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Editor’s Foreword

The present book is an edition of the manuscripts to the courses
““‘Numerical Methods I’” and ‘‘Numerical Mathematics I and II”’ which
Professor H. Rutishauser held at the E.T.H. in Zurich. The first-named
course was newly conceived in the spring semester of 1970, and intended
for beginners, while the two others were given repeatedly as elective
courses in the sixties. For an understanding of most chapters the funda-
mentals of linear algebra and calculus suffice. In some places a little
complex variable theory is used in addition. However, the reader can get
by without any knowledge of functional analysis.

The first seven chapters discuss the direct solution of systems of
linear equations, the solution of nonlinear systems, least squares prob-
lems, interpolation by polynomials, numerical quadrature, and approxima-
tion by Chebyshev series and by Remez’ algorithm. The remaining
chapters include the treatment of ordinary and partial differential equa-
tions, the iterative solution of linear equations, and a discussion of eigen-
value problems. In addition, there is an appendix dealing with the gd-
algorithm and with an axiomatic treatment of computer arithmetic.

For a few algorithms, also problems of programming are discussed
and fragments of ALGOL-programs are given. It should be pointed out
that a number of complete and safe procedures to the methods described
here are to be published (also with Birkhduser, as Vol. 33 of the Interna-
tional Series of Numerical Mathematics) by W. Gander, L. Molinari and
H. Svecovd under the title ‘‘Numerische Prozeduren aus Nachlass und
Lehre von Prof. Heinz Rutishauser’’.

When Professor H. Rutishauser died on November 10, 1970, at the
age of 52, he left behind, among other things, the manuscripts to the
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courses mentioned above. These notes, which Mrs.. M. Rutishauser
kindly made available to us, have in the course of the years been repeat-
edly revised and updated to reflect progress in research. His desire to
publish them later as a text book was known; some sections were already
finished in an almost ready-to-print form. Unfortunately, however, he did
not live to see the book completed. In view of the quality of these
manuscripts, and given the world-wide reputation of the author, we
deemed it more than justified that these manuscripts be published, even
though in form and volume they certainly did not yet fully come up to the
high demands of their author. From the beginning it was our intention to
change the text as little as possible and to make no extensive reorganiza-
tions or additions. We were equally intent on not altering the character of
the work and, for example, on preserving the occasionally pictorial
language, which facilitates reading and understanding. Nevertheless,
much remained to be done, especially in those parts which were only
drafted by the author. Also, individual chapters which in part were avail-
able in several versions had to be merged as smoothly as possible into a
seamless whole. The numerical examples were almost all newly recom-
puted. Finally, the figures needed to be prepared; the drawing of
mathematically defined curves was generally done by a plotter.

Throughout the editing of the text, I was assisted above all by the
coeditors Profs. P. Henrici, P. Liuchli and H.R. Schwarz, who read the
entire manuscript and who consulted with me during many hours on ques-
tions of principles and details. Many further colleagues also helped me
through their criticism; to be mentioned are particularly Prof. R. Jeltsch,
Dr. R. Bloch and Dr. J. Waldvogel. Thanks go also to Miss G. Bonzli
and Mrs. L. Gutknecht, who typed large parts of the text, and to Dr. V.
Sechovcov, who drew the figures in ink. I am also very pleased that Mr.
Stutz and others agreed to help me with the correction of the galley
proofs.

My editing work for the most part was financed by the Swiss
National Science Foundation. Finally, I wish to thank the publisher for
the very careful and speedy printing.

Vancouver, B.C., February 1976 M. GUTKNECHT



Preface

Heinz Rutishauser is one of the pioneers of modermn numerical
mathematics. Educated originally as a function theorist, he in 1950 joined
as a collaborator the Institute of Applied Mathematics, founded shortly
before at the Federal Institute of Technology. There, his extraordinary
algorithmic talent soon became evident. With concisely written publica-
tions he introduced methods and directions of research into numerical
mathematics which later on proved to be fundamental. The stability
theory in the numerical solution of ordinary differential equations,
‘‘economization’’ of power series by the use of Chebyshev polynomials,
the quotient-difference algorithm, the LR-method, the exact justification
of the Romberg algorithm, and many other contributions all go back to
Rutishauser. He was also one of the first to recognize that the computer
itself could be used for the preparation of computer programs, and he
played a leading role in the development of the programming language
ALGOL. In the last years of his life, Rutishauser concemed himself with
the axiomatization of numerical computation and as a result gave perhaps
the most satisfactory treatment, from a theoretical point of view, of the
propagation of rounding errors. His health-related aversion to travel and,
no doubt, a touch of introversion, prevented all these achievements from
becoming known and appreciated as they deserved to be.

After Rutishauser’s death in 1970, his widow, Mrs. Margrit
Rutishauser, asked the undersigned to sift through his unpublished
scientific notes. It became immediately clear to us that Rutishauser’s lec-
tures on numerical mathematics constituted an important part of these
notes. The lectures, which in quality and originality far excel the average
presentations in this area, were already intended for publication by
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Rutishauser himself, but have only partly been prepared in detail for pub-
lication. It so happened that Dr. Martin Gutknecht, who still heard these
lectures as a student, and who also has the necessary technical knowledge,
could be prevailed upon to successfully complete the preparation for pub-
lication. Commendably, the work of Dr. Gutknecht has been supported
by the Swiss National Science Foundation. We are pleased, thanks to the
cooperation of the Birkhduser publishing house, to be able to present the
outcome to the public.

Zurich, February 1976 P. HENRICI
P. LAUCHLI
H.R. SCHWARZ



Translator’s Preface

Rutishauser’s Vorlesungen tiber numerische Mathematik appeared in
1976 in two volumes. Even though more than twelve years have elapsed
since the work was first published, it has retained much of its freshness
and timeliness. The material treated, though no longer entirely up-to-date
in some areas, still provides a sound and stimulating introduction to the
field of scientific computing. It was felt desirable, therefore, to make the
work accessible to a wider audience by providing an English translation.

The undersigned was happy to undertake this task, as he has known
Rutishauser personally and has great admiration for his scientific achieve-
ments. In preparing the translation, he has combined the original two
volumes into a single volume. He has refrained from making any major
changes to the text itself, other than correcting a fair number of typo-
graphical errors. However, following a suggestion already made by G.W.
Stewart in his review of the German original (cf. Bull. Amer. Math. Soc.,
v. 84, 1978, pp. 660-663), he has supplemented each chapter with notes
designed to make the reader aware of significant developments in compu-
tational techniques that occurred since the original volumes have
appeared, and to direct him to appropriate sources for further study. The
preparation of these notes took considerably longer than anticipated, and
in fact would never have been completed, were it not for the invaluable
assistance he has received from a number of colleagues. John K. Reid
helped with the notes to Chapters 2 and 3, Florian A. Potra and Hermann
Brunner with those to Chapters 4 and 5, and Chapters 8 and 9, respec-
tively. The notes to Chapters 10 and 11 were contributed entirely by Lars
B. Wahlbin, those to Chapters 12 and 13 in large part by Beresford N.
Parlett. Comments from Carl de Boor pertaining to the notes for Chapters
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6 and 7, and from Hans J. Stetter on the notes for Chapter 8, were also

incorporated. The help of all these colleagues is herewith gratefully ac-
knowledged.

Thanks are also due to Ms. Connie Heer, who capably and unremit-
tingly prepared the photo-ready copy of the manuscript on a computer of
the Department of Computer Sciences at Purdue University, using
UNIX’s troff system. Finally, we thank the publisher for patiently wait-
ing for the completion of this project and for assisting us in the produc-
tion of this volume.

West Lafayette, Ind., November 1989 WALTER GAUTSCHI
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CHAPTER 1
An Outline of the Problems

§1.1. Reliability of programs

The object of numerical mathematics is to devise a numerical
approach for solving mathematically defined problems, i.e., to exhibit a
detailed description of the computational process which eventually pro-
duces the solution of the problem in numerical form (for example, a
numerical table). In so doing, one must, of course, be cognizant of the
fact that a numerical computation almost never is entirely exact, but is
more or less perturbed by the so-called rounding errors. The computing
process, indeed, is executed in finite arithmetic, for example in floating-
point arithmetic (number representation: z = @ x 10%), where only a finite
number of digits are at disposal both for the mantissa a and for the
exponent b. ’

Depending on how well the effects of finite arithmetic are taken into
consideration, a computational process is classified as:

(a) a formal algorithm

(b) a naive program

(c) a strict program.

By a formal algorithm we mean a description of the basic course of

computation. It represents the first step towards the solution of a prob-
lem, which, however, need not yet consider any limitations in arithmetic.

For example, in

X1 = X = f Ol f ()
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one has a formal algorithm for Newton’s method for determining zeros of
a function f(x). Note that this algorithm offers no protection against
division by 0. (To forbid dividing by O, of course, is also an arithmetic
limitation.)

One speaks of a naive program when one has an unequivocal
definition of the computational process. The word ‘‘naive’’ is meant to
convey the notion that although the finiteness of arithmetic is taken into
account, the provisions made are based more on empirical grounds than
on solid theory. From a naive program, therefore, one can generally
expect reasonable results, but this cannot be guaranteed with absolute cer-
tainty.

Of a strict program we require not only that it should run correctly
in spite of the finiteness of arithmetic, but also that it should do so on the
basis of a rigorous proof.

Now a strict program still offers only sequential reliability, that is,
one guarantees only the correctness of execution — in particular, correct
termination — with no assertions being made concerning the accuracy of
the results. If, however, one can guarantee in addition that the errors of
the results lie within certain bounds (which are either produced along with
the results, or can be preimposed together with the initial data), then the
program is said to be numerically reliable.

Obviously, numerical reliability presupposes sequential reliability; if
a naive program is still claimed to be numerically reliable, then this can
only be meant conditionally.

§1.2. The evolution of a program

Given an applied mathematics problem, it is one of the tasks of
numerical mathematics to first of all set up a formal algorithm for the
solution procedure, and then from this develop a naive or, if possible, a
strict program. (Here we shall be satisfied, however, with naive pro-
grams.) Such a program, i.e., the detailed computational steps for the
solution of a problem, is always written in an internationally standardized
algorithmic language (e.g., IFIP-ALGOL, ASA-FORTRAN, etc.).
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The whole process can be explained by the following scheme.

Basic scheme for the solution of a problem on a computer

Point of departure Activity Domain of relevance
mathematical domain of analysis
problem

discretization
discrete math- domain of algebra

ematical problem
development of a
numerical method
formal algorithm numerical computation
in exact arithmetic
consideration of
finite arithmetic

Applied mathematics —

5;3 naive program numerical computation
g (quality of program in finite arithmetic

& ascertained only

g empirically)

'S strict program sequential reliability

‘5 (quality of program

£ guaranteed by

Z. rigorous proofs)

l

strict program numerical reliability
with a priori or

a posteriori error

estimates

§1.3. Difficulties

Just what kind of difficulties we may encounter in constructing a
program, i.e., in defining a computational process, will now be explained
in the case of a few miniature problems.
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A) To be solved is the quadratic equation
x> =742 x+2=0.

Proceeding quite naively, one obtains with 6-digit computation

x =371 £V137639 =371 £ 370.997,
X1 = 741997, Xp = 003,

where x,, as a small difference of large numbers, i.e., owing to cancella-
tion, has poor relative accuracy. However, one can easily determine x,
more accurately, namely according to

Xq =2/x1 =2/741.997 = .00269543.
For the solution of a quadratic equation
x> +px+q=0
we thus note: The absolutely largest root must be computed first; then the
smaller one can be determined by Vieta’'s rule.
This leads to the following piece of ALGOL program:
x1: = abs(p/2) + sqrt(pT2/4 — q);
ifp>0thenxl:=-x1;
x2:=q/x1;
However, this is still a naive program; it can only be applied as long as
1) the roots are real,
2) one doesnothavep =g =0 (x1 =x, =0),
3) p? is still representable in machine arithmetic.
The last cannot be taken for granted: in the example

x2-10" %% +10°° =0

the coefficients and the two roots x; = 10°®, x, = 1070 are represent-

able on a CDC-6000 computer, but p? = 10%% is not.

B) As a further example, we briefly touch on the solution of linear
systems of equations: Suppose one has to solve

1002x + 1003y = 1000
1003x + 1005y = 1000.
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In 4-digit arithmetic one obtains with Gauss elimination
x=1999, y=-1.000,

where these values, however, are quite uncertain because of cancellation.
Now, perhaps, the client persists on physical grounds that the solution is
sharply defined. One can react in two ways:

(a) Compute with more digits, which in the case at hand leads to
x =1.998000, y =-.998999.

This is meaningful if one deals with a purely mathematical problem, that
is, if the coefficients 1002, 1003, etc. are exact numbers. How absurd
this easy expedient of higher precision can be, is shown by the other
recourse:

(b) One returns to the origin of the problem. Perhaps it was

1000z + 2.2x +29y = .2
1000z + 2.9x + 54y =-2,

where z = x +y — 1. By substituting for z and rounding to four decimals,
one recovers the system of equations mentioned in the beginning. How-
ever, if the above double precision result is inserted into the original sys-
tem, one obtains, first of all, z = x +y — 1 =—.000999; but then, substitu-
tion into the left-hand side of the first equation yields .4995 instead of .2,
and in the second equation one finds —.5994 instead of —.2.

It would have been far better, here, to work with three unknowns:

22x + 29y + 1000z = 2
29x + 54y + 1000z = -2
x+ y- z = 1.

From this system one obtains, even with slide rule precision,
x=161, y=-61, z=-.00157,

which is a much better solution, since substitution into the left-hand side
of the first equation yields .203, and into that of the second equation,
-.195.
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The initially given system of equations also might have been the
normal equations of a least squares problem. In this case one would do
better to solve it by orthogonalization (see Chapter 5).

C) To be solved is a differential equation with strong damping:

y’ =5xy> — 1000y + sinx, y(0)=0.

Here, one would first look around for available programs for the numeri-
cal integration of differential equations. Most computing centers have for
this purpose a program for the so-called Runge-Kutta method. This (!) in
fact produces with stepsize A =.005 the useless results given in the
column y, of Table 1.1. In a case like this, only an extreme reduction of
the integration step will help — which entails an equally severe increase in
computational effort — , or one develops completely new methods. One
such method (%), indeed, yields the values in the column yp and with dou-
ble the stepsize £ = .01 even the practically identical values in column yc.
The exact solution, incidentally, is close to the function

Table 1.1. Numerical integration of a differential equation
with strong damping

X YA B Yc Yp

0.000 0 0 0 0

0.005 1.770830,0-5 4.006721,0-6 4.00672619—6
0.010 1969178104 8.999908,0—6 8.999895i0—6 8.999920,0—6
0.015 2.59004115-3 1.399952,p-5 1.399954,0-5
0.020 353322202  1.899882;0-5 1.899878,0~5 1.899885,,-5
0.025 4.840539:0-1  2.3997651p-5 2.39976810—5
0.030 6.463935 2.89958810-5  2.899582,0-5 2.899592:0-5
0.035 -1.8823104p2 3.399338,0-5 3.399343,5-5
0.040 —3.4378261049 3.8990041p—5 3.898995:—5 3.899010,0-5
0.045 overflow 4.39857210-5 4.39857810-5
0.050 4.898030,0—5 4.898019,p-5 4.898037,5—5

(1) Procedure rksstp in the program library of the ALCOR users group.

(2) Procedure damint in the program library of the ALCOR users group.



§1.3. Difficulties 7

1000 sin x — cos x + ¢~1000x

1000001 ’

yx) =

which satisfies the differential equation y’ =-1000y + sin x. Its values
are given in column yp of Table 1.1.

D) When devising a computational process, one constantly has to
keep in mind that something that is correct in pure mathematics can be
totally absurd in a numerical context. For example, (a —b)* and
a® —2ab + b? are not the same at all, numerically; in 3-digit computation
one has, say, fora = 15.6, b = 15.7,

(a-b)?=.1>=01,
a%? —2ab + b% =243 — 490 + 246 =1,

that is, the expanded form not even guarantees a positive result.
Likewise, in the expression

n
s = Z \/a% — 2a;b; cos Y + b}%
k=1

one cannot be sure that the root radicands turn out to be positive; even if
this were the case, individual terms of the sum may become rather inaccu-
rate because of cancellation. For example, with a =15.6, b =15.7,
v=5°, and again 3-digit computation, we have
a? =243, b? =246, 2ab =490,
cos Y= .996, 2ab cos y= 488,

thus

Va2 - 2ab cos y+ b2 =1

instead of the more accurate value v 1.87399 = 1.36894.

One might of course argue that these inaccurate terms are relatively
small, and hence in effect contribute little to the total error. This would
be quite true if it weren’t for the fact that through the square root the
small terms (and their errors) are enhanced in an undesirable way.

How, then, should one remedy this obvious deficiency? We use the
identity
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a® —2ab cos Y+ b? = (a — b)® + 4ab sin®*(/2 y)

and thus compute

s= 3 V(o — b +daghy s ().
k=1

In this way, every cancellation is eliminated. One obtains for the above
example, in 3-digit computation,

(a — b)? =.01, 4ab =980, sin®(‘/2 y) =.00190,

thus, in all, V.01 + 1.86 = 1.37, which lies well within the computing pre-
cision.

In summary, we conclude that in numerical computation many ways
of thinking that have become dear to us must be thrown overboard. In
extreme situations, for each individual problem, a method especially
appropriate for it must be developed from scratch. Under no cir-
cumstances is it advisable to copy formulas from books of pure
mathematics and use them indiscriminately for programming.

Notes to Chapter 1

§1.3 A detailed and unusually thorough discussion of the floating-point number sys-
tem and its implications can be found in Sterbenz [1974]. There, the reader will leamn, for
example, that computing the average of two floating-point numbers, or solving a quadratic
equation, can be fairly intricate tasks, if they are to be made foolproof. The quadratic
equations problem is also considered at some length in Young & Gregory [1972, §3.4],
where further references are given to earlier work of W. Kahan and G.E. Forsythe.

The fact that thoughtless use of mathematical formulae and numerical methods, or
inherent sensitivities in the problem, can lead to disastrous results, is illustrated by well-
chosen examples in Stegun & Abramowitz [1956] and Forsythe [1970]. Sometimes,
nearby singularities will also cause the accuracy to deteriorate, unless corrective measures
are taken; Forsythe [1958] has an interesting discussion of this.

To assess the errors in the final answers of a long computation is still a formidable
task. There are two general approaches that deserve to be briefly mentioned here — back-
ward error analysis and interval arithmetic. In the first, one attempts to interpret the
computed answers as the exact answers to a slightly perturbed problem and one seeks to
estimate the perturbation involved. If one knows, then, how strongly the solution of the
problem reacts to small perturbations, one can estimate the error in the computed solution.
The reader is referred to Wilkinson [1963] for a systematic and skillful application of this
idea to problems in algebra and linear algebra. The goal of interval arithmetic, on the
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other hand, is to produce intervals that are guaranteed to contain the desired answers.
This is achieved (at a cost) by operating consistently on floating-point intervals, rather
than floating-point numbers. Enclosing also the initial data in appropriate intervals allows
one to study the effect of uncertainties in the data. Good accounts of interval analysis and
some of its applications can be found in Moore [1966], [1979]. Interval analysis is basi-
cally an a posteriori approach, i.e., error bounds are produced only after the computation
has been completed. For generating a priori bounds, a new version of error arithmetic,
developed by Olver [1978], appears to be more promising.
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CHAPTER 2
Linear Equations and Inequalities

The solution of systems of linear equations (briefly called equations)
is probably the most important type of numerical computer application,
because countless problems in applied mathematics ultimately — if only
approximately — can be reduced to linear equations. Not surprisingly,
therefore, interest in this problem has grown enormously in the computer
age; what previously was viewed as tedious work has since become a leg-
itimate and actively pursued area of mathematical research.(!)

The problem itself is rather simple: Desired are » numbers, denoted

by x1,x2,..., X,, Which are subject to n conditions in which, however,
they enter only linearly:
anxy+apxy+ o +apx, tapp= 0
anxy+anpnxy+ - +axyx,+axy= 0
¢))
Ap1X1 + ApoXo + 0 F AuuXpy + a0 =0.

Here the coefficients a;, have prescribed values and the x, are to be deter-
mined numerically. The gy are the constant terms which are sometimes
given a different name, say by,b,, ..., b,, or are sometimes appended to
the coefficient matrix as (n+1)st column @ 41,82 5415 - - » Appt1-

It is customary to write down such equations in a compact form,
say:

! Compare, e.g., Forsythe G.E., Moler C.B.: Computer Solution of Linear Algebraic Sys-
tems, Prentice-Hall, Englewood Cliffs, N.J., 1967.
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Y, auxy +a0=0 (k=12,...,n), )
t=1

which can also be written in matrix form as

Ax+v=0. 3
Here,
Cxy
X=
b xn -

denotes the desired solution vector,

aing - . . Qin
A=
| ap1 - - . Qup i
is the coefficient matrix, and
aio
V=
= ano -

the constant vector. From (3) one obtains the solution at once as

x=-A"ly. 4)

From a purely mathematical point of view, the problem is solved by
(4), but for numerical purposes nothing is gained by it; on the contrary,
the formula (4) embodies a suggestive force that has often misled uncriti-
cal programmers in unpleasant ways. Indeed, the inverse matrix is inap-
propriate as a tool for the numerical solution of linear equations, and the
computation of A~! is more a detour than a help. Of course, also the
numerical analyst often, and gladly, makes use of the inverse matrix as an
aid for theoretical investigations; he may even compute it once in a while,
but hardly ever to determine the solution of a large system of linear
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equations by means of (4)(}).
§2.1. The classical algorithm of Gauss

The linear equations (1) to be solved are written as a tableau:

X1 X2 T Xn 1

0= | an an -+ ap | ap

0= | axn an as, | ap
. ; )

0= an1 ap2 Ann ano

Such a tableau ~ filled with concrete numbers when actually used — is to
be understood in the following sense: The sum of the products of the
entries in a row and the corresponding quantities on top of the tableau
(the so-called header row) is always to yield the value at the left margin
of the row. If the prescribed row values, as here, are equal to 0, they can
also be omitted. According to this convention, the tableau (5) indeed
means the same thing as the system of equations (1); the latter, however,
is to be solved now with the help of the tableau.

Since the row values of the tableau are equal to 0, the rows can be
permuted at will, multiplied by constants, and added to one another. We
begin by dividing the first row by —a;; (where we tacitly assume that
ap #0):

X1 X9 ce X, 1
-1 ¢z 0 Cwm | Cro
a; an a2n | 420
: (6)
ani ap2 Qnn ano
WithCu =—a1¢/a“ (5=1,2,..., n,O)
and then add (for k =2,3,..., n) ax;-times the new first row to the kth

row; we obtain:

1 On some parallel computers there may be an advantage in computing A~ explicitly
when solutions for many vectors v are desired. (Translator’s note)
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X1 X2 s Xp 1
-1 I_CL2. T ‘1 | G0
0 as as as
| 922 2n 20 7
T )
i I * * *
0 | Gn2 Ann ano
witha}y =ay +a;cy (=23,...,n0=23,...,n0).
This tableau, which is equivalent to (6), contains:
a) a terminal equation, which can also be given the form
n
X1 =C10+ 2 CuXe, )]

=2
and

b) a reduced tableau which corresponds to n—1 equations in the
n—1 unknowns x,,xs3,..., X,. As soon as the latter have been solved,
(8) immediately yields also the missing unknown x;.

The reduced tableau is now treated in the same way: its first row
(the second of (7)) is divided by —a3,, which produces another terminal
equation with coefficients ¢ =-a3, /a3;. Through addition of multiples
of this terminal equation to the remaining rows, one obtains a further
reduced tableau with n—2 unknowns and coefficients aj;, etc. Eventually,
one arrives at a scheme of n terminal equations

X1 Xo X3 X4 s X, 1
-1 ¢ c3 ¢4 0 cmm | Cio
8 —01 0213 C24 Can | C20
- C34 C3in | C30 ©)
0O 0 0 0 1| ey
from which one successively determines x,,x,_1, ..., X2,X1 according to
X =Cro + zn‘, cx, Kk=nn-1,..., 1. (10)
t=k+1

The procedure described by (10), which follows immediately from the
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equation (9), is called back substitution.

Example. A polynomial ag + a;x + ayx? of degree 2 is to be con-
structed in such a way that it agrees at x = 1,2,3 with y(x) = 1/x. This
problem is solved by the following tableaus:

problem statement:

ap ay as 1
0= 1 1 1 -1
0= 1 2 4 - —;- an
—_ 1
0= 1 3 9 -5
first reduced tableau:
ao a, aj 1
-1 -1 -1 1
1
0 1 3 >
0 2 8 %

ap ai as 1
-1 -1 -1 1
1
0 -1 -3 - ?
0 0 2 -5
third reduced tableau:
ap ay aj 1
-1 -1 -1 1
1
0 -1 -3 — ?1
11 1
= 1 5

From the third reduced tableau (with the terminal equations) the a,,a;,a¢
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can be determined one after another by (10); it is expedient to write them
in turn at the bottom of the terminal tableau. As a result, we obtain the
polynomial

+ (&= 6x +10).
Row interchanges. Up until now, the possibility was ignored that

one of the quantities by which one must divide (a11,a3;,a3%, etc.) could
be 0. In the example

X1 X2 X3 X4 1

1 2 3 4 0
1 2 4 6 | -1 (12)
1 3 6 9 | -1
1 4 9 16 0

this situation is encountered after the first step:

-1 2 3 -4 0
0 0 1 2] -1
0 1 3 51 -1
0 2 6 12 0

Since we now have aj; = 0, one interchanges the second and third equa-
tion, and then proceeds with the computation. The second reduced
tableau (after the interchange) reads:

X1 X2 X3 X4 1

Since a43 accidentally became O, the third and fourth step can be carried
out together; one obtains directly the terminal equations:
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-1 2 -3 4 0
o -1 3 -5 1
0 o -1 2 1
0 0 0 -11]-1

1 3 3 -1
At the bottom of this terminal tableau we again have the solution.

Note: If the matrix A is indeed nonsingular, one always gets through
with suitable row interchanges. Nevertheless, interchanges should be
made not only when a divisor becomes 0, but already when it has become
small. We shall return to this point in §2.4.

§2.2. The triangular decomposition

The scheme (9) of terminal equations contains all the information
necessary for the calculation of the unknowns. Still, with a view towards
the computer organization of the computation, one has to ask oneself
whether filling in the lower half of the scheme with zeros is really mean-
ingful. After all, one knows that there have to be zeros in those places
and numbers —1 on the diagonal.

As a matter of fact, in passing from the scheme (5) to the scheme
(7), one realizes that by inserting the —1 and the zeros into the first
column one pushes away precisely those row factors a11,d51, ..., @1
which could provide information as to how the scheme (7) has been com-
puted. Likewise, in the next elimination step, one displaces the row fac-
tors a3,,a%,, . .., a,, which have served for the calculation of the second
terminal equation and the coefficients aj; of the n—2 reduced equations.

Considering that this history of successive generation is of impor-
tance in many respects, it surely would be more appropriate not to replace
these row factors a11,d215-- .5 @u1> G325 ..., Ana, 33, ... by 0 and -1,
respectively. We rather leave them at their places, but henceforth denote
them by b instead of a, and without asterisks (but with the same indices).
In this way the terminal scheme takes on the form
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X1 X2 X3 te Xn 1
|
bui ¢z c3 0 cm | Ccw
by b I_C:z3_| €2 | €20
bs1 b3y b3 i C3n | C30 (13
. - )
N - — ]
bnl bn2 bnS bnn Cro

It is called the BC-scheme('). The pth elimination step evidently consists
in renaming the elements in the first column of the reduced equations by
bpps bpi1ps- - -5 bnp, and letting them stay where they are, while the
coefficients of the first of these reduced equations are divided by —b,,,
thus giving rise to the terminal equation coefficients ¢, .41,

Cpp+2s - - - Cpns Cpo-
Xp cccox, Xpa Xn 1

byp Copp+l =" Cpon | Cpo

Thereafter, to each element in the hatched region one adds a product
b x ¢, namely by,cp, to the element in position [k,£]. With that, the pth
system of reduced equations is completed.

The element in the position [k,£] during the course of the complete
elimination eventually will end up in the first row or column of a system
of reduced equations, namely

(a) if k =¢, in the first column of the (¢ — 1)st system of reduced

equations, and remains there unchanged as by,

(b) if k< ¢, in the first row of the (k — 1)st system of reduced
equations, and then becomes after division by —by, the termi-
nal equation coefficient ¢y, .

Consequently, fork = ¢,
¢-1
by =ay + Z bkpcpz (15)
p=1

1 This scheme of course must not be read according to our convention of §2.1. (Editors’
note)
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or
n
&y ==Y, bipCpt, (16)
p=1
provided one sets ¢y, =—1 and ¢, =0 forp > £. For k < ¢ one has

k-1
Cr =—(au + Y, bipCpt Vb an
p=1
or
n
@y ==Y, bipCpt, (18)
p=1
if one defines by, =0 forp > k. By (16) and (18), A is a matrix product,
A=-BC, (19)

where the matrices B and C are defined as follows:

by 0 0 - - - 0] (1 ¢12 €13 . . . C1n]
by by O 0 0 -1 €23 Con
by b3y b 0 0 0 -1 C3n
B= , C=
bnl bn2 bn3 bnn 0 0 0 —1
One thus has:

Theorem 2.1. The Gauss elimination algorithm, if it can be com-
pleted without row interchanges, achieves the decomposition of the coeffi-
cient matrix A into a product of two triangular matrices.

The equations (17) and (18), of course, are valid also foré = 0:

k-1
cxo =—(@ko + X, bipCp0)/buk, (20)
p=1

or

n
aro =— z bkpcpo.
p=1
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This can be interpreted as

v=— Bw, 2D
if in addition to the constant vector v = [@19,d20,- - - » a,,o]T one intro-
duces also the vector w = [C10,C20, - - - » c,,o]T. (The superscript T means

‘‘transposed’’.) Therefore, during the elimination process one also solves
the additional system

Bw+v=0. 22)

If one now substitutes A =—BC and (21) into the original system of
equations, one obtains — BCx — Bw = 0 and thus

Cx+w=0. 23)

These, however, are precisely the terminal equations to which the elimina-
tion process has reduced the given system.

We now recognize how Gauss’s algorithm works:

(1) The matrix A is decomposed into the factors B and —C. (This
operation takes place solely in the space of the matrix, and is called tri-
angular factorization.)

(2) The system of equations Bw + v = 0 is solved. Owing to the tri-
angular form of B, one can give explicit formulae [cf. (20)] for this pro-
cess, called forward substitution:

k-1
We=— W+ X bpwlbw (k=12,...,n). 24)
p=1

(3) The terminal equations Cx + w = 0 are solved, which is called
back substitution and can also be described by explicit formulae [cf. (10)]:

n
Xe=wi+ Y, cuxy (k=n,n-1,...,2,1). (25)
{=k+l

One can carry out these three processes either separately, or, by
including the constant vector in the tableau and subjecting it to the same
transformation — as was done above — one can fuse the triangular decom-
position and forward substitution into one process (the so-called elimina-
tion); then only back substitution remains to be done, for which the
matrix B is not required.
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Example. To the system of equations

0=
0=
0=
0=

X1 X2 X3 X4 1
5 7 9 10 | -1
6 8 10 9 | -1
7 10 8 7 | -1
S 7 6 5 | -1

(26)

we first apply the second of the two variants, that is, the constant vector is
carried along. We let the row factors stay in their places. After four

elimination steps

there results the BC-scheme, from which one infers the matrices

X1 X9 X3 X4 1
51 14 -18 2| .2
6 -4 -8 =31 .2
7 2 46 -7 1| 4
5 0 -3 =S 10
X1 Xy X3 X4 1
5 {_—-_1_.4 -1.8 21 .2
6 -4 -2 7515
7 2 -5 -85} .5
5 0 -3 -5 0
X1 X2 X3 X4 1
5 !_:_1;_1__ -1.8 -2 2
6 -4 _-2_-15 5
7 2 -5 ! -17 1
5 0 -3 d 1 =3
X1 X2 X3 X4 1
5, -14 -18 2| 2
6 -4 _ -2 -15 5
7 2 =S 1 =171 1
5 0 -3 1 3

@7
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5 0 0 0 -1 -14 -18 -2
6 -4 0 0 0 -1 -2 -75

B=l7 2 5 o €] 0 o -1 -17/@®
5 0 -3 .1 o 0 0 -1

and the vector w=1[.2, .5, .1, 3]T. Back substitution according to (25)
then yields the solution:

X4=3,

x3=.14+(-17)x3=-5,

Xp=.5+(-75)%x3+(-2) X (-5)=-12,

x1 =24+ (2)%X3+(-1.8) X (-5) + (-1.4) x (-12) = 20.
If the constant vector — according to the first variant — would not have

participated in the transformations, that is, if in (27) the last column were
missing, one could produce it by the forward substitution (24):

w) == (=1)/5=2,

wy == (-1+ 6 X 2)/(-4) = 5,
wy3=—(-1+7%X.2+.2X.5/(-5)=.1,
ws=—(-1+5x2+(3)x.1)/1=3.

Subsequently, back substitution, as above, would again give the solution
vector X.

§2.3. Iterative refinement

The separate treatment of the three processes: triangular decomposi-
tion, forward substitution, and back substitution, is especially useful
when, at some later time, a system of equations with the same coefficient
matrix, but new constant terms, has to be solved again. Then the second
solution in fact requires only forward and back substitution, for which the
matrices B and C obtained in the first solution by decomposition of A can
be reused without change. In this sense, the matrices B and C together
are equivalent to the inverse matrix Al

As an example, we consider the so-called iterative refinement. sup-
pose we test the computed solution vector x of the system Ax + v =0,
i.e., simply evaluate this expression through substitution. Because of the
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inaccuracies of the computation one obtains a residual vector
Ax+v=yvy, 29

which will be different from 0 in general. Thus, x is not the correct solu-
tion. One therefore tries a new corrected x + x;, with the aim of making
A +x1) + v=0. Inview of (29), this is equivalent to

Ax; +vy =0, (30)

This system of equations for the correction x; indeed has the same
coefficient matrix A and can be solved by forward and back substitution:

Bw; +v; =0 - wy,

Cx;+w; =0-> x;.

Numerical example. Suppose x=[-.052, .2, .004, .184]7 has
already been computed as a solution of the system of equations

X1 X2 X3 X4 1

0= 5 7 9 10 | -3
0= 6 8 10 9 | 3
0= 7 10 8 7 | -3
0 5 7 6 5 -2

One has Ax=[3.016, 2.984, 2.956, 2.084]7 and thus v; =Ax+v =
[.016, —016, —044, .084]7. The matrix A was already used in (26), and
its triangular decomposition has been noted in (28). Forward and back
substitution results in the values of wy=[w{D,..., wiPT and
x; =[xV, ..., x{V17 shown, respectively, at the bottom of the two fol-
lowing tableaus:

wid  wi) W) WD 1
5 0 0 0 016
6 -4 0 0 | -016
7 2 -5 0 | -044
5 0 -3 1 084

-0032 -088 -.0168 -1.184
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D A xD 1

-1 -14 -18 ) —0032
0 -1 ) -75 | -.088
0 0 -1 -17 | -0168
0 0 0 -1 | -1.184

-7.948 438 1.996 -1.184

We thus obtain the improved solution x + x; =[-8, §, 2, ——l]T. As one
easily checks, this solution satisfies the equation exactly.

Here the correction is substantially larger than the original solution
x, and this in spite of the small residual vector v = Ax+ v. One sees
that even for a rather inaccurate solution, the equations can be almost
satisfied.(!)

§2.4. Pivoting strategies

Until now, the terminal equations have been obtained by always
dividing the first of the reduced equations by its first coefficient. These
divisors, which appear as diagonal elements b11,b,, ..., b,, in the BC-
scheme, are called pivot elements and must of course be different from
zero. If, however, in the pth elimination step it tumns out that by, =0,
then the first reduced equation must be exchanged with another, whose
first coefficient does not vanish. If, say by, # 0, then rows & and p of the
scheme (14) are exchanged — the whole rows, of course. Therefore, the
old b, will be used as pivot element; yet, it has been brought to the posi-
tion of b,,.

The question now arises as to what criteria are to be used for select-
ing the substitute pivot element by,. For numerical computation, it is
indeed not only the case b,, =0 which is troublesome, but also the case
where by, is very small in absolute value. We must not wait, therefore,
until b,, =0, before we look for a substitute; rather, the question is
always which of the elements by,, by+1p, - - - » byp in the first column of
the reduced system is the best pivot element in the pth elimination step
(and this for all p).

1 To have such a large correction is not typical for practical computer computations where
more significant figures are held, but the small residual is typical. (Translator’s note)
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Every selection criterion for deciding this question is called a pivot-
ing strategy. Up until now, we used the diagonal strategy, ie., we
selected as pivot elements in tumn the diagonal elements, without any
interchanges whatsoever. The diagonal strategy of course is not generally
applicable, since at any time it can trigger division by 0, even if in the
original coefficient matrix all diagonal elements are # 0. Besides, also
small diagonal elements are dangerous, as the following example (in
four-digit computation) shows:

System of equations:

X1 X2 1

0= | .00031 1|3
0= 1 1 | -7

BC-scheme:

X1 X9 1

00031 | —3226 | 9677

1 —3225 | 2.998

One obtains x; =2.998, then x; =9677-3266 x 2.998 = 5.000,
which, owing to cancellation, is totally unreliable.

Nevertheless, one has:

Theorem 2.2. The diagonal strategy is always acceptable, if the
coefficient matrix A is diagonally dominant, i.e., if in each row the diago-
nal element is larger in absolute value than the sum of the moduli of the
off-diagonal elements.(!) (The proof by mathematical induction is
straightforward.)

Partial pivoting strategy. In order to safely avoid the dangerous
zero in the choice of pivots, most programmers select as pivot element in
the pth elimination step simply the absolutely largest of the elements b,
bps1,ps - - - » byp in question. If by, denotes this pivot element, one then

1 It would suffice to assume that the matrix A is regular and weakly diagonally dominant
(i.e., in each row the diagonal element is not smaller in absolute value than the sum of the
moduli of the off-diagonal elements). (Editors’ note)

Another instance in which the diagonal strategy is permissible is when A is symmetric
and positive definite; see Chapter 3. (Translator’s note)
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interchanges the kth and pth row of the scheme, and carries out the elimi-
nation step. If, however, among those elements none is different from
zero, the matrix A is singular and, at any rate, a unique resolution of the
system of equations is not possible.

In the above example, this simple partial pivoting strategy yields the
BC-scheme
X1 X2 1

1 L | 7
00031 9997 | 2.999

from which there follows x; = 4.001, x, =2.999, exact to four decimals.

Complete pivoting strategy. This strategy consists in locating the
pivot element not just in the first column of the matrix of reduced equa-
tions, but determining instead the absolutely largest element in the whole
matrix of reduced equations. This maximum element is then brought into
the position of a,, by an interchange of rows and columns.

Now, while the partial as well as the complete pivoting strategies
are much better than the diagonal strategy, they are not effective in all
cases. For example, in

X1 Xo X3 1
2 1 1 1
1 10—10 0 0
1 0 10-10 | O

the element a;; is clearly the absolutely largest element in the first
column as well as in the whole coefficient matrix. Both strategies there-
fore would select this element as pivot element; after one step one then
obtains the scheme

X1 %) X3 1

2l -5 _5|_5s
1 [ -5 -5 -5
11 -5 -5]|-5

since —.5, added to 19—-10, in 8-digit arithmetic, again gives —.5. Thus, the
reduced equations have become linearly dependent (in fact identical); a
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unique solution is impossible.

After an interchange of rows 1 and 2, on the other hand, we obtain
in the first step

X1 X2 X3 1
1l 10 0o |o
2 i 11
1| —1-10 10-10 | O

and at the end the BC-scheme

X1 X3 X3 1
1| -10-10 0 | 0
2 1 -1 1-1
1 —10-10 "2,-10 | =5

As solution one obtains x = [5o—11, —.5, —.5].

Why is the pivot element 1 here better than the 2? Rather conspicu-
ously, the 1 dominates the elements in the same row much more than is
the case with the 2. This fact suggests the next strategy:

Relative partial pivoting strategy. In the first column of the matrix
of reduced equations one selects the element as pivot element which, rela-
tive to the other elements in the same row, is the largest, i.e., one deter-
mines

max ————,
pSjsn Z |ajk |
k=p+1
where a; (j,k=p, ..., n) are the coefficients of the reduced equations at
the beginning of the pth elimination ). (One has of course a i» = b, for
j=p,...,n)

For the example above, the quotients in the first elimination step
(p=1) are 1 (j=1), 1010 (j=2), 1010 (j=3). As first pivot one therefore
has to take a,; or as;.

21 Y, lazl =0 for some j, it is true that the maximum becomes infinitely large, but

kzp+l, . . . .
then als’g: in this case, one has to select the jth row as pivot row. (Editors’ note)
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Relative complete pivoting strategy(®). It is natural to seek a combi-
nation of the relative partial pivoting strategy and the complete pivoting
strategy and to select among all elements of the matrix of reduced equa-
tions that one as pivot which, relative to the sum of the moduli of all ele-
ments in the same row, is the largest. It moreover turns out to be espe-
cially advantageous to include in the row sum also the elements b with
k < p, which, after all, are known at the beginning of the pth elimination
step. For determining the pivot element, one thus selects an index pair
[j,£] for which the maximum

Iaﬂl

p-1 n
Z ijk""z Iajkl
k=1 k=p

max
psSjtsn

is attained.

§2.5. Questions of programming

One has to keep in mind that the solution of the system of equations
(1) is carried out on a computer and that, therefore, the coefficient matrix
A together with the constant terms have first to be stored as array a[1:n,
1:n+1]. (The constant terms are now denoted by alk, n+1].)

The schemes derived from the initial tableau, placed in the array a,
which always consist of terminal equations, row factors and reduced equa-
tions, are now stored in the same array a, and, naturally, this is true also
for the BC-scheme obtained after n steps. At the end of the elimination,
alk,t] therefore contains the element b, or ¢, of the BC-scheme,
depending on whether k£ 2 ¢ or k < £, respectively.

At the beginning of the pth elimination step, on the other hand, one
has [replace p by p—1 in (14)]
by if k2¢ and ¢ <p,

alkll=y ¢ if k<t and k<p;

in all other cases (k=2 p and £ 2 p), a[k,¢] is a coefficient of a reduced

3 Section added by the Editors. This strategy has been used by H. Rutishauser in the pro-
cedure liglei, which he has programmed for the computing center of the ETH, and which
is published in: Gander W., Molinari L., Svecovda H.. Numerische Prozeduren aus
Nachlass und Lehre von Prof. Heinz Rutishauser, Birkhaduser Verlag, Basel, 1977.
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equation.

In this way, the whole Gauss elimination process takes place in the
array a[l:n, 1:n+1], which means that one can get by with n®+n
storage cells.

However, the transition from the given scheme to the BC-scheme
can be accomplished in different ways, quite apart from the fact that one
can treat the constant terms either concurrently as (n+1)st column of the
array a, or divorced from the coefficient matrix (now stored as array
a[l:n, 1:n]) as vector array v[1:n]. Eventually, back substitution still has
to be carried out.

The classical method of Gauss reduces the given equations step by
step to reduced equations with less and less unknowns and at the same
time builds up the terminal equations; the pth step has the form:

begin
for ¢ := p+1 step 1 until n+1 do
alp,t]l:==-alp,tl/alp.pl;
for k ;= p+1 step 1 until n do
for ¢ := p+1 step 1 until n+1 do
alkt]l=alktl+alkplxalp,t]
end;

The first for-loop here sets up the new terminal equation, while in the
second part of this compound statement the reduced equations are being
transformed. As to the row factors a[k,p ], we don’t have to worry, since
they remain unchanged at their places. Note also that the transformation
of the constant terms is accomplished by always letting the index ¢ run up
to n+1 [cf. (14)].

The complete elimination consists in executing this statement for
p=12,..., n, where it is to be noted that for p=n only the single opera-
tion a[n,n+1]: =—aln,n+1)/aln,n] occurs.

An important variant, the columnwise elimination, exploits the fact
that by (15) and (17) each element of the BC-scheme can be built up
directly from the corresponding coefficient a, and certain products by;cj,
of b- and c-elements. Since only c-elements above g, and b-elements to
the left of it are required, one can compute in turn, first by (17) with
k=1,...,¢ -1, and then by (15) with k =¢,¢ + 1, ..., n, the quantities
Cles Cos-n»s Co—14> bygs by r14s ..., by, Once all b-elements in columns
1tof — 1 are known. This is accomplished, for example, by the program
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begin
for k:=1step 1 until £ — 1 do
begin
s:=alkt];
for j:=1step 1 until k- 1 do
s =s+alk,jl xalj,t];
alk,t] =—s/alkk]
end;
for k :=¢ step 1 until n do
begin
s:=alkt];
for j:=1step 1 until{ — 1 do
s=s+alk,jlxalj,t];
alk,tl] =s;
end
end;

For complete elimination, this is executed for ¢ =1,2,..., n+1.
Since here, for £ = n+1 (and only in this case), one treats precisely the
constant terms, a possibility is indicated of computing separately the BC-
scheme and the vector w. (Note that for £ = n+1 the second k-loop is
empty.)

This separation is achieved by executing the above statement only
for¢ =1,..., n, and then, for{ = n+1, by writing v[j] in place of a[},¢].
This corresponds precisely to the forward substitution according to for-
mula (24):

for k ;= 1 step 1 until n do
begin
s =v[k];
for j := 1 step 1 until k-1 do
s=s+alk,jlxv[j];
vik] :=—-s/alk,k]
end;

Here also, one works ‘‘in place’’.
Finally, there comes the back substitution according to (25):

for k := n—1 step -1 until 1 do
begin

s:=v[k];

for j := k+1 step 1 until n do
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s=s+alkjIxvlj];
vik] ==+
end;

(Here, v is already the solution vector; the original constant terms are des-
troyed.)

Interchanges. If one has to interchange two rows p and £, one has to
keep track of the indices. For that purpose one introduces an integer vec-
tor integer array z[1:n] which initially is filled with z[k]:=k. Later,
z[k]=p is to signal that the original pth row resides in position £. In order
that this always works, the interchange of the rows ¢ and p is done as fol-
lows (only in the matrix part, for the time being):

for j := 1 step 1 until n do
begin
h=all,jl;
alt,jl:=alp.,jl;
alp,jl==nh
end;
i=z[L];
z[l]1=z[p};
z[pl =1

Now, given a constant vector v, one will first reload:

for k := 1 step 1 until n do
x[k]:=v[z[k]];

and then work with the constant vector x. In summary, we obtain the fol-
lowing procedure gaukos for the solution of linear systems of equations:

procedure gaukos(n,a,v,x,z,sing);

value n;

integer n; array a,v,x; integer array z; label sing;

comment if n > 0: building - up of the bc-matrix columnwise
from left to right. pivot choice according to the partial
pivoting strategy. row interchanges to bring the pivots into
the diagonal. thereafter forward and back substitution.
if n < 0. only forward and back substitution, it being
assumed that the bc-matrix is already stored in a and the
row interchange vector in z,

begin
real h,s,max;
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integer i,j.k,¢,p;
boolean rep;
rep = (n<0);
n := abs(n);
if rep then goto con;
for k ;=1 step 1 until ndo z[k] := k;
comment triangular decomposition;
for ¢ := 1 step 1 until » do
begin
comment first the coefficients of the terminal equations
are computed in column{;
for k := 1 step 1 until /-1 do
begin
s=alkt];
for j :=1 step 1 until k-1 do
s:=s+alk,jlxaljll;
alk,t] :=—sl/alkk];
end;
comment the remaining coefficients of column { are computed
and at the same time their largest is determined as pivot,

max = 0;
for k :=¢ step 1 until » do
begin

s:=alktl;

for j:=1 step 1 until {-1 do
s:=s+alk,jlxalj,tl;
alkt] =s;
if abs (s) > max then
begin max = abs (s); p = k; end;
end for k;
if max = 0 then goto sing;
comment if necessary, interchange rows { and p;
if p #¢ then
begin
for j :=1 step 1 until n do
begin 4 :=all,j]; alt,j]1 :=alp,j}; alp,j] := h; end;
i=z[t]; z[l]:=z[p} z[p] =1;
end if p;
end for¢;
comment forward substitution;
con. for k:=1step 1 until ndo x[k] :=v[z[k]];
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for k£ ;=1 step 1 until n do

begin
s=xk];
for j:=1step 1 until k-1 do s :=s+alk,jl X x[j];
x[k] :=-s/alkk];

end for k;

comment back substitution;

for k := n—1 step —1 until 1 do

begin
s =x[k];
for j:=k+1 step 1 until ndo s :=s+alk,jl X x[j];
x[k] =s;
end for k;
end gaukos;

§2.6. The exchange algorithm

We consider s linear forms in ¢ independent variables:
t
Y=Y ayx, (k=1,...,59).
t=1

For the time being, this should not be taken as a system of equations

€29

but

merely as a fixed relationship between the s+t variables xq,..., x,
¥Y1i».-.., Y5, by means of which the y;, ..., y; can be computed from the
X1i,..., X, Written as a tableau:
X1 X2 T Xt
y1= | én 4 an
Y2= | 621 a4z ax
. . (32)
Vs = as1 as2 g

From this, one can now obtain a new tableau by solving, say, the

pth linear form for the variable x,:

1
Xg == [YP -2 aplxtJ )

(33)
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and subsequently substituting this expression in the remaining equations:

akq akq
we= T aur+ Ly~ =L T ayx,  (k#p)

t#q g Apq t+q
or (34)
a gy
yk='—kiyp+2[akt_ qp]xc (k #p).
Gpq t#q Apq

This exchange assumes that a,, # 0.

Example. The tableau

corresponds to the relations
d=3a+2b+c, e=5a-b-3c

For the exchange of b and d, one obtains from the former relation first
b =-15a + .5d — .5¢, and then from the latter, e = 6.5a — .5d — 2.5¢.
Written as a tableau:

a d c
b= -1.5 5 -5
e= 65 -5 =25

The above formulae for x, and the y, (excluding y,) are again s
linear forms in ¢ variables, only the variables y, and x, have exchanged
their roles. y, is now an independent, x, a dependent variable. This can
be expressed in the form of a new tableau:
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X1 Xg-1 Yp Xg+1 Xt

— * * *

yr = an aiq aij:
Yp-1 =

— * * *

X¢ = | Gp1 Qpq Qpt
yp+1 =

_ * * *

Ys - as1 asq Qs

(35)

By examining the formulae (33) and (34), one sees that the
coefficients aj, of the new scheme (35) are defined as follows:

Apq = 1/ ay,

Apy == Apldpg ¢t=1,...,q-1, g+1,...,0

Alg = Aiglay, k=1,...,p-1, p+1,...,5) (36)
A, a

ay =ay — ka7pt k=1,...,p=-1, p+1,...,5;

Qpq

t=1,...,q-1, g+1,...,0).

It is true, though, that in practice one proceeds differently: Since ay,
and ay, are always stored as a[k,£], one must be careful to no longer use
any ay for which the corresponding aj, has already been formed. This is
the case with the following arrangement:

apg = 1/ay,
a;t="ap£a;q (5=1,.-.,q—1,q+1,..
Ak = agy + AigQpy k=1,...,p-1, p+1,.

t=1,...,9-1, g+1,..
Aig = Grqlpg k=1,...,p-1, p+1,...

A

1)

ey S 37

-

)]

, §).
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The transition described by the formulae (36), resp. (37), from
scheme (32) to the scheme (35) is called exchange step with pivot element
Apg-

Applications. The idea of the exchange step can be exploited in
many different ways:

A) Let a tableau be given with s = ¢ = n dependent and independent
variables:

X1 X2 Xpn

Y1 = an ap a1n

Y2 = an a Ao
. . (38)

Yn = an1 ap2 Ann

This corresponds to the relation y = Ax with the square matrix A = [ay].

Now after a variable x,, has been exchanged for y, , one can apply
to the resulting tableau {aj,} an additional exchange step, by further
exchanging, say, x,, for y, , provided a; ,, #0.

Under appropriate conditions this process can be repeated so often
until all variables x, have turned into dependent, and all y, into indepen-
dent variables. In the final scheme we then have on top only y-variables,
and on the left only x-variables, both, to be sure, in arbitrary order. How-
ever, by appropriately permuting the rows and columns of the final
scheme, it will assume the following form:

Y1 Y2 Yn
X = 01 02 A1p
X2 = 01  O22 Op
Xpn = Oy V) Oy

n
One thus has x; = Y, O, i.€., the matrix {0y} is the inverse A7l of A.

k=1
We have found a numerical method of matrix inversion.
1 10
Example. We compute the inverse of A = 1 5} . The pivot ele-
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ments are put in boxes.

X1 X2 X1 Y1 Y2 Y1
y1i=11 X2=]-1 .1 X2=|-2 2

y2=11 5 =>}’2= S5 =>X1= 2 -1

Permuted:

Y1 Y2

X1 = _ —
! U2 e, At =] 2]
Xp=| 2 -2 2 -

This inversion, naturally, is subject to certain conditions: In each of
the n exchange steps one must be able to find a suitable pivot element,
which can only be an element different from O at the intersection of an x-
column and a y-row (one wants, after all, exchange an independent x for a
dependent y).

This last condition, as the exchange proceeds, restricts the possible
choices more and more, until in the last (anth) step one has no choice
whatsoever, since there is only one column headed by an x and one row
labeled on the left by a y; the element at the intersection therefore must
be taken as pivot.

It goes without saying that also for the matrix inversion one must
develop suitable pivot strategies. The points of view are the same as in
Gauss’s algorithm (diagonal strategy, partial pivoting strategy, etc.),
although in practice one does not bring the pivot elements into the diago-
nal, through interchanges, but lets them stay in place. Only in the final
tableau are rows and columns permuted to obtain the inverse.

In the following example we apply the complete pivoting strategy:
in the tableau

X1 X2 X3
y1 1 2 3
Y2 = 2 3 4
y3 = 3 4
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the 5 is the absolutely largest element. A first exchange step with this
pivot yields:

X1 X2 Y3
y1= -4 6
¥y = -4 -2 8
X3 = -6 -8 2

Here, among the four elements located in x-columns and y-rows, —.8 is the
absolutely largest. It becomes the second pivot:

1 X2 Y3
Xy = -125 -5 5
Yo = 5 0 5
X3 = g5 -5 =25

Now only one x-column and one y-row remain; hence 0 at the intersection
must be taken as pivot element. Since this is not possible, the process at
this point breaks down; no inverse can be computed. The matrix is singu-
lar.

There is something, however, that can still be done. The 0 in ques-
tion is obtained from 3 by subtraction, and therefore, in general, is subject
to rounding errors, which in 6-digit computation, ought to be of the order
of magnitude ;,—6. We therefore make things only a little worse if on top
of this expected error we graft an additional error ;o—8 and replace O by
10—8. After that, one can go on with the computation and finds:

Y1 Y2 Y3
X1 = 2.5107 —5107 2.5107
x2= | =S107 108 5107
X3 = 2.5107 —5107 2.5107

Of course, this is not the actual inverse, which here does not even exist,
but it is a matrix B for which AB-I agrees with the zero matrix within
the error bounds to be expected. (The elements are sums of products of
the order of magnitude 198 in 6-digit computation.) The practical
significance of the final tableau here lies in the fact that it makes the
dependence of the columns and rows of the matrix A evident.
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B) Let a tableau be given with s=n dependent, and ¢ = n+1 indepen-
dent variables:

X1 X2 e Xn Xn+1

Y1 = ail ap A1n G141

Y2 = asy a aop aA2.n+1
. . (39)

Yn = ani an2 Qnn An n+1

If now the variable x,,; is given the fixed value 1 and in addition,
one requires that the y all assume the value O, then this means that

n
Z A Xy + A i1 =0 (k=1,...,n),
¢=1
i.e., we are dealing with a linear system of equations in which the
unknowns xi,..., X, are to be determined in such a way that indeed
yi=y2= """ =y, =0.

Now in order to obtain these x-values, we in turn exchange them all
for the y, which requires n exchange steps. It must be observed, however,
that x,,; is not to be exchanged, i.e., that no pivots are selected from the
last column.

There results a scheme which carries as labels on the left all the x,
and on top all the y, in some arbitrary order; the last column, now as
before, is labeled with x,,,; = 1; for example (with new ay, ):

y3 Y7 Ys 1
’ ’ ’ ’
X7 = an an Ain | 41,n+1
- ’ ’ ’ ’
X1 = az 4 azn | A2,n+1
’ ’ ’ ’
X4 = an1 ¥%) Anp an,n+1

True to our convention, this scheme is to be read as

+ ainyS + ai,n+1

+ a3,Ys5 + A2 n41

X7 =ajys +apyr+ -

X1 =asys +apyr+ -

X4 =0an1Y3 +any7+ - +apYs+ ppir s
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since, however, all y=0, there thus follows x7 = @i 541, X1 = a3 »41, etc.

Consequently: The values in the last column of the final tableau
represent the solution of the system of equations.

The course of computation, however, still permits a reduction in
work: with each exchange step there appears a new column, effectively
labeled by O; the elements of this column, therefore, are unimportant for
the subsequent computation, since they are always multiplied by 0.

As a consequence, the exchange formulae need only be implemented
for the elements of the x-columns; in the y-columns one can leave what-
ever numbers one wants. Inasmuch as fewer and fewer x-columns remain,
the computational effort in this way is reduced by half. This procedure is
known as the Gauss-Jordan method.

Example. In the tableau

X1 X2 X3 1

22 29 1000 | -2
29 54 1000 2
1 1 -1 -1

S OO
I

using the relative partial pivoting strategy, the first step is carried out with
the pivot as; = 1 (4-digit computation):

0 X2 X3 1
0 = g 1002 2
0 = 25 1003 | 3.1
X7 = -1 1 1

The second step with the pivot a3, = 2.5 yields:

0 0 X3 1
0 = 7212 | 1.132
X, = 4012 | -124
Xy = 4022 | 224

The third step with the pivot aji = 721.2 leads to the result:
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0 0 0 1
X3 = —.001570
Xy = ~.6101
X, = 1.609

C) There is one more possibility for savings: not only is it no longer
necessary to compute the y-columns, but one can also freeze the newly-
formed x-rows in the form in which they were created.

Thus, in the above example, one first freezes the x;-row, i.e., no
further exchange operations are applied to it:

(x1) X2 X3 1
0 = g7 1002 2
0 = 2.5 1003 3.1
X1 = -1 1 1

Further exchanges therefore take place only in the O-rows; for the frozen
rows the old labels (in parentheses) are still valid.

(x1)  (x2) X3 1
0 = 721.2 1.132
Xy = —401.2 -1.24
X, = -1 1 1

Third step:

(1) (x2)  (x3) 1
X3 = -.00157
Xy = —401.2 -1.24
X, = -1 1 1

It is not difficult to see that with this last modification one has
recovered Gauss’s elimination. Since here the exchange formulae need
only be applied to elements at the intersection of 0-rows and x-columns, it
is evident that Gauss’s elimination gets by with fewer operations than,
say, the Gauss-Jordan method; in the former, one merely has to put up
with the inconvenience of back substitution.
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§2.7. Questions of programming

The exchange algorithm is very easy to program. The tableau is
stored in the computer as array g[l:s, 1:f]. The notation a[i,j] desig-
nates the element located in the position i,j of the tableau, and this
regardless of the labeling on the left and on top and of the number of
already completed exchange steps. Then for an exchange step with pivot
element a[p,q] the formulae (37) give rise to the following piece of pro-
gram (s and ¢ denote the number of rows and columns, respectively, of the
tableau):

aa. alp,ql:=1alp,q};

bb. for ¢ :=1 step 1 until g—1, g+1 step 1 until ¢ do
alp,t] =—alp,tlxalp,ql;

dd. for k.= 1 step 1 until p—1, p+1 step 1 until s do
for { ;=1 step 1 until g—1, g+1 step 1 until 7 do

alktl:=alktl+alk,q]l xalp,t];

cc: for k:=1 step 1 until p—1, p+1 step 1 until s do

alk,q] :=alkqglxalp,ql;

The labels, here, serve only for the purpose of explanation: at aa: the
pivot element, at bb: the pivot row, at cc: the pivot column, and at dd: the
field of the (s—1) - (#—1) remaining elements are processed. Of course,
these operations presuppose that the pivot element a[p,q] has been
selected appropriately.

The exchange step has been programmed here in such a way that the
new tableau overwrites the old one; one therefore had to carefully make
sure that no elements of the new tableau were computed as long as the
corresponding elements of the old one were still needed. (Hence the order
aa:, bb:, dd:, cc:.)

Now any such tableau is completely identified only together with
the labeling on top and on the left. In order to represent this labeling in
the computer, one introduces two integer vectors

integer array left [1:s5], top [1:1]
with the following meaning:
left [k] = ¢ > 0O: the kth row is labeled on the left by y, .
left [k] = —¢ < O: the kth row is labeled on the left by x, .
top [k] = ¢ > 0: the kth column is labeled on top by y, .
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top [k] = —¢ < O: the kth column is labeled on top by x, .

These conventions require additional operations, namely

a) before the first exchange step, since at this point, all rows are still
labeled by y, and all columns by x:

for k := 1 step 1 until s do left [k] := k;
fort ;= 1 step 1 until ¢t do top [¢] :==~¢;

b) after each exchange step, if a[p,q] is the pivot element:

k := left [p];
left [p] == top [q];
top [q] =k;

(That is, left [p] and top [q] are exchanged.)

By means of the labeling now available in this form, one can also
easily check the admissibility of an element as pivot element: in matrix
inversion, for example, only an element at the intersection of a y-row and
an x-column is permissible, which can be expressed by the condition

if left [k] > O A top [£] < O then.

The labeling simulated in this way also permits, after n exchange
steps, to transform the final array A, by row- and column-permutation
into the inverse A™!. Note, in this connection, that with left [k] = —¢ one
also must have top [(] = k. Therefore, if the kth row of A, has to be put
in place of the —left [k]th row, then this is equivalent to having to make
the top [£]th row of A, the {th row of A1,

In order that this permutation can be carried out within the matrix A,
one has first of all to lay away the ¢th row into a vector b, so
that the zop[¢]th row finds place in the {th one; then the top[top[¢]]th row
is reloaded into the top[¢]th one, etc., until eventually top[top[topl...[top[t
]11..]]1] = ¢ and the vector b can be inserted exactly at the right place.
Then one looks for further cycles, i.e., rows ¢ with top[f] #¢. Subse-
quently, also the columns would have to be permuted.

For row permutation, one has the following program:

for ¢ := 1 step 1 until n do
if top [t] #¢ then
begin
comment lay away {th row in b;
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for j:=1step 1 until ndo b[j] :=alt,j];
q =1

for p :=top [q] while p #¢ do

begin

top [q] = q;
for j:=1step luntil ndo alq,j]:=alp.jl;
q =p;

end for p;

top [q] :=q;

comment insert vector b, cycle completed,

for j:=1step luntil ndo alq,jl:=b[j];

end for ¢;

§2.8. Linear inequalities (optimization)
A merchant has 4 1lbs. of silver and 7 1bs. of gold, from which he
can produce and sell the following alloys:
1) 50% gold, 50% silver at $3200/1b.
2) 75% gold, 25% silver at $6000/1b.
3) 100% gold at $5000/1b.

Which alloys should he produce in order to achieve a maximum return?

In view of the amounts of metal available one obtains certain ine-
qualities. If the amounts of the 3 alloys produced are denoted by xi, x3,
X3, one must have:

Sxq+.75x9 +x3 <7 (supply of gold),
Sxq + .25x, <4 (supply of silver).
The return on the sale, i.e,
3200x; + 6000x, + 5000x 3,

then is to be made a maximum.
All this can be summarized in the tableau:

X1 %) X3 1
yi = | =5 =75 -1 |7
y2 = | -5 -25 0 |4 (40)
z = | 3200 6000 5000 O
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where the value of z, under the constraints x; 20, x, 20, x3 20, y; 20,
y2 2 0 has to be maximized.

The problem is solved by arranging, through a sequence of exchange
operations, that the maximum for z becomes explicitly evident. Under the
stated conditions, this maximum is clearly achieved when the coefficients
of z in the matrix part are all negative, e.g.

X Y1 X3 1
X2
Y2 =
z = —800 8000 3000 | 56000

since in this case the maximum of z under the constraints x; 20, y; 20,
x3 2 0 obviously occurs for x; =y; =x3 =0 and has the value 56000.
All other admissible xy, y1, x3- values yield a smaller z-value. It is to be
noted, however, that x, and y, are then equal to the values in the 1-
column (i.e., the column of constants); these values must not become
negative. If this condition were violated, one would have achieved the
maximum 56000 for an inadmissible combination (namely x, < 0 or
y2 < 0). This would mean, that one would have to sell a negative amount
of alloy 2 or that more than 4 1bs. of silver had been used, respectively.

The goal, therefore, is to achieve, by means of exchange steps, that
the I-column ends up with nonnegative elements and the z-row (disre-
garding the corner element at the lower right) with negative elements.

The exchange operations must therefore be chosen in such a way
that the elements in the 1-column remain nonnegative, while at the same
time the elements in the z-row are made negative. Pivot elements must
not be selected either in the 1-column or in the z-row.

We now consider, more generally, s—1 linear inequalities
-1
Ye= Y, QX +ax20 (k=1,...,5-1) 41
t=1
in t—1 nonnegative variables x, 20 (¢ = 1,..., t — 1), where the values
of ay are assumed nonnegative. Subject to these inequalities, we wish to
maximize the linear form
-1
z2= Y agXx; +ay. 42)
t=1

The associated tableau reads:
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-xl xl .« xq xt-l 1
Yr = an Tt ay Tt 4y R /3 W2 | aiy
Yi = ai1 ap diq air-1 it
Yo = | 91 Gpt Gpq Gpi-1 | Gpt
Ys—-1 = as—1.1 As-1,4 as_1,9 As-1,-1 | As-1¢
4 = as1 g Asq s 11 Agt

Observation 1: According to the exchange rules (36) the sign of the
element at the intersection of the pivot row and the 1-column is preserved
precisely if the pivot element a,, is negative, since we have
Apr == Ap/apg.

Rule 1. The pivot element must be negative.

Observation 2: If the pivot element is negative, then by virtue of
a3, = asqlay, the sign of the element in the z-row below the pivot element
is reversed. Since one wants to make the z-row negative, there follows

Rule 2. The pivot element must be chosen above a positive z-row
element.

Observation 3: The new element aj of the 1-column, which again

must be nonnegative, is obtained as
a4,

ptiq
aj =a; — ——.
P9

If a;; 2 0, the condition is certainly fulfilled, since a, 2 0 and a,, < 0. If

a,a;
aj, <0, then for all such i (1 <i<s-1) one must have g; 2 —Et—iq—,

4 %pq
] t
hence — < ().

Gig  Gpq

1 The argument here is a simplification of the argument given in the original.
(Translator’s remark)
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Rule 3. The pivot element a,,, among all negative elements of the
same column q, must have the property that a,la;, (t is the index of the
1-column) is maximum for i=p (i.e., minimum in absolute value). Having
selected the pivot column q, one thus forms the characteristic quotients
ayag (i=1,...,5 —1; a;; <0) and determines their largest(z).

As a consequence of these rules one obtains:

Theorem 2.3. As long as the pivot selection proceeds in accor-
dance with the Rules 1, 2 and 3(3) the value of the corner element at the
lower right increases monotonically, if, for some exchange step, a, =0,
then, however, that value remains unchanged during this step(*).

Proof. For an exchange step with pivot element a,, (where, as
always, p # s, g # f) one obviously has a5 = ay — aga,/ay,, but ag > 0
according to Rule 2, and a,, < 0 according to Rule 1. Owing to the
Rules 1 and 3, the conditions g, 20(k=1,..., s — 1) remain intact.

Example. The gold and silver problem, posed at the beginning, is
already represented as tableau (40):

X1 X2 X3 1
y; = -5 =75 -1 |7
y, = | -5 -25 0 |4
z = | 3200 6000 5000 | O

We choose the first pivot from the first column. The characteristic quo-
tients here are 7/(-.5) = —14, 4/(-.5) = -8; the second row gives the abso-
lutely smaller quotient, hence a,; is the pivot element:

2 1t can happen that in the chosen pivot column ¢ (with a,, > 0) no element g
(i=1,...,5 —1)is negative. Then the linear form z is unbounded on the set of admissi-
ble points x =[xy, ...,X.;] (i.e., points satisfying the constraints), and the problem has
no finite solution. (Editors’ remark)

The exchange algorithm, resulting from these rules is called the Simplex Algorithm.
Sdetors remark)

This value of z would also remain stationary if one selected a,, = 0. Such steps, howev-
er, can be disregarded. If in the z-row of the final tableau there would occur, next to
negative coefficients, also coefficients that are 0 and in whose column there is a pivot ele-
ment satisfying the Rules 1 and 3, this would mean that the maximum is not unique. (Ed-
itors’ remark)
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Y2 X2 X3 1
yr = 1 —.5 -1 3
X1 = 2 -5 0 8

]

z -6400 4400 5000 | 25600

Now we select the pivot from the second column (the third would also be
possible). The characteristic quotients are 3/(-.5) and 8/(-.5); the first
row gives the absolutely smaller quotient, hence one takes a;, as pivot
element:

Y2 Y1 X3 1
Xy = | 2 2 ) 6
X1 = -3 1 1 5

2400 -8800 3800 | 52000

z

There is still a positive element in the z-row. To remove it, a further
exchange step with pivot in the first column is required, whereby only the
element a,; =-3 qualifies as pivot:

X1 Y1 X3 1

= 2 4 4 28
2. = | 73 3 ) 3

— 1 1 1 5
Y2 = 73 3 B 3
z = | -800 -8000 —3000 | 56000

Evidently, z = 56000 — 800x; — 8000y; — 3000x; is now maximum for
X1 =y1=x3=0, and from this, one also gets x, = 2 > 0, y, =3 > 0,
so that the maximum of z under the given constraints is found. The solu-
tion means:

x1=x3=0,x,=2: Produce only 9L Ibs. of the 75% gold-silver alloy.
3 3

y; =0: The gold supply is exhausted.

y2 =3 2 Ibs. of silver remain unused.

z = 56000: The return on the sale is $56000.

On the basis of this result one also recognizes that one could have
arrived from the initial to the final tableau in a single exchange step,
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namely with a5 as the pivot element.

Minimization (point of view of the consumer). If the problem, in
contrast to the one posed at the beginning, has as objective the purchase
of certain materials at a minimum cost, then a reformulation is necessary.

Let’s suppose we go to our goldsmith and want to stock up on gold
and silver in the amounts of at least 2 1bs. and 1 1b., respectively, by buy-
ing his alloys. If again xy, x,, x3 denote the amounts of the three alloys,
then the following conditions are to be satisfied:

Sxy + T5x9 + x3 2 2 (gold)
Sx; + 25x, = 1 (silver)

3200x, + 6000x, + 5000x3 = minimum.

Schematically:
X1 x> X3 1
y1 = S 5 1 -2
Y = S 25 0 -1
z = | -3200 -6000 5000 | O

Here, z means the negative costs, which are to be made a maximum, sub-
ject to the constraints x; 2 0, y; 2 0.

While the coefficients of the z-row are already negative, the 1-
column, contrary to the rules, contains negative elements, so that
X1 =x, =x3 =0 is not a solution. (We would have a deficit of 2 lbs. in
gold and 1 1b. in silver.)

The normal process, therefore, must be prefaced by an extra step in
which the 1-column can be made positive. For that purpose, we proceed
according to the following recipe.

Select a pivot column (index ¢) in which all elements above the z-
Trow are positive(s), determine among all quotients a;/a;, the smallest

3 If no such column exists, this recipe, which can be derived in the same way as Rule 3,
is not applicable. There exist, then, more general and more complicated methods to make
the 1-column positive. Compare for this, as also for the Simplex Algorithm in general,
Collatz L., Wetterling W.: Optimization Problems, Springer, New York, 1975, Section
3.4, or Kinzi H.P., Tzschach H.G., Zehnder C.A.: Numerical Methods of Mathematical
Optimization with ALGOL and FORTRAN Programs, Academic Press, New York, 1971,
Section 1.3, or Stiefel E.: An Introduction to Numerical Mathematics, Academic Press,
New York, 1963, Section 2.41. (Editors’ remarks)
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(most negative) and — if a,/a,, denotes this smallest quotient — make an
exchange with pivot a,,. Then the 1-column becomes positive, and one
can continue normally.

In our example, we may take g=1; the quotients then are -2/.5 = -4,
—1/.5 = -2, hence an exchange with pivot a;; must be made:

Y1 X2 X3 1
X 2 15 =2 +4
Y2 = 1 -5 -1 +1
z = —-6400 1200 1400 | —-12800

This scheme would indicate that one should buy 4 lbs. of alloy 1
and nothing else. Then one indeed has 2 1bs. of gold and 2 1bs. of silver,
thus a surplus of 1 1b. in silver, which is also signaled by y, = 1. The
costs, however, are not minimum, since dz/dx3 = @33 > 0. Therefore, one
now makes a normal simplex exchange step with pivot column 3. The
characteristic quotients are 4/-2 = -2 and 1/-1 = —1; one thus must select

a,s as pivot:

Y1 X2 Y2 1
X1 0 -5 2 2
X3 = 1 -5 -1 1
z = -5000 -1900 -1400 | -11400

Minimum cost, with $11400, is now achieved: one buys 2 1bs. of
alloy 1 and 1 1b. of pure gold. Since the solution is obtained with
y1 =y, =0, we don’t have any surplus in gold or silver.

Notes to Chapter 2

The work of Wilkinson has had a profound effect on our understanding of the
roundoff properties of Gaussian elimination; his book (Wilkinson [1965]) has become a
classical reference work. Other useful reference books are Stewart [1973], Strang [1980],
and Golub & Van Loan [1989].

§2.3 The residuals for iterative refinement are often calculated in double precision,
while the rest of the calculation is performed in single precision. Typically, the iterates
converge rapidly to a solution that is accurate to single precision; see Stewart [1973] or
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Golub & Van Loan [1989]. Underlying this mode is the assumption that the matrix
coefficients are exactly represented by single-precision values. If this is not the case, one
has to be content with the residual AX + v being small. Skeel [1980] shows that iterative
refinement, without double-precision computation of residuals, is very effective at produc-
ing a small relative residual

IAX + vI;
M OATIX + 1vD),

where the modulus signs applied to a vector or matrix refer to the corresponding vector or
matrix having each element replaced by its absolute value. Skeel shows that one iteration
is sufficient under certain reasonable conditions.

§2.4 The backward error analysis of Wilkinson (cf. Notes to §1.3) gives us a better
appreciation of the effects of pivoting. He has shown that the solution obtained is exact for
a perturbed system, where the perturbations are small compared to the coefficients of the
reduced matrices. Partial pivoting limits the growth in the size of the largest matrix
coefficient to the factor 2 at each stage, and it is thought that complete pivoting limits it
overall to the factor n. (As far as we know, this result has not been proved, though Wil-
kinson has demonstrated a slightly weaker result.) This is a satisfactory situation for a
well-scaled matrix, and the first example gives a good illustration of its success. Unfor-
tunately, we know of no totally satisfactory pivotal strategy for matrices whose
coefficients vary widely in size and are all known with good relative accuracy. The second
example illustrates the problem. Our recommendation is to rescale the problem, for
instance by the algorithm of Curtis & Reid [1972]. This would rescale the second example
to

2 a o
ool 0],
o 0 o

where o= 1013 = 2154,

For large sparse problems, it is also desirable to choose pivots that preserve as
many as possible of the zero entries. For a discussion of this aspect, see George & Liu
[1981] for the symmetric and positive definite case, and Duff, Erisman & Reid [1986] for
the general case. Fortran software for sparse problems is available in the Yale Sparse
Matrix Package (Eisenstat, Gursky, Schultz & Sherman [1977]), SPARSPAK (Chu,
George, Liu & Ng [1984]), and the Harwell Subroutine Library (Hopper [1989]).

§2.5 There are many good Algol 60 codes for linear equations in the handbook of
Wilkinson & Reinsch [1971]. They have provided the basis for many of the Fortran sub-
routines in the IMSL and NAG libraries and in LINPACK (Dongarra, Moler, Bunch &
Stewart [1979]). We strongly recommend the use of one of these sources of reliable and
efficient codes. LINPACK is becoming a de facto standard; many vendors provide optim-
ized versions of the most popular routines to exploit their particular hardware.



Notes to Chapter 2 51

§2.8 This section provides an introduction to the solution of linear programs by the
simplex method. For further reading, see Dantzig [1963] and Chvatal [1983]. We note
here, especially, that the exploitation of sparsity is essential in many practical problems,
and that many of the numbers a,, are often zero, which leads to real problems with degen-
eracy (steps for which the objective value remains unchanged), mentioned in Theorem 2.3.
There are several large commercial packages available for the linear programming prob-
lem.

Some versions of the simplex algorithm are known to have a worst-case running
time which, in certain contrived examples, can be exponential in the number of variables
and constraints. On most problems of practical interest, nevertheless, the simplex method
behaves like a polynomial-time (in fact, quadratic-time) algorithm. Truly polynomial algo-
rithms for solving the linear programming problem have only recently been discovered,
the first by Khachiyan [1979], and another by Karmarkar [1984]. The latter, in particular,
has the potential of becoming a serious competitor to the simplex algorithm. For these,
and other interior-point methods, the reader is referred to Schrijver [1986, Chs. 13 and 15]
and Goldfarb & Todd [1989].
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CHAPTER 3

Systems of Equations With Positive Definite
Symmetric Coefficient Matrix

We have seen that in the general case the solution of a linear system
of equations may present difficulties because of pivot selection. These
difficulties disappear when the coefficient matrix A of the system is sym-
metric and positive definite. We therefore wish to examine this class of
matrices in more detail.

§3.1. Positive definite matrices

With a symmetric matrix A (satisfying a; = ai;) one can associate
in a one-to-one fashion a quadratic form(')

OX) =0x1,X2, ..., %,) = (X,AX) =

uM:

n
Z QX Xk N

(i.e., a homogeneous quadratic function of the independent variables
X15X2s e n)'

Definition. The matrix A (and also the form Q) is called positive
definite if the function Q(x), with the sole exception Q(0,0, ..., 0) =0,
can assume only positive values, i.e., if

0x)>0 for x#[0,0,...,0]. )

1 x,5) =x"y = Y%y here and in the sequel denotes the Euclidean scalar product of the
vectors x and y. (Editors’ remark)
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For a positive definite matrix, therefore, Q(x) is a function of the n
variables x;,..., x, which at the point x; =x,= -+ =x,=0 (and
only there) assumes its minimum.

First the question arises whether positive definite matrices, accord-
ing to this definition, indeed exist. This we can answer in the affirmative:
for A =1 (unit matrix), for example, we have

0x) =Y ¥ 8xx; = Y xi,
i=1 j=1 k=1

and thisis O only forx; =x, = -+ =x, =0. But also
1 1
A=j1 2 3
1 3 6

is positive definite, because here we have Q(x) = x7 + 2x1x5 + 2X1X3 +
2%3 +6x2%3 + 613 = (x1 + X2 + x3)> + (x2 + 2x3)* + x3, and this cannot
be < 0 and also not = 0, as long as one of the x; # 0.

There are also symmetric matrices, however, which are not positive
definite, for example

s 2 7
A=12 5 21|,
7 2 5

for, with x = [1,0,—1]7, we have here Q =—4. Also the zero matrix is not
positive definite, as it yields Q =0, hence also, e.g., ¢(1,1,..., 1)=0.
On the other hand, the zero matrix is insofar a limit case as the associated
Q(x) at least cannot become negative.

Definition. A symmetric matrix is called positive semidefinite if it is
not positive definite, but the quadratic form associated with it satisfies
0(x) 2 0 for all x.

For example,
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is positive semidefinite, for we have Q(x) = (x; + x5 + x3)2, and this is
always > 0, but = 0 for x = [1,-1,0]7.

Note: The concepts ‘‘positive definite’’ and ‘‘positive semidefinite’’
are only applicable for symmetric matrices.(%)

An important property is contained in the following

Theorem 3.1. A positive definite matrix is nonsingular. A positive
semidefinite matrix is singular.

Proof. a) If for some x #0 we had Ax =0, then we would also

have (x,Ax)=3 3 a;x;x; =0, which for a positive definite matrix is
ij

impossible. b) If, on the other hand, A is positive semidefinite, then

(x,Ax) = 0 for some x # 0. Now either Ax = 0, in which case A is singu-

lar, or y = Ax is orthogonal to x. We then consider z(¢) = x + ty and find

0(z(t)) = (x + ty,Ax + tAy)
= (x,AX) + 1(y,AX) + 1(y,Ax) + t2(y,Ay)
=2t(y,y) + (3, Ay).
If now y were # 0, then Q(z(t)) would be negative for t < 0 and |¢!

sufficiently small, contrary to our assumption; q.e.d.

§3.2. Criteria for positive definiteness

There are a number of simple criteria for the positive definiteness of
matrices, which, however, are only necessary or only sufficient, and there-
fore do not always permit a definitive settlement.

Criterion 3.1. For a symmetric matrix A to be positive definite, all
diagonal elements must necessarily be positive.(l)

Zh principle, one could use (1) and (2) also to define positive definite nonsymmetric ma-
trices A. The following would then be true: A is positive definite precisely if the sym-
metric part % (AT + A) is positive definite (in the usual sense). (Editors’ remark)

1 Proof: From a; < 0, with x = ith coordinate vector, there would follow Q(x) <0. (Editors’
remark)
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Criterion 3.2. For a symmetric matrix A to be positive definite, the
absolutely largest element must necessarily lie on the diagonal, more pre-
czsely( ),

max lg;;l < max . (€))
i#j

Examples. The matrix

0 1 2
1 2 3],
2 3 4

by virtue of Criterion 3.1, cannot be positive definite, even though Cri-
terion 3.2 is fulfilled, while

5 2 7
2 5 2
7 2 5
satisfies 3.1 but not 3.2. For
1 1 1
1 2 4
1 4 5 @

both criteria are fulfilled, and still the matrix is not positive deﬁnite(3);
the criteria are simply not sufficient.

Criterion 3.3 (Strong row sum criterion). If in each row of a sym-
metric matrix the diagonal element exceeds the sum of the absolute values
of all other elements in the row, that is, if

A > Z lag ! (k=1,2,...,n), )
=
4 ;t
then A is positive definite.

2 A still sharper result is: a} < aay (i # k); see, e.g., Schwarz H.R., Rutishauser H., Stiefel
E.: Numerical Analysis of Symmetric Matrices, Prentice-Hall, Englewood Cliffs, N.J.,
1973, Theorem 1.3. (Editors’ remark)

3 One has, e.g., 0(2,-3,1)=-5. (Editors’ remark)
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Prooft*). We have by (5), for x # 0,

QW= T X axxzYap} -3 ¥ la;llnllxl
[ ) ]

i j#i

> Z{ Z lal]l} |x"|2—z Z la,-jl Ix,-l I.le

ilj#i i j#i
= ¥ Ylaillxl{lxl —1x1} =Y 3 la;l lx1 {1x] — 1x1}
i j#i i j#i
1
=5 % X la;l{Ix] - 1x;1}*20, qed.
1L J#EL

It is to be noted, however, that the row sum criterion is only
sufficient, not necessary. Thus, for example, the matrix

3 2 2
2 3 2
2 2 3

is positive definite, with
Ox)=x? +x2 +x3 +2(x; + x5 +x3)%,

although Criterion 3.3 is not satisfied.

Thus, there are numerous matrices for which the Criteria 3.1, 3.2,
3.3 do not bring about any conclusive answer. In such cases, one must
reach for the methods of §3.3. One can, however, still weaken somewhat
the Criterion 3.3, thereby extending its domain of applicability:

By examining the conditions under which Q(x) =0 can hold if in

place of (5) one only requires ay, 2 Y, lay |, one finds that for every pair
Lk
i,j (i #J) it would have to be true that

either ‘Ix,-I = IX]|

©)

or a;=0.

4 After N. Rauscher, personal communication.
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Besides, according to the proof above, x; # 0 can only hold if for this &-
value gy = Y, lay |. From this, there follows:
Lk
Criterion 3.4 (Weak row sum criterion). If the symmetric matrix A
is irreducible, i.e., for each pair i,j (i # ) there is a sequence of nonvan-
ishing elements

Giky s Bykeys Bhgheys - - - Bk, j> @)
and if
n
G2 Y, lagl (k=12,...,n), (®)
t=1
Lk

where equality, however, is not permitted for all k, then A is positive
definite.

Indeed, by (7) and (6), Q could only be =0 if Ix;| = lxof = -
= |x,|; since in (8), however, strict inequality holds for at least one %, the
corresponding x;, must be 0, hence x; =x3="+- =x, =0, q.e.d.

On the basis of Criterion 3.4, the frequently used matrix

1 -
-1 2 -1 0
-1 2 -1
SR . ©)
0 -1 2 -1
-1 2

turns out to be positive definite, since (8) always holds, with strict ine-
quality for k=1 and k=n. Furthermore, for each pair i,j (j > i) there
exists the chain (7) of nonvanishing elements with &k, =i+¢
¢t=12,...,j—-i-1).
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§3.3. The Cholesky decomposition

We now wish to develop a necessary and sufficient criterion for the
positive definiteness of a symmetric matrix A.

Suppose the matrix A is positive definite, hence a;; > 0. In the
quadratic form Q(x) = Y, ¥’ a;;x;x; all terms which depend on x, that is,
iJ

2
a1 Xy, A1xX1 Xk Qrp1XpXi (k = 2, ey n),

can then be eliminated by subtracting the expression

2 2
nooagy n
[ apnxp+ Y, xk] =[Zrlkxk} , (10)
k=2

ai k=1

where 7y = ayAfay (k=1,..., n). (We choose4fay; to be positive.)
One so obtains

2
n n
o) - [ Erlkxk} =Y, X(a; — ruripxx;, (11
k=1 i=2 j=2
which is again a quadratic form,
n n
QI(X) = Z Z a{jx,-xj, (12)
i=2 j=2
in the variables x,, x3, ..., X,, and in fact
a{j=a,-j—r1,-r1j (i,j=2,3,..., n). (13)

Theorem 3.2. With Q(x), also the quadratic form Q(X) is positive
definite.

Proof. 1If for certain values x,, x3,..., x, (not all = 0) we had
n

0;x)<0, then with x;=- L Y. rux, we would also have
11 k=2

n 2

0x)=01(x) + [ DTk

k=1

< 0, contrary to the assumption; q.e.d.

Since, therefore, Q(x) is again positive definite, we have a3, > 0,
so that a further splitting off becomes possible: one subtracts
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. 2
= [ Er2kxk] ,

k=2

2

\/azz Xs + Z

az

where 7y = aék/\/aéz (k=2,..., n), which produces a new quadratic
form Q5 in the variables x3, x4,..., X,:

2
0:x)=01(x)~ [ Eerxk] =Y Y ajixx; . (14)

k=2 i=3 j=3

This form, again, must be positive definite. Similarly, one obtains the
positive definite forms

r 32
n
03X)=0X) = | X raxi| »
L k=3 J
r n N2
04x)=03(X) ~ | Zraxe| »
L k=4 J
(15)
n 2
0n1(X) =0, 2(X) — [ Z rn—l,kxk] .
k=n-1
(O is a quadratic form in the variables Xg,1, Xg125 . . - » Xp.) Qn—1(X) then

depends only on the variable x, and therefore (being homogeneous qua-
dratic) must necessarily be of the form

Op1(x) = cx?.

Since also this quadratic form must still be positive definite, we have
c>0, so that r,,=vc >0 can be computed. We thus have
0, 1x)= (r,mx,,)z. Together with (11) to (15), there finally results the
representation

2
Q) = Z[ xr kxk} (16)

=1 k=j
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(where r;; > 0 for j = 1,2,..n).

A positive definite quadratic form can thus be represented as a sum
of pure squares, where in addition, r;; > 0. On the other hand, one has:

Theorem 3.3. If the representation (16) with positive coefficients
T11, 722y - - - »Tnn is possible, then the form Q (X) is positive definite.

Proof. 1If not all x, =0, there is a last one, x,, which is still
different from O (usually, this will be x,,). Then

n
Y TokXk = I'ppXp # 0,
k=p

and, according to (16), Q(x) is a sum of nonnegative terms, among which
is (r,p%,)* > 0; qee.d.

From this it follows that for a form which is not positive definite the
decomposition (16) is not possible. Yet, one can have ay; > 0, so that a
splitting @(x) = Q1(x) + ( )2 (perhaps several such) can still be carried
out. But it is not possible to carry out all n reduction steps; in other
words, among the n quantities ayq, a3,, a@33,..., from which roots are
to be taken, necessarily one must be <0, at which point the process
breaks down.

Matrix interpretation. We arrange the coefficients ryx, 7ok, .. ., T'nn
generated during the various splittings in the form of a matrix and fill the
empty spaces with zeros. This matrix will be denoted by R. Thus,

-ru ri2 riz --°- rln-
0 ryn rxa r2n
0 0 r33 r3,
R= . . . an
0 0 0 T'nn

(The coefficients from the jth splitting lie in the jth row of R.)

The quantities Y,rux; occurring in the relation (16) are obviously
k=j
the components of the vector Rx; therefore, the value of the quadratic
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form, according to (16), becomes(!)

2
= | IRx!12. (18)

n
DT kXK
k=j

0w =3,

Jj=1

But now, |IRxlI%2=(Rx,Rx)=(R'Rx,x); on the other hand,
0x) =3 3 a;xixj = (Ax,x), and therefore one has identically in x:

i j
(Ax,x) = (RTRx,x). This identity, however, can only hold if
A=RTR. (19)

This means: the representation (16) of a quadratic form as a sum of
squares is equivalent to a decomposition of the matrix A into two factors
which are transposed of each other. This decomposition is called Chole-
sky decomposition of the matrix A. We thus have:

Theorem 3.4. The Cholesky decomposition, i.e., the construction of
the triangular matrix R (with positive diagonal elements) according to
(19), is possible precisely if A is positive definite.

The Cholesky decomposition is considered as having succeeded only
if all r;; are positive. There are also decompositions for positive
semidefinite matrices, but then the r;; can no longer be all positive. For
example,

1 11
A=11 11
1 11

is positive semidefinite, but one has A = RTR with

~

]
= e R
R e
o O =

U 11x11 =v@xx) = VXX =\[Ex7 denotes the Euclidean norm of the vector x; cf. §10.7.
(Editors’ remark)
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§3.4. Programming the Cholesky decomposition

The elimination of the variable x, from the quadratic form

0™ =3 ¥ ayux, 20)
i=p j=p
is described by(})
n 2
0,(x) =0p-1(X) — [ erkxk] » 21
k=p

According to our earlier discussion of splitting off (3 ruxy)?® and
) roxe)?, one clearly has r ok = apk/\/app , and the splitting itself has the
effect

aij = Ajj = Tpilpj G j=p+L,...,n), (22)

where now the new q;; are the coefficients of Q,(x). One thus obtains the
following program for the splitting 21)(%):

rlp.p]:=sqrt(alp.p 1)
for k == p+1 step 1 until n do r[p,k] :=alp,kl/r[p,p];
for i := p+1 step 1 until n do
for j :=i step 1 until n do (23)
ali,jl==ali,jl1-ripilxrip,jl;

This piece of program destroys the coefficients of Q,_;(x) and
replaces them by those of Q,(x). This makes sense, since the form Q,_;
is no longer used in the subsequent course of the computation.

The Cholesky decomposition now proceeds as follows. The given
quadratic form Q(x) = Qo(x), each time through a splitting (23), is
reduced to Q;(x), Q,(x), etc, until Q,(x) =0, which is evidently
described by

! Actually, the a; would have to be distinguished by an upper index p-1, since they
depend on p. It will transpire, however, that this is only a *‘conceptual’’ index, and for
this reason we omit it here.

As can be seen from the index range of j, only the matrix elements on and above the di-
agonal are processed, which is all that is needed because of symmetry.
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for p := 1 step 1 until n do
begin

if a[p,p1 < 0 then goto indef;

comment insert here the piece of program (23);
end for p;

(24)

The test for a[p,p] <0 is necessary in order to guarantee — through
excluding matrices which are not positive definite — the safe progression
of the computation. For this purpose there must be a label indef at the
end of the program:

indef. end of program;
Even with this provision, the program is not yet strict, since this test
is not completely adequate. Finite arithmetic, namely, entails that only
numbers below a certain bound M are representable. The program (24),

however, may well lead outside of this range, which will manifest itself in
overflow. (For the CDC-6500 system, e.g., one has M ~ 10°%.)

Examples. For the matrix
[ 107250

10250

1020 . . ]

one gets ry = 10715, ryp = 10°7

the rq; yields overflow. For

, and thus already the computation of

r 10—180
10180

L

1090
loZ(X)

one finds ry; =107, ry, = 10?7, a5, = 10%® — 10°%; thus, overflow
first occurs during the attempt of computing a3;.

Both phenomena are possible only for matrices which are not posi-
tive definite to begin with. (This follows from Criterion 3.2). Therefore,
the irregular termination of the computing process, for once, can be
tolerated.
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Programming hints

1. Remark. Occasionally, one finds fault with the Cholesky decom-
position because it requires the computation of n square roots. One could
indeed avoid these square roots by means of a suitable rearrangement of
the computing process (LTDL-decomposition); however, the extra effort
for the n square roots is not significant enough to be worthwhile to trade
it for other disadvantages.

2. Remark. Since the original matrix elements a;; are destroyed
anyhow by the program (23), (24), one may just as well use the storage
locations for other purposes. From (23) it indeed transpires that after the
computation of r[p,k], the variable a[p,k] is never used again; one there-
fore can store the newly computed quantity r [p,k] in the place of a[p,k].
This can be achieved in the program (23) by systematically replacing the
name r by a. At the end, the array a[l:n, 1:n] then contains the matrix
R in place of A, i.e., the Cholesky decomposition is carried out ‘‘in
place”(3).

3. Remark. The program (23), (24) computes in turmn the
coefficients of the quadratic forms Q i, Q», ..., Q,-1, wWhich actually are
not needed at all. Indeed, one can improve the program by rearranging
the run of the indices.

One observes that in (23), (24), for fixed i, j (j 2 i), in the course of
computation one subtracts from al[i,j] the products r[p,i]xr[p,j]
(@ =12,...,i-1) before one executes (for p=i) r[i,i]: = sqgrt(ali,i]) or
rli,j1:=ali,j1/r[i,i], respectively. However, one can also finish com-
puting a r [i, j ] before one starts on the next one:

for i ;=1 step 1 until n do
for j ;=i step 1 until n do
begin
s =alijl;
for p ;=1 step 1 until i-1 do
s =s-rip,ilxXrip,jl;
comment here, s is the (i, j)-coefficient of the 25)
quadratic form Q;_1;
if i=j then
begin
if s <0 then goto indef;

3 The triangular matrix R of course occupies only the storage locations a[i,k] with k 2 i.
Those with k <i are neither used nor changed. (Editors’ remark)
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rli,i] = sqrt(s);
end
elser(i,jl:=s/r[i,i];
end for i,j;
Note that in this arrangement the elements of the original matrix A
are not destroyed. But here, too, one could dispense with A and replace r
consistently by a.

§3.5. Solution of a linear system

The system of equations
Ax=Db (26)

with positive definite symmetric matrix A, once the Cholesky decomposi-
tion has been completed, can be solved very easily. Indeed, with
A =R"R one has (RTR)x = RT(Rx) = b, so that (26) can be replaced by
the two systems

R'v=b, Rx=v. 27
One thus first solves
Vi Vo s Vn 1
0= rm 0 e 0 - bl
0= riz ry 0 -b
. : 2 g 28)
0= T'in T'2n T'nn - b,
in the order vy, va, ..., v, (forward substitution). Thereafter, one solves
X1 X9 s X, 1
O= | ru r2 = rm|-V
0= 0 r r -V
: : 22 2n 2 29)
0= 0 0 'mm | —Vn

in the order x,,, x,_1, . . . , X1 (back substitution). Thanks to the triangular
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form of R, these systems of equations are fairly unproblematic(').

In computational practice, one usually exploits the fact that the three
vectors b, v, x can be stored in the same array s[1:n], which then yields
the following program:

for { ;=1 step 1 until n do
begin
for j :=1 step 1 until i—1 do
slili=slil-rljilxsljl;
sl =sli)rlii];

end for i;
for i :=n step —1 until 1 do (30)
begin

for j :=i+1 step 1 until n do
sl=sll-rli,jIxsljl
slil:=slilrlii}
end for i;

If one enters this program with s [i ] = b;, then the s [i] at the end are
the desired x;.

§3.6. Influence of rounding errors

It must not be concealed that the Cholesky decomposition can be
significantly disturbed through rounding errors.

Example. The matrix

37 5 12 2
62 58 -1

A= sym- 66 17 3D
metric 30

is positive definite; one has, indeed,
Q)= (6xy + x3)2 + (6x5 + 5x3 — x4)% + (x1 + 5%, + 6x3 + 2x4)°

+ (=x9 + 2x3 + SX4)2.

! Compare with §2.2, where the same solution technique is used. (Editors’ remark)
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The computing process (23), if computations are carried out with 4
decimal digits after the decimal point, here yields for p=1 (A; is the
matrix belonging to the form Q1):

71 = (6.0828, .8220, 1.9728, .3288},
61.3243 563784 —1.2703

A= 62.1081 16.3513] ;
sym. 29.8919
for p=2:
ro = {7.8310, 7.1994, -.1622},
102767 17.5190
Az = [ sym. 29.8656} ?
for p=3:

ra, = {3.2057, 5.4650},
(32)
A; =[-.0006] ;

thus, the decomposition has failed.

How is this to be interpreted? In certain circumstances a positive
definite matrix may be viewed by the Cholesky method as being not posi-
tive definite. When this happens, however, it means that the matrix A
cannot be distinguished from a singular matrix within the computer preci-
sion, because the continuous transition from a positive definite to a
indefinite matrix goes through a semidefinite matrix; such a matrix, how-
ever, is singular. In other words, the failure of the Cholesky decomposi-
tion owing to rounding errors is only possible if the solution of the sys-
tem Ax=Db is threatened anyhow by rounding errors (which does not
mean that in case of success the accuracy could not also be imperiled).

The following counter measures are available.
a) Increasing the precision. This is not always meaningful, but in

the above example the Cholesky decomposition indeed succeeds with 7
decimals after the decimal point and yields

6.0827625 8219949 19727879 3287980
0 7.8300849 7.1993982 —.1622108
0 0 32057407 54649371 - 33
0 0 0 0064885
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Comparison with (32) shows that in 4-digit arithmetic, r34 in fact became
slightly too large, which then led to 29.8656 — 5.4650% < 0 (29.8656 —
5.4649% would have become positive).

b) Search for the origin of the problem. If it turns out that the prob-
lem can also be formulated as a least squares problem, one obtains better
results with the methods of Chapter 5.

¢) Investigate the rounding errors. In the numerical computation
according to the program (25), the way the element r; (i <j) of the
matrix R comes about, is by subtracting from a;; (of the original matrix

A) the products 7y;7yj, r2i72j, . - .5 Fi-1,ifi-1,j> With the remainder s one
forms

for i=j:  ry=Als,

for j>ir  ry=sirg (34
so that in each case s = r;ryj, i.e. (theoretically),

a; = ﬁlrp,-r,,j G2, (35)

which establishes (19) in a new way.

In practice, the two sides of (35) differ by the rounding errors which
one commits in the arithmetic operations(*)

aP)=alfD—r,r,; @=12,...,i-1) (36)
and finally in the operations (34).
These rounding errors are (in floating-point arithmetic)(®):
1) For the product in (36):
<0l Tpilpjls
where 0 is the smallest machine number for which 1 +6 > 1.
2) For the subtraction in (36)C):

1 A, =[a®] here and in the sequel denotes the (r—p) x (#—p)-matrix associated with the

quadratic form Q, (cf. the preceding example). In particular, A, = [2’] = A. (Editors’ re-

mark)

2 ¢t Appendix, §A3.4, where, however, the rounding error bound for addition and sub-

traction is somewhat larger. Further literature: Wilkinson J.H.: Rounding Errors in Alge-

braic Processes, Prentice-Hall, Englewood Cliffs, N.J., 1963; Stoer J., Bulirsch R.: Intro-

duction to Numerical Analysis, Springer, New York, 1980, Ch. 1. (Editors’ remark)
Terms of order 0(6%), here and in the sequel, are neglected. (Editors’ remark)
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<0(1aZ2 V1 + Iruml} (p=12,...,i-1).

3) For the operations (34) the rounding errors have the effect that
for the computed values 7y, r;;:

Ir% —s| < 26s, Vrijri — s 1<0s.

Altogether, one therefore obtains, in place of (35):

13
ajj = Xrpilpj == Ay
p=1
i (37)
1A;1 <0 X {1af™D1 +21r,r,1}).
p=1

Thus, it is as if the Cholesky decomposition were applied exactly to
a matrix A + A with elements a;; + A;;; in other words, not the matrix A,
but A +A is tested for positive definiteness and decomposed in R”R.
This leads to wrong results, which are particularly disturbing when

{ A is positive definite

A + A is not positive deﬁnjte} or vice versa. (38)

Here, A is not known; what is available is only the estimate (37), with the
help of which one must determine whether (38) can actually occur.

This determination can be made with the aid of the eigenvalues of
A: A symmetric matrix A, as is well known, is characterized as positive
definite by the fact that all its eigenvalues are not only real, but positive.
Since, on the other hand, for symmetric matrices A, A(*),

Amin(A) = “ran_ . (X,AX), Amin(A +4)= ,min ((x, Ax) + (x,Ax)),

max |lAxI| =max IA;(A)l = max (x,Ax)I,
Hixlb=1 i Hxll=1
one has
Amin(A) = AT € Apin(A +A) S Apin(A) + 1AL, (39)

4 See, e.g., Schwarz H.R., Rutishauser H., Stiefel E.: Numerical Analysis of Symmetric
Matrices, Prentice-Hall, Englewood Cliffs, N.J., 1973, Theorem 4.3 and Example 1.3.
(Editors’ remark)
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if the spectral norm of A is defined by

Al = max |IAxII. 40)
Hxll=1

It is clear, therefore, that (38) can only occur if

A (A < TTATL. @1)

To determine | IAl |, we note that the norm is subadditive, i.e., one
alwayshas [ [A+BI1 < 11All + 1B, hence, according to (37),

LA SOY (1A, ;11 +211Z,11}, 42)
p=1

where Kp_l is the matrix with elements la ,(JP D1 and Z, the one with ele-
ments |r,r,;1. As above, 0 stands for the smallest machine number with
1+6>1.

We now have, if the trace of A is denoted by #4:

1) I1AIl <y, if A is positive definite, and | 1ALl < ty =t,, even
if A is no longer positive definite(®).

2) The trace of A, is smaller than the trace of A,_; because, first,
the element app is no longer present and, secondly, the remain-
ing diagonal elements a,, are decreased by rpq (or at least not
increased).

n
3) Z, has a single eigenvalue(®) different from zero, namely ng,-.
i=p

> The first estimate holds because of
HAI = max 1IAXI| = hu(A) Sy
The second can be proved as follows:
A2 = max (Ax,Ax) = max (x,sz) = xm(Kz)

St2=)la,llayl = &8
A a1y i« Qi
ik ik

2
DM NCOED WHINE [z MA)] = @

Editors’ remark)
Since z, is a dyadic product, i.e., a product of a column vector times a row vector, z, has
rank 1, and the only eigenvalue different from 0 is equal to the trace. (Editors’ remark)
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n
Therefore, 1 1Z,11 = ¥ rZ, and ()
i=p

T UZ,0 0= i[ir,%,-] =15
p=1

p=1li=p

By 1) and 2) we have | IXPI | €14, so that from (42) there finally fol-
lows:

AT <0(n+2)ty4. 43)

For a reliable determination of positive definiteness, one thus must have

Amin(A)

Agin(A) > 6(n+2)t,, ie, O .
mm( )> (n )A 1Le <(n+2)tA

(44)

For the matrix (31) considered above as an example, one has
ty = 195, Apnin(A) = 6.610—6; therefore, a safe determination is possible
only for

6.610—6

8 < 5x195

= 5.6410-9, (45)

that is, if the computation is carried out with at least 9 digits (floating-
point). In fact, the Cholesky decomposition succeeded even with 9
fixed-point digits (7 of which after the decimal point).

The smallest eigenvalue of A in (44), however, is generally not
known. In the subsequent discussion, we use only the quantity

04 = 0(n+2)t4 (46)

which (for a positive definite matrix A) by (43) is an upper bound for the
falsification of the eigenvalues of A through the rounding errors of the
Cholesky decomposition. If the Cholesky decomposition succeeds, we

7 The second equality, by (37), is valid up to a term of 0(6), hence (43) up to a term of
0(8?). (Translator’s remark)
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know that Ay, > — 04; if it fails, then A,;, < +6,4. In other words, we
have the

Theorem 3.5. If the Cholesky decomposition A — 041 succeeds,
then A is guaranteed to be positive definite(®); if it fails for A + 0 AL, then
A is guaranteed to be not positive definite.

Example. For the matrix (31) one has 74 =195, thus with
0= 35109, ie., with a 9-digit mantissa, 04 = 6;9—6. The Cholesky
decomposition of A — 6;0—6 I (in floating-point arithmetic) yields

6.08276204 821995003 1.97278801 .328798001

0 783098450 7.19939850 162210806
K= 0 0 320573903  5.46493998 |33
0 0 0 002144761

therefore, the matrix A is guaranteed to be positive definite.

§3.7. Linear systems of equations as a minimum problem
The system (26) is equivalent to a minimum problem:

Theorem 3.6. For a linear system of equations Ax +b =0 with
positive definite symmetric matrix A the following is true. The system is
uniquely solvable, and its solution is also the unique minimum of the qua-
dratic function

F(x)—-—(x Ax) + (x,b) =

u[v]:

n n
Z a;ixix; + Y bix; “47)

1
2 i=1

taken over all x = [xy,x9, ..., x,,]T.

8 For the proof of the first assertion of the theorem one has to argue more precisely as fol-
lows: In deriving (43), it was assumed that A is positive definite. If, however, one only
knows that the Cholesky decomposition of A - 6,1 succeeds, there follows at first only that
A - 8,1+ A is positive definite (where A is the rounding error matrix associated with this
decomposition.) But from this it follows easily that (43) continues to hold up to terms of
0(6%). The eigenvalues of A — 6,1 therefore are shifted at most by 6, in first approxima-
tion. (Editors’ remark)
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Proof. This assertion will be proved without the use of previous
knowledge and also without utilizing theorems on determinants and the
like, solely on the basis of the definition of positive definiteness.

1) Every solution of the linear system of equations is also a (relative
and absolute) minimum of F (x): For a symmetric matrix A one has, in the
notations of (1) and (47), the identity

F(x+y) =F®X) + 200 + (Ax + b,y), (48)
because

—;—(x +y, Ax+ Ay) + (b,x +y)
= 7 (AY) + (AX,Y) + (7. AY) + (0% + (b.Y).

Therefore, if x is a solution of the system Ax + b = 0, then for all y there
holds

Fx+y)=F® + 300, (49)

where by assumption @(y) > 0 fory # 0, so that F(x + y) > F (x).

2) Every relative minimum of F (X) is a solution of the linear system
of equations: If ¢ = Ax+ b # 0, so that, say, the first component ¢, # 0,
then by (48) one has for a vector y = [£,0,0, . .., 017

Fx+y)=F(x) + —;—-autz +cqt.
This, however, is smaller than F(x) for all ¢ between O and — 2¢/a;, SO
that F(x) at the point x cannot have a relative minimum,

3) F(X) has at least one relative minimum: Indeed, the quadratic
form Q(x) =3, ¥’ a;x;x; on the compact set Y, x2=1 certainly assumes
a minimum W, which by virtue of the positive definiteness of A must be
positive. Thus, for arbitrary x = [xy,%3,..., x,)7,

n n n
Y Y apxzpY 1 =pllxl 12
i=1 j=1 -

i=1

n
Furthermore, | Y b;x;1 < I'Ibl1 11x11, and thus

i=1
F(x)zlzi Hx1Z = 1ibI1 1ixI1,

hence
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l1bl12 [1bl |
Fx)24 ———— for lIxll=p=4 .
1} P 13

But since F(x) =0 for x=0, and F (x) in the sphere [ Ix|] <p is con-
tinuous, there follows the existence of at least one relative minimum of
F(x) in the interior of the sphere.

4) There is only one relative minimum of F(x). If x is a relative
minimum for F(x), then by 2), x is a solution of Ax +b=0. By 1), x is
then an absolute minimum; more precisely, according to (49), there holds
F(z) > F(x) for all z# x. In particular, for a second relative minimum
x’ # x, there of course would also have to be F(z) > F(x’) for all z # X/,
which is not possible.

With this, the theorem is proved.

The minimum problem and the linear system of equations are thus
equivalent; both have exactly one, and in fact the same, solution. We will
see in Chapter 10 how this fact can be usefully exploited for the solution
of a linear system of equations based on the minimum property.

Example. Let the system of equations be

137x — 100y - 11
-100x + 73y + 8 = 0.

The function to be minimized here is

F(xy) = % (137x2 — 200xy + 73y2) — 11x + 8y .

Il
o

The minimum is attained for x=3, y=4 and is equal to — % Consider a
few points in the neighborhood of the solution:
(@) x =19, y = 2.5 (distance to the solution approx. 1.86). Here we
get F (x,y) =—.49, which is .01 above the minimum.

(b) x = 2.85, y =4.11 (distance to the solution approx. .186). Here
we get F (x,y) = 3.1329, which is 3.63 above the minimum.

Therefore, as one moves away from the minimum in different directions,
F increases with different speed, a fact that has something to do with the
condition of the matrix A (cf. §10.7).

Note: If the matrix A is not positive definite, the function F(x)
defined in (47) has no minimum (or at least not a uniquely determined
one).
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Notes to Chapter 3

§3.6 This section takes a somewhat pessimistic view of the roundoff properties of
Cholesky factorization, which is a very stable process. Apart from diagonal scaling, it is
equivalent to Gaussian elimination (cf. Chapter 2, Eq. (19)) in the sense that the equations

B = R'diag(r;), C=-diag(r;j")R

are satisfied. When regarded as Gaussian elimination, the process is very stable, since Wil-
kinson has shown (Wilkinson [1961]) that no entry in any reduced matrix ever exceeds in
absolute value the largest absolute value of an entry of A. Scaling is innocuous, since
exactly the same computations (unless underflow or overflow occurs) are performed if the
scaling is by powers of the radix, and other scalings perturb this result only by very minor
roundoff effects.

Reference

Wilkinson, J.H. [1961]: Error analysis of direct methods of matrix inversion, J. Assoc.
Comput. Mach. 8, 281-330.



CHAPTER 4

Nonlinear Equations

To introduce the subject, we consider a few examples of nonlinear
equations:

X +x+1=0

is an algebraic equation; there is only one unknown, but it occurs in the
third power. There are three solutions, of which two are conjugate com-
plex.

2x —tanx =0

is a transcendental equation. Again, only one unknown is present, but
now in a transcendental function. There are denumerably many solutions.

sinx+3cosx=2

is a transcendental equation only in an unessential way, since it can be
transformed at once into a quadratic equation for e®. While there are
infinitely many solutions, they can all be derived from two solutions
through addition of multiples of 2x.

X +y2+5=0
2x +y3 +5y=0

is a system of two nonlinear algebraic equations in two unknowns x and
y. It can be reduced to one algebraic equation of degree 9 in only one
unknown. This latter equation has nine solutions which generate nine
pairs of numbers (x;,y;), i=1,...,9, satisfying the given system.
(There are fewer if only real x,y are admitted.)
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In general, every system of n algebraic equations in 7 unknowns,
according to a theory of Bézout(!), can be reduced to one algebraic equa-
tion in one unknown, but the degree of this equation is often very high.
The solution after Bézout, therefore, is usually not practicable, numeri-
cally.

A solution of a system of transcendental equations by similar means
is even less practical. The only option left, as a rule, is linearization,
which however leads to an infinite iterative process.

§4.1. The basic idea of linearization

We consider the following general problem: Given are n functions

fiGrxe, oo x) (j=12,...,n) (1)
of n variables, and these variables x;, x3, ..., x, are to be determined in
such a way that f; =f, = --- =f, =0. One has to distinguish, in this

connection, between the case where only real, and the case where also
complex values of the unknowns are admitted.

We start from some point X = [x{,X5,..., X,]] and compute the
vector f = [f1,f2,..., ful", where f; = fi(x1,x3, ..., X,). We now seek
a correction Ax such that for j =1,2,..., n

fi =filxj + Ax1,x3 +Axq, ..., X, +Ax,) =0.

In a first approximation, we have
fi=fi+ z Axk ;

one can therefore determine approximate values for the correction by
solving the system of equations

i Axk+f, 0 (j=1,....n. o)

1 See, for example, Walker R.J.: Algebraic Curves, Dover, New York, 1950, Ch. 3, §3.



§4.1. The basic idea of linearization 79

This system for Ax,, Ax,, ..., Ax, is linear, and can therefore be solved
by Gauss elimination. The corresponding tableau is given by:

Axy  Axy - A, 1
af1 of1 of1
=1 % 3 x, | 7
df2  df2 of2
=1 %, 3, x| 2
ofn ofy ofn
0= ox4 0x5 0x, I

Introducing the matrix F = [0fj/dx,], which depends on x, we can write
the system in matrix form as

FAx +f=0. 3

Once these equations are solved, the corrected point x + Ax is again
denoted by x, and the process repeated with this new point, etc., until all
f; are sufficiently small.

In this way, the solution of a nonlinear system of equations is
reduced to the solution of a sequence of linear systems of equations. This
method is therefore called linearization; it represents an abundant source
of linear systems of equations in computational practice.

Of course, there arises the question of convergence of the method,
that is, whether the f; indeed ever become sufficiently small. This, how-
ever, even in the case n=1, is a difficult question, and can be fully
answered only in special cases. The difficulty, in fact, is that the matrix F
may become singular, in which case the process falters.

Example. For the system
2 +y2+5=0
2x +y3 +5y =0,

3x? 2y
F = 2 .
2 3yr+5

the matrix F becomes
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Starting at the point x =-2, y=1, we get f = [-2,2]7, and the system of
equations for the first correction reads

Ax Ay 1
12 2 | =2
2 8 2

Its solution, rounded to 2 digits, is Ax =.22, Ay =—.30. As corrected
point one thus obtains x=-1.78, y=.70, which leads to
f = [-.1498,.2830]7. Second correction:

Ax Ay 1
9.5052 14 —-.1498 Ax = .02326
2 647| 2830 | T { Ay =—-.05093

00025
x=-175674, y =.64907 => f=| (a0

One last, rather crude, correction with the same matrix F (actually, F
should be computed anew)(}):

Ax Ay 1
95052 14 | —.00025 Ax= 00015
2 647| 00532 = { Ay =—.00087

000014
=-175659, y=.64820 => f=| 4109

1 If the matrix Fin a neighborhood of the desired solution changes only little — as is gen-
erally the case —, it makes no sense to compute it anew in each step. The system of equa-
tions for the corrections can then be solved simply by forward and back substitution. (Ed-
itors’ remark)



§4.1. The basic idea of linearization 81

Derivative-free linearization. For the elements of the coefficient
matrix F in (3) one requires derivatives of the functions fj(xl, ey Xn)s
j=1,..., n. One must point out, however, that in certain cases the
function values themselves are already extremely difficult to compute, so
that derivatives can no longer be formed for all practical purposes.

An example for this is

fl(xlvx2’x3) =,/(‘)°°
e

In such cases one substitutes difference quotients for derivatives,
thus for the (k,¢)-element of F, for example,

Fe@isXa, oo osxg+hy oo X)) = filX1sX2s e ooy Xgs oo v s Xp)
h

(in place of dfi/dx,). Here, whenever possible, 4 should be of the order
of magnitude of the probable correction of the variable x, Q)

Example. Let us again solve the simple system

fay)=x>+y2+5=0
gxy)=2x+y> +5y=0,

but now without the use of derivatives of fand g. First, f and g must be
evaluated in three points:

X =-2, y =1 => f=-2, g=2
x+h =-15, y =1 => f=2.625 g=3
x =-2, y+h =15 = f=-75  g=6.875.

Then the difference quotients can be formed:

Af _ A]:=25 A?_=2 .@?.___975
Ax 9.25, Ay S s , Ay 5.

2 Because of the danger of cancellation, however, » must not be chosen too small. (Edi-
tors’ remark)
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The system of equations for the first corrections therefore becomes:

Ax Ay 1
925 25| -2 Ax= 28760
2 975| 2 | Ay =—26412

The corrected values are x =-1.71240, y =.73588 and give f=.520,
g = .653. With these, the iteration would then be continued.

§4.2. Newton’s method

For an equation f (x) = 0 in one unknown, the vector f reduces to a
scalar f and the matrix F to a scalar f’(x). The system of equations (3)
consists only of one equation,

f/x) Ax + f(x) =0,

and has the solution Ax =—f (x)/f’(x). This is Newton’s method.: starting
with a suitable initial value xp, one determines a sequence x;,X5,X3 , .. .
in accordance with

xk+1=xk_%, k=012, .... @)

Example. In the case of the equation x — 2 = 0, the recursion for-
mula (4) reads
xg -2

2xk

X+l = X —

Starting with xo = 1, one obtains successively
x1=1-(CD2=15,
xy=15-.25/3 =1.4166667,
x5 = 14142157,
x4 = 1.4142135623747.

(The correct digits are underlined.) The convergence, here, is obviously
quite fast.

Geometrically, Newton’s method can be interpreted very simply:
linearization here means replacing the curve of f (x) by its tangent at the
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point (xi,f(xx)); then, the ‘‘zero’’ of this tangent is determined (see Fig.
4.1). From the point x;,; one proceeds in the same way, etc.

f(x)

Xy "m\ S~

Figure 4.1. Newton’s method.

We now examine the convergence of the method at least locally,
that is, assuming that one is already near the zero. Let the zero be
denoted by s; then (provided that f (x) can be expanded in a Taylor series
at $)(!)

(e — 5)?

f) = o =) () + ———— ")+ ...,
FE)=F6)+ ="+,
hence
(i = () + 3 (o = 7 (5)
f(s) + (e = 5)f(s) ’

Xi41 = X —

and therefore

F5) + 5 (= )f(s)
F(s) + (e — )7 (s)
= (= 9*f()

T ) + G -9

Xl =8 =X =S5 — (X —5)

1A simpler derivation can be found in Bjorck A., Dahlquist G: Numerical Methods,
Prentice-Hall, Englewood-Cliffs, N.J., 1974. (Editors’ remark)
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Consequently, for small x; — s, one has in first approximation

S

2f"(s)

This is the asymptotic error law for Newton’s method; it says that the

error in each step is essentially squared, provided that f’(s) # 0, i.e., the
zero s is simple. This is referred to as quadratic convergence.

In the p\[r_eceding example we had f(x)=x*-2, f/(s)=2s,
f(s) =2, s =+2; therefore,

Xest —V2 = % (e —=V2)? .

In addition, we had x, — 2 =.0024531, from which, by repeated appli-
cation of this formula, one obtains the approximations

X3 — ‘\[2_ = 2.127649-6,
X4 — ‘\[7 = 1.619—12,
x5 =2 = 9;0-24

- 2
Xes1 — 8 = (5 — 5)

for the successive errors.

Naturally, if f”(s)/2f’(s)) is large, it takes a long time until qua-
dratic convergence ‘‘takes hold’’, if it ever is achieved, which is by no
means guaranteed.

On the other hand, it can happen that f’(s) # 0, f”’(s) =0 at the
point s; then we obtain even cubic convergence, i.e., an error law

- 3
Xyl =8 = (= 8)

(where c is a constant which depends on f’(s) and f”/(s)).

§4.3. The regula falsi

If only real roots of the equation f (x) =0 are desired, the regula
falsi is quite suitable; for automatic computation, however, it must be
modified(!). The advantage of the method is that no derivatives need be
computed and that a high reliability is achieved.

1 The disadvantages of the classical regula falsi (in which at every step the secant is
drawn between two function values with opposite signs) can be seen in the example
fx)=1-x*=0, a=.1, b=10: In 100 steps the interval [4,b] shrinks only to
[.10000002,10]. The modified version given here, in contrast, produces the solution x = 1
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For initialization one computes the values f (x;) at a sequence of
points xg, X1, X3, . . . (say, at x; = xg + kh with constant 4). As soon as
one finds a sign change in these function values, for example f(x;) > O,
J(x+1) < 0, one switches over to a bracketing procedure for the zero:

Denote x; by a, and x;4; by b; then f(a) > 0, f(b) <0, and we
compute

. = T - ba)
f) - fa)

(the denominator is not 0), as well as f (c). Geometrically, ¢ can be inter-
preted as the ‘‘zero’’ of the secant from (a,f (a@)) to (b,f (b)) (cf. Fig.
4.2). If now, for example, f (c) > O, there lies a zero between b and c.
However, we seek yet another point d between b and ¢ with f(d) < 0.
The first trial is made with d = (b + ¢)/2; if this still yields f (d) > 0, one
chooses a new c:=d, d:=(b +d)/2 and repeats this (in the figure
unnecessary) bisection until f (d) < 0. Then one sets a: =c¢, b: =d and,
as above, determines a new ¢ according to formula (5), etc.

®)

This algorithm can be programmed in the form of the following pro-
cedure regfal. It assumes that two points a,b are already known with
f@>0,fb)<0orf(a)<0,f®)>0.

fx)

Figure 4.2. The regula falsi.

in 12 steps (24 evaluations of f(x)). A similar modification, converging more rapidly,
asymptotically, is the Illinois algorithm; see Wilkes M.V., Wheeler D.J,, Gill S.: The
Preparation of Programs for an Electronic Computer, Addison-Wesley, Reading, Mass.
1951, and Anderson N., Bj6rck A.: A new high order method of regula falsi type for com-
puting a root of an equation, BIT 13, 253-264 (1973). (Editors’ remark)
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real procedure regfal(a,b f);
value a,b;
real a,b; real procedure f;
begin ~
real fa, fb, fc, fd, c, d;
fa = f(a); fb = f(b),
if fa < 0 then
begin
ci=a, fci=fa, a=b; fa=fb; b:=c; fb:=fc

end;

start:
c =(b X fa—a X )fa- fb)
Je=f(c);

iffc=0A(c2anc2b)A(c<anac<b)then goto ex;(®)
if fc > 0 then
begin

d:=(b+c)2;

fd =f @)

if fd > 0 then
begin
if ¢ = d then goto ex;
c:=d; fc=fd;
d = (d + b)/2;
fd = f@a),
goto ld;
end
end
else
begin
d:=c
fd = fc
¢ =(a+d)2
fe =f(c)

if fc < 0 then

id:

Ic:

2 Note that the stopping rule used here is programmed machine-independently and leads

automatically — except in extreme special cases — to the maximum attainable accuracy.
(Editors’ remark)
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begin
if ¢ = d then goto ex;
d:=c; fd:=fc
c=(a+c)2
fe =1 ()
goto Ic;
end
end;
a:=c; fa=fc; b=d, fbo =fd
goto start,
ex:
regfal := c;
end regfal;

Example. We return to the equation f (x) =x2 — 2 =0, for which
a =2, b =1 are admissible initial values. The subsequent course of com-
putation is reproduced in Table 4.1. (The values of c, d, f(c) are always
rounded to 4 digits after the decimal point. Numbers in parentheses were
obtained as a result of storage transfers.)

Table 4.1. Regula falsi for x> =2 =0

a f@) b f(b) c f) d f@)
2.0 2.0 1.0 -1.0

1.3333 =2223 (1 3333) (L2223)

1.6667 .7779
(1.6667) (.7779) (1.3333) (-.2223)

1.4074 -.0192 (1.4074) (=.0192)

1.5370 .3624
(1.5370) (.3624) (1.4074) (-.0192)

14139 =0009 1 4139 (~.0009)

1.4754 .1768
(1.4754) (.1768) (1.4139) (-.0009)
1.4142 .0000
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§4.4. Algebraic equations

A particular class of equations in one unknown are algebraic equa-

tions,

n

Y ¢zt =0, with ¢ #0, c, #0, ©6)

k=0
as they have (in the domain of complex numbers) exactly n solutions z1,
Z2, ..., Zp, all of which are usually sought. It is necessary, then, to com-
pute also in the complex domain.

There are, however, some questions that need to be raised in the
case of algebraic equations which for more general equations are perhaps
less relevant. These concem the purpose which the solutions zq,..., z,
are expected to serve, and the origin of the coefficients cy.

First of all, one must realize that the roots of an algebraic equation
are poorly defined through the coefficients; small changes in the
coefficients can cause large changes in the roots. This fact prompts many
people to compute the roots in double precision. But then they only
obtain accurate roots to an inaccurate equation, which is not of much
help. A lot more important is to make sure that after the computation of
all root approximations sy, §3 ,..., S, the product c,(z —s51) (z —53)

(z — s5,) agrees with )] cxz® as much as can be expected within the
machine precision. To demand more is not reasonable, but that much at
least can be achieved.

Example. In solving the equation
z4 —423 + 622 -4z +1=0,

the four-fold root at z =1 certainly gives difficulties, inasmuch as only a
root accuracy of one fourth of the total number of digits can be expected
(thus 5-digit root accuracy in 20-digit computation).

We consider two computers:
A computes with 16 digits and thus obtains roots accurate to 4
digits:
1.00005, 1, .9999, .99995.

B computes with only 8 digits and therefore must expect errors of
the order of magnitude .01; he obtains
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1.01, 99, 1+.01i, 1-.01..

Which are now the better results? The products of the linear factors
in case A produces (up to errors which are smaller than 107%)

z* —3.9999 z3 + 5.9997z% - 3.9997z + .9999,
and in case B (exactly)
z% — 423 + 622 — 4z + .99999999.

We must therefore regard the results of B, in a certain sense, as the better
ones; the way this was achieved, in spite of the lower computing preci-
sion, was that B had been mindful of suitably correlating the errors, while
A computed the roots independently from each other, without attempting
to do anything beyond that.

The crucial device for correlating the errors in the roots, which may
result in the smallest possible reconstruction errors, is deflation: If z, is
an exact root of the polynomial f (z) in (6), then

fi@y= L2
Z—2,
is a polynomial of degree n — 1, from which the remaining n — 1 roots
can be determined.

Now, however, one has computed only an approximate root s1 = z1,
for which one knows only that

fG=0Y lestl,
k=0

where 0 denotes a unit in the last position of the mantissa. To make
f (s1) smaller is not possible, in general, since the sum of terms cxzk is
affected with an error which somehow is approximately proportional to
Zlckz" I. The division f(z)/(z — s1), which, as is well known, is carried
out by means of the Horner scheme(!), thus produces not only an inaccu-
rate f1(z), but also a remainder f (s;). Indeed, what the Homer scheme

1 The (simple) Homer scheme allows one to compute the polynomial value f(s,) and the
coefficients of the polynomial f, defined by (7). Putting

» n-1
f(Z) = E an—kzkr fl(z) = Z bn—l—kzt! f(sl) = bm
k=0 k=0
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does is nothing but the decomposition

F@)=f(s1)+ @z —s51)f1(2), ¢))

while the reconstruction later produces

f*@)=( - s1)f} (2)

(where f; denotes the already reconstructed polynomial corresponding to
f1). Therefore, one obtains as reconstruction error

Of (2) = f (@) - f*@@)

= f(s1)+ (z — 51)08f1(2) + errors arising in the
performance of the multiplication (z — s1)f7 (z) .

Apart from the third term, which has the order of magnitude of rounding
errors, one commits during the first deflation the reconstruction error
f(s1), which however falsifies only the constant term. If, in particular, 5
is very small, then 1f(s;)! =0 lckst! =0lcql, that is, the reconstruc-
tion error, as far as it comes from f(s;), is small compared to c¢y. (The
first term, after all, affects only the constant term.) One has therefore
established the rule that the absolutely smallest root of an algebraic equa-
tion should always be determined first; then one carries out the deflation,
and afterwards the absolutely smallest root of f(z) is computed, etc.

Example. Substituting s, = .0026 in the left-hand side of the equa-
tion (cf. §1.3)

22 —742z +2 =0,

the Horner scheme becomes (in 6-digit computation):

it has the form

ay a, e Qy_2 Gy a,

bo bl et bn—z bn—l bn

Computational rule for the usual construction from left to right (comparison of coefficients
in (7)):

bo=a,, bi=a,+s,b, (k=1,...,n).

If b, = f (s,) is already known (e.g. f(s,)=0), then the scheme can be built up from the
right:

by = by — s, k=n-1,..., 0).

(Editors’ remark)
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1 742

1 -741.997 | 07081
One therefore finds f (s1) = .07081 and s, = 741.997, which is exact to 6
digits, even though we had s, # z; =.00269543. .

If, on the other hand, one starts with the deflation of s, = 741.997,
one obtains the Homer scheme

1 742

1 -.003 ] —22599

and, with f(s;) =-.22599, a substantially larger reconstruction error.
Besides, s, =.003 is a poor approximation for the second root, even
though 5, was exact to 6 digits.

Unfortunately, the stated rule by no means guarantees that the recon-
struction errors remain small, as is shown in the following example of an
algebraic equation of degree 10, for which the Homer scheme for the
deflation of sy = .951 in 3-digit computation looks as follows:

1 81 278 508 476 7 -364 -452 -262 -79 1|
1 905 364 854 129 130 876 381 100 1.61 |.53

Thus the reconstruction error here amounts to .53, with the constant term
being —1, which certainly lies no longer within the computing precision.
In order to obtain better results, the Homer scheme must be built up also
from right to left, putting first O in place of .53 and then running the com-
putation backwards:

1 81 278 508 476 7 -364 -452 -262 -79 -1
—0.116 799 354 84.5 128 129 869 374 941 1.05[ 0

If one replaces 87.6 in the first scheme by 86.9 in the second, and further
to the right uses the values of the second scheme, one obtains
f1@) =2° +9.05z% + 36.427 + 85.4.2% + 12925 + 130z*
+86.92% +37.42% + 9.41z + 1.05
and thereby commits a reconstruction error .7z4, which however for the

larger coefficient ¢4 =—36.4 is tolerable (actually, .7 ought to be com-
pared even with 86.9).



92 Chapter 4. Nonlinear Equations

§4.5. Root squaring (Dandelin-Graeffe)

Let f (z) be a polynomial of degree n. Then f (z)f (-z) is a polyno-
mial of degree 2n and moreover an even function, so that the odd powers
of z cannot occur. For example, f(z) =22 -3z + 1 produces the polyno-
mial f (z)f (—z) =z* —7z% + 1. Hence, f1(z%) = f (z)f (-z) is a polyno-
mial of degree n in the variable z2. If s is a root of f(z)=0, then
fi(sH =0, thus 52 is a zero of fi(z). If one next forms f,(z2) =
f1(2)f1(-z), one obtains a new polynomial f,(z), which again has degree
n and whose zeros are the fourth powers of the zeros of f (z), etc.

If, for example, we start with f (z) = z%2 — z — 1, we can form in this
way successively:

z2 z 1
f@ =1 -1 -1
fGz) = 1 1 -1
i = 1 -3 1
fi=z) = 1 3 1
fa2) = 1 -7 1
fa(=2) = 1 7 1
fa@ = 1 47 1
fa(=z) = 1 47 1
faz) = 1 2207 1

fa(z) (in 6-digit computation) evidently has the zeros s; =2207 and
s = 1/2207; the zeros are torn apart so much that they can be read off
directly as quotients of the coefficients(}).

Now the roots of the original equation are the 16th roots of 2207
and 1/2207, respectively (one has squared four times), thus 1.618034 and
.618034; but there are 16 different 16th roots, and all would now have to
be examined whether they also satisfy the original equation. In our case,
the solutions are 1.618034 and —.618034.

1 Plausibility argument: as is well known,

f@=z2"-0z"'+0,2" %~ --- +(-1yo,,
where g,, . . ., 0, are the elementary symmetric functions of the zeros z,, . . ., z,:
Oy = X A R

i]<iz< - <k

Ifnow Izl >> 12,1 >> -+ >>lz,l, theno, =z,2z, - - z, 6,/0,; =z. (Editors’ remark)
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Let us consider a further

Example. In order to solve the algebraic equation z> — 9z%2 —
8z + 2 =0, one forms:

z3 z2 z 1
f@ = 1 -9 -8 2
f(=2) = -1 -9 8 2
fi@ = -1 97 -100 4
fi=z) = 1 97 100 4
foz) = -1 9209 -9224 16
fa(=z) = 1 9209 9224 16
fa(z) = 1 84787233 84787488 256

For the polynomial f3(z) one now computes the negative quotients
—ci/ce1 (K =2,1,0) of successive coefficients and subsequently their
(positive) 8th root. Here, these roots are

9.795832, 1.0000005, .2041684.

Provided one still supplies them with the correct argument, they agree
very well with the exact roots

-1, 5++23 =9.795832 ..., 5 —423 = 2041685 ... .

This method of root squaring, however, suffers from serious draw-
backs:
1) Repeated squaring produces such large (or extremely small)
numbers that one has to worry about over- or underflow.
2) One obtains only the 27th powers of the zeros (if Jp(2) is used)

and must therefore still take roots. After that, one has to decide
which of the 27 root values is the correct one, i.e., a zero of

f@).
3) Conjugate complex pairs of roots cause difficulties.
Only through extremely complicated programming can these drawbacks

be overcome(®). The method, therefore, is not used frequently. It can
serve, however, as a stopgap for other methods.

2 For a variant of the Graeffe method in which the occurrence of very large and very
small numbers is avoided, see Grau A.A.: On the reduction of number range in the use of
the Graeffe process, J. Assoc. Comput. Mach. 10, 538-544 (1963).
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§4.6. Application of Newton’s method to algebraic equations

First of all, we try to locate the roots of the given equation (6) in the
complex plane. One has, in this connection:

Theorem 4.1. All n solutions of (6) lie in the circle

c 17k
Izl Sp=2 max | —=%
1Sk<n Cn
Proof. If for all k
cop | V¥
Izl >2 | — ,
cn
then (also for all k)
Cn,
2Rk s | 2R
Cn

27k 1c, 1 1z1% > leyg_g | 1z1%7k,
n n—k

There follows

n
2 lepz"l = Y legyl 1z1m7*
k=1

n
Z Cka
k=0

n
leuz™l = % 27%Ic, | 1217
k=1

lcaz®14 1= Y 27%¢ >0,
k=1

i.e., z cannot be a solution, g.e.d.

1\

v

This theorem serves as a basis for a simple recipe for using
Newton’s method to at least come close to a root:

One chooses at random an initial point z, on the circle 1z| =p and

generates a sequence of complex numbers zq, z3, z3, ... according to
the formula of Newton’s method:
f(zy)
z =z -, £=012,.... ®)

This is continued as long as the modulus |f(z,)! of the polynomial is
reduced to less than half its value. As soon as this no longer holds, two
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possible cases are to be distinguished:

a) |f(z,)! is already so small, that it is seriously affected by round-
ing errors; this occurs when

n -1
Y lcezkl <<1
k=0

(thus, for example, when the quantity on the left has the order of
magnitude of 10 units in the last position of the mantissa).

n
Z CrZ k
k=0

b) z, lies near a zero of the derivative f/(z) of the polynomial.

In Case a) one stops, in Case b) one can try to start afresh with another
point on the circle 1z| =p.

A more reliable method, however, consists in re-expanding the poly-
nomial f(z) in a Taylor series about the last computed point (with the
absolutely smallest | f(z)!):

fles +w)= 3, dewk = gow), ©)
k=0

and then in applying Newton’s method, beginning with w =0, to

g1w) = g\w)g(—w), (10

for as long as the function value 1g(z)! is halved at each step(l). One
then has again the alternatives a) and b). In Case a), a zero has been
found, and it can be removed (deflation). In Case b), one proceeds with

g2w) = g1(Gw)g 1 (—\w), etc. .

1 The transition from g to g, is Graeffe's root squaring (cf. §4.5). If g”(0)=0 (or small),
but g”/(0) # 0, then g; (0) # 0, and one can apply Newton’s method to g,. (Editors’ remark)

The convergence of the procedure described here has not yet been investigated. Tests,
however, show that global convergence is not achieved. (Editors’ remark)
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Example. For the equation

z% + 100022 + 1000 =0 (11)
one finds

c ca | 12 e, |13

SAl=o |2 =0, | -= =0,

Cs Cs Cs

1/4 1/5

C1 Co
—_ =0, | — =4, thus p=20.
Cs Cs

(It is to be noted that one could almost always find a smaller p, here, for
example, p = 11.) Starting with zy = 20i, Newton’s method in the first 6
steps produces the points shown in Table 4.2. Thus, in the last step,
| f(z)| even grows, which is connected with the fact that | f/(z5)| is small
(f'(z) = 0 for z = 3.68 + 6.36i). But already in the 5th step, If(z)| has
no longer been halved, so that one could have saved oneself the last step.
We have indeed argued, in this situation, to re-expand f (z) in a Taylor
series with origin at zs. For simplicity we make the new development at
the point z =4 + 6i:

gw)= f(z+w)
= —15096 + 28896i + (—1520 + 2400i))w
+ (-2680 + 720i))w? + (=200 + 480i)w?
+ (20 + 30)w* + w3,

Then one gets

g (w)=—607089600 — 872428032 + (42753920 — 169324800/ )w
+(6022400 - 1189920i)w? + (43040 + 552000 )w?>
+(=100+240iw* —w>.
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Table 4.2. Application of Newton’s method to the algebraic equation (11)

2y Lfzg)]
20.000i 3224779

298 + 15985i 1061312
704 + 12.760i 352628
1.298 + 10.146i 121198
2245 + 7.956i 47382
4250 + 5.740i 33618
-2.750 + 6.056i 56131

This yields immediately w; =— g,(0)/g1(0) = -3.992560 + 4.593463i.
If only this first approximation to g;(w) = 0 is used, one already obtains
\wi == (1.023114 + 2.244844i) as Newton correction for g(w), and
with it the approximation z = 5.023114 + 8.244844i for the desired solu-
tion of f(z) =0. (The other root gives nothing useful.) Now already
|f (z)| = 10389, which, compared with |f(4 + 6i)] = 32602, is reduced
to less than a third. From here on, the method converges rapidly (in 4
steps, with 14-digit precision) towards the solution z = 5.017003 +
8.631391..

Notes to Chapter 4

§4.1 The "method of linearization” discussed in this section is often referred to in
the literature as Newton’s method for systems of nonlinear equations. It is a natural gen-
eralization of Newton’s method for a single equation (see §4.2) and, in fact, can be
extended to equations in infinite-dimensional (function) spaces. The first such generaliza-
tion was done in the context of nonlinear operator equations in Banach spaces by L.V.
Kantorovich in 1948 (see Kantorovich & Akilov [1964]). This generalization is often
called the Newton-Kantorovich method. Another important generalization was given by J.
Moser [1961] for the case of operators acting on a continuous scale of Banach spaces with
properties similar to the properties of Sobolev spaces. The above generalizations provide
useful tools in the study of the solution of nonlinear differential and integral equations.
For a recent analysis of the Newton-Kantorovich and Newton-Moser methods, see Potra &
Ptak [1984].

The principal difficulty with Newton’s method is its local character of convergence:
the initial approximation has to be sufficiently close to the desired solution for conver-
gence to take place. In practice, therefore, the initial phase of Newton’s method, or indeed
the entire iteration process, is modified to make sure that initially the approximations
move closer to the solution. One might insist, for example, that the functions in question
decrease in some suitable norm. There are many ways to do this, which guarantee
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convergence even if the initial approximation is far away from the desired solution. Some
of these modified methods, in fact, automatically turn into Newton’s method in the vicin-
ity of the solution, thus sharing with Newton’s method quadratic convergence, but unlike
Newton’s method, possess qualities of global convergence. It is also possible to dispense
with derivative evaluations and build up the required matrix of derivatives gradually from
information gained during the iteration. Such methods are usually described in the context
of optimization problems; for example, to minimize f7(x)f(x), which is equivalent to
f(x) = 0, if f and x are of the same dimension and solutions are known to exist. For a dis-
cussion of such "Newton-like" methods, and other methods that have proven effective in
practice, the reader is referred to Gill, Murray & Wright [1981], Dennis & Schnabel
[1983], Fletcher [1987]. Among software packages for solving systems of nonlinear equa-
tions we mention MINPACK-1 (Moré, Garbow & Hillstrom [1980]), which implements a
modification of Powell’s hybrid method (Powell [1970]). The hybrid method is a varia-
tion of Newton’s method which takes precautions to avoid large steps or increasing resi-
duals. The subroutine HYBRD1 of MINPACK uses a finite difference approximation of
the Jacobian (a sort of "derivative-free linearization" like the one described in §4.1), while
HYBRDJ employs a user-supplied Jacobian. The subroutine SNSQE described in
Kahaner, Moler & Nash [1989] is an easy-to-use combination of both subroutines above.
The IMSL subroutines NEQNF and NEQNTJ are also based on the MINPACK routines
(see IMSL [1987, Vol. 2]).

Other methods with global convergence properties have been developed by using
continuation algorithms. In this approach one considers a family of equations depending
continuously on a parameter ¢ belonging to the interval [0,1]. The equation corresponding
to £ = 0 has a known solution, while the equation corresponding to ¢ = 1 is the equation
whose solution is sought. The problem then is to construct an increasing sequence of
parameters so that the solution of the equation corresponding to a parameter of this
sequence is a good starting point for an iterative method to solve the equation correspond-
ing to the next parameter in the sequence. A portable software implementation of this
approach is available (Watson, Billups & Morgan [1987]).

§4.2 Newton first applied his iterative method in 1669 for solving a cubic equation.
The procedure was systematically discussed in print by J. Raphson as early as 1690.
Therefore, the method is sometimes referred to as the Newton-Raphson method. For more
details on the history of Newton’s method, see Goldstine [1977] and Ostrowski [1973].

By contrast with the regula falsi described in §4.3, Newton’s method does not pro-
duce a convergent sequence of nested intervals containing the solution. However, for con-
vex functions, this can be accomplished by using Fourier’s modification of Newton’s
method (see Ostrowski [1973, Ch. 9]). For nonconvex functions, one may use interval
arithmetic and some interval variants of Newton’s method in order to construct such a
sequence of nested intervals (see Alefeld & Herzberger [1983]).

The notions of quadratic and cubic convergence introduced in §4.2 can be general-
ized as follows. Letting e, denote the distance between the kth term of a convergent
sequence and its limit, the g-order of convergence of the sequence is defined as the limit
m = liminf [log e;,, /log e;], whenever this limit is greater than one. If &;,, is propor-
tional to the mth power of ¢, then the g-order of convergence is obviously equal to m, but
the above definition uniquely defines the g-order of a sequence in much more general
situations. One says also that the sequence is g-superlinearly convergent if
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lim sup [e;,; / ] =0. If m > 1, then the sequence is g-superlinearly convergent, but the
converse is not true. Finally, one says that the sequence is g-linearly convergent if
0 < lim sup[e;,; / ] < 1. The speed of convergence of sequences can also be measured
by their r-orders of convergence. For the definition of the r-order and its relationship with
the g-order, see Ortega & Rheinboldt [1970], Potra [1989].

§4.3 The regula falsi originates in medieval Arabic mathematics, perhaps even ear-
lier in China (see Maas [1985]). Leonardo Pisano, alias Fibonacci, in the early 13th cen-
tury calls it "regula duarum falsarum positionum” (rule of two false positions). It received
this strange name, since for linear equations (a problem in the forefront of medieval arith-
metic!) the method produces from two approximations ("false positions") the exact root
by linear interpolation. Peter Bienewitz (1527) explains it thus (cf. Maas [1985, pp.
312-313]): "Vnd heisst nit darum falsi dass sie falsch vnd unrecht wehr, sunder, dass sie
auss zweyen falschen vnd vnwahrhaftigen zalen, vnd zweyen ligen die wahrhaftige vnd
begehrte zal finden lernt".

In its original form, in which at every step the secant is drawn between two func-
tion values of opposite signs, the regula falsi is only linearly convergent. By taking a and
b in (5) to be the latest two iterates, even if f does not change sign at those points, one
obtains the so-called secant method. The q-order of convergence of this method is
(1++/5)/2=1.618... . Because it requires only one function evaluation per iteration,
its numerical efficiency is ultimately higher than that of Newton’s method (see Ostrowski
[1973]).

There are a great number of methods that have been proposed for solving single
equations in one unknown. Many of them combine bisection and interpolation devices
with various safeguarding measures designed not only to guarantee convergence, but also
to yield fast convergence in cases of well-behaved equations, and at least the speed of
bisection in other more difficult cases. A thorough study of some such methods can be
found in Brent [1973]. One of the first methods of this type, originally published by
Dekker [1969], is incorporated in the subroutine FZERO described in Kahaner, Moler &
Nash [1989]. The IMSL subroutine ZBREN (cf. IMSL [1987, Vol. 2]) is based on
Brent’s improvement of Dekker’s algorithm (Brent [1973]), which is a combination of
linear interpolation, inverse quadratic interpolation and bisection. A Fortran implementa-
tion of Brent’s method, the real function ZEROIN, can be found in Forsythe, Malcolm &
Moler [1977]. All subroutines above find a zero of a function in a given interval that has
to be specified by the user. Some popular subroutines which do not require the prescrip-
tion of such an interval are based on Muller's method (cf. Muller [1956]). Such is the
IMSL subroutine ZREAL (IMSL [1987, Vol. 2]).

While there is basically a unique generalization of Newton’s method for solving
systems of nonlinear equations, this is no longer the case for the secant method. For the
nonlinear system f(x) = 0 of (1), the generalization of Newton’s method described in §4.1
is based upon locally approximating the mapping f(x) by the affine mapping
f(x;) + A(x — x;), where A is the Jacobian of f at x;. The secant method could be general-
ized by considering a similar affine approximation, but where this time the matrix A
should satisfy the "secant condition" A(x; — X;_;) = f(x;) — f(x;_;). This condition, how-
ever, does not uniquely determine the matrix A (except when n=1). One way of determin-
ing the matrix A was proposed by Schmidt [1963] and led to a generalization of the secant
method that, in the general case, has the same r-order of convergence as in the one-
dimensional case. Nevertheless, this method is rather expensive and sometimes
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computationally unstable. A more efficient generalization of the secant method has been
proposed by Broyden, who computes the matrix A at each step via a rank-one update (see
Dennis & Schnabel [1983, Ch. 8]). The nonlinear systems arising in convex optimization
problems have symmetric positive definite Jacobians, and in such cases the matrix A
should also be symmetric positive definite. This can be accomplished by various rank-two
updates. One of the most successful generalizations of the secant method is based on the
BFGS update, independently discovered by Broyden, Fletcher, Goldfarb and Shanno in
1970 (see Dennis & Schnabel [1983, Ch. 9]). Both Broyden’s method and the BFGS
method are g-superlinearly convergent.

§4.4 A quantitative discussion of the sensitivity of roots of algebraic equations to
small perturbations in the coefficients is given in Wilkinson [1963, pp. 38ff]. One finds
there, in particular, Wilkinson’s famous example of an ill-conditioned equation, with roots
at the integers 1, 2, ..., 20. This is further discussed in Wilkinson [1984] and Gautschi
[1984]. The cited book of Wilkinson is also a good source for the effects of rounding
errors in polynomial evaluation, in Newton’s method, and in polynomial deflation. For
further practical remarks concerning the solution of polynomial equations, in particular for
an analysis of forward and backward deflation, and a combination thereof, see Peters &
Wilkinson [1971].

While Newton’s method possesses some special properties when applied to alge-
braic equations (see, e.g., Stoer & Bulirsch [1980, §5.5]), it does not allow for the compu-
tation of complex roots from real starting values. A method that overcomes this deficiency
is Laguerre’s method (see, e.g., Froberg [1985, §11.5]1). This method has global conver-
gence for real roots, local cubic convergence to a simple root, and local linear conver-
gence to a multiple root. The IMSL subroutine ZPLRC is based on Laguerre’s method,
while the other IMSL subroutine (cf. IMSL [1987, Vol. 2]) for solving polynomial equa-
tions, ZPORC, is based on the Jenkins-Traub three-stage algorithm (cf. Jenkins & Traub
[1970]).

§4.5 Wilkinson [1963, pp. 67ff] discusses stability aspects of the rootsquaring pro-
cess in the presence of rounding errors. He makes the point that "squaring” a polynomial
may in some cases result in a worsening of the condition of the polynomial (with respect
to rootfinding), although, as a rule, one should expect the opposite to happen — a steady
improvement of the condition.
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CHAPTER 5
Least Squares Problems

§5.1. Nonlinear least squares problems

We consider once again a system of nonlinear equations
fl(xl,.X2, e xp) =0
f2(X1,JC2, ey xp) =0

fn(xl’XZ’ e xp) =0,

but now assume that the number n of equations is larger than the number
p of unknowns.

If, for example, the system

x +y =1
x? +y* = 8
x3 +y3 = .68

is to be solved, one must note that this is an impossible task, since from
the first two equations there follows immediately xy = .1, thus

1+£+.6 1++.6
2 7 2

x= y=

But then,
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By =(x+y’ -3y +y)=1-.3=.7#.68

The way we have treated here an overdetermined system fi(xq,..., X,)
=0 is to solve the first p equations f; = --- = f, =0, but completely
ignore the others. Clearly, this is not the correct approach; rather, one
ought to try to satisfy as many equations as possible, if only approxi-
mately.

In order to achieve this, we first recall the concept of residual: If in
the left-hand side of the kth equation fi(xq, ..., x,) =0 one substitutes
arbitrary, but fixed values xy, ..., x,, one does not obtain 0 in general,
but a residual s;; through substitution in all n equations one obtains the n
residuals 51, §2, . . . , S, Which all depend on x4, .. ., x,.

Ideally, one would like to make all residuals s, equal to O by a suit-
able choice of the x,. However, this cannot be done; one can only try to
make the residuals as uniformly small as possible. But what should this
mean? The residuals, indeed, can be made small with respect to several
points of view:

a) make the sum of the absolute values, that is Y, Is;l, as small as

possible;

b) make the sum of squares s? as small as possible (method of

least squares);

¢) make the absolutely largest, i.e., maxls;!, as small as possible
(Chebyshev approximation).

In the following we shall deal with the method of least squares, and
thus compute the minimum

min c(xlv ’ xp)
Xyyeoos x,
and the corresponding values of x, . .., x,, where
“ 2_w 2
c(xl, RN xp)= Z Flxys-- - xp)] = Z Sk.
k=1 k=1

For the example above, this would mean, e.g., that one determines
min 6(x,y) with

oY) =(x+y -2+ @& +y2 - 8%+ (x> +y> - 68)%.
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There is a direct method to deal with this problem: In the
““landscape’’ (in (p + 1)-dimensional space RP*!) defined by z=
o(x1,..., X,) one goes constantly downhill (cf. Fig. 5.1). To do this,
one needs the gradient of the function o(xy, ..., x,),

Figure 5.1. Method of steepest descent

Pele] n Ofe(xX1, ..., Xp)
rado), = — =2 seees ;
(g e o, z felx1 Xp) o,
one then varies the x, according to
fels)
=x, +Ax,, wh Axy =—t —— .
Xy Xy Xy, where ¢ aXt

(The choice of ¢ is a problem in itself.)
In the above example one obtains

99 _ 95, + s, + 6x2s5,
ox

00 2
— =251 +4 +6 .
dy 51 YS2 y“§3

One can start at the point

1+2'\/3 =88730..., y= 1—2\13 =.11270 ...,

X =

and choose, say, ¢t = .05. The resulting first ten steps are summarized in
Table 5.1 (rounded results of the 14-digit computation).
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Table 5.1. Method of steepest descent for a nonlinear
least squares problem

4 00 2 00 2

x y ox 10 ™ x 10 % x 10
88730 .11270  4.0000 9.448 152
88257 11263  1.7242 242 -1.270
88245  .11326  1.6440 199 -1.173
.88235 .11385  1.5760 183 -1.081
.88226  .11439  1.5183 .169 —.995
.88218 .11489  1.4693 156 - 917
.88210 .11534  1.4278 144 —.845
88203 11577  1.3925 133 -.778
.88196  .11615  1.3626 123 -.717
.88190  .11651 1.3372 113 - .661
.88184  .11684  1.3156 .104 —.609

After 100 steps one would get
x = 88117, y=.12073, o= 1.194018;0-4,

which, to the number of digits shown, agrees with the exact solution. The
convergence, however, is very slow(}).

This method of steepest descent is indeed not quite the right thing.
Rather than just linearizing, we really ought to ‘‘quadratize’’;

O(x1 +Ax1,..., % +Ax,) =
p dc 2 0’c
O(X1s..., X))+ Y Ax; — + A Ax; ——— .
G ) El 7 ox; i,,-z=1 Y ox;0x;

However, in the following, we shall turn our attention to the case of
linear equations, which (apart from rounding errors) can be solved
exactly. The given error equations then have the form

' Also a doubling of the stepsize to ¢t =.1 would not bring the expected improvement in
convergence. On the contrary, one quickly runs into an oscillatory regimen, and after 100
steps one is only as far as after 39 here. See also §10.3. (Editors’ remark)
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p
Sixts oo x)= 3 fuxe + =5 k=1,...,n).
t=1

But first, we describe this linear least squares problem in yet another
way.

§5.2. Linear least squares problems and their classical solution

a) Unconstrained least squares approximation deals with the prob-
lem of approximating a vector g in R"” by means of m vectors fi,

fp, ..., £, (m < n) in the sense of least squares, i.c., to find a vector
m
h=7% xf;
k=1

such that the Euclidean error norm | lh — gl | becomes as small as possi-
ble. Desired, especially, are also the coefficients xq, ..., x,,. This prob-
lem can be formulated also as

I 1¥x — gl ! = minimum,
or, after squaring, as
(Fx — g, Fx — g) = minimum, €9

if one collects the coefficients x; into a vector x (in R™) and the vectors
fi, £, ..., f, into a matrix F with m columns and » rows (cf. Fig. 5.2).

Figure 5.2. Shape of ¥,x and g in unconstrained least squares
approximation

The problem can be phrased geometrically as follows: In the hyper-
plane of R", spanned by fy, ..., f,, one secks that vector h for which
h — g becomes shortest. This vector h, as is well known, can be con-
structed by dropping the perpendicular (from g) to the plane (cf. Fig. 5.3).
One therefore has, fori=1,..., m, (f,Fx —g) =0, i.e., in matrix form,
FI(Fx — g) = 0.
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Figure 5.3. Unconstrained least squares problem as approximation
problem in R"

Indeed, from (1) there first follows

(Fx,Fx) — (Fx,g) — (g,Fx) + (g,2) = minimum,
thus
x,FTFx) — 2(x,F’g) = minimum, ?)

where FTF is positive definite, provided the columns f; of F are not
linearly dependent. But now, according to §3.7, the minimum problem

% (x,AX) + (x,b) = minimum

(with A positive definite) is equivalent to Ax +b=0. Here, A = F'F,
b =-F’g, and (2) is thus equivalent to the linear system (normal equa-
tions)

F'Fx-Flg=0, 3
as we asserted above on geometrical grounds. F'F is a symmetric

m X m-matrix which, as mentioned, is positive definite in general, and
F7g is an m-vector (cf. Fig. 5.4).
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FT x| F |=|FTF FT X=B»FTg
FTF X=HFTg

Figure 54. Structure of the normal equations in unconstrained
least squares approximation

b) In constrained least squares approximation one deals with the
following type of problem: Given m measurements gi,22,..., &x, the
“‘corrected’’ values xy,xs, ..., X, are to be determined such that

m
1) there are satisfied p(<m) linear conditions Y, cjx; —d;=0

j=1
i=12,...,p),
m
2) Y lx — g% becomes minimum.
k=1
In other words: the m measurements gi,..., g, through corrections

which are as small as possible, are to be changed in such a way that the p
conditions are satisfied.

In vector-matrix notation: desired is a vector x such that | I1x — gl |
is minimum subject to the constraint Cx —d =0. Here, C is a p X m-
matrix (p <m), d a p-vector, and x,g are vectors of dimension m (cf. Fig.

5.5).

Figure 5.5. Shape of C, x, g and d in constrained
least squares approximation




110 Chapter 5. Least Squares Problems

Example. If one measures the altitude g(t) of a freely falling body

at equal time intervals, that is, for ¢, =tg + kAt, k =1, ..., m, the values
gr = g (t) must lie on a parabola and therefore, in particular, the third
differences of the numerical sequence gi, £2,..., &» must vanish.

Because of measurement errors, this is not the case exactly; one therefore
determines adjusted values x; for which the third differences are indeed
equal to 0. This means Cx = 0, with (say, for m=7, p=)():

OO O -

In constrained approximation, therefore, one has to determine a
minimum of | Ix — gl |? with side conditions; this is done, according to
Lagrange, by computing the stationary values of

lix—gll?+ f‘, 2t; [ i cijXj — di] = (x,X) - 2(x,8) + (g,8) + 2t,Cx — d),
j=l

i=1

where t=1[ty,..., tp]T is the vector of the p Lagrange multipliers.
Through partial differentiation with respect to all variables x;, #; one
obtains from this immediately the system of equations in Fig. 5.6. The
matrix is symmetric, but not positive definite (because of the Lagrange

multipliers).
1 cT x
X =
C (0]

Figure 5.6. System of equations for the ‘‘corrected’’ values x and the
Lagrange multipliers t

UIn the manuscript of this chapter all matrices are written as rectangular tableaus. Here
we use instead the usual notation. (Editors’ remark)
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This can also be written as
x +Clt =g
Cx =d S

from which, by elimination of x, there follows the system of normal equa-
tions

CCTt-(Cg-d)=0. (5)

Here, CCT is a symmetric matrix of order p which, as a rule, is positive
deﬁnite(z) (cf. Fig. 5.7). From t one then obtains

x=g-CTt. 6)

c |x|cT|=|ccT c |x —E|=B,Cg—d
CCTX=HCg—d

Figure 5.7. Structure of the normal equations in constrained
least squares approximation

c¢) The most general case: desired is a vector X such that
I 1Fx — gl | becomes minimum subject to the side condition Cx —d = 0.

This problem can be reduced to Case b); indeed, given the Cholesky
decomposition R’R of FTF, and introducing the vector y = Rx, one has

(Fx — g,Fx — g) = (FR'y,FRly) — 2(g, FR'y) + const.

= (y,R"TFTFR ly) - 2RTF7g,y) + const.

2 Namely precisely in the case when the constraint equations are linearly independent.
(Editors’ remark)
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Since
RYFTFR! =RVRTRR! =1,

one thus obtains

| IFx — gl 12 = (y,y) — 2R"TF g, y) + const.

= 1y—RTF gl 12 + const.

This is to be minimized under the requirement that Cx —d = CR 'y — d
= (. The problem, therefore, is reduced to the case b), with

R'TF'g inplace of g,
Rx inplace of x, @)
CR! inplace of C.

d) The curse of the classical methods. The solution methods treated
here all work with normal equation matrices, i.e., matrices of the form
FTF or CCT, where the first matrix in the product is “‘wide”’, and the
other ‘‘high’’. While, theoretically, such matrices are indeed positive
definite, they nevertheless have often undesirable properties (ill-
conditioning), so that one really should not use them in computational
work.

The matrix
1.07 1.10
F=| 1.07 1.11 t))
1.07 1.15

may serve as an example. Here the normal equations matrix, in strictly
3-digit computation, is

360 3.76 ®)

342  3.60
F'F = ;
however, this is not a positive definite matrix; already for x = [-1, 117 one

finds that the value of the quadratic form is —02.

We therefore propose to solve the problems a), b), ¢) with different
methods, which we now discuss.
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§5.3. Unconstrained least squares approximation through orthogonal-
ization

The solution of the minimization problem can be simplified by sub-

jecting the vectors f, f5,..., f,, g to a Schmidt orthogonalization pro-
cess; this generates orthogonal vectors uy, ..., u,, s with the following
properties:

fi =rnwm

f, =rppu; +rpuw

f3 = riaug +rp3up +ra3u;

(10)
frn=rimup +ro,Up + * 0 + 1yl
g =y1up +ysua + 0 Fyuly —S,
where r,, >0 for p =1,..., m. The vectors uy,..., u, are also nor-

malized, but s is not. The coefficients r,, with ¢ > p and y; are deter-
mined such that the vectors u;, s become orthogonal, while the r,, are
normalization factors which are used to make the lengths of the u; equal
to 1.

Collecting the vectors uy, ..., u,, into a n X m-matrix U, and the
rpq INLO an upper triangular(l) m X m-matrix R, the relations (10) can be
written as follows:

F=UR 1D

Figure 5.8. UR-decomposition of F

1 Upper triangular matrix = matrix [r,,] with r,, =0 for p > ¢. (Editors’ remark)
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i.e., F is to be decomposed into a matrix U with orthonormal columns and
an upper triangular matrix R (UR-decomposition; cf. Fig. 5.8). Further-
more,

g=Uy-—s, where y= UTg. 12)
We then have identically in x,

| IFx —gl 12 = | IlURx - Uy +s! 12 = (URx - y) + s,URX — y) +5)

= (UTURX - y),Rx — y) + 2(Rx — y,UT's) + (s,5).
Since UTs =0 and UTU =1,, (= unit matrix of order m), one obtains
identically in x,
IIFx—gl12=1IRx -yl 12+ 1Isl12,

where s = (UUT —I)g is constant, so that the minimum is obviously
attained for Rx = y. One thus has to solve the system of equations

Rx =y, (14)

which is quite easy, since R is a triangular matrix. For the solution x, one
has from (11), (12)

Fx-g=URx—-y)+s=s, (15)

i.e., s is precisely the residual vector, which is often more important than
X.

We note in passing that this matrix R is the same as the one that
results from the Cholesky decomposition of the matrix F'F. Indeed,
F'F=RTUTUR =R'R, (16)
and the assertion follows from the uniqueness of the Cholesky decomposi-
tion.

This is valid only in theory, however. In computational work, the
matrix R obtained through orthogonalization, and hence also the solution
of the least squares approximation problem, is more accurate.

Example. The UR-decomposition (computed in 3-digit floating-
point arithmetic) of the matrix (8) reads:

1.07 1.10 578  -535 185 1.94
1.07 111 | =| 578 -267 0 0374 |-
1.07 115 S78 0 .802
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The values obtained are correct to 3 digits, while the triangular decompo-
sition of FTF could not even have been executed.

The pseudoinverse. From Rx =y = UTg there follows
x=R"UTg, a7

so that the matrix R™1U7 has the property that it yields, through multipli-
cation into the vector g, directly the solution x, just like the solution of
the linear system of equations Ax — b = 0 is obtained directly as A™'b.
Because of this analogy, the m X n-matrix

Z=R1UT (18)
is called the pseudoinverse of F. It has the property
ZF=R'UTUR=R'R =1, 19)
Z |x|F|=]|1,

Figure 5.9. The pseudoinverse Z of F

On the other hand, FZ is a n X n-matrix, but not the unit matrix.

Nevertheless, the pseudoinverse is more of theoretical interest than
of practical significance for numerical computation. (There is also still a
more general definition; see below.)

Orthogonalization without normalization. In smaller examples,
computed by hand, the necessity of normalizing the vectors in the
Schmidt orthogonalization process is annoying. One can indeed dispense
with normalization: one determines orthogonal vectors vy, ..., v, with

fi=v

f2 =S12V] + Vo

f,=851mV1+SogmVa + -+ + Sm-1,mVm-1 + Vs

here,
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(fj’vi)
s;j=——— (<))
YWV g
Thus, F is decomposed into F = VS, where V is a n X m-matrix with the
orthogonal columns v;,...,V, and S is an upper triangular m X m
matrix with diagonal elements 1. Then | [Fx — gl | is minimum when
VI(VSx - g)=0.

After the VS-decomposition, it remains therefore to solve the system
of equations

Sx=(V'V)'V'g
for x (back substitution). Note that VIV is a diagonal matrix; the right-
hand side of the system can therefore be computed very easily.

This approach has the advantage of requiring only rational opera-
tions. One trades this, however, for the disadvantage of uncontrolled
growth in the elements of the matrix V.

The matrix
Z =S1(vTvy1lvT
(generalizing the preceding definition) is also referred to as pseudoinverse
of F. It again has the property

ZF=1,, x=1Zg

§5.4. Computational implementation of the orthogonalization

The orthonormalization process, starting from the vector f; proceeds
to the vector f,,, whereby after the computation of u, all remaining vec-
tors (fi41,fk42, - - - » f,) are immediately made orthogonal to u, through
the addition of suitable multiples of u,. We therefore make the

Assumption: let uy, ..., u;; be already determined and orthonor-
mal; let further f,f;.1,..., f,, be orthogonal to uy,..., uy_; (but not
among themselves). Then one computes:;

T == I Ifkl I,
u = fi/ri, (20)

rij = (ugf;) -
i=k+1,..., .
f] = f} - rkjuk J m
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In this way, the uy, u,,..., u, are now determined, and the new
fii1, ..., £, are also orthogonal to u,. The step from k£ — 1 to k is thus
completed. The whole UR-decomposition therefore requires the execution
of the above equations (20) fork=1,2,..., m.

Subsequently one computes

Vi = (0, 8) e 12 .
g3=g—)’kuk - ’1---3m’ ( )

and then solves the system Rx —y=0. The latter is exactly the same
computing process as the back substitution in the Cholesky method for
the solution of the system F'Fx — Flg = 0.

Two difficulties now arise:

a) Orthogonality of the u,. The orthonormalization process assumes
that the generated vectors are orthogonal to machine precision. However,
in orthogonalizing vectors which are almost parallel, rather oblique vec-
tors u; may be produced due to rounding errors (see Fig. 5.10). In other
words: the inner products (u;,u;) (i # j) are substantially larger than a few
units in the last position, which also adversely affects the accuracy of the
solution x. (The latter, to be sure, is still better than in direct solution of
the normal equations.)

uy f'l
Figure 5.10. Orthogonalization of two almost parallel vectors

In order to guard against such inaccuracies in the orthogonalization
process, it is advisable to repeat the orthogonalization of the vector f; as
soon as it becomes evident, during the computation of ry, that the length
of f, has been reduced by the orthogonalization process to less than 1/10
of its original value. One executes, in this case, the following additional

operations:
dj = (llj,fk) .
f =1 —dju; j=L2, k-1, (22)

ree =1 1E 11
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Of course, this does not help if the vector f;, becomes exactly 0 (e.g., if
the matrix F consists of all ones). This case will be treated later under b).

Numerical example (4-digit computation). For the matrix

8 21
13 34
F=121 55
34 89
one first obtains r1; = | If; 1| =42.78 and

u; = [.1870, .3039, .4909, .7948] ;
then rip = (ul,fz) =112.0,

f, :=f, — 112.0 u; = [.06, — .04, .02, — .02]7 .

The components of the new vector f,, owing to cancellation, have become
1-digit numbers (ca. 1000-fold reduction). The inner product d; = (u;,f;)
is —.007022. By adding .007022 u, to f,, a change still occurs in 4-digit
precision, because the first component, e.g., is stored in floating point
arithmetic as .06000, to which is added .007022 x .1879 = .00131. One
so obtains a corrected vector:

5 = f, + .007022 u; = [.06131, — .03787, .02345, — .01442]7 .
Then, rop = | 1§11 =.07713,
u, = [.7949, — 4910, .3040, — .1879]7 .
Hence, altogether,

1870 7949
3039 —4910 278 1120

U=| 4909 3040 | R={ 0o 07713 |-
7948 —.1870

One must not expect, however, that through reorthogonalization the
exact values of U and R are obtained. Rather, one merely achieves that
the columns of U are orthonormal to machine accuracy and that UR
agrees with F to machine accuracy. Nevertheless, with these U and R one
will obtain a vector x which almost yields the minimum value for
I 1Fx — gl |, even though x may be far from the theoretical value of the
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vector. For example, with g = [13, 21, 34, 55]7, one gets (in exact com-
putation) U7 g = [69.2175, .0737]7; one thus has to solve the system

4278 x; + 112.0 x5 =69.2175
07713 x5 = .0737,
from which one obtains
Xy = .9555, x;=-.8836.

This gives Fx =[12.9967, 21.0002, 33.9969, 54.9971]7, which, within
the computing precision, agrees with g. Here, in fact, the exact solution
is x; =—1, x, =1, and this gives exactly Fx =g, i.e., the minimum of
I IFx — gl | here is actually O.

b) Dependence of the columns of F. In many cases, also reorthogo-
nalization does not help, or does not help sufficiently, for example when
the columns of F are linearly dependent, or become so during the course
of the computation due to rounding errors. This is revealed — as for
example in the case fy = 0 — by the fact that reorthogonalization remains
ineffective.

One can avoid such occurrences from the start by replacing the
minimum problem by

| 1Fx — gl 12 +€?11x! 12 = minimum, (23)

where € is a sufficiently small number, so that the given problem is not
changed in any practical sense.

For the computational implementation, this means that to the matrix
F of the error equations one appends below the square matrix €I, of order
m, and to the vector g the zero vector in R™; the resulting vector in R**™,
depicted in Fig. 5.11, is to be made as short as possible. The appended
matrix €l,,, indeed corresponds to the term €21 Ix| 12 in (23).

F g
x_

el 0

|

Figure 5.11. Extended residual vector
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Note that in this case the occurrence of a linear dependence is
impossible; for, even after orthogonalization, the extended vector f, has
still at least length €. As a consequence, one also has r;; > €.

Numerical example (5-digit computation). To be orthogonalized is
the matrix

11 1
11 1
F=17 1
1 101  .99999

The vectors ug, f; and f; determined according to (20) and — through
reorthogonalization — by (22), are recorded in Table 5.2 in the order of
their computation(!). (At the bottom are appended the coefficients 7y,
r12, 13, 722, 723, d1, da, r33.) Since the resulting f,, in spite of its
reduction, becomes exactly orthogonal to uy, it does not need to be
reorthogonalized.

Table 5.2. Orthogonalization of a matrix with nearly linearly
dependent columns

uy £, f3 u f3, 51 5, u3
05 -0025 O -.28867 -2.4999,9-6 0 —4.999810-11 -.49998
05 -0025 O -.28867 —2.4999{0-6 0 —4.999810-11 —49998

05 -0025 O —-28867 -2.4999,0-6 0 -4.999810-11 -.49998
05 0075 —10-5 .86602 -2.5001y—6 —210-10 -5.001049-11 —-.50010

2 2005 2 8.660310-3 —8.660219-6 49999106 —1.732;0-10 19-10

One thus finds:

—-28867 —.49998

—28867 —49998

—-28867 —.49998 | ’
.86602 —.50010

th hh b

1 The additional second index in f; and f§ refers to the respective value of k in (20), resp. j
in (22). (Editors’ remark)
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2 2.005 2
R=|0 86603,-3 -8.6602,0-6 | ;
0 0 10-10

but in spite of reorthogonalization, the first and last column of U are prac-
tically parallel. In addition, the small element r3; immediately causes
difficulties in the solution of the least squares problem. For example,
g =1, 1, 1, 2]7 leads to the system of equations

X1 Xy X3 -1
0= 2 2.005 2 2.5
0= 0 8.6603;0-3 -8.6602;9—6 | .86603
0= 0 0 10—10 -2.5001

2.50261010 —2.5107 —2.5001410

with the solution indicated at the bottom of the tableau. This solution,
however, is totally meaningless, since in 5-digit computation the opera-
tion Fx results in complete cancellation.

On the other hand, the extended matrix F, in the sense of Fig. 5.11
(withe= 10’3), has the following decomposition:

1 1 1] [ 5 _28486 023311 |
1 1 1 5 -28486 023311
1 1 1 5 -28486 023311
F=| 1 101 99999 |, U=| 5 85471 —069224 |,
03 0 0 504 —11424 —-70066
0 -3 0 0 11396  —.0085431
L 0 0 10=3 | | 0 0 70897 |
2 2005 2

R=|0 8.7753;p-3 1.0569,,—4
0 0 1.4105,0-3
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Now, with g =[1, 1, 1, 2]7, there results:

x = [-48.414, 97.997, —48.576]T ,

Fx — g = [.007, .007, .007, —013]7 .

§5.5. Constrained least squares approximation through orthogonalization

The constrained least squares problem

in  Ilx—gll 4
cicd=o B @

can be reduced by means of an arbitrary vector xy, with the property
Cxg—d=0,to

in Ily—hll; 25
é?ino y (25)

simply put y = x — xg, h = g — x.

The solution of the reduced problem, according to §5.2, is deter-
mined by the equations (5), (6), wherenow d :=0, g:=h,x :=y:

CC't-Ch=0,

y=h-CTt. (26)
A comparison with the normal equations (3) and the relation (15) of
unconstrained approximation shows the equivalence of the two problems,
if one makes the following correspondences:

CT<>F | h<g
t <<x | —-y<>s

One can thus proceed as follows: first orthonormalize the columns
of CT and then make also —h orthogonal to these columns, but no longer
normalized. The resulting vector, according to the above correspon-
dences, is —y. One obtains of course directly y by making h orthogonal to
the columns of CT. The procedure is summarized in Fig. 5.12.



§5.5. Constrained least squares approximation through orthogonalization 123

Figure 5.12. Constrained least squares approximation through
orthogonalization

Numerical example. We are given the values of f(¢) = 10° In(?),
rounded to integers, for £ = 10, 11, 12, 13, 14:

t | f@®

10 | 230259
11 | 239790
12 | 248491
13 | 256495
14 | 263906

These values are to be modified in such a way that they come to lie on a
parabola (polynomial of degree 2 in the variable 7). This simply means
that the third differences of the corrected values must vanish:

Yie = 3¥k+1 + 3Vis2 = Vi3 =0 for k=12,...,m-3.

In our example, m =5, so that this condition needs to be written down
only for k = 1,2. Thus,p =2, and

1 -3 3 -1 0

C=lo 1 3 3 =
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Orthogonalization:
cT h U y
1 0 230259 223607 253546 | 230283.11
-3 1 239790 —-.670820  -.422577 | 239740.94
3 -3 248491 | => 670820  —.253546 | 248493.49
-1 3 256495 -.223607 760639 | 256540.74
0 -1 263906 0 338062 | 263882.71

zl =29.74 68.88

The last column contains the adjusted values.
Still a few words about the general problem

min | IFx—gll, @7
Bx=0

where F is a n X m-matrix, and B a p X m-matrix. According to §5.2,
this is reduced to the preceding problem (25) by means of the substitution
[cf. (7]

h=R"'7Fg, C=BR!, y=Rx.

Since after the UR-decomposition of F there holds: RV F’ = U7, one
obtains C as in Fig. 5.13.

F = U R

B C

Figure 5.13. Computation of C during the orthogonalization of F

One thus makes a UR-decomposition of F, but executes the same opera-
tions with the columns of B as with the columns of F. After that,
h =UTg; once y is computed as above, one finally obtains x from the
equation

Rx-y=0
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Notes to Chapter 5§

§5.1 Minimizing the sum of the squares of nonlinear functions is a special optimi-
zation problem which can be solved by methods applicable to general optimization prob-
lems, such as the methods discussed in Gill, Murray & Wright [1981], Dennis & Schnabel
[1983], Fletcher [1987]. Methods tailored especially to least squares problems, however,
are preferable. Among the more popular ones are the Gauss-Newton method and the
Levenberg-Marquardt algorithm; see Dennis & Schnabel [1983, Ch. 10] or Fletcher
[1987, Ch. 6]. The Gauss-Newton method is derived by considering a local affine model
of the objective function around the current point, and by choosing the next point as the
solution of the corresponding linear least squares problem. The Gauss-Newton method is
locally g-quadratically convergent (cf. Notes to §4.2) on zero-residual problems, i.e., prob-
lems for which the function ¢ vanishes at the solution. For problems which have a small
positive residual value at and around the solution, and which are not highly nonlinear, the
Gauss-Newton method converges fast g-linearly. However, it may fail to converge on
problems that are highly nonlinear and/or have large residuals. Nevertheless, it can be
shown that the Gauss-Newton direction is always a descent direction, so that the method
can be "globalized" by incorporating into the algorithm either a line search or a trust
region strategy. The necessity of introducing such strategies is due to the fact that the
model of the objective function is only locally valid. For a given descent direction, a line
search algorithm will produce a shorter step in the same direction, while the trust region
strategy first determines a shorter step length, and then produces a new step direction
which gives the optimum of the model within a ball centered at the current point and hav-
ing radius equal to the determined step length. The first approach leads to the so-called
"damped Gauss-Newton" method, while the second underlies different variants of the
Levenberg-Marquardt method. In particular, the modification of the Levenberg-Marquardt
method due to Moré [1977] uses a scaled trust region strategy. The MINPACK subrou-
tines LMDIF and LMDER are based on this modification (cf. Moré, Garbow & Hillstrom
[1980]). The IMSL versions of these subroutines are named UNLSF, UNLSJ, respec-
tively (cf. IMSL [1987, Vol. 3]). The subroutine NL2SOL developed by Dennis, Gay and
Welsch (see Dennis & Schnabel [1983]) is a more sophisticated algorithm for solving
nonlinear least squares problems. It is based on a local quadratic model of the objective
function. The explicit quadratic model requires the Hessians of the residuals, which may
be very expensive in general. In NL2SOL the second-order information is accumulated by
a secant update approximation. NL2SOL is an adaptive procedure which uses either the
Gauss-Newton or the Levenberg-Marquardt steps until sufficient information is obtained
via secant updates, and then switches to the quadratic model, thus ensuring g-superlinear
convergence on a large class of problems. Another very successful method has been
recently developed by Fletcher and collaborators (see Fletcher [1987, Ch. 5]). Theirs is a
hybrid method between the Gauss-Newton and the BFGS method. It uses a line search
descent method defined by a positive definite approximate Hessian matrix. This matrix is
either the Gauss-Newton matrix or a matrix obtained by using the BFGS update formula
to the approximate Hessian matrix obtained in the previous step.

§5.2 One reason why the normal equations (3) are unsuitable for solving the least
squares problem is the fact that the (Euclidean) condition number k(FTF) of the matrix
FTF is the square of the condition number k(F), where for any rectangular matrix A one
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defines k(A) = max| |Ax!|| /min| | Ax| |, the maximum and minimum being taken over
all vectors x with (Euclidean) length | Ix1| = 1. Indeed, x(F) can be considered, under
certain restrictions, to represent the condition of the least squares problem; see Bjorck
[1967]. In spite of this, the normal equations method is almost universally used by statis-
ticians. This is in part due to the lower computational complexity (see the floating-point
operations count for different methods in the notes to §5.3), and in part to the fact that in
most problems solved by statisticians the elements of the regression matrix are contam-
inated by errors of measurement which are substantially larger than the rounding errors
contemplated by numerical analysts (cf. Higham & Stewart [1987]).

§5.3 Alternative methods for solving linear least squares problems use orthogonal
matrix decomposition methods, based on Householder transformations (see §12.8), Givens
rotations (called Jacobi rotations in §12.3) or singular value decomposition. A detailed dis-
cussion of such methods, including perturbation and rounding error analyses, as well as
computer programs, can be found in Lawson & Hanson [1974]. For more recent develop-
ments, see Golub & Van Loan [1989]. The Householder and the Givens orthogonal
transformations are used to factorize the matrix F into a product of an n X n orthogonal
matrix and an z# X m upper triangular matrix. By taking only the first m columns from the
first matrix, and the first m rows of the second, one obtains a factorization of the form
(11), and the solution of the least squares problem is then solved as indicated in (12) —
(15). This yields the unique solution of the least squares problem whenever F has full
rank. In case F is rank-deficient, one could use Householder transformations with column
pivoting. However, in this case the solution is not unique, and additional work is needed
to find the solution of minimal Euclidean norm (see Golub & Van Loan [1989, Ch. 6]).
The method above, while working well on most rank-deficient problems, fails to detect
near rank deficiency. The only fully reliable methods for handling near rank deficiency are
based on the singular value decomposition of the matrix F, such as the Golub-Reinsch
method and Chan’s method (see Golub & Van Loan {1989, Ch.6]).

§5.4 Algorithm (20) is known as the modified Gram-Schmidt algorithm. Its supe-
rior stability properties, compared to classical Gram-Schmidt orthogonalization (10), have
been noted experimentally by Rice [1966] and established theoretically by Bjorck [1967].
Nevertheless, both the classical and the modified Gram-Schmidt methods are considered
of less practical importance nowadays, and mainly of historical interest (cf. Higham &
Stewart [1987]). The reason is that the classical Gram-Schmidt algorithm is numerically
unstable and modified Gram-Schmidt is slightly more expensive than Householder orthog-
onalization. The respective floating-point operations counts, indeed, are as follows: normal
equations nm?/2 + m3/6; Householder orthogonalization nm? — m3/3; modified Gram-
Schmidt »m2; Givens 2nm?— (2/3)m®; Golub-Reinsch 2nm? + 4m3; Chan
nm? + (17/3)m* (cf. Golub & Van Loan [1989, Ch.6]). While Givens orthogonalization is
twice as expensive as Householder orthogonalization for dense matrices, it is often more
efficient in treating sparse matrix problems. Dense matrix least squares solvers can easily
be assembled by calling the corresponding factorization subroutines and triangular systems
solvers from LINPACK (cf. Dongarra et al. [1979]). The SQRLS subroutine from
Kahaner, Moler & Nash [1989, Ch. 6] is such a program, which can solve overdeter-
mined, underdetermined or singular systems of equations in the least squares sense. The
IMSL subroutines LSQRR and LQRSL are also based on LINPACK. The LSBRR
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subroutine uses the iterative refinement of Bjorck [1967], described also in Golub & Van
Loan [1989, Ch. 6].

§5.5 Linearly constrained least squares problems, including problems involving
linear inequality constraints, are treated in Lawson & Hanson [1974] by orthogonal
decomposition methods.
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CHAPTER 6
Interpolation

Interpolation is the art of reading between the lines of a mathemati-
cal table. It can be used to express nonelementary functions approxi-
mately in terms of the four basic arithmetic operations, thus making them
accessible to computer evaluation.

There is, however, a new point of view that emerges here: while an
ordinary table of logarithms provides a dense enough tabulation so that
one can interpolate linearly between two tabular values, it is our endeavor
to tabulate as loosely as possible in order to avoid storing an excessive
amount of numbers, for example:

X 10%

0 1
0.01 1.023293
0.02 1.047129

1 10

These 101 values ought to be sufficient to interpolate to 10, and thus
also, indirectly, to log x. True, we then have to compute a little more
until a function value f (x) at an intermediate point x is determined with
sufficient accuracy, but this surely can be entrusted to a computer.

The actual interpolation always proceeds as follows: the function
f(x) to be interpolated (ad hoc, or for permanent use) is replaced by
another function which
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a) deviates as little as possible from f (x),
b) can be easily evaluated.

Normally, one replaces f (x) by polynomials which agree with f(x) at
certain points; but rational functions or trigonometric polynomials are also
used for interpolation.

§6.1. The interpolation polynomial

If at n + 1 pairwise distinct points xg, x1,..., X, (nodes) we are
given the function values yg, ¥1,..., ¥ (ordinates), then, as is well
known, there is exactly one polynomial P (x) of degree < n such that

P(xk)=yk (k=0,1,...,n) (1)

(cf. Fig. 6.1). In general, P(x) has degree n, but in the case
Yo=Y1= ' =Yy, =1, for example, the uniquely determined polyno-
mial is the constant 1.

For this existence and uniqueness theorem there is a constructive proof:

0 1 2 3 4 5 6 7

Figure 6.1. An interpolation polynomial of degree 4
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We consider the Lagrange polynomial

s[5
tix) =11 : @

=0 | Xk —X;
Jjtk

As a product of n linear factors, this is a polynomial of exact degree n;
furthermore,

L) =1,
L) =0, i#k 3
For n = 4, for example, the graph of £, (x) looks as in Fig. 6.2.

Figure 6.2. A Lagrange polynomial t,(x) of degree 4
(X() = 1,x1 =3,X2 =4, X3 =4.5, X4 =6)
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Altogether, n + 1 such Lagrange polynomials can be constructed,

namely for k = 0,1, ..., n. Using them to form the linear combination
n
Px) =2 yili(x), @)
k=0
the following then holds:

1) P(x) again is a polynomial of degree < n.
n
2) P(x;)= 3 wili(x;), where now, among all factors £,(x;) (J
k=0

fixed), only £;(x;)#0 (namely = 1), so that P(x;) =y;
(=0,...,n). [P(x)thus satisfies the conditions (1).]

3) If there is another polynomial Q(x) of degree < n, which
satisfies (1), then P(x) — Q(x) is also a polynomial of degree
< n, which vanishes at the » + 1 points xg, x1,..., X,; there-
fore, necessarily, P (x) - Q (x) =0.

Hence (4), or, what is the same, the so-called Lagrange interpola-
tion formula

P@=T y{ 1 =2 )
* _Eoyk =0 X = X; ’
i

yields the uniquely determined interpolation polynomial of degree n
corresponding to the given nodes and ordinates.

Example. For xy =1, x; =2, x, =4, the Lagrange polynomials (2)

are.
_XxX-2 x-4 _1.2_
Zo(x)—l_2 1_4—3(x 6x + 8),
Xzl x-4 12
el(x)_z_1 i > 5x + 4),
_x-1 x=2 1 .2
b)) = T T =g @ -+
Therefore,

P(x)=-y31(x2—6x+8)—y7‘(x2—5x+4)+-y—62—(x2—3x+2).
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Unfortunately, for large n this formula becomes rather involved; not
only do we have n + 1 terms, but each is a product of n linear factors. A
simplified form will be discussed later.

Vandermonde matrix. It may be tempting to seek the polynomial
P (x) in the form Y cxx* and to determine the ¢, by means of a linear sys-
tem of equations

n
> axf-y;=0 (j=01,...,n) ©6)
k=0
in the n + 1 unknowns cg, C1,. .., Cp:
Co C1 Ca Cp 1
0=|1 x x5 - x5 |-y
0=|1 x xf x|
- 2 n
0— 1 .xn xn -xn _yn

The coefficient matrix V here is a Vandermonde matrix, and therefore, as
is well known, nonsingular as long as x; # x; for i # j. The system (6),
however, has only theoretical significance, since its solution by numerical
methods is ill-advised on all counts (computational effort, storage require-
ment, accuracy). The solution of (6), indeed, is already accomplished by
the Lagrange formula (4); even the following is true: the coefficients of
the Lagrange polynomial £,(x) are the elements in the kth column of V.
The latter means that, say in the preceding example (where xq¢ =1,
x1 =2, x, =4), one can read off

» .
L 2 1

1 1 1 3 3
v={1 2 4|, vi=|2 3 _1
2 2

1 4 16 PR 1
E 2 6
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§6.2. The barycentric formula

In order to make the Lagrange formula (5) more palatable for
n
numerical computation, one divides it through by l;Io (x — x;) (this is the
product of all n + 1 linear factors),
r n N\
II(x-x)
i=0

P(x) _ i ) Yk ik [

n n n
OGx-x) O ODe-x) OE-x)
=0 i=0 =0

itk
S 7

Observing that the second factor reduces to 1/(x — x;), and introducing
the constants

W= — 1 (k=0,1,...,n), @)
II — ¥
i=0 (xk xl)
izk
one gets
n n wkyk
P(x) ={ II (x —xi)} {Z } ®
i=0 k=0 X - xk
(first form of the barycentric interpolation formula). This is certainly true
also in the case P(x) =1, that is, yo=y; = -+ =y, =1 (since every

polynomial of degree < n is faithfully reproduced). Thus,

1={ T 5, —*
=) Be-w ,on-xk ’

and dividing (8) by this identity, there follows

>

k=0 * ~ Xk
n

Wk

Yk

P(x)= ®

Wi

k=0 X — Xk

[that is, P(x) is a weighted average of the y, with, to be sure, partly
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negative weights]. This is the second (proper) form of the barycentric
formula.

Once the w; have been computed (which requires an expense pro-
portional to n?), only O (n) operations are necessary for the evaluation of
P (x), as long as the nodes are not changed.

Programming. The w, are given as array w[0:n], the x;, y, as
array x,y[0:n], and x as real xx. Then (9) can be programmed as follows:

real procedure baryz2(n, x, y, w, xx),

value n, xx;
integer n; real xx; array x, y, w;
begin

real den, num, s, t;

integer k;

den := num :=0;

for k := O step 1 until n do

begin
s = xx — x[k];
if s = 0 then s := ;5—30;(")
t = wlkl/s;

den :=den + t,
num = num + t X y[k]
end;
baryz2 := num/den
end baryz2;

§6.3. Divided differences

The interpolation problem, already solved in principle by the
Lagrange formula, is intimately related to the divided differences of a

function f (x). Given fixed nodes xg, x4, ..., X,, one first forms the first
difference quotients
f(xo) — f(x1) f(x1) = f(x2)
fG&ox)=———", fOx1.x)=—"—"7"—, etc.,,
Xg — Xy X1 — X,

1 Avoiding the division by 0 and maintaining the correct result, without the use of a jump
command. (Editors’ remark)
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and then the higher difference quotients
fxo,x1) — f(x1,%2)
, etc

Xp — X2

fxo,x1,x2) =

These values are arranged in a scheme:

xo f(x0)
f(xo'xx)
x1 f(x1)  fxo.Xx1.%2)
f(x1:x2) f(xo:X1,%2:X3) ~_
X flxa)  f(x1,x2,%3) \\
flxz,x3) \>f(x0,x1, .o X)), (10)
X3 f(25)
f(xn—3vxn—2’xn—lvxn) ’
f(xn—Z!xn-—l 1xn)
f(xn—l’xn)
X [(Xn)

the general rule of formation being as follows:

F&iXivrs - - o5 Xjo1) = fir1:Xis2s - - -5 X5)
X; —Xj

an

f(x,-,x,-+1, ey xj) =
Gj=0,...,n, i<])).

The formula (11) means that a new element E of the scheme (10) is

formed by computing the difference of the two elements E and E, above

and below immediately to the left of E; the denominator is the difference

of those arguments x; and x; which one finds on the left margin by
proceeding from E diagonally to the upper and lower left, respectively:

-
~ -
-~
= -
-

-
-
-
-
-
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Definition. One calls (10) the scheme of divided difference of the
function f (x) for the nodes xg,X1, ..., X,; specifically, f(x;, ..., x;) is
called a divided difference of order j — i.

Example. Suppose we are given the function f (x) = e* at the nodes
Xo=—-4,x1==-2,%=0,x3=2,x4= 4 (ie,n=4).

X; S
-4  .670320
742055
-2 818731 410725
906345 .151583
0 1.000000 .501675 .041900
1.107015 .185103
2 1.221403 612737
1.352110
4 1491825

Here, for example, f (x1,X2,x3,x4) is computed as

501675 — .612737

—o -4 =.185103.

The x;, however, need by no means be equally spaced, in fact not
even ordered; for example, we can form also the following scheme:

x; fx)
0 1.000000
906345
-2 .818731 501675
1.006680 .151588
2 1.221403 441040 .041885 (12)
918472 .168342
-4 .670320 542045
1.026881

4 1491825
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One notices here that the underlined values occur in both schemes,
although with minor differences caused by rounding errors. This is no
accident but follows from the

Theorem 6.1 (Symmetry property). The divided difference
f (isXig1s - - . 5 Xj) is a symmetric function of its arguments.

In the above example, e.g., one has
£©0,-2,2)=f(-2,0,.2) =.501675.

A first difference can be written in the form

fG) - f&xo)  fxo) N fxy)

X1 — X9 Xo — X1 X1 —=Xo ’

fxo,x1) =

a second analogously as

fGo) N f&x1) N fx2)

(xo —x1)(x0 — x3) (x1 = x0)(x1 — x3) (x2 = x0)(x = x1) ’

f(xo.x1,x2) =

from which the symmetry is evident. In general, one has:

FGixivt, . xj) = i _.__f(L
= I1 (= xv)

vl

(13)

Proof by mathematical induction: The induction basis has already
been established. Now (13) is assumed for f (% Xi415 - -5 Xj-1) and
f (is1s ..., x;); then (11) is applied:

it fxew J Jxp)
SR e
VUL VAL

X; —Xj
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I fx) fx)
— L . ._1 - .
T M eex) I G-

Vit v#j

-1
+ ]Z foep) | 73 l - 1

. j
=i+l
h=iv 0@, -x) IO (y-x)
v=i v=i+l

VER V£l

The expression in brackets, however, is equal to

Gp—x) -y —x)  (i—x)
j ] ’
I (x, —xy) I (xp —xy)
v=i v=i
V£RL V(L

one therefore obtains

: f&) : &) fg : fGey) ,
I (x;—-x) ILGj-x) =701 (x,—xy)
vei vej vep

and this is, up to notations, exactly the asserted formula (13). From its
validity for j —i arguments thus follows the correctness for j —i+1
arguments. The symmetry property can now be read off immediately
from (13).

§6.4. Newton’s interpolation formula

In order to represent f (x), one can add yet an (n+2)nd node x (for
the present, x is a fixed, but arbitrary, node different from x,,
X1,..., X,), by means of which the scheme (10) is enlarged to
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x f(x)
f(x,xo)
xo f(xo) S xxg,x1)
f(xo:xl) f(x’xo’xl’xZ) \\\
Xy fx1) fxo.x1,%2) T
fx1,x2) S> fxo, .. %)
X2 f(x2) o
f(xn—S’xn—Z’xn—-l :xn) -
f(xn—2,xn—1 »xn)
f(xn—-l ’xn)
Xn [(Xn)
We then have
fxxo) = ﬂ?"}{% , e, f(x)=Ff(xo)+ (x — x0)f(x,x0) ,
f(x’xo’xl) = f(x,xoi :‘i(lxo’XI) ? i.C., f(x’x()) =f(x0:xl) + (x - xl)f(x’xo’xl),
f (x,xo,x1 ,,,,, x,,) — f(x’xoaxl ----- xn—l) - f(xO»-xl ----- xn)
X~ X,
ie., fxxg,..., Xp-1) = f(X0sX1s+0ns x,) + (x — x,)f(x.x0, . - . » Xn) .

Putting this together yields
F ) =fxo) + x — x0)[f(x0.x1) + (x = x)[f(xg,x1,%2) + -+
+ (x —xn—l)[f(xosxlv e xn) + (x —xn)f(x’xovxlv-va ey xn)] e ]]

k-1 n
tl-—-IO (x —xt)} +f(x,x0, L] xn)tgo (x _xt) ’

=if(x0,...,xk)
k=0

f(x)=P(x)+f(x,x0,...,x,,)eI:]O x—xy). (14)
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Here, P (x) is a polynomial which at the nodes xg, x;, ..., X, agrees with
f (x), since the second term evidently vanishes(!) at these points, i.e.,
P (x) is the uniquely determined interpolation polynomial for the ordinates
ye = f (x); it is given by Newton’s interpolation formula

n k-1
P(X)= Zf(XQ,xl,...,Xk)dl}o(X-JQ). (15)
=0 -

The coefficients f (xg, ..., X) in this formula lie precisely on the top
(descending) diagonal of the scheme (10) of divided differences. Now
when f (x) is replaced by P (x), one commits an error which is exactly
determined by the remainder term

f(X)—P(x)=f(x,xo.xl,---,xn)zl':IO x—x1) . (16)

Observing that f (x) — P (x) has the n+1 zeros xg, X1, . . ., X,, it fol-
lows from the theorem of Rolle that the nth derivative f(")(x) - P(")(x),
too, must have at least one zero & between the x; (i.e., between min {x;}
and max {x;}). One then has f®(&) = P™(&), but in differentiating (15)
n times, only the term with £ = n gives a contribution,

n-1

P(")(x)= [ %] f(xosX1s.- s xn)LEIO(x—xt):n!f(xo,xl, X (7D
(which of course is independent of x); therefore,

f(JC(),xl, cesy x,,) =

JARIS)
n! ’

where & is a certain point between the xg, ..., x,. Now of course, one
has likewise

n+1)
f(xvavxlv---rxn)=l(.(n—+_§;‘_!) ’ (18)

Ui easily shown by induction that a divided difference tends to a finite limit as two
nodes merge into one, provided f has a derivative at the point of merger. (Translator’s re-
mark)
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where m is a certain point between the arguments x, xg, ..., X,, from
which, together with (16), there follows the error estimate
n f(n-}-l)(n)
If)-PI <] II (x—x max | =/ | . 19
f@)=P@I<| T (e=x)| max | o= (19)

Here the maximum is to be taken over all possible 1, thus over the inter-
val between the smallest and largest of the values x, xg, X1, ..., X,.

Example. Let e* be interpolated at the nodes —4, -2, 0, .2, 4. On
the basis of the scheme (12) of divided differences, one obtains

e* = P(x) = 1 + .906345x + .501675x(x + .2)
+.151588x(x + 2)(x — .2)
+.041885x(x + 2)(x — .2)(x + .4).

The maximum error le* — P(x)| can be estimated by (19):

4

x _ € 2 _ 2 _
le* —P(x)! < 120 x(x“ — .0 - .16)| .

In the interval |x! < .4 this error remains below .00005.

Programming. Denoting the divided difference f (x;, X1 ».- -,
Xi+p) by fli,p], hence the given function values f (x;) accordingly by
f [k, 0], one has in

for p := 1 step 1 until n do
for i := 0 step 1 until n —p do 20)
flipl=(l+1,p-1-flip- 1D/l +p]-x[]);

a possible algorithm for the construction of the scheme of divided
differences. Since, however, for Newton’s interpolation formula one does
not need the whole scheme, but only its top diagonal, one can get by with
fewer storage locations: in fact, f [ + 1,p — 1] is no longer needed, once
the quantities

flg.p—1] (g=0,1,...,10),

flgp] @=ir....n—p) @1

have been computed. At this point in time, therefore, one can overwrite
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fli+1,p—1] by fli,p], which is realized by storing the quantities
fl0k], fI1,k—1],..., f[k,0] all as g[k]. The index i, however, must
be run backwards in order to conform with the assumption (21):

for p :=1 step 1 until » do
for i :==n — p step —1 until 0 do (22)
gli+pl:=@Li+pl-gli+p—-1D/x[i+p]l—-x[]);
or, with j :=i +p,
for p := 1 step 1 until n do
for j :=n step —1 until p do 23)
gUl=@Ul-8l - 1D/l1-x[j—pDs

Note: At the beginning, the g [k] must be the function values f (x;);
at the end, they are the desired coefficients c;, by means of which the
value of the polynomial P (z), here denoted by fw, can be computed as
follows:

fw = glnl;
for k :=n — 1 step —1 until 0 do 24)
Jw =glk] + fw X (z — x[k]);

It is true, though, that this algorithm is not optimal with respect to round-
ing errors.

§6.5. Specialization to equidistant x;

If x,=x¢+kh, it is convenient to introduce a new variable
t =(x—xq)/h; to the point x =x; then corresponds the value ¢t =k.
Using the abbreviation f; = f (k), the divided differences now are

Fkk+1)=fiy —fi =0

Afes —A A?
Flk+1k+2)= fk+12 fk= ka,

and in general,

N fy

fk+1,..., k+p)= Y s

25)
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having introduced in the usual way the ordinary difference scheme

fo
Afo
5 A%f,
Af1 Nfo ~_
f2 N fy RN <
Af, S>> A (26)
f3 _-" -
. A3fn—3’ -
Azfn—Z
Afn—l
Ia

(Differences here are always understood as lower value minus upper
value.)

The interpolation polynomial therefore becomes

A%fo
Pxo+thy=fo+tAfg+t(t-1) >

o Ao _ & (¢
+t(t -1 -2) (t—-n+1) 1 _pz=j0 [p] Nfy.

+ LY
@7

This is the interpolation formula of Newton and Gregory. There is still a
multitude of specializations of the classical Newton formula, which are
named after Bessel, Stirling, Everett, Gauss, but they all, in the end, still
only produce one and the same interpolation polynomial.

§6.6. The problematic nature of Newton interpolation

What we still want to discuss here is interpolation after Newton-
Gregory in an extensive mathematical table('). Suppose, for example, we
are given the rounded function values

! The problems exhibited here are independent of the chosen representation of the interpo-
lation polynomial, but not of the choice of nodes. (Editor’s remark)
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log 1

log 1.01
log 1.02
log 1.03

log 10

L

0

0043214
0086002
0128372

1.

It would be foolish, with these 901 values, to set up the interpolation
polynomial of degree 900, since it behaves completely pathologically,
fluctuating between nodes by amounts of up to + 10'®, Rather, interpo-
lation polynomials of high degree must be avoided as a matter of princi-
ple; one should proceed instead as follows:

Having determined that x lies in the interval x; < x < x4, one
extracts from the table the nodes and ordinates

Xi—m+1

Xk-m+2

Xk-1

Xk

Xk+1

Xk+m

Yk-m+1

Yi-m+2

Yi-1

Yk

Yi+1

Yi+m

(thus m of them on each side of the point x); with these, one then con-
structs the difference scheme and evaluates the Newton-Gregory formula:
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2m-1 . k X = Xg—m+1
P =3 (4] Mk [wnh (= I20m | g
j=0

Here, m should not be too large; perhaps 2 to 5, depending on the accu-
racy of computation.

Regardless, however, of how one effects this interpolation, in each
of the intervals (x,xz,;) one uses a different interpolation polynomial
P (x), so that the global interpolation function F (x) is piecewise com-
posed of polynomials of degree 2m — 1; more precisely, given the ordi-
nates f (xq), . . . , f(xy), one has

Pm—l(x)’ if x <Xm-1s
F(x) =4 Pyx), if x¢<x<xgp k=m-1,...,N-m),29)

Py_pm(x), if X2 Xy me1

But now, the following holds:

Theorem 6.2. If the 2m + 1 ordinates f (x;), j =k —m, k —m + 1,
..., k+m—1, k+m, do not belong to a polynomial of degree 2m — 1,
then F’(x) is discontinuous at the node xy.

Proof. F(x) in the interval (x;_;, xz41) is composed of P,_;(x) and
Pi(x) (both of degree 2m — 1), which adjoin at the node x;. For their
difference d(x), on account of Pi(x;) = Py (x)) G=k-m+1,...,
k + m — 1), one clearly has

d(x)=0 for x=Xe-m+1s Xk-m+2s - -+ s Xktm-1 -

Since d(x) is of degree 2m — 1, and these are already 2m — 1 zeros, either
dix)=0ord’ (x) #0, qe.d.

The global interpolation function F (x), therefore, is not everywhere
continuously differentiable if the ordinates f (x;) (j =0, ... ,N) do not
already belong to a polynomial of degree 2m — 1. Thus F (x), for exam-
ple, can have the appearance shown in Figure 6.3.
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Figure 6.3. Interpolation by polynomial pieces of degree 3

If one interpolates a smooth function, the kinks are very small for
sufficiently small &, but if one has to interpolate empirical data, large
kinks are unavoidable.

§6.7. Hermite interpolation

For a function f (x), which we assume to be (p — 1)-times continu-
ously differentiable, let the following data be given:

f&), £&), /&) ..., e 0x) (j=01,...,N), (30)

thus p pieces of data at each node. If we consider only two nodes x;,
Xk+1, then for both together we have 2p data elements, from which a poly-
nomial P,(x) (as interpolation polynomial for the interval x; < x < xz41)
of degree 2p — 1 can be constructed. Since this polynomial agrees at the
points x;, x;4; with f (x) and all its p — 1 first derivatives, the polynomial
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constructed similarly for the neighboring interval has the same p — 1
derivatives at the transition point. The global interpolation function F (x)
obtained by combining the Pi(x) for the intervals [xg,Xg41]
(k=0,1,..., N—1) is then everywhere (p — 1)-times continuously
differentiable. In this way, the disadvantage mentioned in §6.6 of Newton
interpolation can be avoided.

For the actual construction of the Hermite interpolation polynomial

corresponding to the data f (xg), /() s - - - » FCD), fOs1)s F/Gas1)s
<o vy fPD(x41), a new variable

t=@x—xJh (b =X — %) (3D

is introduced, so that the nodes x; and x.,; are transformed to O and 1.
The problem is then reduced to the task of constructing the polynomial
Q (¢) of degree 2p — 1 subject to the ‘‘boundary conditions’’

0 9D0) = RifD(x)

0D = hifD(x,4y) j=01,...,p—-1. (32)

Then, approximately,
fOpr+th)y=0(@) (O <t<1).

As a preliminary exercise we first determine the interpolation poly-
nomial Q) of degree 2p -1 for the ordinates Q)
(j=0,1,...,2p — 1), and we do this by means of the difference scheme

tp—l Q(tp—l)
Q(tp-l ’tp)
tp Q(tp) Q (tp—l ’tp1tp—2) So
Q(tpatp—Z) AN
tp—2 Q(tp—Z) Q(tp’tp—ZatpH) RS
Q(tp—2:tp+1) hEN <
tp+1 Q(tp+1) - > Q (tp—l’tp’ e t2p—1) .
1o Qo) -7

Q(IO’th—l)’,’
top-1 Q(t2p-1)
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The numbers in the top diagonal we denote by cg, ¢y, ..., C2p-1, 1.€., WE
let (in view of the symmetry property)

cu = Q(tp-—tw]vtp—z, e o oy tp-l-l—l),

Cp+1 = Q(tp—t-—lgtp_t, e ooy tp+l.) (33)

(¢ =0,..., p—1). Then, by (15),

Q@) =co+e1(t —tyy) + ot = 1, )t = 1,) + -~
FCopui(t =)t = 1,) -+ (£ —1o).

If one constructs the usual scheme of divided differences

to Qo)
Q(IO!II) e
ty 0@) .
tper Q(tp-1)
Q(tp—lth) ’,> Q(t()’ cees t2p-—l):

tp Q(tp) -

-
-
-

top-1Q@tap-1) -~

the coefficients are found in it again, namely the C2; in the same row as
tp-1, the ¢4 half a row lower:

b1 Co C2 L o )
C1 Cs3 C2p_1. (34)

b
Now, finally, we carry out the limit processes

Losl1st2, oo Bp — 0

35
Lalptl s e e vy typ-1 — 1, (35)



§6.7. Hermite interpolation 149

for which, by (17),

[ oU-D
20 ¢ jpo
Q(Ii,ti+1, ey tj-—lvtj) -> < (36)
09 hm .
L G=1) if i 2p,

while for i <p — 1, j =2 p, the difference relationships remain preserved
also in the limit, since in the denominator we always have the difference
of an element of the first group (which tend to 0) and an element of the
second group (which tend to 1), so that the difference relationship in the
limit takes on the form

QUitivts - s 41ot) =Qists - ) — Q. .., 1) (BT)

The quantities cg, ¢1, ..., €2p-1, therefore, can be computed as fol-
lows: the values

_ QU)(O) B oo
a; = —7— = J—' )
OFs] Wi
b= 2= = 20 1O

G=01,...,p-1) (38)

are arranged as shown below, and the lozenge-shaped area between them
filled in by ordinary differencing:

/aP_I\
” ~
/” \\\
az x S
a1 \\\
ag =Co Co Cop-2
C1 3 C2p-1 (39)
bo *
bl * ”*
bz\ ’/’
~ ”
\\ ’,
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Then the ¢, are the quantities at the level of ag in this Hermite scheme,
while the ¢, , 1 are located half a row below.

Finally, also the interpolation polynomial

Q@) =co+c1@t—tp))+ 2t —tp )t —2t,)+ -+
tends in the limit to
Q@) =co+cit+cat(t =1 +c3t® (= 1)+ -+ +cgpqt?(t = 1P,

or

-1
QW)=Y (cy +cuadtt - DI, (40)
=0

still with ¢ = (x — x)/h.

The remainder term also follows from the general Newton formula;
one obtains with the same considerations as in §6.4 (with a certain &
between x;, and x;41):

2p)
FG+ i - 00 = L8 i - . @

Programming. In the following we assume the abscissae
Xx = Xq + kh equidistant (which up to now was not really necessary), and
we assume that the derivatives

R O )
2!

for all k=0,1,...,N;£=0,1,..., p are stored as f [k,¢].(') Then the
following piece of program yields the computation of Q (¢) for a given x:

begin
t:=(x—x0)/hn
k = entier (t);
ti=t—k
for ¢ := 0 step 1 until p do
begin

1 The program which follows produces the Hermite interpolation polynomial of degree
2p + 1, not of degree 2p — 1, as previously discussed. (Translator’s remark)
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alt] =flkt];
blt] ==flk+1,0]
end for ¢;
for ¢ := 0 step 1 until p do
begin
if £ = 0 then goto £1;
alll==>blt —1]—alt};
for j:=¢ + 1 step 1 until p do
aljl=alj-1]-aljl;
L1: b[t]:=b[t] - alt]
for j:=¢ + 1 step 1 until p do
bljl1=>bljl1-blj—-1];

end for ¢;
x=tx{@-1)
s:=0;

for ¢ = p step — 1 until 0 do
s=sXx+all]+b[l]x¢
end; (42)
It is perhaps worth noting how (in the second £-loop) the Hermite
scheme is built up from the a,, b,. It is indeed possible to get by with
2p storage locations through systematically overwriting quantities that are
no longer needed, as is shown below for p = 4:

as
=~
an as
=~ =~
ai a as
=~ =~ =
ap a as as
bo by b,y b3
=z =z = =z
bg /bl /bz bj
by b, b3/
b, b3
b3

Attheend one has cy =ay, cy+1 =by.

Numerical example. Suppose the function f(x)=In(x) together
with the quantities f(x)/! for¢ = 1,2,3 is tabulated forx = 1,2,3, ... :
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X f f, f"/2! f/”/3!

1 .000000  1.000000 —500000 .333333
2 693147 500000 -.125000 .041667
3 1.098612 333333 055556 .012346
4 1.3862%94 250000 -.031250 .005208
5 1.609438 200000 —-.020000 .002667

Here the Hermite scheme for the interval (2,3) reads as follows (every-
thing rounded and in units of the 6th position after the decimal point):

41667
~125000 ~11202
500000 30465 3140
693147 — 94536 — 8062 -904
405465 22403 2235 226
1098612 ~ 72132 — 5827 —639
333333 16576 1596
— 55556 — 4231
12346

Therefore,

Q (1) = .693147 + .405465¢t
+ (—.094535 + .0224030)t(t — 1)
+ (—.008062 + .0022351)[t(t — 1))
+ (—.000904 + .0002661)[t(z — 1)]°.

Evaluation (with 14-digit coefficients) at the point ¢z =.5 then gives
91629110, while the 8-digit value of In (2.5) is .91629073.

§6.8. Spline interpolation

Hermite interpolation can only be applied for functions whose
derivatives up to a certain order are known. To let also empirical func-
tions partake in the favorable properties of Hermite interpolation, the
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given function values f(x;) must be supplemented in a suitable way by
derivatives:

xo fixo)  f(xo) f (o) -+ fPD(xp)
x1 fx1) &) &) o D)
Xy f(xa)  f) f(x2) - fPD(xy)

w fow) o) 7o) o fO00w)

v

~

given to be supplemented

Of course, these additions should not be made arbitrarily, but according to
certain principles. A very elegant method of supplying the missing
derivatives is spline interpolation which derives from the following type
of problem:

We are given function values f(x,) at N+ 1 nodes x;
(k=0,1,..., N). Desired is a function g(x) with the following proper-
ties (wherep < N + 1):

a) gxp)=f(xp) fork=0,1,..., N;

b) except at the nodes xg, x1,..., xn, g(x) is 2p-times continu-
ously differentiable, but even at the nodes, g(x) is still (p — 1)-
times continuously differentiable and g"’)(x) is bounded;

0 E=1 L7 1g®(x)12dx is minimal,

One thus seeks the smoothest function g(x) through the prescribed points
in the sense that the mean square of the pth derivative is minimal.

Now integrating p-times by parts the variation of E, one obtains
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xy N-1 _
=Y [gP0 +0)— g@(x — 0018g P V()

Xo k=l

N-1
~ 8@ | T +F [5x4+ 0) - g *Dx, - 018 D)

X0 k=1

x N-1
1P 3 8% D0+ 0) — g%V, - 0)18g (xp)
Xg k=1

(-1yrg®Dsg

+ (1P L7 g@(x)dg (x)dx.

Since, with the exception of 8g(x,), all variations 5g "(x,) are free, there
follows from the minimality requirement:

D gV =g?Pa)= - =g®D @) =0forx=xo, x =xy.
2) gV +0)— gD (i —0)=0forj=p,p+1,...,2p -2, k=
1,2,...,N-1; ie, g() is actually (2p — 2)-times continu-

ously differentiable in the whole interval (x¢ xy).

3) But g@D(x) (since the values g(x;) cannot be varied) may be
discontinuous at the nodes xi, x2,..., xy_1, and its boundary
values at xy and xy need not vanish.

4) g@P)(x)=0"forx #xg, X1, .., XN-

Therefore, g(x) is piecewise made up of polynomials of degree
2p—1 in such a way that at the joints x;, x,,...,xy_; only the
(2p — 1)st derivatives has jumps.

As to the determination of the component polynomials of g (x), note
that:

a) yields N + 1 conditions,
1) yields 2p — 2 conditions,

3) involves N — 1 degrees of freedom, namely the jumps of the
(2p — 1)st derivative at the nodes x4, ..., xy_1,
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4) involves 2p degrees of freedom (differential equation of order
2p).

Altogether one thus has 2p + N — 1 conditions and equally many
degrees of freedom, so that one can hope for uniqueness of the solution.
Now, since g (x) in each of the intervals (x;,x;;;) is a polynomial P;(x) of
degree 2p — 1, one can express this polynomial uniquely in terms of g;,
gl gl .., 8P gii.8li1.. .., g8, for example by means of the
Hermite interpolation formula. Obviously, P;(x), and hence also PP (x),
is linear in the g{®, ). This means, however, that /I P |2dx is a qua-
dratic form in the same quantities. By still summing over all N subinter-
vals, one obtains the following fact: E is a quadratic form in all
g =g®x)E=01,...,N;k=0,1,..., p — 1), thus

Mz

E= % Z Qe g(k) ¢ 43)

i,

<.
||

Since the N +1 quantities g; = O = g(x;) are prescribed, only a
reduced quadratic function,

. N Pg® N p-1 W
E*=- 3 Z a8 85 + X, Y, Gijo8: 8- (44)
Lj=0kt=1 =

has in fact to be minimized with respect to the g (k # 0), which leads to
the linear system of equations

Z 2 A +Za‘k,0_o (i=0,1,...,N;k=1,2,..., p—1) (45)
j=0t=1

with positive definite symmetric coefficient matrix
A={a;kj¢, i,j=0,...,N; k,6=1,...,p—1}
(cf. §3.1). While symmetry is obvious, positive definiteness is obtained

as follows: The quadratic form for A is nothing but 2E, if one puts there
all g{® =0, thus

0=/"1gP@)1%dx for g(xg)=g(x)= - =gG)=0.

Q attains a minimum O for g = 0; this minimum, however, cannot be
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attained for any other (p — 1)-times continuously differentiable function g,
since Q =0 would mean that g is a polynomial of degree p — 1 which
then could notbe 0 at N + 1 > p — 1 points, q.e.d.

The system of equations (45) therefore admits a unique solution; as
a result, one has in each of the subintervals x; < x < x;,; the necessary 2p
data elements for Hermite interpolation according to §6.7.

Practical implementation for p = 2 and equidistant nodes.

Here, g (x) in each subinterval is a polynomial of degree 3. As one
easily verifies on the basis of (38), (39), (40), this polynomial, in
(x1,%;41), is given by

Pix)=gi(1 - *QA +20)+ hgl(1 — t)’t

+ 8is1(3t? = 21%) + hgla 12t — 1), (46)

where t = (x — x;)/h. Therefore,

h2P{ (x) = (12t — 6)g; + (6 — 4)hg] + (6 — 128)g;41 + (61 — 2hg/s1,

and thus finally

Xin ” ’ ’
L L Py 2ax = 0Ggihg? givt hgia),
where the form Q, up to a constant factor, has the following coefficient
matrix:
6 3 -6 31 &

2 -3 1| hg!
-6 -3 6 -3 | &n
hgin

w
—
b
N

g hgi 8in hgin

The matrix of the quadratic form E is obtained through summation over i,
whereby the matrices M; add up with overlaps; e.g., for N = 3:
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go hgo &1 hgl g2 hgy g3 ghs
6 3 -6 3
3 2 3 1
6 3|12 0|-6 3
3 1] 0 4|3 1
6 3|12 0 |-6
3 110 4|3 1
6 -3 6 -3
3 1 -3 2

In the matrix of the reduced quadratic form E* the rows corresponding to
the g; drop out [cf. (44), (45)]; therefore, the following system of equa-
tions results (1):

hgo hg1 hga hgn-1 hgn
2 1 = 3g1 - 3g0
1 4 1 = 382 - 3g0
1 4 1 = 3g3 - 3g1
@7
1 1 = 3gnv-1— 38N
1 4 1 | = 3gv—3gn=
1 2 | = 3gv—38n

The solution of this system, even for large N, does not cause any
difficulties, since the matrix is banded and very well-conditioned. (Cf.
§10.6; the eigenvalues lie between 1 and 6.)

Numerical example. We are given 7-digit logarithms to the base 10
(see 2nd column of Table 6.1).

L\ simpler derivation of (47) can be had by starting with (46) and imposing on g”(x) the
following conditions, earlier recognized as necessary: continuity in x,, ... ,Xy, vanishing
atx,,xy. (Editors’ remark)
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Table 6.1. Spline interpolation of logarithms

X Ji hgk hfk

2 3010300 .0214011  .0217147
2.1 3222193  .0207657  .0206807
22 .3424227 0197143 0197407
2.3 .3617278 .0189028 .0188824
24 3802112 .0180402  .0180956
25 3979400 0175731  .0173718

The system of equations for the hgj, reads here as follows:

hgo hgi hgy hgi hgi hgs

2 1 = .0635679
1 4 1 = .1241781
1 4 1 = .1185255

1 1 = .1133655

1 4 1 | = .1086366

1 2 | = .0531864

and has the hgj-values given in the third column of Table 6.1 as solution.
(For comparison, the corresponding exact derivatives are quoted in the
last column.)

In the interval 2.1 £x < 2.2 one obtains as Hermite difference
scheme to g1, hg1, &2, hgs (in units of the 7th position after the decimal
point):

207657

3222193 —5623
202034 732,

3424227 —4891
197143

and thus,

g (2.1 + .1t) = 3222193 + .0202034¢ + (—.0005623 + .0000732)[¢ (¢ — 1)],
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in particular, for example, g(2.15) = .3324524, while log (2.15) =
.3324385.

As a further example, we show in Figure 6.4 the interpolating spline
g (x), together with its derivatives g’(x) and g” (x), which belongs to the
support points already used in Figure 6.3. g”(x) is piecewise linear,

{24

g"” (x) therefore would be piecewise constant.

30

\/\A\/
25

20t
g"(x)
10
05t glx)
00 . L
2 3 4 6 7
-05f
.10 -
-15f

-20~

-

Figure 6.4. Spline interpolation: the interpolating function g
and its derivatives g’ and g’

Physical interpretation. Spline interpolation in the case p =2
admits the following simple interpretation: given N + 1 points (x;,y;), the
deflection of a thin beam (‘‘spline’’) placed through these points is
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characterized by the following conditions, provided the linear theory of
elasticity is applicable:

a) y&) =y
b) y,y’,y” everywhere continuous,
¢) y®x)=0forx #x,.

These, however, are precisely the conditions imposed on the func-
tion g(x) in spline interpolation with p =2. One can therefore accom-
plish spline interpolation also with a spline (and actually does so).

§6.9. Smoothing

If the ordinates f(x¢), f(x1),..., f(xy) to be interpolated are inac-
curate measurements and exhibit an irregular behavior, one can try,
through small changes in the f(x;), to enforce a somewhat smoother
behavior of the interpolated function, in short: to first smooth the values
JGx).

The interpolation function g (x) therefore — regardless of how one
wants to interpolate — will not be forced through the prescribed ordinates
f (x;) = f;, but deviations are tolerated, though such that [if g = 8(x;)]

N
o) Y g —fi!? remains small .
k=0

On the other hand, in case of equidistant nodes, the second differences
8k+1 — 28k + gr—1 Presumably will be a measure for the smoothness of the

new sequence of ordinates gg, g1,..., gv. One thus will have to be
careful that
N-1 ) )
B) X 18k+1 —28k+ 8ks1|* remains small .
k=1

A compromise between the conflicting requirements o), B) can be
achieved by determining the adjusted ordinates g; such that

N N-1
Y @ —-fP+Y Y Qe — 28k + 8k-1)? (48)
k=0 k=1
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becomes minimal. Here, v is the so-called smoothing coefficient, about
which we have to say more later. The above minimum requirements
immediately leads to a linear system of equations

I+yA)g=f,
where f, g denote the vectors [fo.f1,..., fyl" and [g0.g1,..., enl”
formed with the old and new ordinates, respectively, and
1 =2 1 ]
-2 5 4 1
1 4 6 4 1
1 4 64 1
A= . . . . . L] . : (49)
1 4 6 4 1
1 4 5 2
1 2 1

The matrix I ++yA is positive definite; the eigenvalues lie in the inter-
val(!) 1<A< 1+ 16y. Having determined the g, one can interpolate
with them by whatever method, for example by means of spline interpola-
tion.

The choice of the smoothing coefficient is completely free, to begin
with, but the following should be observed: ¥ < .01 means weak smooth-
ing; the new values g, follow the given values fy, ..., fy essentially still
point for point. <y > 10 produces a strong smoothing; the shape of the
curve determined by the g, follows the given values f; only globally. For
still larger vy also the condition of the matrix I + YA gradually worsens(?).

1 As matrix of the quadratic form of the second sum in (48), A is positive semidefinite; on
the other hand, the upper limit of the interval follows from the row sum norm, cf. §10.7.
Editors’ remark)

The stepsize  of the nodes, too, has an influence on the choice of y : starting with the
problem of minimizing

L @@ -sorax+7 [ " @pdx

discretization indeed yields (48), but with y=7h*. Small h therefore requires very strong
smoothing y. (Editors’ remark)
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Numerical example. We consider the 5-digit values of the common
logarithm of the numbers 1.001, 1.002 ,..., 2.000. This function
defined on 1000 nodes is of course slightly irregular, if one considers the
rounded values as exact. We therefore want to subject them to the
smoothing process described. The result is summarized in Table 6.2 for
various ¥.

Table 6.2. Smoothing of rounded logarithms

nodes given function smoothed function values g; x 10° 7-digit
values logarithms
x; fix10° vy=.01 y=.1 v=1 vy=10 y=100 x10°
1.001 43 43.01 43.07 43.17 43.31 43.65 4341
1.002 87 86.98 86.87 86.69 86.69 86.88 86.77
1.003 130 130.00 130.01 130.03 130.03 130.12  130.09
1.004 173 173.03 173.16 173.35 173.35 17334  173.37
1.005 217 216.97 216.86 216.73 216.63 216.54  216.61
1.006 260 260.01 260.02 259.95 259.84 259.72  259.80
1.007 303 303.00 303.01 303.02 302.97 302.86  302.95
1.008 . 346 346.00 346.00 346.03 346.05 345.97  346.05
1.009 389 389.00 389.00 389.02 389.08 389.03  389.12
1.010 432 432.00 432.00 432.01 432.09 432.07 432.14

1.041 1745 1745.00 1745.00 1745.02 1745.07 1745.11 1745.07
1.042 1787 178697 1786.84 1786.71 1786.75 1786.80 1786.77
1.043 1828 1828.03  1828.16 182831 182840 1828.46 1828.43
1.044 1870 1870.00 1870.00 1870.02 1870.05 1870.09 1870.05
1.045 1912 191197 1911.85 1911.71 1911.67 1911.68 1911.63

1.501 17638 17638.00 17638.00 17638.02 17638.03 17638.01 17638.07
1.502 17667 17667.00 17667.00 17667.03 17666.99 17666.94 17666.99
1.503 17696 17696.00 17696.01 17696.02 1769593 17695.86 17695.90
1.504 17725 17725.01 17725.02 1772493 17724.81 17724.74 17724.78
1.505 17754 17753.97 17753.85 17753.70 17753.64 17753.61 17753.65

1.995 29994 29994.03 29994.15 29994.34 29994.38 29994.33 29994.29
1.996 30016 30015.99 30015.99 30016.10 30016.14 30016.10 30016.05
1.997 30038 30038.01 30038.01 30037.93 30037.89 30037.87 30037.81
1.998 30060 30059.97 30059.86 30059.69 30059.62 30059.63 30059.55
1.999 30081 30081.03 30081.15 30081.28 30081.31 30081.38 30081.28
2.000 30103 3010299 3010295 30102.94 30103.01 30103.14 30103.00
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§6.10. Approximate quadrature

For the determination of f f(x)dx one uses different methods,
depending on whether the integral is a definite or an indefinite one. In the
first case, a number is produced, in the second a numerical table (the
integral as function of the upper limit).

If the definite integral j; ’ f(x)dx is to be computed, one could begin
by subdividing the interval [a,b] into n subintervals [x;_;,x;]
(i =1,..., n)of equal length A, then from the n + 1 ordinates f (x;) con-
struct the interpolation polynomial P (x) of degree n, and finally integrate
the latter from a to b:

n

fabf(x)dx = [P =fabz [,’C] Atfodx = h ké)A"fofon [,’J dt (50)

k=0

Examples. For n = 1, because of

[ [6] a=1, [ [{] a=1,

one obtains the formula

L5 @odx = ho + 5 Ao = 5 (fo + f). 1)

Now, of course, one can joint together m such individual intervals, which
leads to

Lrfods=2 o +2fi 4205+ o + 2 +h) (D)

This is the so-called trapezoidal rule.
Similarly, in the case n = 2, from

Plamn [(a=s [ (a-
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there first follows the formula

L2 frds = 2hso + 2hAfo + 2 Ao
= 2hfo + 2h(f1 — fo) + 5 (2 = 21 +fo)
= 2 (o +4f1+ 1)

Now by joining together m such interval pairs (cf. Fig. 6.5) one obtains
the Simpson rule

_/;:mf(x)dng-{f0+4f1+2f2+4f3+2f4+ o +fom+fam}. (53)

] ] L 1 1 it ]
Xg % Xp Xz X4 X2m

Figure 6.5. Quadrature according to Simpson

One can also pass through five consecutive ordinates a polynomial
of degree four and integrate it; in this way one obtains the Newton-Cotes
Jormula

L sodr = 2 (o + 321+ 125 + 263 + T2}, (5
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But all these efforts of increasing the accuracy are by far outdone by
the following consideration:

Dividing the interval [a,b], as above, in n subintervals of length
h = (b — a)/n and applying the trapezoidal rule, then — provided that the
function f is 2m-times continuously differentiable — the error will satisfy
an asymptotic expansion for # — 0 (n — o) of the following form(*):

f;bf(x)dx —Th)=cih? +ch* + -+ +cah® +0(B*™), (55)

where of course

T =5 o+2f1+22+ = +2pa 4L} 6

denotes the approximate value of the integral computed by the trapezoidal
rule.

Now this holds for all #; hence

b 2 2
./,,f(x)dx—T[%] =c —h—+C2h—+ +c,,,—h--—+o(h2”‘).

Multiplying this by % and subtracting a third of (55), one gets

b
_/;f(x)dx—[g—T[—;—] —%T(h):| =c [i;'—%-——;-hz} +

4 Bt 14 4 B8 1 6 m
cz[? 16—?h}+03[— _?h + + o(h=™),

and one sees that the first term on the right drops out. With the definition

h
4T [5’} - T

3

Ty(h) = (57

1 This can be derived from the Euler-Maclaurin summation formula; see, e.g., Stoer J,,
Bulirsch R.: Introduction to Numerical Analysis, Springer-Verlag, New York 1980, Sec-
tions 3.3 and 3.4. (Translator’s remark)
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one thus obtains
b
L f@dx = T1(hy = c3h* + c3hS + - + b +0(h?™), (58)

and likewise, if T [—Z—} is the result of the trapezoidal rule applied with
step h/4, with

3 ’
59
b h , h4 , h6 , h2m 2m
Lf(x)dx—Tl [E}=cz E+C3 a"+ +Cm4—m+0(h )

Now again, one combines linearly: the relation (58) is to be multiplied by
- %, the 1ast one by —i—g—:

b 4
faf(x)dx—{i—gn [%} ~%T1(h)} = ¢} [-&-h———l—h“} +

, 16 RS 1 6 2my.
03[3 4 'i?hJ+ +o(h™);
thus,

b
fa f@)dx —Ta(h) =cyh® + c{h® + -+ +clh® + o(h?™), (60)

if one introduces

16 T [E} -Ti(h)

2
T = 1
2(h) T (61)
The next step would employ
64 T, [-Z—} —Tyh)
T3(h) = (62)

63
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b
In this way one obtains approximations to _[z f(x)dx which converge
very rapidly to the exact value. It is convenient to arrange these approxi-
mations in the following Romberg scheme:

Th)
N S0
rlk Ty(h)
&2< 1 [‘3‘} T3(h)
h .o
iy Tl[ﬂ L (63)
\ J h
f \Tl -_ * :
T h [4] )
\84 ¢ )

2 dx
Example. Let us compute /; Y One first determines

T()=5 (F)+f @} =75,
T %] - % {f (1) +2 f(1.5) + f (2)} = .708333,

.697024,

b\]
(s N
N
——
]

T %] = .694122.

These numbers are put into the first column of the Romberg scheme,
which can now be built up by utilizing (57), (61) and (62):
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750000
.694444
708333 .693175
693254 .693147
697024 693148
693155
.694122

The value T3(h) at the tip is exact to 6 digits. (With an additional row,
the result would be obtained to 9 correct digits.)

Of course, one also has to pay for this: for each new value that is
added at the bottom in the first column of the Romberg scheme (in order
to be able to add a new value also in every other column), one must apply
the trapezoidal rule with twice as many terms as before. For

10
[ D _ tan~}(10) = 1471276743037,
1+x

for example, the expense, as can be seen from Table 6.3, is rather substan-
tial. It must be remarked, though, that we are dealing here with a patho-
logical case(?).

In contrast, when dealing with a well-behaved case, the accuracy of
the value at the tip, with each halving, can be enormously enhanced. For

2 For the improper integral
dx

N
i}
=

r
2

—

+

L
»

there indeed holds

so that

h
ot [ ZJ o

T o
If the infinite series for the T (k) were evaluated exactly, the first column of the associated
Romberg scheme would thus converge quadratically. [In contrast, (55) implies linear con-
vergence of this column in the general case.] Romberg extrapolation, therefore, does not
make sense. The finite interval considered, behaves similarly in practice. Compare Sec-
tion 8 in Bauer F.L., Rutishauser H., Stiefel E.: New aspects in numerical quadrature,
Proc. Symp. Appl. Math. 15, 199-218 (1963), Amer. Math. Soc., Providence, RI. (Edi-
tors’ remark)
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2
example, in the computation of -[1 % these values have the following

€ITors:

error of T{(h): .0013...

error of To(h): .000027 ...
error of T'3(h): .00000030. ..
error of T4(k): .0000000014 . ..

Table 6.3. Romberg scheme for -[o

10 gy

1+x2

(The triangle at the bottom must be thought of as the tip, to be joined on
the right to the trapezoid above it.)

5.0495049504951
2.7170601675552
1.7470257922553
1.4916226095488
1.4711991596046
1.4711117278096
1.4711236856579
1.4711266771069
1.4711274250023
1.4711276119782
1.4711276587223

1.4711219991997
1.4711276458818
1.4711276745295
1.4711276743035
1.4711276743037

1.9395785732420
1.4236810004886
1.4064882153133
1.4643913429565
1.4710825838780
1.4711276716073
1.4711276742565
1.4711276743008
1.4711276743036
1.4711276743037

1.4711276462265
1.4711276745313
1.4711276743035
1.4711276743037

1.3892878289717
1.4053420296350
1.4682515514661
1.4715286666061
1.4711306774559
1.4711276744332
1.4711276743037
1.4711276743037
1.4711276743037

1.4711276745317
1.4711276743035
1.4711276743037

1.4055968582170
1.4692501153047
1.4715806843067
1.4711243601678
1.4711276267661
1.4711276743017
1.4711276743037
1.4711276743037

1.4711276743035
1.4711276743037

1.4694997359207
1.4715898237930
1.4711225706614
1.4711276395763
1.4711276744881
1.4711276743037
1.4711276743037

1.4711276743037

1.4715918668896
1.4711221139135
1.4711276445313
1.4711276745222
1.4711276743036
1.4711276743037
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Notes to Chapter 6

§6.1 The basic Lagrange polynomials /, of Eq. (2) not only enter in Lagrange’s
interpolation formula (4), but also play an important role in metric properties of the
Lagrange interpolation operator. Assuming @ £ xy <X; <X3 < *** <x, <b, the inter-
polation process may be viewed as a projector P,: C[a,b] — P, from the space of con-
tinuous functions on [a,b] to polynomials of degree <n. The norm of this projector,
HP, Il =sup (1P, fI1/I1f11), where |IfI1 =ar;13)s(b|f(x)l, can be expressed in terms

of the ‘‘Lebesgue function” A,(x)= Y 1L(x)] as |1P,l| =11A,l|. A study of this
k=0

norm is of both theoretical and practical interest. It yields, for example, information about
the interpolation error, by virtue of |If—P,fIl <(1+ |IP,I1) dist(f,P,), where
dist(f, P,) is the distance (in the norm |1-11) of fto P,, i.e., the error of best uniform
approximation of f by polynomials of degree < n (see §7.6). Therefore, if this error, as
n — oo, goes to zero faster than | IP, || tends to oo, the interpolation process converges
uniformly. This is so, e.g., if f has a continuous first derivative on [a,b] and x; are the
zeros of the Chebyshev polynomial T,,; (defined in §7.2), adjusted to the interval {a,b].
Points x; that are uniformly spaced on [a,b], on the other hand, may yield divergence,
even for functions analytic on [a,b], as is shown by a famous example of Runge; see, e.g.,
Todd [1962, p. 148], Epperson [1987]. It is known indeed, for equidistant points x;, that
[1P, 11 ~2"1f(e nlogn) as n — e (cf. Trefethen & Weideman [to appear]). By its very
definition, the norm | 1P, || also measures the sensitivity of the interpolation polynomial
to perturbations in f, since | |P,f* — P, fl1 < [P, I1-1If* —fI1.

In the light of these remarks, the following problem is of interest, and in fact, has
had a long history: Determine nodes x; such that | [P, 11 = | 1A, is as small as possible.
The problem has recently been solved by de Boor & Pinkus [1978], following work of
Kilgore [1978]. To state their principal result, which confirms long outstanding conjec-
tures of Bernstein and Erdss, one should first note that A,(x) = 1 for all x, and that A,(x),
for n 22, on each interval [x;;,x;], has a unique local maximum, say at x =§;,
i =1,2,..., n. Then the optimal nodes x; are characterized, and uniquely determined, by
the “‘equioscillation property”’ A,(&;) =X, (&)= - -+ =A,(,). The computation of these
optimal nodes, of course, is not quite easy; numerical values for n < 15, however, have
already been obtained by Hayes & Powell [1969], who took the validity of Bernstein’s
conjecture for granted. On the other hand, very good approximations (yielding the
minimum of | 1A, || within a margin of .201, and even, very likely, of .02; see Brutman
[1978], Guinttner [1980]) are given by the Chebyshev nodes adjusted to the interval [a,b]
and expanded such that the smallest and the largest node coincides with the respective
endpoint of [a,b].

Other interpolation processes are sometimes more appropriate. For periodic func-
tions, one often employs trigonometric interpolation. This consists in passing a tri-
gonometric polynomial of degree n (that is, a linear combination of 1, cos x, sin x, . . .,
cos nx, sin nx, if the period is 2m) through given ordinates y, at 2n + 1 distinct points x; in
[0, 21t) The analogue of Lagrange’s interpolation formula, due to Gauss, is now

2" sin Y/2(x — x;
T(x)= 2 Yiti(x), where £;(x)=1II 23 W The corresponding projector has
1# %

minimum norm precisely if the points x; are equally spaced on [0, 2%); see de Boor &
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Pinkus [1978]. In this case, there exists also an extensive convergence theory (Zygmund
[1968, Ch. 10]). The interpolation process converges, for example, if the function f to be
interpolated has an absolutely convergent Fourier series; see also Theorem 7.3. The error,

then, can be estimated by |IT —fl1<2 % lc(f)], where c,(f) are the complex
Ikl >n
Fourier coefficients of f (Zygmund [1968, Thm. 5.16]).

For interpolation by rational functions there are known continued fraction represen-
tations for the interpolant, if numerator and denominator have the same degree, and algo-
rithmic procedures in the general case; see, e.g., Bulirsch & Rutishauser [1968]. The
interpolation problem, however, does not always admit solution, and even if it does, the
interpolant may have undesirable poles between the nodes. For rational interpolation with
prescribed poles in the complex plane, see Walsh [1969, Ch. 8].

Lagrange’s interpolation formula (4) remains valid without change for complex-
valued functions and arbitrary distinct nodes in the complex plane. Interpolation in

several (real) variables, on the other hand, is more complicated. The problem then

involves ny = | * ; d points in d-dimensional space R?, there being exactly ny monomi-

als of degree < n in d variables. A unique solution exists whenever the given points do
not lie on an algebraic hypersurface of degree n. A Lagrange-type formula, involving
determinants, can then be constructed (Thacher [1960], Thacher & Milne [1960],
Mysovskih [1981, §3.1]). In practice, however, it will be simpler to numerically solve the
linear system of equations which express the interpolation property in a convenient basis
of polynomials. Nevertheless, to require the interpolant to have total degree < n places
severe restrictions both on the kind of data that can be interpolated and on the number of
data points. It seems more natural to associate with any given set of points a suitable
space of polynomials from which interpolation is possible, and indeed uniquely so. For a
theory developing such spaces, see de Boor & Ron [to appear].

For linear systems, like (6), whose coefficient matrix is a Vandermonde matrix, the
triangular decomposition (see §2.2), and more generally, block-triangular decompositions,
can be carried out explicitly. For recent work on this subject, see Tang and Golub [1981].
The accuracy attainable, however, is often limited on account of ill-conditioning; see
Gautschi [1990] for a survey on the condition of Vandermonde matrices.

§§6.2, 6.4 Computations for the barycentric formula can be arranged so that it
becomes easy, just as in Newton’s formula, to add one interpolation point at a time; see
Werner [1984]. The number of arithmetic operations required is indeed the same for both
formulae.

Barycentric formulae are also known for trigonometric interpolation (Salzer [1948],
Berrut [1984]); they assume a particularly simple form in the case of equally-spaced nodes
(Henrici [1979]).

The remainder term of Lagrange interpolation in the form (16) is valid for arbitrary
functions f, but in conjunction with (18) requires continuity of the (n+1)st derivative of f.
For functions f with low smoothness properties one can apply the theory of Peano kernels
to obtain alternative representations and estimates of the remainder; see, e.g., Himmerlin
& Hoffmann [1989, Ch. 5, §2.4]. If, on the other hand, f can be extended to a function
holomorphic in a domain of the complex plane that includes all interpolation points, then
derivative-free estimates of the remainder are available based on contour integrals; see
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Walsh [1969, Ch. IIT, §3.1].

§6.8 The spline function derived in this paragraph is sometimes referred to as the
‘“‘natural’’ spline interpolant, or the spline interpolant with ‘‘free end conditions’’ [the
conditions 1) on p. 154]. If, at the endpoints, one interpolates not only to the function
values, but in addition to the first p — 1 derivative values (assumed known), and then
again solves the extremal problem a) — c), one is led to the ‘‘complete’’ spline interpolant.
Its approximation properties near the end zones of the interval are superior to those of the
natural spline.

Spline functions are widely used today, not only for interpolation, but also in con-
nection with other approximation processes (least squares approximation, smoothing of
data, harmonic analysis, collocation methods in differential equations, to name a few). In
many of these applications, it is important to have good basis functions for representing
splines (or more general piecewise polynomial functions). A very elegant, and computa-
tionally effective, basis is provided by the normalized B-splines. For these, and for a
thorough discussion of computational and approximation-theoretic aspects of splines, see
de Boor [1978]. This source also contains many useful Fortran subroutines for computa-
tion with splines.

§6.9 The idea of smoothing according to (48) goes back to Whittaker [1922/23],
who uses the sum of the squares of the third differences as a measure of smoothness.
Minimizing (48), in which the second differences are replaced by the second derivative,
and summation by integration, allows one to solve the variational problem analytically,
and yields the cubic smoothing spline of Schoenberg and Reinsch; see de Boor [1978, Ch.
14].

§6.10 The Romberg scheme, of course, is pointless if in the expansion (55) of the
error all coefficients c; are zero. This turns out to be the case if the integrand f is a
periodic function with period b —a. The trapezoidal rule then integrates exactly tri-
gonometric polynomials of the largest possible degree, and therefore can hardly be
improved upon when a smooth periodic function is to be integrated over the full period.
This is exploited in Fourier analysis; see §7.4, Eq. (15).

The expansion (55), as stated in the text, holds only for sufficiently smooth func-
tions f. Alternative expansions, and modified Romberg schemes, are known if f exhibits
certain types of singularities at one or both endpoints of the interval; see Fox [1967].

Singularities, to be sure, can sometimes be removed by an appropriate change of
variables, or can be attenuated by ‘‘subtracting them out”. Alternatively, one may
account for the singularity by introducing an appropriate weight function and by using
weighted quadrature rules, particularly those of Gaussian type. The latter are based on
unequally spaced nodes (the zeros of appropriate orthogonal polynomials) and achieve the
highest algebraic degree of exactness; see Stroud & Secrest {1966], Gautschi [1981]. A
detailed treatment of the subject of numerical integration, also in higher dimensions, can
be found in Davis & Rabinowitz [1984]. Specialized texts on the numerical evaluation of
multiple integrals are Stroud [1971], Sobolev [1974], Mysovskih [1981].
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CHAPTER 7

Approximation

While interpolation attempts to approximate a function piecewise by
polynomials which pass exactly through prescribed support points, we
shall now try to approximate a given function f (x) on a (relatively large)
interval I by one polynomial. Such an approximation polynomial, natur-
ally, must be of a higher degree than in the case where f (x) is approxi-
mated by polynomial pieces.

We limit ourselves here to polynomial approximation and do not
consider approximation by rational and still more general functions.

§7.1. Critique of polynomial representation

A general fact about the approximation by polynomials is furnished
by the following

Theorem 7.1(*) (Weierstrass approximation theorem). If f(x) is a
continuous function on the interval a < x < b, then for each € > 0 there
exists (at least) one polynomial P (x) such that

If(x) —P(x)| <€ for a <x<b.

Every continuous function thus can be approximated arbitrarily
closely by polynomials.

1 Proof, e.g., in Achieser N.L.: Theory of Approximation, F. Ungar Publ. Co., New York
1956, §20.
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Example. For f (x) = ¢™* on the interval [0,a], the polynomial

N ()
Pw=3 -
k=0 K

achieves the desired approximation, provided N is chosen so large that
a¥IN' <e(£1).

But the approximating polynomial now is to be used in a numerical
calculation as substitute for f (x); this requires that P (x) be represented in
a form suitable for computation. If one simply writes P (x) in the form

P(x)= i cixk (1)
k=0

(with given c;), this requirement is not necessarily met, as is shown by
the following example:

P(x) = .9869 — 11.8245x + 86.4317x% — 352.9509x3
+ 807.1695x* — 1025.4367x° + 674.8324x% — 179.1590x” .

This looks like an awful polynomial, but is nothing but a polynomial
which approximates f (x) = 1/(1 + 15x) on the interval [0,1] with a max-
imum deviation of .0132.

The polynomial is thus quite harmless; it has gotten such large
coefficients only through the unfortunate choice of powers 1, x, x2, . . . as
polynomial basis. In this way, indeed, the numerical evaluation of the
polynomial becomes inaccurate; as a matter of fact, the function values in
this example, in 5-digit computation, will exhibit errors up to 5% in the
vicinity of x = 1.

This situation can be significantly improved upon by means of other
representations of polynomials, that is, through a choice of other bases for
spanning the polynomial space. Indeed, cixk is only one of many pos-
sible ways of representing a polynomial, and by no means the best when
it comes to approximating a function f (x) on an interval a<x < b by a
polynomial. Better for this purpose are always the Chebyshev polynomi-
als. Further possibilities are: Legendre polynomials, Newton’s interpola-
tion formula. In the latter case, the polynomial is determined by the
divided differences.
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§7.2. Definition and basic properties of Chebyshev polynomials

The Chebyshev polynomials (T-polynomials) arise from the fact that
cos (nd) can be expressed as a polynomial in cos ¢; we have indeed, for
example,

cos (2¢) =2 cos?p — 1,
cos (3¢) =4 cos3¢ — 3 cos ¢,

cos (4¢) = 8 cos*p — 8 cos? ¢+ 1, etc.

In general, cos (k) is a polynomial of degree k in cos ¢, which we denote
by Ty (cos §). After the substitution x = cos ¢ one has

Tox)=1,
Tix)=x,
To(x) =2x% -1, )

T3(x) =4x> - 3x,

T4(x) = 8x* — 8x% + 1, etc.

Because of T (cos ¢) = cos (k$), many properties of trigonometric func-
tions can be carried over to 7-polynomials, namely:

DITx)I £1 for IxI <1,
2) Ty(x) has (relative) extreme values + 1 at x = x; = cos [—nk— j}

G=1,2...,k=1).

3) Ti(x) has zeros at x = z; = €08 [%j - %] G=12,...,%).
It follows from this that all zeros of these polynomials are simple

and real, and lie in the interval Ix| < 1. One obtains, for example, the
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Figure 7.1. The Chebyshev polynomial T 4(x) and T 5(x)

curves depicted in Figure 7.1. (The parts contained in the square are spe-
cial Lissajous figures(}).)

4) From the trigonometric identity
cos (k + 1)d + cos (k — 1)p = 2 cos ¢ cos (k)
there follows immediately the identity
Ti1(x) = 2xTp(x) — T (x), 3)

which can be used for the recursive computation of the 7. For example,
with k£ = 4, one obtains [cf. (2)]:

2T, = 16x° — 16x> + 2x
—T; = - 4x3 + 3x
Ts = 16x° — 20x> + 5x

1 Cf., e.g., French A.P.: Vibrations and Waves, W.W. Norton and Co., New York 1971,
pp- 34f. (Translator’s remark)
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furthermore:
2xTs = 32x% - 40x* + 10x?
-T, = - 8x* + 8% -1
Te = 32x% — 48x* + 18x%2 -1, etc.

5) From the recurrence formula one also notes at once the general
fact that T, (x) is a polynomial of degree k with leading coefficient 2k,

Tk(x)=2k_1xk— cee e

[exception: To(x) = 1], and that T(x) for even (odd) k is an even (odd)
function.

Now the idea of the recurrence formula, however, is not to express
the polynomials T;(x) in terms of powers of x. One would then, in fact,
create the very calamity that one has tried to avoid by means of the 7-
polynomials. For example,

Too(x) = 524288x2° — 2621440x!® + 5570560x16 — - -+ + --- |

which is a polynomial with large coefficients, but small function values.

The T, therefore, should not be expressed in powers of x, but
should be considered as irreducible basic elements through which one
expresses other polynomials, as for example in

x3 = .0625Ts + .3115T5 + .625T ;

the recurrence formula, on the other hand, should be used to evaluate
numerically the T, (x) for given x.

Example. Computation of T¢(.7): for x = .7 the recurrence formula
(3) reads: Ty4y = 14T, — T_,. This is applied for k = 1,2,3,4,5, setting
initially To=1, T;=.7. One obtains T, =-.02, T;=-.728,
T4=-9992, Ts =—.67088, T¢ = .059968.

It is possible to also accelerate the computation by means of
Te+o () =2T()Ty (%) — T - (x) (K 2¢) @

(for example, above, with T¢ = 2T7 — Ty =2 x .728% — 1).
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The Chebyshev polynomials are also defined for |x| > 1; the rela-
tion T (cos ¢) = cos (k¢) is continued outside of x| < 1 as follows(?):

Ty (cosh y) = cosh (ky), for x = coshy=1,

T (— cosh y) = (-1)* cosh (ky), for x =—cosh y<-1. )

The recurrence formula holds there unchanged. For x = 1.1, e.g., it reads:
Teyy = 2.2 Ty —Ty—1, and thus yields the following values (To=1,
T)=11) T,=142, T3=2024, T,=3.0328, Ts5=4.64816,
T ="1.19315, T7 = 11.1768, etc. One can see from this that the T)(x) of
high degree grow very rapidly outside of IxI <1 [T;(1)=1,
T7(1.1) = 11.1768], just as inside of Ix| < 1 they strongly oscillate.

We note in passing that the T-polynomials can also be defined in
terms of the expression

(z + \]z2 — 1)k
One has indeed, as can be seen immediately by multiplying out,

@z +Vz2Z 1) =Ty @) +Vz7 =1 Upy(2). (6)

The polynomials U,_1(z) (T-polynomials of the second kind) are of
degree k — 1 and satisfy the identity

Ui_1 (cos ¢) = %}(-@f)— @)

Example. For k =4 one has

(z+VzZ — 1) =2* + 42327 =1 + 6222 = 1) + 42(z% — 1WzZ - 1

+ (2 - 12 =8z - 822 + 1) +Vz% = 1(823 — 42),
thus, T, = 8z* — 822 + 1, U5 = 823 — 4z.

2 For the T-polynomials one has (cf. (12) in §7.3):
w+w!
2
For, with w = ¢*, there follows T, (cos ¢) = cos (k¢); with w =+ e¥ one obtains precisely (5).
(Editors’ remark)

T,() = -;—(w' +wt), if 2=
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§7.3. Expansion in T-polynomials

By T-expansion of a function f (x) on the interval(') [-1,1] we mean
a representation

f@=S+ 3 ol ®
k=1

The convergence properties of this series on the interval x| <1 can be
read off at once from the coefficients (T-coefficients):

Theorem 7.2. If

Lyl ®

M s

k=1

converges, then the series in (8) converges uniformly and absolutely for
all xwith 1x1 <1,

On the other hand, convergence of (9) is not a necessary condition
for convergence of the series in (8). For example,

Ti@) = 5 T3@ + 5 Ts@) = 2 T+ =+ — -+

is convergent for all x with Ix! <1 [to f(x) = % sign (x)], although not

uniformly. Nevertheless, only those T-expansions for which (9) con-
verges are useful in practice.

The practical importance of a T-expansion, in fact, derives precisely
from the convergence of this series (9): for any € > 0, we can then indeed
find a N (¢) such that

oo

Y, ol <kg,
k=N+1
hence also
Z li(x)| <€ for ixl <1,
k=N+1

! Every other finite interval can be transformed to [-1,1] in a trivial way.
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Now

Co N
P(x)= > + Y, i Ti(x),
k=1

as sum of polynomials of degrees at most N, is itself a polynomial in x of
degree < N, and, if (8) holds, one has

co

FX =P = 3% i),

k=N+1
thus

lf&x)-P(x)l <e for IxI<1.

By truncating the T-expansion of f (x) one thus obtains arbitrarily accu-
rate approximations to f (x) over the whole interval Ix| < 1. It is true,
however, that the truncated T-expansion, as a rule, is not the best approxi-
mation in the sense of Chebyshev (cf. §7.6).

Example. For Ix! <1 one has (derivation later)

-4 1, 5 [_3]*
f(x)‘17+15x‘2+,§_1[ 5] Tx).

Truncating the series after the T¢-term yields

P(x)=.5— 6T (x)+ .36T(x) — 216T5(x)
+ .1296T 4(x) — .07776T 5(x) + .046656T (x),

a polynomial which, since Y lcg| = .069984, deviates from f (x) on the
k=1
interval Ix| <1 by at most .07.

Our efforts, in the following, will be directed towards obtaining 7-
expansions in as simple a way as possible. To begin with, we remark that
from Fourier series one obtains T-expansions in a trivial way. Through
the substitution x = cos ¢, indeed, (8) transforms into

£ (cos ) = %" +3 ¢ cos (ko). (10)
k=1

On the left we have a periodic even function of ¢, which is developed into
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a pure cosine-series. As is evident from the right-hand side, the Fourier
coefficients of this function are the desired T-coefficients.

. . . . T
Example. T-expansion of sin x in lx| < % The interval lx| < 5

must first be transformed to Ix| <1, which is done by seeking a
representation

.| T o | o
sin| —x| =——+ Y Tx(x) for Ixl <1
2 2 k=1

One then has indeed

c [ -]
sinx= -2+ ¥ T | 2| for Ixl<
2 3 4

ST E

Now, with x = cos ¢, we have

.| n o &
sin | —cos¢| = —+ 3 cx cos (kd),
2 2 4
with

Qif k is even,
Cp= %fon sin [ %cos ¢] cos (kdp)do=

2=1)"J, [ —’ZEJ if k=2n+1is odd,

where J; is the Bessel function of order k(z). One thus obtains

sin { -121 x] = 1.13364818T (x) — .13807178T 3(x) + .00449071T 5(x)

—.00006770T7(x) + .00000059T g(x) = - - + -

Because of the rapid convergence of this series ong has, already with the

. . .| ®
terms given here, an approximation of sin 5 x| accurate to about 8

2 Cf.,, e.g., Watson G.N.: A Treatise on the Theory of Bessel Functions, 2nd ed., Universi-
ty Press, Cambridge, 1948, Section 2.2. (Editors’ remark)
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digits.
T-expansions can also be obtained easily with the help of Laurent

series. Let indeed f (z) be real for real z and analytic in an ellipse with
foci at -1 and +1. By means of

=1 [w+d]
this ellipse, whose larger half axis shall be a, is mapped into the annulus
a—\/Er—_T< wl <a +\/EZT1—,
whereby to each z there correspond two points (w and w™!). Then

w+ w1

) an

g(W)=f[

is analytic in this annulus and has the additional property g (w) = g(w™!),
so that the Laurent series

oo

gw)=3 T cw

k =—o0

k

has real coefficients with ¢, = c_;. Consequently,

Ms

1
gW)==co+ XY g ———
2 k=1 2

Now with w = ¢*® one obtains z = cos ¢, hence

wh Wk ik 4 gmikd
2 2

Co >
f@)= -t Y, Ty (2) .
k=1

= c0s (kd) = Ti(2),
(12)

Example. Let us derive the T-expansion of

4

F&=151s
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Here we get
) s 3
g(w):f W+W—1 - 4 — 8w - 2 _ 2
2 17+%[W+w—1] 15w?+34w+15 3w+5 Sw+3
S U PR IO - 1 I SRR S zi_[z]z_l_
_7[1 5w+\5]w ] 2[5w 5 wz+
_L_1M+[_3_]2__W2+W_2_[1]3____“’3*”“’—3+...
T2 5 2 5 2 5 2 ’
thus
1, - 3)*
ro=1+5 (-3 no. a3
k=1

§7.4. Numerical computation of the T-coefficients

Since the Fourier coefficients of the periodic function f (cos ¢) are
the desired T-coefficients of f (z), one finds the latter by

Cp = ?2; ](;n f (cos ¢) cos (k) do. (14

[We used here the fact that (10) is a pure cosine-series.] The integrals can
be evaluated with the trapezoidal rule: by introducing the nodes ¢; = j X

N
(G=0,1,..., N)one gets

&L

) 15
cos N (15)

Cos

where ” means that the terms for j =0 and j = N are to be added with
only half their values.
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If the expression on the right of (15) is denoted by ¢y, one has, if
f (cos ¢) is Riemann integrable:

lim CNk = Ck (k =0,1, ... ) (16)

N 5o

Based on this relation (16), there is a primitive method for the calcu-
lation of the T-coefficients:

If the first m + 1 coefficients co, ¢y, ... ,Cm Of the T-expansion of
f (x) are desired, one computes for an increasing sequence of N-values
(eg. N=4,8,16,32,...) thecyi (k=0,1, ... ,m) and one continues
to do so until the cy y practically no longer change.

More precise information about the quality of the convergence
Cn,k — ¢ can be obtained from the following representation, in which the
Cnx are expressed in terms of the exact T-coefficients. (This relation
always holds when ¥ Ic,| < oo, which is the case, e.g., if f (x) is twice
continuously differentiable(!).)

CNk=Ck+tCoN— g+ CoN4kTCaN—kFCansktCen—k+ - . (17)

One sees from this that, in general, cy 4 can be a good approximation to
¢ only if lcoy _pl<<lcil. If the ¢, have a tendency to decrease, this
means that in any case & must be < N; in other words: with the formula
(15) one can at best approximate the coefficients cg, ¢q,..., cy_1.

Connection with interpolation. The function

CN,0 N-1 CN.N
PnG) ===+ X onplix) + = In) (18)
k=1

is a polynomial of degree N, for which (17) yields the following represen-
tation:

1 Derivation, e.g., in Fox L., Parker I.B.: Chebyshev Polynomials in Numerical Analysis,
Oxford University Press, London 1968, Section 4.3. (Editors’ remark)
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PN(x)=—;-co+c;W+c4N+06N+

N-1
+ Y (rteon—k+eweptean—+ - MTi(x)
k=1

+ (cy + can+cesy+ o+ o )Tn(x).
In this expression every coefficient ¢, occurs exactly once, only ¢, is not

multiplied by T;(x), but by T, (x), where £ = {(k) is the function depicted
in Fig. 7.2.

(k)

0 N 4N 6N k
Figure 7.2. The index function t(k)

Therefore,
Co hnd
Py(x) = - Y, il yy(x),
k=1

and

PN ~F@)= 3 T - Ti@]
k=N+1

(note thatf(k) = k for k £ N).
From this, there follow two facts:

D If Y legl <oo, then Nlim Py(x) =f(x), uniformly for
k=1 e
IxI £1.

2) For x = x; = cos [ -1;71] one has Py(x;) = f(x;).
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Proof of 2): One has

Ty (x) — Ti(x) = cos (£(k)d) — cos (ko)

R TR AR T Y
= 2s1n[ 5 ¢] sm[ > ¢},

or, forx = Xj,

Tc(k)(x]') - Tk(xj) =—2sin

N 2N

________Z(kz) —k jn} sin

L) + k jn] |

However, since always either £(k) — k or £ (k) + k is a multiple of 2N, one
has for all £

Tl(k)(xj) - Tk(xj) =0 (_] =0,1,..., N), qed

The statement 2) means that the polynomial Py(x) is nothing but the
interpolation _polynomial of the function f(x) for the nodes

Xj = COS ENJ— (=0,..., N), the so-called Chebyshev abscissas. One

could therefore compute Py also with one of the known interpolation pro-
cedures. The route via the coefficients cy x is called Chebyshev interpola-
tion.

Together with statement 1) one obtains

Theorem 7.3. The interpolation polynomial Py(x) of degree N for
the nodes xo, . .. , XN, where xj = cos l;;[/_ tends to f (x) as N — o (uni-
formly in x for |x| < 1), provided f has the expansion (8) and the series
(9) converges.

We are witnessing here the remarkable fact that the interpolation
polynomial for a suitable distribution of the nodes converges towards the
function, and in fact uniformly on a certain interval (here Ix| < 1). This
theorem would not be true for an arbitrary distribution of nodes, espe-
cially not for

2 .
i=—1+—= =0,...,N (N —> ).
%; . O =)



Numerical illustration. The T-expansion for the function f(z) =
4/(17 + 15z) was already computed analytically and given in (13); one has
cx = (—.6)*. For comparison we give in Table 7.1 approximations ¢, for
these coefficients, computed numerically according to formula (15),
whereby for various N the cy o,. ..
from N + 1 ordinates. At the bottom of the table one finds the (rounded)

§7.4. Numerical computation of the T-coefficients

exactc, (k=0,..., 20).

,» ey Wwere determined each time

Table 7.1. Numerical computation of the T-coefficients

N CN,(), e ’CN,N
112.1250000 --.9375000
21 1.2977941 -9375000 .4136029
311.0978786 -.7109291 .5135607 -.2265709
411.0341662 -.6387217 .4136029 -2987783 .1318140
511.0121668 -.6137890 .3790884 —2454779 .1773282 -.0782330
61 1.0043631 -.6049448 .3668452 -.2265709 .1467155 -.1059843
0467578
71 1.0015685 -.6017776 .3624608 -.2198002 .1357530 -.0879006
0635019 -.0280156
8 | 1.0005644 -.6006396 3608855 -2173674 .1318140 -.0814109
0527175 -.0380820 .0168009
9 11.0002031 -.6002302 .3603187 -.2164922 .1303969 -.0790741
0488377 -.0316248 .0228451 -.0100787
10 | 1.0000731 -.6000829 .3601147 -2161772 .1298869 -.0782330
0474414 -.0293007 .0189736 -.0137062 .0060468
20 | 1.0000000 -.6000000 .3600000 -.2160000 .1296000 -.0777600
0466560 -.0279936 .0167962 -.0100778 .0060468 —.0036283
0021774 -0013071 .0007853 -.0004730 .0002868 -—.0001772
0001147 -.0000829 .0000366
oo | 1.0000000 -.6000000 .3600000 -.2160000 .1296000 -.0777600
0466560 -.0279936 .0167962 -.0100777 .0060466 —.0036280
0021768 -.0013061 .0007836 -.0004702 .0002821 -.0001693
0001016 —-.0000609 .0000366
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§7.5. The use of T-expansions

If the T-coefficients decrease rapidly enough, the polynomial P (x)
obtained by truncating the T-expansion can be reexpanded in powers of x.
Consider, for example, the T-expansion for tan"!x in the interval Ix! < 1:

oo - 2k+1
tanlx =2 (-1) %—Pl— Ty 4+ 1(0). (19)
k=0

Truncating this series after the Tg-term and rounding the coefficients to 4
places after the decimal point, one obtains

P (x) = .8284T; — .0474T 3 + .0049T 5 — .0006T 7 + .0001T .

The deviation P (x) — f (x) comes from two sources:

a) Omission of the terms with Ty, T13, T1s5, . . . . The sum of
the moduli of the omitted coefficients equals 138;5—7.

b) Rounding of the remaining coefficients ¢y, c3, c5, ¢7, cg to 4
places after the decimal point. The sum of the moduli of the
changes equals 930o—7.

The total change amounts to 1068;0—7, hence

IP(x)— f(x)| <.00011 for Ix| <1.

For the transformation into a power series one considers the rounded
coefficients as exact and also makes use of the exact integer coefficients of
the Ty; then the transformation becomes exact.

8284T; = 8284x
—474T; = 1422x — 1896x°
49Ts =  245x — 980x> + 784x°
—6T; = 2x - 336x3 + 672x° — 384x’
Ty = Ox — 120x® + 432x5 — 576x7 + 256x°
P(x) = 1.0002x — .3332x> + .1888x° — .0960x” + .0256x°

This is now a polynomial of degree 9 which for x| <1 deviates from
tan™' x by at most .00011. Note that it does not agree with the beginning
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of the tan! series; the small deviations, indeed, are of enormous impor-
tance, because for

0 () =x—.3333x> + 2x° — .1429x" + .1111x°

the maximum error at x =1 is Q(1) — n/4 = .8349 — 7854 = .0495,
which is about as poor as the first term alone of the T-series, i.e.,
P(x) = .8284x.

Reexpansion in powers of x, however, becomes disadvantageous as

soon as the T-coefficients decrease more slowly than (2 — 1)¥; more pre-
cisely: as soon as

ﬁ (2.414)F 1 ¢ 1

r=22 (20)

m
Z leI
k=0

becomes much larger than 1. In the case of

75%
2k+1

Tox +1(%),

= L ! [\@8x| = 3 1)
f@= s (e8] 3 e

for example, one obtains a rough approximation by
P(x)=T, — 25T3 + .11T5 — .06T7 + .03T¢ — .02T1; + .01T 43,

from which by reexpansion as above there results

P (x) = 3.34x — 18.20x> + 75.20x° — 177.28x” + 230.40x°
—153.60x!! + 40.96x13.

Since here 1P(x)| < 1 (for 1x| < 1), upon evaluation of this polynomial
one obtains the value as a difference of large numbers, hence with cancel-
lation. This danger is already signaled by the fact that

13
Y (2.414) ¢,

r= = 94385 .

13
E I Ck I
k=1
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Computation with T-expansions. In cases where I' is large, reexpan-
sion in powers of x is ill-advised, numerically; in such cases one should
rather compute directly with the polynomial given in the form

Co N
P(x)= 7 + E T (x).
k=1
We mention here only two operations:

a) Computation of a function value. Introducing the auxiliary func-
tions

Cg had
pe(x) = o3 + Y c+i(x) (=01, ..)), 21
k=1
where ¢y = cy42 = -+ =0, one obtains [by using (3)]
Ce+1 b — Ce+1
Prs1(X)= 2+ + Y i+ 1T =3 cp 41Ty (x) — 2+ ,
k=1 k=1
Ceg-1 hnd
pr-1(x) = +eTix)+ 3, cpakThar(x)
k=1
Cg—1 >
=5 tax+ Y, Co 4 k(2xTy(x) = Ty (x))
k=1
Ce-1 Ce Ce+1
= z2 +cgx +2x [Pc(x)—“z‘} - [Pc+1(x)+ 2+ } ,
or
Ce-1—Cr+1
Pr-1(0) = = + 200, () = Py 4 1. 22)

Noting that py,; =pn+2 =0, and applying this formula of
Clenshaw(*) (with a fixed numerical value of x) foré =N+ 1, N, ..., 1,

! Clenshaw C.W.: A note on the summation of Chebyshev series. Math. Tables Aids
Comput. 9, 118-120 (1955).
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one obtains directly the desired function value P (x) =po(x). The algo-
rithm corresponds to the Homer scheme(z). The derivative P’(x) = po (%)
is computed analogously by the recursion

Pi-100)=2py(x) + 2xp," (x) = pg + 1 (x), (23)

which is obtained by differentiation of (22).

b) Multiplication of two T-expansions:

Co b d() haid
fx)gx)= [—2— + cka(x)} [7 + > 4T, (x)} .
k=1 t=1

When multiplying out this product, there occur terms of the kind
T (x)T, (x); according to (4), however,

1
TiTy = - [Tk+t +Tk—¢],

where one has to define T_;(x) = T;(x). In this way one finds

+ oo

FERM =2+ T 4Ty with e=3 3 divicur - 4
k=1

¢) The remaining operations can be carried out in the same way;
only the expansion of a quotient

2+ X AT

dg = ’

-t Y, & Ti(x)
k=1

2 With the notation analogous to (21),

k
pix)= Z CraaXx', Where Cy,q =Cyyp = -+ =0,
k=1

the formation rule of the Homer scheme (cf. footnote (1) in §4.4) reads: p,_,(x) =
¢y -y + xp,(x). (Editors’ remark)
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again in a T-series, gives some trouble. Division with remainder of two
polynomials, on the other hand, does not present any particular
difficulties.

§7.6. Best approximation in the sense of Chebyshev (T-approximation)

In contrast to the T-expansion, which aims at a representation

Co

f&x)= >

+ 3, aTi(x)
k=1

of the given function, and from which by truncation one obtains a rough
approximation P (x) of f (x), we now propose to solve the following prob-
lem (T-approximation):.

Let f (x) be continuous on the interval I =[a,b]. From among all
polynomials P(x) of degree <n determine the one for which

el l = 11p — fI | becomes minimum. Here, | i€l is defined by
Ilell =max le(x)!,
xel
ie., | 1-11 denotes the maximum norm(}).

This problem, as we shall see, has exactly one solution (?), which as
a rule, however, does not coincide with the T-expansion truncated after
the T,-term.

Theorem 7.4 (Alternation theorem). Let P(x) be the nth degree
polynomial of best approximation for the (continuous) function f (x) on
the interval 1. Then there exist in I (at least) n +2 points
Xo>X1>X2> "' >Xp4i in  which the error  function
&(x) = P(x) — f (x) alternately attains its extreme values £ | lel|. That
is,

e =Dk, k=0,...,n+1, with h =% |lell . (25)

! Here and in analogous cases the author wrote | 1e(x)1 | in place of | Igl .

2 The existence of the polynomial of best approximation, not actually proved below, fol-
lows from a standard compactness argument in functional analysis; see, e.g., Todd J. (ed.):
Survey of Numerical Analysis, McGraw-Hill, New York, 1962, pp. 129f. (Translator’s re-
mark)
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These n + 2 points xg, X1,..., X,41 are called an alternation of f.
Even though P (x) is uniquely determined, there can be several alterna-
tions.

Example. Let I =[-1,1], f (x) =T,4+1(x). The nth degree polyno-
mial of best approximation is here P(x) =0. The altemation (here the
only one) consists of the points

kw
= —_ k=0,1,...,n+1),
X COS[nH] ( n+1)
in which
Ee) = Tns1 () = (1Y%
one thus has | lel | = 1.
Proof of the alternation theorem. It is always possible to subdivide
I, beginning from the upper end, into subintervals I, I4,..., I;, such
that &(x) in I, assumes only extrema (~1)*n, whereby for all k either
h=1lell or h=- llell (cf. Figure 7.3). Now either there exists the

asserted alternation with n + 2 points, or such a subdivision is possible
with ¢ < n, thus with at most n + 1 subintervals. If €(x) has the form
shown in Figure 7.3, then 3 intervals suffice, since the 3 consecutive
extrema of equal sign can be collected in one interval.

+1h| T T
| |

/\5 é(x) |

0 N\

! e
\/\/ \/ |

| i

-|h| 1 1

Figure 7.3. To the proof of the alternation theorem: subdivision
of I into subintervals

If now a subdivision with ¢{ < n is possible, there is a polynomial
R (x) of degreel < n with the property

sign (R(x)) = (-1)¥ sign (h) for x € I, k=0,...,¢,
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(sign (k) is the sign of the extrema in /g, thus +1 in the above figure) and
therefore one has for each y > 0:

€(x) — YR (x) < €(x) in the intervals with positive extrema;
€(x) — YR (x) > &(x) in the intervals with negative extrema.

Consequently, for sufficiently small y > 0,

le(x) —YR(x)| < llell forall x e I, ie.,
lIP=yR —f11 < |IP = fl1,

so that the polynomial P (x)—<YR (x), contrary to the assumption, is a
better approximation.

Theorem 7.5. (Uniqueness theorem). If a polynomial of degree n
has the property that in n + 2 points xg > X1 >X9 > *++ > X, Of the
interval 1

P —fx) =Drr (k=0,...,n+1),
and in addition
IPx)—fx)I <1kl forall x €1,

then P(x) is the uniquely determined nth degree polynomial of best
approximation for the (continuous) function f (x) on the interval I.

Proof. The curve y=¢(x)=P(x)—f(x) traverses the strip
IX(=lhl <y < 1hl) at least (n + 1)-times, if it has n + 2 extrema + &
(cf. Fig. 7.4). The function €(x) =P (x) — f(x) formed with another
polynomial must intersect each of these n + 1 branches at least once, if
one wants | lg 1|1 < | lell; we therefore have, at n + 1 points,

g (x) =e(x), Pi1(x)-fx)=Px) -fx),

thus P,(x) = P(x). Since both polynomials are of degree n, it follows,
necessarily, that P(x) = P(x).
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+(hl ——
~
/\(//61“) 7{\\
~
~ a

&(x)

\
\
\
N
N
/
4
[
| g
\
\

=1hl

Figure 7.4. To the proof of the uniqueness theorem: points of
intersection of &(x) and &,(x)

There remains the possibility that €;(x) intersects two branches at
the same time (in an extremum), so that these two branches then contri-
bute only one point of intersection S (cf. Figure 7.5). Near S, however,
one has g£;(x) 2 €(x), hence also P;(x) =2 P(x), so that S is a double point
of intersection. With this, the uniqueness is proved.

S
- \\
- )
N
£(x)

Figure 7.5. To the proof of the uniqueness theorem: double
point of intersection of €(x) and €;(x)

As to the construction of the polynomial of best approximation, we
first need some terminology: n + 2 points xg >x; > -+ > X, in [ are
called a reference, and a polynomial R (x) of degree n which at these
points alternately has the same (in absolute value) deviations + A4 from
f (x), hence the property

R (%) — fOx) = (=1)*, 26)

is the associated reference polynomial. (h can be positive or negative.)
lh | is called the reference deviation for the reference xg, xX1,. .., X,41-

Theorem 7.6. The reference polynomial R (x) (and with it also h) is
uniquely determined by f (x) and the reference xg, X1, . .., Xp41-
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Proof. The ordinates S(x;) = f(x) (k=0,1,..., n + 1) determine
uniquely a polynomial S of degree n + 1; let o be its leading coefficient.
Furthermore, the n + 2 conditions T(x;) = (—1)" also determine uniquely a
polynomial T of degree n + 1; let B be its leading coefficient. We have
B0, since T(x) already has n + 1 sign changes between xo and x,.,;
and therefore cannot degenerate to a polynomial of degree n. But then

R(x)=S(x) - % T(x)

is a polynomial of degree n which at the points x; assumes the following
values:

ROy = fOq) — i;— DF.
We thus have
R(x) - fOa) =— -1)* % ,

i.e., R(x) is a reference polynomial with A =— —‘;—. A second reference

polynomial R* (x) cannot exist, since otherwise R — R* would be a poly-
nomial of degree n with n + 1 zeros; q.e.d.

It is to be noted, however, that the extrema of the error function
€(x) = R(x) — f(x) in general exceed * A, as for example in Fig. 7.6.

+!hl\ “ r_/ I / \
LA /

Figure 7.6. Reference and error function

[=)

Indeed, if the reference deviation |41 is at the same time the max-
imum deviation | IR — fl1, then by the uniqueness theorem, R (x) must
be the polynomial of best approximation. More precisely, one has:

Theorem 7.7. If the reference polynomial R (x) has the reference
deviation |h| and the maximum deviation ||R — f11 > |h!l, then the
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polynomial P (x) of best approximation satisfies

IRl <VIP-fII<IIR-fII. @7

Proof. In the same way as in the proof of the uniqueness theorem
7.5 one can refute the existence of a polynomial Q of degree n with
I1Q — f11 < 1hl; such a polynomial, namely, would have at least n + 1
points of intersection with R (x) and therefore would have to be identical
to R, which however is not possible. Therefore, P(x) has a maximum
deviation larger than |4 |, but of course at most equalto | IR — f11.

Corollary: Among all polynomials of degree n the polynomial of best
approximation is the one that has the smallest maximum deviation, but
the largest reference deviation.

§7.7. The Remez algorithm

Since the polynomial of best approximation has the largest reference
deviation, one proceeds as follows to construct it: Choose an arbitrary
reference xg >x1 > *°° >Xpy1 (Xx € I) and determine the reference
polynomial R and its reference deviation |hl. Then vary the reference in
such a way that |h| increases. This yields an iterative process which
generates a sequence of reference polynomials R, with monotonically
increasing reference deviations |k, |. One hopes that

tlim Ry (x) =P (x),

where P is the polynomial of best approximation.

Note that the reference deviation is |2l = | —a/Bl, where o and B
are the leading coefficients of the polynomials S and T (introduced in the
proof of Theorem 7.6). One can compute o and B by means of the
Lagrange interpolation formula (see §6.1):

S w0, B= 3, we¥, wh 1
o= Y wif(x), B= ¥ wi(-1)¥, where wy= ——— .
k=0 k=0 ].I;Ik (e — %))

But since w; = (—1)* 1w, |, hence
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n+l «
> G ) 1wyl
o k=0
h=- g =" T - @8
Z |Wk|
k=0
h is a weighted mean of the quantities — (—1)" F(x).
Denoting by Xg >X1 > -+ >X,4 (& € I) a second, new, refer-

ence, and by lh1 the corresponding reference deviation, one has of course
likewise(}):

n+l
> DGl 1
h=— , where W= ———.  (29)
z 1l I ®e-%)

Since the polynomial R belonging to the first reference has only degree n,
the leading coefficient of the (n + 1)st-degree interpolation polynomial for

the ordinates R(x;), k =0, ..., n + 1, vanishes, that is,
n+l _
> WeRGE) = 0. (30)
k=0

With €(x) = R (x) — f(x), one thus has

n+l

Y e 1w

E=k=0

€2y

n+l -
R
k=0

Therefore, i may be viewed not only as weighted mean of the quantities
(=D (cf. (29)), but also as weighted mean of the quantities
(-1)* e (xx), where g(x) is the error function belonging to the old refer-
ence polynomial R.

Because of & = (=1)¥ € (x,), k=0, ..., n + 1, we have in addition,
trivially,

1 The editors here had to slightly deviate from the original.
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n+l
Y D& () 1w
h= X0 — . (32)
3 1wl
k=0

Comparison with (31) now shows immediately how the x; are to be
changed in order to have |kl > Al when passing to the new reference
X0, ..., Xn41. For this it suffices, e.g., to replace one of the x;, say xj, by
an x for which

(1Y e&) > (1Y &(x)) > 0, resp. (~1Y e®) < (-1Y e(xj) < 0.

Then, indeed, the new reference, consisting of xo, X1,..., Xj_1,
Xj+1> -+ - » X541 and X (in place of x;), is such that the new reference devia-
tion |kl is the weighted mean of quantities which, with the only excep-
tion of one, occur also in the weighted mean (32) for |4 l; this latter,
missing, quantity has been replaced by a larger one, causing the mean to
increase in absolute value, so that indeed |Al > Ihl. It is to be noted,
however, that (x) and &(x;) must have the same sign.

In this way we obtain a particularly transparent variant of the so-
called Remez algorithm(*); it consists of the following steps:

1) Take any reference xo >x; > '+ >Xx,4 and determine A
according to formula (28); thereupon, the reference polynomial R (x) can
be evaluated through interpolation at n + 1 of the n + 2 reference points,
in which one knows, after all, that R (x;) = f(x;) + (-1)*h.

2) Determine the maximum | i€l | of the modulus of the error func-
tion €(x) = R(x) — f (x) on the interval I. Either this maximum is equal
to [k 1; then it is attained at n + 2 points with alternating signs of &(x), so
that R is the polynomial of best approximation. Or one has
[lell > |hl; then this maximum of le(x)| is attained at a point x
#xj, j=0,...,n+1).

2 In the most common variant of the Remez algorithm one chooses all reference points
afresh when passing to a new reference, and in fact alternately equal to the maximum and
minimum abscissas of the error function (or first approximations thereof). See, e.g., Mur-
naghan F.D., Wrench J.W., Jr.: The determination of the Chebyshev approximation poly-
nomial for a differential function, Math. Tables Aids Comput. 13, 185-193 (1959). (Edi-
tors’ remark)
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3) Construct a new reference Xg, X1,..., X,41 consisting of x and
n + 1 of the current reference points, i.e., a reference point x; is replaced
by x. The choice of x; is dictated by the conditions

Xog>X1> - >)-C-,,+1 ’

-)fe @), k=0,..., n+1, have the same sign .
We distinguish three cases:

a) x; >f>xt+1.

In the sequence &(x; ), €(x), €(x; , 1) we then have two equal signs in suc-
cession; in order to reestablish the alternating sign sequence, that point of
the pair x,, x; +; must be dropped for which €(x) has the same sign as
e(x), thus:

Xy =x if sign (&(x,)) = sign (e(x)),
Xy 41 =x ifsign(e(x, 4 1)) = sign (e(x)).

b) X > x ¢, sign (&(xp)) # sign (e(x)).

Since the sequence €(x), €(xg), €(x), . . . already has alternating signs,
only x,,; can be dropped in order to satisfy the sign condition. Then

i():-x-, Ek=xk_1 k=1,...,n+1).
In this case, by the way, one has sign (;l-) =— sign (h).

©) X > x, sign (€(xo)) = sign (&(x)).

Since here the sequence €(x), €(xo), €(x1), . . . has two equal signs at the
beginning, the sign condition is fulfilled by dropping xo. Thus:

fo=-x-, X=x k=1,...,n+1).

If X < x,41, one proceeds similarly as in the cases b) and c).

The new reference, of course, then again undergoes the same pro-
cess, etc.; in this way one obtains a sequence of references with the pro-
perty that the corresponding reference deviations |h,| form a
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monotonically increasing sequence, which therefore converges (le(x)!| is
an upper bound for all 1A, ). It can be proved that limlA, | is equal to
the reference deviation of the polynomial of best approximation, which, as
we know, coincides with the maximum error of this polynomial. A more
detailed analysis even shows that the reference polynomials R, converge
uniformly to the polynomial of best approximation(®).

Numerical example. Approximate the function

1
1+x

fx)=

on the interval [0,1] by a polynomial of degree 2. As initial reference we
choose

x0=1, X1 =75, JC2=.25, JC3=0.

The quantities occurring during the computation of the reference polyno-
mial are summarized in the following schema:

Xk F & Wi R (%)
1 5 5.33333 50714

75 57143 -10.66667 .56429

25 .8 10.66667 .80714
0 1 —5.33333 99286

o =-.22857 B =32.00000 =>h=.00714

One gets R(x) = .99286 — .82858x + .34285x2. The error function
€(x) = R(x) — f (x) has its maximum, in absolute value, approximately at
X = .2 with the value &(x) = .00752 (cf. Fig. 7.7).

3 See, e.g., Meinardus G.: Approximation of Functions: Theory and Numerical Methods,
Springer-Verlag, New York 1967, Theorem 83. (Translator’s remark)
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001

X3 X X, %)

0.2 04 06 08 10

00

-001-

Figure 7.7. The error function €(x) for the initial reference

Since € (.25) = .00714, one must replace x, = .25 by x = .2:

X j’(xk) Wi Ie(xk)
1 5 5 50728

5 57143 -9.69697 56415
2 83333 11.36364 .84061
0 1 —6.66667 99272

=-23814 B =32.72728 =>h=.00728

The extremum of le(x)| lies approximately at X =.7, where
€(x) =— .00755. One must replace x; =.75byx =.7:

Xy I Wi R (x;)
1 5 4.166667 50735
i 58824 -9.52381 58088
2 .83333 12.50000 .84068
0 1 —7.14286 99265

o =-24510 B =33.33333 => h=.00735

At this point, the error function &(x) is practically leveled. The resulting
polynomial is

R (x) = 99265 — .82849x + .34321x2 .
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Notes to Chapter 7

§7.1 While Weierstrass’s theorem is of considerable theoretical interest, it is of lit-
tle use in practice, since it gives no indication of how large a degree the polynomial P (x)
may have to have in order to achieve a given accuracy, let alone how one might go about
constructing it. The questions alluded to near the end of this section are related to the
condition of polynomial bases; for this, see, e.g., Gautschi [1984].

§7.2 The classical source on Chebyshev polynomials and their applications is
Lanczos’s introduction in National Bureau of Standards [1952]. More recent accounts can
be found in the books of Fox & Parker [1968], Rivlin [1974] and Paszkowski [1975], the
last containing the most extensive treatment of computational methods related to Che-
byshev polynomials and Chebyshev series.

§7.3 For many special functions in current use, the T-coefficients have been tabu-
lated extensively; see Clenshaw [1962], Clenshaw & Picken [1966], Luke [1969, Vol. II,
Ch. 17]. Gautschi [1975, §1.2.3] has references to more recent tables. An important tech-
nique of computing T-coefficients is based on the fact that these coefficients often satisfy a
linear difference equation of some given order and, in fact, constitute a solution of
minimum growth. They can therefore be computed very effectively by backward
recurrence algorithms; see, e.g., Paszkowski [1975, §15].

§7.4 The approximation in Eq. (15) is a special instance of the discrete Fourier
transform. For large and highly composite integers N (for example, powers of 2), the
discrete Fourier transform can be evaluated very efficiently by algorithms which have
come to be known as Fast Fourier Transforms (Brigham [1974], Nussbaumer [1981]).
Rather than the N2 operations that one would expect, they require only of the order of
N log, N operations, and therefore have found important applications in many problems of
applied analysis and engineering; see, e.g., Henrici [1979]. In numerical weather predic-
tion it is not uncommon to compute as many as 15 million real Fourier transforms with
N =192, just to arrive at a 10-day forecast (Temperton [1983]).

The polynomial (18) interpolates to f at the extreme values on [-1,1] of the Che-
byshev polynomial Ty. The polynomial interpolating at the zeros of Ty,, can be similarly
expressed; see Fox & Parker [1968, p. 32].

§7.6 There is an analogous theory of best approximation by rational functions
(Achieser [1956, Ch. 2]). One again has uniqueness of the best rational approximant, for
arbitrary prescribed numerator and denominator degrees. It can be characterized by an
alternation property analogous to the one in Theorem 7.4, but slightly more complicated
because of the possibility of common factors in numerator and denominator. Also
Theorem 7.7 has its analogue in rational approximation and so does, therefore, the Remez
algorithm; see, e.g., Ralston [1967].

§7.7 In practice, best rational approximations are usually preferred over best poly-
nomial approximations, because they yield better approximations for the same degree of
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freedom. A collection of best (or nearly best) rational approximations to some of the
common special functions can be found in Hart et al. [1968], and additional references in
Gautschi [1975, §1.1.2]. A number of computer programs for generating best rational
approximations are available and are referenced in Gautschi [1975, §1.1.3].

While the construction of best approximations (by polynomials or rationals) is
cost-effective for functions that are to be evaluated many times, good approximations such
as those described in the earlier sections of this chapter usually suffice for occasional use.
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CHAPTER 8
Initial Value Problems For Ordinary Differential Equations

It is a well-known fact that differential equations occurring in sci-
ence and engineering can generally not be solved exactly, that is, by
means of analytical methods. Even when this is possible, it may not
necessarily be useful. For example, the second-order differential equation
with two initial conditions,

y’+5y +4y=1-¢*, y0)=y"(0)=0, 1)
has the exact solution
y=—i~——;-xe"‘—£e"——1—e‘4", 2)

but when this formula is evaluated, say at the point x = .01, one obtains
with 8-digit computation

y = .25 —-.00330017 — .22001107 — .02668860 = .00000016 ,

which is no longer very accurate.

In such cases, and in others where an ‘‘exact’’ solution, i.e., a solu-
tion in closed form, does not exist, one must resort to numerical methods
which admittedly yield the solution only approximately, but then right in
finished tabular form. With such ‘‘inaccurate’” methods one indeed
succeeds in obtaining a much more accurate approximation to y(.01) =
.000000164138 ... .
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§8.1. Statement of the problem

As a basic model we consider a differential equation of the first
order with one initial condition,

Y =fxy), y&o)=Yo. (3)

Given here are the value yo and the function f (x,y), which, depending on
the context, must be required to have certain continuity properties (e.g.,
continuity and Lipschitz condition in the case of Euler’s method).

However, we treat also systems of differential equations,

dy,

— = @@, @) E=1.m @)
with initial conditions y,(xg) =yo; ¢ =1,..., n), where n unknown
functions y;(x), yo(x),..., y.(x) are to be determined. We are given

here the » initial values yo, and the n functions f,(x,¥1,¥2,..-, Yn)-
Such a system (4) can also be written in vector form as

y =fy), y0) =yo. &)
The higher-order differential equation
y® =y ..y 6)

with initial conditions for y(xg), y’(xo) . . . » Y* D (x0) can be reduced to
the case (4) by introducing new variables: one puts

Yi=Y ya=y, ¥3=y" ., v =y

theny; = 0%y =y@ =y,,1 €¢=1,...,n-Dand y;= 6"y =
y® = £ (x,,y’, ..., y®D), that is, one obtains
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F1 Y1, s V) =2
2 Y1 s V) =3

)

fn—l (xvylv e yn) =¥
fn (x»}’h cees }’n)Ef(x,)’l’ cees yn)

Example. From the second-order differential equation with initial
conditions,

y+xy=0, y0)=0, y©0=1,

one obtains in this way the system

=Y2, y1(0) =0,
== X1, y20) = 1.
§8.2. The method of Euler

Now in order to integrate y’ = f (x,y), ¥ (xo) = yo numerically, the
x-axis is discretized, that is, partitioned regularly or also irregularly,
beginning with xq (see Fig. 8.1).

Yo

1 1 1 1 1 i
X0 X Xp X3 X4 Xg Xg

Figure 8.1. Discretization of the x-axis

The subdivision points x; are called support points, while the support
values yi, y2 , . . . are now precisely the desired quantities. Often, the
support points are chosen equally spaced; one then has x; = xg + kh.

In general, a numerical method for the integration of (3) consists of
a computational rule for determining the function value y,,; (at the point
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Xi+1) from the values yi, yi—1,...,Yy1,yo which are assumed already
computed.

In the method of Euler one determines yy,1 by extending the tangent

of the slope field at the point (x,y;) until it intersects the ordinate at x4,
(see Fig. 8.2).

T Yn

N X
N
h Xin

Figure 8.2. The method for Euler

In formulae, this means that

Yi+1 =Yi + hfi (Where fi = f(xx,y0), ®

where & denotes the length of the subinterval (x,xg41).

Example. For y’=e™, y(0)=0, Euler's method with constant
stepsize h = .1 yields the function table

x y y

0 0 1
d 1 90484
2 .19048  .82656
3

27314

The exact solution here would be y (x) = In (1 + x) with In (1.3) = .26236.
The method is thus, unfortunately, rather inaccurate.

The inaccuracy of Euler’s method is especially transparent in the
example y’ =y. With the initial condition y (0) = 1 and the constant step-
size h, thus x; = kh, one obtains
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Yeel =Y+ hfe =y 1 + h),

hence in general,
Yo=1+h)".

At a fixed point x, therefore, one finds upon integration with » steps of
equal length & = x/n,

~y = x|"
y(x)~yn—[1+n] -

As n—>oe, h—0, this indeed converges toward the exact value
y(x) = e*, but convergence is slow. In first approximation,

= eX nln 1+£ = ex x_.'ﬁ_*__xi__...
Yn = €Xp " P o a2

rli_pX|

This shows: the numerical integration yields the solution with a relative
error of hx/2; thus, in order to obtain y(1) with an error of 1%, one must
choose & = .02 and thus needs 50 steps (i.e., SO applications of the for-
mula (8)); but in order to bring down the relative error to 107°, one
already needs 500 000 steps. Upon further reduction of 2 — and thus
increase in the number of steps — the rounding errors begin to become
more and more noticeable, so that eventually the accuracy again
deteriorates.

u
0
=
a
"‘N
n
aQ
t
o Y
.
|
|><
| E—
]

If we have a system (4) that is to be integrated by Euler, we must
first establish some notation, namely the indexing of the integration steps
on the one hand, and of the unknown functions y, (x) on the other:

We let yy, denote the numerically computed value of the function
yi (x) at the support point x;; in other words: if we denote the solution
vector at the point x; by yy, then yy is its Lth component. Similarly, we
let fiy be the tth component of f(xi, yi), i-e., fuu = f1 ks i1 Yk »- - - »
Yin)-
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In place of (8) we then have the formula

Vi1t =Y + hfu ©)

This has to be evaluated in the computer for all¢ and all %.

As an example, we once again treat the differential equation
y’ =e7?, y(0) =0, which, for the purpose of eliminating the transcenden-
tal function e, is now transformed into a system of two differential
equations. With y, = e¢™" we have indeed

%2‘ =—¢ ! %l— =3,
so that
Y1 =Y2 y1(0)=0,
Y3 =— 3, y200)=e’=1.

In the first three steps we now get:

x 1 Y2 N Y2

0 0 1 1 -1

N | .9 9 -.81

2 .19 819 .819 —.67076
3 2719 75192 75192 56538

Here, an important principle becomes apparent: it is often
worthwhile to put up with an inflated system of differential equations, if it
is possible, in this way, to eliminate complicated functions. The evalua-
tion of such a function in a computer takes more time than carrying along
an additional unknown function. The fact that y, =e" is here also
integrated inaccurately is of no consequence, since the integration of the
function y; is inaccurate anyway. Incidentally, y;(.3) = .2719 tumns out
to be even a bit more accurate than above with direct integration.

Instability. Stability is a concept that in the theory of differential
equations has been in use for a long time. A solution of a differential
equation is said to be unstable, if there are neighboring solutions which
diverge away from it. For example,

¥y =6y%, y()=1, y'(1)=-2,
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has the unstable solution y = 1/x2. There are solutions which diverge
away from 1/x2; eight of them are depicted in Fig. 8.3, where those
traced as solid curves belong to initial conditions y(1) =1 +¢, y’(1) =-2,
the dotted curves to y(1) =1, y’(1) =—-2(1 + €), with e==% .01, £.001 in
each case.

30

25

201

ost

00

-85
Figure 8.3. Instability for a differential equation of 2nd order

Here, however, we are not concerned with this kind of instability;
what we have in mind, rather, is the phenomenon whereby a numerically
computed solution during the process of integration almost explosively
diverges away from the exact solution, without the latter being in any way
unusual.

If one integrates, for example,

y +10y=0, y@0)=1,

with the constant steplength 4 = .2, one obtains the following completely
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absurd values (the exact solution is y (x) = e 10%).
x y .yl e—le
0 1 =10 1
2 -1 10  .13534
4 1 -10 .01832
6 -1 10  .00248

This is what we call instability of the numerical integration method.
It occurred here only because the step & was too large. For & sufficiently
small, Euler’s method is stable; as we are about to show, the numerical
solution as &~ — 0 would indeed converge toward the exact solution, if at
the same time the number of decimal digits were continually increased.

Convergence of Euler’s method. We want to show now, in the case
of a single first-order differential equation (3), that the solution deter-
mined by Euler’s method converges to the exact solution of the
differential equation if one chooses all subintervals equally long and lets
their length A tend to zero (and disregards rounding errors).

Let Y (x) be the exact solution of (3), i.e.,
Y,=f(xvY)’ Y(xo)=}’0: (10)

and y(x) the numerical solution obtained by the method of Euler with
steplength 4. For the proof of the assertion ly(x) —Y(x)| - 0ash — 0,
we must first of all make a few assumptions: We assume that numbers X,
L, M > 0 exist such that for xg <x <xg+ L, ly —yg!| < LM the follow-
ing is true:

I f(x, ) <M,
lfuy) —fx,n)I <Kly-nl, (11)
Lfey) = fEI <KIx =&l .

Putting Xp=Xp+ kh, y(xk) =Y Yp) =Y, and g, =y, — Y, one
obtains first from (8) and (10):
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Agy =€p41 — € = Qa1 = Vi) — Wis1 — Yi)

= WGy - f " FoeYydx ,

from which there follows(l):

|Aegl < h1fGye) — fOu YO + 1hfa, Y = ™ f (6 Y)dx |

(12)
ShKlgl + L 1 fGa,Ye) — fxY)ldx .
(“‘hf(xx,Yy) is smeared over the whole interval’’.) Now, however,
| fe:Ye) = F D)1 < 1 fG,Y) = f 0 D1+ 1f(g,Y) = fx 1)1,
which, because of (11), reduces to
LG, Yi) = f ) SKNY, =Y +Klix — x| .
Furthermore,
Y-Y,=Y@-Y0p = [, feYyx,
thus 1Y —Y, | < hM, as long as x; < x < x341 < x¢ + L. Therefore,
| fCGx, Yi) — f(,Y)! < KMh + Kh ,

hence by (12),

IAg,| < hK lggl + KMh? + Kh? = hK | g, | + Ch? (13)

! The first assumption in (11), as is easily seen, implies |y, —y,| < LM for x, <x, + L and
1Y(x) — yo! SLM for x, <x < x4+ L. (Translator’s remark)
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(with C = KM + K). This means that
lgger | < lgp! + 1Al < (1 + hK) gl + Ch?, (14)
or, with g =1 + kK,

le,| <qle,_i| +Ch?,

gle,_1) <q%le, 5| + Ch?q,

q" el <q*legl + Ch2q™! .
Addition of these inequalities, with €y = 0, yields

2,.n _
el SCR2(1+q+q?+ - +q"-1)=Chq( 1 D

But now, ¢ — 1 = kK, and, if x = x¢ + nh,

xX—x " _
61"=(1+hK)"={1+ nOK} < KR

Therefore,

K(x—xo)_l C

le, | <Ch? e—Kh—-——-=h < [e"“"‘°)-1] =h(M+1) (e’“”*’)-lJ (15)

Thus, &, & 0 as # — 0 (n and A are related by x — xo = nh), in fact uni-
formly for all x in the interval xo <x < xo + L. Moreover, the error
bound as a function of 4 goes to O proportional to 4.
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§8.3. The order of a method

The basic formula for Euler’s method,
Y+l =Y + hfi = yi + hyg,
simply corresponds to the beginning of the Taylor series

Yi+1 = E _')’l(cv)

which, in case of convergence, would yield the exact value of y;,;. One
could just as well take more than two terms of this series and, for exam-
ple, compute y,; according to the formula (Taylor polynomial)

’ h2 14 th ‘N
Yird =Ve+ e+ Sy + o+ —y) . (16)
2 N!
Admittedly, this requires yi', ¥, ..., &, which can only be obtained

by differentiating the differential equation analytica]ly

Example. If the differential equation y’ = x2 + y2, y(0)=-1,is to
be integrated by the formula (16) with N = 3, one needs

Y’ =2x+2yy", ¥y =2+2yy" +2(y").
The first three steps (with 2 = .1) then give:

X y y yll ylll

0 -1 1 -2 8

1 9086667 .8356752 -1.3187004 5.7932244
2 =8307271 7301075  -.8130402  4.4169430
3 -7610454
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These y; are correct to 3—4 digits; the exact values are:

Y(.1) = -.90877245..., Y(.2) = —.83088131...,, Y(.3) = -.76121865... .

Such differentiation, however, is often tedious or even impossible;
therefore, this method is not in use, and also not recommended. It will
serve us, however, as a model.

We apply it to y” =y, y(0) = 1, and integrate with stepsize h = x/n
from O to x. One gets

, hN N hN
Vest =Vt byt o T =y | THht o

N!

thus

) an

o k
=nh+n1n[1—e"h ) %} :
k=N+1 :

For h — 0, one therefore has in first approximation:

hN+l hN
In = ] ————— — f —
e e R A N S

Yn = € eXp

hN o hN
_x(N_-!-l-)—!_} =e [l—xm] . (18)
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The relative error at the point x therefore is xAY/(N + 1)!, that is, propor-
tional to AV,

Quite generally, one finds that by integrating a given differential
equation with different stepsizes 4 (but over the same interval) the error of
the integration method is proportional, in first approximation, to a certain
power of A.

Definition. A numerical integration method has order N, if the
integration error upon integration from xo to a fixed point x has the
order of magnitude O nV ).

The reason why a knowledge of this order N, which is characteristic
for the method in question, is of importance, is that it allows us to tell by
how much the results are improved when the step is reduced. In general,
one prefers methods with a large N, since then a reduction of 4 promises a
larger gain in accuracy. One should not overlook, however, that such
methods also make the error grow much more rapidly when h is increased
(which, of course, is what one wants, in order to reduce the number of
steps).

Our analysis for the differential equation y” =y suggests the follow-
ing

Theorem 8.1. The Euler method has order 1, the method (16)
order N.

For the determination of the order of a method, we begin, first of
all, by considering the local error, that is the error in one integration step.

Let Y (x) again be the exact solution of the differential equation
(determined by the initial condition Y (x¢) =y¢), Y0,¥1 » . . . the numeri-
cal solution obtained by stepwise integration (with support points xq,x; ,
... ), whereas y(x) is the exact solution of the differential equation deter-
mined by the initial condition

Y =y (k fixed) (19)

(cf. Fig. 8.4).

! And this must be true for every differential equation (3) with a right-hand side f (x,y)
which is sufficiently often differentiable. (Editors’ remark)
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X X X X Xiat X

Figure 8.4. To the definition of the local error 0,

Then the quotient

0, = Yie+1 ;l‘}’k+1 20)

is called the local error(*) of the method at step k£ (from x; t0 x,1). If,
for the moment, one assumes 0, known and makes use of the fact that
Vie+1 as the solution of the differential equation ¥’ = f (x,¥) with initial
condition (19) can be written in the form

Xr+1

Veri =Y+, [F&xdx,

one obtains

Xe+1 ~
Yert =Fers +hO =y + 7 (FF) +Op)dx . @1)

The numerical solution, therefore, is at the same time the exact solution of
a differential equation

Y =f®xy)+6

2 In the literature one usually designates the quantity y,,, — 3., = 6, as local error,
whereas 6, in (20) is called local error per unit step. (Editors’ remark)
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on the interval x; < x < x;41. On that interval, this solution y(x) thus
satisfies y” — 5 = 0,; therefore, |y — 1 < k16,1, and, existence and uni-
form boundedness of df/dy being assumed, f (x,y) — f(x,¥) = O(h9,), that
is,

Y =f®xy)+0,+0h6).
Consequently, for all £ and x (x; < x < x;,1) one has
Y =Y =f(xy) - fxY)+0; + Oh0,); (22)

the error € =y — Y thus satisfies in first approximation (for small k) the
differential equation

bl
e = a—§ - £+0,, €(xp)=0, 23)

y=Y
where k£ = [(x — xo)/h]. The following now holds:

Theorem 8.2. If there exists a natural number N such that

lim —=®(x) 24)

is a (not identically vanishing) continuous function, then the method in
question has order N, and one has in first approximation

e(x) = kY E(x), (25)
where E (x) is the solution of the differential equation

dE

_9f _
ol LY@X)E+®x), E(x)=0. (26)
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What is not being said here, however, is the fact that the order N
depends only on the method, and not on the differential equation, pro-
vided f satisfies a Lipschitz condition(®).

Example. In the method of Euler, the local error is

OrthyD=Oethyit g h2yE+ )
p ST T T

0=

Therefore (considering that convergence has already been proved),

lim &=—LY”(x)
h—>0 h 2
kh=x—xq

The method has thus order 1, and

lim X&) ; Y (x) = E(),

h—0

where E (x) is the solution of

,_9f _Y'w _
E’ = 3 xYX)E 5 E(xg)=0.

Note: The statement concerning the order is not valid if Y’/ is not
continuous, as for example in the differential equation

Y =Ny +x,

which has, among others, the solution ¥ (x) = 1.415137653 . . . x3/2.

3 Actually, one needs sufficient smoothness of f. (Translator’s remark)



224 Chapter 8. Initial Value Problems For Ordinary Differential Equations

§8.4. Methods of Runge-Kutta type

A general approach for constructing methods of higher order
proceeds as follows:

In each integration interval [x,x;+1] a number of auxiliary support
points x4, Xg, Xc , . . . are chosen, whose relative positions within the
interval are defined by factors py4, pp, Pc » - - . (which for the method in
question are fixed once and for all):

Xq =X +Pah,
xXp =X + th, 2n
xc =x +pch, etc.

— J— — =¥k

— /__,__,.‘—u———"""—'—
Yk'<;::;“~7v/
~ yc
=T

X
Xy Xa Xc Xg Xt

Figure 8.5. Method of Runge-Kutta type (Example with 3
auxiliary points A,B,C)
One then defines (cf. Fig. 8.5)

Ya =Y + hobyi, Ya = f(a,4),
¥ =Y + h(68yi+ 0 £yh), Y& = f(x3.¥), (28)

Yo =Y+ h(o§yr +65ya +65Y8),  y& = flxc.yc), ete.

until, finally,

Ye+1 =Yk + h(Ooyk +Oaya +Opyp +0cyc+ “+° ). (29)

The ¢’s are determined such that the final value y,.;, the only one used
later on, agrees as closely as possible with the exact value, that is, in such
a way that the method achieves as high an order as possible. For this, it
is necessary, first of all, that
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PA=66‘
pp =08 + 0}
pc =0§ +0§ +0f
(30)

1=069g+064+0p+Cc+ -,

which is equivalent to the differential equation y” = 1 having intermediate
values y4, ¥g, Yc » - - - and final value y;,; that are all exact.

A method of Runge-Kutta type is therefore uniquely determined by a
triangular matrix(*)

o4 1
B B
Gy ©Oa 0
of of of
=1 . . ; (31)
zZ .z
of of of c¥
Go G4 O - Oy Oz

the p-values are simply the row sums.

Examples. a) The method of Heun is given by the matrix

Xy = 32)

N|r—- ot
- o

There is only one auxiliary point (cf. Fig. 8.6),

4 In the literature a row of zero elements is usually added on top of the matrix to indicate
that the evaluation of f at (x,,y,) utilizes no auxiliary values. (Translator’s remark)
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Yo =X+ h =X, Ya=Ye+ Yk Ya=f(xa,y4) (33)

and the final value is computed according to

h 14 ’

Yesl =Y+ £ Ok + ya). 34
S

Mo =T
T ey

Xk Xa™Xi41

Figure 8.6. Method of Heun

Determination of the order of this method: Let ¥(x) again denote the
exact solution for the initial condition ¥(xy)=y,. Then, with
Vk+1 = Y(xx41), one first has

2

’ ~ h ”
ya = yk+h)’k=)’k+1——2 Ve = "
, - h2 , 9
ya = f(xA1YA)=f(xAv}’k+1)—_2 Yk %— e,
ko, hoy o h? , of
=y 4+ — i+ V)=V + — Y + —_——yr =L ..,
Yert = Yet 5 Ok +Y4) =Y > O+ Vien > YK 3 )

In comparison, as is easily verified,

~ - +£(yl+~’ )__’1_3_ III__

Yi+1 = Yk 5 Jk Yi+1 12 Yk
(Beginning with the A3-term, the terms of this series, by the way,
correspond precisely to the error of the trapezoidal rule, cf. §8.6.) There-
fore,
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Yi+1 — Vi o | YEof YK 3
R RN L Ry Y R/ R LN Y
h h [12 Jy 4] )

On the right we have the local error 9,; since

, (35)

the method of Heun, according to Theorem 8.2, has order 2. By estimat-
ing the expressions occurring on the right in (35) one can determine a
suitable stepsize.

One occasionally recommends as a criterion for the choice of & the
agreement between y, and y,,;. The fact that one can be taken in, that
way, is shown by the example y’ =x2+y? with y(0)=-1, h=1.
Indeed, for k = 0 one obtains y4 = yx.1 =0, even though the value of the
exact solutionis Y(1) =-23 ... .

b) The classical Runge-Kutta method is defined by the matrix

o1 )
> 0
o L
2
k=0 0 1 (36)
1 1 1 1
6 3 3 &
Interpretation (cf. Fig. 8.7):
h h ’ ’
Xp=Xet o YA=Yet T Ve VA= fGeasyads
h , ,
X = X4, Y8 =Y+ = Ya» YB=f(x3,¥B), 37

2
xc=x+h  Yyo=Ye+hyp,  yc=fGc.yoh
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h ’ ’ ’ ’
Yert =Ykt Okt 294+ 2yp + yo). (38)

This method has order 4 (without proof(1 ).

Ya Yo
= =
_— —_——
Yi 5:——/—'"——”-
T ——
T T %
-
Y8
X Xp"Xg XG"Xyey x

Figure 8.7. Classical Runge-Kutta method

Example. We consider again the differential equation y’ = x2 +y?,
vy (0) = -1, but now choose the step & = .2:

x=0, yo=-1, yo =1,

xu=.1  y,=-9, ya = .82,
xp=.1, yz=—918, 5 = 852724,

Xc = .2, ye =—.8294552, ye = 727995929,
x1=2, y; =—830885202.

The exact value would be Y(.2) = —.830881313772; the error of y; is thus
about —3.910—6. It is remarkable how much better y; is, compared to the
auxiliary values ys, yg, Yc, whose errors are 9.77210—3, —9.288;0-3,
1.42640-3, respectively.

c) The method of Nystrom(®) uses 5 auxiliary points (i.e., the matrix
has order 6) and has a local error of order 5:

U For a proof see Bieberbach L.: On the remainder of the Runge-Kutta formula in the
theory of ordinary differential equations, Z. Angew. Math. Phys. 2, 233-248 (1951).

Nystrom E.J.: Uber die numerische Integration von Differentialgleichungen, Acta Soc.
Sci. Fenn. 50, 13, 1-55 (1925).
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1
3
4 6
25 25 0
1 15
S
Zy=| 6 %0 _s 3
81 81 81 81
5 36 10 8
75 75 T 0
23 125
= o _8L 125
192 192 192

For the example above, one obtains with this method y; =
.830882010, which is five times as accurate as the result with the Runge-
Kutta method.

d) There is a method of Huta(®) which uses 7 auxiliary points and
has order 6.

Questions of implementation. 1If the system of differential equations

}’J"=fj(x,)’1,)?2,---v}’n) (-]= L2,..., n)

with given initial values y;(xo) is to be integrated numerically by means
of a method determined by the matrix

b
B B
Go G4 0
Z = * ’
VA
00 G% « o G}Z’
(o)) G4 -+ Oy Oz

3 Huta A.: Une amélioration de la méthode de Runge-Kutta-Nystrém pour la résolution
numérique des équations différentielles du premier ordre, Acta Fac. Nat. Univ. Comenian.
Math. 1, 201-224 (1956); Huta A.: Contribution a la formule de sixiéme ordre dans la
méthode de Runge-Kutta-Nyst6ém, Acta. Fac. Nat. Univ. Comenian. Math. 2, 21-24
(1957).
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one has to proceed as follows (where y,; will denote the value of the func-
tion y; at the point x;):

Beginning with the given initial values y;(xo) =yo;, compute for
k=0,1,...:

1) From xx, Yi1, Y&2, - - - » Yin the derivatives

Yij = Fi(isYers - - - » Yim)  (forall j).
2) The auxiliary values at the point x4 = x; + pah:

Yaj = Yij + hoyk; (forall j).

3) The derivatives

Yaj = fi(Xa:Ya1s- .- » Yan) (forall j).
4) The auxiliary values at the point xz = x; + pgh:

Y8 = Yij + (08 yij + 6 Ry4j) (forall j).

5) The derivatives

yBj = fi(*8,¥B1,- .- » Yga) (forall j).
6) Etc., until finally

Yest,j = Yij + h(OoYkj +Oayaj +Opypj+ **+ +0zyz; (forall j).

While “‘for all j°’ is dealt with by a for-statement (for j := 1 step 1 until
n do), the auxiliary points A,B,C must be programmed out explicitly. A
loop running also over the auxiliary points would actually be possible, but
is not very economical: indeed, by storing
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as sigmal1,0],

a Q
oy Oh

as sigma[2,0], 65 as sigmal2,1}],

G as sigmalm, 0], 64 as sigma[m, 1], ...,

Pa asrholl], pp asrhol2],...,

and furthermore the intermediate values yk;, y4;j, ¥gj » . . . (for all j) as an
array z[O:m — 1, 1:n], an integration step can be described as follows
(The procedure fct describes the differential equation; upon exit, z1 con-
tains the vector f(x, y).):

x = xk;
for j:= 1step 1 until ndo y1 [j]1 :=y[j];
for p := 1 step 1 until m do
begin
fet(n,x,y,z1);
x=xk + h X rholp};
for j:= 1 step 1 until n do
begin
z[p - L,jl=z1[j];
s =0
for g := O step 1 until p — 1 do
s =5 + sigmalp,q] X z[q,j];
yil=yljl+hxs
end for j
end for p;

§8.5. Error considerations for the Runge-Kutta method when applied to
linear systems of differential equations

For a linear system

dy

oo Alx)y, y©) =y, (39
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the method of Runge-Kutta offers no particular advantages; in each step
one must compute four times the derivatives, which in this case means 4
multiplications of a matrix by a vector.

This holds true even in the case where A(x) = A is a constant matrix
(linear differential equation with constant coefficients), but at least one can
then better observe the numerical behavior of the method. If the n com-

ponents of the solution at the points x;, x4 , . . . are collected into respec-
tive vectors yg, y4 » ..., one indeed has for the kth step:
h ’ h
=y, +—v,=|I+—A ,
YA =Yk > Yi [ ) Yk
—ye+ Ly = I+—"—A+1‘—2—A2
Yz = Yk ) Ya > 4 Yies
, K 2 B s
yc=yk+hy3= I+hA+—2-—A +—4—A Y 40)
h ’ ’ ’ 4
Yert = Ye+ o | Vet 2ya+2yp+yc
2 3 4
N} YL N SR SR AT i -
2 6 24

The solution vector y in each step is thus multiplied by the factor

2 3 4
T+hA+ 0 A2 4 A3 B

A4
2 6 24

(without this matrix being actually computed). In contrast, for the exact
solution Y(x) one has
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_ kA
Yis1 =" Y.

Therefore, the local error (20), now a vector 0;, becomes

1 . 1 h2 2 B> a3 bt a4l ma
=— - =— I+hA+ A+ A+ A% | = ,
Ok Y [Yk+1 Yk+1J Y [[ h > 5 a e"™ | Vi
or in first approximation,
X

as is consistent with the order 4 of the method. Evidently, one must make
h*A3/120 small, if one wishes to keep the error small.

Further insights are provided by the example of the oscillator equa-
tion y’’ +y = 0, which of course will serve here only as a model, since
the exact solution is known. With z = y’ one can write it as a system

HEERIE

thus,

Since A’ = A, it is h%4/120 that must be made small here. One indeed
obtains with

107 _ . 6 . ..
h=.1: 0 107, i.e., about 6-digit accuracy ,
_4
h=.3: 81x10° 107, ie., about 4-digit accuracy .

120
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Since a complete oscillation amounts to integration from O to 2w, there
follows: With the Runge-Kutta method one needs about 20 steps per oscil-
lation, if 4-digit accuracy is required, 60 steps for 6 digits, 200 steps for
8 digits.

If the solution is a superposition of different oscillations, then the
number of integration steps has to be related to a full oscillation of the
highest frequency. For example, if

y® +101y” + 100y = 0

(frequencies 1 and 10, i.e., sinx + sin(10x) is a solution) is to be
integrated with 4-digit accuracy, one must choose h = .03.

Actually, this severe requirement can be somewhat alleviated, if the
high frequencies contribute only weakly. Thus, 2 =.1 ought to be
sufficient for 4-digit accuracy if one wants to integrate the special solution
sin x + .01 sin (10x) of the above equation. In no case, however, is it
permissible to increase 4 at will, even if the presence of sin (10x) is arbi-
trarily weak. This is shown by the following analysis.

Componentwise analysis of the error. The content of formula (40)
can be refined if one introduces the eigenvalues A; (assumed to be all sim-
ple) and the eigenvectors v; of the matrix A. Then there exists for y(x) a
unique representation

yx) = f‘, A (X)Vi
k=1

where d;(x)v; is called the component of y belonging to the eigenvalue
A;. Therefore,

AY() = 3 @AV = 3, AV
k=1 k=1

from which it follows, first of all, that d;(x) = ¢; exp (A4x), hence that

yE) = 3 cre vy (42)
k=1
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is the general solution of y’ = Ay. The coefficients c; can be obtained by
expanding the initial vector y(0) in the v; (for simplicity we assume
xg = 0):

y(©0) = i CVk - 43)
k=1

It then follows further that

AZy(x) = ¥ Mdi(0)AvV, = Y AZdy(x)vy
k=1 k=1

etc., and in general for any analytic function F, that

F(A)y(x) = i‘, FA)di(x)vi - (44)
k=1

When multiplying by F (A), the component of the solution vector belong-
ing to the eigenvalue A; (of A) is thus amplified by the factor F();)
G=1,...,n).

If one integrates the differential equation y’ = Ay by Runge-Kutta,
the component of the solution belonging to the eigenvalue A;, according
to (40), is thus multiplied in each step by the factor

h? h3 n
F(hxj)=1+hxj+-é—x}+?x}+-ﬁ-x;‘, (45)

whereas the correct amplification factor would be ™. Numerical
integration by Runge-Kutta is therefore as good as the amplification fac-
tors (45) agree with e (for all eigenvalues A; of the matrix A). A com-
parison of these factors for various values of 2A is shown in Table 8.1.
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Table 8.1. Examples for the amplification factor F (hA) of
the Runge-Kutta method

hA F (h)\) eht
2 7 7.38905610
5 1.64843750 1.64872127
-1 90483750 90483742
-1 .37500000 36787944
-2 33333333 .13533528
-5 13.70833333 00673795
20 98006667 + .19866667 i 98006658 + .19866933 i
in/2 01996896 + 92483223 i i
it .12390993 — 2.02612013 i -1

Now it is true that not all amplification factors F(hA;)
(=1,..., n) of the components d;v; must agree equally well with e,
For an eigenvector which contributes only weakly towards the solution,
the deviation may even be relatively large.

Consider, for example, y”/ + 101y’ + 100y = 0, where

0 1

A=l _100 -101]’ M =-1, A =-100.

Here one must first choose 4 so small that A\ remains small for both
eigenvalues; for example, 4 =.001, with which the amplification factor
for A, becomes F(-.1) = .9048375 instead of e™! = .90483742. After
100 steps the component of A, is reduced to the fraction e 1% = .00005 of
the original value. If one now puts £ = .005, the amplification factor for
A, becomes .6067708 instead of e™> = .6065307, which is amply accu-
rate. After an additional 40 steps (i.e., at x =xq + .3), the component
belonging to A, is practically extinguished. If one now continues
integrating with 4 = .02, the amplification factors are for

A =-1: 98019867 (practically exact),
A, =—=100: .33333333 instead of .13533528 .
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Since the large deviation for A, can no longer do any damage, one obtains
in this way very accurate results. To be noted, however, is the following:

Whereas the components of the solution that are already damped
out need no longer be integrated accurately, it is absolutely inadmissible
that their amplification factors become larger than 1 in absolute value.
This rule imposes severe restrictions on the possibility of enlarging the
stepsize in the Runge-Kutta method (and also in the method of Euler and
in the other methods of Runge-Kutta type), even if the dominant com-
ponents of the solution would permit such an enlargement of A.

If in the above example one were to choose k& = .05, the factors
would be for

A =-1: 951229427 instead of .951229425,
A, =-100: 13.70833333 instead of .00673795.

In this case it would be true that the component belonging to A, is still
treated with adequate accuracy, but the component of A, would again be
magnified and would poison the solution in a short time.

§8.6. The trapezoidal rule

If Y(x) again denotes the exact solution of the given differential
equation (3), and if one puts Y (x;) = Y}, Y’(x;) = Y, etc., one has (under
suitable regularity conditions)(!):

3

h ’ ’ h
Yen —Ye=7o W+ V) - I3 Y"'(€), where x SE< xpyq .(46)

By neglecting here the 4>-term, one obtains the trapezoidal rule

1 Derivation, e.g., in Krylov V.I: Approximate Calculation of Integrals, MacMillan, New
York 1962, §6.3. (Translator’s remark)
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h ’ ’
Yerl = Ve = Ok + Yi+1) » @47
which is to be supplemented by the relation

Yi+1 = FOh1:Yiew1) 48)

in order to have two equations for the two unknowns y,,; and y;,;. This
system of equations, in principle, must be solved in each step.

In the general case, that is, when f (x,y) is nonlinear in y, one con-
veniently solves it approximately with a predictor-corrector combination,
first determining, by means of a predictor

Ya =Y+ hyk

an approximate value for yg,;, and then substituting the derivative
ya = f(x+1-Y4) in place of yz,; into the corrector, that is, into the tra-
pezoidal rule (47). One easily recognizes in this combination the method
of Heun, which thus has arisen from the trapezoidal rule.

In contrast to the method of Runge-Kutta, one indeed gains some-
thing here, when the differential equation is linear, since the two equa-
tions (47), (48) for yx,1 and yi,; are then also linear, and therefore can be
solved without the detour via a predictor. This simplification, in particu-
lar, applies also to a system of linear differential equations. Let

y = A®)y +b(x), yxo)=yYo, (49)

be such a system with initial conditions, where A(x) is a matrix depend-
ing on x and b(x) a vector depending on x. For this system, the tra-
pezoidal rule becomes

h
Yesl =Yk =7 (Agyr + b + A1 Yes1 +beyr)

or

h h
Yisl = [I +— Ay + > (b + bg1). (50)

h
[I"_Ak+l )

2
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The integration step from x; to x;,; thus requires the solution of a linear
system of equations with the coefficient matrix I — —;— hA(xg,1), which for

small 4 is usually very well-conditioned (cf. §10.7).

The fact that in each step one must solve a linear system of equa-
tions should not be held against the trapezoidal rule, since it is precisely
in this way that great advantages are realized which other methods do not
have. In order to better analyze these advantages, we first examine the
special case

A(x) = A (constant), b=0.

Then

I+£A

5 Y

h
=|I-—A
Yi+1 { )

is the relation for one integration step, while for the exact solution one
has

Yk+1 S ehAYk .

The method is therefore as good as the matrices

and ehA

h
I-—A
{ 2 2

-1
[“_@A

agree with one another. The local error is essentially

-1

1 h h
RS N SN B
O hH 2 toA

hA h? 3
e =T At
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so that the order is equal to 2(%).
For the componentwise analysis of the error we can resume our con-

siderations of §8.5: The component of the solution belonging to an eigen-
value A (of A) in each step of the trapezoidal rule is multiplied by

1+—2
Fh)A) = ———
1-—2A

, D

ST IS ES

the exact amplification factor being e". But the quantities

>

and le" |

SIS ISR
>

depending on the value of kA, are now either both < 1, or both = 1, or
both > 1. In other words: The trapezoidal rule reproduces damping and
magnification in a qualitatively correct way. In particular, therefore, a
damped component of the solution of the system of differential equations,
when integrated numerically by the trapezoidal rule, is always going to be
damped, even if the damping factor is inaccurate. Some examples for the
value of the amplification factor (51) are indicated in Table 8.2 and are
compared with the exact factor e”*. Notice how much more inaccurate
these values are, as compared with the Runge-Kutta method (see Table
8.1), but also how the factor remains less than 1 in absolute value even
for hA=-35.

2 For linear multistep methods (see §8.7), hence in particular for the trapezoidal rule, it
suffices for the determination of the order to consider the linear differential equation
¥’ =Ay (or the system y’ = Ay). (Editors’ remark)
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Table 8.2. Examples for the amplification factor F (h\)
of the trapezoidal rule

hA F(h)) et

5 1.66666667 1.64872127
-1 90476190 90483742
-1 33333333 36787944
-2 0 .13533528
-5 —42857143 00673795

21 98019802 + .19801980 i .98006658 + .19866933 i
= exp(.19933730 i)

in/2 23697292 + 97151626 i i
= exp(1.33154750 i)

in —42319912 + .90603670 i -1
= exp(2.00776964 i)

As to the accuracy of reproducing the various components of the
solution, we can first of all make the same observation as in the case of
the Runge-Kutta method: When choosing 4, the components belonging to
the various eigenvalues must be taken into consideration within the con-
text of their strengths. Components already damped out need no longer
be integrated accurately, so long as the corresponding factor continues to
satisfy |F(hA)! < 1. This last condition, in case of the trapezoidal rule,
however, is fulfilled automatically for all damped components, since for
h > 0 and Re(A) < 0, we always have |F(hA)| < 1. In the trapezoidal
rule, h can thus be increased as much as the accuracy of the components
which still contribute significantly allows it; otherwise, there are no limits
set to the increase of h.

Example. To be solved is the system of differential equations
y’ = Ay, y(0) = yo, with

0 1 -1
A=| -1 -9 L], yo=]1
1 -1 -10

The eigenvalues of A are A; =—213 and A, 3 =—9.39 £ .87i. The system
is to be integrated with an accuracy of 3 to 4 digits.
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Since at the beginning all eigenvalues presumably contribute to the
solution, and since max IA| = 10, one must make A210°/12 = 1074, that
is, choose & = 1073, After integrating with this stepsize over 200 steps
(to x =.2), the components of A, and A3 are multiplied by the factor
le~200kA | = 1878 = 16 Since the order is 2, this permits approxi-
mately a doubling of the stepsize, more precisely, a multiplication by
\1/.16 =2.5. With h = .0025, one can for example carry out 120 addi-
tional steps (to x =.5), reducing to components of A,; further to
e~*7 = 01; thus, /4 can be increased to .01 (to 10-times the initial value).
After 50 additional steps (to x = 1) the components of A, 3 already drop
to 1/10000 of their initial values. In 4-digit computation they can there-
fore be neglected, that is, during further integration, & needs to conform
only with the eigenvalue A; =—.213, and this allows A = .35 (in 4-digit
computation). For example, one can integrate with 100 more steps up to
x = 36; the total number of steps is only 200 + 120 + 50 + 100 = 470.

§8.7. General difference formulae
Euler’s formula, written in the form
Yk — Vi1 = W1 »

and the trapezoidal rule (47), are special cases of the general class(!)

% Yk = h 5 Biyi—j » (52)
j=0 j=0
namely with
m=1,
=1 o=-1
Bo=0, PBp=1
and

1 Customary name: linear multistep methods. (Editors’ remark)
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m=1,
o = 1, (071 =-1,
= 1
respectively.
Generally, a difference formula (52), when yi_n, Yecma1 s+ -5 Y1
(and the derivatives Yi_m = f (Kkems Ykem) »--+» Y1 = F (k15 Ye-1))

are known, is used in such a way that one looks at this formula as a linear
equation in the unknowns yy, yi:

Aoy — hBoyi = given, (53)

from which, together with the differential equation

f Gaye) =y =0, (54)
one can determine y,. This is particularly easy in two cases:

a) When, as in the Euler method, By = 0, one obtains y, directly
from (53) (so-called explicit methods).

b) When the differential equation is linear, one has only to solve
two linear equations in two unknowns.

On the other hand, when, as for example in the trapezoidal rule, By # 0
(implicit methods) and the function f (x,y) is nonlinear in y, then one
solves the two equations by iteration, alternately determining y, from (53)
and y; from (54). For sufficiently small A, this iteration is guaranteed to
converge; after its termination, the integration step is completed.

One further speaks of a predictor-corrector method if one succeeds
with a predictor formula to determine such a good approximation y, that a
single substitution in (54), and subsequently in (53), already yields a
sufficiently accurate y,-value.

Additional examples of such methods:
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The secant rule(*) is an explicit method, defined by

Ve = Yi-2 =2hyi-q . (55)
Here,
m = 2,
o =1 o =0 oy=-1,

Simpson’s rule
h ’ ’ ’
Ve~ Ye2 =7 Ok + 4Vk-1 + Yi-2) » (56)

on the other hand, is implicit:

m = 2,

o = 1, 0(1=0, (X2=—1,
1 4 1

Bo =§—’ B1=§-, B2=?.

One can ask, of course, how such formulae are obtained in general;
there is actually a rather simple answer to this.

We apply formula (52) to the differential equation y’ =y, y(0) = 1;
then e*, that is, y, = e**, should be a solution. One must therefore deter-
mine the a;, B; at least in such a way that the two sides of (52) agree for
yr = ¢ ““as much as possible’’. If we substitute z = ¢*, this desideratum

takes on the form

m . m .
> ocjzk"f =logz Y szk‘f (for all k),
j=0 j=0

2 Also called midpoint rule. (Translator’s remark)
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(ijm_j
log z = L2 - ’B}Z; . 7
) B-zm_j
=

The problem is thus reduced to the task of approximating log z as well as
possible by a rational function, that is, by the quotient of the two polyno-
mials

A@)=0gz™ + 0oz T+ -+,
m m-1 (58)
B(z) =Boz™ +B12™ " + ++ +PBm .

The only question is in which domains of the z-plane this approximation
is supposed to be good. If one is interested only in a large order of the
method, the approximation must be good in the neighborhood of 4 =0,
thus near z = 1.

A very crude approximation at z = 1 is
logz=z-1, (59
that is,

A@@)=z-1, B(z)=1,
ap=1 o =-1, Bo=0, By =1,

wherein one recognizes again the Euler method. For an improvement,
one averages (59) with

logz=—logl:— [l—l} =1——1-.
V4 V4 z

One so obtains



246 Chapter 8. Initial Value Problems For Oddinary Differential Equations

z_,—l—-
log z = z =22—1
g 2 2z
A@)=z%-1, B(z)=2z, (60)
=1 0=0, op=-1,
Bo=0, B1=2, B.=0,

which is the secant rule.

As a further experiment, we take the series of log z and truncate it
after the second term:

-1 22-4z+3

1 =z-1
ogz=z 3 >
Then,
A@)=2*-4z+3, B(z)=-2,
=1 o3 =-4, o =3,
Bo=B1=0, B2=-2,
that is,
Vi — 4Yk-1 + 3yk2 =2hyi . (61)

If we substitute in this formula the exact solution y, =e* of the
differential equation y’ =y, y(0) = 1 (h = .1), then the resulting difference
between the left-hand and right-hand side is indicated in the 3rd column
of Table 8.3. If, on the other hand, one resorts to this equation (61) for
the numerical solution of the differential equation, that is, if one uses it as
a recurrence formula for y,, one obtains the y, noted in the 4th column,
which diverge to — . The method is thus useless, like all formulas
which are produced by series expansion of log z.
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Table 8.3. Application of the difference formula (61)toy’ =y, y(0) =1

exact difference in (61) numerical
solution  upon substitution solution
xe=kh Y =e® of Y Yk
0 1 1
1 1.105171 1.105171
2 1.221403 .000719 1.220684
3 1.349859 .000795 1.346188
4 1.491825 .000878 1.478563
5 1.648721 .000971 1.606452
.6 1.822119 .001073 1.694406
7 2.013753 001186 1.636979
8 2.225541 001310 1.125814
9 2.459603 001448 —.735075
1.0 2.718282 .001600 -6.542905
!

-_— 00

Useful, however, are those methods in which B(z) is formed
through truncation of the series of 1/log z. We have, first of all,

t —t has k 1 1 2 1.3
= =Y ot =l—-t——t——t"— -+ (62
1 log(1—1¢) IEO k 2" 12 24 (62)

1
81 :

(converge radius 1). Now one substitutes

and finds
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L
log z = — . (63)
Z Gy 1- —1'
k=0 2
log z can thus be approximated by
-1
VA
logz = ~ K
Z Cp|1——
k=0 z

Multiplying numerator and denominator by z™, there finally results

A(z)
B(z)

logz =
with
A@)=z"-z"",

(64)

B(z)= % 2™ kiz - 1.
k=0

Example. For m =3 one obtains
00_1’ C = 9 ? 1¢)] 12 ° ok! 24
A@)=23-22, B(Z)=—212—(923+1922—52+1),
=1, o=-1, 0 =053=0,

-9 - 19 —_ 5 =1
B0_24’ Bl_24’ B, = 2%’ Bs 2%’

thus the integration formula
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h ’ 14 ’ ’
Yk = Ye-1= 57 Oyi+ 19yk-1 — Syk—2 + Yk3) . (65)

It defines the implicit method of Adams-Moulton with m = 3. It has order
4,

The order of the method can be deduced directly from the order of
approximation of log z: For the polynomials (64), in fact, one has for

z - 1,3)
A(Z) 1 m+2
m=logz+0([l——z—} } . (66)

A more detailed analysis shows that O((1 — 1/z)”‘+2)/h corresponds to the
local error O, which, since 1-1/z =logz =h, is thus of the order
O (h™*1); the order therefore is equal to m + 1.

In order to produce an explicit method, one first multiplies numera-
tor and denominator in the representation (63) for log z by z = 1/(1 — ¢t):

logz = T
1 ad 1
1-1-L| #°
z
which yields
z—-1
logz= ” . T 67)
E T | 1——
k=0 z

3 The relation (66) follows readily from (63) and the approximation stated immediately
thereafter. (Translator’s remark)
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with
k
Ty = Z G; . (68)
Jj=0

One thus obtains, approximately,

z—1

logzzm_l ) R
ZTk 1 —-——
k=0 z

and, multiplying numerator and denominator by z™~1, finally

log z = 4@

B(z)
with

A(z)=z" -z,

m-1 (69)
B@)= Y mz™ @ - 1)k,
k=0
Here, B (z) is a polynomial of degree m — 1, so that By = 0.
Example. For m =3, one gets
A(z) =23 -2%, B(z)= 712— (2322 — 162 + 5),
from which one obtains the integration formula
h ’ ’ ’
Ve~ V-1 = Ty (23yg-1 — 16y, + Syi-3) , (70)

known as the method of Adams-Bashforth with m = 3. Because of
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A@) _, 1
B() =logz+0((z-1)7),

this method has order 3.

The start-up computation. Every difference formula of the type

m m ,
Y oyk-j=h Y Biyk-j
Jj=0 Jj=0

presupposes that the values Yi_,u» Yek—m+1 »---» Yi—1 are already known.
This however, when k = 1, is the case only for methods with m = 1 (Euler
method, trapezoidal rule). Otherwise, the previous history, consisting of
the values y_j, y-2 ,..., Yi-m» 1S nonexistent. There are two ways out
of this dilemma:

1) Integrate with this difference formula only from k& = m onward,
having previously computed y,;,...,y,-; by means of a
method of the Runge-Kutta type.

2) The missing information is made available artificially. Note, in
this connection, that in the methods of Adams-Bashforth and
Adams-Moulton only the derivatives y’y, ¥/5 ,..., Yi_m are
actually needed, which facilitates the problem considerably.

We illustrate the second approach with the example of the Adams-
Bashforth method with m = 2. For this method one has

=52 _ =3,_1
A(z)=z°-2z, B(2) I~ 5

thus
h 7 ’
Ve~ Vi1 =7 BYk-1 — Yi=2) - (71)

Let the equation to be integrated be again y’ =y, y(0) =1, with h = .1.
The missing information here consists soley of y’;. We first put y’; =
yo = 1 and integrate over m = 2 steps:
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kK x  w i Ay A%y A%y

-1 -1 1 extrapolated backwards
085

0 0 1 1 -~ 015

1-—_ 9

1 1 11 11 015 - - — —
115

2 2 1215 1215

From the values yg, yi, y, one then extrapolates y”; in such a way that
the third (in general, the (m + 1)st) difference becomes 0. This yields
here the value y’; =1 — .085 = .915, with which one integrates once
more. (In the general case one would have to extrapolate back to yi_,,.)

ko x i Yi Ay’ A%y APy’

-1 -1 915 extrapolated backwards
092862+~

0 0 1 1 — — — — 011388
10425 - — — — 0

1 .1 110425 1.10425 011388 — — — ——
.115638

2 2 1219888 1.219888

From these values one obtains, again by backward extrapolation,
yZ1 = .907138, whereupon one integrates forward once more, etc. (The
exact value would be Y/(—.1) = ™! = 90483742 . .. )

§8.8. The stability problem

As we have seen, some difference formulae derived from rational
approximations of log z, for example (61), are useless. We thus tumn to
the question of stability of an integration method of type (52).

We apply the integration method to be examined to the differential
equation y” = Ay, where A can be arbitrary complex. This covers also the
behavior of a system y” = Ay, because the solution component of this sys-
tem belonging to the eigenvalue A behaves in every respect like the
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solution of y” =Ay. The difference formula (52) then becomes
m m
Y Oyk—j =hA Y, Bive—j (72)
j=0 j=0

from which one infers that for the behavior of the numerical solution only
the product hA is important. We therefore may as well integrate the
differential equation y’ =y with the ‘‘reduced steplength’’ s = hA, where
s, however, can be complex. The difference formula then becomes

g.: (o; = 5B)yk—j =0. (73)
j=0

This is a linear difference equation with constant coefficients, whose gen-
eral solution can be sought in the form

m
=Y gvze . (74)

v=1

Substitution into the preceding equation (73) yields at once

m m ki
3 X (o —sBpgvzy” =0,
j=0 v=1

or
Z gvzllc—m{z [(Xj—SBj] Z(,"_j} =0,
v=1

j=0
where the expression in braces is independent of k. Since this relation
must hold for all %, there follows

% (o — sBpzy ™ =0,
=0

or, introducing again the polynomials (58),
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A(Z)—-sB(z)=0 for z=2z,, v=1,...,m. s)

The basic numbers zy, z3 ,..., z, thus are solutions of this alge-
braic equation, and the numerical solution has the form (74) (with certain
coefficients g,), while for the exact solution Y (x) = ce* with x = sk one
has

Y, =c(e®)*.

Now for large &, however, the numerical solution (74) consists practically
only of the term g,z{, where z; denotes the largest in modulus of the
roots z1,..., 2,. Thus, if the numerical solution is more or less to fol-
low the exact solution, the dominant root z of the equation (75) must lie
in the vicinity of e°.

There is one root of (75) which always lies near e°, because the
coefficients o, Bj were determined in §8.7 such that

M:]ggz

B(z)

so that, with s = log z, also A(z) —sB(z) =0. However, this is not
enough; this root near e’ must also be the largest in absolute value.

Example. For the secant rule (55) we have A(z)=:z2%2-1,
B(z) = 2z; the equation (75) thus becomes
A@)-sB(z)=z%-25z-1=0

and has the solution

z=si\]sz+l . (76)

The product of the two roots is —1; for the larger in absolute value one
therefore has lz;! > 1. This larger root, in fact, defines a conformal
mapping of the s-plane, cut along the segment from s =i to s =— i, onto
Izl > 1:
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Figure 8.8. Mapping of the z-plane to the w-plane defined
by the larger of the two solutions (76)

while w = e° yields the following picture:

Y
U Y

Figure 8.9. Mapping of the z-plane to the w-plane by means of w = e°

Only for the part of the neighborhood of the origin lying in the right half
of the s-plane is the root

z=s+\]s2+1=1+s+%s2—%s4——

near e¢° the larger one in absolute value. In the left half-plane, however,
one has z; = e for the larger root. The secant rule is therefore unstable
for Re s < 0 (though only weakly unstable).

Now in order to obtain a measure for the error, we note that for
large k one has approximately y;.; = y,z1, while in the notations of §8.3,
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Vi1 = yre’,
hence for the local error (20),

zl—es

6, = .
k B Yk

For us, however, it is more meaningful to consider the local relative error,
that is, the local absolute error of the logarithm:

s N

1og yes1 —10g i1 logzy —s

Its absolute value is introduced as universal error measure:

logz; —s

y(s) = an

Here, z; continues to denote the dominant root of (75), and log z is that
value of the logarithm which lies closest to 5. y(s) is a real function of
the complex variable s, which for each value of the reduced stepsize s
indicates the relative error per unit integration step.

In order now to arrive at a criterion for stability, we first require that
y(0) =0 and y(s) is small for Is| small (i.e., for small 2 one should
nearly obtain the exact solution). This requires that for all sufficiently
small Is| the root z near e° is the largest in absolute value, that is, for
s — 0 we must have

logzi(s) — s =o(s) (78)
and in particular, log z1(0) =0, thus z;(0) = 1, or

A =0. 79
Furthermore, by (78),
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dl d
—% S=0—1=o, ie, —- - =1.
From A (z1) — sB(z;) = 0, however, there follows
%%—B(m—s %%w,
thus, fors =0, z; =1,
A’(1)-B(1)=0. (80)

(79) and (80) are merely necessary conditions for the stability of a
method (so-called consistency conditions).

Now since the roots of an algebraic equation, as is well known,
depend continuously on the coefficients, the root z of A(z) —sB(z)=0
lying in the vicinity of e® is for all sufficiently small Is| the largest in
absolute value, if this is the case for s = 0, that is, if z = 1 is the root of
maximum modulus of A (z) =0, and besides is simple. Consequently, as
a condition for the stability of the difference formula (52) we have

—4%;&0 for fzI =21. (81)

This condition guarantees the so-called strong stability of the method.

Examples. 1) The method of Adams-Bashforth with m =3 is
defined by the difference formula (70). One has

A@)=2%-2% B@) = (232 - 162 +5),
and therefore
A()=0, A(1)=1=B().

Furthermore,
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A@ _ o
z-1

which is certainly different from O for |z| > 1. The method is thus stable
for all sufficiently small Is|. The same is true for all Adams-Bashforth
methods, which according to §8.7 are characterized by the polynomials
(69). If, however, s is made more and more negative, then sooner or later
the root lying in the ‘‘vicinity”’ of ¢° is no longer the largest in absolute
value, and the method becomes unstable. This happens the sooner (that
is, already for smaller |s|) the larger m. For example, if m = 16, the
method is unstable already for s = — .05.

2) As a second example we consider the fantasy method defined by
(61), that is, by the polynomials

A@)=z2-4z+3, B@z)=-2.

Here, A(1)=0, A’(1)=-2=B(1), but A(z)/(z—-1)=z — 3 has a root
outside the unit circle; the method is therefore unstable. The solution for
small |s| and large £ behaves about like y, = 3%, and this almost indepen-
dently of the differential equation.

3) For the secant method we have

A@)=z*>-1, B@E)=2z
A()=0, A’(1) =2 =B(1).
But

has a root precisely on the unit circle. While the stability condition is not
satisfied, we have here a limit case which must be examined more care-
fully. To this end, we consider the differential equation y’ =-y,
y(0) =1, which is to be integrated numerically by the secant rule,
whereby the steplength 2 is assumed to be positive. The reduced
steplength is here s =— hA. The numerical solution therefore has the form

k k
Yi = 8121 + 8225 = g3 [—h—\/1+h2] +gs [—h+\/1+h2} ,
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where g, and g, remain to be determined. By means of the substitution
h = sinh 1 one obtains

z; =—sinhn— coshn=—-e", z;=—sithn+coshn=e™",
and thus
yi=g1(-1)e™ + gy .

To construct the second starting value y;, we may first carry out one step
according to Euler, with yg = 1. Then,

Yo=1=g1+82, y1=1-h=—g1e" +gre™,

from which there follows

_coshn-1 _Ccoshn+1
&1 2 cosh N k2 2coshn

For small 4, however, one now has

coshn—1 _ NT+h% -1 _ K
2 cosh n W1 +hZ 4

coshn+l _NT+hZ+1 _, h%

2 cosh M W1+ hZ 4

and furthermore,

nk _ nhk — n
e exp{sinhn} exp[sinhnxk} .

For small mn, on the other hand, m/sinhm =1, hence e = ™,
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e = ¢ 5o that for the numerical solution one obtains approximately

h* h’ |
=D —et 1 — e .
e = (1) 7€ { y } e
One sees that the solution is made up of an oscillatory increasing, and a
decreasing term. The first, to be sure, is small, but if one integrates long
enough it will eventually dominate, and further integration becomes
illusory (cf. Fig. 8.10).

10
» \\’\/\M
00 1 A A A |

1 1
1 2 3 'V 6

-05F

-1t
Figure 8.10. Integration of y’ =—y, y(0) = 1, with the
secant rule and h = .1

The point x; at which a negative y-value is to be expected for the first
time is approximately given by

- _h . a2
e = X ie, x=In R
The onset of the oscillation, therefore, is further and further delayed upon
decreasing . It is even true that in every finite interval the numerical
solution converges to the exact solution as # — 0, that is, the instability —
provided one considers only a finite interval — can be eliminated by
decreasing h.

One calls this phenomenon weak instability. It is characterized,
according to Dahlquist, by the following two conditions:
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a) —4—@—1¢Oforlzl > 1.
Z_.

261

b) The zeros of A(z)/(z — 1) located on the circumference of the

unit circle are simple.

4) As a further example we consider the difference formula

h ’ ’
Y= Ye-3 =74 Oyk-1 + 3yi3) .

Here,
A@)=23-1, B(z)=%(322+1),
A()=0, A'()=3=B(),
%i—=22+z+ 1.

Both roots of A(z)/(z — 1) lie on the unit circle and are simple. The

method is thus weakly unstable.

A case study for stability. For a more detailed discussion of stabil-

ity we select the method of Adams-Bashforth with m = 2:
h ’ ’
Ve~ Ye-1 =7 (BYk-1 — Yk-2) »

which has order 2. Here,

A() =122 -z, B(z)=iz——1-;
2 2

the roots of the equation A (z) — sB (z) are thus

1,3 1,3 12 s
=L +254 42 -
2=y TS 4\/[ 277 s] 5

and this function z (s) has the branch points (-2 £ 4 42)/9.

(82)
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Yy
>

Figure 8.11. To the definition of z(s) in (82)

Now cutting open the Riemann surface of this function along the
circular arc Is| = —§- between the branch points (see Fig. 8.11), one finds

that z (s) in the sheet belonging to the value z;(0) = 1 is larger in absolute
value than in the other sheet determined by z,(0) =0. (On the cut one
has 1z1(s)| = lz5(s)].) To the right of the circular arc, thus in particular
for Isl < % the root lying in the vicinity of e* is therefore the larger one

in absolute value; it of course deviates more and more from e® for larger
Is1. Upon crossing the circular arc, the other root (which is quite
different from e°®) suddenly becomes larger in absolute value. The
method is unstable as soon as s = #A lies in that domain. Note, however,
that along a path around the cut one can pass continuously from the stable
to the unstable domain. The error then increases from tiny to huge
values. In Table 8.4 a few function values are given for illustration.

Table 8.4. Some values z,(s) and z,(s) of the function (82)

) z1(s) z5(s) e

2 37321 2679 7.3891
S 15931 1569 1.6487
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