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Numerical Linear Algebra in 1954: Ax = b

Ax = b with full or banded A:

Gauss elimination (in various versions)

Ax = b with sparse spd A:

Chebyshev iteration, SOR, Conjugate Gradients

Ax = b with sparse nonsym. or sym. indef. A:

various “relaxation methods” with limited applicability:
Jacobi iteration, Gauss-Seidel, Richarson’s iteration,
SOR, ...
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Numerical Linear Algebra in 1954: Ax = xλ

Ax = xλ with full sym. A:

Jacobi’s method (rotations diagonal form)
Givens’ method (reduction to sym. tridiagonal + bisection)

Ax = xλ with full or sparse A:

power method (dominant eigenpair only)
“fractional”, inverse iteration (any single eigenpair)

various methods for computing the charact. polynomial,
including:
Krylov’s method (reduction to companion form, char. pol.)
Lanczos’ method (reduction to tridiagonal form, char. pol.)
Arnoldi’s method (red. to Hessenberg form, char. pol.)

qd algorithm is being discovered
LR and QR algorithms are still unknown
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How did Rutishauser discover the qd algorithm?

In spring 2004 Beresford Parlett approached me and suggested
to investigate this question. He had a great interest in the qd
algorithm as he had been working on new versions of the qd
algorithm for more than a decade: the differential qd
algorithm (dqd) due to Rutishauser (1918–1970) and the
differential qd algorithm with shifts (dqds) due to Fernando
and Parlett (1992/1994).
It was difficult for Parlett to understand Rutishauser’s early qd
papers because nearly all are in German.
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How did Rutishauser discover the qd algorithm?
(cont’d)

In the abstract of our paper Parlett wrote:
Perhaps the most astonishing idea in eigenvalue com-
putation is Rutishauser’s idea of applying the LR trans-
form to a matrix for generating a sequence of similar
matrices that become more and more triangular. The
same idea is the foundation of the ubiquitous QR al-
gorithm. It is well known that this idea originated in
Rutishauser’s qd algorithm, which precedes the LR al-
gorithm and can be understood as applying LR to a
tridiagonal matrix. But how did Rutishauser discover
qd, and when did he find the qd-LR connection? We
checked some of the early sources and came up with
an explanation.
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How did Rutishauser discover the qd algorithm?
(cont’d)

However, in the resulting paper

From qd to LR, or, how were the qd and LR algorithms
discovered?

(IMA J. Numer. Anal. 31, 741–754 (2011))

we could not give a definitive answer, but only speculate.

Actually we found several possible explanations and several
hints, but no explicit statement.

Since June 2006 I have given a number of talks on that topic,
including two in China and one in Japan.

New insight: we know now that some hints were misleading.
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Early papers on the qd algorithm

• E. Stiefel (Aug./Sep. 1953, ZAMM; Proc. GAMM Conf.): Zur

Interpolation von tabellierten Funktionen durch Exponentialsummen und zur Berechnung von Eigenwerten

aus den Schwarzschen Konstanten

• H. Rutishauser (1954a, ZAMP; subm. Aug. 5, 1953):
Der Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1954b, ZAMP; subm. Sep. 18, 1953):
Anwendungen des Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1954c, Arch.Math.; subm. Sep. 25, 1953):
Ein infinitesimales Analogon zum
Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1955a, ZAMP; subm. Jul. 19, 1954):
Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit
Hilfe des Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1957a, Mitt. IAM, ETH):
Der Quotienten–Differenzen–Algorithmus (the “qd booklet”)

• P. Henrici (1958, NBS book): The Quotient-Difference Algorithm
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Eduard Stiefel’s suggestion

Stiefel’s suggestion to Rutishauser: Given A, x0, y0, use the
Schwarz constants (= moments = Markov parameters )

sk :≡
〈

y0,Akx0

〉

(k = 0,1,2, . . . ) (1)

to find all eigenvalues of A. We know by now: this was in 1951.

Recall: Daniel Bernoulli (1732), J. König (1884):

sν+1

sν
−→ λ1 as ν −→ ∞ if |λ1| > |λ2| ≥ |λ2| ≥ . . . .

Note: Later it turned out that for the other eigenvalues, Stiefel’s
proposal was a bad idea, since the dependence of the EVals
from the moments is highly ill-conditioned (Gautschi (1968)).
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Moments and their generating function

Given: N × N matrix A and x0, y0 ∈ R
N , let

f (z) :≡
〈

y0, (zI − A)−1 x0

〉

=
〈

y0,
1
z (I − 1

z A)−1 x0
〉

(2)

f is a rational function of type (N − 1,N), so f (∞) = 0.

The poles of f are eigenvalues of A.

f can be expanded into a power series in z−1:

f (z) =
∞
∑

k=0

sk

zk+1 =
s0

z
+

s1

z2 +
s2

z3 + . . . . (3)

where

sk =
〈

y0,Akx0

〉

So, f is the generating function of the moments.
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Moments and their generating function (cont’d)

Clearly we could also write zf (z) as a function of ζ :≡ z−1:

ϕ(ζ) :≡ ζ−1f (ζ−1) =
〈

y0, (I − ζA)−1 x0

〉

= s0 + s1ζ + s2ζ
2 + . . .

(4)
ϕ is also a rational function of type (N − 1,N).

Assume the eigenvalues λk of A are ordered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λN−1| ≥ |λN |

The series of f converges for |z| > |λ1|.

The series of ϕ converges for |ζ| < |λ1|
−1.

Could as well look for zeros of a polynomial b0 + · · · + bnζ
N :

ϕ(ζ) :≡
1

b0 + b1ζ + · · · bnζN = s0 + s1ζ + s2ζ
2 + . . .
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Alternative formulations of the problem

Clearly, there are several equivalent problems:

• Find eigenvalues of A.

• Find poles of generating (rational) function f .

• Find zeros of the denominator polynomial of f (Bernoulli).

In theory, the problem had been solved before by

• Hadamard (1892) (his PhD thesis!),

• de Montessus de Ballore (1902/1905),

• Aitken (1926/1931).

But none of them had an efficient algorithm.

Rutishauser cites Hadamard and Aitken, but never
de Montessus de Ballore, who proved the convergence of Padé
approximants with fixed denominator degree.
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Hadamard’s theorem (1892)

Given the power series of f in z−1 of (3), let H(ν)
0 :≡ 1, and

define the Hankel determinants

H (ν)
k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

sν sν+1 . . . sν+k−1

sν+1 sν+2 . . . sν+k
...

...
. . .

...
sν+k−1 sν+k . . . sν+2k−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

(k = 1,2, . . . ;
ν = 0,1, . . . )

THEOREM

[Hadamard (1892)] If |λk+1| < Λ < |λk |, then, as ν −→ ∞,

H (ν)
k = const · (λ1 · · ·λk )

ν

[

1 +O

(

Λ

|λk |

)ν ]

For a simpler proof see Henrici (1958) or Henrici (1974).
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Hadamard’s theorem (1892) (cont’d)

COROLLARY

If f has N simple poles, then

1 H (ν)
k 6= 0 (k = 1, . . . ,N) for large enough ν,

and H (ν)
N+1 = 0 (∀ν).

2 If |λk | > |λk+1| then

H (ν+1)
k

H (ν)
k

−→ λ1λ2 · · ·λk as ν −→ ∞. (5)

3 If |λk−1| > |λk | > |λk+1| then

q (ν)
k :≡

H (ν+1)
k

H (ν)
k

·
H (ν)

k−1

H (ν+1)
k−1

−→ λk as ν −→ ∞. (6)
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Aitken’s scheme (1931) (cont’d)

Computing, for fixed ν, the Hankel determinants H (ν)
1 , . . . ,H (ν)

N

(if nonzero) requires the LU decomposition of the matrix H (ν)
N .

Aitken (1926, 1931) used what is now called “Jacobi identity”
(“theorem of compound determinants”)

(

H (ν)
k

)2
= H (ν−1)

k H (ν+1)
k + H (ν−1)

k+1 H (ν+1)
k−1 . (7)

It had also been known to Hadamard, but Aitken used it to build
up — from the left or from the top — the table

1

1 H (0)
1

1 H (1)
1 H (0)

2

1 H (2)
1 H (1)

2 H (0)
3

1 H (3)
1 H (2)

2 H (1)
3 H (0)

4
...

...
...

...
...

. . .
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Rutishauser’s qd algorithm (QD-Algorithmus)

Rutishauser (1954a) knew Aitken’s work and refers to (5),

H (ν+1)
k

H (ν)
k

−→ λ1λ2 · · · λk as ν −→ ∞

as the key to computing non-dominant poles.

But instead of computing the H (ν)
k –table, he headed directly for

recurrences for

q (ν)
k :≡

H (ν+1)
k

H (ν)
k

·
H (ν)

k−1

H (ν+1)
k−1

and e (ν)
k :≡

H (ν)
k+1

H (ν)
k

·
H (ν+1)

k−1

H (ν+1)
k

(8)

In Rutishauser (1954a) he derives the formulas needed for
q (ν)

2 , and then states recursions for general k .
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Rutishauser’s qd algorithm (cont’d)

qd table (QD–Schema) :

0

0

0

0

0

...

q(0)
1

q(1)
1

q(2)
1

q(3)
1

q(4)
1

...

×

e(0)
1

e(1)
1

e(2)
1

e(3)
1

e(4)
1

...

×

+

q(0)
2

q(1)
2

q(2)
2

q(3)
2

...

+

e(0)
2

e(1)
2

e(2)
2

e(3)
2

...

. . .

. . .

. . .

e(0)
N−1

e(1)
N−1

e(2)
N−1

...

q(0)
N

q(1)
N

...

0

0

...

e(0)
1 · q(0)

2 = q(1)
1 · e(1)

1 q(1)
2 + e(1)

2 = e(2)
1 + q(2)

2
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Rutishauser’s qd algorithm (cont’d)

Rhombus rules (called so by Stiefel, 1955) of qd algorithm :

For building up the table columnwise from left to right:

e(ν)
k := e(ν+1)

k−1 + q(ν+1)
k − q(ν)

k

q(ν)
k+1 := q(ν+1)

k

e(ν+1)
k

e(ν)
k















(k = 1,2, . . . ) (9)

For building up the table row-wise, from top to bottom:

q(ν+1)
k := q(ν)

k + e(ν)
k − e(ν+1)

k−1

e(ν+1)
k := e(ν)

k

q(ν+1)
k

q(ν)
k+1















(k = 1,2, . . . ) (10)

Recursions (10) are the basis of the progressive qd algorithm
(the relevant version).
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Rutishauser’s qd algorithm (cont’d)

In Rutishauser (1954a) the correctness of the rhombus rules
follows later from the connections to continued fractions
(probably Stiefel’s argument). (Not true due to new insight).

Originally, Rutishauser derived them probably from Hadamard’s
“Jacobi identity”

(

H (ν)
k

)2
= H (ν−1)

k H (ν+1)
k + H (ν−1)

k+1 H (ν+1)
k−1 .

Henrici (1958), who was in contact with Rutishauser, pointed
out that one rhombus rules (+) can be derived by combining
two applications of this formula, the other (×) just by using the
definitions (10) of q(ν)

k and e(ν)
k .

The details have been worked out in Parlett (1996), a TR
entitled “What Hadamard missed”.
See also Householder (1970): The Numerical Treatment of a
Single Non-linear Equation.
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Continued fractions (in German: Kettenbrüche)

β1

α1
+

β2

α2
+

β3

α3
+ . . . :≡

β1

α1 +
β2

α2+
β3

α3+...

. (11)

There can be finitely or infinitely many ‘terms’.

In our case, the ‘numerators’ will be real or complex numbers,
the ‘denominators’ will be either numbers or linear functions of
z:

a formal Jacobi fraction or J–fraction :

f (z) =
s

z − q1
−

e1q1

z − q2 − e1
−

e2q2

z − q3 − e2
− · · · , , (12)

a formal Stieltjes fraction or S–fraction :

f (z) =
s
z
−

q1

1
−

e1

z
−

q2

1
−

e2

z
− · · · . (13)
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From power series to a continued fractions

By a standard operation the given power series (3) in z−1 of f ,

f (z) =
∞
∑

k=0

sk

zk+1 =
s0

z
+

s1

z2 +
s2

z3 + . . . .

can be turned into a continued fraction (which typically
converges in a much larger region). We may also write

f (z) =
s0

z
+

s1

z2 + · · · +
sν−1

zν
+

fν(z)
zν

. (14)

and expand the remainder fν(z) of the power series into a
continued fraction.

In each case, two different types of continued fractions can be
used. So we get two whole sequences of continued fractions.

It turns out that their coefficients are related by the rhombus
rules.
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Continued fractions: J–fractions and S–fractions

fν(z) :≡
∞
∑

k=0

sν+k

zk+1 = zν

(

f (z)−
ν−1
∑

k=0

sk

zk+1

)

(15)

can be expanded both into a Jacobi fraction or J–fraction

fν(z) =
sν

z − q(ν)
1

−
e(ν)

1 q(ν)
1

z − q(ν)
2 − e(ν)

1

−
e(ν)

2 q(ν)
2

z − q(ν)
3 − e(ν)

2

− · · ·

(16)
and into a formal Stieltjes fraction or S–fraction

fν(z) =
sν
z

−
q(ν)

1

1
−

e(ν)
1

z
−

q(ν)
2

1
−

e(ν)
2

z
− · · · . (17)

The J–fraction is the so-called even part of the S–fraction
obtained by merging two successive terms into one.
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Continued fractions: J–fractions and S–fractions

The odd part of the S–fraction is another formal J–fraction,
obtained by merging the two differently chosen successive
terms into one,

fν(z) =
sν
z











1 +
q(ν)

1

z − q(ν)
1 − e(ν)

1

−

e(ν)
1 q(ν)

2

z − q(ν)
2 − e(ν)

2

−

e(ν)
2 q(ν)

3

z − q(ν)
3 − e(ν)

3

− · · ·











.

(18)

By comparing this J–fraction with the one for

fν+1(z) = zfν(z) − sν , (19)

one recovers Rutishauser’s rhombus rules of the qd algorithm.

This is the nicest derivation of the qd algorithm, but not the
original one.

Rutishauser (1954a) indicates that it was suggested to him by
Stiefel. This was a misleading hint, however.
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Continued fractions, Padé approximations, FOPs

The “partial sums” = convergents = approximants of the
continued fractions are confluent rational interpolants of f .

They are Padé approximants (at ∞) associated with the
moments sk+ν (k = 0,1, . . . ; ν fixed) of the function fν(z)
defined by

f (z) =
s0

z
+

s1

z2 + · · · +
sν−1

zν
+

fν(z)
zν

.

For fixed ν, the denominators of the convergents (= Padé
approximants) are (formal) orthogonal polynomials p(ν)

k (z).

They can be arranged in a table that he called p–table .
(Analogous to the Padé table.)
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Associated polynomials and their p–table

p–table (P–Schema) :

1 ≡ p(0)
0

1 ≡ p(1)
0

1 ≡ p(2)
0

1 ≡ p(3)
0

1 ≡ p(4)
0

...

p(0)
1

p(1)
1

p(2)
1

p(3)
1

...

q(0)
2

z p(0)
2

p(1)
2

p(2)
2

...

p(0)
3

p(1)
3

p(2)
3

...

. . .

. . .

. . .

p(0)
N−1

p(1)
N−1

...

p(0)
N

p(1)
N

...

p(0)
2 (z) := z p(1)

1 (z)− q(0)
2 p(0)

1 (z)

In the last column, p(0)
N = p(1)

N = . . . is the minimal polynomial.
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Continued fractions, Padé approximations, FOPs
(cont’d)

Rutishauser realized that they are also the Lanczos
polynomials of the (nonsymmetric) Lanczos algorithm
(Lanczos, 1950) for A started with the pair (y0,Aνx0).

Rutishauser never mentions Padé approximants, but he had no
need, since they are just the convergents of the J–fractions and
S–fractions.

For him, actually only the FOPs in the denominator matter.

Later, 1966–74, Householder, Gragg, and Stewart stress the
connection to Padé approximants in several papers.

N.B.: Hadamard’s theorem (1892) ∼ de Montessus de Ballore’s
theorem (1902/1905).
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Associated polynomials and their p–table (cont’d)

When introducing the p–table Rutishauser (1954a, Sect. 4)
points out that p(0)

k (k = 0,1, . . . ) in the top diagonal appear in
Lanczos (1950) in an algorithm for computing the characteristic
polynomial from the moments. (This algorithm is basically the
staircase recurrence for the Padé denominators.)

Later, in Sect. 8, he proved that these polynomials are equal to
the Lanczos polynomials constructed implicitly in the BIO
algorithm.
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Associated polynomials: recurrences

The p–table can be built up from the initial column p(ν)
0 ≡ 1 by

the left-to-right recurrence

p(ν)
k (z) := zp(ν+1)

k−1 (z) − q(ν)
k p(ν)

k−1(z) . (20)

Rutishauser (1954a) derived also a top-to-bottom recurrence

p(ν+1)
k (z) := p(ν)

k (z) − e(ν)
k p(ν+1)

k−1 (z) . (21)

and the diagonal 3-term recurrence (with e(ν)
0 :≡ 0, p(ν)

0 :≡ 1)

p(ν)
k+1(z) :=

[

z − q(ν)
k+1 − e(ν)

k

]

p(ν)
k (z) + e(ν)

k q(ν)
k p(ν)

k−1(z) (22)
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Further relations and applications

So, in addition to introducing and investigating the qd algorithm
Rutishauser (1954a) [rec. 5 Aug. 1953] (1954b) [rec. 18 Sep.
1953], (1955a) [rec. 19 July 1954)] explained many connections
to other topics and gave many applications; e.g., in (1954a):

• the connection to continued fractions,

• the connection to the Lanczos BIO algorithm,

• the connection to the CG algorithm,

• computing partial fraction decompositions of rational fcts.

In (1954b):

• summation of badly converging series,

• solving algebraic equations = computing zeros of
polynomials,

• quadratic convergence by using shifts / double shifts.
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Further relations and applications (cont’d)

In (1955a):

• computing EVals by combining Lanczos’ BIO alg. and the
progressive qd algorithm,

• computing EVecs (several new algorithms are suggested),

• EVals and EVecs of infinite matrices.

Still missing:

• tridiagonal matrices (except for computing shifts),

• LU decomposition of these tridiagonal matrices,

• LR algorithm.
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FOPs and tridiagonal matrices

Rutishauser knew well (see Rutishauser (1953) on the Lanczos
BIO algorithm) that associated to the 3-term recurrence (22),

p(ν)
k+1(z) :=

[

z − q(ν)
k+1 − e(ν)

k

]

p(ν)
k (z) + e(ν)

k q(ν)
k p(ν)

k−1(z)

(with fixed ν) there is a nested set of tridiagonal matrices

T(ν)
n =



















q(ν)
1 1

e(ν)
1 q(ν)

1 e(ν)
1 + q(ν)

2 1

e(ν)
2 q(ν)

2 e(ν)
2 + q(ν)

3

. . .
. . .

. . . 1
e(ν)

n−1q(ν)
n−1 e(ν)

n−1 + q(ν)
n



















.

such that p(ν)
n (z) is the characteristic polynomial of T(ν)

n .

Since he was interested in the limit of the zeros of p(ν)
n as

ν −→ ∞ it was natural to look at T(ν)
n .
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LU (LR) decomposition of a tridiagonal matrix

Clearly, T(ν)
n has the LU decomposition (LR-Zerlegung)

T(ν)
n = L(ν)

n R(ν)
n (23)

with

L(ν)
n =





















1

e(ν)
1 1

e(ν)
2

. . .

. . .
. . .

e(ν)
n−1 1





















, R(ν)
n =





















q(ν)
1 1

q(ν)
2 1

q(ν)
3

. . .

. . . 1

q(ν)
n





















.
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The LU (LR) transformation

At some historic moment in 1954, Rutishauser must have
realized that his progressive qd algorithm (10) can be
interpreted as computing this LU factorization T(ν)

n = L(ν)
n R(ν)

n
and then forming

R(ν)
n L(ν)

n =



















e(ν)
1 + q(ν)

1 1

e(ν)
1 q(ν)

2 e(ν)
2 + q(ν)

2 1

e(ν)
2 q(ν)

3 e(ν)
3 + q(ν)

3
. . .

. . . . . . 1

e(ν)
n−1q(ν)

n q(ν)
n



















= T(ν+1)
n
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The LR transformation (cont’d)

So, the qd algorithm consists of performing the step

T(ν)
n = L(ν)

n R(ν)
n  R(ν)

n L(ν)
n = T(ν+1)

n

called LR transformation , which is a similarity transformation:

T(ν+1)
n = R(ν)

n T(ν)
n

(

R(ν)
n

)

−1
.

The likely motivation:

• Diagonals (“rows”) of qd–table correspond to J–fractions,
FOPS (Lanczos polynomials), and tridiagonal matrices.

• Rhombus rules lead us from one diagonal to the next.

• They are matched by construction with J– and S–fractions.

• There are corresponding rules for the polynomials.

• Hence, there must be a rule for transforming one
tridiagonal matrix into the next one.
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The LR algorithm

LR algorithm : succession of LR transformations (LR steps).

Convergence of e(ν)
k −→ 0 (k = 1, . . . ,n) as ν −→ ∞ means:

Convergence of L(ν)
n to diagonal matrix as ν −→ ∞,

Convergence of T(ν)
n to upper bidiagonal matrix as ν −→ ∞,

The diagonals of T(ν)
n and R(ν)

n ultimately contain eigenvalues of
A,

Generalization to full matrices is immediate, but unimportant.
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The LR algorithm: publications

The first two publication on the LR algorithm were in French,
two two-page notes in the Comptes Rendus: Rutishauser
(1955e) [séance du 3 janvier 1955], Rutishauser/Bauer (1955)
[séance du 25 avril 1955].

1956 Rutishauser produced a mimeographed 51-page ETH
research report in English, entitled “Report on the Solution of
Eigenvalue Problems with the LR–transformation”. Two years
later it got properly published in a National Bureau of Standards
(NBS) book series (Rutishauser, 1958a).

In the same issue: Henrici’s review paper on the qd algorithm,
and Stiefel’s paper on kernel polynomials in NLA.

In 1957, Rutishauser included a 5-page appendix on the LR
transformation in the (German) booklet that compiled and
updated most of his previous work on qd (Rutishauser, 1957a).
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The qd and LR algorithms: later publications

Rutishauser kept on publishing articles on the qd and LR
algorithms and their applications.

In particular, he studied the qd algorithm in finite precision
arithmetic and could prove its stability under certain
assumptions.

Before his death he was working on a long manuscript that
included the finite precision results and the differential qd
algorithm, which was later rediscovered by Fernando and
Parlett (1994). The finished parts were published as an
appendix of the posthumous book on his lectures (1976/1990).
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The qd and LR algorithms: pros and cons

Unless A is spd or Hpd the LR algorithm may break down,
because an LU decomposition (without pivoting) may not exist.

Using shifts a symmetric A can be turned into an spd matrix.

But, the LR algorithm may be unstable for nonsymmetric A.

Stability is gained by replacing the LU decomposition by the QR
decomposition QR algorithm .

LR conserves the symmetry and the band structure of A; e.g.,
tridiagonal and Hessenberg matrices.

QR conserves the symmetry and the Hessenberg structure of
A; e.g., Hermitian tridiagonal and non-Hermitian Hessenberg
matrices.

In symmetric (Hermitian) case: two steps of LR yield the same
R(2ν)

n as one step of QR.
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The QR algorithm: publications

The QR algorithm is due to J.G.F. Francis (1961) [rec. 29 Oct.
1959; resubmitted with Part 2 on 6 June 1961], (1962).
Promoted mainly for nonsymmetric case.

Independently, it was also discovered by V.N. Kublanovskaya
(1961).

Francis’ papers contain a full theory, including the double-shift
for approaching complex pairs of EVals.
Kublanovskaya’s paper is less complete.
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Let us return to our question

How did Rutishauser discover qd?

What do we know? Which hints did we get?

What did Rutishauser write and reveal?
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Let us return to our question: conclusions in 2009

The discovery of the qd and the LR algorithms probably
evolved in the following steps:

• Generalizing Aitken’s work qd table / algorithm.

• Considering the corresponding p–table (generalizing
Lanczos’ work) and finding the 3-term recurrence for this
table.

• Making the connection to continued fractions and Lanczos
polynomials (and as well to many other topics).

• Making the connection to tridiagonal matrices.

• Noticing their extremely simple LU decomposition.

• Noticing that

qd algorithm = LR algorithm for tridiagonal matrices

• Generalizing the LR algorithm to full matrices.
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Early papers on the qd algorithm

• E. Stiefel (Aug./Sep. 1953, ZAMM; Proc. GAMM Conf.): Zur

Interpolation von tabellierten Funktionen durch Exponentialsummen und zur Berechnung von Eigenwerten

aus den Schwarzschen Konstanten

• H. Rutishauser (1954a, ZAMP; subm. Aug. 5, 1953): Der
Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1954b, ZAMP; subm. Sep. 18, 1953):
Anwendungen des Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1954c, Arch.Math.; subm. Sep. 25, 1953): Ein
infinitesimales Analogon zum
Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1955a, ZAMP; subm. Jul. 19, 1954):
Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit
Hilfe des Quotienten–Differenzen–Algorithmus

• H. Rutishauser (1957a, Mitt. IAM, ETH): Der
Quotienten–Differenzen–Algorithmus (the “qd booklet”)

• P. Henrici (1958, NBS book): The Quotient-Difference Algorithm
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What do we know? What can we suspect? (cont’d)

The intro of the first qd publication (1954a, ZAMP) reads:

Im Anschluss an eine praktische Anwendung des
BO-Algorithmus (Biorthogonalisierungs-Algorithmus von
C. LANCZOS machte mich Herr Prof. E. STIEFEL, ETH, auf das
Problem aufmerksam, die höheren Eigenwerte direkt aus den
sogenannten Schwarzschen Konstanten zu bestimmen, das
heisst ohne den Umweg über die Orthogonalisierung. Auf
diese Anregung hin entwickelte der Verfasser einen
Algorithmus, der die gestellte Aufgabe löst.

Subsequently to a practical application of the BO algorithm
(BiOrthogonalisation algorithm of C. LANCZOS) Prof.
E. STIEFEL, ETH, pointed out to me the problem of
determining the higher eigenvalues directly from the so-called
Schwarz constants, that is, without taking the detour around
orthogonalisation. Following this proposal the author devised
an algorithm that solved the posed problem.
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What do we know? What can we suspect? (cont’d)

Allerdings gab bereits A. C. AITKEN eine Methode an, welche
hauptsächlich zur Auflösung algebraischer Gleichungen
gedacht war, aber auch die Bestimmung höherer Eigenwerte
aus Schwarzschen Konstanten gestattet. Ferner stammt von
C. LANCZOS ein Algorithmus1 zur Bestimmung des
charakteristischen Polynoms einer Matrix aus Schwarzschen
Konstanten.

However, A. C. AITKEN already proposed a method that was
primarily targeted at solving algebraic equations, but also
allowed the determination of higher eigenvalues from Schwarz
constants. Moreover, C. LANCZOS had proposed an algorithm2

for the determination of the characteristic polynomial of a matrix
from Schwarz constants.

1Es handelt sich nicht um den BO-Algorithmus, vgl. vielmehr Kapitel VI bei
[4] oder S. 173–179 bei [5].

2This does not refer to the BO algorithm; instead see chapter VI of [4] or
pp. 173–179 of [5].
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What do we know? What can we suspect? (cont’d)

Überdies entwickelte J. HADAMARD in seiner Dissertation [2]
eine Methode zur Bestimmung der Pole einer durch ihre
Potenztreihe gegebenen Funktion. [...] Wenn hier das schon
gelöste Problem nochmals aufgegriffen wird, so geschieht dies
deshalb, weil der entwickelte Algorithmus eine Reihe von
weiteren Anwendungen gestattet und insbesondere auch
wertvolle Beziehungen zur Kettenbruchtheorie vermittelt3

Moreover J. HADAMARDdeveloped in his dissertation [2] a
method for the determination of the poles of a function given by
its power series. [...] If we pick up here the already solved
problem, then this is because the algorithm we developed
allows a series of additional applications and, in particular, also
conveys valuable relations to the theory of continued fractions4

3Herrn Prof. STIEFEL verdanke ich [...]
4I owe to Prof. STIEFEL [...]
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What do we know? What can we suspect? (cont’d)

So, on the first page of the first qd publication (1954a, ZAMP)
as well as in the qd booklet (Mitt. IAM ETH) there are footnotes,
one of which says:

Herrn Prof. Stiefel verdanke ich auch die Anregung zur
Vereinfachung einiger Beweise mit Hilfe der
Kettenbruchtheorie.

I owe Prof. Stiefel the suggestion to simplify some proofs with
the help of the theory of continued fractions.

But: which proofs?
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How did Rutishauser find qd? The answer!

The ETH library holds large collections of manuscript, notes,
and correspondence of former ETH professors. In the last few
years Hanna Rutishauser, the older daughter of Heinz, has
screened the collection of her father’s documents. Three years
ago she came across a 2-page document that her father had
sent to J.F. Traub. It was entitled Report on a paper by Gragg,
and it was immediately clear to me that this was a referee
report for W.B. Gragg’s famous 1972 SIAM Review article

The Padé table and its relation to certain algorithms of
numerical analysis

(SIAM Review 14, pp. 1–62 (1972)). Traub had sent the
manuscript to Rutishauser on May 20, 1970, the latter had
asked for more time on Aug. 25, and on Sep. 17, 1970, he had
sent his 2-page referee report to Traub. That is less than two
months before Rutishauser’s death on Nov. 10, 1970, at age 52.
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How did Rutishauser find qd? The answer! (cont’d)

Here is Rutishauser’s referee report (retyped) [Link to pdf]
The answer is found in item Forth.

Report on a paper by Gragg 5

First: I consider this a very useful survey on the Padé
table and related topics, although to my taste
certain notations make the reading uneasy. I
acknowledge the great care the author has taken
in establishing the connections to the true sources.

5A few misprints have been corrected.
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How did Rutishauser find qd? The answer! (cont’d)

Second: I agree that some of the authors (especially P.
Wynn and myself) have been cited fairly often. P.
Wynn has indeed written a great number of papers
on continued fractions and related topics, in fact
many more than are cited by Gragg. I have
checked all entries of Wynn in the reference list,
except [120], and found that just those of Wynn’s
papers are cited which are somehow relevant for
Gragg’s article. In some cases there is not much
connection, however, but may it be accidental or a
clever strategy—hardly could two entries be
replaced by one. Thus, if anything, I would doubt
the need for citing [101] since there P. Wynn
proves a fact which in a certain sense is trivial.
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How did Rutishauser find qd? The answer! (cont’d)

Of my own papers [71], [72], [74] are practically
contained in [77]. On the other hand many readers
have access to the ZAMP in which [71], [72], [74]
appeared, but [77] is a booklet which despite its
low price (2 $) may not be easily accessible. If this
latter is not a point of consideration, then [71], [72],
[74] might be omitted. In addition [79] seems not
relevant for the purpose of Mr. Gragg’s article. It
may be cited because of the interpretation of
continued fractions as (1,1)–elements of matrix
inverses, but this seems to be Whittacker’s idea,
while the main theorem mentioned in [79] was
already proved by Wintner (although not under the
heading "generalized continued fractions"). If W.
Gragg had really the intension of including a
reference to generalized continued fractions, then
Shenton (see Proc. Edinburgh Math. Soc., 1953,
1954 and later) might be mentioned.Martin H. Gutknecht New insight on discovery of qd



How did Rutishauser find qd? The answer! (cont’d)

If W. Gragg had really the intension of including a
reference to generalized continued fractions, then
Shenton (see Proc. Edinburgh Math. Soc., 1953,
1954 and later) might be mentioned.

Third: I enclose a paper of Bandemer, which may have
connections with Gragg’s article, and which the
author might have overlooked. However, this is not
a proposal to include the reference but just to
inform the author. In the same spirit a copy of a
paper of Bauer and Frank is enclosed.
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How did Rutishauser find qd? The answer! (cont’d)

Fourth: A final remark concerns pages 3, 4. It is not true,
that Prof. Stiefel suggested the use of continued
fractions, but he actually initiated that I began to
work on the subject. The true history, which W.
Gragg of course could not know, was as follows:
One day in 1951, Prof. Stiefel asked me whether I
could obtain nondominant eigenvalues from
Schwarz constants in a way similar to the
computation of the dominant eigenvalue as the
limit of sk+1/sk . On the spot I gave the answer that
this problem certainly had something to do with
the changes of the quotients sk+1/sk , but it took
me much longer to find the algorithm which I first
established by aid of determinantal identities. Only
some months later I found the connections with
continued fractions.
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How did Rutishauser find qd? The answer! (cont’d)

In view of these facts I would suggest the
connections of pages 3, 4 as given on the
accompanying sheets.

H. Rutishauser
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