94 (1846). 
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which, by means of the "accumulated" transformation matrix 

(15) 

(which is also orthogonal), can be written as 

(16) 

If one succeeds in making Sk arbitrarily small, say ~ E, then Ak 
deviates from a diagonal matrix D only by a matrix whose Schur norm is 
~ E: I I Ak - D I I ~ E. To the extent that this deviation is permissible on 
the basis of the perturbation theory (that is, Theorems 12.3 and 12.4), the 
transformation to principal axes is accomplished (within the desired accu­
racy) by A ~ Ak = vlAvk. 

As to the choice of the matrices Uk> one has complete freedom; they 
must only be orthogonal and reduce the sum of squares Sk. The simplest 
possibility is 

1 0 

1 

cos <1> sin <1> f-p 

1 . 
Uk = U(p,q, <1» = . (17) • 1 

- sin <1> cos <1> f-q 

1 

0 1 

thus 

upp = Uqq = cos <1>, upq = - uqp = sin <1> (p < q). 

(Uk differs from the unit matrix only in these four elements.) A transfor-
mation 
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(18) 

with an orthogonal matrix Uk = U(p,q,<\» of the form (17) is called a 
Jacobi rotation with pivot element apq and angle of rotation <\>. 

Denoting the elements of Ak briefly by aij, and those of Ak+1 byaij , 
the transformation (18) can be described elementwise as follows: 

" aij = aij (i '* p,q and j '* p,q), 

apj = apj cos <\> - aqj sin <\>} 

" (j '* p,q), 
aqj = apj sin <\> + aqj cos <\> 

aip = aip cos <\> - aiq sin <\>} 

" (i '* p,q), 
aiq = aip sin <\> + aiq cos <\> 

apq = aqp = ~ (app - aqq) sin (2<\» + apq cos (2<\», 

app = app cos2<\> - 2apq sin <\> cos <\> + aqq sin2<\>, 

aqq = app sin2 <\> + 2apq sin <\> cos <\> + aqq cos2<\>. 

There now follows: 

,,2 2 
y) aij = aij (i '* p,q and j '* p,q). 

(19) 

Denoting by L ' LA' L the sums over the quantities occurring in the 
a p 'Y 

left- or (right-) hand members of these relations, whereby in Ly only 

terms with i '* j are to be considered, one evidently gets 
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hence, because of symmetry, 

(20) 

that is, the transformation (18) requces the sum of the squares of all off­
diagonal elements by 2a;q - 2flpq. Sk+l, therefore, becomes minimal 
when a;q is as large as possible and fl:q becomes as small as possible. 

Accordingly, one first chooses for p and q (p < q) the row and 
column index, respectively, of the maximum modulus element of Ak 
above the diagonal, and then <\> such that flpq = O. This clearly entails 

(21) 

which leaves four possibilities for <\> in the interval -1t < <\> < 1t. From 
among these four possible values one selects, as a matter of principle, the 
smallest: I <\> I ~ 1t/4. 

One then carries out the transformation (18) and concurrently com­
putes the matrix V k+ 1, which can be done, on the basis of (15), by 

in components, when Vij are the elements of V k and ~ij those of V k+ 1 : 

~jp = Vjp cos <\> - Vjq sin <\>} 
A U = 1, ... , n). 
Vjq = Vjp sin <\> + Vjq cos <\> 

(22) 
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With this, a basic step is now completed. 

In summary, the classical Jacobi method consists in executing the 
following operations for k = 0,1,2, ... : 

1) Choice of the pivot element as the maximum modulus off­
diagonal element of A k • 

2) Computation of the angle of rotation cp, or of the respective 
quantities cos cp and sin cp (only these are really needed). 

3) Computation of the elements of the matrices Ak+1 , V k+l (Le., 
the elements fiij , ~ij in the above notation) according to (19) and 
(22), respectively. 

Convergence. The iteration can be terminated as soon as all off­
diagonal elements of Ak are negligibly small; the only question is whether 
this ever happens. Now on the basis of (20), and our choice of cp, 

Moreover, a;q as the square of the maximum modulus off-diagonal ele­
ment is larger than or equal to the mean value Skl(n(n - 1», hence 

(23) 

This establishes convergence: 

Theorem 12.5. In the classical Jacobi method the sum Sk of the 
squares of all off-diagonal elements of Ak converges to 0 monotonically 
and (at least) linearly. 
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§ 12.4. Programming considerations 

In computational practice, a Jacobi rotation (18) is executed "in 
place", that is, a matrix element aij is stored as a[i,j] regardless of 
whether it is an element of Ak or of Ak+1. Accordingly, such a step 
proceeds as follows: 

1) Detennination of p and q through a search of the maximum off­
diagonal element. This search is considerably facilitated by keeping a list 
in which for each row one enters the location and magnitude of the max­
imum modulus element of that row(l). 

2) Detennination of c = cos <\> and s = sin <\>. In the first place, one 
does not compute tan (2<\», but 

(The denominator in this fonnula, in contrast to the numerator, cannot 
become 0, since one always works with the maximum modulus off­
diagonal element apq .) 

3) From the quantity ct = cot (2<\» one finds t = tan (<\» through 
solving the quadratic equation 

t 2 + 2 x ct x t - 1 = o. 

Since we seek an angle <\> with I<\> 1 $. rc/4, we must have 1 t 1 $. 1; hence 
one takes the absolutely smaller root. In ALGOL notation, 

t: = lJ(abs(ct)+ sqrt(1 + ct i 2»; 

is already the absolute value of the smaller root; since the latter must have 
the same sign as ct, one has to add 

if ct < 0 then t: = - t; 

1 Corbato FJ.: On the coding of Jacobi's method for computing eigenvalues and eigen­
vectors of real symmetric matrices, 1. Assoc. Comput. Mach. 10,123-125 (1963). 
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Finally, 

c : = 1/ sqrt (l + t i 2); s: = ext; 

4) Since one works only with elements on or above the diagonal 
(and thereby reduces the computational work by almost 50%), an element 
a[i,j] with i > j occurring in the program must be replaced immediately 
byaU,i]. 

1\ 1\ 1\ 
5) There are special formulas for the elements apq' app' aqq• 

1\ 1\ 
Namely, app + aqq = app + aqq , and 

app - app = (aqq - app ) sin2 <\> - 2apq cos <\> sin <\> 

= tan <\> [(aqq - app) cos <\> sin <\> - 2apq cos2<\>] 

= - tan <\> [~ (app - aqq) sin (2<\» + apq cos (2<\» + apq ] 

1\ = - tan <\> [apq + apq ]. 

Since fipq = 0 (by the choice of <\», one thus has 

1\ 
app = app - apq tan <\>, 

1\ 
aqq = aqq + apq tan <\>' 

1\ apq = O. 

(24) 

These formulae are much less susceptible to rounding errors than the ori­
ginal ones, and besides save computing time. 

6) If the pivot element apq is very small in comparison to both diag­
onal elements app and aqq , that is, if in machine arithmetic 

then the rotation is not carried out at all, and one simply puts apq = O. 
This, admittedly, is a falsification, but it is not larger than the one that 
would occur anyhow during the execution of the rotation on account of 
rounding errors. 
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Altogether one obtains for the rotation proper (after p, q, t, c, shave 
been determined), in observance of 4) and 5), the following piece of pro­
gram: 

h := apq x t; 
app := app - h; 
a qq := a qq + h; 
apq := 0; 
for j := 1 step 1 until p - 1 do 
begin 

h := C x ajp - S x ajq; 

ajq := S x ajp + C x ajq; 

ajp := h 
end; 
for j := p + 1 step 1 until q - 1 do 
begin 

h := C x apj - S x ajq; 

ajq := S x apj + C x ajq; 

apj := h 
end; 
for j := q + 1 step 1 until n do 
begin 

h := C x apj - S x aqj; 

aqj := S x apj + C x aqj; 

apj := h 
end 
for j := 1 step 1 until n do 
begin 

h := C x Vjp - S x Vjq; 

Vjq := S x Vjp + C x Vjq; 

Vjp := h 
end; 

This completes one Jacobi step. The process is continued itera­
tively, and is terminated as soon as aij = 0 for all i,j with i < j, which 
through the measure in 6) is only accelerated. At the end, the ajj are 
approximately the eigenvalues, and the columns of the matrix V the asso­
ciated eigenvectors. 
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§12.5. The cyclic Jacobi method 

Having to locate the off-diagonal element of maximum modulus in 
each step of the classical Jacobi method is somewhat awkward. To spare 
oneself this trouble, the following variant has been proposed when the 
method was rediscoverede) in 1952: 

One chooses as pivot element apq in tum (rowwise from left to 
right) all elements above the diagonal and each time carries out a rotation 
which makes the pivot element equal to O. After n (n - 1)/2 rotations, all 
off-diagonal elements have each been "treated" once. One calls this a 
sweep. After one such sweep, not all off-diagonal elements, of course, are 
0; rather, additional sweeps must be followed. Usually, 10 of them 
suffice. 

One observes in practice that the off-diagonal elements at first 
decrease only slowly, but then become smaller faster and faster. The 
latter is due to the quadratic convergence of this cyclic Jacobi method, 
which we now propose to verify under the assumption of simple eigen­
values: 

Let the moduli of all off-diagonal elements at the beginning of a 
sweep be less than or equal to E, where E is assumed small in comparison 
with the minimum difference 0 of any two diagonal elements. First an 
auxiliary observation: we write for brevity a = app ' b = aqq , Eo = apq ' 

El = apj' E2 = aqj' so that 

a • • • Eo· •• £1 • • • 

A= 

sym. 

Then the angle of rotation (\> is determined by 

1 Gregory R.T.: Computing eigenValues and eigenvectors of a symmetric matrix on the 
ILLIAC, Math. Tables Aids Comput. 7,215-220 (1953). 



416 Chapter 12. The Eigenvalue Problem For Symmetric Matrices 

from which 

2€o 
tan(2<\» = -b- « 1, 

-a 

tan <\>::: b ~ a' sin <\> ::: <\>, cos <\> ::: 1, I <\> I ::: I tan <\> I < ~ . 

Then, 

A _ ih A £.0£2 
£1 - £1 - £2'1" 1£1 - £1 I <S -0- , 

A A €o£1 
£2:::£1<\>+£2, lEz-£2 1 <S-O-' 

With this, the change of the off-diagonal elements after one single rotation 
is estimated (asymptotically). During a complete sweep, however, each 
element is affected at most n times, hence can at most n times be enlarged 
by the product of two off-diagonal elements divided by O. But for such a 
product one has, at each stage, 

1 (2 2) 1 1 2 2 I Pn£·1 < - £0 + £. < - S < - n £ 
'"\11-2 1-4 4 ' 

where S is the sum of squares of all off-diagonal elements defined in (14). 
(Note on account of (20) that S also here can never increase.) The total 
change of an element during the sweep, measured from the moment where 
as pivot element it has been rotated to 0, is thus smaller than n3£2/(40). 
It can therefore not become larger than this bound; in particular, after the 
sweep, it is of the order o (E2), q.e.d. 

In spite of this quadratic convergence, one often hears complaints 
about the excessive computational work involved in the Jacobi method. 
In fact, 10 sweeps amount to about 5n 2 Jacobi rotations, of which each 
requires 8n multiplications and 4n additions, which gives a total of about 
60n 3 arithmetic operations. For small n, this is not serious, but for large 
n one prefers other methods. 
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§ 12.6. The LR transformation 

The large computational work for determining the eigenvalues of a 
matrix is felt to be particularly annoying when one is dealing with the fol­
lowing special case: The matrix A is a symmetric positive definite band 
matrix (Le., aij = 0 if Ii - j I > m), and one needs only the p smallest 
eigenvalues (p and the bandwidth (1) m are assumed small in comparison 
with the order n of the matrix). 

Example. The eigenoscillations of a beam are described by the 
differential equation 

(0 ~ x ~ 1, - 00 < t < 00). (25) 

If the beam is simply supported at each end; the boundary conditions are 

u(O,t) = u(l,t) == 0, uxx(O,t) = uxx(l,t) == O. (26) 

Seeking the solution in the form u (x,t) = eiOlly(x), one obtains 

y(4) = (j)2y with yeO) = y(l) = y"(O) = y"(l) = 0, 

and from this, through discretization in the x-direction (Xk = kh with 
h = lin), finally 

with the (n - 1 x n - 1) - matrix 

5 -4 1 

-4 6 -4 
1 -4 6 

A=n4 1 -4 

o 

1 

-4 
6 

0 

1 

-4 1 

1 -4 6-4 
1 -4 5 

1 Some authors refer to 2m + 1 as bandwidth of A. (franslator's remark) 

(27) 
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Here, the bandwidth is m =2, and one needs only the smallest eigenvalues, 
since only these, to some extent, are useful approximations to the eigen­
values of the continuous problem. (The latter are Ak = 1t4 k4 
(k = 1,2, ... ), while A has the eigenvalues Ak = 16n 4 sin4 (1tk/(2n».) 

In a case like that, the Jacobi method would have the following 
disadvantages: 

a) In the course of the process, the whole matrix A is filled with 
nonzero numbers, which then have to be made 0 again. 

b) One must compute all eigenvalues of A. 

There exists, however, a method in which the many zeros in A, as 
well as the fact that only a few eigenvalues are needed, can be usefully 
exploited, namely the LR transformation: 

Given an arbitrary symmetric positive definite matrix A, one applies 
to A an LR step: One decomposeS Ao = A by Cholesky into Ao = R6Ro 
and then computes Al = RoR6. Thereupon, an LR step can be applied 
again to AI, which gives A2 , etc. The kth step is: 

(28) 

Theorem 12.6. If A = Ao is symmetric and positive definite, then 
for the matrices Ak generated iteratively by means of the LR transforma­
tion (28) one has 

lim Ak = diag (1..1,1..2, ... , An), 
k~oo 

where AI, . . . ,An are the eigenvalues of A. 

Moreover, the eigenvalues in the limit matrix are usually ordered: 
Al ~ 1..2 ~ ... ~ An. There are exceptions, however: for example, if 

A= 

5 
4 

1 

4 

5 
1 

1 1 

1 1 

1 1 

4 2 

2 4 

' then lim Ak = 
k~oo 

10 

o 
o 

o 
1 

o 

o 
o 
5 

o 
o 
o 

o 0 0 2 
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Nevertheless, such convergence is unstable, and during numerical compu­
tation rounding errors cause the pattern to tip over, so that the limit matrix 
is still diag (to, 5, 2, 1). 

Proof of Theorem 12.6. a) Since 

all matrices Ak are similar to one another. Therefore, if lim Ak is a diag­
onal matrix, then its diagonal elements are the eigenvalues of A. 

b) If slk) denotes the sum of the t first diagonal elements of A k : 

then certainly (since Ak is positive definite), 

where the trace s = s~k) is independent of k. Now Ak = RIRk evidently 
means 

j 
a (~) - "'" (r(~»)2 

JJ -.LJ IJ ' 
i=l 

while from Ak+l = RkRI there follows that 

PI 

a(k+l) - "'" (r{~»)2 II -.LJ IJ . 
j=i 

Summing over j, respectively i, from 1 to t, one gets 
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thus, 

t n 
Slk+l) - Slk) = L L (r[j»2 ~ o. (29) 

i=l j=t+l 

Therefore, the sequence s?) is monotone in k, and also bounded; it must 
thus converge. Consequently, by (29), 

lim r Ij> = 0 for i:::;; e, j > e. 
k-,>oo 

Since this is true for each e, there follows: 

lim rfj) = 0 whenever j > i. 
k-,>oo 

Furthermore, the existence of lim Slk) implies immediately that of 
k-,>oo 

lim (rt~»)2 = lim (s?) - sp'J. 1) . 
k -'> 00 k -'> 00 

Therefore, lim Rk exists and is a diagonal matrix; finally 

lim Ak = lim (RIRk) 
k-,>oo k-,>oo 

likewise becomes diagonal, q.e.d. 

Speed of convergence. Convergence as such, in numerical analysis, 
does not mean a great deal yet. Indeed, a computational process is only 
then useful, in practice, when convergence is good. Here we propose to 
estimate convergence of the LR transformation under the assumption that 
Ak is already nearly diagonal: 
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Al e12 e13 eln 

A2 e23 e2n 
Ak= 

sym. An 

Altogether, 

f):; e12 e13 eln 

~ ~ ~ 

Rk ::: ~ 
e23 e2n 

~ ~ 

0 1i::: 

and thus, neglecting quantities of the order e2 : 
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Al [A, r E12 ~ [, r E13 A: [, r EIII A: 

Ak;+1 = Rk;R[::: Az [ ~ ]'h 
E23 1; [ All ]'h Ez,. -

Az 
.(30) 

sym. 

All 

We therefore have: 

Theorem 12.7. If all eigenvalues of A are simple, then under the 
hypotheses of Theorem 12.6 one has, asymptotically: The (i,j)-element 
U > i) of the matrix Ak converges to 0 like (/ .. /A.i )k/2 as k ~ 00. 

From these considerations it already follows that convergence of the 
Ak to a diagonal matrix with unordered diagonal elements cannot be a 
stable convergence. One further recognizes that convergence is very bad 
when the relative difference of two eigenvalues is very small, as, say, in 
the case 1...5 = 7.49, 1...6 = 7.47. What, then, is the advantage of this 
method? 

First advantage: If Ao is a band matrix, then so are AI, A2 , . •. . 

Namely, if afJ) = 0 for Ii - j I > m, then rfJ) = 0 for j < i and j > i + m, 
that is, Ro is a triangular matrix with bandwidth m. But then also, 
Al = RoR6 receives the same band form as Ao. The same, of course, 
holds for A2 , A3 , etc. 

This has the consequence that in a computational process one must 
only account for the elements inside the band; it suffices to store the 
matrices A and R as array a,r [l:n, O:m], where a [i,j] means the matrix 
element ai,i+j (= ai+j,i). The storage requirement, therefore, is reduced 
from n2 to (m + l)n, which means, for example, that a band matrix with 
n = 2000, m=5 can still be stored in a medium-sized machine. Naturally, 
when this band storage is used, the LR method requires special program­
ming. 

The computational work for an LR step with dense matrix is about 
equal to n 3 /3; for a band matrix it is reduced to about nm 2 , thus in the 
above example from 2.667109 to 50000, that is, by a factor of more than 
50000. 
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Second advantage: If one wants only some of the smallest eigen­
values, then comparatively few LR steps usually suffice. These small 
eigenvalues, after a number of LR steps, assemble at the lower end of the 
diagonal. This goes rather fast, since the ratios A/A.i at the lower end of 
the spectrum are by nature small (provided there are no multiple eigen­
values). The matrices Ak therefore soon will show large off-diagonal ele­
ments only at the top, but at the bottom will already be diagonalized. 

But even if, say, An' An-l and An-2 are nearly equal, this will only 
have the effect that at the lower right-hand comer a few off-diagonal ele­
ments develop which do not want to decrease, but which are distinctly 
separated in magnitude from the remaining off-diagonal elements. Then 
the lower end of the diagonal of Ako for example, looks as follows: 

81.2351 .0015 -.0014 .0001 0 0 0 . . . . . . . . . . . . .. . 
·10.0259 1.2573 -.0087 -.0007 0 0 

10.3592 .0098 

4.3259 

sym. 

.0003 .0017 0 

.0238 -.0142 .0108 

1.6928 .1589 .2725 
1.6259 -.0867 

1.7235 

Here, the smallest eigenvalues can be easily obtained, for example by 
diagonalizing the 6x6 principal minor matrix at the lower right-hand 
comer by means of Jacobi's method. (There result the eigenvalues 
11.4608, 8.9243,4.3261, 1.9879, 1.7238, 1.3302.) 

§12.7. The LR transformation with shifts 

Since in the LR transformation the off-diagonal elements of the last 
column Ak converge to 0 like (An()..ill2 (i = 1, ... , n - 1), one can 
accelerate this convergence by applying the transformation not to the 
matrix A, but to A - tI. Of course, one must have t < An' since A - tI 
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must be positive definite. 

The convergence of the element ain then is given by 

(31) 

and this becomes smaller the closer t moves to An. The trick we have to 
accomplish, therefore, is to choose t as close to An as possible, but in no 
case larger than this number. 

The way one does this, in practice, is as follows: One first chooses 
do, carries out the decomposition Ao - dol = R6Ro and puts 
Al = R6Ro; then one chooses db decomposes Al - dil = R[R I (at this 
point, t = do + d I) and computes A2 = R 1 R r. etc. In the kth step one 
thus chooses a dk > 0, but so, that it is smaller than the smallest eigen­
value of Ak. The total shift t in this way continually increases. A guide 
for this choice is provided by the smallest diagonal element, which, how­
ever, is an upper bound for Amin(Ak). It thus can happen that dk is chosen 
too large. This is signaled in the failure of the Cholesky decomposition 
of Ak - dkI. This decomposition must then be repeated with a smaller dk. 
One therefore uses a computational scheme somewhat as follows: 

1. Choice of dk ; s:= 1; 

2. Cholesky decomposition Ak - dkl = RIRk; 

3. If the decomposition fails: 
S := S + 1; dk := dk/2; 
if S > 3 then dk := 0; 
goto 2; 

4. Ak+I := RkRI 

5. t:= t + dk 

6. goto 1; 

Thus, t is here the sum of all shifts, so that A is similar to Ak + tl. If ini­
tially the Cholesky decomposition fails, one makes two more trials with 
reduced shifts, then sets dk = O. What is bad is only when the decomposi­
tion fails in the last case too, which can happen because of rounding 
errors. 
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There exists, however, a type of failure in the Cholesky decomposi­
tion which leads immediately to a safe, and usually also very sharp, lower 
bound for the smallest eigenvalue of Ak . Namely, if it is only the last 
diagonal element prior to taking the square root, thus 

n-l 
e = a~") - L (r[-!)2 - db 

i=l 

which becomes negative, then dk + e is a lower bound for Amin (Ak). 
Therefore, the decomposition must succeed (theoretically) if one repeats it 
with dk := dk + e. 

This property of dk + e can be proved as follows: If the Cholesky 
decomposition has advanced through the (n - l)st row, then from the ori­
ginal quadratic form 

n n n 

L L aijXiXj - d L xt 
i=l j=l i=l 

one has already subtracted the n - 1 squares 

[ .f rtjXj]
2 

, e = 1, ... , n - 1, 
J =t 

and there remains ex;, where 1C then gives the last diagonal element rnn. 

For the quadratic form associated with A, therefore, 

n n n n-l [ n ]2 
Q(x) = L L aijXiXj = d L xt + L L rtjXj + ex;. 

i=l j=l i=l t = 1 j=t 

If now e < 0, then 

n n 
Q(x) ~ d L xt + ex; ~ (d + e) L xt; q.e.d. 

i=l j=l 
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Numerical example. Consider the matrix 

10 
11 

1 

The Cholesky decomposition with do = 1 yields 

[ 
100 

10 

1 

10 
10 
1 

1] [ 10 1 ~ 0 

o 0 

1 

3 

o 

.1 ] 

.3 

o 
that is, breaks down in the last step with the remainder element 
c = 0 - (.1)2 - (.3)2 = -.1. Therefore, do + c = .9 is a lower bound for 
the smallest eigenvalue of Ao. Repeating the LR step with do = .9 then 
gives 

[ 
101.10901 

AI= 
sym. 

3.04509 

9.19002 
.00315] 
.00939 ,t = .9 , 

.00099 

A further step with d 1 = .00099 again produces a failure in the last diago­
nal element, this time with c = - .00001. The step, therefore, must be 
repeated with d I = .00098; in this way one finds (with a computing preci­
sion of 5 digits after the decimal point): 

We observe: 

101.19975 

.91342 

o 

.91342 

9.09735 

o 
~ 1 ' t= .9~8. 

1) 0 is an eigenvalue of A2 , hence 1.,3 = .90098 an eigenvalue of 
Ao, and in fact guaranteed the smallest, since A2 = RIRf cannot 
have negative eigenvalues. 
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2) The remaining eigenvalues of A2 are those of the (2 x 2)­
submatrix 

[ 
101.19975 

. 91342 
.91342] 

9.09735 . 

3) One can carry out a deflation, that is, strike out the last row and 
column of A2 , and then continue with the LR transformation, 
whereby one can build on top of the t already obtained. 

The next LR step with d 2 = 9 leads to 

[ 
92.20880 

A3 = .02827 
.02827] 
.08830 ,t = 9.90098 . 

Then, with d 3 = .08830, one first runs into a failure with c = - .00001, 
and with d 3 = .08829 finally obtains 

[ 
92.12052 

A3 = 0 ~] , t = 9.98927 . 

Ao therefore has the eigenvalues Al = 102.10979, A2 = 9.98927, A3 = 
.90098. 

§ 12.8. The Householder transformation 

The computational work for determining the eigenvalues of a sym­
metric matrix A, also in the case where it is dense, can be significantly 
reduced by first transforming it to band form. For this purpose a special 
class of orthogonal matrices is useful: 

Let w be a vector of length 1; we use it to form the matrix 

(32) 
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that is, the symmetric matrix with elements 

h·· - ~ .. - 2w-w· IJ - IJ 1 J' 

We first observe that 

Here, wwT wwT is the matrix with elements 

n n 

l', (WiWj)(WjWk) = WiWk l', wJ = WiWk , 
j=l j=l 

thus again the matrix wwT. Therefore, HTH = I, that is, H is orthogonal. 

Now let A be subjected to the orthogonal transfonnation given by 
H: 

Here, wwT AwwT , since wT Aw is a scalar Q(w), is equal to the matrix 
Q(w)wwT , so that 

HT AH = A - 2w(Aw - Q(w)wf - 2(Aw - Q(w)w)wT 

(33) 

where 

g = Aw - Q(w)w. (34) 

Therefore, B = HT AH has the elements 
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(35) 

The g j here are functions of the Wj; in view of I I w I I 2 = 1, one thus has 
exactly n - 1 degrees of freedom, which could be used, in principle, to 
satisfy n - 1 conditions, for example bjn = 0 for i = 1,2, ... , n - 1. 
Then B would be of the form 

* * 
* * 

B= 

* * 

* 0 
* 0 

* 0 

Unfortunately, this is not feasible. One can, however, solve a 
simpler problem by giving up one degree of freedom and trying, instead, 
to satisfy only n - 2 conditions: 

Wn = 0 (l fewer degree of freedom), 

bIn = b 2n = ... = b n- 2•n = 0 (n - 2 conditions). 

The relation (35) for j = n then reduces to 

(which is to be equal to 0 for i = 1, ... , n - 2) with 

From this, one obtains: 

n-l 

gn = L ajnWj. 
j=l 

(36) 

(37) 
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ai" 
Wi = --, i = 1, ... , n - 2, 

2g" 
(38) 

For brevity, we henceforth write a and b in place of a"-1,, and b"-1'" . . 
respectively, so that W,,-1 = (a - b )/(2g,,). For w to be a vector of length 
1, one must have 

thus 

,,-1 
4g; = L am - 2ab + b2 . 

i=1 

Furthermore, by (37) and (38), 

that is, 

,,-1 

2g; = L aJ" - abo 
j=1 

Comparison between (39) and (40) shows that 

Consequently, one puts 

,,-1 

b 2 = L aJn . 
j=1 

(39) 

(40) 



§12.8. The Householder transfonnation 431 

b = +_ .~, - ~ I cr - ab where n~l 2 
'Iv gn -" 2' cr = £.J ajn . 

j=l 

(41) 

Of eminent importance, here, is the choice of the sign in the square 
root for b. If a and b have the same sign, the computation of gn may be 
subject to cancellation, which could lead to an inaccurate vector w. One 
thus chooses the sign of b opposite to the one of a: 

b := if a > 0 then - sqrt(cr) else sqrt(cr); 

Subsequently, gn is determined by (41), and Wj by (38). Finally, one 
computes 

n-l 
Zk = L akjWj, k = 1, ... , n - 1, 

j=l 

and, according to (34), 

gk = Zk - QWb k = 1, ... , n - 1, 

whereupon the actual transformation (35) can be carried out. 

There are a few details, though, that still need to be noted: 

(42) 

(43) 

1) After the transformation A ~ B = HAH has been carried out, 
one has to be able, later on, to also transform back a vector y: if y is 
eigenvector of B, hence By = AY, then HAHy = AY, AHy = AHy, that is, 
x = Hy is eigenvector of A. One thus has to compute 

for which one first determines e = wT y and then x = y - 2ew, requiring 
only a computing effort proportional to n. 
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2) Having transformed A into A (1) = B = HAH, which has the form 

A(I) = 

10 
I . 
I . 
I . 
10 

_J * 
o ... 0 * * 

the submatrix Al is then treated in the same way. The transformation to 
be executed, 

(with matrices of order n - 1), by virtue of the special form of the 
matrices A (1) and 

10 * * 0 0 
I 

HI I . 
H(I) = I . = 

1 0 * * 0 0 

--1 0 0 0 1 0 
0 0 0 1 0 0 0 1 

however, has the same effect as the transformation of the corresponding 
full matrices, 
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The result, therefore, is of the form 

10 0 

o 0 
-1 * 0 

o 0 * * * 
o 0 0 * * 

433 

Now one continues processing A2 , which thanks to the special form 
of A (2) and H(2) again causes no changes outside of A2 in A (2), etc. After 
n - 2 steps, A is fully transformed to a symmetric tridiagonal matrix J: 

J = UT AU, where U = HH(l) ... H(n-3). (44) 

§ 12.9. Determination of the eigenvalues of a tridiagonal matrix 

After the transformation of a symmetric matrix A to the tridiagonal 
form J, described in the preceding section, one still needs to determine 
the eigenvalues (and subsequently perhaps the eigenvectors) of J. For 
this, we use Sylvester's law of inertia: If A is symmetric, and X an arbi­
trary nonsingular matrix, then A and XT AX have the same number of 
positive eigenvalues as well as the same number of negative eigenvalues, 
and equally many that are O. 

If X is determined such that XT (J - tI)X is a diagonal matrix Q, the 
number of positive eigenvalues of J - tI can thus be read off from the 
diagonal of Q and one knows, then, how many eigenvalues of J are 
greater than t. By carrying this out for different, suitably selected t, the 
eigenvalues of J can be estimated accurately. 
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We put: 

d l el 0 1 Xl o 
el d 2 e2 1 X2 

e2 d3 e3 
X-l -J= , -

0 0 1 

XT(J - tI)X = Q = diag (ql,q2' . .. , q,,). (45) 

Then we want the following to hold: 

I 0 ql 0 1 Xl 0 

Xl I q2 1 X2 

J-tI= X2 1 q3 . 
1 X,,-l 

0 X,,-l 1 0 q" 0 1 

From this, there follow the equations 

in general: 

with X 0 = 0, q 0 = 1. One can now eliminate the Xk and finds: 
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(46) 

with qo = 1, eo = O. (If a denominator qk-l becomes 0 in this iteration, 
replace it, for example, by 10-100 .) If now m = m(t) of the values 
q 1 ,q2, ... ,qn in (46) become positive, then m eigenvalues of J - tI are 
positive, thus m eigenvalues of J lie above t. 

Example. For the matrix 

J= 

1 
1 

1 0 
3 2 
253 

037 

(47) 

and t = 0,1, ... , 10 we obtain the results summarized in Table 12.1. 
One can see, for example, that the interval [1,2] contains the second­
smallest eigenvalue of J. In order to localize it more accurately, one 
computes m(t) for a sequence of further values of t, selected according to 
the bisection method; see Table 12.2. 

Table 12.1. Rough localization of the eigenvalues of the 
matrix (47) 

t ql q2 q3 q4 m 

0 1.000000 2.000000 3.000000 4.000000 4 
1 10-100 -10 100 4.000000 3.750000 3 
2 -1.000000 2.000000 1.000000 -4.000000 2 
3 -2.000000 .500000 -6.000000 5.500000 2 
4 -3.000000 -.666667 7.000000 1.714286 2 
5 -4.000000 -1.750000 2.285714 -1.937500 1 
6 -5.000000 -2.800000 .428571 -20.000000 1 
7 -6.000000 -3.833333 -.956522 9.409090 1 
8 -7.000000 -4.857143 -2.176471 3.135135 1 
9 -8.000000 -5.875000 -3.319149 .711538 1 
10 -9.000000 -6.888889 -4.419355 -.963504 0 
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In this way, through nesting of intervals, the eigenvalues of a sym­
metric tridiagonal matrix can be localized systematically and in a com­
pletely foolproof manner. It can even be shown that m (t) also in numeri­
cal computation (that is, in the presence of rounding errors) cannot 
increase when t increases. 

Initially, in practice, one begins with determining 

a = min (dj - I ej I - I ej-l I), b = max (dj + I ej I + I ej-l I). 
l:::;j:::;n l:::;j:::;n 

According to the theorem of Gershgorin (1) all eigenvalues then 

Table 12.2. Determination of the second-smallest eigenvalue 
of the matrix (47) with the bisection method 

t ql q2 q3 q4 m 

1.5 -.500000 3.500000 2.357143 1.681818 3 
1.75 -.750000 2.583333 1.701613 -.039100 2 
1.625 -.625000 2.975000 2.030462 .942511 3 
1.6875 -.687500 2.767045 1.866915 .491712 3 
1.71875 -.718750 2.672554 1.784555 .237975 3 
1.734375 -.734375 2.627327 1.743165 .102603 3 
1.7421875 -.742187 2.605181 1.722410 .032577 3 
1.74609375 -.746094 2.594220 1.712017 -.003050 2 
1.744140625 -.744141 2.599691 1.717215 .014816 3 

lie in the interval [a,b], thus m(a) = n, m(b) = O. In order to compute a 
specific eigenvalue, say the pth one (from above), one immediately 
applies the bisection method to the function m (t) - p + .5e): 

for t := (a + b)/2 while b '" t /\ a '" t do 
if m(t) ~p then a:= t else b := r, 

Here, m (t) must be declared as an integer procedure; it carries out the 
recursion (46) and computes m. 

1 Gershgorin S.: tiber die Abgrenzung der Eigenwerte einer Matrix, Bull. Acad. Sci. 
USSR Cl. Sci. Math. Nat. 6, 749-754 (1931). (Editors' remark) 
2 Note that the machine-independent stopping criterion used here leads automatically to 
the maximum attainable accuracy. (Editors'remark) 
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Notes to Chapter 12 

Careful implementation of some of the techniques described in this chapter appear 
in Wilkinson & Reinsch [1971, Part II]. This handbook eventually led to the widely used, 
and easily accessible, collection of Fortran routines called EISP ACK. The original guide 
to this package (see Smith et al. [1976]) addresses the solution of "small" eigenvalue 
problems, that is, problems whose matrix can easily be stored in the fast memory of the 
user's computer system. It further emphasizes problems with dense matrices. These are 
matrices that do not have such a small number of nonzero entries that it would be 
worthwhile to exploit their sparsity. (See the notes to §§12.6-12.8 for a discussion of 
sparse matrices.) The eigenvalue problem for symmetric band matrices, the generalized 
eigenvalue problem (cf. Eq. (2) of §12.1) and the singular value decomposition, are dealt 
with in the EISPACK extension, see Garbow et al. [1977]. 

§ 12.2 Additional information about the location of eigenvalues of a symmetric 
matrix A can be had from knowledge of eigenValues of neighboring (symmetric) matrices 
B, as well as from the eigenvalues of leading principal submatrices of A. For results along 
these lines, see Parlett [1980, Ch. 10]. A typical use of such results is in devising termi­
nation criteria for iterative methods for computing eigenvalues. A recent monograph on 
perturbation theory is Bhatia [1987], which addresses not only symmetric, but also normal 
- and even arbitrary - matrices. 

§12.5 Quadratic convergence of the cyclic Jacobi method was first proved by Hen­
rici [1958]. Refined (quadratic) convergence estimates were subsequently obtained by 
Schonhage [1961], who also showed that the classical Jacobi method (cf. §12.3) still con­
verges "quadratically" (suitably defined!) if multiple eigenvalues are present, as long as 
they do not have multiplicities exceeding 2. The general cyclic Jacobi method consists of 
sweeps in which all off-diagonal elements are annihilated exactly once in some fixed, but 
otherwise arbitrary, order. Wilkinson [1962] has established quadratic convergence also 
for this version of Jacobi's method and showed that multiple eigenValues improve conver­
gence rates rather than reducing them. 

§12.6-12.8 The advantage of the LR transformation of preserving the shape of 
banded matrices is shared by QR transformations in which at each stage the matrix Ak is 
decomposed into a product QkRk of an orthogonal matrix Qk and an upper triangular 
matrix Rk, whereupon Ak+! = RkQk = QJAkQk. The superdiagonal (i,})-element of Ak then 
converges to zero like ('A/Ad (j > i) as k ~ 00. This can be speeded up by suitable 
shifts, in the same way as described in §12.7 for the LR method. In the case of tridiagonal 
(symmetric) matrices, shift strategies have been designed that lead not only to guaranteed 
convergence, but indeed to extremely fast convergence - faster than cubic, in general! 
See Parlett [1980, Ch. 8] for a nice treatment of these techniques. Some applications 
favor the use of lower triangular matrices, Lk , in place of the Rk , giving rise to QL 
transformations. 

Band matrices are an example of sparse matrices, i.e., matrices in which the 
number of nonzero elements is small compared to the total number of elements. While 
band matrices exhibit a regular pattern of sparsity, there sometimes occur sparse matrices 
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whose pattern of nonzero elements is quite irregular. In such cases, none of the methods 
discussed here would be particularly suitable, since the similarity transformations 
employed would ruin sparsity. On the other hand, one is less likely to be interested in all 
eigenValues, in such cases, but only in some, usually a few of the absolutely largest or 
smallest. This is particularly so for matrices of very large order. It is natural, then, to 
look for methods that make use only of matrix-times-vector operations Av, where A is the 
given (sparse) matrix and v an arbitrary vector. In this way, the sparsity pattern of A -
however irregular - can be taken into account by an efficient programming of these matrix 
operations. A prototype of such a method is the power method (called v. Mises-Geiringer 
iteration in §13.2 of Chapter 13) in which one keeps multiplying an arbitrary initial vector 
by the matrix A. This method usually converges (often rather slowly!) to the absolutely 
largest eigenvalue and associated eigenvector. There are variants of this method that use 
not one, but several, vectors - for example, Rutishauser's own simultaneous iteration 
method - that can be successfully used to compute several of the largest eigenvalues and 
corresponding eigenvectors. An elegant implementation of this method is the algorithm 
ritzit in Wilkinson & Reinsch [1971, Contribution II/9], not included, incidentally, in 
EISPACK. 

Another method is Lanczos's algorithm. In principle, Lanczos's techniques are 
more efficient than simultaneous iterations, but it is not easy to implement them so that 
their promise is realized. In the early 1950's the Lanczos algorithm was viewed as a tech­
nique for reducing a matrix to tridiagonal form. In 1971(72, C.C. Paige showed that it is 
better to terminate the algorithm early and obtain approximations to a few of the larger 
eigenvalues. The algorithm is described in Wikinson [1965], but is analyzed more 
thoroughly in Parlett [1980, Ch. 13], Golub & Van Loan [1989], and Cullum & Wil­
loughby [1985]. The latter work includes a program. 

§ 12.9 The method of inverse iteration (proposed by H. Wielandt) is often used in 
conjunction with the bisection method in order to compute the eigenvector associated with 
a just computed eigenvalue. For descriptions, the reader may consult Wilkinson [1965], 
Stewart [1973], and Parlett [1980]. The method of bisection is attractive for any matrix 
with a small bandwidth, not just for tridiagonal matrices. 
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CHAPTER 13 

The Eigenvalue Problem For Arbitrary Matrices 

§ 13.1. Susceptibility to errors 

The determination of the eigenvalues of nonsymmetric matrices is 
much more difficult, if for no other reason than the fact that for such 
matrices a concept analogous to the quadratic form is missing, and conse­
quently, there are no extremal properties either. In accordance with these 
facts, the statement that eigenvalues are changed only a little by small 
perturbations in the matrix elements is also no longer valid. 

Example. The matrix 

0 1 0 0 0 
0 0 1 0 0 

A= 0 0 0 1 0 
0 0 0 0 1 

0 0 0 0 0 

has the eigenvalues Al = ~ = A3 = A4 = As = O. A small perturbation 
gives rise to the matrix 

0 1 0 0 0 
0 0 1 0 0 

B= 0 0 0 1 0 

0 0 0 0 1 
10-5 0 0 0 0 
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for which, 

10000 1000 
1000 100 

B 100 = 10 
10 1 

1 .1 

hence A = .1 is an eigenvalue. 

This susceptibility to perturbations, however, occurs not only for 
multiple eigenvalues, which by their very nature, as we know, lead to a 
dangerous situation, but also for distinctly separated eigenvalues. It turns 
out that such a situation occurs also when for two eigenvalues Al "# A2 the 
angle between the corresponding eigenvectors Xl, x2 is small. 

To prove this, we consider a matrix A with n pairwise distinct 
eigenvalues AI, ... , An' with eigenvectors Xl, ... , Xn , and further with 
eigenvectors Yl, ... , Yn of AT, assuming II Xi I 12 = 1, but xT Yj = (jij' 

and thus I I Yi I 12 ~ 1. (Such a normalization is possible.) Perturbation of 
A by (a matrix) !1 has the effect that Al and Xl are perturbed by quantities 
11 and S, respectively: 

(1) 

Using AXI = AIXI, and neglecting all quantities which are small of 
second order, we obtain 

Left-multiplication by yi, on account of 

yields 
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that is, 

(2) 

Furthermore, from yiXI = 1, yixz = 0, there first follows yi (xl - xz) = 
1, and from this, 

Ilylll ~ 
1 1 

(3) = 
Ilxl - xzll -V2 - 2xi Xz 

showing that I I yll I is very large when Xl and Xz are nearly parallel. It 
then follows from (2) that J..l may exceed the norm of the perturbation 
matrix .6. by a large amount (namely by the factor I I YI I I). 

Example. If the eigenvalues of the matrix 

12 11 10 9 8 7 6 5 4 3 2 1 

11 11 10 9 8 7 6 5 4 3 2 1 
10 10 9 8 7 6 5 4 3 2 1 

9 9 8 7 6 5 4 3 2 1 

8 8 7 6 5 4 3 2 1 

7 7 6 5 4 3 2 1 

6 6 5 4 3 2 1 

5 5 4 3 2 1 

0 4 4 3 2 1 

3 3 2 1 

2 2 1 
1 1 

are computed on a machine with a 60 bit mantissa, one obtains for the 
two smallest of them (rounded to 6 digits after the decimal point): 
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All = .049689, A12 = .030945 . 

For the corresponding eigenvectors 

0 0 
0 0 

0 0 
0 -.000004 

.000014 .000045 

-.000218 -.000433 
XlI = .002207 ' X12 = .003324 

-.015922 -.020117 

.082412 .092891 
-.294454 -.308605 

.655782 .658624 

-.690071 -.679656 

one has 

XEX12 = .999777. 

Therefore, in computations with a shorter mantissa, one immediately 
obtains relatively large errors for these two eigenvalues, the bound on the 
right in (3) being 47.35. 

§ 13.2. Simple vector iteration 

A" well established" method for dealing with the eigenvalue prob­
lem Ax = AX is the "simple" or v. Mises-Geiringer vector iteration: 
Starting with a vector xo, one constructs iteratively a sequence xl, X2, ... 
according to 
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Then, evidently, 

(4) 

although the iteration vectors are usually not fonned by means of the 
powers Ak. 

Consider now the generating function 

00 

x(z) = L z-(k+I)Xk (5) 
k=O 

of the vector sequence Xo, Xl, X2, .... This is a vector-valued function 
of the complex variable z. It must first be examined, for which z this 
series converges. If I I A I I = r, then I I xk I I ~ r I I xk-l I I, hence 
I I xk I I ~ rk I I Xo I I, so that the series converges for I z I > r and 
represents there a vector-valued analytic function. One is justified, there­
fore, in even writing 

L z-(k+l) Ak is the so-called Neumann series, which also converges for 
I z I > r and represents there the matrix (zI - Arl. Thus, 

(6) 

Now (zI - A)-IXQ is a vector-valued rational function of z, which 
vanishes for z ~ 00, and whose poles are obviously just the eigenvalues 
of A. Moreover, the denominator of this rational function is a polynomial 
(1) of degree m ~ n (n = order of the matrix A), since there certainly exist 

1 If Xo is in general position relative to a normal basis for A (i.e., has only nonzero 
coefficients in this basis), this polynomial is called minimal polynomial. (A normal basis 
is a basis with respect to which the linear operator defined by the matrix A assumes the 
Jordan normal form.) If A has an eigenvalue to which there belong several linearly in­
dependent eigenvectors (several "boxes" in the Jordan normal form), then m <no (Edi­
tors' remark) 
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m + 1::; n + 1 constants ao, al, ... , am such that am = 1 and 
a ° Xo + a 1 xI + ... + am Xm = O. Multiplication of this relation by Ak 
yields 

There follows 

00 

(ao + al z + ... + amzm)x(z) = L z-(k+l)(aOxk + ... + amXk+m) 
k=O 

+ y(z) = y(z), 

where y(z) is a polynomial in z of degree < m in which all terms with 
nonnegative powers of z are collected. Consequently, 

(7) 

For this rational function, however, we have an expansion in partial 
fractions, which in the case of simple eigenvalues has the form 

m 1 
x(z) = L Cj. 

j=1 Z - Aj 
(8) 

On the other hand, if for example Al = '"A.z = A3 is a triple pole CZ), then 
the three terms for j = 1, 2, 3 are replaced by the combination 

2 For the Jordan normal form of A this means: The largest of the "boxes" with eigen­
value Al has dimension 3. (Editors'remark) 
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Expanding the right-hand side of (8) in descending powers of z, one 
obtains 

m 1 m 00 A~ 00 1 m 

L Z _ Aj Cj = L Cj L k~1 = L k+1 L CjAj, 
j=1 j=1 k=O Z k=O Z j=1 

so that, by a comparison of coefficients, there follows 

m 

xk = L CjAj 
j=1 

(9) 

(with fixed vectors Cj not depending on k). In the case Al = ~ = A3' on 
the other hand, since 

one gets 

'I k k ''I k-l [k] "'I k-2 ~ 'I k 
xk = Cll'.l + Cll'.l + 2 Cll'.l + !-,Cjl'.j' 

J=4 

(10) 

If now 1 All> 1 ~ 1 ~ 1 ~ 1 ~ ... , thus, Al is a simple dominant 
eigenvalue, then in the relation 

(11) 

derived from (9), the sum converges to 0 as k ~ 00, that is, xk converges 
in direction toward cl, the convergence in fact being linear with conver­
gence factor 1 A2!Al I. But what is the meaning of Cl? By (6), 

Ax(z) = zx(z) - xo. 
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Here we substitute for x(z) the partial fraction expansion (8): 

m 1 m z m m A· 
L A ACj = - Xo + L z _ A' Cj = - Xo + L Cj + L J A Cj' 
j=l z - j j=l J j=l j=l Z - j 

m 1 m 
L A (Acj - AjCj) = L Cj - Xo· 
j=l Z - j j=l 

It follows that the right-hand side must be 0, since it is constant, and the 
left-hand side tends to 0 as Z ~ 00. But for a rational function which is 
identically zero, also the residues must vanish: 

The Cj are thus eigenvectors. Hence: 

Theorem 13.1. The sequence of iteration vectors Xk generated by 
(4) converges in direction to an eigenvector cl belonging to the eigen­
value Al of A of maximum modulus, as k ~ 00, provided Al is a simple 
dominant eigenvalue e). 

If, on the other hand, there are three eigenvalues of maximum 
modulus, which either coincide (4) or merely have the same absolute 
value, then according to (10) one has, up to terms of order O((A4!A.l)k), as 
k ~oo, 

or else, according to (11), 

1 II 
-Cl At (12) 

3 It must be assumed, more precisely, that Xo is not orthogonal to the eigenvector of AT 
belonging to AI' In practice, however, rounding errors may produce convergence (in 
direction) to CI even in such a case of orthogonality. 
4 More precisely: if Al = ~ = ~ and one has the situation described in footnote e). (Ed­
itors'remark) 
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(13) 

that is, the Xk lie in the three-dimensional subspace (5) spanned by Cl, ci, 

ci' and Cl, C2, C3, respectively. Four successive vectors Xko Xk+l' Xk+2' 

Xk+3, therefore, are practically linearly dependent when k is large. This 
can be recognized by orthonormalizing these vectors from left to right. 
The linear dependence then manifests itself in a collapse of the length of a 
vector during orthonormalization. In the case of three eigenvalues with 
equal moduli, this will happen with Xk+3, in case of a simple dominant 
eigenvalue, however, already with Xk+l' 

As a first by-product of such a collapse during the orthogonalization 
of xk+p' one obtains the solution of the minimum problem 

min Ilxk+p + ap-lxk+p-l + ... + alxk+l + aoxkl12' (14) 
a o,· .. , Qp-l 

where the minimum is noticeably small. Now, from 

p 

L ajXk+j = 0 
j=O 

(with ap = 1) there would follow 

p . 
L ajJ.."J = 0, e = 1, ... , p, 
j=O 

(15) 

as is seen immediately by substituting (12) or (13) and recalling the linear 
independence of Cl, c2, c3, ... and Cl, ci, ci/ , ... , respectively. One 
thus has an algebraic equation whose roots are the p eigenvalues of A of 
maximum modulus (6). 

5 One can show that the m vectors c y) (k = 0, ... ,m j - I, L m j = m) occurring in the 
partial fraction expansion of x(z) are linearly independent, if Xo is in general position rela­
tive to a normal basis. (Editors' remark). 
6 These roots occur here with the same multiplicity as in the minimal polynomial of A. 
The multiplicity in the characteristic polynomial (i.e., as eigenvalue) can be larger. (Edi­
tors' remark) 



§ 13.2. Simple vector iteration 449 

Secondly, the orthonormalization process produces an orthonormal 
system of p vectors YI, ... , Yp which approximately (with a deviation of 
O«Ap+IAp)k) span the same subspace as the eigenvectors CI, ... , cpo If 
we now succeed in transforming these vectors Ylt ... , Yp by means of an 
orthogonal transformation into the first p coordinate vectors, and if B 
denotes the matrix which in the new system defines the same linear 
transformation as A does in the old system, then the subspace spanned by 
el, ... , ep is nearly invariant under B. The matrix B thus has the form 

(16) 

where B 1 is a p x p-matrix whose eigenvalues are the p eigenvalues of A 
of maximum modulus and B4 is a (n-p) x p-matrix with small elements 
C), so that B practically decomposes into Bl and B3 (B3 has "normal" 
elements). Since (15) yields the eigenvalues of B1, our problem is thus 
reduced to the one of determining the eigenvalues of B3 . 

But how does one transform YI, ... , Yp into el,"" ep? A 
sequence of Jacobi rotations (cf. § 12.3, Eq. (17» 

U(n - l,n, <Pn), U(n - 2,n - 1,<Pn-I), ... , U(1,2,<P2) 

allows us to annihilate in succession the nth, (n - 1)st , ... , 2nd com­
ponent of Yl. For example, with s = sin <Pn, C = cos <Pn, one has 

1 0 Yll Yll 

1 Yl2 Yl2 

= 
1 

C -s * 
o s C YIn 0 

7 In another manuscript of the author it is shown that (in exact arithmetic) the submatrix 
B4 has nonzero elements only in its last column. (Editors' remark) 
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provided cy In + sy l,n-1 = 0, that is, cot <l>n = - Y l,n-t!y In' In this way, 
finally, 

and at the same time, 

o 
* 

* 

, 
= Yj, 

since the orthogonality of the Yj is not destroyed by the rotations. Furth­
ermore, with suitable <1>; U = 3, ... , n), one achieves 

These rotations no longer affect el' The process can evidently be contin­
ued until finally 

During each rotation, the matrix A participates in the transformation, 
that is, each time one forms UTU - l,j,<I>5k»)AUU - I,j,<I>jk»). In this 
manner one obtains, at the end, the form (16). 

Examples. 1) For the matrix 

1 

2 

3 

with the eigenvalues Al = 5.28799 ... , A2 = -1.42107 ... , A3 = 
.13307 ... , one expects relatively good convergence. With Xo = [l,I,If 
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one gets 

Xl = [ ! ], x2 = [ ~~ ], x3 = [ 1:~ ] , [ 
514] 

X4 = 871 , 
10 46 253 1324 

[ 
2709] [ 14338] 

Xs = 4608 ,Xl) = 24364 . 
7021 37099 

Orthogonalizing X6 relative to Xs yields A.I = 5.285733 as solution of 

min I I X6 - A.Xs I I 
A. 

and (in 7-digit computation) 

[ 
18.95] 

X6 - A.IXS = 7.34, 
-12.13 

451 

which, in comparison with I I Xl) I I = 46642.46, is very small. The 
predicted collapse of the length of X6 during orthogonalization thus 
materialized. 

2) The matrix 

A= [ ~ 
-1 

-1 

9 
I 

-~] , 
10 

on the other hand, has two dominant eigenvalues, which are conjugate to 
one another: 

A.12 = 9.3932451. .. ± i .8693946 ... , A.3 = .2135098 .... 

One expects, therefore, that linear dependence occurs only between three 
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consecutive iteration vectors. 

Starting again with Xo = [l,l,lf, one obtains here 

Xl = [ ~], X2 = [ 7~]' X3 = [ 5~~]' 
10 109 1160 

[ 
629] 

X4 = 3657, 
12093 

[ 
8436] [ 102509] 

Xs = 21449, X6 = 77519. 
123958 1252593 

To be orthogonalized are now X4, Xs, X6 (cf. §§5.3, 5.4): 

rll = IIx411 = 12649.50, 

1 
YI = - x4 = [.04972529, .2891023, .9560062f, 

rll 

r12 = (YI,XS) = 125125.0, 

Xs - r12YI = [2214.123, -14724.93, 4337.700f, 

r22 = Ilxs - rl2yl ll = 15509.40, 

1 T 
Y2 = - (xs - r12Yl) = [.1427601, -.9494197, .2796820] , 

r22 

X6 - r13Yl = [41595.77, -276629.9, 81490.00f, 

r23 = (Y2,X6 - r13Yl) = 291363.8, 

X6 - r13YI - r23Y2 = [.64, -3.40, .79f, 
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As expected, X6 has been shortened drastically during orthogonalization. 
Thus, p = 2, and to obtain the coefficients ao and al in (14), it follows 
from 

X4 = 'l1Yl, Xs = '12Yl + '22Y2, 

x6 - '13Yl - '23Y2 = x6 + alxS + aOx4 

= x6 + (aO'l1 + al'12)Yl + al'22Y2 

that one needs only to solve the system of equations 

0= '11 
0= 0 

1 

(The value of the minimum in (14) is equal to '33.) One finds 

aO = 88.98668, al = -18.78627. 

(17) 

The approximations for the dominant eigenvalues are finally obtained as 
roots of the equation (15), which in this case is quadratic, and one finds 

1..1,2 = 9.393135 ± .8693043i. 

If now Yl is transformed into el, by first multiplying by 

and then by 

o 
.2894603 

-.9571900 
.957~900 l' 
.2894603 

[ 
.0497253 

vi = -.99~7629 
.9987629 

.0497253 

o 
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Y2 changes into Y2 = [0,-.1429367, .9897318f and A into 

[ 
9.8916928 

uiufAUIU2= -.1752530 
1.2134986 

1.1602063 

. 0245189 

1.3086107 

-.6600471] 
-1.2810561 . 

9.0837869 

It remains to transform Y2 into e2 through multiplication by 

o 
.1429367 

.9897318 
-.98~7318]. 

.1429367 

This finally transforms A into 

[ 
9.9816928 

B = -1.22~0882 

.8191056 

8.8947992 

.0000134 

1.0539480 ] 
-2.5896532 . 

.2135060 

(18) 

Here one can read off directly an approximation to the third eigenvalue: 

~ = .2135060. 

Refinement. Once A, by Jacobi rotations as described above, has 
been brought to the form (16) (where B4 has only small elements), one 
can follow up with an additional transformation with a nonorthogonal 
matrix of the form 

T - [0 ~ 0 : 0 <? oj with '11 - [ 0 ~ 0: 0 <? oj (19) - X 0 I' - -X 0 I . 
o 0 

Then, 
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In order that the submatrix at the lower left becomes the zero 
matrix, one must have, in first approximation, 

(20) 

since X can be expected to also have only small elements. In this way, 
one obtains for the p (n - p) unknown elements of the matrix X the same 
number of linear equations: 

b&4) = f Xjtb8) - i: blf)xkj (i =p + 1, ... , n; j = 1, ... , p). 
t = 1 k =p+l 

By means of the Kronecker symbol, one can write these also in the fonn 

n 
b&4) = L 

k=p+l 
f (<>ikb8) - blf)<>tj)xkt 

t = 1 

(i = p + 1, ... , n; j = 1, ... ,p). 

This system, with coefficient matrix 

M = [mijktl, where mjjkt = <>ikb8) - blf)&'j 

(i,k = p + 1, ... , n; j,e = 1, ... ,p), 

(21) 

(22) 

is often very large; for example, when n = 50, p = 4, it already contains 
184 equations. 

Nevertheless, under certain simple conditions, which are usually 
satisfied in practice, M is nonsingular; in fact, the following theorem 
holds, which we state without proof: 

Theorem 13.2. If in the matrix B of the form (16) the eigenvalue of 
Bl of smallest modulus is still greater than the eigenvalue of B3 of larg­
est modulus, then the matrix M defined by (22) is nonsingular. In addi­
tion, the solution X of (20) (and (21)) can also be found by means of the 
iteration 
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Example. We apply this refinement to (18). Then n = 3, p = 2, so 
that the system (21) consists of p (n - p) = 2 equations: 

0= 9.67818 
0= 0.81911 

The solution is: 

-1.22609 
8.68129 

1 

o 
0.0000134 

Xl = 1.93210-7, X2 = 15.25310-7, 

so that B has yet to be transformed by 

[ 
1 

T= 0 
1.93210-7 

which leads to 

[ 
9.8916930 

T-I BT = -1.2260887 

-1.210-9 

o 
1 

15.25310-7 

.8191072 
8.8947953 

-1.610-9 

1.05394801 
-2.5896532 . 

.2135097 

From this matrix one reads off the improved approximation ~ = 
.2135097. 
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Notes to Chapter 13 
Great progress has been made in the treatment of small-order matrices since this 

chapter was written. The approach that turned out to be successful avoids trying to obtain 
the Jordan canonical form. It also avoids computation of the eigenvalues, one by one, 
using modifications of the simple iteration described in § 13.2. Instead, it basically relies 
on Schur's lemma: Every square complex matrix is unitarily similar to an upper triangular 
matrix, A = PSpH, ppH = I. The method has two phases, i) reduction to upper Hessen­
berg form H (hjj = 0 if i > j + 1) by a finite sequence of Householder transformations (as 
described in §12.8 of Chapter 12), ii) reduction of H to upper triangular form S by a 
sequence of elementary unitary matrices. For more information, see Stewart [1973] or 
Wilkinson [1965]. Phase ii) uses QR transformations (see notes to §§12.6-12.8 of 
Chapter 12). In principle, phase ii) requires infinitely many transformations, but in prac­
tice, for a matrix of order n, it requires fewer than 2n QR transformations to reduce H to 

S. 

The search for reliable methods to extract a few eigenValues from a large, sparse, 
nonsymmetric matrix goes on. See Parlett [1984] and Saad [1989] for recent surveys. 
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APPENDIX 

An Axiomatic Theory of Numerical Computation 
with an Application to the 

Quotient-Difference Algorithm 



Editor's Foreword 

H. Rutishauser occupied himself with the topic of this appendix 
already in 1968 (report [21] in the bibliography to the appendix) and dis­
cussed part of this material in a course held during the spring semester of 
1969. Later, however, the content and text were revised by Rutishauser 
and significantly extended. He also intended to present the very interest­
ing third chapter on "Finite Arithmetic" at a meeting in Oberwolfach 
which took place in November, 1970, shortly after his death. It is not 
known, however, in which fonn he wanted to publish the whole work, 
which does not require for the reader to have any extensive previous 
knowledge, but which exceeds the usual length of a journal article. What 
is certain is only that the work remained unfinished. At least seven 
chapters were contemplated, but the manuscript breaks off in the fifth, 
entitled "Forcing Coincidence". Fortunately, the text nevertheless is 
fairly well rounded. It contains in the first two chapters an introduction to 
the qd-algorithm in a partly novel exposition. The third chapter, as 
already mentioned, gives an axiomatic approach to numerical computa­
tion. The principal goal is not an examination of completeness and 
independence of the axiomatic system, but rather the possibility of prov­
ing for an algorithm that it never fails in spite of the presence of rounding 
errors. The discussions of the qd-algorithm and its stationary fonn in the 
fourth and fifth chapters then also point into the same direction. 

The text of the appendix agrees over long stretches word for word 
with the handwritten manuscript of H. Rutishauser. In a few places, how­
ever, theorems and proofs were fonnulated a bit more accurately and with 
more details. A larger reorganization was necessary only in the third 
chapter, where the statements now contained in Theorems A13, A14 and 
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A16 have been regrouped. The editors, in addition, prepared the bibliog­
raphy and inserted the references thereto (which were left open in the 
manuscript). 

Vancouver, B.C., February, 1976 M. Gutknecht 



CHAPTER Al 

Introduction 

§A1.1. The eigenvalues ofa qd-row 

An important area of application of the qd-algorithm(l) is the com­
putation of the eigenvalues of a tridiagonal matrix. By a trivial (diagonal) 
similarity transformation, such a matrix almost always can be brought into 
the form 

ql -ql 0 

-el q2 + el -q2 

-e2 q3 + e2 -q3 

A= (1) 

-qn-l 

0 -en-l qn + en-l 

in which only 2n-1 independent quantities occur. These are collected in 
a qd-row 

1 The quotient-difference algorithm (briefly qd-algorithm) in principle is a computational 
method for the determination of the poles of a meromorphic function, but has many other 
applications. It is due to H. Rutishauser [8-12]. (The report [14], among other things, 
contains [8-11] in partly revised form. [21] represents a precursor of the unfinished work 
printed here.) (Editors'remark) 
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(2) 

By the eigenvalues of Z one means the eigenvalues of the matrix A asso­
ciated with (2) according to (1). This tenninology suggests itself very 
naturally, since the computation of the eigenvalues is accomplished 
exclusively with the help of data structures of the fonn (2). 

The present work deals with the computation of the eigenvalues of a 
qd-row (2), particular attention being paid to the sequential reliability of 
the numerical process (that is, the process contaminated by rounding 
errors). It is possible to prove in an important special case that the com­
putational process, even when perturbed by rounding errors, must run its 
course without any mishaps, and must furnish approximately the correct 
eigenvalues. 

§A1.2. The progressive form of the qd-algorithm 

The detennination of the eigenvalues AI, ... , An of a qd-row (2) is 
effected in principle by means of an iterative process which consists of 
infinitely many steps of the following kind: A progressive qd-step is 
defined by the following computational algorithmct): 

comment it is assumed that en = 0; 
qi := qI + eI; 
for k := 2 step 1 until n do 
begin 

ek-I := (ek-tlqk-I) x qk; 
qk := (qk - ek-I) + ek; 

end for k; 

(3) 

Provided that these operations are executable (which presupposes qi, 
qz, ... , q~-I "* 0), (3) produces a new qd-row Z' = {qi,ei,qz, ... , q~}, 
which is expressed symbolically by 

1 Computational algorithms are given as pieces of ALGOL programs in which declara­
tions and input and output operations are omitted, and indices, etc. are written in a fonn 
not permissible in ALGOL. Lower indices are true indices, while upper indices, primes, 
asterisks, etc. distinguish quantities which during the computation are stored in the same 
register. (Editors' remark) 
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o 
Z ------'> Z', (4) 

the number 0 indicating that one is dealing with a qd-step without shift. 
It is to be noted that the type of parenthesizing prescribed in (3) is of cru­
cial importance for the numerical execution (see Ch. A4). 

The matrix associated with the row Z' is 

I I 
ql -ql o 

-ei q2 + ei I 
-q2 

q3 + e2 
A'= 

I 

-qn-l 

o 

On the basis of the rhombus rules q" + e"-1 = qk + eko q"e" = qk+l eko 
which follow from (3), it transpires that A' is diagonally similare) to the 
matrix 

ql + el -q2 o 
-el q2 + e2 

B= (5) 

o 

2 The diagonal matrix D with B = D-1 A'D has the diagonal elements d l = I, 
'-1 '-1 

d. = IT e;/e; = IT q;+l/q; (k = 2, ... ,n). (Editors' remark) 
i=1 i=l 
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which in tum is similar to A in (1), because A = XV, B = YX with 

qI ° 1 -1 ° -el q2 1 -1 
-e2 q3 1 -1 

X= , Y= 

-1 

° -en-I qn ° 1 

We thus have: 

Theorem AI. If the operations (3) are executable, then Z and Z' 
have the same eigenvalues. 

The computational process (4) is now continued iteratively: 

000 
Z ~ Z'; Z' ~ Z"; Z" ~ Z'" ; ... , 

which produces an infinite sequence of qd-rows, all having the same 
eigenvalues, for which under certain conditions 

. (j) -lIm Z - {AI, 0, ~, 0, ~, 0, ... , 0, An}, 
j-')OO 

(6) 

that is, the qk-values tend to the eigenvalues Ak as the iteration progresses 
(see [14], Ch. I)e). 

3 A detailed convergence proof is given in [4], §7.6. [21] contains a simple convergence 
proof for the special case of positive qd-rows (cf. §A1.4). (Editors'remark) 
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§A1.3. The generating function of a qd-row 

One associates with the qd-row (2) as generating function the finite 
continued fraction 

J (z) = _1_ J..2.....:!... q2 e2 
z- 1- z- 1- z- z- 1 

(7) 

(see [14, 20]). (7) represents a rational function with a denominator of 
degree n; its poles are also the eigenvalues of (2). The qd-algorithm 
therefore also permits the calculation of the poles of a rational function; if 
they are simple, one can in this way even compute the residues(l). 

Between the generating function J (z) of Z and J'(z) of Z' there 
holds the relatione) 

J'(z) = zJ(z) - 1 , 
ql 

which was used in [22] to prove the convergence of the qd-algorithm. 

§AI.4. Positive qd-rows 

(8) 

The computational algorithm (3), and hence also its iterative con­
tinuation, is numerically endangered because of the possibility of one of 
the denominators qk-l vanishing or almost vanishing. There exists, how­
ever, a special case in which this danger (even in numerical computation) 
does not arise, namely the case when all elements of the row Z are posi­
tive: 

Definition. A qd-row Z = {ql,el,q2, ... ,qn} is called positive 
(in symbols: Z > 0) if 

1 The author had the intention to describe this in a 7th chapter of this work. He dealt 
with this problem already briefly in [14], Ch. II, §1O, and in [22]. (Editors'remark) 
2 r here does not denote the derivative of f (Editors' remark) 
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qk > 0 (k = 1, ... , n), 

ek > 0 (k = 1, ... , n - 1). (9) 

One then has by [6], Ch. 9, Theorems 1 and 5: 

Theorem A2. The eigenvalues of a positive qd-row are all real, 
positive, and simple. 

Proof In the case of a positive qd-row the associated matrix (1) is 
diagonally similar to 

ql ~ 0 

~ q2 + el "'q2e2 

H= (10) 

"'qn-l en-l 

0 "'qn-l en-l qn + en-l 

(with all square roots positive), and this matrix admits a Cholesky decom­
position H = RTR with 

~ ~ 0 

~ ~ . 
R= (11) 

"'en-l 

0 ~ 
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where all qko ek are positive; q.e.d.(l) 

For positive rows one now obtains the following important fact: 

Theorem A3. If the qd-row Z is positive, then the qd-rows Z(j) 

generated from it by the progressive qd-algorithm, that is, by 

o 0 0 
Z ------> Z', Z' ------> Z", Z" ------> Z'" , . . . , 

are likewise positive, and one has unconditionally: 

. (j) -hm Z - P"l, 0, ~, 0, ... , An}, 
j~oo 

where Al > ~ > ... > An > ° are the eigenvalues of Z. 
Proof (a) By (3) and (9), 

qi = ql + el > e I > 0, 

ei = q2(edql) < q2, as well as ei > 0, 

qz = (q2 - el) + e2 > e2 > 0, 

ez = q3(e2/qZ) < q3, as well as ez > 0, 

Therefore, Z' > 0, and likewise Z" > 0, etc. 

b) For the convergence of 

lim li = tk and lim eY) = 0, 
j~oo j~oo 

see, for example, [21]. One has, moreover, tl > t2 > ... > tn. 

(12) 

(13) 

1 The eigenvalues are simple, since H is a symmetric tridiagonal matrix with nonzero side 
diagonal elements. Cf. Theorem 4.9 in [24]. (Editors'remark) 
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c) For sufficiently large j, the matrix HV) formed with the elements 
of ZV) in analogy to (10), differs from diag(t I , t 2 , ... , tn) by an arbi­
trarily small amount. Consequently, also the eigenvalues of HV), which 
by Theorem A 1 continue to be equal to AI, ~, ... , An' differ from t I , 
t 2 , ... , tn by as little as one likes, q.e.d. 

§A1.5. Speed of convergence of the qd-aJgorithm 

For practical computation, a convergence statement like (13), 
phrased in general terms, is not yet sufficient; rather, one ought to have 
some information concerning the speed of convergence. Now from (13) 
and the computational rule (3), however, it follows that the eY) converge 
to zero linearly as j ~ 00, more precisely: 

e f!> = 0 { [ A~+kl 1 j} ,.. "" (k = 1,2, ... , n - 1). (14) 

From this, and (3), one then also obtains the convergence behavior of the 
qY), 

(i) . {Ak+l Ak} 
q" - Ak = O(s'), with s = max ---;;:;-' Ak-l (15) 

(Here one has to put A.o = 00, An+l = 0.) 

The convergence of the qd-algorithm, therefore, can be very slow, 
namely if two eigenvalues Ap and Ap+l lie very close together. According 
to (15), though, convergence is then slow only for these two eigenvalues; 
for the remaining ones, it may still be fast. 

Example 1. Let Z = {9, 1, 1000, 1, 9}. We display the qd-rows Z, 
Z', Z", etc. in the form of a qd-scheme [14]: 
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Z """""-. 9 
Z' 1 

........... 10 1000 
Z" 100 1 

""- 110 901 9 
Z(3) 819.09091 .009989 

""- 929.09091 81.919079 8.990011 
Z(4) 72.220245 .001096 

""- 1001.3112 9.699931 8.988915 
Z(5) .699614 .001016 

""- 1002.0108 9.001332 8.987899 
.006285 .001014 

8.996062 8.986885 
Z(20) .001013 , 

1002.0171 8.985872 
<10-30 

9.010972 
Z(50) , .000972 

1002.0171 8.970946 
<10-90 

9.037557 
.000776 

8.944556 

(Here, Al = 1002.0171, Az = 9.087030, ~ = 8.895860.) 

In addition, one must observe that (14) and (15) are merely asymp-
totic statements. It may well take a long time, in certain cases, until they 
finally become effective, so that a very large number of qd-steps may be 
necessary, even if convergence eventually becomes quite fast. 

Example 2. Z = {l, .001,2, .001,4, .001, 8, .001, 16}. Since the 
eigenvalues here are approximately 16, 8, 4, 2, 1, the qd-algorithm ought 
to converge like a geometric series with ratio.5. In reality, however, one 
has: 
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z(10) = {1.580, .266,2.224, .821, 3.290, 1.408, 6.499, 1.286, 13.631}, 

Z(20) = {1O.196, 1.507, 9.643, .458, 4.383, .028, 2.026, .001, 1.000}, 

Z(30) = {15.989, 7 10-3,8.006,810-4,4.002,5 10-5,2.001,2 10-6, .999}. 

Only starting with Z(30), where the relative errors of the qk are less than 
10-3, does the law (15) apply; the errors in Z(40) , in fact, are less than 
10-6, those in Z(50) less than 10-9. 

§A1.6. The qd-aJgorithm with shifts 

To the extent that the slow convergence demonstrated in §A1.5 is 
caused by excessively large quotients Ak+lAk> there exists the possibility 
to influence these quotients (and with them the convergence) by a shift of 
the origin of the A-plane. 

Such a shift can be realized if one succeeds in transforming the rela­
tion (8) between the generating functions f and f' into 

f'(z -v) = zf(z) - 1 . 
ql 

(16) 

Then the poles of f', which, as we know, are also eigenvalues of Z', are 
indeed diminished by v, so that the further convergence behavior is deter­
mined by the quotients Ak+lAk = (Ak+l - V)/(Ak - v). 

The algorithm for the modified (in the sense of (16» qd-step (a pro­
gressive qd-step with shift v) is given by: 

comment it is assumed that en = 0; 
ql := (ql -v) + el; 
for k := 2 step 1 until n do 
begin 

ek-l := (ek-dqk-l) x qk; 
qk := «qk - ek-l) - v) + ek; 

end for k; 

(17) 
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We denote this process fOlTIlally by 

v 
Z -----7> Z', (18) 

where it is assumed, of course, that Z' exists, that is, no divisions by 0 
occur in (17). One then has: 

Theorem A4. The eigenvalues of the row Z' generated by 
v 

Z ---7 Z' are smaller than those of Z by the amount of the shift v. 

Proof With the row Z' is associated the matrix 

, 
-q2 

A'= 
, 

-qn-l 

-e~-l q~ + e~-l 

It can be transfolTIled by means of the computing rule (17), analogously 
as in §A1.2, into the similar matrix 

q2 + e2- v 

c= = B -vI, 

where B is the matrix (5), which is similar to A; q.e.d. 
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The effects of such shifts in the Example 1 of §A1.5 become quite 
8 .8 

The qd-scheme containing the chain Z ~ Z' ~ noticeable . 

. 09 0 0 0 
Z" ~ Z'" ~ Z(4) ~ •.. ~ Zm indeed is 

9 
1 

2 1000 
500 1 LVi 

501.2 493 9 
491.8196329 .0182556 0 

992.9296 .3986227 .9817444 
.1974465 .0449606 8 

993.1271 .1561368 .1367838 
.0000310 .0393878 8.8 

993.1271 .1954935 .0073961 
0 .0014901 8.89 

993.1271 .1969837 .0059059 
0 .0000447 8.89 

993.1271 .1970284 .0058612 
0 .0000013 8.89 

.1970297 .0058599 
0 8.89 

.0058599 
8.89 

(On the right are indicated the accumulated shifts.) 

By taking into account the shifts 8, .8, .09, one thus obtains the 
three eigenvalues 

Al = 1002.0171, ~ = 9.0870297, A3 = 8.8958599. 
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§Al.7. Deflation after the determination of an eigenvalue 

For the matrix A associated with a qd-row in accordance with (1), 
one clearly has 

1 0 
I 0 
1 

A = (19) 

Thus, when qn = 0, A is singular, that is: 

Theorem AS. A qd-row Z = {ql. el. q2, ... ,en-I, O} has 0 as an 
eigenvalue. 

If, therefore, by a sequence of qd-steps (with suitable choice of the 
shifts va, VI, ... ) 

Vo VI V2 

Z~Z'~Z"~Z"'~ ... , 

one succeeds in obtaining a row ZU) whose last element q y) = 0, then 0 
is an eigenvalue of ZU), and therefore, by Theorem A4, 

An =Vo +VI + ... +Vj-l (20) 

an eigenvalue of the given row Z. In practice, (20) of course holds only 
approximate! y. 

Example 3. For Z = {4, 3, 3, 2, 2, 1, I} one obtains with the shifts 
va = .3, VI = .02, V2 = .002, V3 = .000548 (in 6-digit computation) the 
following qd-scheme: 
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4 
3 

6.7 3 
l.343284 2 

8.023284 3.356716 2 
.561992 1.191641 

8.583276 
.259699 

8.842427 
.122144 

3.966365 
.453166 

4.157832 
.185085 

4.220255 
.066904 

1 
l.508539 1 

.662972 0 
l.698165 .037028 

.014456 .3 
1.525536 .002572 

.000024 .32 
l.458108 .000548 

o .322 
o 

.322548 

(The last two zeros, of course, are correct only within the computing pre­
cision.) 

Since the sum of the shifts is .322548, the eigenvalues Ak4) of Z(4) 

are smaller by this amount than those of Z; but according to Theorem A5, 
Ai4) = 0, hence A4 = .322548 (the exact value is .32254769 ... ). 

To determine further eigenvalues of Z(4), one exploits the fact that 
for a qd-row Zo = {ql, el, q2, ... , en-2, qn-l, 0, O} the associated 
matrix is 

ql -ql 

-el q2 + el -q2 

Ao = 

o 0 

Here, one eigenvalue is 0, while the remaining n - I eigenvalues obvi­
ously coincide with the eigenvalues of the reduced matrix 
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ql -ql 

-el q2 + el -q2 

-qn-2 

-en-2 qn-l + en-2 

This, however, is precisely the matrix associated with the qd-row 
Zl = {ql, el, q2, e2, ... , en-2, qn-l}; one thus has the following rule: 

Theorem A6. A qd-row of the form 

has the eigenvalue 0; the remaining n - 1 eigenvalues of Zo are the 
eigenvalues of 

Deleting the two zeros at the end of the qd-row ZO, that is, the tran­
sition from Z 0 to Z 1, is called deflation. 

Thus, in Example 3 one would obtain from 

Z64) = {8.842427, .122144, ... , 1.458108,0, O} 

by deflation the row 

zf4) = {8.S42427, .122144,4.220255, .066904, 1.4581OS}, 

and from it determine further eigenvalues, for example, according to 
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8.842427 
.122144 

7.964571 4.220255 
.064721 .066904 LVi 

7.629292 3.222438 1.458108 
.027337 .030273 .322548 

7.636629 2.825374 .427835 
.010114 .004584 1.322548 

7.643743 2.799844 .023251 
.003705 .000038 1.722548 

7.647235 2.793177 .003213 
.001353 .000000 1.742548 

2.791611 .000213 
0 1.745548 

0 
1.745761 

Note that in the sum of the shifts executed up until now, those executed 
before the deflation have to be included. One thus has now LVi = 
1.745761, Z~9) = {7.647235, .001353, 2.791611, 0, OJ, that is, ~ = 
1.745761. 



CHAPTERA2 

Choice of Shifts 

§A2.1. Effect of the shift v on Z' 

For reasons mentioned in §§A1.5, A1.6, only the qd-algorithm with 
shifts has any practical significance for the determination of the eigen­
values of a positive qd-row. The correct choice of the shifts, however, is 
also crucial for a successful completion of the task. 

According to [20], §3, the positive qd-rows enjoy particularly favor­
able numerical properties. One therefore aims at choosing the shifts Yo, 
Vi, V2 , ... in the iterative sequence 

Vo VI V2 

Z --7> Z' --7> Z" --7> Z'" ... 

in such a way that also Z', Z", Z'" , ... remain positive, so that this 
property is not lost. In this connection, the following is relevant. 

Theorem A7. If the qd-row Z is positive, then the row Z' gen­
V 

erated from it by Z --7> Z' is also positive precisely if v < An (An = 
smallest eigenvalue of 2). 

Proof a) If v ~ An' then Z' cannot be positive, since otherwise the 
computational algorithm (AI, 17) would certainly be executable and by 
Theorems A4 and A2, therefore, A~ = An - V > 0, in contradiction to 
V~An' 

b) As v increases from 0 monotonically and continuously, the fol-
v 

lowing holds for Z --7> Z' and for the elements q,,(v), e,,(v), which 

depend on v: By Theorem A3, qi (0), ei (0), ... ,q~(O) are positive; 
furthermore, on the basis of the computational algorithm (AI, 17): 
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qi (V) = q I - V + e I decreases monotonically, 

ei (v) = (e dqi (V))q2 increases monotonically, so long as 

qi remains positive, hence 

qz (v) = q2 - ei (v) - v + e2 decreases monotonically, etc., 

until finally 

decreases monotonically, so long 

as none of the values qi (v), qz (v), 

... , q~-I (v) becomes negative. 

(1) 

Therefore, under the last condition mentioned, all q,,(v) are decreas­
ing monotonically, and the e,,(v) increase monotonically. From 
q t I (v) J, 0 (e fixed, e < n), however, there follows e t I (v) i 00 and thus 
q; + I (v) J, -00. Of all q", therefore, only q~ can vanish, without another 
q" becoming negative; that is, with increasing v it is q~(v) which first 
attains the value O. There thus exists a v = Vo > 0 such that q~ (vo) = 0, 
but Z' > 0 for v < Yo. Consequently, A" = Ak - V > 0 for all k and 
v < va, hence Ak ~ va (k = 1,2, ... , n); but since q~(vo) = 0, one gets 
A~ = 0 from Theorem AS, hence An = va. By Theorem A2, the eigen­
values of Z are real and simple, thus Al > ~ > ... > An-I> An = va, 
q.e.d. 

With this, the question as to the appropriate choice of v is answered: 
One should choose the shift always below the smallest eigenvalue of the 
qd-row, to which the shift is applied, and in fact should choose it as 
closely below as possible, as was illustrated, for example, in Example 3 
of §A1.7. 

Now, unfortunately, this rule cannot be applied without knowledge 
of An; methods must therefore be developed which permit an independent 
determination of v (see §A2.3). 

An important fact, which can facilitate the choice of v, is given in 
the following 

Theorem AS. If the qd-row Z is positive, and v ~ An, then for the 
v 

row Z' obtainedfrom Z by Z ----:> Z' one has: 
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q~ > ek } k = 1,2, ... , n - 1, 
ek < qk+l 

(2) 

q~ ~ O. 

Proof Ifv ~ 0, it follows from (AI, 17) and Theorem A7 that 

{ 
> 0 for v < An' , , 

qn = qn - en-l - V = 0 for v = An' 

hence, in every case, e~-l < qn- Furthennore, qn-l - e~-2 - v + en-l = 
, th' il' d' F qn-l > en-lo us en-2 < qn-lo etc., unt el < q2 an ql > e 1. or 

v < 0, the assertion follows from the monotonicity property (1) of the q" 
and e", q.e.d. 

Thus, for example, if one applies to 

Z = {5, 10, 7, 5, 8, 3, 9, 1, 1O} 

a qd-step with v = 3, which yields qi = 12, ei = 5.8333333, qz = 
3.1666666 « e2 = 5), then Theorem A8 tells us that one cannot have 
v::; An' that is, that the shift is chosen too large and would produce a non­
positive Z'. 

§A2.2. Semipositive qd-rows 

Definition. A qd-row Z = {ql,el,q2,e2, ... ,qn} with 

qk> oo} k = 1,2, ... , n - 1, 
ek> 

(3) 
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is called semi positive (in symbols: Z ~ 0). 

By Theorem A5, every semipositive row has the eigenvalue 0, but 
since in this case the associated (according to (AI, 10» matrix H is posi­
tive semidefinite, being decomposable with (AI, 11), one has: 

Theorem A9. The eigenvalues of a semi positive qd-row are 

Furthermore, from the proof of Theorem A 7, there follows: 
v 

Theorem AlO. With v = An (and only then) the step Z ~ Z' 

produces from a positive row Z a semi positive row Z'. 

It would be ideal if, by a single qd-step, one could obtain from Z a 
semipositive row Z', since then one immediately would have A~ = 0, 
hence An = v, and one could obtain the remaining eigenvalues as follows: 

o 
Apply to Z' ~ 0 a qd-step Z' ~ Z", whereby, as in the proof of 

Theorem A3, 

qi' > ei > 0, 

ei' < q2 (and ei' > 0), 

qz > e2 > 0, 

ez < q3 (and ez > 0), 

" 'Ob qn-l > en-I> , ut now 

" '( I I" ) 0 en-l = qn en-lIqn-l = , 

(4) 

Thus, Z" = {qi/, ei/ , ... , q::-l, 0, OJ; by deflation according to §A1.7, 
and on account of (4), one obtains from this again a positive row, 

Z " {"" "} 1 = ql ,el , ... ,qn-l , 
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which is then further processed in the same way. 

Now in practical computation, owing to rounding errors, it is usually 
impossible to obtain a semipositive row in one step, even when An is 
known accurately. For the row 

z = {100, 1,200, 1, 300, 1,400, 1, SOO}, 

for example, the smallest eigenvalue is A5 = 99.00985285 .... Working 
consistently with 3 decimals after the decimal point, A5 can be approxi­
mated at best by 99.009 or 99.010. With v = 99.010 one obtains a nega­
tive value q4 = -1257, and with 99.009 the value of qs does not become 
small; one succeeds only with additional steps: the sequence 

99.009 , 0 " 0 '" .001 (4) 
Z -----?> Z -----?> Z -----?> Z -----?> Z 

yields the qd-scheme: 

1 
100 

1.991 200 
100.452 1 

102.443 
1.509 

103.952 
2.830 

106.781 

1.539 300 
194.932 

194.962 7.059 
7.056 

199.190 56.666 

1 

56.665 
400 

1 
245.326 500 

5.279 2.008 
195.918 

245.322 2.038 
299.980 2.042 

o 
398.953 

3.075 1.670 
298.574 

398.172 99.009 

2.229 
398.544 .781 

.780 
397.094 

o 
.001 

o 

Thanks to the rounding errors, it was still possible, here, to carry out 
a step with v = .001 and to thus increase the sum of shifts to 99.010. In 
higher precision, this would not be possible. 

99.009 

99.009 

99.010 



484 Chapter A2. Choice of Shifts 

§A2.3. Bounds for An 

In order to adhere to the rule "v is to be chosen closely below An", 
one needs, of course, infonnation concerning the approximate location of 
An. In cases where such infonnation is not sufficiently accurate, one must 
resort to the nesting procedure described in the next section. 

According to [20], every qk-value is already an upper bound for the 
smallest eigenvalue of the row Z = {q 1 ,e 1, ... , qn}. More precisely, the 
following holds: 

and 

Then 

Theorem All. For a positive qd-row, define the quantities F 1 = I 

[1+ ;:] ... JJ. k=2 •...• n(5) 

~ . qk 
An < SUp = mm -

l:S:k:S:n Fk 

Proof a) With the quantities Fk defined in (5) one clearly has 

(6) 

o 
(with d 1 = ql). Constructing, however, Z --?> Z', and with the ele-

ments of Z' the quantities dk = q" - ek (k = 1, ... , n), one has by (AI, 
3): 

and for k > 1, 
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The dk and dk thus satisfy the same recursion fonnula with the same ini­
tial values; therefore, 

(7) 

b) For the qd-row Z" = {ql' ,el' , ... , q;:} obtained by a qd-step 

v>o " " Z ---7 Z we have on the basis of the monotonicity property (1): q k < 
,,, , I "" " . . W·th th hift qb ek > eb so ong as ql ,q2 , ... , qk-l are pOSItIve. 1 e s 

v = dj (j fixed), therefore, the following is true: either at least one of the 
"" ". . " d" ql, q2 , ... , qj-l IS negative, or qj = qj - j - ej-l + ej = 

qj - qj + eJ-l - er.-l + ej < ej' contrary to the statement (2) of Theorem 
A8. Consequently, we must have dj > A.n , hence also min dj > A.n , q.e.d. 

It is to be noted that Theorem All follows also from the fact that 
Fk/qk is the kth diagonal element of the matrix H-1 (H is defined in (AI, 
10)); the line of proof above will allow us later to also make statements 
concerning the effect of rounding errors upon (6). 

Since H-1 is a positive definite matrix, the trace is an upper bound 
for ,,-;;1, and therefore 

'I • f __ 1_ >_ !!!:p... 
I\,n > zn = 

n Fk n 
L-

k=1 qk 

(8) 

Remark. For the quantities dk in (7), Bauer and Reinsch [23] give 
the recursion fonnula 
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(9a) 

which of course is equivalent to the fonnula 

(9b) 

used in the proof. Likewise, an expression for the quantity in! in (8) can 
already be found in the cited paper. 

§A2.4. A formal algorithm for the determination of eigenvalues 

By a fonnal algorithm (cf. §1.1) one means a computational pro­
cedure which attains the desired goal if one disregards the limitations of 
finite arithmetic (rounding errors, limited number range). 

The desired goal, here, is to use qd-steps (with shifts) to obtain a 
semipositive qd-row ZU); how one proceeds from there is then outlined in 
§A1.7. Strictly speaking, only a qd-row ZU) with a negligibly small qY) 
is achievable; according to [20], the error due to neglecting qY) can be 
estimated. 

Since the smallest eigenvalue An must still lie below the smallest q­
element qrnin' one starts the algorithm with Vo = qrnin/2. The complete 
procedure then consists in the following (under the assumption that the 
given row Z is positive): 

Vo 
1. The first step Z ~ Z' is executed with Vo = qrnin/2. 

2. If the step ZU) ~ ZU+l) leads to a row ZU+l) > 0, the step 

"succeeds" and one puts Vj+l := v/2; j := j + 1. 

3. If the step ZU) ~ ZU+l) yields an element qV+1) ~ 0, the 

step "fails" (since Vj ~ AY»); it must be tenninated immediately 
and repeated with Vj := v/2 (1). 

1 An exception is the case q~+l) > 0, k = 1, ... ,n - 1, q~+l) = 0 of a semipositive row 
Z(i+l). (Editors' remark) 
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4. The shifts are accumulated as follows: if ZV) ~ ZV+1) 

succeeds (and only then), one puts Wj+1 := Wj + v j (one begins 
with Wo = 0). Wj ~en always indicates by how much the eigen­
values of Z and Z(j) differ. 

It will be shown now that the computational process thus defined theoreti­
cally achieves the desired goal: 

To begin with, we prove that 

(10) 

where Vj' Wj denote the individual and accumulated shift, respectively, at 

the beginning of the step ZV) ~ ZV+1) (also in the case of a repeti­

tion): Initially, Wo = 0, An > 0, Vo = qrnin12, thus 2vo = qrnin ~ An. The 
relation (10) can thus be used as an induction hypothesis. 

a) If the step ZV) ~ ZV+l) succeeds, then Wj+1 = Wj + Vj' Vj+1 

= v/2, and because of A!I) > Vj thus Wj+1 < A!I) + Wj = An' while Wj+l + 
2Vj+1 = Wj+1 + Vj = Wj + 2vj ~ An. 

b) If, however, ZV) ~ Z(}+1) fails, one has Vj ~ A !I) , thus Wj < 

An ::;; Wj + Vj; after the operation Vj := v/2 the relation (10) therefore con­
tinues to be valid. 

Now in each step, whether it succeeds or not, Vj is halved, so that 

(11) 

while always AV) = Ak - Wj > Ak - An. For the generating function, this 
means, according to the considerations in [20], §2, that 

where 
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so that by (11), 
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j-l 

IT (J"k - We) 
(i) _ (0)' = 0 

c" - ck ~-'-l---' l-
IT qft) 

t=O 

(j) Cn 
(j) ~ ° (k = 0,1, ... , n - 1). 
Cli 

(12) 

On the basis of [14], §I.10, this finally implies that also q;p ~ ° and 
(j) 

en-l ~ 0. 

Naturally, this theoretical convergence qCj) ~ 0, eCj21 ~ ° does not 
mean much for practical computation; therefore, we must examine more 
closely the arithmetic employed, in order to arrive at a useful algorithm. 
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Finite Arithmetic 

§A3.1. The basic sets 

Numerical processes, always, can only be executed in a finite (inex­
act) arithmetic; as a matter of fact, the attribute "numerical" precisely 
means that one is dealing with an inexact procedure. 

In the domain R of the real numbers, the arithmetic operations +, -, 
x, I are defined exactly, as are also the six order relations >, ;:::, <, ::;, =, :#-. 

On the other hand, a finite arithmetic is characterized by a nonempty finite 
~ubset @i c R in which are defined the numerical operations + :::::, X­
I (as approximations to the exact operations). These operations, which 
are applicable only to elements of@S, produce as results again elements of 
@S, or else the singular value n (that is, "undefined"). The union of @i 

and {n} is denoted by @ Contrary to the arithmetic operations, the order 
relations >, ;:::, <, ::;, =, :#- are defined exactly in @S. 

The structure of the set @i is determined by the following axioms: 

II: To each x E R there is associated uniquely an element x E @ 

In this map R ~ @ many x, of course, can be mapped into the same ele­
ment Z E @ but: 

12 : For each Z E @i the set .IJ.)(z) = {x I x E R, x = z} is connected. 

The set 0 = {x I x E R, x = n} of real numbers to which the ele­
ment n is assigned, that is, which are not representable in the arithmetic, 
is called the overflow domain of the arithmetic. We require: 
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13: The complementary set :0 = R - f:) = {x I x E R, x E @j} is 
connected. 

14: x E @i => X = x, that is, the elements of @i are their own 
representers. 

One can fonnulate 14 also as Z E .IJ)(z) (z E @j). 

As a consequence of the Axioms lone obtains a certain monotoni­
city property of the map R ~ @ 

Theorem A12. If x,y E :0, then 

x <y => x~y, 

x =y => x=y, 
x> Y => x~y. 

(1) 

Proof The second statement is a direct consequence of II; it also 
means that for x *- y the sets .IJ)(X) and WOO must be disjoint. Since by 
definition, x E .IJ)(X) and y E .IJ)(y), and by 14 , in addition, x E .IJ)(X), 
Y E .IJ)(y), it follows from 12 that for x < y there cannot hold x > y, and 
vice versa; q.e.d. 

We further require the elements 0 and 1 to be in @j, and also want 
symmetry of @i with respect to the origin: 

III: 0=0, 

1I2: T = 1, 

1I3: (-xr =-x. 

(From II 3 there also follows the existence of an exact unitary operation 
"-" in @j.) 

The set U = {x I x E R, x = O} is called the underflow domain of 
the arithmetic. 
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§A3.2. Properties of the arithmetic 

III: For each pair a,b E @i and each operator 0 = +, -, x, / there is 
defined the operation 

c = a '0 b with c E @ 

Thus, either the result c is again in @i, or c = n; the latter simply 
means that th~ operation a '0 b is undefined. In particular, of course, one 
always has a / 0 = n. 

A first group of axioms imposes the commutativity of addition and 
multiplication (it is always assumed that a, b, E @): 

IV 1: a -+ b = b -+ a, 

IV 2: a X b = b X a. 

(For example, if a -+ b = n, then also b -+ a = n.) 
However, associativity and distributivity are out of the question; 

after all, it need not even be true that (a -+ b) ::: b = a. On the other hand, 
we can require: 

IV 3: If a ~ b ~ 0, then (a :::: b) -+ b = a. 

(In fact, IV 3 is a property which in floating-point arithmetic is usually 
valid.) 

A second group of axioms imposes the sign-symmetry of certain 
operations: 

VI: a::;b=a-+(-b)=-(b::;a), 

V2: (-a) X b = a X (-b) =-(a x b), 
- - -V3: (-a)/ b = a / (-b) =-(a / b). 

From V I and IV I there follows, in additionct): 

I Using VI twice, and then WI' one indeed obtains (-a) + (-b) = -(b::: (-a» = 

-(b + (-(-a))) = -(b + a) = -(a + b). 
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Furthermore, the following properties can be derivede): 

Theorem Al3. If a E e, then 

a::::a =0, 

a -+ 0= a:::: 0 = a, 

a x 0= O. 

§A3.3. Monotonicity of the arithmetic 

(2) 

Sequential reliability of a program (see § 1.1) can in effect be 
achieved and proved only if the arithmetic operations exhibit certain 
monotonicity properties: 

Suppose that a, b, C, d E @i and 0 ~ a ~ b, 0 ~ C ~ d. Then the fol­
lowing is to hold: 

VII: a -+ C ~ b -+ d, 

VI 2 : a x c ~ b x d, 

VI3: a:::: d ~ b :::: c, 

VI 4 : a / d ~ b / c. 

The ~-signs in the hypotheses and in the assertions are not meant to be 
coherent, that is, it may be possible, for example, that a < b, c < d, and 
yet a x c = b x d. Furthermore, the ~-sign is to have the additional 

2 For the proof one needs the following axioms: 

1) For a::: a = 0: V 1 (with a = b), Ill. 

2) For a -+ 0 = a: IV3 (with a = b ~ 0), assertion 1), IV1, V 4 (with a < 0, b = 0), 

II1>II 3 • 

3) For a ::: 0 = a: V 1 (with b = 0), II 1, assertion 2). 

4) For a x 0 = 0: V 2 (with b = 0). 

(Editors' remark) 
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meaning that when the value on the left-hand side is n, then also the 
right-hand side must have this value. 

With the aid of these axioms, one now obtains 

Theorem A14(1). If a, b E @i, then 

b ~ 0 => a + b ~ a, 

a ~ b => a ::::: b ~ 0, 

a ::::: b ~ 0 => a ~ b, 

a ::::: b > 0 => a > b, 

a + b > a => b > O. 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

For a, b, C E @S with a, b, C ~ 0, one has furthermore: If a ::::: b ~ c, then 
either a ::::: c > b or b + c = a. 

Proof If a, b ~ 0, then (3a) and (3b) follow at once from the 
axioms VI I, VI3 and Theorem A13. If a < 0, b ~ 0, one applies, besides 
l/3,intumIV 1, VI, VI3, V1,IV 1 and Theorem A13: 

a + b = b + a = b ::::: (-a) ~ 0 ::::: (-a) = 0 + a = a + 0 = a. 

To prove (3b), one still needs to treat two cases: If b < 0::;; a, then V I, 
VI I and Theorem A13 yield 

a::::: b = a + (-b) ~ a + 0 = a ~ O. 

If b::;; a::;; 0, one uses VI, IV 1, VI, VI3 and Theorem A13: 

I The original contains only the inequalities (3a) and (3b), with a proof valid only in the 
case a, b ~ 0, and the second part of the theorem is stated with the stronger hypothesis 
a, b, c > 0 and the weaker assertion a = b ~ C => {a = c ~ b or b + c = a} (in the 
proof, a, b ~ 0, c > 0 would suffice). Later, in Chapter A4, however, also the inequalities 
(3c), (3d) and (3e) will be used. The first, which is nontrivial, immediately allows one to 
weaken the hypotheses of the second part. Accordingly, Theorem A14 and its proof are 
given here in an extended form. (Editors'remark) 
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a::: b = a =+= (-b) = (-b) =+= a = (-b)::: (-a) ~ (-a)::: (-a) = O. 

Similar case distinctions are needed to prove (3c) by contradiction, 
assuming a < b. If 0 =:;; a < b, there first follows from VI3 and Theorem 
A13 that a::: b =:;; O. If we had a ::: b = 0, then W 3, VI, WI and Theorem 
A 13 would give the contradiction 

b = (b ::: a) =+= a = [-(a::: b)] =+= a = 0 =+= a = a =+= 0 = a. 

If a < 0 < b, then two applications of VI lead to a::: b = - (b ::: a) = 
- [b =+= (-a)], and the expression in brackets, by VII and Theorem A13, is 
not smaller than b, thus a ::: b =:;; - b < 0, contrary to the assumption. 
Finally, if a < b =:;; 0, one first obtains from WI and VI that 
a::: b = (-b) ::: (-a), and an appeal to the first case shows that this again 
is negative. 

Implication (3d) is now an immediate consequence of (3c) and the 
first equation of Theorem A13. It could also be proved at once by con­
tradiction from (3b), with the help of VI. Analogously, to prove (3e), one 
assumes b =:;; 0 and deduces from V 1 and WI that a =+= b = 
- [(-a) =+= (-b)]; the expression in brackets, according to (3a), is not 
smaller than -a, hence a =+= b =:;; a, contradicting the assumption. 

For the second part of the theorem, we first note that a ::: b ~ c ~ 0 
implies a ~ b, by (3c). The axioms W 3, VII and WI then give 
a = (a ::: b) =+= b ~ c =+= b = b =+= c. In particular, a ~ c and a ::: c ~ 0, cf. 
(3b). If we now had a = c =:;; b, then likewise a = (a = c) -+ c =:;; b -+ c. 
That is, a = b ~ c is compatible with a = c =:;; b only in the case 
a = b =+= c; q.e.d. 

As an example for the second part of the theorem, consider a = 
1.01, b = 9.7410-1, c = 3.7010-2. Then, in 3-digit floating-point arith­
metic, 

a ::: b = 1.01 - .97 = .04 = 4.0010-2 > c, 

a = c = 1.01 - .04 = .97 = 9.7010-1 < b, 

b -+ c = 9.7410-1 + .3710-1 = 1.01 = a. 
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§A3.4. Precision of the arithmetic 

A further characteristic of the arithmetic is its precision, which we 
introduce through the following axioms: 

VII 1: There exists a smallest number a > 0 having the property that 
jor all x E R, a E @i, a> 0 : 

x = a => I x - a I ::;; a I a I . 

VII 2: There exists a largest number t'} > 0 having the property that 
jor all x E R, a E @i, a > 0: 

X -:t. a => I x - a I ~ t'} I a I . 

These constants t'} and a, characteristic for the arithmetic, can also 
be defined by( 1 ) 

t'}=min{lb/all aE @i, a-:t.O, (a+b)--:t.a}, 

a = max { I b/a I I a E @i, a -:t. 0, (a + b)- = a}. 
(4) 

While t'} > a is feasible, in practice one always has t'} < a; in fact, often 
t'} « a, but in this case (say, when t'} = 1O-5a) the arithmetic in question 
must be rated as unbalanced, although no precise criteria are imposed in 
this regard. At any rate, a/t'} ::::: basis of the number system is technically 
realizable and is also satisfactory for practical purposes. 

So far, e and t'} describe only the "density" of the set. We define 
now for each a > 0, a E @i, a "predecessor" a- and a "successor" a+ 
with the property that among all elements of @i only a has the property 
a- < a < a + (for the smallest positive number, a- = 0, for the largest 
number, a+ = n). With the set @i+ c @i defined as @i+ = {a I a> 0, 
a- -:t. 0, a+ -:t. n}, the following holds: 

1 The fact that the axioms VII are valid also for negative a follows from II 3. 
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Theorem AIS. One has 

{ a+ - a , a -aa- } 1}::;; min min 
a E (!!!+ a 

(5) 

and either 

{ a+ - a a - a-} 8 < max max , ---
ae(!!!+ a a 

(6) 

or there is an a E @ with a+ = n or a- = 0 such that either 
(a + 8a)- = a or (a - 8a)- = a. 

Proof a) For x = a+ one has x i:- a (Axiom 14), thus 
la+-al ~1}lal, and likewise la--al ~1}lal forallaE @l+. This 
implies (5). 

b) If max {Ibla 1\ a E @, a i:- 0, (a + b)- = a} is attained for 
a = aI, b = b 1 (where, because of II 3, it may be assumed that a 1 > 0), 
then a 1 + b 1 < at, a 1 + b 1 > a 1", thus, if alE @+, 

As to the rounding errors in arithmetic operations, we first require 
the multiplicative operations x, I to satisfy: 

VIII I : a x b = (a x b)-, 

VIII 2 : a I b = (a/b)- (b i:- 0). 

(These equations are meant to include also such statements as a x b = n 
if aX bED.) 

On the basis of these axioms one now obtains properties for multi­
plication and division which are analogous to those in Theorem A13 and 
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Theorem A14 for addition and subtractione): 

Theorem A16. If a E @i, then 

If a, b E @i, then 

a x 1 = a/I = a, 

a / a = 1 if a '* O. 

a ~ 0, 0 ~ b ~ 1 => a x b ~ a, 

a ~ b > 0 => a I b ~ 1. 
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(7) 

(8) 

However, from a, b E @i and a x b = 0 it does not follow, of course, that 
a = 0 or b = O. 

For the additive operations +, - properties analogous to those in 
VIII 1, VIII 2 cannot be demanded; indeed, an arithmetic in which also 
a ± b = (a ± b)-, we would call optimal. However, this property will not 
be required, but only 

VIII 3: a ± b = (a 1 ± b 1)-, where aI, blare quantities (not neces­
sarily in @i) not further specified except that a 1 = a, b 1 = b. 

With this, the rounding errors in arithmetic operations can now be 
estimated; namely: 

Theorem A17. One has 

1 (a ± b) - (a ± b) 1 ~ e( 1 a 1 + 1 b 1 + 1 a ± b I), 

1 (a x b) - (a xb) 1 ~ e 1 a x b 1 , (9) - -
1 (a I b) - (alb) 1 ~ e 1 a I b I. 

Proof The statements concerning x and I are direct consequences 
of Axioms VII 1 and VIllI, VIII2 . For addition and subtraction, we first 

2 For the proof, one requires the following axioms: 

1) Foraxl=a: VIII 1,I4 • 

2) For a/I = a: VIII2,I4 • 

3) Fora/a=l: VIII2 ,II2• 

To prove the remaining two assertions, one needs in addition VI 2 and VI4 , respectively. 
(Editors' remark) 
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note that 

lal-al S81al, Ibl-bl S81bl, 

hence 

I(al ±bl)-(a±b)1 S8(lal + Ibl). 

On the other hand, 

§A3.5. Underflow and overflow control 

It should be evident that in any computational process overflow 
must be prevented under all circumstances; and underflow also, in most 
cases. What is controversial is only how to proceed. We shall rely on 
three assumptions: 

IX I : There exists a constant r > 0 such that 

r Ix 1 y:#:o => x x y :#: o. 
IX 2 : For all c, x E @! one has (I' 1 c) x x:#: 0 => C I x:#: o. 

IX3: (Maehly's rule) (84)-:#: o. 

The last requirement guarantees an exponent range in the floating-point 
representation which has a reasonable relationship to the computing preci­
sion (number of digits in the mantissa). The first two axioms allow a safe 
test on overflow. 

Example. Normalization of a vector. Overflow is threatened if the 
squares of the components, multiplied by n, yield overflow. Let r = 2. 
One may program as follows: 

max :=0; 
for k := 1 step 1 until n do 

if abs(a[kD > max then max := abs(a[k]); 
if (if max > 1 then 2/nlmaxlmax = 0 else false) then 

go to measures; 

(Then, after the label measures, one would have to make provisions 
against overflow.) 



CHAPTERA4 

Influence of Rounding Errors 

§A4.1. Persistent properties of the qd-algorithm 

Normally, the properties of a numerical method are considerably 
altered by rounding errors. A property of a computational process, on the 
other hand, is called persistent if it remains preserved also when the pro­
cess is carried out in finite arithmetic in the sense of Ch. A3. As it turns 
out, the qd-algorithm is precisely one of the algorithms that exhibits a 
number of persistent properties; this only, to be sure, if the sequencing of 
the operations in the algorithms (AI, 3) and (AI, 17) is properly 
observed. 

Theorem AIS. If the qd-row Z = {q I, e I, ... ,qn} is positive or 
o 

semipositive, thenfor the row Z' computed numerically by Z ~ Z', 

q" > 0, e" '2! ° 
q~ '2! 0. 

(k = 1,2, ... ,n - 1), 
(1) 

Proof By (AI, 3), (A3, 3), (A3, 8) and Axioms IV and VI one has: 

q i = q I + e I '2! e I > 0, 

ei = (el / qi) x q2 ~ q2, but also ei ~ 0, 
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q~ = (qn ::: e~-l) ~ 0, q.e.d. 

Note that the e'-values may become 0 because of underflow, and 
furthermore, e~-l and q~ certainly become 0, if Z was semipositive. 
(Then, according to §A1.7, deflation is possible.) Thus, Z' no longer 
needs to be positive or semipositive; but, since ql, qz, ... , q~-l are cer-

o 
tainly positive, the step Z ----? Z' is definitely executable. 

There remains, to be sure, the possibility of an overflow in one of 
the operations (qk::: ek-l) + ek. We show later under very weak condi­
tions that this can be excluded. 

Furthermore, Theorem A8 also is essentially persistent: 

Theorem A19. If the qd-row Z is positive and the row Z' obtained 
v 

numerically from Z by Z ----? Z' (with v> 0, V E @i) is positive or 

semi positive , then 

q" > ek } , k = 1,2, ... , n - 1. 
ek < qk+l 

(2) 

Proof By (AI, 17) and Theorem A14 there first follows from 
q~ ~ 0 that (qn::: e~-l) ::: v = q~ ~ 0, thus qn::: e~-l ~ v > 0, which 
according to Theorem A13 is only possible if qn > e~-l. This, however, 
impli~s (en-l 1 q~-l) X qn = e~-l < qn' thus by Theorem A16, 
en-l / q~-l < 1, and further en-l < q~-l. Likewise, from 
((qn-l ::: e~-2)::: v) + en-l = q~-l > en_lone concludes qn-l > e~-2' etc., 
until ei < q2 and qi > el, q.e.d. 
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Another propeny which is persistent is the monotonicity propeny 
(A2, 1) of the q" and ele with respect to changes in the shift v: 

Theorem A20. Let the qd-row Z be positive and with 0 =:;; V2 =:;; VI 

(VI, V2 E @)) suppose that one computes from it numerically the rows Z' 
and Z" by 

VI V2 

Z ----7 Z', Z ----7 Z" . 

Then the following holds: if Z' is still positive, then 

q;: :?! q" (k = 1, ... , n), 

o =:;; e;: =:;; e" (k = 1, ... , n - 1). 
(3) 

Proof By virtue of the Axioms VI one has 

- -el = (el I ql) X q2:?! (el I ql/) x q2 = el' :?! 0, 

hence q2 :::: el =:;; q2 :::: ei/, and therefore 

i1 "> I. d etc., unt qn - qn' q.e .. 

Remark. We must allow here e;: = 0, even though it was assumed 
that e" > O. It is also possible that for all k, q" = q;:, e" = e;:. 

We can state, therefore, that with increasing V the q" do not become 
larger and the e" do not become smaller, and this also in numerical com­
putation. 

Furthennore, Theorem All also is persistent. Here, the upper 
bound for An given in (A2, 6), however, has to be rewritten in the fonn 
(cf. (A2, 7» 
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(4) 

, , 0 
where qk, ek are the elements of the row obtained from Z by Z ~ Z'. 

Theorem A21. If one obtains from the positive row Z numerically 
o 

by Z ~ Z' the row Z', and if 

V2 = min (qk ::::: ek-l), 
k 

V2 

then the numerically executed qd-step Z ~ Z" cannot produce a 

positive row Z". 

Proof Let V2 = qp ::::: e;-l, and suppose that Z" > O. Then from 
the proof of Theorem A18 and from Theorem A14 there follows V2 ;;:: O. 
Furthermore, 

Since by Theorem A20 (with 0 = VI ~ V2) e;-l ;;:: e;-l (for p = lone has 
to put eo = eo = 0), there follows q; ~ ep by Axiom VI3 and Theorem 
A14, which for p = n leads to q:: ~ 0 and for p < n contradicts Theorem 
A19; q.e.d. 

§A4.2. Coincidence 

o 
In the proof of Theorem A3 it is shown that in a step Z ~ Z' 

(we call this a zero step) the following inequalities hold, 

(k = 1, ... , n), 

(k = 1, ... , n - 1), 
(5) 

provided Z > O. This property (5), however, is not persistent; rather, in 
numerical computation, also the equality sign must be permitted, as can 
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be seen from the proof of Theorem A18. But when in the course of the 
o 

process Z ~ Z' the inaccuracies of the numerical computation once 

cause q" = ek to occur, then on the basis of the algorithm (AI, 3) one 
necessarily has also e" = qk+l, q"+1 = ek+l, ... , q~ = en = O. This event 
is called coincidence; in such a case, the e", q"+I, e"+I, ... expediently 
are no longer computed at all, but are simply copied. 

Example. Let Z = {I, 104 , 1, 104 , 1, 1, I}. In 5-digit computation 
the first two rows of the qd-scheme are (the arrows mean "copy"): 

(ql) 
(e 1) 

1 
10000 

10001 
.9999 

(q2) 

1 

10000 

(q3) 
10000 (e3) 

1 / 1 1 (q4) 

1./ 1 
1/ 

o 

Evidently, one obtains necessarily a semipositive row, and with it 
also an eigenvalue. Such an incident, therefore, is quite welcome, 
although it requires a modification of the computing algorithm: 

ql := ql + el; 
for k := 2 step 1 until n do 
begin 

if qk-l = ek-l then 
begin comment coincidence; 

for t := k step I until n do 
begin , . . et -1 .= qt, , 

qt := et; 
end for t; 
goto ex; 

end ifq; 

ek-l := (ek-l!qk-l) x qk; 

(6) 
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qk := (qk - ek-l) + ek; 
end for k; 

ex: 

It should not be overlooked, however, that a coincidence pennits 
such a simplification only in a zero step; in the case v*"O the occurrence 
of qk = ek (with k < n) means a failure of the step. 

This modified computing algorithm at the same time removes the 
danger of divisions by zero, which even for a positive initial row Z would 
be possible, in principle. While it is true that the success of the first step 

o 
Z ------'> Z' is guaranteed by Theorem A18, the row Z' need no longer be 

semipositive, since individual e' -values can become 0 through underflow. 
If this happens, there is no longer any guarantee that the next step 

o 
Z' ------'> Z" will succeed, as the following example demonstrates: Let 

Z = ho-30, 10-30,1, 10-30, 10-30,1, I}, (7) 

and assume that U = {x I Ix I < 1O-50} is the underflow domain and 
e = 10-10. Then, with two zero steps of the type (A 1, 3), one obtains: 

10-30 
10-30 

210-30 1 
.5 10-30 

.5 .5 10-30 
.5 0 1 

0 I I 
1 

0 

Here, q2 = 0, so that e2' according to (AI, 3), cannot even be computed. 
With (6), however, one obtains without difficulty the row Z" = {.5, .5, 0, 
1, 1,0, O}, since, as the proof of Theorem A18 shows, qk-l ~ ek-l is still 
satisfied and therefore the vanishing of qk-l implies that of ek-l' so that a 
coincidence necessarily occurs, whereupon the ek-l, qk, ek, qk+l, ... are 
simply copied. (Note that copying is admissible also in the case 
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q" = ek = 0, since the only thing that matters is the similarity of the 
matrices A in (AI, 1) and B in (AI, 5), which, in view of A = XV, 
B = YX is guaranteed in any case.) 

§A4.3. The differential form of the progressive qd-algorithm 

A zero step carried out with coincidence according to (6) produces 
the value q~ = 0, while the theoretically exact value by Theorem A3 
would be different from 0; we thus have an error of 100%. But the algo­
rithm (AI, 3) can now be modified in such a way that the differences 
q" - ek appear as independent quantities dk (cf. (A2, 7». These, namely, 
satisfy the recursion formula (A2, 9a): 

where q"-l = ek-1 + dk-1 > dk-1. The following algorithm then results: 

d 1 := q1; 
qi:=e1+ d 1; 
for k := 2 step 1 until n do 
begin 

if dk- 1 = 0 then 
begin comment coincidence; 

for t := k step 1 until n do 
begin 

I 

et -1 := qe; 
I qe := et; 

endfort; 
goto ex; 

end if d; 
e"-l := (ek-1!q"-1) x qk; 
dk := (dk-!iq"-l) x qk; 
q" := ek + dk; 

end for k; 
ex: 
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This form yields more accurate q-values; coincidence, and thus 
q~ = 0, is now only possible when a dk has become ° through underflow. 

Examples. Upon application to the row (7) one obtains (under the 
conditions stated above): 

d 1 = 10-30, qi = 210-30, ei = .5, 

d2 =.5, q2 = .5, e2 = 0, 

d3 = 10-30, q) = 1, e) = 1, 

d4 = 10-30, q4 = 10-30, 

that is, the row 

z' = {21O-30, .5, .5,0, 1, 1, 1O-30}. 

Likewise, from Z = {I, 104 , 1, 104 , 1, 1, I} one obtains in this way 
{lOOOI, .9999,10000,1,1, 1, .99991O-8}. 

This differential form, in general, produces more accurate results in 
those cases where the q- and e-values have markedly different orders of 
magnitude. 

§A4.4. The influence of rounding errors on convergence 

Naturally, during the numerical execution of the algorithm (AI, 3), 
the eigenvalues of a qd-row are perturbed, and in the algorithm (AI, 17) 
they do not decrease exactly by v. It can even happen that the eigen­

v 
values increase upon execution of a step Z -----;:. Z' with positive shift. 

Consider, for example, 

.01 
The smallest eigenvalue here is 1..4 :::: .884, but with Z -----;:. Z' one 

obtains in 5-digit floating-point arithmetic 
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z' = {1O.990, 909.92, 1009100,9909.8, 1000100,9999, .99}, 

with A4 ::: .971. 

This hesitation in the convergence of An can have very unpleasant 
consequences if - as indicated in the example of A2.2 - a large number of 
steps are necessary, with some shifts extremely small, until qn finally 
becomes small. It may indeed happen that in spite of continually positive 
shifts, An again and again runs away from 0, so that for a very long time 
no semipositive row is forthcoming. Such a delay in convergence then 
also gives rise to large errors in the eigenvalues. 

This situation - markedly different q-values and large e-values -
may also develop only after a while, as the process unfolds(l). It is pre­
cisely this phenomenon which for the reasons stated above leads to 
difficulties which can only be removed by a special variant of the qd­
algorithm. 

1 The situation usually occurs, for example, when the qk initially are incorrectly ordered. 
(Editors'remark) 
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Stationary Form of the qd-Algorithm 

§AS.I. Development of the algorithm 

Suppose one starts with a positive qd-row Z and twice carries out a 
progressive qd step, namely: 

o v 
Z ------'> Z, Z ------'> Z*. 

Then the following relations hold: 

(where eo = eo = ~ = 0), and 

From these one obtains by elimination of the 7ik> ek 

qi =qk+ek-l -ei-l -v, 

ei = qkek/qi, 

and can thus construct the algorithm 

(1) 

(2) 
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qi := ql -V; 
for k := 2 step 1 until n do 
begin 

ek-l := ek-l x (qk-t!qk-l); 
qk := qk + (ek-l - ek-l) - V; 

end for k; 
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(3) 

The operation (3) is called a stationary qd-step and is fonnally written as 

v 
Z --?- Z*. (4) 

It is to be noted that a stationary step with V = 0 has no effect (in contrast 
to a progressive zero step). 

The adjunct "stationary" derives from the behavior of the generat­
ing function: by (1) and (AI, 16), 

and thus 

fez) = zf(~ - 1 
ql 

A: ( _ ) = zf(z) - 1 
,J Z V _ ' 

ql 

r(z -v) =f(z). (5) 

The step (3), therefore, does not involve a multiplication of the generating 
function by z, which is an essential feature in a progressive iteration. 

§A5.2. The differential form of the stationary qd-aJgorithm 

Our goal of reducing the influence of rounding errors is only partly 
achieved by the stationary algorithm; for example, the quantities ek-l and 
ek-l occurring in the assignment statement 

qk := qk + (ek-l - ek-l)-v 
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are often nearly equal, but much larger than q1- By introducing the 
differences tk = qk - qk, however, one obtains 

and thus 

tk = qk - qk 

= v - ek-l + ek-l 

= v - ek-l + ek-l (qk-dqk-l) 

= V + ek-l (qk-l - q k-dlq k-l' 

One can therefore replace (3) by: 

tl := v; 
qi := ql - tl; 
for k := 2 step 1 until n do 
begin 

s := ek-dqk-l; 
ek-l := s x qk-l; 
tk := v + s X tk-l; 
qk := qk - tk; 

end for k; 

(6) 

(7) 

Evidently, the qk in this algorithm are computed theoretically as fol­
lows: 

(8a) 

where 

Gi = 1, 

[ ek-l [ ek-2 [ Gk = 1 + -*- 1 + -*- ... 
qk-l qk-2 

(8b) 

k =2, ... , n, 
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so that only the true reduction vGk is now subtracted from qk. We shall 
henceforth carry out the stationary form of the qd-algorithm only in this 
differential form 

§A5.3. Properties of the stationary qd-algorithm 

v 
Many properties of the stationary step Z ~ Z* (where always 

v 
Z> 0) are the same as for the progressive step Z ~ Z'. First a few 

facts that hold only in exact computatione): 
v 

a) The step Z ~ Z* diminishes all eigenvalues by v: 

b) Z* > 0 precisely if v < All. 
c) With v = All' Z* becomes semipositive. 

Certain properties, however, are quite different from those valid for the 
progressive algorithm (still under the assumption of exact arithmetic): 

V VI V+VI 

d)Z~Z* ,Z*~Z** => Z~Z**. 

e) If 0 < v < All then 

qk <qk (k=I, ... , n), 

ek > ek (k = 1, ... , n - 1). 
(9a) 

Some of the statements have counterparts in numerical computation: 

1 The proofs of statements a) to f) are simple. (Editors'remark) 
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f) As long as none of the quantities q Z becomes ~ 0 during 
v 

Z ~ Z* with v > 0, one has in numerical computation, 

qZ ~ qk (k = 1, ... , n), 

eZ ~ ek (k = 1,2, ... , n - 1). 
(9b) 

From f) and (A2, 5) there obviously follows 

v 
Theorem A22. If a stationary qd-step Z ~ Z* (with Z > 0, 

Z* > 0 or Z* ~ 0, v > 0) is carried out numerically, then for the quanti-
- -* -* -* ties Fk, Gb Fk computed numerically from Z and Z* (where Fk is 

formed analogously to F k> but with Z* instead of Z) one has 

- -* -* Fk ~ Gk ~ F k (k = 1, ... ,n). (10) 

The assertion follows immediately from the observation that, on the 
basis of (8b) and (9b), when going from F k to G Z, only the denominators 
in (A2, 5) change, and in fact become smaller (not greater). When going 
from GZ to FZ, on the other hand, only the numerators change, and 
become larger (not smaller). 

An important persistent property of the stationary qd-algorithm is 
the decrease of the smallest eigenvalue when the shift v is positive. In 
contrast to the progressive form, the phenomenon of "running away" 
observed in the example of §A4.4 does no longer occur. We first prove: 

Theorem A23. When in a positive qd-row Z at least one q-element 
is decreased, or at least one e-element increased, then the smallest eigen­
value of Z must decrease (so long as Z remains positive or semipositive). 

Proof An is characterized by the fact that with v = An the step 
v 

Z ~ Z' (in exact arithmetic) yields a semipositive row Z'; then 

q" > 0, e" > 0 (k = 1, ... , n - 1), q~ = O. If for a modified row Z + oZ 
one can show that with the same shift it yields a row with some negative 
q-element, then it is shown that the smallest eigenvalue of the perturbed 
row is smaller than An. 
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a) Decrease of a q-element: If exactly one qk is replaced by qk - e, 
then by (AI, 17) the new elements qi, ei, qz , ... , qk-l are not 
changed, but ek-l = (ek-t!qk-l )qk is decreased by e(ek-t!qk-l); with this, 
qk = qk - ek-l - v + ek is decreased by e - e(ek-t!qk-l) =e(qk-l -
ek-l)/qk-l. Subsequently, ek becomes larger, qk+l smaller, etc. (cf. the 
proof of Theorem A7), and thus finally q~ < 0, if a negative q'-element 
has not occurred already before. 

b) Increase of an e-element: If ek is replaced by ek + e, then by (AI, 
17) again qi, ei, qz, ... , qk-l, ek-l are not changed, but qk increases by 
e. Therefore, in 

both numerator and denominator are increased bye, but since the numera­
tor by Theorem A8 is smaller, ek is in fact increased. Subsequently, qk+l 
becomes smaller, ek+l larger, etc. until a q-element becomes negative, 
q.e.d. 

v 
When carrying out a stationary qd-step Z -----7 Z*, it may happen 

that z* = Z, even though v > O. This occurs whenever v is so small that 
qk ::: v x G; = qk for all k, which by Axiom VII 2 (§A3.4) is certainly the 

-* -case - since then also G k = F k - when 

v X Fk < ~ qk (k = 1,2, .... ,n). (11) 

If, on the other hand, Z* *" Z, then at least one q Z is smaller than the 
corresponding qko or at least one eZ larger than ek; therefore: 

v 
Theorem A24. If a stationary step Z -----7 Z* (with Z > 0, 

Z* > 0 or Z* ~ 0, v> 0) is carried out numerically, then/or the smallest 
eigenvalue one has AZ ~ An' where equality sign can hold only in the 
case Z = Z*. 

Remark. In exact computation, of course, one would have 
AZ = An - v, but this cannot be guaranteed in numerical computation. In 
view of §A4.4, however, Theorem A24 is already a significant improve­
ment. Indeed, we will succeed in making the smallest eigenvalue of a 
qd-row as small as we like, something that cannot be guaranteed with pro­
gressive steps. 
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§A5.4. Safe qd-steps 

The detennination of eigenvalues - whether by means of progressive 
or stationary qd-steps - always boils down to trying to achieve a semipo­
sitive row, and then to proceed as in §A1.7. In "nonnal" cases, a semi­
positive row can essentially be obtained by the algorithm of §A2.4, but in 
critical cases, one must work with the stationary variant. 

The primary problem, then, lies in the choice of the shifts v. For 
this, unfortunately, one has, on the whole, only negative infonnation 
available, particularly when the numerical realization is to be a matter of 
concern (see, for example, Theorem A21 for the progressive algorithm). 
The objective of guaranteeing that the algorithm (7) with a suitable choice 
of v leads to a row Z* > 0, however, can be achieved only with positive 
infonnation, but the statement (A2, 8) most relevant in this connection is 
precisely one that is not persistent. 

In the following, F k and sup will denote the quantities computed 
exactly from qk and ek by (A2, 5), (A2, 6), while dh th qZ are the quanti­
ties computed numerically by 

d 1 = ql' 

dk = qk 1 (1 + ek-l 1 dk- 1) 
(12) 

and (7), respectively. Then the following can be proved: 

v 
Theorem A2S. A stationary qd-step Z ~ Z* with Z > 0 and 

o < v::;; { 1 - 49} (1 - 49)" min dk (13) 
n (1 + 49)" 1 :s; k :s; " 

must yield a Z* > 0 also in numerical computation. 
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Proof In the first place, we show: For the quantities dk computed 
numerically by (12), one has(l) 

(14) 

Because of d l = ql, F 1 = 1, this is true for k = 1, and from 

there follows 

(The factor 1 - 48 takes into account one additione), multiplication and 
division, each, with relative errors 28, 8, 8 (cf. Theorem AI7).) Of 
course, dk could underflow to 0; then (14) would be true also. Otherwise, 

1 ~ 1 ~ < ----:- ------ = 
(1 - 48)k ek-l (1 - 48)k Fk 

1 + --Fk- l 
qk-l 

1 Tenns of second order in 9 are neglected here and in the sequel. By applying this con­
sistently, some of the subsequent formulae indeed could be simplified. (Editors' remark) 
2 For the addition of two positive numbers one has in first approximation: 
I(a +' b) - (a + b)1 ~ 29(a + b):::: 29(a +' b). (Editors'remark) 
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Consequently, the numerical bound 

sup = min dk , 
l~k~1I 

multiplied by (1 - 48)11, is still below the exact bound sup. 

We now choose 0 < v < a. sup, where 

a.= 1 -48, 
n(1 + 48)11 

(1 + 48)k 
tk < k 1 V Fk , 

1 - (k - 1)(a.+ 48)(1 + 48) -

q'k > 1 - k(a. + 48)(1 + 48l 
1 - (k - 1)(a. + 48)(1 + 48)k-1 qk· 

(15) 

(16) 

For k = 1 one has tl =V, FI = 1, hence (15) is satisfied; qi = ql:::'v ~ 
ql (1 - 8) - v(1 + 8) - 8qi (see Theorem AI?), thus qi > ql (1 - 28 -
a.), since v < ad 1 = a.q I; hence also (16) is satisfied for k = 1. It 
remains to establish the induction step from k - 1 to k: 

tk = V + (ek-I / q'k-I) X tk-I 

~ (1 + 48)[v + (ek-tl q'k-dtk-tl. 

(The term 1 + 48 again accounts for one addition, multiplication and divi­
sion, each.) Thus, 

3 Note that from the way a was chosen, the denominators in (15) and (16) are positive. 
The munerator in (16) is positive for k < nand 0 for k = n. (Editors' remark) 
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t < (1 + 49) [ V + ek-l 1 - (k - 2)(0. + 49)(1 + 49)k-2 
k qk-l 1 - (k - 1)(0. + 48)(1 + 48)k-l 

x 1 _ (k - 2)(0. + 48)(1 + 48l-2 

- (1 48) [ ek-l F (1 + 48)k-l 1 - + V +V k-l . 
qk-l 1 - (k - 1)(0. + 48)(1 + 48)k-l 

Since the last fraction in brackets is larger than 1, one also has 

(1 + 48l [ek- 1 1 tk < V 1 + -- Fk- 1 , 
1 - (k - 1)(0. + 48)(1 + 48)k-l qk-l 

and this is (15). Furthennore, 
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(Here the tenn 48 collects all contributions from rounding errors under the 
assumption that 0 ~ tk ~ qk.) Therefore, 

* (1 48) (1 + 48)k F 
qk > qk - - 1 _ (k _ 1)(0.+ 48)(1 + 48)k-l V k; 

* [1 48 (1 + 48la. 1 
qk > qk - - 1- (k _ 1)(a.+ 48)(1 + 48)k-l 

> [1 - (a. + 48)(1 + 48l 1 
qk 1 _ (k - 1)(0.+ 48)(1 + 48)k-l ' 
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from which there follows also (16). In particular, qk > 0 (k = 1, ... , n), 
hence together with (9b) also Z* > 0, provided (as is assumed in (13» 

o < v ~ a(1 - 48)n sup < a sup; q.e.d. 

It is to be noted, though, that sup may become 0 owing to 
underflow; then the shift computed according to (13) also necessarily 
becomes v = 0, and therefore Z = Z*, in which case the theorem becomes 
trivial. As we shall see, however, the case sup = 0 (because of 
underflow) need not be seriously considered. 

v 
It is now our purpose, however, to show that a qd-step Z ~ Z* 

can be constructed for which not only Z* becomes positive, but also the 
quantity sup actually decreases. This, above all, requires that the 
occurrence of Z* = Z be avoided, which is something that (13) alone can­
not yet exclude. 

Analogously to the formula (14) in the proof of Theorem A25, it can 
first be shown that 

(17) 

Then one obtains - even simpler than in (15) - the bound 

(18) 

for k = 1, indeed, tl =v, Fl = 1; furthermore, from tk-l ~ (1_48)k-2 v 
. Fk - 1, there follows (since qk ~ qko see (9b»: 
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To proceed, we need a relationship between the quantities dk com­
puted numerically by (12) and the quantities dZ computed analogously 

v 
from the q Z, e Z after the step Z ------?> Z*: 

First, di = qi = q 1 :::: V ::;; q 1 = d 1. Then, from the induction 
hypothesis dZ-1 ::;; dk- 1 there follows, by (9b), 

thus, 

dZ ::;; dk (k = 1,2, ... , n). (19) 

More precisely, one has dZ ::;; qZ 1(1 =+= ek-l I dk-l), or 

d* < 1 + e qZ d 
k - 1 e k· - qk 

(20) 

v 
Theorem A26. Let Z ------?> Z*, where Z > 0, v > 0 and Z* > 0 

(or Z* ~ 0), and let 

sfip = min dh sfip* = min dZ 
l~k~n l~k~n 

be the numerically computed upper bounds jor the smallest eigenvalue 
Amin oj Z and the smallest eigenvalue A~in oj Z*. Then 



520 Chapter AS. Stationary Form of the qd-Algorithm 

* < 1 + 8 1 + 8 1 - 48 [ ]
2 [] n-l 

sflp - 1 _ 8 sflp - 1 _ 8 1 + 48 v. (21) 

Proof By (7), qZ = qk::::: tk' By Theorem A17, however, 

thus, 

(22) 

There exists a k = p with sflp = dp • On the basis of (17) we certainly 
have 

and therefore, by (18), 

that is, 

* < 1 + 8 1 - 48 v [ [ ] 
p-l 1 

qp - 1 - 8 - 1 + 48 dp qp' 
(23) 
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By (20), finally, 

- * < d* < 1 + a [ 1 + a _ [ 1 - 4a] n-l V 1 
sup - p - 1 _ a 1 _ a 1 + 4a dp dp ' 

from which, because of dp = sup, the assertion follows; q.e.d. 

With this, a strict decrease of at least one qk and of the quantity sup 
as well, is guaranteed, at least so long as, say, n $ 1 !lOoa. In fact, by 
Theorem A25, 

v $ [ ~n[ 1~ --2~n 1 [I --~n r sUp 1 + _1_] n 

25n 

v 
is then sufficient for the success of the step Z --?> Z*; this means, 

however (in first approximation), 

.88 _ 
v$ -sup. 

n 
(24) 

Choosing v so large that equality holds in (24), it follows from (21) that 

(25) 

We thus have linear convergence so long as v does not become 0 by 
underflow; sup can therefore practically be made as small as one likes. 
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