

Contents

1 Introduction 1

I Dense Linear Algebra 3

2 Basics 4
2.1 Notation . 4
2.2 Statement of the problem . 5
2.3 Similarity transformations . 7
2.4 Schur decomposition . 8
2.5 The real Schur decomposition . 9
2.6 Hermitian matrices . 10
2.7 Cholesky factorization . 13
2.8 The singular value decomposition (SVD)F . 14

3 The QR Algorithm 17
3.1 The basic QR algorithm . 17

3.1.1 Numerical experiments . 18
3.2 The Hessenberg QR algorithm . 20

3.2.1 A numerical experiment . 22
3.2.2 Complexity . 23

3.3 The Householder reduction to Hessenberg form . 24
3.3.1 Householder reflectors . 24
3.3.2 Reduction to Hessenberg form . 24

3.4 Improving the convergence of the QR algorithms . 26
3.4.1 A numerical example . 27
3.4.2 QR algorithm with shifts . 28
3.4.3 A numerical example . 29

3.5 The double shift QR algorithm . 30
3.5.1 A numerical example . 33
3.5.2 The complexity . 34

3.6 The symmetric tridiagonal QR algorithm . 35
3.6.1 Reduction to tridiagonal form . 35
3.6.2 The tridiagonal QR algorithm . 36

3.7 Summary . 36

4 Cuppen’s Divide and Conquer Algorithm 40
4.1 The divide and conquer idea . 40
4.2 Partitioning the tridiagonal matrix . 41
4.3 Solving the small systems . 41
4.4 Deflation . 42

4.4.1 Numerical examples . 43

ii

4.5 The eigenvalue problem for D + ρvvT . 44
4.6 Solving the secular equation . 47
4.7 A first algorithm . 48

4.7.1 A numerical example . 48
4.8 The algorithm of Gu and Eisenstat . 51

4.8.1 A numerical example [continued] . 52

5 LAPACK and the BLAS 57
5.1 LAPACK . 57
5.2 BLAS . 58

5.2.1 Typical performance numbers for the BLAS . 58
5.3 Blocking . 59
5.4 LAPACK solvers for the symmetric eigenproblems . 61
5.5 Generalized Symmetric Definite Eigenproblems (GSEP) 63
5.6 An example of a LAPACK routines . 63

II Sparse Linear Algebra 71

6 Finite Element Discretisations of Elliptic PDEs 72
6.1 Model Problem . 72

6.1.1 Derivation of a Weak Form . 73
6.1.2 Of Meshes, Element Functions and Discrete Operators 74
6.1.3 Assembling the Parts . 77

6.2 A MATLAB implementation . 78
6.3 The Solution — Assessing Correctness . 81

7 Storage Schemes for Sparse Matrices 86
7.1 Compressed Sparse Row (CSR), Compressed Sparse Column (CSC) 86
7.2 Modified Sparse Row (MSR), Modified Sparse Column (MSC) 88
7.3 Coordinate Format (AIJ) . 88
7.4 Linked List Format . 89
7.5 H –MatricesF . 89

8 Reorderings and Sparse Direct Solvers 92
8.1 Fill-in Reducing (and other) Reorderings . 92
8.2 Direct Solvers . 94
8.3 Available Software . 94

9 Iterative Solvers 98
9.1 Fixed Point and Jacobi Iteration . 98
9.2 Iterations Based on Matrix Splittings . 101
9.3 Krylov Subspaces and Krylov Space Solvers . 104
9.4 Chebyshev IterationF . 108
9.5 Preconditioning . 112
9.6 The Conjugate Gradient Method . 113

9.6.1 Energy Norm Minimization . 113
9.6.2 Steepest Descent . 114
9.6.3 Conjugate Direction Methods . 115
9.6.4 The Conjugate Gradient (CG) method . 117
9.6.5 The Conjugate Residual (CR) Method . 122
9.6.6 A Bound for the Convergence . 124
9.6.7 Preconditioned CG Algorithms . 124
9.6.8 CG and CR for Complex SystemsF . 126

iii

9.6.9 CG for Least Squares ProblemsF . 126
9.7 The Symmetric Lanczos ProcessF . 129

9.7.1 The Lanczos Process and Its Relation to the CG MethodF 129
9.7.2 Eigenvalue Computations With the Symmetric Lanczos ProcessF 133
9.7.3 Solving the System in Coordinate SpaceF . 134
9.7.4 Further Topics Related to the CG Method and the Lanczos ProcessF 137

9.8 Solving the System in Coordinate Space . 137
9.8.1 The Arnoldi Process . 137
9.8.2 The Transformation to Coordinate Space . 141
9.8.3 GMRES . 142
9.8.4 MINRES . 145
9.8.5 FOMF . 147
9.8.6 SYMMLQF . 147

10 Preconditioning 153
10.1 Preconditioning based on classical matrix splittings . 154
10.2 Incomplete LU and Cholesky factorizations . 155
10.3 Polynomial preconditioning . 157
10.4 Inner-outer iteration . 157
10.5 Sparse Approximate Inverse Preconditioners (SPAI)F . 157
10.6 Domain Decomposition Preconditioners . 158

10.6.1 One-level Schwarz Preconditioners . 160
10.6.2 Two-level Schwarz Preconditioners . 162

10.7 Multigrid Preconditioners . 164

11 Finite Difference and Finite Element Discretisations of Eigenvalue ProblemsF 170
11.1 What makes eigenvalues interesting? . 170
11.2 Example 1: The vibrating string . 171

11.2.1 Problem setting . 171
11.2.2 The method of separation of variables . 173

11.3 Numerical methods for solving 1-dimensional problems 174
11.3.1 Finite differences . 174
11.3.2 The finite element method . 175
11.3.3 Global functions . 177
11.3.4 A numerical comparison . 177

11.4 Example 2: The heat equation . 177
11.5 Example 3: The wave equation . 179
11.6 Numerical methods for solving the Laplace eigenvalue problem in 2D 181

11.6.1 The finite difference method . 181
11.6.2 The finite element method (FEM) . 184
11.6.3 A numerical example . 187

11.7 Cavity resonances in particle accelerators . 188

12 Iterative Eigenvalue Solvers 192
12.1 The Vector Iteration Method . 192
12.2 The Inverse Vector Iteration Method . 193
12.3 The Arnoldi Method . 194
12.4 Available Software . 198

iv

III Parallel Sparse Linear Algebra 203

13 Basic Aspects of Parallel Computing 204
13.1 Taxonomies for Parallel Computers . 204
13.2 Cost of Communication Among Processors . 206
13.3 Load Balancing . 208
13.4 Parallel Programming Tools . 210

13.4.1 A Simple MPI Program . 211
13.4.2 Basic Point-to-Point Message Passing . 212
13.4.3 Collective Operations . 213

14 Distributed Linear Algebra with Trilinos 216
14.1 Installing Trilinos . 216
14.2 Building Distributed Vectors and Sparse Matrices using Epetra 217

14.2.1 Encapsulating MPI . 217
14.2.2 Data Layout using Maps . 218
14.2.3 Distributed Vectors . 219
14.2.4 Distributed Sparse Matrices . 220
14.2.5 Epetra LinearProblem . 224
14.2.6 Concluding Remarks on Epetra . 224

14.3 Solving the Linear Systems using AztecOO . 224
14.4 Multilevel Preconditioners using ML . 225

v

Chapter 1

Introduction

These are the lecture notes of a course on “Software for Numerical Linear Algebra” that was taught in the
summer semester 2006 at the Computer Science Department of ETH Zurich. The course was taught by
other lecturers (Proffs. Walter Gander, Martin Gutknecht and Beresford Parlett) in previous years. The
course is targeted at computer science students who had attended classes in linear algebra and introductory
computational science.

The course consisted of 14 two-hours lectures and the same amount of time for tutoring student’s
assignments. These lecture notes contain more material than was actually taught. The sections that were
not covered are indicated by an asterisk (F). They contain additional or complimentary material that we
found interesting.

The topics covered in the lectures were

Dense linear algebra with LAPACK

In this part of the lectures emphasis was given on eigenvalue computations since the students had been
exposed to dense system solving by Gaussian elimination in earlier courses. We decided to cover

• the QR algorithm including important ideas as Householder reflectors, QR factorization in particular
of Hessenberg matrices, Givens rotations, shifting strategies for improving convergence, etc.

• Cuppen’s divide and conquer algorithm as a more recent idea for solving the symmetric tridiagonal
eigenvalue problem. This algorithm is in principle quite easy to understand. On the other hand
there are a number of interesting details (deflation, zero finder, spectral shifts) that have to be solved
properly, before the algorithm becomes stable algorithm.

• These algorithms are efficiently implemented in LAPACK, a huge collection of Fortran subroutines
for solving the basic tasks of dense linear algebra.

Sparse matrix computations

The part on sparse matrix computations was the largest and covered eight out of 14 lectures. Various
aspects concerning the solution of linear systems and eigenvalue problems with sparse system matrices
were addressed. The occurrence of sparse matrices was motivated by finite element discretizations of
second order partial differential equations.

Topics covered from numerical linear algebra were

• Storage schemes for sparse matrices.

• Direct solution methods and matrix reorderings to reduce fill-in. Only little time was devoted to
this issue. It was treated as an introduction to ideas used in preconditioning based on incomplete
factorizations.

1

• Iterative solution methods based on Krylov spaces: conjugate gradient type methods (e.g., CG, PCG,
GMRes).

• Preconditioning of linear systems to reduce the condition of the system to be solved and in this way
lower the number of iteration steps until convergence. Several preconditioning techniques were cov-
ered: besides conventional splitting techniques, incomplete LU and Cholesky factorizations, domain
decomposition, and multigrid preconditioners.

• ARPACK was chosen as an example for a widely used software package that is used for sparse
eigenproblems. In contrast to system solving where numerous software packages are available, for
solving eigenvalue problems there seems to be just this package in the public domain that provides
stable and efficient solution paths for symmetric/Hermitian or nonsymmetric/non-Hermitian eigen-
value problems and the singular value decomposition.

Parallel computation with the Trilinos framework

Two lectures were devoted to issues in parallel computation. Besides a brief introduction on basic concepts
(Flynn’s taxonomy) and terms (speedup, efficiency, latency, bandwidth) the following topics were covered

• Basic MPI programming with point-to-point and collective communication.

• Techniques to enhance load balancing based on graph partitioning.

• Finally, an introduction to the Trilinos framework for solving linear (and nonlinear) algebra problems
on distributed memory parallel computers. Trilinos provides a wealth of preconditioners for iterative
solvers. Its C++ interface makes it easy for computer science students to solve reasonably sized
problems in a short time.

Student’s Assignments

The purpose of assignments is to enforce/encourage students to explore the algorithms they learned dur-
ing the course. Students were required to complete twelve assignments that consisted mainly in applying
and comparing the software and algorithms discussed on a few simple examples. Some assignments also
required MATLAB programming. (At ETH, CS students can be assumed to be knowledgeable in MAT-
LAB.) Besides having a convenient interface, MATLAB provides easy means to visualize solutions of finite
element problems or the convergence behaviour of iterative solvers.

May 2006, PA, OC, MG, MS.

2

Part I

Dense Linear Algebra

3

Chapter 2

Basics

2.1 Notation

The fields of real and complex numbers are denoted by R and C, respectively. Elements in R and C,
scalars, are denoted by lowercase letters, a, b, c, . . ., and α, β, γ, . . .

Vectors are denoted by boldface lowercase letters, a, b, c, . . ., and α, β, γ, . . . We denote the space of
vectors of n real components by Rn and the space of vectors of n complex components by Cn.

x ∈ R
n ⇐⇒ x =




x1

x2

...
xn


 , xi ∈ R. (2.1)

We often make statements that hold for real or complex vectors or matrices. Then we write, e.g.,
x ∈ Fn.

The inner product of two n-vectors in C is defined as

(x,y) =

n∑

i=1

xiȳi = y∗x, (2.2)

that is, we require linearity in the first component and sesquilinearity(?) in the second.
y∗ = (ȳ1, ȳ2, . . . , ȳn) denotes conjugate transposition of complex vectors. To simplify notation we

denote real transposition by an asterisk as well.
Two vectors x and y are called orthogonal, x ⊥ y, if x∗y = 0.
The inner product (2.2) induces a norm in F,

‖x‖ =
√

(x,x) =

(
n∑

i=1

|xi|2
)1/2

. (2.3)

This norm is often called Euklidian norm or 2-norm.
The group of m-by-n matrices with components in the field F is denoted by Fm×n,

A ∈ F
m×n ⇐⇒ A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


 , aij ∈ F. (2.4)

The matrix A∗ ∈ F
n×m,

A∗ =




ā11 ā21 . . . ām1

ā12 ā22 . . . ām2

...
...

...
ā1n ā2n . . . ānm


 (2.5)

4

is the (Hermitian) transposed of A. Notice, that with this notation n-vectors can be identified with n-by-1
matrices.

The following classes of square matrices are of particular importance

• A ∈ F
n×n is called Hermitian if and only if A∗ = A.

• A real Hermitian matrix is called symmetric.

• U ∈ F
n×n is called unitary if and only if U−1 = U∗.

• Real unitary matrices are called orthogonal.

We define the norm of a matrix to be the norm induced by the vector norm (2.3),

‖A‖ := max
x6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖. (2.6)

The condition number of a nonsingular matrix is defined as κ(A) = ‖A‖‖A−1‖. It is easy to show that if
U is unitary then ‖Ux‖ = ‖x‖ for all x. Thus the condition number of a unitary matrix is 1.

2.2 Statement of the problem

The (special) eigenvalue problem is the following

Given a square matrix A ∈ Fn×n.
Find scalars λ ∈ C and vectors x ∈ C, x 6= 0, such that

Ax = λx, (2.7)

i.e., such that
(A− λI)x = 0 (2.8)

has a nontrivial (nonzero) solution.

So, we are looking for numbers λ such that A− λI is singular.

Definition 2.1 Let the pair (λ,x) be a solution of (2.7) or (2.8), respectively. Then

• λ is called an eigenvalue of A,

• x is called an eigenvector corresponding to λ

• (λ,x) is called eigenpair of A.

• The set σ(A) of all eigenvalues of A is called spectrum of A.

• The set of all eigenvectors corresponding to an eigenvalue λ together with the vector 0 form a linear
subspace of Cn called the eigenspace of λ. As the eigenspace of λ is the null space of λI − A we
denote it byN (λI −A).

• The dimension ofN (λI −A) is called geometric multiplicity g(λ) of λ.

• An eigenvalue λ is a zero of the characteristic polynomial

χ(λ) := det (λI −A) = λn + an−1λ
n−1 + · · ·+ a0.

The multiplicity of λ as a zero of χ is called the algebraic multiplicity m(λ) of λ. We will later see
that

1 ≤ g(λ) ≤ m(λ) ≤ n, λ ∈ σ(A), A ∈ F
n×n.

5

Remark 2.1. A nontrivial solution solution y of

y∗A = λy∗ (2.9)

is called left eigenvector corresponding to λ. A left eigenvector of A is a right eigenvector of A∗, corre-
sponding to the eigenvalue λ̄, A∗y = λ̄y.

Problem 2.2 Let x be a (right) eigenvector of A corresponding to an eigenvalue λ and let y be a left
eigenvector of A corresponding to a different eigenvalue µ 6= λ. Show that x∗y = 0.

Remark 2.2. Let A be an upper triangular matrix,

A =




a11 a12 . . . a1n

a22 . . . a2n

. . .
...

ann


 , aik = 0 for i > k. (2.10)

Then we have

det (λI −A) =
n∏

i=1

(λ− aii)

Problem 2.3 Let λ = aii, 1 ≤ i ≤ n, be an eigenvalue of A in (2.10). Can you give a corresponding
eigenvector? Can you explain a situation where g(λ) < m(λ)?

The (generalized) eigenvalue problem is the following

Given two square matrices A,B ∈ Fn×n.
Find scalars λ ∈ C and vectors x ∈ C, x 6= 0, such that

Ax = λBx, (2.11)

or, eqivalently, such that
(A− λB)x = 0 (2.12)

has a nontrivial solution.

Definition 2.4 Let the pair (λ,x) be a solution of (2.11) or (2.12), respectively. Then

• λ is called an eigenvalue of A relative to B,

• x is called an eigenvector of A relative to B corresponding to λ.

• (λ,x) is called an eigenpair of A relative to B,

• The set σ(A; B) of all eigenvalues of (2.11) is called the spectrum of A relative to B.

• Let B be nonsingular. Then
Ax = λBx⇐⇒ B−1Ax = λx (2.13)

• Let both A and B be Hermitian, A = A∗ and B = B∗. Let further be B positive definite and
B = LL∗ be its Cholesky factorization. Then

Ax = λBx⇐⇒ L−1AL−∗y = λy, y = L∗x. (2.14)

• Let A be invertible. Then Ax = 0 implies x = 0. That is, 0 6∈ σ(A; B). Therefore,

Ax = λBx⇐⇒ µx = A−1Bx, µ =
1

λ
(2.15)

6

• Difficult situation: both A and B are singular.

1. Let, e.g.,

A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
.

Then,

Ae2 = 0 = 0 · Be2 = 0 · e2

Ae1 = e1 = λBe1 = λ0

So 0 is an eigenvalue of A relative to B.

As in (2.15) we may change roles of A and B. Then

Be1 = 0 = µAe1 = 0e1.

So, µ = 0 is an eigenvalue of B relative to A. We therefore say, informally, that λ = ∞ is an
eigenvalue of A relative to B. So, σ(A; B) = {0,∞}.

2. Let

A =

(
1 0
0 0

)
, B =

(
1 0
0 0

)
= A.

Then Then,

Ae1 = 1 · Be1,

Ae2 = 0 = λBe0 = λ0, for all λ ∈ C.

Therefore, in this case, σ(A; B) = C.

2.3 Similarity transformations

Definition 2.5 A matrix A ∈ Fn×n is similar to a matrix C ∈ Fn×n, A ∼ C, if and only if there is a
nonsingular matrix S such that

S−1AS = C. (2.16)

The mappingA −→ S−1AS is called a similarity transformation.

Theorem 2.6. Similar matrices have equal eigenvalues with equal multiplicities. If (λ,x) is an eigenpair
of A and C = S−1AS then (λ, S−1x) is an eigenpair of C.

Proof. • Ax = λx and C = S−1AS imply that

CS−1x = S−1ASS−1x = S−1λx.

Hence, A and C have equal eigenvalues and their geometric multiplicity is not changed by the similarity
transformation.

• det (λI − C) = det (λS−1S − S−1AS)

= det (S−1(λI −A)S) = det (S−1)det (λI −A)det (S) = det (λI −A)

Definition 2.7 Two matrices A and B are called unitarily similar if S in (2.16) is unitary. If the matrices
are real the term orthogonally similar is used.

7

Unitary similarity transformations are very important in numerical computation. Let U be unitary.
Then ‖U‖ = ‖U−1‖ = 1, so U ’s condition number κ(U) = 1. So, if C = U−1AU then C = U∗AU and
‖C‖ = ‖A‖. In particular, if A is disturbed by δA then

U∗(A+ δA)U = C + δC, ‖δC‖ = ‖δA‖.

That is, errors (perturbations) in A are not amplified by a unitary similarity transformation. This is in
contrast to arbitrary similarity transformations. However, small eigenvalues may suffer from large errors.

Another reason for the importance of unitary similarity transformations is the preservation of symmetry:
If A is symmetric then U−1AU = U∗AU is symmetric as well.

For generalized eigenvalue problems, similarity transformations are not so crucial since we can operate
with different matrices from both sides. If S and T are nonsingular

Ax = λBx ⇐⇒ TAS−1Sx = λTBS−1Sx,

Thus, σ(A; B) = σ(TAS−1, TBS−1). Let us consider a special case: let B = LU be the LU-
factorization of B. Then we set S = U and T = L−1 and obtain TBU−1 = L−1LUU−1 = I . Thus,
σ(A; B) = σ(L−1AU−1, I) = σ(L−1AU−1).

2.4 Schur decomposition

Theorem 2.8. (Schur decomposition) If A ∈ Cn×n then there is a unitary U ∈ Cn×n such that

U∗AU = T (2.17)

is upper triangular. The diagonal elements of T are the eigenvalues of A.

Proof. The proof is by induction. For n = 1, the theorem is obviously true.
Assume that the theorem holds for matrices of order≤ n− 1. Let (λ,x),

vertx
vert = 1, be an eigenpair of A, Ax = λx. We construct a unitary matrix U1 with first column x (e.g. the
Householder reflector U1 with U1x = e1). U1 = [x, U]. Then

U∗1AU1 =

[
x∗Ax x∗AU

U
∗
Ax U

∗
AU

]
=

[
λ × · · ·×
0 Â

]

as Ax = λx and U
∗
x = 0 by construction of U1. By assumption, there exists a unitary matrix Û ∈

C(n−1)×(n−1) such that Û∗ÂÛ = T̂ is upper triangular. Setting U := U1(1⊕ Û), we obtain (2.17)
Notice , that this proof is not constructive as we assume the knowledge of an eigenpair (λ,x). So, we

cannot employ it to actually compute the Schur form. The QR algorithm is used for this purpose. We will
discuss this basic algorithm in chapter 3.

Let U∗AU = T be the Schur decomposition of A with U = [u1,u2, . . . ,un]. The Schur decomposi-
tion can be written as AU = UT . The k-th column of this equation is

Auk = λuk +

k−1∑

i=1

tikui, λk = tkk . (2.18)

This implies that
Auk ∈ span{u1, . . . ,uk}, ∀k. (2.19)

Thus, the first k Schur vectors u1, . . . ,uk form an invariant subspace1 for A. From (2.18) it is clear
that the first Schur vector is an eigenvector of A. The further columns of U , however, are in general no
eigenvectors of A. Notice, that the Schur decomposition is not unique. In the proof we have chosen any
eigenvalue λ. This indicates that the eigenvalues can be arranged in any order in the diagonal of T . This
also indicates that the order with which the eigenvalues appear on T ’s diagonal can be manipulated.

1A subspace V ⊂ Fn is called invariant for A if AV ⊂ V .

8

Problem 2.9 Let

A =

[
λ1 α
0 λ2

]
.

Find an orthogonal 2× 2 matrix Q such that

Q∗AQ =

[
λ2 β
0 λ1

]
.

Hint: the first column of Q must be the (normalized) eigenvector of A with eigenvalue λ2.

2.5 The real Schur decomposition

Real matrices can have complex eigenvalues. If complex eigenvalues exist, then they occur in complex
conjugate pairs! That is, if λ is an eigenvalue of the real matrix A, then also λ̄ is an eigenvalue of A. The
following theorem indicated that complex computation can be avoided.

Theorem 2.10. (Real Schur decomposition) If A ∈ Rn×n then there is an orthogonal Q ∈ Rn×n such
that

Q∗AQ =




R11 R12 · · · R1m

R22 · · · R2m

. . .
...

Rmm


 (2.20)

is upper quasi-triangular. The diagonal blocks Rii are either 1 × 1 or 2 × 2 matrices. A 1 × 1 block
corresponds to a real eigenvalue, a 2× 2 block corresponds to pair of complex conjugate eigenvalues.

Remark 2.3. The matrix [
α β
−β α

]
, α, β ∈ R,

has the eigenvalues α+ iβ and α− iβ.

Proof. Let λ = α + iβ, β 6= 0, be an eigenvalue of A with eigenvector x = u + iv. Then λ̄ = α − iβ is
an eigenvalue corresponding to x̄ = u− iv. To see this we first observe that

Ax = A(u + iv) = Au + iAv,

λx = (α+ iβ)(u + iv) = (αu− βv) + i(βu− αv).

Thus,
Ax̄ = A(u− iv) = Au− iAv,

= (αu− βv) − i(βu + αv)

= (α− iβ)u− i(α− iβ)v = (α− iβ)(u− iv) = λ̄x̄.

Now, the actual proof starts. Let k be the number of komplex konjugate pairs. We prove the theorem by
induction on k.

First we consider the case k = 0. In this case A has real eigenvalues and eigenvectors. It is clear
that we can repeat the proof of the Schur decomposition of Theorem 2.8 in real arithmetic to get the
decomposition (2.17) with U ∈ Rn×n and T ∈ Rn×n. So, there are n diagonal blocks Rjj in (2.20) all of
which are 1× 1.

Let us now assume the the theorem is true for all matrices with fewer than k complex conjugate pairs.
Then, with λ = α+ iβ, β 6= 0 and x = u + iv, as previously, we have

A[u,v] = [u,v]

[
α β
−β α

]
.

9

Let {x1,x2} be an orthonormal basis of span([u,v]). Then, since u and v are linearly independent, there
is a nonsingular 2× 2 real square matrix C with

[x1,x2] = [u,v]C.

Now,

A[x1,x2] = A[u,v]C = A[u,v]

[
α β
−β α

]
C

= [x1,x2]C
−1

[
α β
−β α

]
C =: [x1,x2]S.

S and

[
α β
−β α

]
are similar and therefore have equal eigenvalues. Now we construct an orthogonal matrix

[x1,x2,x3, . . . ,xn] =: [x1,x2,W]. Then

[[x1,x2],W]TA[[x1,x2],W] =




xT1
xT2
W T


 [[x1,x2]S,AW] =

[
S [x1,x2]

TAW
O W TAW

]
.

The matrix W TAW has less than k complex-conjugate eigenvalue pairs. Therfore, by the induction as-
sumption, there is an orthogonalQ2 ∈ R(n−2)×(n−2) such that the matrix

QT2 (W TAW)Q2

is quasi-triangular. Thus, the orthogonal matrix

Q = [x1,x2,x3, . . . ,xn]

(
I2 O
O Q2

)

transforms A similarly to quasi-triangular form.

2.6 Hermitian matrices

Definition 2.11 A matrix A ∈ F
n×n is Hermitian if

A = A∗. (2.21)

The Schur decomposition for Hermitian matrices is particularly simple. We first note that A being
Hermitian implies that the upper triangular Λ in the Schur decomposition A = UΛU ∗ is Hermitian and
thus diagonal. In fact, because

Λ = Λ∗ = (U∗AU)∗ = U∗A∗U = U∗AU = Λ,

each diagonal element λi of Λ satisfies λi = λi. So, Λ has to be real. In summary have the following
result.

Theorem 2.12. (Spectral theorem for Hermitian matrices) Let A be Hermitian. Then there is a unitary
matrix U and a real diagonal matrix Λ such that

A = UΛU∗ =

n∑

i=1

λiuiu
∗
i . (2.22)

The columns u1, . . . ,un of U are eigenvectors corresponding to the eigenvalues λ1, . . . , λn. They form an
orthonormal basis for Fn.

10

The decomposition (2.22) is called a spectral decomposition of A.
As the eigenvalues are real we can sort them with respect to their magnitude. We can, e.g., arrange

them in ascending order such that λ1 ≤ λ2 ≤ · · · ≤ λn.
If λi = λj , then any nonzero linear combination of ui and uj is an eigenvector corresponding to λi,

A(uiα+ ujβ) = uiλiα+ ujλjβ = (uiα+ ujβ)λi.

However, eigenvectors corresponding to different eigenvalues are orthogonal. LetAu = uλ andAv = vµ,
λ 6= µ. Then

λu∗v = (u∗A)v = u∗(Av) = u∗vµ,

and thus
(λ− µ)u∗v = 0,

from which we deduce u∗v = 0 as λ 6= µ.
In summary, the eigenvectors corresponding to a particular eigenvalueλ form a subspace, the eigenspace

{x ∈ Fn, Ax = λx} = N (A − λI). They are perpendicular to the eigenvectors corresponding to all the
other eigenvalues. Therefore, the spectral decomposition (2.22) is unique up to ± signs if all the eigenval-
ues of A are distinct. In case of multiple eigenvalues, we are free to choose any orthonormal basis for the
corresponding eigenspace.

Remark 2.4. The notion of Hermitian or symmetric has a wider background. Let 〈x,y〉 be an inner
product on Fn. Then a matrix A is symmetric with respect to this inner product if 〈Ax,y〉 = 〈x, Ay〉 for
all vectors x and y. For the ordinary Euklidian inner product (x,y) = x∗y we arrive at the element-wise
definition 2.6 if we set x and y equal to coordinate vectors.

It is important to note that all the properties of Hermitian matrices that we will derive subsequently
hold similarly for matrices symmetric with respect to a certain inner product.

Example 2.13 We consider the one-dimensional Sturm-Liouville eigenvalue problem

−u′′(x) = λu(x), 0 < x < π, u(0) = u(π) = 0, (2.23)

that models the vibration of a homogenous string of length π that is fixed at both ends. The eigenvalues
and eigenvectors or eigenfunctions of (2.23) are

λk = k2, uk(x) = sin kx, k ∈ N.

Let u(n)
i denote the approximation of an (eigen)function u at the grid point xi,

ui ≈ u(xi), xi = ih, 0 ≤ i ≤ n+ 1, h =
π

n+ 1
.

We approximate the second derivative of u at the interior grid points by

1

h2
(−ui−1 + 2ui − ui+1) = λui, 1 ≤ i ≤ n. (2.24)

Collecting these equation and taking into account the boundary conditions, u0 = 0 and un+1 = 0, we get
a (matrix) eigenvalue problem

Tnx = λx (2.25)

where

Tn :=
(n+ 1)2

π2




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2



∈ R

n×n.

11

The matrix eigenvalue problem (2.25) can be solved explicitly [Zur64, p.229]. Eigenvalues and eigenvec-
tors are given by

λ
(n)
k =

(n+ 1)2

π2
(2− 2 cosφk) =

4(n+ 1)2

π2
sin2 kπ

2(n+ 1)
,

u
(n)
k =

(
2

n+ 1

)1/2

[sinφk, sin 2φk, . . . , sinnφk]
T , φk =

kπ

n+ 1
.

(2.26)

Clearly, λ(n)
k converges to λk as n → ∞. (Note that sin ξ → ξ as ξ → 0.) When we identify u

(n)
k with

the piecewise linear function that takes on the values given by u
(n)
k at the grid points xi then this function

evidently converges to sin kx.

Let p(λ) be a polynomial of degree d, p(λ) = α0 + α1λ+ α2λ
2 + · · ·+ αdλ

d. As Aj = (UΛU∗)j =
UΛjU∗ we can define a matrix polynomial as

p(A) =

d∑

j=0

αjA
j =

d∑

j=0

αjUΛjU∗ = U




d∑

j=0

αjΛ
j


U∗. (2.27)

This equation shows that p(A) has the same eigenvectors as the original matrix A. The eigenvalues are
modified though, λk becomes p(λk). We can imagine how more complicated functions of A can be com-
puted if only the function is defined on the set of eigenvalues of A.

Definition 2.14 The quotient

ρ(x) :=
x∗Ax

x∗x
, x 6= 0,

is called the Rayleigh quotient of A at x.

Notice, that ρ(xα) = ρ(x), α 6= 0. So, the properties of the Rayleigh quotient can be investigated by
just looking at its values on the unit sphere. Using the spectral decompositionA = UΛU , we get

x∗Ax =

n∑

i,j=1

(u∗i x)(u∗jx)uiAuj =

n∑

i=1

λi|u∗i x|2.

Similarly, x∗x =
∑n
i=1 |u∗i x|2. With λ1 ≤ λ2 ≤ · · · ≤ λn, we have

λ1

n∑

i=1

|u∗i x|2 ≤
n∑

i=1

λi|u∗i x|2 ≤ λn
n∑

i=1

|u∗i x|2.

So,
λ1 ≤ ρ(x) ≤ λn, for all x 6= 0.

As
ρ(uk) = λk ,

the extremal values λ1 and λn are actually attained for x = u1 and x = un, respectively. Thus we have
proved the following theorem.

Theorem 2.15. Let A be Hermitian. Then the Rayleigh quotient satisfies

λ1 = min ρ(x), λn = max ρ(x). (2.28)

As the Rayleigh quotient is a continuous function it attaines all values in the closed interval [λ1, λn].
The next theorem generalizes the above theorem to interior eigenvalues. The following theorems is

adhered to Poincaré, Fischer and Pólya.

12

Theorem 2.16. (Minimum-maximum principle) Let A be Hermitian. Then

λp = min
X∈Fn×p,rank(X)=p

max
x6=0

ρ(Xx) (2.29)

Proof. Let Up−1 = [u1, . . . ,up−1]. For everyX with full rank we can choose x 6= 0 such that U ∗p−1Xx =
0. Then 0 6= z := Xx =

∑n
i=p ziui. As in the proof of the previous theorem we obtain the inequality

ρ(z) ≥ λp.

To prove that equality holds in (2.29) we choose X = [u1, . . . ,up]. Then

U∗p−1Xx =




1 0
. . .

...
1 0


x = 0

implies that x = ep, i.e., that z = Xx = up. So, ρ(z) = λp.
The trace of a matrix A ∈ Fn×n is defined to be the sum of the diagonal elements of a matrix. Similar

matrices have equal traces. So, by the spectral theorem,

trace(A) =
n∑

i=1

aii =
n∑

i=1

λi. (2.30)

The following theorem is proved in a similar way as the minimum-maximum theorem.

Theorem 2.17. (Trace theorem)

λ1 + λ2 + · · ·+ λp = min
X∈Fn×p,X∗X=Ip

trace(X∗AX) (2.31)

2.7 Cholesky factorization

Definition 2.18 A Hermitian matrix is called positive definite (positive semi-definite) if all its eigenvalues
are positive (nonnegative).

We have the following

Theorem 2.19. (Cholesky factorization) Let A ∈ Fn×n be positive definite. Then there is a lower trian-
gular matrix L such that

A = LL∗. (2.32)

L is unique if we choose its diagonal elements to be positive.

Proof. We prove the Theorem by giving an algorithm that computes the desired factorization.
Since A is positive definite, we have a11 = e∗1Ae1 > 0. Therefore we can form the matrix

L1 =




l
(1)
11

l
(1)
21 1
...

. . .

l
(1)
n1 1




=




√
a11

a21√
a1,1

1

...
. . .

an1√
a1,1

1



.

We now form the matrix

A1 = L−1
1 AL−1

1

∗
=




1 0 . . . 0

0 a22 − a21a12
a11

. . . a2n − a21a1n
a11

...
...

. . .
...

0 an2 − an1a12
a11

. . . ann − an1a1n
a11


 .

13

This is the first step of the algorithm. Since (evidently) A1 is again positive definite, we can proceed in a
similar fashion factoringA1(2 :n, 2:n), etc.

Collecting L1, L2, . . . , we get

I = L−1
n · · ·L−1

2 L−1
1 A(L∗1)

−1(L∗2)
−1 · · · (L∗n)−1

or
(L1L2 · · ·Ln)(L∗n · · ·L∗2L∗1) = A.

which is the desired result. It is easy to see that L1L2 · · ·Ln is a triangular matrix and that

L1L2 · · ·Ln =




l
(1)
11

l
(1)
21 l

(2)
22

l
(1)
31 l

(2)
32 l

(3)
33

...
...

...
. . .

l
(1)
n1 l

(2)
n2 l

(3)
n3 . . . l

(n)
nn




Remark 2.5. When working with symmetric matrices, one often stores only half of the matrix, e.g. the
lower triangle consiting of all elements including and below the diagonal. The L-factor of the Cholesky
factorization can overwrite this information to save memory.

Definition 2.20 The inertia of a Hermitian matrix is the triple (ν, ζ, π) where ν, ζ, π is the number of
negative, zero, and positive eigenvalues.

Theorem 2.21. (Sylvester’s law of inertia) If A ∈ R
n×n is symmetric and X ∈ R

n×n is nonsingular, the
A and XTAX have the smae inertia.

Proof. The proof is given in [GvL89].

Remark 2.6. Matrices A andB = XTAX , X nonsingular, are called congruent. Thus Sylvester’s law of
inertia can be stated in the form: The inertia is invariant under congruence transformations.

2.8 The singular value decomposition (SVD)F

Theorem 2.22. (Singular value decomposition) If A ∈ Cm×n then there exist unitary matrices U ∈
Cm×m and V ∈ Cn×n such that

U∗AV = Σ = diag(σ1, . . . , σp), p = min(m,n), (2.33)

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof. If A = O, then the theorem holds with U the m×m and V the n× n identity matrix and Σ equal
to the m× n zero matrix.

We now assume, that A 6= O. Let x, ‖x‖ = 1, be a maximizing vector of ‖Ax‖ and let Ax = σy
where σ = ‖A‖ = ‖Ax‖ and ‖y‖ = 1. As A 6= O, σ > 0. Consider the scalar function

f(α) :=
‖A(x + αy)‖2
‖x + αy‖2 =

(x + αy)∗A∗A(x + αy)

(x + αy)∗(x + αy)

Because of the extremality of Ax, the derivative f ′(0) of f(α) must vanish in α = 0. This for all y! We
have

df

dα
(α) =

(x∗A∗Ay + ᾱy∗A∗Ay)‖x + αy‖2 − (x∗y + ᾱy∗y)‖A(x + αy)‖2
‖x + αy‖4

14

Thus, we must have for all y,

df

dα
(α)

∣∣∣∣
α=0

=
x∗A∗Ay‖x‖2 − x∗y‖A(x)‖2

‖x‖4 = 0.

As ‖x‖ = 1 and ‖Ax‖ = σ, we have

(x∗A∗A− σ2x∗)y = (A∗Ax− σ2x)∗y = 0, for all y,

from which
A∗Ax = σ2x

follows. Multiplying Ax = σy from the left by A∗ we get A∗Ax = σA∗y = σ2x from which

A∗y = σx

andAA∗y = σAx = σ2y follows. Therefore, x is an eigenvector of A∗A corresponding to the eigenvalue
σ2 and y is an eigenvector of AA∗ corresponding to the same eigenvalue.

Now, we construct a unitary matrix U1 with first column y and a unitary matrix V1 with first column x,
U1 = [y, Ū] and V1 = [x, V̄]. Then

U∗1AV1 =

[
y∗Ax y∗AU

U
∗
Ax U

∗
AV

]
=

[
σ σx∗U

σU
∗
y U

∗
AV

]
=

[
σ 0∗

0 Â

]

where Â = U
∗
AV .

This proof is due to W. Gragg. It nicely shows the relation of the singular value decomposition with
the spectral decomposition of the Hermitian matrices A∗A and AA∗,

A = UΣV ∗ =⇒ A∗A = UΣ2U∗, AA∗ = V Σ2V ∗. (2.34)

The proof given in [GvL89] is shorter and maybe more elegant.
The SVD of dense matrices is computed in a way thet is very similar to the dense Hermitian eigenvalue

problem.
Let us consider the (n+m)× (n+m) Hermitian matrix

[
O A
A∗ O

]
. (2.35)

Making use of the SVD (2.33) we immediately get
[
O A
A∗ O

]
=

[
U O
O V

][
O Σ
ΣT O

] [
U∗ O
O V ∗

]
.

Now, let us assume that m ≥ n. Then we write U = [U1, U2] where U1 ∈ Fm×n and Σ =

[
Σ1

O

]
with

Σ1 ∈ Rn×n. Then

[
O A
A∗ O

]
=

[
U1 U2 O
O O V

]

O O Σ1

O O O
Σ1 O O





U∗1 O
U∗2 O
O V ∗


 =

[
U1 O U2

O V O

]

O Σ1 O
Σ1 O O
O O O





U∗1 O
O V ∗

U∗2 O


 .

The first and third diagonal zero blocks have order n. The middle diagonal block has order n −m. Now
we emply the fact that

[
0 σ
σ 0

]
=

1√
2

[
1 1
1 −1

] [
σ 0
0 −σ

]
1√
2

[
1 1
1 −1

]

to obtain
[
O A
A∗ O

]
=

[
1√
2
U1

1√
2
U1 U2

1√
2
V − 1√

2
V O

]

Σ1 O O
O −Σ1 O
O O O






1√
2
U∗1

1√
2
V ∗

1√
2
U∗1 − 1√

2
V ∗

U∗2 O


 . (2.36)

Thus, there are three ways how to treat the computation of the singular value decomposition as an eigen-
value problem. One of the two forms in (2.34) is used implicitly in the QR algorithm for dense matrices A,
see [GvL89],[ABB+94]. The form (2.35) is suited if A is a sparse matrix.

15

Bibliography

[ABB+94] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide - Release
2.0. SIAM, Philadelphia, PA, 1994. (Software and guide are available from Netlib at URL
http://www.netlib.org/lapack/).

[GvL89] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, 2nd edition, 1989.

[Zur64] R. Zurmühl. Matrizen und ihre technischen Anwendungen. Springer, Berlin, 4th edition, 1964.

16

Chapter 3

The QR Algorithm

The QR algorithm computes the Schur decomposition of a matrix. It is quite certainly the most important
algorithm in eigenvalue computations. However it is applied to dense (or full) matrices only.

The QR algorithm consists of two separate stages. First the original matrix is similarly transformed
in a finite number of steps into Hessenberg or in the Hermitian/symmetric case into real tridiagonal form.
In order to retain the information on eigenvalues and vectors this is done by similarity transformations.
This first stage of the algorithm prepares its second stage, the actual QR iteration that is applied to the
Hessenberg or tridiagonal matrix. The overall complexity (number of floating points) of the algorithm is
O(n3) which we will see is not entirely trivial to obtain.

The main limit of the QR algorithm is first of all the property of the first stage that fills general sparse
matrices. So, it cannot be applied to sparse matrices because of its memory requirements. However, the
QR algorithm computes all eigenvalues (and eventually vectors) which is not desired in sparse matrix
computations anyway.

The treatment of the QR algorithm in these lecture notes on large scale eigenvalue computation is jus-
tified in two respects. First, there are of course large or even huge dense eigenvalue problems. Second, the
QR algorithm is employed in most other algorithms to solve ‘interior’ small auxiliary eigenvalue problems.

3.1 The basic QR algorithm

In 1958 Rutishauser [Rut58] of ETH Zürich experimented with a similar algorithm that we are going to
present, but based on the LR factorization, i.e., based on Gaussian elimination without pivoting. That
algorithm was not successful as the LR factorization (nowadays called LU factorization) is not stable
without pivoting. Francis [Fra61, Fra62] noticed that the QR factorization would do and devised the QR
algorithm with all bells and whistles as it is used nowadays.

Here we start with a basic iteration, given in Algorithm 3.1, discuss its properties and improve on it
step by step until we arrive at Francis’ algorithm.

1: Let A ∈ Cn×n. This algorithm computes an upper triangular matrix T and a unitary matrix U such
that A = UTU∗ is the Schur decomposition of A.

2: Set A0 := A and U0 = I .
3: for k=1,2,. . . do
4: Ak−1 =: QkRk; {QR factorization}
5: Ak := RkQk;
6: Uk := Uk−1Qk; {Update transformation matrix}
7: end for
8: Set T := A∞ and U := U∞.

ALGORITHM 3.1: Basic QR algorithm

17

We notice first that
Ak = RkQk = Q∗kAk−1Qk. (3.1)

so that Ak and Ak−1 are unitarily similar. The matrix sequence {Ak} converges (under certain assump-
tions) towards an upper triangular matrix [Wil65]. If we assume that the eigenvalues are numbered such
that |λ1| > |λ2| > · · · > |λn|, then the elements of Ak below the diagonal behave like

|a(k)
ij | = O(|λi

λj
|), i > j. (3.2)

From (3.1) we see that

Ak = Q∗kAk−1Qk = Q∗kQ
∗
k−1Ak−2Qk−1Qk = · · · = Q∗k · · ·Q∗1A0Q1 · · ·Qk︸ ︷︷ ︸

Uk

. (3.3)

With the same assumption on the eigenvalues, Ak tends to an upper triangular and Uk converges to the
matrix of Schur vectors.

3.1.1 Numerical experiments

We conduct two MATLAB experiments to illustrate the convergence rate given in (3.2). To that end, we
construct a random 4× 4 matrix with eigenvalues 1, 2, 3, and 4.

D = diag([4 3 2 1]);
rand(’seed’,0);
format short e
S=rand(4); S = (S - .5)*2;
A = S*D/S % A_0 = A = S*D*Sˆ{-1}
for i=1:20,

[Q,R] = qr(A); A = R*Q
end

This yields the matrix sequence

A(0) = [-4.4529e-01 4.9063e+00 -8.7871e-01 6.3036e+00]
[-6.3941e+00 1.3354e+01 1.6668e+00 1.1945e+01]
[3.6842e+00 -6.6617e+00 -6.0021e-02 -7.0043e+00]
[3.1209e+00 -5.2052e+00 -1.4130e+00 -2.8484e+00]

A(1) = [5.9284e+00 1.6107e+00 9.3153e-01 -2.2056e+01]
[-1.5294e+00 1.8630e+00 2.0428e+00 6.5900e+00]
[1.9850e-01 2.5660e-01 1.7088e+00 1.2184e+00]
[2.4815e-01 1.5265e-01 2.6924e-01 4.9975e-01]

A(2) = [4.7396e+00 1.4907e+00 -2.1236e+00 2.3126e+01]
[-4.3101e-01 2.4307e+00 2.2544e+00 -8.2867e-01]
[1.2803e-01 2.4287e-01 1.6398e+00 -1.8290e+00]
[-4.8467e-02 -5.8164e-02 -1.0994e-01 1.1899e+00]

A(3) = [4.3289e+00 1.0890e+00 -3.9478e+00 -2.2903e+01]
[-1.8396e-01 2.7053e+00 1.9060e+00 -1.2062e+00]
[6.7951e-02 1.7100e-01 1.6852e+00 2.5267e+00]
[1.3063e-02 2.2630e-02 7.9186e-02 1.2805e+00]

A(4) = [4.1561e+00 7.6418e-01 -5.1996e+00 2.2582e+01]
[-9.4175e-02 2.8361e+00 1.5788e+00 2.0983e+00]
[3.5094e-02 1.1515e-01 1.7894e+00 -2.9819e+00]
[-3.6770e-03 -8.7212e-03 -5.7793e-02 1.2184e+00]

A(5) = [4.0763e+00 5.2922e-01 -6.0126e+00 -2.2323e+01]
[-5.3950e-02 2.9035e+00 1.3379e+00 -2.5358e+00]
[1.7929e-02 7.7393e-02 1.8830e+00 3.2484e+00]

18

[1.0063e-03 3.2290e-03 3.7175e-02 1.1372e+00]

A(6) = [4.0378e+00 3.6496e-01 -6.4924e+00 2.2149e+01]
[-3.3454e-02 2.9408e+00 1.1769e+00 2.7694e+00]
[9.1029e-03 5.2173e-02 1.9441e+00 -3.4025e+00]
[-2.6599e-04 -1.1503e-03 -2.1396e-02 1.0773e+00]

A(7) = [4.0189e+00 2.5201e-01 -6.7556e+00 -2.2045e+01]
[-2.1974e-02 2.9627e+00 1.0736e+00 -2.9048e+00]
[4.6025e-03 3.5200e-02 1.9773e+00 3.4935e+00]
[6.8584e-05 3.9885e-04 1.1481e-02 1.0411e+00]

A(8) = [4.0095e+00 1.7516e-01 -6.8941e+00 2.1985e+01]
[-1.5044e-02 2.9761e+00 1.0076e+00 2.9898e+00]
[2.3199e-03 2.3720e-02 1.9932e+00 -3.5486e+00]
[-1.7427e-05 -1.3602e-04 -5.9304e-03 1.0212e+00]

A(9) = [4.0048e+00 1.2329e-01 -6.9655e+00 -2.1951e+01]
[-1.0606e-02 2.9845e+00 9.6487e-01 -3.0469e+00]
[1.1666e-03 1.5951e-02 1.9999e+00 3.5827e+00]
[4.3933e-06 4.5944e-05 3.0054e-03 1.0108e+00]

A(10) = [4.0024e+00 8.8499e-02 -7.0021e+00 2.1931e+01]
[-7.6291e-03 2.9899e+00 9.3652e-01 3.0873e+00]
[5.8564e-04 1.0704e-02 2.0023e+00 -3.6041e+00]
[-1.1030e-06 -1.5433e-05 -1.5097e-03 1.0054e+00]

A(11) = [4.0013e+00 6.5271e-02 -7.0210e+00 -2.1920e+01]
[-5.5640e-03 2.9933e+00 9.1729e-01 -3.1169e+00]
[2.9364e-04 7.1703e-03 2.0027e+00 3.6177e+00]
[2.7633e-07 5.1681e-06 7.5547e-04 1.0027e+00]

A(12) = [4.0007e+00 4.9824e-02 -7.0308e+00 2.1912e+01]
[-4.0958e-03 2.9956e+00 9.0396e-01 3.1390e+00]
[1.4710e-04 4.7964e-03 2.0024e+00 -3.6265e+00]
[-6.9154e-08 -1.7274e-06 -3.7751e-04 1.0014e+00]

A(13) = [4.0003e+00 3.9586e-02 -7.0360e+00 -2.1908e+01]
[-3.0339e-03 2.9971e+00 8.9458e-01 -3.1558e+00]
[7.3645e-05 3.2052e-03 2.0019e+00 3.6322e+00]
[1.7298e-08 5.7677e-07 1.8857e-04 1.0007e+00]

A(14) = [4.0002e+00 3.2819e-02 -7.0388e+00 2.1905e+01]
[-2.2566e-03 2.9981e+00 8.8788e-01 3.1686e+00]
[3.6855e-05 2.1402e-03 2.0014e+00 -3.6359e+00]
[-4.3255e-09 -1.9245e-07 -9.4197e-05 1.0003e+00]

A(15) = [4.0001e+00 2.8358e-02 -7.0404e+00 -2.1902e+01]
[-1.6832e-03 2.9987e+00 8.8305e-01 -3.1784e+00]
[1.8438e-05 1.4284e-03 2.0010e+00 3.6383e+00]
[1.0815e-09 6.4192e-08 4.7062e-05 1.0002e+00]

A(16) = [4.0001e+00 2.5426e-02 -7.0413e+00 2.1901e+01]
[-1.2577e-03 2.9991e+00 8.7953e-01 3.1859e+00]
[9.2228e-06 9.5295e-04 2.0007e+00 -3.6399e+00]
[-2.7039e-10 -2.1406e-08 -2.3517e-05 1.0001e+00]

A(17) = [4.0000e+00 2.3503e-02 -7.0418e+00 -2.1900e+01]
[-9.4099e-04 2.9994e+00 8.7697e-01 -3.1917e+00]
[4.6126e-06 6.3562e-04 2.0005e+00 3.6409e+00]
[6.7600e-11 7.1371e-09 1.1754e-05 1.0000e+00]

A(18) = [4.0000e+00 2.2246e-02 -7.0422e+00 2.1899e+01]
[-7.0459e-04 2.9996e+00 8.7508e-01 3.1960e+00]
[2.3067e-06 4.2388e-04 2.0003e+00 -3.6416e+00]
[-1.6900e-11 -2.3794e-09 -5.8750e-06 1.0000e+00]

19

A(19) = [4.0000e+00 2.1427e-02 -7.0424e+00 -2.1898e+01]
[-5.2787e-04 2.9997e+00 8.7369e-01 -3.1994e+00]
[1.1535e-06 2.8265e-04 2.0002e+00 3.6421e+00]
[4.2251e-12 7.9321e-10 2.9369e-06 1.0000e+00]

A(20) = [4.0000e+00 2.0896e-02 -7.0425e+00 2.1898e+01]
[-3.9562e-04 2.9998e+00 8.7266e-01 3.2019e+00]
[5.7679e-07 1.8846e-04 2.0002e+00 -3.6424e+00]
[-1.0563e-12 -2.6442e-10 -1.4682e-06 1.0000e+00]

Looking at the element-wise quotients of the last two matrices one recognizes the convergence rates
claimed in (3.2).

A(20)./A(19) = [1.0000 0.9752 1.0000 -1.0000]
[0.7495 1.0000 0.9988 -1.0008]
[0.5000 0.6668 1.0000 -1.0001]
[-0.2500 -0.3334 -0.4999 1.0000]

The elements above and on the diagonal are relatively stable.
If we run the same little MATLAB script but with the initial diagonal matrix D replaced by

D = diag([5 2 2 1]);

then we obtain

A(19) = [5.0000e+00 4.0172e+00 -9.7427e+00 -3.3483e+01]
[-4.2800e-08 2.0000e+00 2.1100e-05 -4.3247e+00]
[1.3027e-08 7.0605e-08 2.0000e+00 2.1769e+00]
[8.0101e-14 -2.4420e-08 4.8467e-06 1.0000e+00]

A(20) = [5.0000e+00 4.0172e+00 -9.7427e+00 3.3483e+01]
[-1.7120e-08 2.0000e+00 1.0536e-05 4.3247e+00]
[5.2106e-09 3.3558e-08 2.0000e+00 -2.1769e+00]
[-1.6020e-14 1.2210e-08 -2.4234e-06 1.0000e+00]

So, again the eigenvalues are visible on the diagonal of A20. The element-wise quotients of A20 relative to
A19 are

A(20)./A(19) = [1.0000 1.0000 1.0000 -1.0000]
[0.4000 1.0000 0.4993 -1.0000]
[0.4000 0.4753 1.0000 -1.0000]
[-0.2000 -0.5000 -0.5000 1.0000]

Notice that (3.2) does not state a rate for the element at position (3, 2).
These little numerical tests are intended to demonstrate that the convergence rates given in (3.2) are in

fact seen in a real run of the basic QR algorithm. The conclusions we draw are the following:

1. The convergence of the algorithm is slow. In fact it can be arbitrary slow if eigenvalues are very
close to each other.

2. The algorithm is expensive. Each iteration step requires the computation of the QR factorization of
a full n × n matrix, i.e., each single iteration step has a complexity O(n3). Even if we assume that
the number of steps is proportional to n we would get an O(n4) complexity. The latter assumption
is not assured by point 1 of these conclusions.

In the following we want to improve on both issues. First we want to find a matrix structure that is
preserved by the QR algorithm and that lowers the cost of a single iteration step. Then, we want to improve
on the convergence properties of the algorithm.

3.2 The Hessenberg QR algorithm

A matrix structure that is close to upper triangular form and that is preserved by the QR algorithm is the
Hessenberg form.

20

Definition 3.1 A matrix H is a Hessenberg matrix if its elements below the lower off-diagonal are zero,

hij = 0, i > j + 1.

Theorem 3.2. The Hessenberg form is preserved by the QR algorithms.

Proof. We give a constructive proof, i.e., given a Hessenberg matrix H with QR factorization H = QR,
we show that H = RQ is again a Hessenberg matrix.

The Givens rotationG(i, j, ϑ) is defined by

G(i, j, ϑ) :=




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




← i

← j

↑ ↑
i j

(3.4)

where c = cos(ϑ) and s = sin(ϑ). Pre-multiplication by G(i, j, ϑ) amounts to a counterclockwise rotation
by ϑ radians in the (i, j) coordinate plane. Clearly, a Givens rotation is an orthogonal matrix. For a unitary
version see [Dem97]. If x ∈ Rn and y = G(i, j, ϑ)∗x, then

yk =





cxi − sxj , k = i
sxi + cxj , k = j
xk, k 6= i, j

We can force yj to be zero by setting

c =
xi√

|xi|2 + |xj |2
, s =

−xj√
|xi|2 + |xj |2

. (3.5)

Thus it is a simple matter to zero a single specific entry in a vector by using a Givens rotation.
Now, let us look at a Hessenberg matrix H . We can show the principle procedure by means of a 4× 4

example.

H =




× × × ×
× × × ×
0 × × ×
0 0 × ×



G(1, 2, ϑ1)

∗·−−−−−−−−−→




× × × ×
0 × × ×
0 × × ×
0 0 × ×




G(2, 3, ϑ2)
∗·−−−−−−−−−→




× × × ×
0 × × ×
0 0 × ×
0 0 × ×



G(3, 4, ϑ3)

∗·−−−−−−−−−→




× × × ×
0 × × ×
0 0 × ×
0 0 0 ×


 = R

So, with Gk = G(k, k + 1, ϑk), we get

G∗3G
∗
2G

∗
1︸ ︷︷ ︸

Q∗

G = R ⇐⇒ H = QR.

Multiplying Q and R in reversed order gives

H = RQ = RG1G2G3,

21

or, pictorially,

R =




× × × ×
0 × × ×
0 0 × ×
0 0 0 ×



·G(1, 2, ϑ1)−−−−−−−−→




× × × ×
× × × ×
0 0 × ×
0 0 0 ×




·G(2, 3, ϑ2)−−−−−−−−→




× × × ×
× × × ×
0 × × ×
0 0 0 ×



·G(3, 4, ϑ1)−−−−−−−−→




× × × ×
× × × ×
0 × × ×
0 0 × ×


 = H

More generally, if H is n × n, n − 1 Givens rotations G1, . . . , Gn−1 are needed to transform H to upper
triangular form. Applying the rotations from the right restores the Hessenberg form.

3.2.1 A numerical experiment

We repeat one of the previous two MATLAB experiments

D = diag([4 3 2 1]);
rand(’seed’,0);
S=rand(4); S = (S - .5)*2;
A = S*D/S % A_0 = A = S*D*Sˆ{-1}
H = hess(A); % built-in MATLAB function

for i=1:30,
[Q,R] = qr(H); H = R*Q

end

This yields the matrix sequence

H(0) = [-4.4529e-01 -1.8641e+00 -2.8109e+00 7.2941e+00]
[8.0124e+00 6.2898e+00 1.2058e+01 -1.6088e+01]
[0.0000e+00 4.0087e-01 1.1545e+00 -3.3722e-01]
[0.0000e+00 0.0000e+00 -1.5744e-01 3.0010e+00]

H(5) = [4.0763e+00 -2.7930e+00 -7.1102e+00 2.1826e+01]
[5.6860e-02 2.4389e+00 -1.2553e+00 -3.5061e+00]
[-2.0209e-01 2.5681e+00 -2.1805e+00]
[4.3525e-02 9.1667e-01]

H(10) = [4.0024e+00 -6.2734e-01 -7.0227e+00 -2.1916e+01]
[7.6515e-03 2.9123e+00 -9.9902e-01 3.3560e+00]
[-8.0039e-02 2.0877e+00 3.3549e+00]
[-7.1186e-04 9.9762e-01]

H(15) = [4.0001e+00 -1.0549e-01 -7.0411e+00 2.1902e+01]
[1.6833e-03 2.9889e+00 -8.9365e-01 -3.2181e+00]
[-1.2248e-02 2.0111e+00 -3.6032e+00]
[2.0578e-05 9.9993e-01]

H(20) = [4.0000e+00 -3.1163e-02 -7.0425e+00 -2.1898e+01]
[3.9562e-04 2.9986e+00 -8.7411e-01 3.2072e+00]
[-1.6441e-03 2.0014e+00 3.6377e+00]
[-6.3689e-07 1.0000e-00]

H(25) = [4.0000e+00 -2.1399e-02 -7.0428e+00 2.1897e+01]
[9.3764e-05 2.9998e+00 -8.7056e-01 -3.2086e+00]
[-2.1704e-04 2.0002e+00 -3.6423e+00]
[1.9878e-08 1.0000e-00]

H(30) = [4.0000e+00 -2.0143e-02 -7.0429e+00 -2.1897e+01]
[2.2247e-05 3.0000e+00 -8.6987e-01 3.2095e+00]

22

[-2.8591e-05 2.0000e+00 3.6429e+00]
[-6.2108e-10 1.0000e-00]

Finally we compute the element-wise quotients of the last two matrices.

H(30)./H(29) = [1.0000 0.9954 1.0000 -1.0000]
[0.7500 1.0000 0.9999 -1.0000]
[0.6667 1.0000 -1.0000]
[-0.5000 1.0000]

Again the elements in the lower off-diagonal reflect nicely the convergence rates in (3.2).

3.2.2 Complexity

We give the algorithm for a single Hessenberg-QR-step in a MATLAB - like way, see Algorithm 3.2. By

Hk:j,m:n

we denote the submatrix of H consisting of rows k through j and columns m through n.

1: Let H ∈ Cn×n be an upper Hessenberg matrix. This algorithm overwrites H with H = RQ where
H = QR is the QR factorization of H .

2: for k=1,2,. . . ,n-1 do
3: /* Generate Gk and then apply it: H = G(k, k+1, ϑk)

∗H */
4: [ck, sk] := givens(Hk,k, Hk+1,k);

5: Hk:k+1,k:n =

[
ck −sk
sk ck

]
Hk:k+1,k:n;

6: end for
7: for k=1,2,. . . ,n-1 do
8: /* Apply the rotations Gk from the right */

9: H1:k+1,k:k+1 = H1:k+1,k:k+1

[
ck sk
−sk ck

]
;

10: end for

ALGORITHM 3.2: A Hessenberg QR step

If we neglect the determination of the two values ck and sk, see (3.5). Then both loops require

n−1∑

i=1

6i = 6
n(n− 1)

2
≈ 3n2 flops.

A flop is a floating point operation (+,−,×, /). We do not distinguish between them, although they may
differ in there execution time on a computer. We probably also have to execute the operation Uk :=
Uk−1Qk of Algorithm 3.1. This is achieved by the loop similar to the second loop in Algorithm 3.2. Since

1: for k=1,2,. . . ,n-1 do

2: U1:n,k:k+1 = U1:n,k:k+1

[
ck sk
−sk ck

]
;

3: end for

here the whole columns of U are involved executing the loop costs

n−1∑

i=1

6n ≈ 6n2 flops.

Altogether, a QR step with a matrix Hessenberg including the update of the unitary transformation matrix
requires 12n2 floating point operations. This has to be set in relation to a QR step with a full matrix that
costs 7

3n
3. By consequence, we have gained O(n) operations by moving from dense to Hessenberg form.

However, we may still have very slow convergence if one of the quotients |λk |/|λk+1| is close to 1.

23

3.3 The Householder reduction to Hessenberg form

In the previous section we found that is a good idea to perform the QR algorithm with Hessenberg matrices
instead of with full matrices. But we have not discussed how we (similarly) transform a full matrix into
Hessenberg form. We catch up on this issue in this section.

3.3.1 Householder reflectors

Givens rotations are designed to zero a single element in a vector. Householder reflectors are more efficient
if a number of elements of a vector are to be zeroed at once. Here, we follow the presentation given
in [GvL89].

Definition 3.3 A matrix of the form

P = I − 2uu∗, ‖u‖ = 1,

is called a Householder reflector.

It is easy to verify that Householder reflectors are Hermitian and that P 2 = I . From this we deduce that P
is unitary. It is clear that we only have to store the Householder vector u to be able to multiply a vector
(or a matrix) with P ,

Px = x− u(2u∗x). (3.6)

This multiplication only costs 4n flops where n is the length of the vectors.
A task that we repeatedly want to carry out with Householder reflectors is to transform a vector x on a

multiple of e1,
Px = x− u(2u∗x) = αe1.

Since P is unitary, we must have α = ρ‖x‖, where ρ ∈ C has absolute value one. Therefore,

u =
x− ρ‖x‖e1

‖x− ρ‖x‖e1‖
=

1

‖x− ρ‖x‖e1‖




x1 − ρ‖x‖
x2

...
xn




We can freely choose ρ provided that |ρ| = 1. Let x1 = |x1|eiφ. To avoid cancellation we set ρ = −eiφ.
In the real case, one commonly sets ρ = −sign(x1). If x1 = 0 we can set ρ in any way.

3.3.2 Reduction to Hessenberg form

Now we show how to use Householder reflectors to reduce an arbitrary square matrix to Hessenberg form.
We show the idea by means of a 5× 5 example. In the first step of the reduction we introduce zeros in the
first column below the second element,

A =




× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×



P1∗−−−→




× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×



∗P1−−−→




× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×




= P ∗1AP1.

Notice that P1 = P ∗1 since it is a Householder reflector! It has the structure

P1 =




1 0 0 0 0
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×




=

[
1 0T

0 I4 − 2u1u
∗
1

]
.

24

The Householder vector u1 is determined such that

(I − 2u1u
∗
1)




a21

a31

a41

a51


 =




α
0
0
0


 with u1 =




u1

u2

u3

u4


 .

The multiplication of P1 from the left inserts the desired zeros in column 1 of A. The multiplication from
the right is necessary in order to have similarity. Because of the nonzero structure of P1 the first column of
P1A is not affected. Hence, the zeros stay there.

The reduction continues in a similar way:

P1AP1 =




× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×



P2 ∗ / ∗ P2−−−−−−−−→




× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×




P3 ∗ / ∗ P3−−−−−−−−→




× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×




= P3P2P1AP1P2P3︸ ︷︷ ︸
U

.

1: This algorithm reduces a matrix A ∈ C
n×n to Hessenberg form H by a sequence of Householder

reflections. H overwrites A.
2: for k = 1 to n−2 do
3: Generate the Householder reflector Pk;
4: {Apply Pk = Ik ⊕ (In−k − 2ukuk

∗) from the left to A}
5: Ak+1:n,k:n := Ak+1:n,k:n − 2uk(uk

∗Ak+1:n,k:n);
6: {Apply Pk from the right, A := APk}
7: A1:n,k+1:n := A1:n,k+1:n − 2(A1:n,k+1:nuk)uk

∗;
8: end for
9: if eigenvectors are desired form U = P1 · · ·Pn−2 then

10: U := In;
11: for k = n−2 downto 1 do
12: {Update U := PkU}
13: Uk+1:n,k+1:n := Uk+1:n,k+1:n − 2uk(uk

∗Uk+1:n,k+1:n);
14: end for
15: end if

ALGORITHM 3.3: Reduction to Hessenberg form

Algorithm 3.3 gives the details for the general n× n case. In step 4 of this algorithm, the Householder
reflector is generated such that

(I − 2uku
∗
k)




ak+1,k

ak+2,k

...
an,k


 =




α
0
0
0


 with uk =




u1

u2

...
un−k


 and |α| = ‖x‖

according to the considerations of the previous subsection. The Householder vectors are stored at the
locations of the zeros. Therefore the matrix U = P1 · · ·Pn−2 that effects the similarity transformation
from the full A to the Hessenberg H is computed after all Householder vectors have been generated, thus
saving (2/3)n3 flops. The overall complexity of the reduction is

25

• Application of Pk from the left:
n−2∑
k=1

4(n− k − 1)(n− k) ≈ 4
3n

3

• Application of Pk from the right:
n−2∑
k=1

4(n)(n− k) ≈ 2n3

• Form U = P1 · · ·Pn−2:
n−2∑
k=1

4(n− k)(n− k) ≈ 4
3n

3

Thus, the reduction to Hessenberg form costs 10
3 n

3 flops without forming the transforming matrix and
14
3 n

3 including forming this matrix.

3.4 Improving the convergence of the QR algorithms

We have seen how the QR algorithm for computing the Schur form of a matrix A can be executed more
economically if the matrix A is first transformed to Hessenberg form. Now we want to show how the
convergence of the Hessenberg QR algorithm can be improved dramatically by introducing (spectral)
shifts into the algorithm.

Lemma 3.4. Let H be an irreducible Hessenberg matrix, i.e., hi+1,i 6= 0 for all i = 1, . . . , n − 1. Let
H = QR be the QR factorization of H . Then for the diagonal elements of R we have

|rkk | > 0 for all k < n.

Thus, if H is singular then rnn = 0.

Proof. Let us look at the k-th step of the Hessenberg QR factorization. For illustration, let us consider the
case k = 3 in a 5× 5 example, where the matrix has the structure




+ + + + +
0 + + + +
0 0 + + +
0 0 × × ×
0 0 0 × ×



.

The plus-signs indicate elements that have been modified. In step 3, the (nonzero) element h43 will be
zeroed by a Givens rotation G(3, 4, ϕ) that is determined such that

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

] [
h̃kk
hk+1,k

]
=

[
rkk
0

]
.

Because the Givens rotation preserves vector lengths, we have

|rkk |2 = |h̃kk |2 + |hk+1,k|2 ≥ |hk+1,k|2 > 0,

which confirms the claim.
We apply this Lemma to motivate a further strategy to speed up the convergence of the QR algorithm.
Let λ be an eigenvalue of the irreducible Hessenberg matrix H . Let us check what happens it we

perform

1: H − λI = QR {QR factorization}
2: H = RQ+ λI

First we notice that H ∼ H . In fact,

H = Q∗(H − λI)Q+ λI = Q∗HQ.

26

Second, by Lemma 3.4 we have

H − λI = QR, with R =

[

0

]
.

Thus,

RQ =

[

00

]

and

H = RQ+ λI =

[

λ0

]
=

[
H1 h1

0T λ

]
.

So, if we apply a QR step with a perfect shift to a Hessenberg matrix, the eigenvalue drops out. We then
could deflate, i.e., proceed the algorithm with the smaller matrix H1.

Remark 3.1. We could prove the existence of the Schur decomposition in the following way. (1) transform
the arbitrary matrix to Hessenberg form. (2) Do the perfect shift Hessenberg QR with the eigenvalues
which we known to exist one after the other.

3.4.1 A numerical example

We use a matrix of a previous MATLAB experiments to show that perfect shifts actually work.

D = diag([4 3 2 1]); rand(’seed’,0);
S=rand(4); S = (S - .5)*2;
A = S*D/S;
format short e
H = hess(A)
[Q,R] = qr(H - 2*eye(4))
H1 = R*Q + 2*eye(4)
format long
lam eig(H1(1:3,1:3))

MATLAB produces the output

H = [-4.4529e-01 -1.8641e+00 -2.8109e+00 7.2941e+00]
[8.0124e+00 6.2898e+00 1.2058e+01 -1.6088e+01]
[4.0087e-01 1.1545e+00 -3.3722e-01]
[-1.5744e-01 3.0010e+00]

Q = [-2.9190e-01 -7.6322e-01 -4.2726e-01 -3.8697e-01]
[9.5645e-01 -2.3292e-01 -1.3039e-01 -1.1810e-01]
[6.0270e-01 -5.9144e-01 -5.3568e-01]
[-6.7130e-01 7.4119e-01]

R = [8.3772e+00 4.6471e+00 1.2353e+01 -1.7517e+01]
[6.6513e-01 -1.1728e+00 -2.0228e+00]
[2.3453e-01 -1.4912e+00]
[-2.4425e-14]

H1 = [3.9994e+00 -3.0986e-02 2.6788e-01 -2.3391e+01]
[6.3616e-01 1.1382e+00 1.9648e+00 -9.4962e-01]
[1.4135e-01 2.8623e+00 -1.2309e+00]
[1.6396e-14 2.0000e+00]

lam = [9.99999999999993e-01 4.00000000000003e+00 3.00000000000000e+00]

27

3.4.2 QR algorithm with shifts

This considerations indicate that it may be good to introduce shifts into the QR algorithm. However, we
cannot choose perfect shifts because we do not know the eigenvalues of the matrix! We therefore need
heuristics how to estimate eigenvalues. One such heuristic is the Rayleigh quotient shift: Set the shift σk
in the k-th step of the QR algorithm equal to the last diagonal element:

σk := h(k−1)
n,n . (3.7)

1: Let H0 = H ∈ Cn×n be an upper Hessenberg matrix. This algorithm computes its Schur normal form
H = UTU .

2: k := 0;
3: for m=n,n-1,. . . ,2 do
4: repeat
5: k := k + 1;
6: σk := h

(k−1)
m,m ;

7: Hk−1 − σkI =: QkRk;
8: Hk := RkQk + σkI ;
9: Uk := Uk−1Qk;

10: until |h(k)
m,m−1| is sufficiently small

11: end for
12: T := Hk;

ALGORITHM 3.4: The Hessenberg QR algorithm with Rayleigh quotient shift

Algorithm 3.4 implements this heuristic. Notice that the shift changes in each iteration step! Notice
also that deflation is incorporated in Algorithm 3.4. As soon as the last lower off-diagonal element is
sufficiently small, it is declared zero, and the algorithm proceeds with a smaller matrix. In Algorithm 3.4
the actual size of the matrix is m×m.

Lemma 3.4 guarantees that a zero is produced at position (n, n − 1) in the Hessenberg matrix. What
happens, if hn,n is a good approximation to an eigenvalue ofH? Let us assume that we have an irreducible
Hessenberg matrix 



× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 ε hn,n



,

where ε is a small quantity. If we perform a shifted Hessenberg QR step, we first have to factorH−hn,nI ,
QR = H − hn,nI . After n− 2 steps of this factorization the R-factor is almost upper triangular,




+ + + + +
0 + + + +
0 0 + + +
0 0 0 α β
0 0 0 ε 0



.

From (3.5) we see that the last Givens rotation has the nontrivial elements

cn−1 =
α√

|α|2 + |ε|2
, sn−1 =

−ε√
|α|2 + |ε|2

.

Applying the Givens rotations from the right one sees that the last lower off-diagonal element of H =
RQ+ hn,nI becomes

h̄n,n−1 =
ε2β

α2 + ε2
. (3.8)

28

So, we have quadratic convergence unless α is not tiny either.
A second even more often used shift strategy is the Wilkinson shift:

σk := eigenvalue of

[
h

(k−1)
n−1,n−1 h

(k−1)
n−1,n

h
(k−1)
n,n−1 h

(k−1)
n,n

]
that is closer to h(k−1)

n,n . (3.9)

3.4.3 A numerical example

We give an example for the Hessenberg QR algorithm with shift, but without deflation. The MATLAB code

D = diag([4 3 2 1]);
rand(’seed’,0);
S=rand(4); S = (S - .5)*2;
A = S*D/S;
H = hess(A)

for i=1:8,
[Q,R] = qr(H-H(4,4)*eye(4)); H = R*Q+H(4,4)*eye(4);

end

produces the output

H(0) = [-4.4529e-01 -1.8641e+00 -2.8109e+00 7.2941e+00]
[8.0124e+00 6.2898e+00 1.2058e+01 -1.6088e+01]
[0.0000e+00 4.0087e-01 1.1545e+00 -3.3722e-01]
[0.0000e+00 0.0000e+00 -1.5744e-01 3.0010e+00]

H(1) = [3.0067e+00 1.6742e+00 -2.3047e+01 -4.0863e+00]
[5.2870e-01 8.5146e-01 1.1660e+00 -1.5609e+00]
[-1.7450e-01 3.1421e+00 -1.1140e-01]
[-1.0210e-03 2.9998e+00]

H(2) = [8.8060e-01 -4.6537e-01 9.1630e-01 1.6146e+00]
[-1.7108e+00 5.3186e+00 2.2839e+01 -4.0224e+00]
[-2.2542e-01 8.0079e-01 5.2445e-01]
[-1.1213e-07 3.0000e+00]

H(3) = [1.5679e+00 9.3774e-01 1.5246e+01 1.2703e+00]
[1.3244e+00 2.7783e+00 1.7408e+01 4.1764e+00]
[3.7230e-02 2.6538e+00 -7.8404e-02]
[8.1284e-15 3.0000e+00]

H(4) = [9.9829e-01 -7.5537e-01 -5.6915e-01 1.9031e+00]
[-3.2279e-01 5.1518e+00 2.2936e+01 -3.9104e+00]
[-1.6890e-01 8.4993e-01 3.8582e-01]
[-5.4805e-30 3.0000e+00]

H(5) = [9.3410e-01 -3.0684e-01 3.0751e+00 -1.2563e+00]
[3.5835e-01 3.5029e+00 2.2934e+01 4.1807e+00]
[3.2881e-02 2.5630e+00 -7.2332e-02]
[1.1313e-59 3.0000e+00]

H(6) = [1.0005e+00 -8.0472e-01 -8.3235e-01 1.9523e+00]
[-7.5927e-02 5.1407e+00 2.2930e+01 -3.8885e+00]
[-1.5891e-01 8.5880e-01 3.6112e-01]
[-1.0026e-119 3.0000e+00]

H(7) = [9.7303e-01 -6.4754e-01 -8.9829e-03 -1.8034e+00]
[8.2551e-02 3.4852e+00 2.3138e+01 3.9755e+00]
[3.3559e-02 2.5418e+00 -7.0915e-02]
[3.3770e-239 3.0000e+00]

H(8) = [1.0002e+00 -8.1614e-01 -8.9331e-01 1.9636e+00]
[-1.8704e-02 5.1390e+00 2.2928e+01 -3.8833e+00]

29

[-1.5660e-01 8.6086e-01 3.5539e-01]
[0.0000e+00 3.0000e+00]

The numerical example shows that the shifted Hessenberg QR algorithm can work very nicely. In this
example the (4,3) element is about 10−30 after 3 steps. (We could stop there.) The example also nicely
shows a quadratic convergence rate.

3.5 The double shift QR algorithm

The shifted Hessenberg QR algorithm does not always work so nicely as in the previous example. If α
in (3.8) is O(ε) then hn,n−1 can be large. (A small α indicates a near singular H1:n−1,1:n−1.)

Another problem occurs if real Hessenberg matrices have complex eigenvalues. We know that for
reasonable convergence rates the shifts must be complex. If an eigenvalue λ has been found we can execute
a single perfect shift with λ̄. It is (for rounding errors) unprobable however that we will get back to a real
matrix.

Since the eigenvalues come in complex conjugate pairs it is natural to search for a pair of eigenvalues
right-away. This is done by collapsing two shifted QR steps in one double step with the two shifts being
complex conjugates of each other.

Let σ1 and σ2 be two eigenvalues of the real matrix

G =

[
h

(k−1)
n−1,n−1 h

(k−1)
n−1,n

h
(k−1)
n,n−1 h

(k−1)
n,n

]
∈ R

2×2.

If σ1 ∈ C then σ2 = σ̄1. Let us perform two QR steps using σ1 and σ2 as shifts:

H − σ1I = Q1R1,

H1 = R1Q1 + σ1I,

H1 − σ2I = Q2R2,

H2 = R2Q2 + σ2I.

(3.10)

Here, for convenience, we wrote H , H1, and H2 for Hk−1, Hk, and Hk+1, respectively. From the second
and third equation in (3.10) we get

R1Q1 + (σ1 − σ2)I = Q2R2.

Multiplying this with Q1 from the left and with R1 from the right we get

Q1R1Q1R1 + (σ1 − σ2)Q1R1 = Q1R1(Q1R1 + (σ1 − σ2)I)

= (H − σ1I)(H − σ2I) = Q1Q2R2R1.

Because σ2 = σ̄1 we have

M := (H − σ1I)(H − σ2I) = H2 − 2Re(σ)H + |σ|2I = Q1Q2R2R1,

whence (Q1Q2)(R2R1) is the QR factorization of a real matrix. Therefore, we can choose Q1 and Q2

such that Z := Q1Q2 is real orthogonal. By consequence,

H2 = (Q1Q2)
∗H(Q1Q2) = ZTHZ

is real.
A procedure to compute H2 by avoiding complex arithmetic could consist of three steps:

1. Form the real matrix M = H2 − sH + tI with s = 2Re(σ) = trace(G) = h
(k−1)
n−1,n−1 + h

(k−1)
n,n and

t = |σ|2 = det (G) = h
(k−1)
n−1,n−1h

(k−1)
n,n − h(k−1)

n−1,nh
(k−1)
n,n−1. Notice that M has the form

M =

[]
.

30

2. Compute the QR factorization M = ZR,

3. Set H2 = ZTHZ.

This procedure is too expensive since item 1, i.e., formingH2 requiresO(n3) flops.
A remedy for the situation is provided by the Implicit Q Theorem.

Theorem 3.5. (The implicit Q Theorem) Let A ∈ R
n×n. Let Q = [q1, . . . ,qn] and V = [v1, . . . ,vn] be

matrices that both similarly transform A to Hessenberg form, H = QTAQ and G = V TAV . Let k = n if
H is irreducible; otherwise set k equal to the smallest positive integer with hk+1,k = 0.

If q1 = v1 then qi = ±vi and |hi+1,i| = |gi+1,i| for i = 2, . . . , k. If k < n then gk+1,k = 0.

Proof. Let W = V TQ. Clearly, W is orthogonal, and GW = WH .
We first show that the first k columns of W form an upper triangular matrix, i.e.,

wi = Wei ∈ span{e1, . . . , ei}, i ≤ k.

(Notice that orthogonal upper triangular matrices are diagonal.)
For i = 1 we have w1 = e1 by the assumption that q1 = v1. For 1 < i ≤ k we use the equality

GW = WH . The (i−1)-th column of this equation reads

Gwi−1 = GWei−1 = WHei−1 =

i∑

j=1

wjhj,i−1.

Since hi,i−1 6= 0 we have

wihi,i−1 = Gwi−1 −
i−1∑

j=1

wjhj,i−1 ∈ span{e1, . . . ei},

as G is a Hessenberg matrix. Thus wi = ±ei, i ≤ k.
Since wi = ±V TQei = V Tqi = ±ei we see that qi is orthogonal to all columns of V except the i-th.

Therefore, we must have qi = ±vi. Further,

hi,i−1 = eTi Hei−1 = eTi Q
TAQei−1 = eTi Q

TV GV TQei−1 = wT
i Gwi−1 = ±gi,i−1,

thus, |hi,i−1| = |gi,i−1|. If hk+1,k = 0 then

gk+1,k = eTk+1Gek = ± eTk+1GWek = ± eTk+1WHek = ± eTk+1

k∑

j=1

wjhj,k = 0.

since eTk+1wj = ±eTk+1ej = 0 for j ≤ k.

We apply the Implicit Q Theorem in the following way: We want to compute the Hessenberg matrix
H2 = ZTHZ where ZR is the QR factorization of M = H2 − sH + tI . The Implicit Q Theorem now
tells us that we essentially get H2 by any unitary similarity transformation H → Z∗1HZ1 provided that
Z∗1HZ1 is Hessenberg and Z1e1 = Ze1.

Let P0 be the Householder reflector with

P T0 Me1 = P T0 (H2 − 2Re(σ)H + |σ|2I)e1 = αe1.

Since only the first three elements of the first column Me1 of M are nonzero, P0 has the structure

P0 =




× × ×
× × ×
× × ×

1
. . .

1



.

31

So,

H ′
k−1 := P T0 Hk−1P0 =




× × × × × × ×
× × × × × × ×
+ × × × × × ×
+ + × × × × ×

× × × ×
× × ×
× ×




.

We now reduce P T0 Hk−1P0 similarly to Hessenberg form the same way as we did earlier, by a sequence
of Householder reflectors P1, . . . , Pn−2. However, P T0 Hk−1P0 is a Hessenberg matrix up to the bulge at
the top left. We take into account this structure when forming the Pi = I − 2pip

T
i . So, the structures of

P1 and of P T1 P
T
0 Hk−1P0P1 are

P1 =




1
× × ×
× × ×
× × ×

1
1

1




, H ′′
k−1 = P T1 H

′
k−1P1 =




× × × × × × ×
× × × × × × ×
0 × × × × × ×
0 + × × × × ×

+ + × × × ×
× × ×
× ×




.

The transformation with P1 has chased the bulge one position down the diagonal. The consecutive reflec-
tors push it further by one position each until it falls out of the matrix at the end of the diagonal. Pictorially,
we have

H ′′′
k−1 = P T2 H

′′
k−1P2 =




× × × × × × ×
× × × × × × ×
× × × × × ×
0 × × × × ×
0 + × × × ×

+ + × × ×
× ×




H ′′′′
k−1 = P T3 H

′′′
k−1P3 =




× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
0 × × × ×
0 + × × ×

+ + × ×




H ′′′′′
k−1 = P T4 H

′′′′
k−1P4 =




× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×
0 × × ×
0 + × ×




H ′′′′′′
k−1 = P T5 H

′′′′′
k−1P5 =




× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×
× × ×
0 × ×




It is easy to see that the Householder vector pi, i < n − 2, has only three nonzero elements at position
i+ 1, i+ 2, i+ 3. Of pn−2 only the last two elements are nonzero. Clearly, P0P1 · · ·Pn−2e1 = P0e1 =
Me1/α.

32

1: Let H0 = H ∈ Rn×n be an upper Hessenberg matrix. This algorithm computes its real Schur form
H = UTU using the Francis double step QR algorithm. T is a quasi upper triangular matrix.

2: p := n; {p indicates the ‘actual’ matrix size.}
3: while p > 2 do
4: q := p− 1;
5: s := Hq,q +Hp,p; t := Hq,qHp,p −Hq,pHp,q ;
6: {compute first 3 elements of first column of M}
7: x := H2

1,1 +H1,2H2,1 − sH1,1 + t;
8: y := H2,1(H1,1 +H2,2 − s);
9: z := H2,1H3,2;

10: for k = 0 to p− 3 do
11: Determine the Householder reflector P with P T [x; y; z]T = αe1;
12: r := max{1, k};
13: Hk+1:k+3,r:n := P THk+1:k+3,r:n;
14: r := min{k + 4, p};
15: H1:r,k+1:k+3 := H1:r,k+1:k+3P ;
16: x := Hk+2,k+1; y := Hk+3,k+1;
17: if k < p− 3 then
18: z := Hk+4,k+1;
19: end if
20: end for
21: Determine the Givens rotation P with P T [x; y]T = αe1;
22: Hq:p,p−2:n := P THq:p,p−2:n;
23: H1:p,p−1:p := H1:p,p−1:pP ;
24: {check for convergence}
25: if |Hp,q| < ε (|Hq,q |+ |Hp,p|) then
26: Hp,q := 0; p := p− 1; q := p− 1;
27: else if |Hp−1,q−1| < ε (|Hq−1,q−1|+ |Hq,q |) then
28: Hp−1,q−1 := 0; p := p− 2; q := p− 1;
29: end if
30: end while

ALGORITHM 3.5: The Francis’ Double step QR algorithm

3.5.1 A numerical example

We consider a simple MATLAB implementation of the Algorithm 3.5 to compute the eigenvalues of the real
matrix

A =




7 3 4 −11 −9 −2
−6 4 −5 7 1 12
−1 −9 2 2 9 1
−8 0 −1 5 0 8
−4 3 −5 7 2 10

6 1 4 −11 −7 −1




that has the spectrum
σ(A) = {1± 2i, 3, 4, 5± 6i}.

The intermediate output of the code was (after some editing) the following:

>> H=hess(A)

H(0) =

7.0000 7.2761 5.8120 -0.1397 9.0152 7.9363
12.3693 4.1307 18.9685 -1.2071 10.6833 2.4160

0 -7.1603 2.4478 -0.5656 -4.1814 -3.2510
0 0 -8.5988 2.9151 -3.4169 5.7230

33

0 0 0 1.0464 -2.8351 -10.9792
0 0 0 0 1.4143 5.3415

>> PR=qr2st(H)

[it_step, p = n_true, H(p,p-1), H(p-1,p-2)]

1 6 -1.7735e-01 -1.2807e+00
2 6 -5.9078e-02 -1.7881e+00
3 6 -1.6115e-04 -5.2705e+00
4 6 -1.1358e-07 -2.5814e+00
5 6 1.8696e-14 1.0336e+01
6 6 -7.1182e-23 -1.6322e-01

H(6) =

5.0000 6.0000 2.3618 5.1837 -13.4434 -2.1391
-6.0000 5.0000 2.9918 10.0456 -8.7743 -21.0094
0.0000 -0.0001 -0.9393 3.6939 11.7357 3.8970
0.0000 -0.0000 -1.9412 3.0516 2.9596 -10.2714

0 0.0000 0.0000 -0.1632 3.8876 4.1329
0 0 0 0.0000 -0.0000 3.0000

7 5 1.7264e-02 -7.5016e-01
8 5 2.9578e-05 -8.0144e-01
9 5 5.0602e-11 -4.6559e+00

10 5 -1.3924e-20 -3.1230e+00

H(10) =

5.0000 6.0000 -2.7603 1.3247 11.5569 -2.0920
-6.0000 5.0000 -10.7194 0.8314 11.8952 21.0142
-0.0000 -0.0000 3.5582 3.3765 5.9254 -8.5636
-0.0000 -0.0000 -3.1230 -1.5582 -10.0935 -6.3406

0 0 0 0.0000 4.0000 4.9224
0 0 0 0.0000 0 3.0000

11 4 1.0188e+00 -9.1705e-16

H(11) =

5.0000 6.0000 -10.2530 4.2738 -14.9394 -19.2742
-6.0000 5.0000 -0.1954 1.2426 7.2023 -8.6299
-0.0000 -0.0000 2.2584 -5.4807 -10.0623 4.4380
0.0000 -0.0000 1.0188 -0.2584 -5.9782 -9.6872

0 0 0 0 4.0000 4.9224
0 0 0 0.0000 0 3.0000

3.5.2 The complexity

We first estimate the complexity of a single step of the double step Hessenberg QR algorithm. The most
expensive operations are the applications of the 3 × 3 Householder reflectors in steps 13 and 15 of Algo-
rithm 3.5. Let us first count the flops for applying the Householder reflector to a 3-vector,

x := (I − 2uuT)x = x− u(2uTx).

The inner product uTx costs 5 flops, multiplying with 2 another one. The operation x := x − uγ,
γ = 2uTx, cost 6 flops, altogether 12 flops.

In the k-th step of the loop there are n− k of these application from the left in step 13 and k + 4 from
the right in step 15. In this step there are thus about 12n + O(1) flops to be executed. As k is running

34

from 1 to p− 3. We have about 12pn flops for this step. Since p runs from n down to about 2 we have 6n3

flops. If we assume that two steps are required per eigenvalue the flop count for Francis’ double step QR
algorithm to compute all eigenvalues of a real Hessenberg matrix is 12n3. If also the eigenvector matrix is
accumulated the two additional statements have to be inserted into Algorithm 3.5. After step 15 we have

1: Q1:n,k+1:k+3 := Q1:n,k+1:k+3P ;

and after step 23 we introduce

1: Q1:n,p−1:p := Q1:n,p−1:pP ;

which costs another 12n3 flops.
We earlier gave the estimate of 6n3 flops for a Hessenberg QR step, see Algorithm 3.2. If the latter has

to be spent in complex then the single shift Hessenberg QR algorithm is more expensive that a the double
shift Hessenberg QR algorithm that is executed in real arithmetic.

Remember that the reduction to Hessenberg form costs 10
3 n

3 flops without forming the transformation
matrix and 14

3 n
3 it this matrix is formed.

3.6 The symmetric tridiagonal QR algorithm

The QR algorithm can be applied rightway to Hermitian or symmetric matrices. By (3.1) we see that the
QR algorithm generates a sequence {Ak} of symmetric matrices. By taking into account the symmetry, the
performance of the algorithm can be improved considerably. Furthermore, from Theorem 2.12 we know
that Hermitian matrices have a real spectrum. Therefore, we can restrict ourselves to single shifts.

3.6.1 Reduction to tridiagonal form

The reduction of a full Hermitian matrix to Hessenberg form produces a Hermitian Hessenberg matrix,
which (up to rounding errors) is a tridiagonal matrix. Let us consider how to take into account symmetry.
To that end let us consider the first reduction step that introduces n− 2 zeros into the first column (and the
first row) of A = A∗ ∈ C

n×n. Let

P1 =

[
1 0T

0 In−1 − 2u1u
∗
1

]
, u1 ∈ C

n, ‖u1‖ = 1.

Then,
A1 := P ∗1AP1 = (I − 2u1u

∗
1)A(I − 2u1u

∗
1)

= A− u1(2u
∗
1A− 2(u∗1Au1)u

∗
1)− (2Au1 − 2u1(u

∗
1Au1))︸ ︷︷ ︸

v1

u∗1

= A− v1u
∗
1 − v1u

∗
1.

In the k-th step of the reduction we similarly have

Ak = P ∗kAk−1Pk = Ak−1 − vk−1u
∗
k−1 − vk−1u

∗
k−1,

where the last n− k elements of uk−1 and vk−1 are nonzero. Forming

vk−1 = 2Ak−1uk−1 − 2uk−1(u
∗
k−1Ak−1uk−1)

costs 2(n− k)2 +O(n− k) flops. This complexity results from Ak−1uk−1. The rank-2 update of Ak−1,

Ak = Ak−1 − vk−1u
∗
k−1 − vk−1u

∗
k−1,

requires another 2(n − k)2 + O(n − k) flops, taking into account symmetry. By consequence, the trans-
formation to tridiagonal form can be accomplished in

n−1∑

k=1

(
4(n− k)2 +O(n− k)

)
=

4

3
n3 +O(n2)

35

floating point operations.

3.6.2 The tridiagonal QR algorithm

In the symmetric case the Hessenberg QR algorithm becomes a tridiagonal QR algorithm. This can be
executed in an explicit or an implicit way. In the explicit form, a QR step is essentially

1: Choose a shift µ
2: Compute the QR factorizationA− µI = QR
3: Update A by A = RQ+ µI .

Of course, this is done by means of plane rotations and by respecting the symmetric tridiagonal structure
of A.

In the more elegant implicit form of the algorithm we first compute the first Givens rotation G0 =
G(1, 2, ϑ) of the QR factorization that zeros the (2, 1) element of A− µI ,

[
c s
−s c

][
a11 − µ
a21

]
=

[
∗
0

]
, c = cos(ϑ0), s = sin(ϑ0).

Performing a similary transformation with G0 we have (n = 5)

G∗0AG0 = A′ =




× × +
× × ×
+ × × ×

× × ×
× ×




Similar as with the double step Hessenberg QR algorithm we chase the bulge down the diagonal. In the
5× 5 example this becomes

A
G0−−−−−−−−−−→

= G(1, 2, ϑ0)




× × +
× × ×
+ × × ×

× × ×
× ×




G1−−−−−−−−−−→
= G(2, 3, ϑ1)




× × 0
× × × +
0 × × ×

+ × × ×
× ×




G2−−−−−−−−−−→
= G(3, 4, ϑ2)




× × 0
× × ×
× × × +
0 × × ×

+ × ×




G3−−−−−−−−−−→
= G(4, 5, ϑ3)




× ×
× × ×
× × × 0
× × ×
0 × ×




= A.

The full step is given by
A = Q∗AQ, Q = G0G1 · · · Gn−2.

Because Gke1 = e1 for k > 0 we have

Q e1 = G0G1 · · ·Gn−2 e1 = G0 e1.

Both explicit and implicit QR step form the same first plane rotation G0. By referring to the Implicit Q
Theorem 3.5 we see that explicit and implicit QR step compute essentially the same A.

3.7 Summary

The QR algorithm is a very powerful algorithm to stably compute the eigenvalues and (if needed) the cor-
responding eigenvectors or Schur vectors. All steps of the algorithm cost O(n3) floating point operations,

36

1: Let T ∈ Rn×n be a symmetric tridiagonal matrix with diagonal entries a1, . . . , an and off-diagonal
entries b2, . . . , bn.
This algorithm computes the eigenvalues λ1, . . . , λn of T and corresponding eigenvectors q1, . . . ,qn.
The eigenvalues are stored in a1, . . . , an. The eigenvectors are stored in the matrix Q, such that
TQ = Q diag(a1, . . . , an).

2: m = n {Actual problem dimension. m is reduced in the convergence check.}
3: while m > 1 do
4: d := (am−1 − am)/2; {Compute Wilkinson’s shift}
5: if d = 0 then
6: s := am − |bm|;
7: else
8: s := am − b2m/(d+ sign(d)

√
d2 + b2m);

9: end if
10: x := a(1)− s; {Implicit QR step begins here}
11: y := b(2);
12: for k = 1 to m− 1 do
13: if m > 2 then
14: [c, s] := givens(x, y);
15: else

16: Determine [c, s] such that

[
c −s
s c

] [
a1 b2
b2 a2

] [
c s
−s c

]
is diagonal

17: end if
18: w := cx− sy;
19: d := ak − ak+1; z := (2cbk+1 + ds)s;
20: ak := ak − z; ak+1 := ak+1 + z;
21: bk+1 := dcs+ (c2 − s2)bk+1;
22: x := bk+1;
23: if k > 1 then
24: bk := w;
25: end if
26: if k < m− 1 then
27: y := −sbk+2; bk+2 := cbk+2;
28: end if

29: Q1:n; k:k+1 := Q1:n; k:k+1

[
c s
−s c

]
;

30: end for{Implicit QR step ends here}
31: if |bm| < ε(|am−1|+ |am|) then {Check for convergence}
32: m := m− 1;
33: end if
34: end while

ALGORITHM 3.6: Symmetric tridiagonal QR algorithm with implicit Wilkinson shift

37

Table 3.1 Complexity in flops to compute eigenvalues and eigen-/Schur-vectors of a real matrix

nonsymmetric case symmetric case

without with without with

Schurvectors eigenvectors

transformation to Hessenberg/tridiagonal form 10
3 n

3 14
3 n

3 4
3n

3 8
3n

3

real double step Hessenberg/tridiagonal QR algorithm (2 steps
per eigenvalues assumed)

20
3 n

3 50
3 n

3 24n2 6n3

total 10n3 25n3 4
3n

3 9n3

see Table 3.1. The one exception is the case where only eigenvalues are desired of a symmetric tridiagonal
matrix. The linear algebra software package LAPACK [ABB+94] contains subroutines for all possible
ways the QR algorithm may be employed.

We finish by noting again, that the QR algorithm is a method for dense matrix problems. The reduction
of a sparse matrix to tridiagonal or Hessenberg form produces fill in, thus destroying the sparsity structure
which one almost allways tries to preserve.

38

Bibliography

[ABB+94] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide - Release
2.0. SIAM, Philadelphia, PA, 1994. (Software and guide are available from Netlib at URL
http://www.netlib.org/lapack/).

[Dem97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[Fra61] J. G. F. Francis. The QR transformation: A unitary analogue to the LR transformation – part
1. Computer Journal, 4(3):265–271, 1961.

[Fra62] J. G. F. Francis. The QR transformation – part 2. Computer Journal, 4(4):332–345, 1962.

[GvL89] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, 2nd edition, 1989.

[Rut58] H. Rutishauser. Solution of eigenvalue problems with the LR-transformation. NBS Appl. Math.
Series, 49:47–81, 1958.

[Wil65] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

39

Chapter 4

Cuppen’s Divide and Conquer
Algorithm

In this chapter we deal with an algorithm that is designed for the efficient solution of the symmetric tridi-
agonal eigenvalue problem

Tx = λx, T =




a1 b1

b1 a2
. . .

. . .
. . . bn−1

bn−1 an



. (4.1)

We noticed from Table 3.1 that the reduction of a full symmetric matrix to a similar tridiagonal matrix
requires about 8

3n
3 while the tridiagonal QR algorithm needs an estimated 6n3 floating operations (flops)

to converge. Because of the importance of this subproblem a considerable effort has been put into finding
faster algorithms than the QR algorithms to solve the tridiagonal eigenvalue problem. In the mid-1980’s
Dongarra and Sorensen [DS87] promoted an algorithm originally proposed by Cuppen [Cup81]. This
algorithm was based on a divide and conquer strategy. However, it took ten more years until a stable variant
was found by Gu and Eisenstat [GE94, GE95]. Today, a stable implementation of this latter algorithm is
available in LAPACK [ABB+94].

4.1 The divide and conquer idea

Divide and conquer is an old strategy in military to defeat an enemy going back at least to Caesar. In
computer science, divide and conquer (D&C) is an important algorithm design paradigm. It works by
recursively breaking down a problem into two or more subproblems of the same (or related) type, until
these become simple enough to be solved directly. The solutions to the subproblems are then combined to
give a solution to the original problem. Translated to our problem the strategy becomes

1. Partition the tridiagonal eigenvalue problem into two (or more) smaller eigenvalue problems.

2. Solve the two smaller problems.

3. Combine the solutions of the smaller problems to get the desired solution of the overall problem.

Evidently, this strategy can be applied recursively.

40

4.2 Partitioning the tridiagonal matrix

Partitioning the irreducible tridiagonal matrix is done in the following way. We write

T =

2
666666666666666666666664

a1 b1

b1 a2
. . .

. . .
. . . bm−1

bm−1 am bm
bm am+1 bm+1

bm+1 am+2
. . .

. . .
. . . bn−1

bn−1 an

3
777777777777777777777775

=

2
666666666666666666666664

a1 b1

b1 a2
. . .

. . .
. . . bm−1

bm−1 am −∓ bm
am+1 −∓ bm bm+1

bm+1 am+2
. . .

. . .
. . . bn−1

bn−1 an

3
777777777777777777777775

+

2
66666666666666664

± bm bm
bm ± bm

3
77777777777777775

=

[
T1

T2

]
+ ρuuT with u =

[
± em
e1

]
and ρ = ± bm,

(4.2)
where em is a vector of length m ≈ n

2 and e1 is a vector of length n −m. Notice that the most straight-
forward way to partition the problem without modifying the diagonal elements leads to a rank-two modifi-
cation. With the approach of (4.2) we have the original T as a sum of two smaller tridiagonal systems plus
a rank-one modification.

4.3 Solving the small systems

We solve the half-sized eigenvalue problems,

Ti = QiΛiQ
T
i , QTi Qi = I, i = 1, 2. (4.3)

These two spectral decompositions can be computed by any algorithm, in particular also by this divide
and conquer algorithm by which the Ti would be further split. It is clear that by this partitioning an
large number of small problems can be generated that can be potentially solved in parallel. For a parallel
algorithm, however, the further phases of the algorithm must be parallelizable as well.

Plugging (4.3) into (4.2) gives
[
QT1

QT2

]([
T1

T2

]
+ ρuuT

)[
Q1

Q2

]
=

[
Λ1

Λ2

]
+ ρvvT (4.4)

with

v =

[
QT1

QT2

]
u =

[
±QT1 em
QT2 e1

]
=

[
± last row of Q1

first row of Q2

]
. (4.5)

Now we have arrived at the eigenvalue problem

(D + ρvvT)x = λx, D = Λ1 ⊕ Λ2 = diag(λ1, . . . , λn). (4.6)

41

That is, we have to compute the spectral decomposition of a matrix that is a diagonal plus a rank-one
update. Let

D + ρvvT = QΛQT (4.7)

be this spectral decomposition. Then, the spectral decomposition of the tridiagonal T is

T =

[
Q1

Q2

]
QΛQT

[
QT1

QT2

]
. (4.8)

Forming the product (Q1 ⊕ Q2)Q will turn out to be the most expensive step of the algorithm. It costs
n3 +O(n2) floating point operations

4.4 Deflation

There are certain solutions of (4.7) that can be given immediately, by just looking carefully at the equation.
If there are zero entries in v then we have

(
vi = 0⇔ vT ei = 0

)
=⇒ (D + ρvvT)ei = diei. (4.9)

Thus, if an entry of v vanishes we can read the eigenvalue from the diagonal of D at once and the corre-
sponding eigenvector is a coordinate vector.

If identical entries occur in the diagonal ofD, say di = dj , with i < j, then we can find a plane rotation
G(i, j, φ) (see (3.4)) such that it introduces a zero into the j-th position of v,

GTv = G(i, j, ϕ)T v =




×
...√

vi2 + vj2

...
0
...
×




← i

← j

Notice, that (for any ϕ),
G(i, j, ϕ)TDG(i, j, ϕ) = D, di = dj .

So, if there are multiple eigenvalues in D we can reduce all but one of them by introducing zeros in v and
then proceed as previously in (4.9).

When working with floating point numbers we deflate if

|vi| < Cε‖T‖ or |di − dj | < Cε‖T‖, (‖T‖ = ‖D + ρvvT ‖) (4.10)

where C is a small constant. Deflation changes the eigenvalue problem for D + ρvvT into the eigenvalue
problem for

[
D1 + ρv1v

T
1 O

O D2

]
= GT (D + ρvvT)G+E, ‖E‖ < Cε

√
‖D‖2 + |ρ|2‖v‖4, (4.11)

where D1 has no multiple diagonal entries and v1 has no zero entries. So, we have to compute the spectral
decomposition of the matrix in (4.11) which is similar to a slight perturbation of the original matrix. G is
the product of Givens rotations.

42

4.4.1 Numerical examples

Let us first consider

T =




1 1
1 2 1

1 3 1
1 4 1

1 5 1
1 6




=




1 1
1 2 1

1 2 0
0 3 1

1 5 1
1 6




+




0
0

1 1
1 1

0
0




=




1 1
1 2 1

1 2 0
0 3 1

1 5 1
1 6




+




0
0
1
1
0
0







0
0
1
1
0
0




T

= T0 + uuT .

Then a little MATLAB experiment shows that

QT
0 TQ0 =

2
6666664

0.1981
1.5550

3.2470
2.5395

4.7609
6.6996

3
7777775

+

2
6666664

0.3280
0.7370
0.5910
0.9018

−0.4042
0.1531

3
7777775

2
6666664

0.3280
0.7370
0.5910
0.9018

−0.4042
0.1531

3
7777775

T

with

Q0 =

2
6666664

0.7370 −0.5910 0.3280
−0.5910 −0.3280 0.7370

0.3280 0.7370 0.5910
0.9018 −0.4153 0.1200

−0.4042 −0.7118 0.5744
0.1531 0.5665 0.8097

3
7777775

Here it is not possible to deflate.
Let us now look at an example with more symmetry,

T =




2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2




=




2 1
1 2 1

1 1 0
0 1 1

1 2 1
1 2




+




0
0

1 1
1 1

0
0




=




2 1
1 2 1

1 1 0
0 1 1

1 2 1
1 2




+




0
0
1
1
0
0







0
0
1
1
0
0




T

= T0 + uuT .

Now, MATLAB gives

QT
0 TQ0 =

2
6666664

0.1981
1.5550

3.2470
0.1981

1.5550
3.2470

3
7777775

+

2
6666664

0.7370
−0.5910

0.3280
0.7370

−0.5910
0.3280

3
7777775

2
6666664

0.7370
−0.5910

0.3280
0.7370

−0.5910
0.3280

3
7777775

T

43

with

Q0 =

2
6666664

0.3280 0.7370 0.5910
−0.5910 −0.3280 0.7370

0.7370 −0.5910 0.3280
0.7370 −0.5910 0.3280

−0.5910 −0.3280 0.7370
0.3280 0.7370 0.5910

3
7777775

In this example we have three double eigenvalues. Because the corresponding components of v (vi and
vi+1) are equal we define

G = G(1, 4, π/4)G(2, 5, π/4)G(3, 6, π/4)

=

2
6666664

0.7071 0.7071
0.7071 0.7071

0.7071 0.7071

−0.7071 0.7071
−0.7071 0.7071

−0.7071 0.7071

3
7777775
.

Then,

GTQT
0 TQ0G = GTQT

0 T0Q0G+GT
v(GT

v)T = D +GT
v(GT

v)T

=

2
6666664

0.1981
1.5550

3.2470
0.1981

1.5550
3.2470

3
7777775

+

2
6666664

1.0422
−0.8358

0.4638
0.0000
0.0000
0.0000

3
7777775

2
6666664

1.0422
−0.8358

0.4638
0.0000
0.0000
0.0000

3
7777775

T

Therefore, (in this example) e4, e5, and e6 are eigenvectors of

D +GTv(GT v)T = D +GTvvTG

corresponding to the eigenvalues d4, d5, and d6, respectively. The eigenvectors of T corresponding to these
three eigenvalues are the last three columns of

Q0G =

2
6666664

0.2319 −0.4179 0.5211 0.5211 −0.4179 0.2319
0.5211 −0.2319 −0.4179 −0.4179 −0.2319 0.5211
0.4179 0.5211 0.2319 0.2319 0.5211 0.4179

−0.2319 0.4179 −0.5211 0.5211 −0.4179 0.2319
−0.5211 0.2319 0.4179 −0.4179 −0.2319 0.5211
−0.4179 −0.5211 −0.2319 0.2319 0.5211 0.4179

3
7777775
.

4.5 The eigenvalue problem for D + ρvv
T

We know that ρ 6= 0. Otherwise there is nothing to be done. Furthermore, after deflation, we know that all
elements of v are nonzero and that the diagonal elements of D are all distinct, in fact,

|di − dj | > Cε‖T‖.

We order the diagonal elements of D such that

d1 < d2 < · · · < dn.

Notice that this procedure permutes the elements of v as well. Let (λ,x) be an eigenpair of

(D + ρvvT)x = λx. (4.12)

44

Then,
(D − λI)x = −ρvvTx. (4.13)

λ cannot be equal to one of the di. If λ = dk then the k-th element on the left of (4.13) vanishes. But
then either vk = 0 or vTx = 0. The first cannot be true for our assumption about v. If on the other hand
vTx = 0 then (D − dkI)x = 0. Thus x = ek and vT ek = vk = 0, which cannot be true. Therefore
D − λI is nonsingular and

x = ρ(λI −D)−1v(vT x). (4.14)

This equation shows that x is proportional to (λI −D)−1v. If we require ‖x‖ = 1 then

x =
(λI −D)−1v

‖(λI −D)−1v‖ . (4.15)

Multiplying (4.14) by vT from the left we get

vTx = ρvT (λI −D)−1v(vT x). (4.16)

Since vTx 6= 0, λ is an eigenvalue of (4.12) if and only if

−2 0 1 3 3.5 7 8 10
−10

−5

0

1

5

10

Figure 4.1: Graph of 1 + 1
0−λ + 0.22

1−λ + 0.62

3−λ + 0.52

3.5−λ + 0.92

7−λ + 0.82

8−λ

f(λ) := 1− ρvT (λI −D)−1v = 1− ρ
n∑
k=1

v2
k

λ− dk = 0. (4.17)

This equation is called secular equation. The secular equation has poles at the eigenvalues ofD and zeros
at the eigenvalues of D + ρvvT . Notice that

f ′(λ) = ρ

n∑

k=1

v2
k

(λ− dk)2
.

Thus, the derivative of f is positive if ρ > 0 wherever it has a finite value. If ρ < 0 the derivative of
f is negative (almost) everywhere. A typical graph of f with ρ > 0 is depicted in Fig. 4.1. (If ρ is
negative the image can be flipped left to right.) The secular equation implies the interlacing property of
the eigenvalues of D and of D + ρvvT ,

d1 < λ1 < d2 < λ2 < · · · < dn < λn, ρ > 0. (4.18)

or
λ1 < d1 < λ2 < d2 < · · · < λn < dn, ρ < 0. (4.19)

45

So, we have to compute one eigenvalue in each of the intervals (di, di+1), 1 ≤ i < n, and a further
eigenvalue in (dn,∞) or (−∞, d1). The corresponding eigenvector is then given by (4.15). Evidently,
these tasks are easy to parallelize.

Equations (4.17) and (4.15) can also been obtained from the relations

[
1
ρ vT

v λI −D

]
=

[
1 0T

ρv I

][1
ρ 0T

0 λI −D − ρvvT

] [
1 ρvT

0 I

]

=

[
1 vT (λI −D)−1

0 I

] [1
ρ − vT (λI −D)−1v 0T

0 λI −D

] [
1 vT

(λI −D)−1v I

]
.

These are simply block LDLT factorizations of the first matrix. The first is the well-known one where the
factorization is started with the (1, 1) block. The second is a ‘backward’ factorization that is started with
the (2, 2) block. Because the determinants of the tridiagonal matrices are all unity, we have

1

ρ
det (λI −D − ρvvT) =

1

ρ
(1− ρvT (λI −D)−1v)det (λI −D). (4.20)

Denoting the eigenvalues of D + ρvvT again by λ1 < λ2 < · · · < λn this implies

n∏

j=1

(λ− λj) = (1− ρvT (λI −D)−1v)

n∏

j=1

(λ− dj)

=

(
1− ρ

n∑

k=1

v2
k

λ− dk

)
n∏

j=1

(λ− dj)

=
n∏

j=1

(λ − dj)− ρ
n∑

k=1

v2
k

∏

j 6=k
(λ− dj)

(4.21)

Setting λ = dk gives
n∏

j=1

(dk − λj) = −ρv2
k

n∏

j=1

j 6=i

(dk − dj) (4.22)

or

v2
k =
−1

ρ

n∏
j=1

(dk − λj)
n∏

j=1

j 6=i

(dk − dj)
=
−1

ρ

k−1∏
j=1

(dk − λj)

k−1∏
j=1

(dk − dj)

n∏
j=k

(λj − dk)(−1)n−k+1

n∏
j=k+1

(dj − dk)(−1)n−k

=
1

ρ

k−1∏
j=1

(dk − λj)

k−1∏
j=1

(dk − dj)

n∏
j=k

(λj − dk)
n∏

j=k+1

(dj − dk)
> 0.

(4.23)

Therefore, the quantity on the right side is positive, so

vk =

√√√√√√√√

k−1∏
j=1

(dk − λj)
n∏
j=k

(λj − dk)

ρ
k−1∏
j=1

(dk − dj)
n∏

j=k+1

(dj − dk)
. (4.24)

(Similar arguments hold if ρ < 0.) Thus, we have the solution of the following inverse eigenvalue prob-
lem:

46

Given D = diag(d1, . . . , dn) and values λ1, . . . , λn that satisfy (4.18). Find a vector v =
[v1, . . . , vn]

T with positive components vk such that the matrix D + vvT has the prescribed eigen-
values λ1, . . . , λn.

The solution is given by (4.24). The positivity of the vk makes the solution unique.

4.6 Solving the secular equation

In this section we follow closely the exposition of Demmel [Dem97]. We consider the computation of the
zero of f(λ) in the interval (di, di+1). We assume that ρ = 1.

We may simply apply Newton’s iteration to solve f(λ) = 0. However, if we look carefully at Fig. 4.1
then we notice that the tangent at certain points in (di, di+1) crosses the real axis outside this interval. This
happens in particular if the weights vi or vi+1 are small. Therefore that zero finder has to be adapted in
such a way that it captures the poles at the interval endpoints. It is relatively straightforward to try the
ansatz

h(λ) =
c1

di − λ
+

c2
di+1 − λ

+ c3. (4.25)

Notice that, given the coefficients c1, c2, and c3, the equation h(λ) = 0 can easily be solved by means of
the equivalent quadratic equation

c1(di+1 − λ) + c2(di − λ) + c3(di − λ)(di+1 − λ) = 0. (4.26)

This equation has two zeros. Precisly one of them is inside (di, di+1).
The coefficients c1, c2, and c3 are computed in the following way. Let us assume that we have available

an approximation λj to the zero in (di, di+1). We request that h(λj) = f(λj) and h′(λj) = f ′(λj). The
exact procedure is as follows. We write

f(λ) = 1 +
i∑

k=1

v2
k

dk − λ
︸ ︷︷ ︸

ψ1(λ)

+
n∑

k=i+1

v2
k

dk − λ
︸ ︷︷ ︸

ψ2(λ)

= 1 + ψ1(λ) + ψ2(λ). (4.27)

ψ1(λ) is a sum of positive terms and ψ2(λ) is a sum of negative terms. Both ψ1(λ) and ψ2(λ) can be
computed accurately, whereas adding them would likely provoke cancellation and loss of relative accuracy.
We now choose c1 and ĉ1 such that

h1(λ) := ĉ1 +
c1

di − λ
satisfies h1(λj) = ψ1(λj) and h′1(λj) = ψ′1(λj). (4.28)

This means that the graphs of h1 and of ψ1 are tangent at λ = λj . This is similar to Newton’s method.
However in Newton’s method a straight line is fitted to the given function. The coefficients in (4.28) are
given by

c1 = ψ′1(λj)(di − λj)2 > 0,

ĉ1 = ψ1(λj)− ψ′1(λj)(di − λj) =

i∑

k=1

v2
k

dk − di
(dk − λj)2

≤ 0.

Similarly, the two constants c2 and ĉ2 are determined such that

h2(λ) := ĉ2 +
c2

di+1 − λ
satisfies h2(λj) = ψ2(λj) and h′2(λj) = ψ′2(λj) (4.29)

with the coefficients

c2 = ψ′2(λj)(di+1 − λj)2 > 0,

ĉ2 = ψ2(λj)− ψ′2(λj)(di+1 − λj) =

n∑

k=i+1

v2
k

dk − di+1

(dk − λ)2
≥ 0.

47

Finally, we set

h(λ) = 1 + h1(λ) + h2(λ) = (1 + ĉ1 + ĉ2)︸ ︷︷ ︸
c3

+
c1

di − λ
+

c2
di+1 − λ

. (4.30)

This zerofinder is converging quadratically to the desired zero [Li94]. Usually 2 to 3 steps are sufficient
to get the zero to machine precision. Therefore finding a zero only requires O(n) flops. Thus, finding all
zeros costs O(n2) floating point operations.

4.7 A first algorithm

We are now ready to give the divide and conquer algorithm, see Algorithm 4.1.

1: Let T ∈ Cn×n be a real symmetric tridiagonal matrix. This algorithm computes the spectral decom-
position of T = QΛQT , where the diagonal Λ is the matrix of eigenvalues and Q is orthogonal.

2: if T is 1× 1 then
3: return (Λ = T ; Q = 1)
4: else

5: Partition T =

[
T1 O
O T2

]
+ ρuuT according to (4.2)

6: Call this algorithm with T1 as input and Q1, Λ1 as output.
7: Call this algorithm with T2 as input and Q2, Λ2 as output.
8: Form D + ρvvT from Λ1,Λ2, Q1, Q2 according to (4.4)–(4.6).
9: Find the eigenvalues Λ and the eigenvectorsQ′ of D + ρvvT .

10: Form Q =

[
Q1 O
O Q2

]
·Q′ which are the eigenvectors of T .

11: return (Λ; Q)
12: end if

ALGORITHM 4.1: The tridiagonal divide and conquer algorithm

All steps except step 10 require O(n2) operations to complete. The step 10 costs n3 flops. Thus, the full
divide and conquer algorithm, requires

T (n) = n3 + 2 · T (n/2) = n3 + 2
(n

2

)3

+ 4T (n/4)

= n3 +
n3

4
+ 4

(n
4

)3

+ 8T (n/8) = · · · = 4

3
n3.

(4.31)

This serial complexity of the algorithm very often overestimates the computational costs of the algorithm
due to significant deflation that is observed surprisingly often.

4.7.1 A numerical example

Let A be a 4× 4 matrix

A = D + vvT =




0
2− β

2 + β
5


+




1
β
β
1



[

1 β β 1
]
. (4.32)

In this example (that is similar to one in [ST91]) we want to point at a problem that the divide and conquer
algorithm possesses as it is given in Algorithm 4.1, namely the loss of orthogonality among eigenvectors.

Before we do some MATLAB tests let us look more closely atD and v in (4.32). This example becomes
difficult to solve if β gets very small. In Figures 4.2 to 4.5 we see graphs of the function fβ(λ) that appears

48

−2 −1 0 1 2 3 4 5 6 7
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.2: Secular equation corresponding to (4.32) for β = 1

in the secular equation for β = 1, β = 0.1, and β = 0.01. The critical zeros move towards 2 from both
sides. The weights v2

2 = v2
3 = β2 are however not so small that they should be deflated.

The following MATLAB code shows the problem. We execute the commands for β = 10−k for k =
0, 1, 2, 4, 8.

v = [1 beta beta 1]’; % rank-1 modification
d = [0, 2-beta, 2+beta, 5]’; % diagonal matrix

L = eig(diag(d) + v*v’) % eigenvalues of the modified matrix
e = ones(4,1);
q = (d*e’-e*L’).\(v*e’); % unnormalized eigenvectors cf. (5.15)

Q = sqrt(diag(q’*q));
q = q./(e*Q’); % normalized eigenvectors

norm(q’*q-eye(4)) % check for orthogonality

We do not bother how we compute the eigenvalues. We simply use MATLAB’s built-in function eig. We
get the results of Table 4.1.

Table 4.1 Loss of orthogonality among the eigenvectors computed by (4.15)

β λ1 λ2 λ3 λ4 ‖QTQ− I‖
1 0.325651 1.682219 3.815197 7.176933 5.6674 · 10−16

0.1 0.797024 1.911712 2.112111 6.199153 3.4286 · 10−15

0.01 0.807312 1.990120 2.010120 6.192648 3.9085 · 10−14

10−4 0.807418 1.999900 2.000100 6.192582 5.6767 · 10−12

10−8 0.807418 1.99999999000000 2.00000001000000 6.192582 8.3188 · 10−08

We observe loss of orthogonality among the eigenvectors as the eigenvalues get closer and closer. This
may not be surprising as we compute the eigenvectors by formula (4.15)

x =
(λI −D)−1v

‖(λI −D)−1v‖ .

If λ = λ2 and λ = λ3 which are almost equal, λ2 ≈ λ3 then intuitively one expects almost the same

49

−2 −1 0 1 2 3 4 5 6 7
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.3: Secular equation corresponding to (4.32) for β = 0.1

eigenvectors. We have in fact

QTQ− I4 =




−2.2204 · 10−16 4.3553 · 10−8 1.7955 · 10−8 −1.1102 · 10−16

4.3553 · 10−8 0 −5.5511 · 10−8 −1.8298 · 10−8

1.7955 · 10−8 −5.5511 · 10−8 −1.1102 · 10−16 −7.5437 · 10−9

−1.1102 · 10−16 −1.8298 · 10−8 −7.5437 · 10−9 0


 .

Orthogonality is lost only with respect to the vectors corresponding to the eigenvalues close to 2.
Already Dongarra and Sorensen [DS87] analyzed this problem. In their formulation they normalize the

vector v of D + ρvvT to have norm unity, ‖v‖ = 1.
They formulated

Lemma 4.1. Let

qTλ =

(
v1

d1 − λ
,

v2
d2 − λ

, . . . ,
vn

dn − λ

)[
ρ

f ′(λ)

]1/2
. (4.33)

Then for any λ, µ 6∈ {d1, . . . , dn} we have

|qTλqµ| =
1

|λ− µ|
|f(λ)− f(µ)|
[f ′(λ)f ′(µ)]1/2

. (4.34)

Proof. Observe that
λ− µ

(dj − λ)(dj − µ)
=

1

dj − λ
− 1

dj − µ
.

Then the proof is straightforward.
Formula (4.34) indicates how problems may arise. In exact arithmetic, if λ and µ are eigenvalues then

f(λ) = f(µ) = 0. However, in floating point arithmetic this values may be small but nonzero, e.g., O(ε).
If |λ−µ| is very small as well then we may have trouble! So, a remedy for the problem was for a long time
to compute the eigenvalues in doubled precision, so that f(λ) = O(ε2). This would counteract a potential
O(ε) of |λ− µ|.

This solution was quite unsatisfactory because doubled precision is in general very slow since it is
implemented in software. It took a decade until a proper solution was found.

50

1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.4: Secular equation corresponding to (4.32) for β = 0.1 for 1 ≤ λ ≤ 3

1.9 1.95 2 2.05 2.1
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.5: Secular equation corresponding to (4.32) for β = 0.01 for 1.9 ≤ λ ≤ 2.1

4.8 The algorithm of Gu and Eisenstat

Computing eigenvector according to the formula

x = α(λI −D)−1v = α




v1
λ− d1

...
vn

λ− dn


 , α = ‖(λI −D)−1v‖, (4.35)

is bound to fail if λ is very close to a pole dk and the difference λ−dk has an error of sizeO(ε|dk |) instead
of only O(ε|dk − λ|). To resolve this problem Gu and Eisenstat [GE94] found a trick that is at the same
time ingenious and simple.

They observed that the vk in (4.24) are very accurately determined by the data di and λi. Therefore,
once the eigenvalues are computed accurately a vector v̂ could be computed such that the λi are accurate
eigenvalues of D + v̂v̂. If v̂ approximates well the original v then the new eigenvectors will be the exact
eigenvectors of a slightly modified eigenvalue problem, which is all we can hope for.

The zeros of the secular equation can be computed accurately by the method presented in section 4.6.

51

However, a shift of variables is necessary. In the interval (di, di+1) the origin of the real axis is moved to
di if λi is closer to di than to di+1, i.e., if f((di + di+1)/2) > 0. Otherwise, the origin is shifted to di+1.
This shift of the origin avoids the computation of the smallest difference di − λ (or di+1 − λ) in (4.35),
thus avoiding cancellation in this most sensitive quantity. Equation (4.26) can be rewritten as

(c1∆i+1 + c2∆i + c3∆i∆i+1)︸ ︷︷ ︸
b

− (c1 + c2 + c3(∆i + ∆i+1))︸ ︷︷ ︸
−a

η + c3︸︷︷︸
c

η2 = 0, (4.36)

where ∆i = di − λj , ∆i+1 = di+1 − λj , and λj+1 = λj + η is the next approximate zero. With
equations (4.28)–(4.30) the coefficients in (4.36) get

a = c1 + c2 + c3(∆i + ∆i+1) = (1 + Ψ1 + Ψ2)(∆i + ∆i+1)− (Ψ′
1 + Ψ′

2)∆i∆i+1,

b = c1∆i+1 + c2∆i + c3∆i∆i+1 = ∆i∆i+1(1 + Ψ1 + Ψ2),

c = c3 = 1 + Ψ1 + Ψ2 −∆iΨ
′
1 −∆i+1Ψ

′
2.

(4.37)

If we are looking for a zero that is closer to di than to di+1 then we move the origin to λj , i.e., we have e.g.
∆i = −λj . The solution of (4.36) that lies inside the interval is [Li94]

η =





a−
√
a2 − 4bc
2c , if a ≤ 0,

2b

a+
√
a2 − 4bc

, if a > 0.
(4.38)

The following algorithm shows how step 9 of the tridiagonal divide and conquer algorithm 4.1 must be
implemented.

1: This algorithm stably computes the spectral decomposition of D + vvT = QΛQT where D =
diag(d1, . . . dn), v = [v1, . . . , vn] ∈ Rn, Λ = diag(λ1, . . . λn), and Q = [q1, . . . ,qn].

2: di+1 = dn + ‖v‖2.
3: In each interval (di, di+1) compute the zero λi of the secular equation f(λ) = 0.
4: Use the formula (4.24) to compute the vector v̂ such that the λi are the ‘exact’ eigenvalues of D+ v̂v̂.
5: In each interval (di, di+1) compute the eigenvectors of D + v̂v̂ according to (4.15),

qi =
(λiI −D)−1v̂

‖(λiI −D)−1v̂‖ .

6: return (Λ; Q)

ALGORITHM 4.2: A stable eigensolver for D + vvT

4.8.1 A numerical example [continued]

We continue the discussion of the example on page 48 where the eigenvalue problem of

A = D + vvT =




0
2− β

2 + β
5


+




1
β
β
1



[

1 β β 1
]
. (4.39)

The MATLAB code that we showed did not give orthogonal eigenvectors. We show in the following
script that the formulae (4.24) really solve the problem.

dlam = zeros(n,1);
for k=1:n,

[dlam(k), dvec(:,k)] = zerodandc(d,v,k);

52

end

V = ones(n,1);
for k=1:n,

V(k) = prod(abs(dvec(k,:)))/prod(d(k) - d(1:k-1))/prod(d(k+1:n) - d(k));
V(k) = sqrt(V(k));

end

Q = (dvec).\(V*e’);
diagq = sqrt(diag(Q’*Q));
Q = Q./(e*diagq’);

for k=1:n,
if dlam(k)>0,
dlam(k) = dlam(k) + d(k);

else
dlam(k) = d(k+1) + dlam(k);

end
end

norm(Q’*Q-eye(n))
norm((diag(d) + v*v’)*Q - Q*diag(dlam’))

A zero finder returns for each interval the quantity λi − di and the vector [d1 − λi, . . . , dn − λi]T to
high precision. These vector elements have been computed as (dk − di) − (λi − di). The zerofinder of
Li [Li94] has been employed here. At the end of this section we list the zerofinder written in MATLAB

that was used here. The formulae (4.37) and (4.38) have been used to solve the quadratic equation (4.36).
Notice that only one of the while loops is traversed, depending on if the zero is closer to the pole on the
left or to the right of the interval. The vk of formula (4.24) are computed next. Q contains the eigenvectors.

Table 4.2 Loss of orthogonality among the eigenvectors computed by the straightforward algorithm (I) and
the Gu-Eisenstat approach (II)

β Algorithm ‖QTQ− I‖ ‖AQ−QΛ‖
0.1 I 3.4286 · 10−15 5.9460 · 10−15

II 2.2870 · 10−16 9.4180 · 10−16

0.01 I 3.9085 · 10−14 6.9376 · 10−14

II 5.5529 · 10−16 5.1630 · 10−16

10−4 I 5.6767 · 10−12 6.3818 · 10−12

II 2.2434 · 10−16 4.4409 · 10−16

10−8 I 8.3188 · 10−08 1.0021 · 10−07

II 2.4980 · 10−16 9.4133 · 10−16

Again we ran the code for β = 10−k for k = 0, 1, 2, 4, 8. The numbers in Table 4.2 confirm that the
new formulae are much more accurate than the straight forward ones. The norms of the errors obtained for
the Gu-Eisenstat algorithm always are in the order of machine precision, i.e., 10−16.

function [lambda,dl] = zerodandc(d,v,i)
% ZERODANDC - Computes eigenvalue lambda in the i-th interval
% (d(i), d(i+1)) with Li’s ’middle way’ zero finder
% dl is the n-vector [d(1..n) - lambda]

n = length(d);
di = d(i);
v = v.ˆ2;
if i < n,

di1 = d(i+1); lambda = (di + di1)/2;

53

else
di1 = d(n) + norm(v)ˆ2; lambda = di1;

end
eta = 1;
psi1 = sum((v(1:i).ˆ2)./(d(1:i) - lambda));
psi2 = sum((v(i+1:n).ˆ2)./(d(i+1:n) - lambda));

if 1 + psi1 + psi2 > 0, % zero is on the left half of the interval

d = d - di; lambda = lambda - di; di1 = di1 - di; di = 0;

while abs(eta) > 10*eps
psi1 = sum(v(1:i)./(d(1:i) - lambda));
psi1s = sum(v(1:i)./((d(1:i) - lambda)).ˆ2);

psi2 = sum((v(i+1:n))./(d(i+1:n) - lambda));
psi2s = sum(v(i+1:n)./((d(i+1:n) - lambda)).ˆ2);

% Solve for zero
Di = -lambda; Di1 = di1 - lambda;
a = (Di + Di1)*(1 + psi1 + psi2) - Di*Di1*(psi1s + psi2s);
b = Di*Di1*(1 + psi1 + psi2);
c = (1 + psi1 + psi2) - Di*psi1s - Di1*psi2s;
if a > 0,

eta = (2*b)/(a + sqrt(aˆ2 - 4*b*c));
else

eta = (a - sqrt(aˆ2 - 4*b*c))/(2*c);
end
lambda = lambda + eta;

end

else % zero is on the right half of the interval

d = d - di1; lambda = lambda - di1; di = di - di1; di1 = 0;

while abs(eta) > 10*eps
psi1 = sum(v(1:i)./(d(1:i) - lambda));
psi1s = sum(v(1:i)./((d(1:i) - lambda)).ˆ2);

psi2 = sum((v(i+1:n))./(d(i+1:n) - lambda));
psi2s = sum(v(i+1:n)./((d(i+1:n) - lambda)).ˆ2);

% Solve for zero
Di = di - lambda; Di1 = - lambda;
a = (Di + Di1)*(1 + psi1 + psi2) - Di*Di1*(psi1s + psi2s);
b = Di*Di1*(1 + psi1 + psi2);
c = (1 + psi1 + psi2) - Di*psi1s - Di1*psi2s;
if a > 0,

eta = (2*b)/(a + sqrt(aˆ2 - 4*b*c));
else

eta = (a - sqrt(aˆ2 - 4*b*c))/(2*c);
end
lambda = lambda + eta;

end

end

dl = d - lambda;

54

return

55

Bibliography

[ABB+94] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide - Release
2.0. SIAM, Philadelphia, PA, 1994. (Software and guide are available from Netlib at URL
http://www.netlib.org/lapack/).

[Cup81] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math., 36:177–195, 1981.

[Dem97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[DS87] J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the symmetric eigenvalue
problem. SIAM J. Sci. Stat. Comput., 8(2):s139–s154, 1987.

[GE94] M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the rank-one modification of
the symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15:1266–1276, 1994.

[GE95] M. Gu and S. C. Eisenstat. A divide-and-conquer algorithm for the symmetric tridiagonal
eigenproblem. SIAM J. Matrix Anal. Appl., 16:172–191, 1995.

[Li94] R.-C. Li. Solving secular equations stably and efficiently. Technical Report CS-94-260, Uni-
versity of Tennessee, Knoxville, TN, November 1994. LAPACK Working Note No. 93.

[ST91] D. C. Sorensen and P. T. P. Tang. On the orthogonality of eigenvectors computed by divide-
and-conquer techniques. SIAM J. Numer. Anal., 28:1752–1775, 1991.

56

Chapter 5

LAPACK and the BLAS

5.1 LAPACK

(This section is essentially compiled from the LAPACK User’s Guide [ABB+94] that is available online
from http://www.netlib.org/lapack/lug/.)

LAPACK [ABB+94] is a library of Fortran 77 subroutines for solving the most commonly occurring
problems in numerical linear algebra. It has been designed to be efficient on a wide range of modern
high-performance computers. The name LAPACK is an acronym for Linear Algebra PACKage.

LAPACK can solve systems of linear equations, linear least squares problems, eigenvalue problems
and singular value problems. LAPACK can also handle many associated computations such as matrix
factorizations or estimating condition numbers.

LAPACK contains driver routines for solving standard types of problems, computational routines
to perform a distinct computational task, and auxiliary routines to perform a certain subtask or common
low-level computation. Each driver routine typically calls a sequence of computational routines. Taken
as a whole, the computational routines can perform a wider range of tasks than are covered by the driver
routines. Many of the auxiliary routines may be of use to numerical analysts or software developers, so we
have documented the Fortran source for these routines with the same level of detail used for the LAPACK
routines and driver routines.

Dense and banded matrices are provided for, but not general sparse matrices. In all areas, similar
functionality is provided for real and complex matrices.

LAPACK is designed to give high efficiency on vector processors, high-performance “super-scalar”
workstations, and shared memory multiprocessors. It can also be used satisfactorily on all types of scalar
machines (PC’s, workstations, mainframes). A distributed-memory version of LAPACK, ScaLAPACK [BCC+97],
has been developed for other types of parallel architectures (for example, massively parallel SIMD ma-
chines, or distributed memory machines).

LAPACK has been designed to supersede LINPACK [DBMS79] and EISPACK [SBD+76, GBDM77],
principally by restructuring the software to achieve much greater efficiency, where possible, on modern
high-performance computers; also by adding extra functionality, by using some new or improved algo-
rithms, and by integrating the two sets of algorithms into a unified package.

LAPACK routines are written so that as much as possible of the computation is performed by calls to the
Basic Linear Algebra Subprograms (BLAS) [LHKK79, DDCHH88a, DCDH90]. Highly efficient machine-
specific implementations of the BLAS are available for many modern high-performance computers. The
BLAS enable LAPACK routines to achieve high performance with portable code.

The BLAS are not strictly speaking part of LAPACK, but Fortran 77 code for the BLAS is distributed
with LAPACK, or can be obtained separately from netlib where “model implementations” are found.

The model implementation is not expected to perform as well as a specially tuned implementation on
most high-performance computers – on some machines it may give much worse performance – but it allows
users to run LAPACK codes on machines that do not offer any other implementation of the BLAS.

The complete LAPACK package or individual routines from LAPACK are freely available from the

57

World Wide Web or by anonymous ftp. The LAPACK homepage can be accessed via the URL http:
//www.netlib.org/lapack/.

5.2 BLAS

By 1976 it was clear that some standardization of basic computer operations on vectors was needed [LHKK79].
By then it was already known that coding procedures that worked well on one machine might work very
poorly on others. In consequence of these observations, Lawson, Hanson, Kincaid and Krogh proposed a
limited set of Basic Linear Algebra Subprograms (BLAS) to be (hopefully) optimized by hardware ven-
dors, implemented in assembly language if necessary, that would form the basis of comprehensive linear
algebra packages [LHKK79]. These so-called Level 1 BLAS consisted of vector operations and some at-
tendant co-routines. The first major package which used these BLAS kernels was LINPACK [DBMS79].
Soon afterward, other major software libraries such as the IMSL library and NAG rewrote portions of
their existing codes and structured new routines to use these BLAS. Early in their development, vec-
tor computers saw significant optimizations using the BLAS. Soon, however, such machines were clus-
tered together in tight networks and somewhat larger kernels for numerical linear algebra were devel-
oped [DDCHH88a, DDCHH88b] to include matrix-vector operations (Level 2 BLAS). Additionally, FOR-
TRAN compilers were by then optimizing vector operations as efficiently as hand coded Level 1 BLAS.
Subsequently, in the late 1980s, distributed memory machines were in production and shared memory ma-
chines began to have significant numbers of processors. A further set of matrix-matrix operations was pro-
posed [DCDH87] and soon standardized [DCDH90] to form a Level 3. The first major package for linear
algebra which used the Level 3 BLAS was LAPACK [ABB+94] and subsequently a scalable (to large num-
bers of processors) version was released as ScaLAPACK [BCC+97]. Vendors focused on Level 1, Level 2,
and Level 3 BLAS which provided an easy route to optimizing LINPACK, then LAPACK. LAPACK not
only integrated pre-existing solvers and eigenvalue routines found in EISPACK [SBD+76] (which did not
use the BLAS) and LINPACK (which used Level 1 BLAS), but incorporated the latest dense and banded
linear algebra algorithms available. It also used the Level 3 BLAS which were optimized by much vendor
effort. Later, we will illustrate several BLAS routines. Conventions for different BLAS are indicated by

• A root operation. For example, axpy for the operation

y := a·x + y (5.1)

• A prefix (or combination prefix) to indicate the datatype of the operands, for example saxpy for
single precision axpy operation, or isamax for the index of the maximum absolute element in an
array of type single.

• a suffix if there is some qualifier, for example cdotc or cdotu for conjugated or unconjugated
complex dot product, respectively:

cdotc(n,x,1,y,1) =

n−1∑

i=0

xiȳi

cdotu(n,x,1,y,1) =

n−1∑

i=0

xiyi

where both x,y are vectors of complex elements.

Tables 5.1 and 5.2 give the prefix/suffix and root combinations for the BLAS, respectively.

5.2.1 Typical performance numbers for the BLAS

Let us look at typical representations of all three levels of the BLAS, daxpy, ddot, dgemv, and dgemm,
that perform some basic operations. Additionally, we look at the rank-1 update routine dger. An overview

58

Table 5.1 Basic Linear Algebra Subprogram prefix/suffix conventions.

Prefixes:
S REAL
D DOUBLE PRECISION
C COMPLEX
Z DOUBLE COMPLEX

Suffixes:
U transpose
C Hermitian conjugate

on the number of memory accesses and floating point operations is given in Table 5.3. The Level 1 BLAS
comprise basic vector operations. A call of one of the Level 1 BLAS thus gives rise to O(n) floating
point operations and O(n) memory accesses. Here, n is the vector length. The Level 2 BLAS comprise
operations that involve matrices and vectors. If the involved matrix is n-by-n then both the memory
accesses and the floating point operations are ofO(n2). In contrast, the Level 3 BLAS have a higher order
of floating point operations than memory accesses. The most prominent operation of the Level 3 BLAS,
matrix-matrix multiplication costs O(n3) floating point operations while there are only O(n2) reads and
writes. The last column in Table 5.3 shows the crucial difference between the Level 3 BLAS and the rest.

Table 5.4 gives some performance numbers for the five BLAS of Table 5.3. Notice that the timer has a
resolution of only 1 µsec! Therefore, the numbers in Table 5.4 have been obtained by timing a loop inside
of which the respective function is called many times. The Mflop/s rates of the Level 1 BLAS ddot and
daxpy quite precisely reflect the ratios of the memory accesses of the two routines, 2n vs. 3n. The high
rates are for vectors that can be held in the on-chip cache of 512 MB. The low 240 and 440 Mflop/s with
the very long vectors are related to the memory bandwidth of about 1900 MB/s.

The Level 2 BLAS dgemv has about the same performance as daxpy if the matrix can be held in cache
(n = 100). Otherwise it is considerably reduced. dger has a high volume of read and write operations,
while the number of floating point operations is limited. This leads to a very low performance rate. The
Level 3 BLAS dgemm performs at a good fraction of the peak performance of the processor (4.8Gflop/s).
The performance increases with the problem size. We see from Table 5.3 that the ratio of computation
to memory accesses increases with the problem size. This ratio is analogous to a volume to surface area
effect.

5.3 Blocking

In the previous section we have seen that it is important to use Level 3 BLAS. However, in the algorithm
we have treated so far, there were no blocks. For instance, in the reduction to Hessenberg form we applied
Householder (elementary) reflectors from left and right to a matrix to introduce zeros in one of its columns.

The essential point here is to gather a number of reflectors to a single block transformation. Let
Pi = I − 2uiu

∗
i , i = 1, 2, 3, be three Householder reflectors. Their product is

P = P3P2P1 = (I − 2u3u
∗
3)(I − 2u2u

∗
2)(I − 2u1u

∗
1)

= I − 2u3u
∗
3 − 2u2u

∗
2 − 2u1u

∗
1 + 4u3u

∗
3u2u

∗
2 + 4u3u

∗
3u1u

∗
1 + 4u2u

∗
2u1u

∗
1

+ 8u3u
∗
3u2u

∗
2u1u

∗
1

= I − [u1u2u3]




2
4u∗2u1 2

4u∗3u1 + 8(u∗3u2)(u
∗
2u1) 4u∗3u2 2


 [u1u2u3]

∗.

(5.2)

So, if e.g. three rotations are to be applied on a matrix in blocked fashon, then the three Householder vectors
u1,u2,u3 have to be found first. To that end the rotations are first applied only on the first three columns
of the matrix, see Fig. 5.1. Then, the blocked rotation is applied to the rest of the matrix.

59

Table 5.2 Summary of the Basic Linear Algebra Subroutines.

Level 1 BLAS

rotg, rot Generate/apply plane rotation
rotmg, rotm Generate/apply modified plane rotation
swap Swap two vectors: x↔ y

scal Scale a vector: x← αx
copy Copy a vector: x← y

axpy axpy operation: y← y + αx
dot Dot product: s← x · y = x∗y
nrm2 2-norm: s← ‖x‖2
asum 1-norm: s← ‖x‖1
i amax Index of largest vector element:

first i such |xi| ≥ |xk| for all k

Level 2 BLAS

gemv, gbmv General (banded) matrix-vector multiply:
y ← αAx + βy

hemv, hbmv, hpmv Hermitian (banded, packed) matrix-vector
multiply: y ← αAx + βy

semv, sbmv, spmv Symmetric (banded, packed) matrix-vector
multiply: y ← αAx + βy

trmv, tbmv, tpmv Triangular (banded, packed) matrix-vector
multiply: x← Ax

trsv, tbsv, tpsv Triangular (banded, packed) system solves
(forward/backward substitution): x← A−1x

ger, geru, gerc Rank-1 updates: A← αxy∗ +A
her, hpr, syr, spr Hermitian/symmetric (packed) rank-1 updates:

A← αxx∗ +A
her2, hpr2, syr2, spr2 Hermitian/symmetric (packed) rank-2 updates:

A← αxy∗ + α∗yx∗ +A

Level 3 BLAS

gemm, symm, hemm General/symmetric/Hermitian matrix-matrix
multiply: C ← αAB + βC

syrk, herk Symmetric/Hermitian rank-k update:
C ← αAA∗ + βC

syr2k, her2k Symmetric/Hermitian rank-k update:
C ← αAB∗ + α∗BA∗ + βC

trmm Multiple triangular matrix-vector multiplies:
B ← αAB

trsm Multiple triangular system solves: B ← αA−1B

60

Table 5.3 Number of memory references and floating point operations for vectors of length n.

read write flops flops / mem access
ddot 2n 1 2n 1
daxpy 2n n 2n 2/3
dgemv n2 + n n 2n2 2
dger n2 + 2n n2 2n2 1
dgemm 2n2 n2 2n3 2n/3

Table 5.4 Some performance numbers for typical BLAS in Mflop/s for a 2.4 GHz Pentium 4.

n = 100 500 2’000 10’000’000
ddot 1480 1820 1900 440
daxpy 1160 1300 1140 240
dgemv 1370 740 670 —
dger 670 330 320 —
dgemm 2680 3470 3720 —

Remark 5.1. Notice that a similar situation holds for Gaussian elimination because



1
l21 1
l31 1
...

. . .
ln1 1







1
1
l32 1
...

. . .
ln2 1




=




1
l21 1
l31 l32 1
...

...
. . .

ln1 ln2 1



.

However, things are a complicated because of pivoting.

5.4 LAPACK solvers for the symmetric eigenproblems

To give a feeling how LAPACK is organized we consider solvers for the symmetric eigenproblem (SEP).
Except for this problem there are driver routines for linear systems, least squares problems, nonsymmetric
eigenvalue problems, the computation of the singular value decomposition (SVD).

The basic task of the symmetric eigenproblem routines is to compute values of λ and, optionally,
corresponding vectors z for a given matrix A.

There are four types of driver routines for symmetric and Hermitian eigenproblems. Originally LA-
PACK had just the simple and expert drivers described below, and the other two were added after improved
algorithms were discovered. Ultimately we expect the algorithm in the most recent driver (called RRR be-
low) to supersede all the others, but in LAPACK 3.0 the other drivers may still be faster on some problems,
so we retain them.

• A simple driver computes all the eigenvalues and (optionally) eigenvectors.

• An expert driver computes all or a selected subset of the eigenvalues and (optionally) eigenvectors. If
few enough eigenvalues or eigenvectors are desired, the expert driver is faster than the simple driver.

• A divide-and-conquer driver solves the same problem as the simple driver. It is much faster than the
simple driver for large matrices, but uses more workspace. The name divide-and-conquer refers to
the underlying algorithm.

• A relatively robust representation (RRR) driver computes all or (in a later release) a subset of the
eigenvalues, and (optionally) eigenvectors. It is the fastest algorithm of all (except for a few cases),
and uses the least workspace. The name RRR refers to the underlying algorithm.

61

Figure 5.1: Blocking Householder reflections

This computation proceeds in the following stages:

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is
real symmetric this decomposition is A = QTQT with Q orthogonal and T symmetric tridiagonal.
If A is complex Hermitian, the decomposition is A = QTQH with Q unitary and T , as before, real
symmetric tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all eigen-
values and eigenvectors are computed, this is equivalent to factorizing T as T = SΛST , where S
is orthogonal and Λ is diagonal. The diagonal entries of Λ are the eigenvalues of T , which are also
the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A are the
columns of Z = QS, so that A = ZΛZT (ZΛZH when A is complex Hermitian).

In the real case, the decompositionA = QTQT is computed by one of the routines sytrd, sptrd,
or sbtrd, depending on how the matrix is stored. The complex analogues of these routines are called
hetrd, hptrd, and hbtrd. The routine sytrd (or hetrd) represents the matrix Q as a product

of elementary reflectors. The routine orgtr (or in the complex case unmtr) is provided to form Q
explicitly; this is needed in particular before calling steqr to compute all the eigenvectors of A by the
QR algorithm. The routine ormtr (or in the complex case unmtr) is provided to multiply another
matrix by Q without forming Q explicitly; this can be used to transform eigenvectors of T computed by
stein, back to eigenvectors of A.

For the names of the routines for packed and banded matrices, see [ABB+94].
There are several routines for computing eigenvalues and eigenvectors of T , to cover the cases of

computing some or all of the eigenvalues, and some or all of the eigenvectors. In addition, some routines
run faster in some computing environments or for some matrices than for others. Also, some routines are
more accurate than other routines.

steqr This routine uses the implicitly shifted QR algorithm. It switches between the QR and QL variants in
order to handle graded matrices. This routine is used to compute all the eigenvalues and eigenvectors.

sterf This routine uses a square-root free version of the QR algorithm, also switching between QR and
QL variants, and can only compute all the eigenvalues. This routine is used to compute all the
eigenvalues and no eigenvectors.

62

stedc This routine uses Cuppen’s divide and conquer algorithm to find the eigenvalues and the eigenvectors.
stedc can be many times faster than steqr for large matrices but needs more work space (2n2

or 3n2). This routine is used to compute all the eigenvalues and eigenvectors.

stegr This routine uses the relatively robust representation (RRR) algorithm to find eigenvalues and eigen-
vectors. This routine uses an LDLT factorization of a number of translates T − σI of T , for one
shift σ near each cluster of eigenvalues. For each translate the algorithm computes very accurate
eigenpairs for the tiny eigenvalues. stegr is faster than all the other routines except in a few cases,
and uses the least workspace.

stebz This routine uses bisection to compute some or all of the eigenvalues. Options provide for computing
all the eigenvalues in a real interval or all the eigenvalues from the ith to the jth largest. It can be
highly accurate, but may be adjusted to run faster if lower accuracy is acceptable.

stein Given accurate eigenvalues, this routine uses inverse iteration to compute some or all of the eigen-
vectors.

5.5 Generalized Symmetric Definite Eigenproblems (GSEP)

Drivers are provided to compute all the eigenvalues and (optionally) the eigenvectors of the following types
of problems:

1. Az = λBz

2. ABz = λz

3. BAz = λz

where A and B are symmetric or Hermitian and B is positive definite. For all these problems the eigenvalues
λ are real. The matrices Z of computed eigenvectors satisfy ZTAZ = Λ (problem types 1 and 3) or
Z−1AZ−T = I (problem type 2), where Λ is a diagonal matrix with the eigenvalues on the diagonal. Z
also satisfies ZTBZ = I (problem types 1 and 2) or ZTB−1Z = I (problem type 3).

There are three types of driver routines for generalized symmetric and Hermitian eigenproblems. Orig-
inally LAPACK had just the simple and expert drivers described below, and the other one was added after
an improved algorithm was discovered.

• a simple driver computes all the eigenvalues and (optionally) eigenvectors.

• an expert driver computes all or a selected subset of the eigenvalues and (optionally) eigenvectors. If
few enough eigenvalues or eigenvectors are desired, the expert driver is faster than the simple driver.

• a divide-and-conquer driver solves the same problem as the simple driver. It is much faster than the
simple driver for large matrices, but uses more workspace. The name divide-and-conquer refers to
the underlying algorithm.

5.6 An example of a LAPACK routines

The double precision subroutine dsytrd.f implements the reduction to tridiagonal form. We give it here
in full length.

SUBROUTINE DSYTRD(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

*
* -- LAPACK routine (version 3.0) --

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* June 30, 1999

*
* .. Scalar Arguments ..

63

CHARACTER UPLO
INTEGER INFO, LDA, LWORK, N

* ..

* .. Array Arguments ..
DOUBLE PRECISION A(LDA, *), D(*), E(*), TAU(*),

$ WORK(*)

* ..

*
* Purpose

* =======

*
* DSYTRD reduces a real symmetric matrix A to real symmetric

* tridiagonal form T by an orthogonal similarity transformation:

* Q**T * A * Q = T.

*
* Arguments

* =========

*
* UPLO (input) CHARACTER*1

* = ’U’: Upper triangle of A is stored;

* = ’L’: Lower triangle of A is stored.

*
* N (input) INTEGER

* The order of the matrix A. N >= 0.

*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the symmetric matrix A. If UPLO = ’U’, the leading

* N-by-N upper triangular part of A contains the upper

* triangular part of the matrix A, and the strictly lower

* triangular part of A is not referenced. If UPLO = ’L’, the

* leading N-by-N lower triangular part of A contains the lower

* triangular part of the matrix A, and the strictly upper

* triangular part of A is not referenced.

* On exit, if UPLO = ’U’, the diagonal and first superdiagonal

* of A are overwritten by the corresponding elements of the

* tridiagonal matrix T, and the elements above the first

* superdiagonal, with the array TAU, represent the orthogonal

* matrix Q as a product of elementary reflectors; if UPLO

* = ’L’, the diagonal and first subdiagonal of A are over-

* written by the corresponding elements of the tridiagonal

* matrix T, and the elements below the first subdiagonal, with

* the array TAU, represent the orthogonal matrix Q as a product

* of elementary reflectors. See Further Details.

*
* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*
* D (output) DOUBLE PRECISION array, dimension (N)

* The diagonal elements of the tridiagonal matrix T:

* D(i) = A(i,i).

*
* E (output) DOUBLE PRECISION array, dimension (N-1)

* The off-diagonal elements of the tridiagonal matrix T:

* E(i) = A(i,i+1) if UPLO = ’U’, E(i) = A(i+1,i) if UPLO = ’L’.

*
* TAU (output) DOUBLE PRECISION array, dimension (N-1)

* The scalar factors of the elementary reflectors (see Further

* Details).

*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)

* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*
* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= 1.

* For optimum performance LWORK >= N*NB, where NB is the

* optimal blocksize.

*

64

* If LWORK = -1, then a workspace query is assumed; the routine

* only calculates the optimal size of the WORK array, returns

* this value as the first entry of the WORK array, and no error

* message related to LWORK is issued by XERBLA.

*
* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

*
* Further Details

* ===============

*
* If UPLO = ’U’, the matrix Q is represented as a product of elementary

* reflectors

*
* Q = H(n-1) . . . H(2) H(1).

*
* Each H(i) has the form

*
* H(i) = I - tau * v * v’

*
* where tau is a real scalar, and v is a real vector with

* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in

* A(1:i-1,i+1), and tau in TAU(i).

*
* If UPLO = ’L’, the matrix Q is represented as a product of elementary

* reflectors

*
* Q = H(1) H(2) . . . H(n-1).

*
* Each H(i) has the form

*
* H(i) = I - tau * v * v’

*
* where tau is a real scalar, and v is a real vector with

* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),

* and tau in TAU(i).

*
* The contents of A on exit are illustrated by the following examples

* with n = 5:

*
* if UPLO = ’U’: if UPLO = ’L’:

*
* (d e v2 v3 v4) (d)

* (d e v3 v4) (e d)

* (d e v4) (v1 e d)

* (d e) (v1 v2 e d)

* (d) (v1 v2 v3 e d)

*
* where d and e denote diagonal and off-diagonal elements of T, and vi

* denotes an element of the vector defining H(i).

*
* ===

*
* .. Parameters ..

DOUBLE PRECISION ONE
PARAMETER (ONE = 1.0D+0)

* ..

* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,

$ NBMIN, NX

* ..

* .. External Subroutines ..
EXTERNAL DLATRD, DSYR2K, DSYTD2, XERBLA

* ..

* .. Intrinsic Functions ..

65

INTRINSIC MAX

* ..

* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV

* ..

* .. Executable Statements ..

*
* Test the input parameters

*
INFO = 0
UPPER = LSAME(UPLO, ’U’)
LQUERY = (LWORK.EQ.-1)
IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, ’L’)) THEN

INFO = -1
ELSE IF(N.LT.0) THEN

INFO = -2
ELSE IF(LDA.LT.MAX(1, N)) THEN

INFO = -4
ELSE IF(LWORK.LT.1 .AND. .NOT.LQUERY) THEN

INFO = -9
END IF

*
IF(INFO.EQ.0) THEN

*
* Determine the block size.

*
NB = ILAENV(1, ’DSYTRD’, UPLO, N, -1, -1, -1)
LWKOPT = N*NB
WORK(1) = LWKOPT

END IF

*
IF(INFO.NE.0) THEN

CALL XERBLA(’DSYTRD’, -INFO)
RETURN

ELSE IF(LQUERY) THEN
RETURN

END IF

*
* Quick return if possible

*
IF(N.EQ.0) THEN

WORK(1) = 1
RETURN

END IF

*
NX = N
IWS = 1
IF(NB.GT.1 .AND. NB.LT.N) THEN

*
* Determine when to cross over from blocked to unblocked code

* (last block is always handled by unblocked code).

*
NX = MAX(NB, ILAENV(3, ’DSYTRD’, UPLO, N, -1, -1, -1))
IF(NX.LT.N) THEN

*
* Determine if workspace is large enough for blocked code.

*
LDWORK = N
IWS = LDWORK*NB
IF(LWORK.LT.IWS) THEN

*
* Not enough workspace to use optimal NB: determine the

* minimum value of NB, and reduce NB or force use of

* unblocked code by setting NX = N.

*

66

NB = MAX(LWORK / LDWORK, 1)
NBMIN = ILAENV(2, ’DSYTRD’, UPLO, N, -1, -1, -1)
IF(NB.LT.NBMIN)

$ NX = N
END IF

ELSE
NX = N

END IF
ELSE

NB = 1
END IF

*
IF(UPPER) THEN

*
* Reduce the upper triangle of A.

* Columns 1:kk are handled by the unblocked method.

*
KK = N - ((N-NX+NB-1) / NB)*NB
DO 20 I = N - NB + 1, KK + 1, -NB

*
* Reduce columns i:i+nb-1 to tridiagonal form and form the

* matrix W which is needed to update the unreduced part of

* the matrix

*
CALL DLATRD(UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,

$ LDWORK)

*
* Update the unreduced submatrix A(1:i-1,1:i-1), using an

* update of the form: A := A - V*W’ - W*V’

*
CALL DSYR2K(UPLO, ’No transpose’, I-1, NB, -ONE, A(1, I),

$ LDA, WORK, LDWORK, ONE, A, LDA)

*
* Copy superdiagonal elements back into A, and diagonal

* elements into D

*
DO 10 J = I, I + NB - 1

A(J-1, J) = E(J-1)
D(J) = A(J, J)

10 CONTINUE
20 CONTINUE

*
* Use unblocked code to reduce the last or only block

*
CALL DSYTD2(UPLO, KK, A, LDA, D, E, TAU, IINFO)

ELSE

*
* Reduce the lower triangle of A

*
DO 40 I = 1, N - NX, NB

*
* Reduce columns i:i+nb-1 to tridiagonal form and form the

* matrix W which is needed to update the unreduced part of

* the matrix

*
CALL DLATRD(UPLO, N-I+1, NB, A(I, I), LDA, E(I),

$ TAU(I), WORK, LDWORK)

*
* Update the unreduced submatrix A(i+ib:n,i+ib:n), using

* an update of the form: A := A - V*W’ - W*V’

*
CALL DSYR2K(UPLO, ’No transpose’, N-I-NB+1, NB, -ONE,

$ A(I+NB, I), LDA, WORK(NB+1), LDWORK, ONE,
$ A(I+NB, I+NB), LDA)

*
* Copy subdiagonal elements back into A, and diagonal

* elements into D

67

*
DO 30 J = I, I + NB - 1

A(J+1, J) = E(J)
D(J) = A(J, J)

30 CONTINUE
40 CONTINUE

*
* Use unblocked code to reduce the last or only block

*
CALL DSYTD2(UPLO, N-I+1, A(I, I), LDA, D(I), E(I),

$ TAU(I), IINFO)
END IF

*
WORK(1) = LWKOPT
RETURN

*
* End of DSYTRD

*
END

Notice that most of the lines (indicated by ‘∗’) contain comments. The initial comment lines also serve
as manual pages. Notice that the code only looks at one half (upper or lower triangle) of the symmetric
input matrix. The other triangle is used to store the Householder vectors. These are normed such that the
first component is one,

I − 2uu∗ = I − 2|u1|2(u/u1)(u/u1)
∗ = I − τvv∗.

In the main loop of dsytrd there is a call to a subroutine dlatrd that generates a block reflektor.
(The blocksize is NB.) Then the block reflector is applied by the routine dsyr2k.

Directly after the loop there is a call to the ‘unblocked dsytrd’ named dsytd2 to deal with the
first/last few (<NB) rows/columns of the matrix. This excerpt concerns the situation when the upper
triangle of the matrix A is stored. In that routine the mentioned loop looks very much the way we derived
the formulae.

ELSE

*
* Reduce the lower triangle of A

*
DO 20 I = 1, N - 1

*
* Generate elementary reflector H(i) = I - tau * v * v’

* to annihilate A(i+2:n,i)

*
CALL DLARFG(N-I, A(I+1, I), A(MIN(I+2, N), I), 1,

$ TAUI)
E(I) = A(I+1, I)

*
IF(TAUI.NE.ZERO) THEN

*
* Apply H(i) from both sides to A(i+1:n,i+1:n)

*
A(I+1, I) = ONE

*
* Compute x := tau * A * v storing y in TAU(i:n-1)

*
CALL DSYMV(UPLO, N-I, TAUI, A(I+1, I+1), LDA,

$ A(I+1, I), 1, ZERO, TAU(I), 1)

*
* Compute w := x - 1/2 * tau * (x’*v) * v

*
ALPHA = -HALF*TAUI*DDOT(N-I, TAU(I), 1, A(I+1, I),

$ 1)
CALL DAXPY(N-I, ALPHA, A(I+1, I), 1, TAU(I), 1)

*

68

* Apply the transformation as a rank-2 update:

* A := A - v * w’ - w * v’

*
CALL DSYR2(UPLO, N-I, -ONE, A(I+1, I), 1, TAU(I), 1,

$ A(I+1, I+1), LDA)

*
A(I+1, I) = E(I)

END IF
D(I) = A(I, I)
TAU(I) = TAUI

20 CONTINUE
D(N) = A(N, N)

END IF

69

Bibliography

[ABB+94] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide -
Release 2.0. SIAM, Philadelphia, PA, 1994. (Software and guide are available from Netlib
at URL http://www.netlib.org/lapack/).

[BCC+97] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM, Philadelphia, PA, 1997. (Software and guide are available at URL
http://www.netlib.org/scalapack/).

[DBMS79] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide.
SIAM, Philadelphia, PA, 1979.

[DCDH87] J. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A proposal for a set of level 3 basic
linear algebra subprograms. ACM SIGNUM Newsletter, 22(3), September 1987.

[DCDH90] J. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Softw., 16(1):1–17, 1990.

[DDCHH88a] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of fortran
basic linear algebra subprograms. ACM Trans. Math. Softw., 14:1–17, 1988.

[DDCHH88b] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of for-
tran basic linear algebra subprograms: Model implementation and test programs. ACM
Transactions on Mathematical Software, 14:18–32, 1988.

[GBDM77] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrix Eigensystem Routines
– EISPACK Guide Extension. Lecture Notes in Computer Science 51. Springer-Verlag,
Berlin, 1977.

[LHKK79] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Softw., 5:308–325, 1979.

[SBD+76] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.
Moler. Matrix Eigensystem Routines – EISPACK Guide. Lecture Notes in Computer Sci-
ence 6. Springer-Verlag, Berlin, 2nd edition, 1976.

70

Part II

Sparse Linear Algebra

71

Chapter 6

Finite Element Discretisations of
Elliptic PDEs

The goal of this chapter is to introduce you to the use of the finite element method (FEM) to solve boundary
value problems that are formulated by partial differential equations (PDEs). To this end, we will have a
look at an example problem which will allow us to demonstrate the typical use of the FEM and of the
related tools. This chapter is meant as a quick overview of the subject, for a detailed description of the
method we refer to [Sch91], [Bra97], [AB01] and [CL91].

6.1 Model Problem

As an example of a PDE problem, we consider a 2D electrostatic problem which is typically described by
using the electrostatic scalar potential φ(x, y), the electric field E(x, y) induced by the potential, the charge
density ρ(x, y) and the material’s dielectricity ε(x, y). In many applications one is interested in finding the
electric field distribution E(x, y) in the interior of a domain Ω ⊂ R2 for given ρ(x, y) and ε(x, y) and a set
of (boundary) conditions.

From the conservativity property of static fields expressible as

E(x, y) = −gradφ(x, y) (6.1)

and the Gaussian law
div
(
ε(x, y)E(x, y)

)
= ρ(x, y) (6.2)

one obtains
−div

(
ε(x, y)gradφ(x, y)

)
= ρ(x, y), (6.3)

also referred to as Poisson problem, see [Jac99]. This is the equation we are aiming to solve.
In order to be well posed, Equation (6.3) requires an appropriate set of boundary conditions. Typically,

one either prescribes function values φ(x, y) = f(x, y) and/or (directional) derivatives ∂n = g(x, y) along
the boundary Γ = ∂Ω.

Let us now turn our attention to a concrete problem. As shown in Figure 6.1, we consider a dielectric
ring immersed in an electric field induced by an artificially applied potential difference. We would like to
verify numerically, that the field in the interior of the ring is heavily attenuated by the field that is established
in the ring itself — an electric shielding effect known as Faraday effect. In terms of the quantities introduced
above, we thus tackle the problem

−div
(
ε(x, y)gradφ(x, y)

)
= ρ(x, y) (x, y) ∈ Ω (6.4)

φ(x, y) = f(x, y) (x, y) ∈ ΓD (6.5)

∂nφ(x, y) = g(x, y) (x, y) ∈ ΓN (6.6)

72

PSfrag replacements

∂nφ(x, 1) = 0

∂nφ(x,−1) = 0

φ(−1, y) = −U φ(1, y) = U

ε0

εring

r

R

Figure 6.1: Dielectric ring immersed in an electric field induced by an applied potential difference (along
the left and the right-hand boundary segments). The Neumann conditions imposed along the top and the
bottom boundary segment enforce a horizontal field. Note that the ring is assumed to be surrounded by
vacuum.

where ΓD (ΓN), the Dirichlet (Neumann) boundary, denotes the portion of the boundary on which the
function (derivative) value is prescribed and Γ = ΓD ∪ ΓN . In general, these problems are too difficult
to be solved exactly, which is mainly due to the arbitrariness of the domain geometry. In the following
we will therefore be concerned with recasting this formulation into a form which is more appropriate for
numerical handling.

6.1.1 Derivation of a Weak Form

A very popular tool to approximately solve PDE problems such as (6.4), (6.5), (6.6) is the so called FEM.
The first step when applying this method consists in rewriting the governing PDE in its weak form [CH53].
This weak form offers the advantage of having a lower order of derivatives. To obtain it, we multiply (6.4)
with a (still arbitrary) test function v(x, y) and integrate over the entire domain, obtaining

−
∫

Ω

v(x, y)div
((
ε(x, y)gradφ(x, y)

))
dΩ =

∫

Ω

v(x, y)ρ(x, y) dΩ. (6.7)

By making use of the identity fdiv
(
(
)
F) = div

(
(fF)

)
− grad(f)

T
F , see [BS79], we transform the

left-hand integral and obtain
∫

Ω

{
gradv(x, y)Tε(x, y)gradφ(x, y) − div

((
v(x, y)ε(x, y)gradφ(x, y)

))}
dΩ. (6.8)

Finally, by applying the divergence theorem to the second term, we obtain
∫

Ω

gradv(x, y)Tε(x, y)gradφ(x, y) dΩ−
∫

Γ

v(x, y)ε(x, y)gradφ(x, y)
T
n dΓ (6.9)

where n denotes the outward normal vector of the domain boundary. By replacing the left-hand side of (6.7)
with (6.9) we obtain a weak representation of equation (6.4) which reads

∫

Ω

gradvTε gradφ dΩ−
∫

Γ

v ε gradφTn dΓ =

∫

Ω

vρ dΩ, (6.10)

73

where we have omitted the coordinates for the sake of readability. Before we continue, let us investigate
this equation a little further. As specified by equations (6.5) and (6.6), we impose two types of boundary
conditions namely Dirichlet and Neumann ones. But what if we didn’t impose any boundary conditions?

Not imposing any conditions would be equivalent to solve the problem specified in (6.10) without
considering the boundary integral. But this would be equivalent to the tacit assumption of having a van-
ishing gradφTn term. In fact, this natural boundary condition gradφTn = 0 arises in boundary regions,
where no conditions whatsoever are imposed. Note that this stands in stark contrast to essential bound-
ary conditions (such as the Dirichlet ones), which do not come naturally and hence have to be enforced
artificially.

For the sake of simplicity, we continue by introducing appropriate bilinear forms, allowing a simpler
formulation of the weak form derived above. We introduce

a(v, φ) − bΓ(v, φ) = l(v, ρ), (6.11)

where a(·, ·), bΓ(·, ·) and l(·, ·) correspond to the first, second and third integral in (6.10). Having done so,
the second step that is usually performed concerns the boundary conditions. Here, the main idea consists
in representing the function one is interested in by a combination of the type

φ(x, y) = φ0(x, y) + u(x, y), (6.12)

where φ0(x, y) satisfies the Dirichlet condition (6.5) and u(x, y), as well as the test function v(x, y), is
assumed to satisfy homogeneous boundary conditions on the segments ΓD but are arbitrary otherwise. By
plugging the ansatz (6.12) into the weak form (6.11) one obtains

a(v, φ0) + a(v, u)− bΓD
(v, φ)︸ ︷︷ ︸
=0

−bΓN
(v, φ) = l(v, ρ), (6.13)

where one expressions vanishes due to the homogeneity condition imposed on v(x, y). By rearranging the
expressions and by replacing the conditions (6.5) and (6.6) when appropriate we finally obtain

a(v, u) = l(v, ρ)− a(v, φ0) + bΓN
(v, φ). (6.14)

6.1.2 Of Meshes, Element Functions and Discrete Operators

As mentioned before, the original problem is usually too difficult to be solved exactly, be it in strong or in
weak form. Hence, we approximate the sought solution u(x, y) and the test function v(x, y) by means of
linear combinations of simple functions ψi(x, y). By doing so, i.e. by letting

u(x, y) =
∑

i

siψi(x, y) and v(x, y) =
∑

i

tiψi(x, y) (6.15)

the weak form (6.14) becomes
∑

i

a(ψj , ψi) si = l(ψj , ρ)− a(ψj , φ0) + bΓN
(ψj , φ), (6.16)

which has to hold for any choice of v(x, y) and hence for any single ψj (satisfying homogeneous Dirichlet
boundary conditions on ΓD). These equations, one for each index j, can be rewritten as matrix-vector and
vector-vector products, finally leading to

As = l− a + b. (6.17)

One immediately sees that the matrix A is defined as

Ai,j = a(ψj , ψi), (6.18)

and given that the bilinear form is symmetric, so is the matrix A. Choosing the functions ψi such that their
supports will scarcely overlap will induce a matrix A with many zero entries, i.e. a sparse matrix.

74

Figure 6.2: Discretisation of the original domain Ω by means of a triangle mesh Th. Curvilinear segments
are thereby approximated by polygonal domains, this way introducing a model error.

We still need to define a procedure to specify the ψi’s. This can be done by discretising the computa-
tional domain Ω by means of a triangulation Th, a set of polygons (in our case only triangles) whose union
approximates Ω, see Figure 6.2.

It is easy to see that by placing a so called hat function ψi, see [Sch91], on each vertex of the mesh, one
can readily generate piecewise linear function approximations, enforce the boundary conditions by setting
the coefficients along the boundary appropriately (as we will show later) and at the same time, this choice
guarantees a disjointness of the supports of ψi (to some extent), see Figure 6.3.

Now that we have implicitly defined the functions ψi as piecewise polynomial functions with a support
extending over a small polygonal domain (also referred to as element, thence the name element functions),
it is time to construct the matrix A given in (6.18). To do so, we start by replacing the domain Ω by means
of the aforementioned polygonal approximation Th and, consequently, all domain integrals with sums of
integrals over the single triangles τk representing Th, i.e.

Ai,j = a(ψj , ψi) =

∫

Ω

gradψj
Tε gradψi dΩ ≈

∑

k

∫

τk

gradψj
Tε gradψi dτk, (6.19)

where Ω ≈ Th =
⋃
k τk. Given that the supports of the element functions are disjoint in most cases,

it would be highly inefficient to iterate over all indices i, j and k in order to construct A. Instead, it is
more convenient to iterate over one triangle τk at a time and consider the element functions ψi and ψj
whose support overlap with τk. Since there are exactly three element functions affecting each triangle, the
construction process is considerably improved.

In order to carry out the construction process, i.e. in order to be able to evaluate the integrals appearing
in (6.19), we have to dispose over the projections of the hat functions onto the triangular segments which
make up their support. In virtue of the verbal definition of the hat functions given above, we can deduce
these projections, which read

ψ(1)(ξ, η) = 1− ξ − η
ψ(2)(ξ, η) = ξ

ψ(3)(ξ, η) = η

when defined over the reference triangle (0, 0), (1, 0), (0, 1), see Figure 6.4 for an illustration. Assume
now, that we are given an arbitrary triangle τk specified by its corners p`1 , p`2 and p`3 . By virtue of the

75

Figure 6.3: Mesh fragment. (left) Each of the hat functions ψi is centered on a mesh vertex, has unit
height, decays linearly towards the neighboring vertices and, as a consequence, has an umbrella like sup-
port consisting of several adjacent triangular segments. Note, that some (actually a minor part) of the
hat functions have overlapping supports. (right) By linearly combining the hat functions one can easily
generate piecewise linear functions over the approximated domain Th.

PSfrag replacements

(0, 0) (1, 0)

(0, 1)

ξ

η

PSfrag replacements
(0, 0)
(1, 0)
(0, 1)

ξ
η

PSfrag replacements
(0, 0)
(1, 0)
(0, 1)

ξ
η

PSfrag replacements
(0, 0)
(1, 0)
(0, 1)

ξ
η

Figure 6.4: (left) Reference triangle in the (ξ, η) coordinate system (right) Projections of the hat func-
tions ψ(1), ψ(2) and ψ(3) centered at the corners of the reference triangle.

76

mappings (
x
y

)
= p`1 + Mk

(
ξ
η

)
and

(
ξ
η

)
= M−1

k

[(
x
y

)
− p`1

]
, (6.20)

where M = (p`2 − p`1 ,p`3 − p`1), we can readily define the projections ψ`1 |τk
, ψ`2 |τk

and ψ`3 |τk
in the

(x, y) coordinate system as

ψ`1(x, y)|τk
= ψ(1)(ξ, η) = ψ(1)(M−1

k [(x, y)T − p`1])

ψ`2(x, y)|τk
= ψ(2)(ξ, η) = ψ(2)(M−1

k [(x, y)T − p`1])

ψ`3(x, y)|τk
= ψ(3)(ξ, η) = ψ(3)(M−1

k [(x, y)T − p`1])

By proceeding along the same lines, we can derive appropriate expressions for the gradients of the projec-
tions which read

gradψ`1(x, y)|τk
= M−T

k gradψ(1)(M−1
k [(x, y)T − p`1])

gradψ`2(x, y)|τk
= M−T

k gradψ(2)(M−1
k [(x, y)T − p`1])

gradψ`3(x, y)|τk
= M−T

k gradψ(3)(M−1
k [(x, y)T − p`1])

With these ingredients at hand we can now evaluate the integrals on the right-hand side of (6.19) triangle
by triangle and insert the so obtained entries in the appropriate places of the matrix A. The coordinates of
the entries are thereby given by the indices of the triangle vertices.

The remaining integrals appearing in (6.16) are handled in the same way. All domain integrals are
thereby replaced by sums of integrals over triangles and evaluated in element wise fashion. Boundary
integrals, such as bΓN

(·, ·) for example, undergo a similar treatment. In fact, being given a specification of
the normal derivative ∂n such as in (6.6), one can replace the term gradφTn by the appropriate expression

bΓN
(v, φ) =

∫

ΓN

v ε gradφTn dΓN =

∫

ΓN

v ε g dΓN ≈
∑

k

∫

ΓN (τk)

v ε g dΓN (τk), (6.21)

which can again be evaluated triangle by triangle, i.e. boundary segment by boundary segment, respectively.
Clearly, the test function v is finally replaced by the ψj’s in order to construct the vector b.

6.1.3 Assembling the Parts

In the previous subsections we have introduced all the ingredients that are necessary to compute the dif-
ferent quantities needed to come up with a discrete representation (6.17) of the Poisson problem (6.4, 6.5,
6.6). To reduce confusion, we will perform all of the above computations considering a concrete example.

Let τ be an arbitrary triangle specified by the coordinates and vertex indices

τ : (2, 3), (5, 1), (6, 4), `τ : [14, 23, 9]. (6.22)

The corresponding mapping matrix Mτ can then be written as

Mτ =

(
5− 2 6− 2
1− 3 4− 3

)
=

(
3 4
−2 1

)
. (6.23)

Since all of the integrals involved contain problem dependent and hence arbitrary functions (like ε or ρ) we
cannot expect to be able to express the arising element integrals in closed form. Therefore, it is customary
to use a numerical quadrature formula (such as Gaussian quadrature [Sch93]) to evaluate the integrals. For
particular expressions of the functions ψi, ε and ρ one can evaluate the integrals in a closed form.

Assuming that we are given abscissae (ξq , ηq) and weights ωq for the Gaussian quadrature over the
reference triangle, we can thus continue by first computing the corresponding points in the (x, y) coordinate
systems, i.e. (

xq
yq

)
=

(
2
3

)
+ Mτ

(
ξq
ηq

)
, (6.24)

77

and by adapting the weights, i.e. wq = det (Mτ)ωq = 11ωq.
The rightmost integral (summands) of (6.19) can now be recast into the form

A(τ)
r,s =

∫

τ

gradψ`r (x, y)
T
ε(x, y) gradψ`s(x, y) dτ

=

∫

τ

gradψ`r (x, y)
T
ε(x, y) gradψ`s(x, y) dτ

=

∫

τ

gradψ`r (x, y)|τT
ε(x, y) gradψ`s(x, y)|τ dτ

=

∫

τ

gradψ(r)(x, y)
T
M−1

τ ε(x, y)M−T
τ gradψ(s)(x, y) dτ

=
∑

q

wq gradψ(r)(ξq , ηq)
T
M−1

τ ε(xq , yq)M
−T
τ gradψ(s)(ξq , ηq)

where r, s = 1, 2, 3. Since the single entries of A(τ) are part of a global sum, we obtain the entire matrix A

by adding up the quantities, i.e.
A(`τ , `τ) = A(`τ , `τ) + A(τ) (6.25)

borrowing MATLAB notation. With the remaining integrals we proceed in the same fashion. Note that
the boundary integral is somewhat simpler to compute since it requires only a parametrisation of a single
boundary segment and thus makes use of a one dimensional quadrature.

One further point to notice concerns the appropriate choice of φ0. So far no restrictions have been
imposed on φ0 besides the one of satisfying the Dirichlet boundary conditions on ΓD. Hence any choice
(residing in an appropriate function space) would be fine. Hence, given that the chosen element functionsψi
can be used to piecewise linearly interpolate between mesh vertices, it seems natural to set φ0 to the linearly
interpolated function f(x, y) along ΓD and zero elsewhere. In virtue of this choice, the vector a needs not
be explicitly constructed, but can be easily obtained by linearly combining the corresponding columns
of A.

We conclude this subsection by stressing that once the Dirichlet boundary conditions have been incor-
porated into the model, one can eliminate the associated degrees of freedom (this way reducing the size of
the problem).

6.2 A MATLAB implementation

So far, we have dealt with the analytical part of the Poisson problem, only. In order to demonstrate how
simple it is to compute all of the required components (at least for this example), we will present a MATLAB

implementation for the Poisson problem (6.4, 6.5, 6.6) with the geometry and the boundary conditions as
shown in Figure 6.1. More precisely, we solve

−div
(
ε(x, y)gradφ(x, y)

)
= 0 (x, y) ∈ Ω = (−1, 1)2

φ(x, y) = sign (x)U (x, y) ∈ {(±1, y)}
∂nφ(x, y) = 0 (x, y) ∈ {(x,±1)}

where the permittivity of the ring εring = 100, ε0 = 1, the radii correspond to r = 0.6 and R = 0.8 and
the applied potential U = 20. Notice that we assume a charge free domain, i.e. ρ = 0.

We start with initialising some of the values that remain constant throughout the entire process.

% Problem/Material parameters
U = 20;
R = 0.8;
r = 0.6;
Ering = 100;
Evac = 1;

78

% Gaussian quadrature points and weights
XIETAQ = [7.503111022260811e-02 2.800199154990741e-01

1.785587282636164e-01 6.663902460147014e-01
2.800199154990741e-01 7.503111022260811e-02
6.663902460147014e-01 1.785587282636164e-01]’;

OMEGAQ = [9.097930912801129e-02
1.590206908719884e-01
9.097930912801129e-02
1.590206908719884e-01]’;

In the next step, we define the domain geometry. In MATLAB, assuming that the pde toolbox is
installed, one does so by

% Parameters defining the geometry
gd = [3.0000 1.0000 1.0000

4.0000 0.0000 0.0000
-1.0000 0.0000 0.0000
1.0000 R r
1.0000 0 0

-1.0000 0 0
-1.0000 0 0
-1.0000 0 0
1.0000 0 0
1.0000 0 0];

ns = [83 67 67
81 49 50
49 0 0];

sf = ’SQ1+C1+C2’;

% Setting up the mesh
GEO = decsg(gd, sf, ns);
[P,E,T] = initmesh(GEO);
[P,E,T] = refinemesh(GEO, P, E, T);

Once that the mesh has been generated we can iterate over all triangles and perform the computations
described in section 6.1.3. Note that the storage for the matrix A is allocated beforehand by means of
the spalloc command, since A is going to be a sparse matrix. The underlying matrix datastructure will
be explained in Chapter 7.

% Setting up the system matrix and the right-hand side.
% Number of unknowns: n
n = size(P,2);
A = spalloc(n,n,10*n);
a = zeros(n,1);

% Gradients of the hat functions (grad phiˆ(i))
G = [-1 1 0

-1 0 1];

% Iterate over the triangles and construct the matrix
for tau=T

79

% Retrieve vertex coordinates of the triangle tau
V = P(:,tau(1:3));

% Compute mapping matrix ind its inverse (and determinant)
M = [V(:,2)-V(:,1), V(:,3)-V(:,1)];
iM = inv(M);
dM = det(M);

% Determine material parameters depending on the position of the
% triangle (and its region)
if (tau(4) == 3), Eact = Ering; else Eact = Evac; end

% Evaluate the bilinear forms for the triangle tau
Aloc = zeros(3);
XYQ = V(:,1)*ones(1,Qˆ2) + M*XIETAQ;
WQ = det(M)*OMEGAQ;
for q=1:Qˆ2
GPHI = iM’*G;
Aloc = Aloc + WQ(q)*GPHI’*Eact*GPHI;

end

% Fill in the matrix entries
A(tau(1:3), tau(1:3)) = A(tau(1:3), tau(1:3)) + Aloc;

end

Once that the (discrete) operators have been assembled, we proceed by identifying the indices of the
unknown residing on the Dirichlet boundary.

% Determine indices of the hat functions placed on the
% Dirichlet boundary
DindL = find(abs(P(1,:) + 1.0) < 1e-10)’;
DindR = find(abs(P(1,:) - 1.0) < 1e-10)’;
Dind = unique([DindL; DindR]);
rem = setdiff(1:n, Dind)’;

The index vectors DindL and DindR contain the indices of the hat functions residing on the left and on
the right sides of the square, respectively. Thus, Dind contains all indices of boundary hat functions. Note
that rem has been computed for commodity and is the complementary (index) vector to Dind.

As mentioned at the end of Subsection 6.1.3, one can easily incorporate the Dirichlet boundary con-
ditions by make use of the fact, that the hat functions allow for a simple piecewise interpolation over Ω.
Hence, by simply letting all the hat functions which reside on ΓD equal±U (depending on which segment
they reside) we are set.

% Compute Dirichlet contribution and take it to the right-hand side
phi0 = zeros(n,1);
phi0(DindL) = -U*ones(length(DindL),1);
phi0(DindR) = U*ones(length(DindR),1);
a = a - A*phi0;

The matrix and the right-hand side are constructed. Since some of the boundary values are prescribed
(the ones indexed by Dind), there is no need in keeping these degrees of freedom any longer. Thus, the
only ones to be kept are the complementary ones, i.e. the ones indexed by rem.

% Reduce and solve the problem by throwing away the Dirichlet points
Ared = A(rem,rem);
ared = a(rem);
sred = Ared\ared;

80

Figure 6.5: (left) Contour plot of the computed potential φ. (right) Field plot of the electric field E =
gradφ. Note how the field vanishes in the interior of the ring.

We are done! For the sake of commodity we extend the solution and augment it by the Dirichlet points.
This way, we can readily visualise the potential φ that we have computed, as shown in Figure 6.5.

% Blow up reduced problem such as to construct the entire solution.
% Corresponds to computing phi= phi0 + u
s = phi0;
s(rem) = sred;

6.3 The Solution — Assessing Correctness

Now that we have solved the problem, let us verify that the Faraday effect really kicks in. To this end, we
compute the intensity of the electric field in the area enclosed by the ring which we define as

I2
Faraday =

∫

x2+y2<r2
‖E(x, y)‖2 dxdy =

∫

x2+y2<r2
‖gradφ(x, y)‖2 dxdy. (6.26)

By gradually refining the meshes used to approximate the domain Ω we should observe a reduction of
this intensity, given that the approximate solution becomes increasingly accurate. In fact, by generating a
sequence of refined meshes (using more than one refinemesh command), we can verify the predicted
intensity drop, see Figure 6.6.

Another property that we want to verify concerns the convergence behavior of the FEM. To this end,
we consider the Poisson problem

−∂xxφ(x, y) − ∂yyφ(x, y) = −div
(
gradφ(x, y)

)
= −2(x2 − 1)− 2(y2 − 1) (x, y) ∈ Ω

φ(x, y) = 0 (x, y) ∈ ∂Ω

whose exact solution is
φ?(x, y) = (x2 − 1)(y2 − 1). (6.27)

By appropriately adapting our MATLAB code, i.e. by adding the computation of the right-hand side
vector l and by modifying the handling of the Dirichlet boundary conditions, e.g.

[...]

% Iterate over the triangles and construct the matrix
for t=T

81

10
−2

10
−1

10
−1

10
0

h
max

I F
ar

ad
ay

Figure 6.6: By refining the meshes, i.e. by reducing the meshwidth typically defined as the maximum of all
element diameters hmax, we can observe a reduction in the approximation error. Since we do not know a
closed form expression for the solution, we gauge this reduction by considering the field intensity IFaraday.

% Retrieve vertex coordinates of the triangle tau
V = P(:,t(1:3));

% Compute mapping matrix ind its inverse (and determinant)
M = [V(:,2)-V(:,1), V(:,3)-V(:,1)];
iM = inv(M);
dM = det(M);

% Evaluate the bilinear forms for the triangle tau
Aloc = zeros(3);
lloc = zeros(3,1);
XYQ = V(:,1)*ones(1,Qˆ2) + M*XIETAQ;
WQ = det(M)*OMEGAQ;

for q=1:Qˆ2
PHI = [1-XIETAQ(1,q)-XIETAQ(2,q); XIETAQ(1,q); XIETAQ(2,q)];
RHO = -2*(XYQ(1,q)ˆ2-1) - 2*(XYQ(2,q)ˆ2-1);
GPHI = iM’*G;

Aloc = Aloc + WQ(q)*GPHI’*GPHI;
lloc = lloc + WQ(q)*PHI*RHO;

end

82

% Fill in the stuff
A(t(1:3), t(1:3)) = A(t(1:3), t(1:3)) + Aloc;
l(t(1:3)) = l(t(1:3)) + lloc;

end

% Determine indices of hat functions on Dirichlet boundary
DindL = find(abs(P(1,:) + 1.0) < 1e-10)’;
DindR = find(abs(P(1,:) - 1.0) < 1e-10)’;
DindT = find(abs(P(2,:) + 1.0) < 1e-10)’;
DindB = find(abs(P(2,:) - 1.0) < 1e-10)’;

Dind = unique([DindT; DindB; DindL; DindR]);
rem = setdiff(1:n, Dind)’;

% Reduce and solve the problem by throwing away the Dirichlet points
Ared = A(rem,rem);
lred = l(rem);
sred = Ared\lred;

% Blow up reduced problem such as to construct the entire solution
s = zeros(n,1);
s(rem) = sred;

[...]

we obtain the desired FEM approximation φ(x, y) to φ?(x, y). Once computed, we can easily compute the
so called L2 error norm, i.e.

‖φ(x, y)− φ?(x, y)‖2 =

(∫

Ω

(φ(x, y) − φ?(x, y))2 dΩ
)1/2

(6.28)

which according to FEM theory, see [AB01], is element ofO(h2), given that we are using piecewise linear
element functions. In fact, a quick look at Figure 6.7 suffices to verify this claim.

83

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

h
max

||φ
* −

φ|
| 2

Figure 6.7: The predictedO(h2) behavior of the L2 error (6.28).

84

Bibliography

[AB01] O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Value Problems. Classics in
Applied Mathematics. SIAM, Philadelphia, 2nd edition, 2001.

[Bra97] D. Braess. Finite Elemente. Springer Berlin Heidelberg, 2nd edition, 1997.

[BS79] I. N. Bronštejn and K. A. Semendjaev. Taschenbuch der Mathematik. Harri Deutsch Verlag, Thun
Frankfurt/Main, 24th edition, 1979.

[CH53] R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience Publishers, Inc., New
York, 1953.

[CL91] P. G. Ciarlet and J. L. Lions. Finite Element Methods (Part 1), volume 2nd of Handbook of
Numerical Analysis. Elsevier Science Publishers B.V. (North-Holland), 1991.

[Jac99] J. D. Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1999.

[Sch91] H. R. Schwarz. Methode der Finiten Elemente. B. G. Teubner, Stuttgart, 3rd edition, 1991.

[Sch93] H. R. Schwarz. Numerische Mathematik. B. G. Teubner, Stuttgart, 3rd edition, 1993.

85

Chapter 7

Storage Schemes for Sparse Matrices

In the previous chapter we were concerned with the finite element approximation of physical models that
can be described by partial differential equations. As shown in Section 6.3, these approximations require
domain discretisations with a relatively small mesh width in order to yield accurate results. Unfortunately,
using meshes with small mesh widths amounts to approximating the domain with a large number of el-
ements which in turn leads to large and sparse matrices, say of order n � 1. In order to store such
matrices one has to devise appropriate storage schemes, given the prohibitive amount of O(n2) memory
units required by the naive (dense) approach.

As we will see in Chapter 9, certain iterative solution schemes rely on the availability of the matrix
vector product with the system matrix. Since these products represent one of the most time consuming
ingredients in all these iterative schemes, it is of paramount importance to use data structures which allow
for a swift product computation.

In order to better understand why the storage schemes that we are going to present in the following are
appropriate, we start by considering some typical sparse matrices obtained from FEM discretisations, such
as the one explained in Chapter 6. As shown in Figure 7.1, these matrices have relatively “few” non-zero
entries, i.e. nnz(A) � n2. In fact, the amount of non-zero entries is typically linear in the size n of
the matrix A, i.e. nnz(A) ≈ cn, where the constant c can often be predicted depending on the element
function type (FEM), the discretisation stencil (FDM), etc. It is thus not surprising, that all the popular data
structures aim at storing non-zero entries only, exploiting symmetry whenever possible.

Before we start with an enumeration of the most prominent storage schemes taken from [Saa90], let
us introduce some notation that will be useful for a proper specification of the structures. Given a sparse
matrix A ∈ Rn×n containing nnz(A) non-zero entries, let

C(i) = { j |Ai,j 6= 0} and R(j) = { i |Ai,j 6= 0} for i, j = 1, . . . , n (7.1)

be ordered sets containing the column and the row indices of row i and column j, respectively. All the
quantities set in typewriter style represent variables declared in a C/C++ routine. In particular, array
counts (i,j,k) start from zero, whereas matrix indices (i, j, k) start from one. For the sake of simplicity
we assume that int’s use one whereas double’s use two memory units, where one memory unit corre-
sponds to 1 word (or 4 bytes). Finally, let us introduce the example matrix shown in Figure 7.2 which will
be used to illustrate the storage schemes we are going to present.

7.1 Compressed Sparse Row (CSR), Compressed Sparse Column (CSC)

The compressed sparse row (CSR) scheme stores the matrix using the three arrays row, of length n + 1,
and col and val of length nnz(A), each. The array row implicitly contains the number of entries per
row, i.e.

row[i+1]− row[i] = |C(i+ 1)| where row[0] = 0 (7.2)

86

Figure 7.1: Typical sparsity patterns of matrices arising in (different) FEM discretisations. (left) Size:
11’583, nnz: 80’435 (middle) Size: 4’317, nnz: 58’802 (right) Size: 9’204, nnz: 311’218

C(1) = {2, 3, 5, 6}
C(2) = {1, 3, 5}
C(3) = {2, 6}
C(4) = {4}
C(5) = {2, 3, 4, 5}
C(6) = {1, 3}
C(7) = {2, 4, 7}

Figure 7.2: An example of a non-symmetric sparse 7× 7 matrix with corresponding column sets C(i).

and hence row[n] = nnz(A). These indices are then used as start and end points for the column indices
(of row i) stored in col and the corresponding entries stored in val. To iterate over all the entries we then
write

for(int i=0; i<n; i++){
for(int k=row[i]; k<row[i+1]; k++){

int j = col[k]; // j = C(i+1)[k-row[i]+1] - 1
double v = val[k]; // v = A(i+1,j+1)

}
}

This scheme requires 3 nnz(A) + (n + 1) memory units. Note that if the matrix is symmetric, it may
be convenient to store only the lower/upper triangle.

Example: The matrix shown in Figure 7.2 would lead to the following three arrays

row[] = {0,4,7,9,10,14,16,19};
col[] = {1,2,4,5,0,2,4,1,5,3,1,2,3,4,0,2,1,3,6};
val[] = {...};

where the entries in val correspond to the real values of the entries.
If instead of storing the matrix in a row-wise fashion one would prefer to do so in a column-wise way,

the roles of C andR (i.e. the roles of row and col) could simply be interchanged, leading to a compressed
sparse column (CSC) storage scheme. Note that the CSC scheme is used by MATLAB’s sparse functions
toolbox (sparfun), containing commands like spalloc, spdiags, spconvert, etc.

87

As mentioned in the introduction, it is essential that the chosen data structure allows for a fast matrix-
vector product, considering its importance in all (matrix-free) iterative solvers. Here, fast means that the
amount of work should be proportional to nnz(A) and that the amount of index arithmetic should be kept
low. For a matrix stored in CSR scheme, the computation of the product

y := Ax (7.3)

could be implemented in C++ the following way.

double y[n];

for(int i=0; i<n; i++){
double s=0.0;
for(int k=row[i]; k<row[i+1]; k++){
int& j=col[k];
double& Aij=val[k];

s += Aij*x[j];
}
y[i] = s;

}

7.2 Modified Sparse Row (MSR), Modified Sparse Column (MSC)

In some circumstances it is preferable to store the main diagonal of the matrix A separately, in order to
grant quick access to its elements. Once that these elements have been “treated” the remaining matrix is
stored in a CSR similar format by using only two arrays, rowcol and val, justifying the name modified
compressed sparse row (MSR).

In fact, the first n+ 1 entries of rowcol correspond to the row array of the CSR scheme (taking into
account the removal of the diagonal entries), whereas the first n + 1 entries of val contain the diagonal
elements (plus an additional blank entry). The followup positions of rowcol will then contain the column
indices of the off-diagonal elements, i.e. col in the CSR scheme (taking into account the removal of the
diagonal entries), whereas valwill contain the corresponding matrix entries. Hence, the arrays have (both)
a length of

m = (n+ 1) + (nnz(A)−
n∑

i=1

{Ai,i 6= 0}) (7.4)

leading to a total of 3m memory units.
Example: The matrix shown in Figure 7.2 would lead to the following three arrays

rowcol[] = {0,4,7,9,9,12,14,16,
1,2,4,5,0,2,4,1,5,1,2,3,0,2,1,3};

val[] = {x,x,x,x,x,x,x,0, ... };

where the entries in val correspond to the real values of the entries. Note, that the blank/linebreak sepa-
rates the diagonal part from the off-diagonal one.

If instead of storing the matrix in a row-wise fashion one would do so in a column-wise way, this would
lead to the modified compressed sparse column (MSC) storage scheme.

7.3 Coordinate Format (AIJ)

The coordinate format is doubtlessly the simplest storage scheme for sparse matrices. It consists of three
arrays row, col and val each of length nnz(A), leading to an overall memory consumption of 4 nnz(A)

88

memory units. As suggested by the name, each matrix element can be represented by a triple (i, j,Ai,j)
whose entries are stored in the aforementioned arrays, respectively.

Example: The matrix shown in Figure 7.2 would lead to the following three arrays (or any valid per-
mutation of the latter)

row[] = {0,0,0,0,1,1,1,2,2,3,4,4,4,4,5,5,6,6,6};
col[] = {1,2,4,5,0,2,4,1,5,3,1,2,3,4,0,2,1,3,6};
val[] = {...};

where the entries in val correspond to the real values of the entries.
Although this matrix format can not compete with the CSR(C) and the MSR(C) schemes from the

memory consumption point of view, it may be more convenient when it comes to matrix assembly. When-
ever a new matrix element needs to be inserted it can just be appended (if no precise ordering is imposed),
whereas in the compressed storage schemes possibly large memory blocks need to be shifted. However,
checking if an element is already set is not cheap (unless an ordering is imposed).

7.4 Linked List Format

All the schemes presented so far allow for a fast traversal but suffer from major shortcomings when it
comes to sparse matrix assembly. A format which strikes a good balance between both requirements is the
linked list storage scheme (though its memory requirements are considerable).

It consists of the arrays row, of length n, and col, val and lnk of length nnz(A), each, making
up for a total of 4 nnz(A) + n memory units. Similar to the CSR format, the array row contains the
entry points into the other arrays, i.e. row[k] indexes the first entry in row k + 1, whose column and
value are stored in col[row[k]] and val[row[k]]. The indices of the next elements are stored in
lnk[row[k]], lnk[lnk[row[k]]], etc. this way building a link of indices which can be followed
to obtain the next entries. As soon as the link points to −1, the end of the row is reached.

Example: The matrix shown in Figure 7.2 would lead to the four arrays (or an appropriate permuta-
tion/adaption)

row[] = {0,4,7,9,10,14,16,19};
lnk[] = {1,2,3,-1,5,6,-1,8,-1,-1,11,12,13,-1,15,-1,17,18,-1}
col[] = {1,2,4,5,0,2,4,1,5,3,1,2,3,4,0,2,1,3,6};
val[] = {...};

where the entries in val correspond to the real values of the entries.
This storage format allows for a (rather) fast traversal and a fast detection/insertion/deletion of matrix

elements, in particular if the linked lists for each row are sorted. This can be achieved at a modest price,
given the relatively low number of entries per row for typical matrices. It goes without saying, that the
same scheme could also be set up in a column-wise fashion.

7.5 H –MatricesF

The sparsity pattern exhibited by matrices that are assembled following the FEM paradigm reflects the
arrangement of the basis functions w.r.t. their support intersections. The main idea behind H -Matrices,
see [Hac99], consists in using this sparsity pattern dependency, which in combination with the geometrical
information of the mesh can be used to find appropriate function clusters. Functions whose supports are
located closely to each other are thereby said to lie in their mutual near-field, whereas functions which
are located too far apart barely exhibit any interaction and are said to lie in their mutual far-field. This
property is taken advantage of, by first grouping functions which lie in their mutual near field into clusters.
The interaction of the latter is then very efficiently expressed by means of hierarchical structures, typically
trees. A very detailed analysis and discussion of the involved data structures and algorithms can be found
in [Hac99], [GH03] and [BGH05].

89

7 7

7 7 7

7 7

7 6

6

7

6 6

7 6

6 6

5 5

5 5

7 7

7

6 6

5 5

5 5 7

7

7 6

6

5 5

5 5 7

7 7

5 5

5 5

7

5 5

5 5

7

6 5

5 5

6

5 5

6 5

5

7 6

6 6

6

7

7

6

7

6 6
5

7

6

5

7 7

6 6

5

5

6

7

7

6

7 6

6

5
7

6 5

7 6

7 6

5

5

6 6

6 6

5 5

5 5

5 5

5 5

5 5

5 5

5

5

8
5 5

8

5

4 8

8 8

6

6

5

5

5 5

5 5

5

8 8

6 6 5 5

5 5

5 5

5
8

8

4

8 7 7

7

7

7 7

7 7

6

5 6

5 6

6

5 5

6 6

6
4

5 6
1

5 1

6

5 5

5 6

4 4
7

4 2 21
8 1

7 7 7
5

5

5

5

5

5

3 4

1 1 6

5 5
47

1
5

6 5

6 5

6 5 7

8

8 8

1

5

4

4 4

7 2

8 7

1 7

7
5 5 5 5

5 5

21

3 1

4 1 5

6 5
1

47

6

5

6 6

5 5

7

8 8

8

5
1 5

8 8

8
6 6

6 6

8

2
1 5

5

8 2
1

5 5

4 1

1 5 1 5

1

5

4

5

8

8
6 5

5 3

3
5

5 1 8

8 8

6

5 5
3

3
5 5

1

8

8 8

8

5 5

5 5 5

5 5

8 1

8

8

1 8

5 1

1 4 8

8 8

8

1 7
1 1

5 5 1

2 7

8

8
10

5

8 2

5

3 3

5 5

8 8

8 1
7

1 5

1 5 2

1 7

8

8
5

10

8

2

5

5

5

8

3

3 8

6 5

5 5 7

7 7

8

7

8

7

8 8

8 8

6 5

5 5

7 7

4
8

8 8

6 5

5 5 7

7 4

8 8

8

6 5

5 5

6 6

5

6

6 5

7 7

7 7

6

5

7 7

7 7

6 5

7 7

7 7

4 2

2 7 7 7

7

7

7 7

7 7

6 4
3 3 19

17
5 3

3 1

1 2 3 38
7 5

5

5

2

2 3

7

8

5

8
15

2

7

7

6 6

5 5

6 6 6

1 2
3 2

6 9
1 6 90

70
1

2
2 1 4

6

7

6

8

8

8
2

5

5

6 1

5 6

6

6 1

8

1

6 3

4 3 17

19
5

3 1

1 2

3 3

7

5
5 5

7

8

2 2

3

5

8
2

15

7

7

6

6

5 6

5 6

6

38

1
3

2

2 6

9
1

6
70

90

1

2
2

1

6

7

6

8

8

8
5

2

5

6

5

6

6

1

6

1 8

4 1

7 7

7

6 6

6 7

7

1
6

7

7 1

6 7

5 5

5 5

5

1 5

1

5 5

4

8

7

6

6

6 6

7 7 2
5 5

5 5 1

6 5 6

7

6

6

6 7

6 7

2
5 5

5 5

6

5

1
6

7 6

6 6

7 7

6 6

7 6

7 6

7 7

7 7

6 5

6 5

1
6

6

6 6

5 5 1
6 6

6 5

5 5

6

5

6 5 6
4

7

6 2 1

7

6

5

2 7
6

1

6

5

6

5

5 5

5

7

6

7

6

2
1

5 2
7

1

6
6

5

6 5

5

5

5

7 6

6 6

7

6 6

7 6

6

4 1

1

5 5

5 5 7

7 7

7 2

6 6

1

6

1
6

7 7

7 6

2 6 1
1

6

6 7

7

4

6 5 5

5

5

5 5

5 5

6 6

2
5 5

5 5

6

6 2
5 5

5 5

6 6

6 6

5

5 6

5 5

6

5 5

5 6

4 3

4 10
6

6

6 5

5
1

2
8 2

8
6

4 6

1

27

5

1

1 2
7 1

7
5 1

5

6

6

5

6 7

4

3 4

6 6

6

5 5 2

1
8 8

2
6

10
4

6 1

5

27
1 1

7 7

1
5 5

1

6 6 5 6

7

2

6 6

6

6 5

5 5

6

1
6

5

6 1

6 5

8 8

8
6

4

6

5

5 6

8

6
8

6

5

5

6

8
6

8

5 5

5 6 6

6 6

5

6

1 6

5 6
1

6

6
4 8

8 8

6

5

7

5

8

2 7
6

6
6

6

1

1

6

7

8

8

6

5

7

5

8 2

7
6

6

6

6

6

7

1 1 8

8

7 7

7
5 1

1 4

7

2 7

7 2

7

4 2

2 6 7

7 7

6

6 7

8

7 7

6 6

7

8 7

7

6 6

6 7

6

5 7

6 5

7

8 8

8

5 5

5

5 5

5 5

Figure 7.3: (left) Sparsity pattern of a matrix obtained by discretising a scalar Helmholtz problem by
means of the FEM. No reordering has been applied to the matrix. (right) Visualisation of the data structure
used to store the input matrix. The entries have been clustered according to their Euclidean distance
yielding numerous small dense blocks. The so obtained clusters are then reordered in such a way as
to have their near-field neighbour-clusters in possibly adjacent index positions. The remaining far-field
clusters are summed up into low-rank block approximations. The figures in the panels represent the rank
of the corresponding block.

The reordering of the discretisation arrangement induced by the tree structure is reflected also in the
sparsity pattern. Functions belonging to the same cluster obtain similar indices. Hence, the arising matrix
will exhibit dense blocks mostly along the diagonal and sparser ones in off-diagonal regions, mainly de-
pending on the cluster size that is specified1. In order to save storage, dense blocks are stored explicitly,
whereas sparse blocks are approximated by low rank matrices whose accuracy and maximum rank can be
specified by the user. The “sparsity pattern” corresponding to a typical cluster tree structure is shown in
Figure 7.3.

1H -matrices are typically used to approximately store matrices. This is particularly usefull in cases in which (approximate)
factorisations need to be computed. If an exact representation is needed, it is not advisable to use this storage scheme

90

Bibliography

[BGH05] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Max–Planck-Institut für
Mathematik in den Naturwissenschaften, revised edition, 2005. Lecture notes, http://www.
mis.mpg.de/scicomp/Fulltext/WS HMatrices.pdf.

[GH03] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing,
70:295–334, 2003.

[Hac99] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices. Computing, 62:89–108, 1999.

[Saa90] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report 90-
20, Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffet
Field, CA, 1990.

91

Chapter 8

Reorderings and Sparse Direct Solvers

Solving discretised problems, such as the ones described in Chapter 6, often corresponds to solving linear
systems of equations. As mentioned in the previous chapter, the system matrices are typically (very) large
and direct solution methods, i.e. methods that rely on factorisations, can no longer be used without the
application of sophisticated preprocessing steps, which aim at avoiding a prohibitive growth in memory
consumption (and hence in computation time). One of these preprocessing phases controls the matrix
structure and alters it by reordering the entries according to the needs.

8.1 Fill-in Reducing (and other) Reorderings

As mentioned in the introduction, factorising sparse matrices without taking appropriate precautions might
lead to factors whose memory consumption is (extremely) large. To demonstrate this, we compute the
Gaussian factorisation of the leftmost matrix shown in Figure 7.1. Due to the way Gaussian elimination1

works, the bottommost/rightmost rows/columns of the factors will start to become more and more dense,
causing a so called fill-in of the matrix. Since the original structure is somewhat arbitrary, we can not
expect the fill-in to be bounded (and low) and hence a lot of additional memory will be used, as shown in
Figure 8.1. Fortunately, by applying an appropriate reordering (permutation) π to the rows and columns,
we can drastically reduce the amount of fill-in. But how can we obtain a good permutation π?

Consider the sparsity structure of a matrix and think of it as adjacency matrix of a (undirected) graph G
(0)(A).

Then cut the graph into two subgraphs G
(1)
1 (A) and G

(1)
2 (A) of (almost) the same size in such a way that

their common “interface” is (almost) minimal, i.e. in such a way that the amount of edges that are cut is
minimal. After having computed this minimal Graph bisector, reorder the matrix such that the first indices
are the vertex indices of G

(1)
1 (A), followed by the vertex indices of G

(1)
2 (A) followed by the vertex indices

in the “cut” G
(1)
1 (A) ∩ G

(1)
2 (A). What we obtain is a blocked sparse matrix exhibiting a sparsity pattern

as shown in 8.2. Clearly, applying a Gaussian elimination to this new matrix will generate fill-in “only”
in the single blocks, but not in the (1, 2)/(2, 1) blocks, respectively. By recursively applying this idea to
the newly obtained (1, 1) and (2, 2) blocks we end up with the so called nested dissection reordering, also
shown in Figure 8.2.

The nested dissection scheme presented above has been designed for sparse symmetric matrices onto
which a Gaussian (or similar) factorisation needs to be applied. Depending on the particular sparsity
structure, however, one might prefer to use the minimum degree algorithm — a greedy algorithm which
reduces fill-in in the very next elimination step.

If the matrix at hand is non-symmetric or if the reordered structure has to satisfy properties which are
favourable for other applications, other kinds of permutations need to be computed. Among these, one finds
the (reverse) Cuthill–McKee algorithm [CM69] and the Gibbs–Poole–Stockmeyer algorithm [GaPKS76],
both aiming at reducing the matrix’ bandwidth, the (symmetric) maximum weight matching algorithm [DG02]

1Notice that the following is also usefull when computing a Cholesky or a LDLT factorisation.

92

Figure 8.1: Influence of a reordering on the sparsity structure of Gaussian factors. (first) Original matrix A

[n : 11′583, nnz(A) : 80′435] (second) Sum L + U of the Gaussian factors A = LU [nnz(L + U) :
10′206′985] (third) Reordered matrix A(π,π) (fourth) Sum Lπ +Uπ of the Gaussian factors A(π,π) =
LπUπ [nnz(Lπ + Uπ) : 689′817]

Figure 8.2: (left) Original sparse matrix (middle) Matrix obtained after one graph bisection step (right)
Matrix obtained after performing the whole nested dissection loop.

93

which pushes the large entries towards the diagonal and ensures desirable pivots, etc. Some additional com-
ments on these reorderings can be found in the following section.

8.2 Direct Solvers

Let us return to our original task, i.e. the one of computing a Gauss like factorisation of the system matrix.
Following [DDSvdV98, Chapter 6], a direct solution algorithm for sparse matrices can be divided in the
following phases:

(P0) Preordering This phase determines a reordering of the original matrix such that fill-in is reduced in
the L and U factors. This phase is difficult to parallelize and is typically computed redundantly on a
parallel machine, or on a single processor with results then broadcast to other processors.

(P1) Analysis Here the factorization is computed using the structure only, producing the patterns of L and
U. In particular, many solvers use this phase to identify dense supernodes that will improve cache
and register performance; and also determine elimination trees for additional parallelism during the
numerical phases (P2) and (P3).

(P2) Numerical factorization In this phase, the actual values of L and U are computed. In most cases
this phase is by far the most expensive in terms of serial operation count.

(P3) Forward/Backward substitution This phase finds a solution x given a right-hand side b. Compared
to the factorization, the serial cost of this a solve phase is low, perhaps by a factor of 10–100 or more.

Some codes combine phases (P1) and (P2). Phase (P0) is typical of sparse matrices: since A is sparse, L
and U are still sparse, though they may have some fill-in, i.e. non-zero entries which are zero in A. There-
fore, the factorization is performed on PAQ. In a typical solver for an nonsymmetric matrix, the column
permutation, Q is chosen to minimize fill-in, while P, the row permutation, is chosen to maintain numer-
ical stability. Many ordering methods exist to reduce fill-in, for example multiple variations on minimum
degree orderings and graph partitioning algorithms. Solvers designed for symmetric and nearly symmetric
matrices typically use symmetric permutations to maintain symmetry. No single ordering method is best for
all matrices, nor has a heuristic been found that consistently chooses the best ordering [BFM03, ADD04].

Since pivoting adds complexity, which significantly increases execution time, many solvers offer op-
tions to reduce the cost of pivoting [LD98, SG04b]. Some equilibrate the rows and columns of the matrix
to improve diagonal dominance. Many codes will consider the effect on execution time when choosing a
pivot, accepting some loss of numerical stability [Mal91]. Typically this just means accepting the diagonal
pivot if it is within some threshold of the best available, but some codes will take the predicted effect on
execution time into consideration when choosing an off diagonal pivot [Dav04].

It is possible to combine similar rows and columns into blocks to improve locality and allow high
performing BLAS to be called; this combination can consider only rows and columns that are identical, or
accept minor differences in the rows and columns that they treat as blocks. Such blocking can reduce the
cost of symbolic factorization as well [ADLL01].

We have just mentioned few reasons that explained why the performance of a sparse direct solver
depends on the underlying matrix, computer, application, algorithms, and libraries as well as the code and
how it is compiled. Given the differences in matrix, computer, application, algorithms, and libraries, it is
unlikely that a single sparse direct solver will outperform all others across all usages.

8.3 Available Software

We conclude this Chapter with a brief overview of freely available sparse direct solvers.

• UMFPACK is a C package copyrighted by Timothy A. Davis. More information can be obtained at
the web page http://www.cise.ufl.edu/research/sparse/umfpack.

94

• TAUCS, authored by S. Toledo, is a serial Cholesky solver [RT04b, RT04a, IST04] which can be
obtained at http://http://www.tau.ac.il/˜stoledo/taucs/

• The SuperLU suite of solvers, written by Xiaoye S. Li, are written in ANSI C. It is copyrighted
by The Regents of the University of California, through Lawrence Berkeley National Laboratory.
We refer to the web site http://www.nersc.gov/˜xiaoye/SuperLU and to the SuperLU
manual [DGL03] for more information.

Other solvers are available for parallel environments. Parallel aspects will be discussed in Chapter 13.

• PARDISO is package to solve large sparse symmetric and non-symmetric linear systems on shared
memory multi-processors, developed at the Computer Science Department of the University of Basel.
A discussion of the algorithms used in PARDISO and more information on the solver can be found at
http://www.computational.unibas.ch/cs/scicompand in documents [SG04a, SG04b].

• MUMPS (“MUltifrontal Massively Parallel Solver”) is a parallel direct solver, written in FORTRAN
90 with a C interface, copyrighted by P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent. Up-to-
date copies of the MUMPS package can be obtained from the Web page
http://www.enseeiht.fr/apo/MUMPS/. Reordering techniques can take advantage of PORD
(distributed within MUMPS), or METIS. For details about the algorithms and the implementation,
as well as of the input parameters, we refer to [ADLK03]

• DSCPACK, written by Padma Raghavan, is a domain-separator code for the parallel solution of
sparse linear system. DSCPACK provides a variety of sparsity preserving (fill-reducing) order-
ing and computes either an LLT (Cholesky) or LDLT factorization of the linear system matrix.
This solver is written in C, and it uses MPI for inter-processor communication, and the BLAS
library for improved chace-performances. The implementation is based on the idea of partition-
ing the sparse matrix into domains and separators. More details can be found on the web site
http://www.cse.psu.edu/˜ragavan/dscpack and on the DSCPACK manual [Rag02].

95

Bibliography

[ADD04] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate minimum
degree ordering algorithm. ACM Transactions on Mathematical Software, 30(3):381–388,
2004.

[ADLK03] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, and J. Koster. MUltifrontal Massively Parallel
Solver (MUMPS Versions 4.3.1) Users’ Guide. CERFACS, Toulouse, France, 2003.

[ADLL01] P. R. Amestoy, I. S. Duff, J.-Y. L’excellent, and X. S. Li. Analysis and comparison of
two general sparse solvers for distributed memory computers. ACM Trans. Math. Softw.,
27(4):388–421, 2001.

[BFM03] M. Baumann, P. Fleischmann, and O. Mutzbauer. Double ordering and fill-in for the LU
factorization. SIAM J. Matrix Anal. Appl., 25(3):630–641, 2003.

[CM69] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proc. 24th Nat. Conf. ACM, pages 157–172, 1969.

[Dav04] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):165–195, 2004.

[DDSvdV98] Jack J Dongarra, Iain S Duff, Danny C Sorensen, and Henk van der Vorst. Numerical Linear
Algebra for High-Performance Computing. SIAM, Philadelphia, PA, 1998.

[DG02] I. S. Duff and J. R. Gilbert. Maximum-weighted matching and block pivoting for symmetric
indenite systems. In Abstract book of Householder Symposium XV, pages 73–75, 2002.

[DGL03] J. W. Demmel, J. R. Gilbert, and X. S. Li. SuperLU Users’ Guide. Computer Science
Division, University of California, Berkely, 2003.

[GaPKS76] N. E. Gibbs and W. G. Poole Jr. and P. K. Stockmeyer. An algorithm for reducing the
bandwidht and profile of a sparse matrix. SIAM J. Num. Anal., 13:236–249, 1976.

[IST04] D. Irony, G. Shklarski, and S. Toledo. Parallel and fully recursive multifrontal supernodal
sparse cholesky. Future Generation Computer Systems, 20(3):425–440, April 2004.

[LD98] Xiaoye S. Li and James W. Demmel. Making sparse gaussian elimination scalable by static
pivoting. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on Super-
computing (CDROM), pages 1–17, Washington, DC, USA, 1998. IEEE Computer Society.

[Mal91] Joel Malard. Threshold pivoting for dense lu factorization on distributed memory multi-
processors. In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pages 600–607, New York, NY, USA, 1991. ACM Press.

[Rag02] P. Raghavan. Domain-separator codes for the parallel solution of sparse linear systems.
Technical Report CSE-02-004, Department of Computer Science and Engineering, The
Pennsylvania State University, 2002.

96

[RT04a] V. Rotkin and S. Toledo. The design and implementation of a new out-of-core sparse
Cholesky factorization method. ACM Transactions on Mathematical Software, 30:19–46,
2004.

[RT04b] E. Rozin and S. Toledo. Locality of reference in sparse Cholesky methods. To appear in
Electronic Transactions on Numerical Analysis, August 2004.

[SG04a] O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse symmetric
indefinite systems. Technical Report, Department of Computer Science, University of Basel,
2004. Submitted.

[SG04b] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with
PARDISO. Journal of Future Generation Computer Systems, 20(3):475–487, 2004.

97

Chapter 9

Iterative Solvers

For the solution of the linear system, one can use either direct or iterative solvers. The former methods,
described in Chapter 8, are usually a better choice for small-size problems, since they are much less sen-
sitive with respect to the conditioning of the problem. As such, direct solvers are typically very reliable;
however, they are prohibitively expensive for large-size problems. The substantially sequential algorithm
makes efficient parallel implementations of direct solvers on modern parallel computers troublesome. Fur-
thermore direct solvers require a lot of storage to perform the factorisation. As the dimension of the linear
system increases, iterative solvers are very often the matter of choice.

Other reasons may suggest the use of iterative solvers. In an iterative solver, the system matrixA is not
needed in explicit form but only a procedure to compute the matrix-vector product Ax for a given vector
x is required. Furthermore, prior knowledge about the solution can be introduced into the solution process
via the initial approximation. Finally, iterative methods can be terminated when the desired accuracy is
achieved. In fact, the linear system under consideration is the discrete version of a system with an infinite
number of degrees of freedom (which itself is only a model of the real system). It does not make any sense
to compute the solution of the linear system with accuracy higher than the discretisation error. Hence, they
require only the employment of those resources (time, memory) which are necessary to obtain the required
accuracy.

Unfortunately, the performance of iterative solvers depends strongly on the spectral properties of the
linear system matrix, and in particular its condition number. If the matrix is ill-conditioned, one is forced to
devise an efficient preconditioner. A preconditioner is an operator that transforms the initial linear system
into another one having the same solution, but better conditioned and hence easier to solve. Preconditioners
are covered in Chapter 10.

9.1 Fixed Point and Jacobi Iteration

Pure mathematicians often write nonlinear equations in fixed point form as x = Φ(x), and solve them
under the assumption that Φ is a contraction by the so-called Picard iteration or fixed point iteration
[Fixpunkt-Iteration] xn+1 := Φ(xn). This idea is also applicable to a linear system Ax = b: we rewrite
it in fixed point form as

x = Bx + b with B :≡ I−A (9.1)

and apply fixed point iteration: starting with some x0, we compute for n = 0, 1, 2, . . .

xn+1 := Bxn + b . (9.2)

Here, xn is the nth approximation of the fixed point x? satisfying x? = Bx? + b, i.e., Ax? = b; it is also
called nth iterate [Iterierte].

If ak,k = 1 (∀k), i.e., bk,k = 0 (∀k), then iteration (9.2) is called Jacobi iteration [Gesamtschritt-
Verfahren]. Note that ak,k = 1 can be achieved whenever ak,k 6= 0 by scaling the kth equation.

98

In the linear case, Φ : x 7→ Bx is called a contraction [Kontraktion] if ‖B‖ < 1 in some norm. Then
the linear fixed point iteration converges globally, that is, for every x0. The proof is left as an easy exercise.
But we can establish a sharper result because the underlying space is finite dimensional:

THEOREM 9.1.1. For the (linear) fixed point iteration (9.2) holds

xn → x? for any x0 ⇐⇒ ρ(B) < 1 , (9.3)

where ρ(B) :≡ max{|λ|
∣∣ λ eigenvalue of B} is the spectral radius of B.

PROOF. Let BV = VΛ be an eigenvalue decomposition [Eigenwert-Zerlegung], so that Λ is diagonal or, in general,
a Jordan canonical form [Jordansche Normalform] of B. Clearly,

xn − x? = B(xn−1 − x?) = B
n(x0 − x?) ,

so convergence occurs if and only if Bn → O as n→∞. This, in turn, happens if and only if Λn → O as n→∞.
If Λ is diagonal, the equivalence (9.3) clearly follows. But in general, Λ is block diagonal and may contain

bidiagonal Jordan blocks [Jordansche Blöcke] like

Jk :≡

0
BBBBBBBB@

λk 1 0 · · · 0

0 λk 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . λk 1
0 · · · · · · 0 λk

1
CCCCCCCCA

. (9.4)

Since Λn is block diagonal too, it remains to show that Jn
k → O as n→∞. Assume Jk is of size mk ×mk. We

write it as Jk = λkI + S and note that S` is zero except for ones on the `th upper codiagonal. In particular, S` = O

when ` ≥ mk. Therefore, if n ≥ mk − 1,

J
n
k = (λkI + S)n =

nX

i=0

n

i

!
λn−i

k S
i =

mk−1X

i=0

n

i

!
λn−i

k S
i . (9.5)

In this finite sum, in view of |λk| < 1, in each term we have, as n→∞,

n

i

!
λn−i

k =
n(n − 1) · (n− i+ 1)

i!
λn−i

k → 0 .

Consequently, Jn
k → O as n→∞. �

REMARK. A matrix norm is called compatible [kompatibel] with a given vector norm if ‖Cy‖ ≤
‖C‖ ‖y‖ for any square matrix C and any vector y of matching size. For a compatible matrix norm we
have ‖C‖ ≥ ρ(C) as is seen by choosing for y an eigenvector corresponding to an eigenvalue of largest
absolute value, so that ‖Cy‖ = ρ(C) ‖y‖. H

Theorem 9.1.1 can be recast as follows: linear fixed point iteration in EN is globally convergent if and
only if ρ(B) < 1. By a careful analysis of its proof we can also specify the speed of convergence1.

1A sequence {xn} ⊂ CN is said to converge R-linearly to x? if the R-factor or root-convergence factor [Wurzel-Konvergenz-
faktor]

κR{xn} :≡ lim sup
n→∞

‖xn − x?‖
1/n

lies in (0, 1). An iterative process J that generates a nonempty set C(J ,x?) of sequences that converge R-linearly to the limit point
x? has R-factor

κR(J) :≡ sup {R{xn} | {xn} ∈ C(J ,x?)} .

99

THEOREM 9.1.2. If ρ(B) < 1 then, for any x0, the iterates of the linear fixed point iteration (9.2) satisfy

lim sup
n→∞

‖xn − x?‖1/n ≤ ρ(B) , (9.6)

and for some x0 equality holds.
So, if 0 < ρ(B) < 1, linear fixed point iteration converges linearly with a root-convergence factor of at
most ρ(B), while if ρ(B) = 0, it converges superlinearly.

PROOF. We have, as in the proof of Theorem 9.1.1,

‖xn − x?‖
1/n = ‖VΛ

n
V
−1(x0 − x?)‖

1/n ≤ ‖V‖1/n‖Λn
w0‖

1/n ,

where w0 :≡ V−1(x0 − x?). Since ‖V‖1/n → 1, it all depends on Λn, whose diagonal blocks are eigenvalues or
Jordan blocks Jk. The powers of the latter were considered in (9.5). If we write, with ρ :≡ ρ(B),

J
n
k = ρn

mk−1X

i=0

n

i

!
λ−i

k

„
λk

ρ

«n

S
i , (9.7)

it is evident that only dominant eigenvalues (i.e., eigenvalues of maximum absolute value) count, because for the others
the nth power of the fraction λk/ρ tends to zero. If |λk| = ρ, then the dominant term in the sum (9.7) is

n

mk − 1

!
λn−mk+1

k S
mk−1 .

There may be several such terms. But, in any case, ‖Λnw0‖
1/n behaves asymptotically at worst like the nth root of

the absolute value of such a term, namely like |λk| = ρ. So this is asymptotically a bound for ‖xn − x?‖
1/n. To see

that this bound is sharp we just have to choose x0 so that w0 is an eigenvector of Λ for a dominant eigenvalue λk.
�

The applicability of fixed point or Jacobi iteration in practice is quite limited since, if ρ(B) < 1 holds
at all, then typically only with ρ(B) nearly 1, so that convergence is very slow. But we need a good
approximate solution in n� N steps.

Since we cannot compute the nth error (vector) [Fehler(vektor)]

dn :≡ xn − x? , (9.8)

for checking the convergence of an iteration, i.e., for checking the “quality” of the approximate solution
(or, iterate) xn we use the nth residual (vector) [Residuum, Residuenvektor]

rn :≡ b−Axn . (9.9)

Note that
rn = −A(xn − x?) = −Adn . (9.10)

For the linear fixed point iteration we have

rn = b−Axn = Bxn + b− xn = xn+1 − xn ,

so we can rewrite it as
xn+1 := xn + rn , (9.11)

and, by multiplying it by −A, we obtain a recursion for the residual,

rn+1 := rn −Arn = Brn . (9.12)

We see that we can compute the residual rn either according to the definition (9.9) or by using the recursion
(9.12). In either case, we need one matrix-vector multiplication. Once, rn is known, the new iterate xn+1

100

is obtained without any matrix-vector multiplication from (9.11). Mathematically both ways of computing
rn are equivalent, but roundoff errors may cause the results to differ.

Assignment (9.11) is a typical update formula for the iterate: the new approximation of the solution is
obtained by adding a correction, here rn, to the old one.

From (9.12) it follows by induction that

rn = pn(A)r0 ∈ span {r0,Ar0, . . . ,A
nr0} , (9.13)

where pn is a polynomial of exact degree n, actually pn(ζ) = (1−ζ)n. Moreover, from (9.11) we conclude
that

xn = x0 + r0 + · · ·+ rn−1 (9.14a)

= x0 + qn−1(A)r0 (9.14b)

∈ x0 + span
{
r0,Ar0, . . . ,A

n−1r0

}
(9.14c)

with a polynomial qn−1 of exact degree n− 1. We note that here x0 + span
{
r0,Ar0, . . . ,A

n−1r0

}
is an

affine space, i.e., a linear subspace shifted by the translation x0.
Building up xn = x0 + qn−1(A) and rn = pn(A) requires in particular a total of n + 1 matrix-

vector multiplications and this is the main work of the whole iteration process (unless A is extremely
sparse). With roughly the same work we can construct any other vector xn in the same affine space and
its corresponding residual. We may hope that by making a better choice in this space we will find a better
approximate solution with a smaller residual.

9.2 Iterations Based on Matrix Splittings

We introduced the Jacobi iteration as fixed point iteration (9.2) with a matrix B whose diagonal elements
are zero. If we start from an arbitrary nonsingular system Ax = b and let D be the diagonal matrix with
the diagonal of A, we thus replace the system by

x = B̂x + b̂ with B̂ :≡ I−D−1A , b̂ :≡ D−1b (9.15)

and apply the fixed point iteration xn+1 := B̂xn + b̂.

Written in terms of the components of xn ≡:
(
x

(n)
1 . . . x

(n)
N

)T

one step — or, as it is often

called, one sweep — of Jacobi iteration becomes

x
(n+1)
j :=

1

ajj


bj −

j−1∑

k=1

ajk x
(n)
k −

N∑

k=j+1

ajk x
(n)
k


 , j = 1, . . . , N . (9.16)

It seems that Gauss was the one who discovered that the convergence is usually improved if we replace in
the first sum of (9.16) the old values x(k)

n by the already computed new values x(k)
n+1:

x
(n+1)
j :=

1

ajj


bj −

j−1∑

k=1

ajk x
(n+1)
k −

N∑

k=j+1

ajk x
(n)
k


 , j = 1, . . . , N . (9.17)

This is called Gauss-Seidel method [Gauss-Seidel-Verfahren oder Einzelschrittverfahren]. To recast it in
matrix notation we write A as

A = D−E− F , (9.18)

where E and F are strictly lower and upper triangular, respectively. Then (9.17) becomes

Dxn+1 := Exn+1 + Fxn + b

101

or
(D−E)xn+1 := Fxn + b , (9.19)

which can be brought into the form of fixed point iteration with

B̂ :≡ (D−E)−1F , b̂ :≡ (D−E)−1b . (9.20)

Of course, we never intend to compute the lower triangular matrix (D−E)−1, but implement this recursion
as the sweep (9.17). But the fixed point representation tells us that for a convergence analysis we have to
determine the spectral radius of B̂.

In the notation (9.18) Jacobi iteration takes the form

xn+1 := D−1(E + F)xn + D−1b = xn + D−1rn (9.21)

and has the iteration matrix

B̂ :≡ D−1(E + F) . (9.22)

A classical idea is to apply here relaxation [Relaxation]: we multiply the correction D−1rn in the
Jacobi iteration (9.21) by a relaxation factor [Relaxationsfaktor] ω, which typically satisfies 0 < ω < 1:

xn+1 := xn + D−1rnω . (9.23)

Naturally this method is called the damped Jacobi iteration [gedämpftes Gesamtschritt-Verfahren]. One
might also call it the Jacobi underrelaxation (JUR) method, but it has also been referred to as Jacobi
overrelaxation (JOR) method or as stationary Richardson iteration. (In general, Richardson iteration
is non-stationary, that is, ω :≡ ωn depends on n.)

Note that

xn+1 = xn + D−1 [b−Axn]ω

= xn(1− ω) + D−1 [(E + F)xn + b]ω

= xn(1− ω) + xJac
n+1ω . (9.24)

So the new iterate xn+1 is the weighted mean of the old iterate xn and one step of Jacobi, (9.21), starting
from xn.

The iteration matrix is now

B̂ :≡ (1− ω)I + ωD−1(E + F) = I− ωD−1A . (9.25)

So, if the spectrum of D−1A lies, e.g., on the interval [α, β] of the positive real axis, the one of B̂ lies on
[1−ωβ, 1−ωα]. Therefore, if ω > 0 is chosen such that ωβ < 2, we will have convergence (according to
Theorem 9.1.1). Moreover, ω could be chosen easily such that max{|1− ωβ|, |1 − ωα|} is minimal, and
thus ω is optimal.

It was [You50] who realized in his dissertation that the idea of relaxation is particularly effective in
connection with the Gauss-Seidel method: we take componentwise a weighted mean of the old iterate x(j)

n

and a step of Gauss-Seidel for that component, as given by (9.17):

x
(n+1)
j := x

(n)
j (1− ω) + x

(n+1,GS)
j ω (9.26)

= x
(n)
j (1− ω) +

ω

ajj


bj −

j−1∑

k=1

ajk x
(n+1)
k −

N∑

k=j+1

ajk x
(n)
k


 ,

j = 1, . . . , N .

This translates into
(D− ωE)xn+1 := [(1− ω)D + ωF]xn + ωb (9.27)

102

or the fixed point iteration with

B̂ :≡
(

1
ωD−E

)−1 [(1
ω − 1

)
D + F

]
, b̂ :≡

(
1
ωD−E

)−1
b (9.28)

and is called successive overrelaxation (SOR) method [Verfahren der sukzessiven Überrelaxation]. It can
be shown that for fixed ω in the interval 0 < ω < 2 the method converges for any system with Hpd matrix
A. (For a proof, see, e.g., p. 56 of [SRS68].)

There remains the question on how to choose ω so that convergence is fastest. [You50] derived a beau-
tiful theory leading to the optimal ω for matrices that have the so-called Property A and are consistently
ordered [konsistent geordnet]. The class of matrices with Property A includes many examples obtained by
discretizing partial differential equations with the finite difference method. The property is (by definition)
invariant under simultaneous column and row permutations of the matrix, but for optimal convergence we
need rows and columns so-called consistently ordered.

Although we do not exactly define Property A and consistent ordering here, we give a statement of
Young’s convergence result. For partial proofs under slightly varying assumptions see, e.g., pages 59–65
and 208–211 of [SRS68] (for A spd), pages 112–116 of [Saa96] (discussion of consistent ordering, but no
proof of optimal ω), and pages 149–154 of [Gre97] (no discussion of consistent ordering).

THEOREM 9.2.1. For a consistently ordered matrix A with Property A and real eigenvalues of D−1A,
the optimal relaxation factor ωopt of the SOR method is

ωopt :≡ 2

1 +
√

1− λ2
max

, (9.29)

where, in terms of notation (9.18), λmax is the largest eigenvalue of the matrix D−1(E + F), which is
the iteration matrix of the Jacobi method. The spectral radius of the optimal SOR iteration matrix B̂opt

is then

ρ(B̂opt) = ωopt − 1 , (9.30)

An interesting aspect is that, under the assumptions of the theorem, by SOR with optimal ω, the real
eigenvalues of D−1A are mapped onto the circle with radius ρ(B̂opt). So all the eigenvalues of B̂opt,
although in general complex, have the same absolute value.

A further related method is the symmetric SOR (SSOR) method, where each step is a double step
consisting of an SOR step followed by a backward SOR step; in short form:

(D− ωE)xn+ 1
2

:= [(1− ω)D + ωF]xn + ωb ,

(D− ωF)xn+1 := [(1− ω)D + ωE]xn+ 1
2

+ ωb .
(9.31)

The convergence analysis is even more complicated than for SOR.
There are also block versions of all these schemes.
Except for SSOR all the methods discussed in this section can be viewed as applications of the general

principle of improving fixed point iteration by matrix splitting: we write

A = M−N , (9.32)

where M is chosen so that, for any y, the system Mx = y is easy to solve for x. Then an iterative method
can be defined by

Mxn+1 := Nxn + b = Mxn + rn . (9.33)

In every step a linear system with the matrix M has to be solved. Formally, the method is equivalent with

xn+1 := M−1Nxn + M−1b = xn + M−1rn . (9.34)

This is just a linear fixed point iteration with

B̂ :≡M−1N , b̂ :≡M−1b . (9.35)

103

Therefore, the iteration converges if and only if ρ(M−1N) < 1. So, the aim must be to find splittings (9.32)
where this spectral radius is small. Unfortunately, in general it is difficult to conclude from the spectrum
of A on that of B̂ = M−1N. But there is the important class of so-called M-matrices [M-Matrizen] and
corresponding so-called regular splittings [reguläre Splittings] where at least convergence can be proved.

Table 9.1 summarizes the meanings of M and N in our above treated classical methods. These methods,
in particular SOR, were very popular in the 1950ies and 1960ies, but they are hardly used nowadays for the
original purpose. We will come back to them in Section 10.1 on basic preconditioning techniques, however.

Table 9.1 Some matrix splittings based on A = D−E− F.

method M N

Jacobi D E + F

Gauss-Seidel D−E F

damped Jacobi 1
ωD

(
1
ω − 1

)
D + E + F

SOR 1
ωD−E

(
1
ω − 1

)
D + F

backward SOR 1
ωD− F

(
1
ω − 1

)
D + E

9.3 Krylov Subspaces and Krylov Space Solvers

The discussion of the Jacobi method in Section 9.1 suggests to look for better approximate solutions lying
in the following affine space:

xn ∈ x0 + span
{
r0,Ar0, . . . ,A

n−1r0

}
,

see (9.14c). We first investigate the subspace that appears in this formula.

DEFINITION. Given a nonsingularN ×N matrix A and anN -vector y 6= o, the nth Krylov (sub)space
Kn(A,y) [Krylov–Raum] generated by A from y is

Kn :≡ Kn(A,y) :≡ span (y,Ay, . . . ,An−1y). (9.36)
N

Clearly, by this definition, whenever z ∈ Kn(A,y), there is a polynomial p of degree at most n − 1
such that z = p(A)y. In general, this polynomial may be not unique since the spanning set in (9.36) may
be linearly dependent. We can say more about this in a moment.

Definition (9.36) associates with a matrix A and a starting vector y a whole nested sequence of Krylov
subspaces:

K1 ⊆ K2 ⊆ K3 ⊆
The following lemma answers the question of the equality signs.

LEMMA 9.3.1. There is a positive integer ν̄ :≡ ν̄(y,A) such that

dim Kn(A,y) =

{
n if n ≤ ν̄ ,
ν̄ if n ≥ ν̄ .

The inequalities 1 ≤ ν̄ ≤ N hold, and ν̄ < N is possible if N > 1.

DEFINITION. The positive integer ν̄ :≡ ν̄(y,A) of Lemma 9.3.1 is called grade of y with respect to A

[Grad von y bezüglich A]. N

PROOF of Lemma 9.3.1. By definition (9.36),

Kn :≡ Kn(A,y) :≡ span (y,Ay, . . . ,An−1
y) ,

104

with some y 6= o. So, dimK1 = 1, and if y,Ay, . . . ,An−1y are linearly independent, then dimKn = n. Let n = ν̄
be the first n for which y,Ay, . . . ,An−1y,Any are linearly dependent. Then Any = Aν̄y is a linear combination
of the linearly independent vectors y,Ay, . . . ,Aν̄−1y:

A
ν̄
y = yγ0 + Ayγ1 + · · · + A

ν̄−1
yγν̄−1 . (9.37)

Here, γ0 6= 0, because otherwise, after multiplication by A−1, we would have

A
ν̄−1

y = yγ1 + Ayγ2 + · · ·+ A
ν̄−2

yγν̄−1 ,

in contrast to the assumption that the vectors on the right-hand side are linearly independent.
If we consider the definition (9.36) for some n > ν̄, then, by using (9.37), all terms Aky with k ≥ ν̄ in the span

can be recursively replaced by sums of terms with k < ν̄. So, the dimension cannot be larger than ν̄; and of course, it
cannot be smaller since Kn ⊇ Kν̄ if n ≥ ν̄.

If we choose y as an eigenvector of A, then ν̄ = 1, so ν̄ can be smaller than N if N > 1. �

We can say more and understand the structure of the Krylov subspaces better if we consider the Jordan
canonical form of A (as in the proof if Theorem 9.1.1) and recall the notion of the minimal polynomial of
A.

So we let A = VJV−1 be the Jordan decomposition of A, i.e., J is a block-diagonal matrix of the
form

J =




J1

. . .
Jµ


 , where Jk =




λk 1

λk
. . .
. . . 1

λk



∈ C

mk×mk (9.38)

are either bidiagonal Jordan blocks or 1×1 blocks (λk). Some of the eigenvalues λk in the different blocks
may coincide, and we choose to rearrange the blocks so that a full set of Jordan blocks of maximum size
mk corresponding to all the µ̄ distinct eigenvalues λ1, . . . , λµ̄ is at the top. So, if µ̄ < µ, then λµ̄+1,
. . . , λµ all coincide with some eigenvalue among the first µ̄, and the block sizes mk for k > µ̄ are at most
as large as the corresponding ones for the same eigenvalue with k ≤ µ̄. Then the minimal polynomial
[Minimalpolynom] χ̂A of A is defined by

χ̂A(t) :≡
µ̄∏

k=1

(t− λk)mk . (9.39)

Note, that the minimal polynomial is a divisor of the characteristic polynomial

χA(t) :≡
µ∏

k=1

(t− λk)mk (9.40)

(where the product runs now over all µ diagonal blocks Jk of the Jordan decomposition (9.38)). Its degree
∂χ̂A is

M :≡ ∂χ̂A =

µ̄∑

k=1

mk ≤
µ∑

k=1

mk = ∂ψ = N .

We claim that if we insert t := A into the minimal polynomial (so that it becomes a matrix polynomial),
we get the zero matrix.

THEOREM 9.3.2. If χ̂A denotes the minimal polynomial of A, then

χ̂A(A) =

µ̄∏

k=1

(A− λkI)mk = O . (9.41)

PROOF. We have

bχA(A) = V bχA(J)V−1 = V

µ̄Y

k=1

(J− λkI)
mk

!
V
−1 ,

105

and here all the factors of the product, and hence the product itself, is block diagonal. Consider, the block (Jk−λkI)
mk

of the kth factor. In the notation of (9.5) it equals Smk , where, in this factor, S is themk×mk matrix with ones on the
upper bidiagonal and zeros elsewhere. So, Smk = O. Hence, in the product in question, there is for each k a factor
where the kth block is zero. Consequently, the whole product is a zero matrix, and thus also bχA(J) and bχA(A). �

Since the minimal polynomial is a divisor of the characteristic polynomial, the following famous Caley-
Hamilton theorem follows immediately.

COROLLARY 9.3.3. If χA denotes the characteristic polynomial of A, then χA(A) = O.

Now we are ready to prove the following result on the grade ν̄ that appeared in Lemma 9.3.1.

LEMMA 9.3.4. The nonnegative integer ν̄ of Lemma 9.3.1 satisfies

ν̄ = min
{
n
∣∣ A−1y ∈ Kn(A,y)

}
≤ ∂χ̂A,

where ∂χ̂A denotes the degree of the minimal polynomial of A.

PROOF. Multiplying (9.37) by A−1 we see that

A
−1

y =
`
A

ν̄−1
y−A

ν̄−2
yγν̄−1 − · · · −Ayγ2 − yγ1

´ 1

γ0

, (9.42)

so A−1y ∈ Kν̄(A,y). We cannot replace ν̄ by some n < ν̄ here, because this would lead to a contradiction to the
minimality of ν̄ in (9.37), and hence, to the definition of ν̄.

It remains to show that ν̄ ≤ ∂bχA. The product formula for bχA(A) = O in (9.41) could be written as a linear
combination of I, A, . . . , AM that is zero, but the coefficient of AM is 1 (here, again, M :≡ ∂bχA). This remains
valid if we post-multiply each term by any y. So, for any y, the Krylov subspace KM+1(A,y) has dimension at most
M , and in view of Lemma 9.3.1 the same is true for Kn(A,y) for any n. �

Of course, the actual dimension may be smaller for some y. In fact, it is, if in the representation of y in
terms of the basis associated with the Jordan decomposition of A some of the relevant coordinates vanish.

We can conclude that as long as n ≤ ν̄(y,A), the vectors y, Ay, . . . , An−1y in (9.36) are linearly in-
dependent, and thus the polynomial p representing some z = p(A)y ∈ Kn(A,y) is uniquely determined.
In other words, as long as n ≤ ν̄, there is a natural one-to-one correspondence (actually, an isomorphism)
between the linear space Kn and the linear space Pn−1 of polynomials of degree at most n− 1.

Unfortunately, even for n ≤ ν̄ the vectors y, Ay, . . . , An−1y form typically a very ill-conditioned
basis for Kn, since they tend to be nearly linearly dependent. In fact, one can easily show that if A has a
unique eigenvalue of largest absolute value and of algebraic multiplicity one, and if y is not orthogonal to
a corresponding normalized eigenvector v, then Aky/‖Aky‖ → ±v as k → ∞. Therefore, in practice,
we will never make use of this so-called Krylov basis [Krylovbasis].

In connection with the iterative solution of a linear system Lemma 9.3.4 yields a most welcome corol-
lary.

COROLLARY 9.3.5. Let x? be the solution of Ax = b and let x0 be any initial approximation of it and
r0 :≡ b−Ax0 the corresponding residual. Moreover, let ν̄ :≡ ν̄(r0,A). Then

x? ∈ x0 +Kν̄(A, r0) .

PROOF. By (9.8), (9.10), and by Lemma 9.3.4,

x? − x0 = d0 = −A
−1

r0 ∈ Kν̄(A, r0) .
�

This corollary shows that if we choose xn from the affine space x0 +Kn(A, r0) there is a chance that
we find the exact solution within at most ν̄ steps. We say then that our method has the finite termination
property. We will see that it is easy to deduce methods that have this property. In fact, it suffices to insure
that the residuals rn are linearly independent as long as they are nonzero. Of course, once rn = o for some
n, the linear system is solved.

106

However, in practice the finite termination property is nearly irrelevant, since ν̄ is normally much larger
than the maximum number of iterations we are willing to execute. We rather want an approximation with
sufficiently small residual quickly.

The corollary and the analogy to the relation (9.14c) now motivate the following definition.

DEFINITION. A (typical) Krylov space method for solving a linear system [Krylov-Raum-Methode]
Ax = b or, briefly, a Krylov space solver 2, is an iterative method starting from some initial approximation
x0 and the corresponding residual r0 :≡ b −Ax0 and generating for all, or at least most n, iterates xn
such that

xn − x0 = qn−1(A)r0 ∈ Kn(A, r0) (9.43)

with a polynomial qn−1 of exact degree n− 1. N

We first note that (9.43) implies that

dn − d0 = qn−1(A)r0 ∈ Kn(A, r0) , (9.44)

rn − r0 = −Aqn−1(A)r0 ∈ AKn(A, r0) . (9.45)

¿From the second equation we find a result that shows that these methods generalize the Jacobi iteration;
cf. (9.13).

LEMMA 9.3.6. The residuals of a Krylov space solver satisfy

rn = pn(A)r0 ∈ r0 + AKn(A, r0) ⊆ Kn+1(A, r0) , (9.46)

where pn is a polynomial of degree n, which is related to the polynomial qn−1 of (9.43) by

pn(ζ) = 1− ζqn−1(ζ) . (9.47)

In particular,

pn(0) = 1 . (9.48)

DEFINITION. The polynomials pn ∈ Pn in (9.46) are the residual polynomials [Residualpolynome]
of the Krylov space solver. We refer to the condition (9.48) as the consistency condition [Konsistenz-
Bedingung] for these polynomials. N

As we will see, for some Krylov space solvers there may exist exceptional situations, where for some n
the iterate xn and the residual rn are not defined. There are also atypical Krylov space methods [atypische
Krylov-Raum-Methode] where the approximation space for xn − x0 is still a Krylov space, but one that
differs from Kn(A, r0).

Krylov space methods are a very important class of numerical methods. With respect to the “influence
on the development and practice of science and engineering in the 20th century”, they are considered as
one of the ten most important classes [DS00, van00].

Krylov space methods have been the most important topic of sparse matrix analysis through the whole
second part of the last century, although there exist other approaches for solving sparse linear systems that
do not fit into this class. Moreover, the Krylov space approach is also applicable to eigenvalue problems.

As we will see there are various ways to derive suitable Krylov space solvers. Depending on the way
they were used and the time period, various names have been given to the class of methods called Krylov
space solvers here: gradient methods [Rut59], semi-iterative methods [Var62, You71], polynomial ac-
celeration methods, polynomial preconditioners [BBC+94], Krylov subspace iterations [van00].

In view of rn = −Adn (see (9.10) and (9.44)–(9.45)) Lemma 9.3.6 implies an analogous result on the
error vectors.

2Many authors use the term Krylov subspace method instead, but, of course, any subspace of a linear space is itself a linear
space. We certainly want to avoid the German “Krylov-Unterraum-Methode”.

107

LEMMA 9.3.7. The error vectors of a Krylov space solver satisfy

dn = pn(A)d0 ∈ Kn(A,d0) , (9.49)

where pn is the nth residual polynomial.

Note, however, that the Krylov space Kn(A,d0) that appears here, is different from the one we nor-
mally consider,Kn(A, r0).

9.4 Chebyshev IterationF

As we have mentioned beforehand, the simplest way — though not always the best way — to check the
convergence of a Krylov space solver is to evaluate a norm of the residual vector. A natural approach
to designing a Krylov space solver is therefore to try to minimize a residual norm. The representation
(9.46), rn = pn(A)r0, of the residual and the spectral decomposition AU = UΛ of the matrix A yield
rn = Upn(Λ)U−1r0. Therefore, in the 2-norm of the vectors and the induced spectral norm for the
matrices,

‖rn‖/‖r0‖ ≤ κ(U)‖pn(Λ)‖ , (9.50)

where κ(U) :≡ ‖U‖ ‖U−1‖ is the (spectral) condition number of U. If Λ is diagonal, Λ ≡: diag {λ1, . . . , λN},

‖pn(Λ)‖ = max
i=1,...,N

|pn(λi)| , (9.51)

so the problem of finding a good Krylov space solver for a particular A can be reduced to the approximation
problem

max
i=1,...,N

|pn(λi)| = min! subject to pn ∈ Pn, pn(0) = 1 . (9.52)

There are some problems with this approach, however. First, in general we cannot assume that the
eigenvalues of A are known; their computation is normally much more costly than solving a linear system
with the same matrix. Second, the condition number κ(U) may be very large, and the inequality in (9.50)
may be far from sharp. Third, the approximation problem (9.52) is very difficult to solve if there are
complex eigenvalues.

But let us assume here that A is real symmetric or Hermitian and positive definite (i.e., spd or Hpd),
so that Λ is diagonal, the eigenvalues are positive, and U is unitary and thus κ(U) = 1. There is still
the difficulty that the individual eigenvalues are not known. Any norm of A yields an upper bound for the
eigenvalues, and often a positive lower bound can be found somehow. So, assume

λi ∈ I :≡ [α− δ, α+ δ] (i = 1, . . . , N) (9.53)

with α > 0 and 0 < δ < α. Then, the following holds:

‖rn‖/‖r0‖ ≤ ‖pn(Λ)‖ = max
i=1,...,N

|pn(λi)| ≤ max
τ∈I
|pn(τ)| . (9.54)

It suggests to replace the approximation problem (9.52) by

max
τ∈I
|pn(τ)| = min! subject to pn ∈ Pn, pn(0) = 1 . (9.55)

We claim that this real polynomial approximation problem can be solved analytically and that the
optimal polynomial is just a shifted and scaled versions of the classical Chebyshev polynomial [Tscheby-
scheff–Polynom] of degree n, which on R is defined by

Tn(ξ) :≡
{

cos(n arccos(ξ)) if |ξ| ≤ 1 ,(
(sign (ξ)

)n
cosh(n arcosh(|ξ|)) if |ξ| ≥ 1 ,

108

and satisfies the three-term recursion

Tn+1(ξ) := 2ξTn(ξ)− Tn−1(ξ) (n > 1) (9.56)

with initial values T0(ξ) := 1, T1(ξ) := ξ. The recursion is just a translation of the identity 2cosφ cosnφ =
cos(n+1)φ+cos(n− 1)φ under the substitution ξ = cosφ. Clearly, Tn(ξ) = cos(n arccos(ξ)) oscillates
on the interval [−1, 1] between its minima and maxima ±1, of which there are a total of n + 1, including
two at the endpoints±1; see Figure 9.1 for two clippings of the graph of T11.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Chebyshev polynomial T
11

 on [−1,1]

−1.5 −1 −0.5 0 0.5 1 1.5
−60

−40

−20

0

20

40

60

Chebyshev polynomial T
11

 on [−1.1, 1.1]

Figure 9.1: The Chebyshev polynomial T11 equioscillating on the interval [−1, 1] (at left), and its steep
increase of the absolute value outside the interval [−1, 1] (at right).

We capitalize upon this behavior by using the additional substitution τ 7→ ξ := (τ −α)/δ, which maps
the given interval I onto [−1, 1] and by scaling the function so that p(0) = 1; see Figure 9.2.

THEOREM 9.4.1. The optimal solution of the approximation problem (9.55) with I :≡ [α − δ, α+ δ] is
the shifted and scaled Chebyshev polynomial

pn(τ) =
Tn
(
τ−α
δ

)

Tn
(
−αδ
) . (9.57)

PROOF. Problem (9.55) is a variation of a classical approximation problem where pn is required to be monic (i.e.,
to have leading coefficient 1) instead of having constant coefficient 1 and the interval is [−1, 1]. For that problem,
the solution is Tn, and the proof is a special case of the one for the equioscillation theorem from the theory of real
polynomial uniform (or Chebyshev) approximation.

The polynomial pn has on I the maximum and minimum values ±1/Tn

`
−α

δ

´
. The maximum is taken at d 1

2
(n+

1)e points and the minimum at interlacing d 1

2
ne points. Assume there is a polynomial s ∈ Pn with s(0) = 1,

which yields a smaller maximum in (9.55). Then the difference pn − s ∈ Pn will have alternating sign at the n + 1
maxima and minima of pn, so it will have n zeros between these points. Moreover, it has another zero at τ = 0
where pn(0) = s(0) = 1. That makes a total of n + 1 zeros, which contradicts to the limit of n zeros for a nonzero
polynomial of degree n. �

The recursions (9.56) for the Chebyshev polynomials lead to recursions for the residual polynomials
pn and, thus, for the residuals rn and the corresponding iterates xn. The resulting Krylov space solver

109

−0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

Residual polynomial p
11

 for interval [0.1,1.9]

Figure 9.2: The residual polynomial p11 of the Chebyshev iteration for the interval [0.1, 1.9] — a shifted
and scaled version of T11.

is nowadays called Chebyshev iteration [Tschebyscheff-Iteration]. In earlier times it was often said to
be the Chebyshev semi-iterative method. The method was, e.g., investigated by [Rut59], [GV61], and
[Var62].

Chebyshev iteration is optimal for the set of matrices A whose spectrum is confined to the interval
I :≡ [α − δ, α + δ]. Of course, for an individual such matrix there are still faster methods. The method
can be seen to be asymptotically optimal (for n → ∞) also for the set of matrices A whose spectrum is
confined to an elliptical domain E with foci α−δ and α+δ that does not contain the origin. But, in general,
it is not optimal in this case, see [FF90] and [FF91]: exceptions exists even with α, δ ∈ R. Moreover, in
the case where A is not real symmetric or Hermitian, the factor κ(U) in (9.50) will normally not be 1.

Although our derivation is limited to the case of eigenvalues in a real interval I, we formulate the
method here so that the case of complex eigenvalues is included.

Algorithm 9.1 (Chebyshev Iteration). .
For solving Ax = b choose x0 ∈ EN and let r0 := b−Ax0. Set r−1 := x−1 := o.
Choose the parameters α and δ so that the spectrum of A lies on the interval I :≡ [α − δ, α+ δ] or on
an elliptical domain E with foci α± δ, but so that 0 6∈ I or 0 6∈ E , respectively. Then let η :≡ −α/δ,

β−1 := 0 , β0 :=
δ

2

1

η
= − δ

2

2α
, γ0 := −α , (9.58a)

and compute, for n = 0, 1, . . . until convergence,

βn−1 :≡ δ

2

Tn−1(η)

Tn(η)
:=

(
δ

2

)2
1

γn−1
if n ≥ 2, (9.58b)

γn :≡ δ

2

Tn+1(η)

Tn(η)
:= −(α+ βn−1) if n ≥ 1, (9.58c)

xn+1 := −
(
rn + xnα+ xn−1βn−1

)
/γn , (9.58d)

rn+1 :=
(
Arn − rnα− rn−1βn−1

)
/γn . (9.58e)

Note that in the case of real foci, η :≡ −α/δ < −1, so that in (9.58b) and (9.58c) the formula

110

Tn(η) = (−1)n cosh(n arcosh(−η)) should be used.
For the Chebyshev iteration we can specify a bound for the residual norm reduction and thus estimate

the speed of convergence. This requires a little bit more classical analysis; additionally, complex analysis
is also helpful for understanding the background of the method.

Let us again assume that A is Hpd and that its spectrum is known to be in I = [α − δ, α + δ], where
α > δ > 0. Moreover, let us set

κI :≡ α+ δ

α− δ . (9.59)

Note that κI is a bound for the spectral condition number κ(A), and that κI = κ(A) if I is chosen smallest
possible, that is so that α± δ are the smallest and the largest eigenvalues of A. Recall that the two bounds
in (9.54) hold. The one in the middle,

‖rn‖/‖r0‖ ≤ max
i=1,...,N

|pn(λi)| , (9.60)

is sharp in the sense that for any n we can specify a x0 so that equality holds. In fact, if m is the index
for which the maximum is taken in (9.60), and if um is the eigenvector corresponding to λm, then we just
need to choose x0 := x? − um. Then r0 = A(x? − x0) = umλm and rn = umλmpn(λm) = r0pn(λm).

Since (τ − α)/δ ∈ [−1, 1] if τ ∈ I we conclude further that

max
i=1,...,N

|pn(λi)| = |pn(λm)| ≤ 1∣∣Tn
(
−αδ
)∣∣ =

1

|Tn(η)|
. (9.61)

Here, since η < −1, we have |Tn(η)|−1 < 1, which means that ‖rn‖ < ‖r0‖ if n > 0. The bound in
(9.61) is sharp in the sense that there are matrices with spectrum contained in I for which equality holds.

As is easy to verify, ϑ :≡ exp
(
arcosh(−η)

)
> 1 satisfies

1

2

(
ϑ+

1

ϑ

)
= −η . (9.62)

In terms of ϑ the value Tn(η) can be written as

Tn(η) =
(−1)n

2

(
ϑn +

1

ϑn

)
. (9.63)

Relation (9.62), which, up to the minus sign, describes the Joukowski transformation [Hen74], means
that ϑ2 + 2ηϑ+ 1 = 0 and yields

ϑ = −η ±
√
η2 − 1. (9.64)

In terms of κI we have from (9.59)

η = −κI + 1

κI − 1
, (9.65)

and, after some manipulation, we find the two reciprocal solutions

ϑ =

√
κI + 1√
κI − 1

or ϑ =

√
κI − 1√
κI + 1

, (9.66)

which both yield

|Tn(η)| =
1

2

[(√
κI + 1√
κI − 1

)n
+

(√
κI − 1√
κI + 1

)n]
. (9.67)

Actually, only the first solution, the one with ϑ > 1 is consistent with our definition of ϑ based on the
principal branch of arcosh. In summary, (9.60), (9.61), and (9.67) yield the following estimate.

THEOREM 9.4.2. The residual norm reduction of the Chebyshev iteration, when applied to an Hpd system
whose condition number is bounded by κI , is bounded according to

‖rn‖
‖r0‖

≤ 2

[(√
κI + 1√
κI − 1

)n
+

(√
κI − 1√
κI + 1

)n]−1

≤ 2

(√
κI − 1√
κI + 1

)n
. (9.68)

The first bound is sharp in the sense that there are matrices A with spectrum in I and suitable initial
vectors x0 such that the bound is attained.

111

The theorem means that, in general, the residuals in the Chebyshev iteration converge linearly. The
asymptotic (root-)convergence factor is bounded according to

(‖rn‖
‖r0‖

)1/n

≤
√
κI − 1√
κI + 1

=
1

ϑ
= e−arcosh(−η) = |η| −

√
η2 − 1 . (9.69)

Using some of the formulas given above, it is easy to show that the coefficients βn and γn of the
Chebyshev iteration converge as n→∞, that is βn → β and γn → γ. In fact, from (9.63) we have

Tn−1(η)

Tn(η)
= − ϑ

n−1 + ϑ−(n−1)

ϑn + ϑ−n
→ − 1

ϑ
as n→∞ .

Therefore, by (9.58b) and (9.58c), we have

βn−1 → β :≡ − δ

2ϑ
= − δ

2

(
|η| −

√
η2 − 1

)
, (9.70)

γn → γ :≡ − δϑ

2
= − δ

2

(
|η|+

√
η2 − 1

)
, (9.71)

and thus

β + γ = − δ
2

(
ϑ+ ϑ−1

)
= δη = −α , (9.72)

as required by the limit of (9.58c).
Redefining in the recursions (9.58d) and (9.58e) γ0 := −α and βn−1 := β, γn := γ if n > 0, we obtain

another Krylov space solver, which is also asymptotically optimal for the same interval and the same set of
confocal ellipses. It is called second-order Richardson iteration. In contrast to the Chebyshev iteration
it uses a stationary three-term recursion for rn, that is, the coefficients do not depend on n. Actually, the
recursion involves again four terms, but the underlying recursion for the residual polynomials has only
three terms if we write τpn(τ) − αpn(τ) as (τ − α)pn(τ).

Like for SOR, the main disadvantage of these two methods is that some knowledge of the spectrum of
A is required, in particular a lower bound for the distance of the smallest eigenvalue from the origin.

9.5 Preconditioning

When applied to large real-world problems Krylov space solvers often converge very slowly — if at all.
In practice, Krylov space solvers are therefore nearly always applied with preconditioning [Vorkondition-
ierung, Präkonditionierung]. The basic idea behind it is to replace the given linear system Ax = b by
an equivalent one whose matrix is more suitable for a treatment by the chosen Krylov space method. In
particular, it is normally expected to have much better condition. Ideal are matrices whose eigenvalues are
clustered around one point except for a few outliers, and such that the cluster is well separated from the
origin. Other properties, like the degree of nonnormality, also play a role, since highly nonnormal matrices
often cause a delay of the convergence. Minor perturbations of such matrices can cause the spectrum to
change much. Note that again, this new matrix needs not be available explicitly.

There are several ways of preconditioning. In the simplest case, called left preconditioning [linke
Vorkonditionierung], the system is just multiplied from the left by some matrix C that is in some sense an
approximation of the inverse of A:

CA︸︷︷︸
Â

x = Cb︸︷︷︸
b̂

. (9.73)

C is then called a left preconditioner [linker Vorkonditionierer] or, more appropriately, an approximate
inverse [approximative Inverse] applied on the left-hand side. Of course, C should be sparse or specially
structured, so that the matrix-vector product Cy can be calculated quickly for any y.

Often, given is not C but its inverse M :≡ C−1, which is also called left preconditioner. In this case,
we need to be able to solve Mz = y quickly for any y.

112

An alterative is to substitute x by x̂ :≡ C−1x, so that Ax = b is replaced by

AC︸︷︷︸
Â

C−1x︸ ︷︷ ︸
x̂

= b . (9.74)

This is right preconditioning [rechte Vorkonditionierung]. Here, logically, C is called a right precon-
ditioner [rechter Vorkonditionierer] or, an approximate inverse applied on the right-hand side. Again, we
may have not C but its inverse M available. Note that in the situation of (9.74) we do not need C−1

because we will first obtain x̂ and so have to compute x = Cx̂.
Sometimes it is most appropriate to combine these approaches, and then this is called split precondi-

tioning [gesplittete Vorkonditionierung].
In general, the effect of preconditioning on the formulation and convergence of a Krylov space solver

can be understood as the replacement of the system Ax = b by one of the form

CLACR︸ ︷︷ ︸
Â

C−1
R x︸ ︷︷ ︸
x̂

= CLb︸ ︷︷ ︸
b̂

, (9.75)

where we allow either CL or CR to be the identity, or by one of the form

M−1
L AM−1

R︸ ︷︷ ︸
Â

MRx︸ ︷︷ ︸
x̂

= M−1
L b︸ ︷︷ ︸
b̂

, (9.76)

where now at most either ML or MR is the identity. Then the product C :≡ CLCR or the product
M :≡MRML is the split preconditioner [gesplitteter Vorkonditionierer].

The split preconditioning is particularly useful if A is real symmetric (or Hermitian) and we choose as
the right preconditioner the transpose (or, in the complex case, the Hermitian transpose) of the left one, so
that Â is still symmetric. In particular, if MR and CL are lower triangular matrices L and K, respectively,
we have

M = LL? , C = KK? , (9.77)

and these can be viewed as the Cholesky decompositions [Cholesky-Zerlegungen] of M and C, respec-
tively.

Left preconditioning effects the residuals: it involves the preconditioned residual vectors

r̂n :≡ CL rn = M−1
L rn = M−1

L (bn −Axn) . (9.78)

On the other hand, right preconditioning effects the error vectors: it involves the preconditioned error
vectors

x̂n − x̂? :≡MR (xn − x?) = MR dn = C−1
R (xn − x?) . (9.79)

Of course, the difficult part in preconditioning is to find the preconditioner, be it CL, CR, ML, MR, L,
or K. Yet another question is how to efficiently combine the Krylov space solver with the preconditioner.
Of course, one could just replace A, b, and x by Â, b̂, and x̂, but there are sometimes more efficient ways
to build a preconditioner into a Krylov space solver. We will treat such cases in Section 9.6.7, where, in
various ways, preconditioning is built into conjugate gradient algorithms.

9.6 The Conjugate Gradient Method

9.6.1 Energy Norm Minimization

In many areas of science and technology stable states are characterized by minimum energy. Discretization
then leads in the first approximation to the minimization of a quadratic function in several variables,

Ψ(x) :≡ 1
2 xTAx − bTx + γ (9.80)

113

with an spd matrix A. (We assume real data in Sections 9.6.1–9.6.6.) Such a function Ψ is well known to
be convex since its second derivative is the matrix A. So it has a unique minimum, which can be found by
setting the first derivative, the gradient, equal to o. The gradient can be seen to be

∇Ψ(x) = Ax− b = −r , (9.81)

where r is the residual corresponding to x. Hence,

x minimizer of Ψ ⇐⇒ ∇Ψ(x) = o ⇐⇒ Ax = b . (9.82)

As before, we let x? be the minimizer, i.e., the solution of Ax = b, and d :≡ x− x? be the error of x. If
we define the A-norm as usual by

‖y‖A :≡
√

yTAy , (9.83)

it is easily seen that

‖d‖2A = ‖x− x?‖2A = ‖Ax− b‖2
A−1 = ‖r‖2

A−1 = 2 Ψ(x) (9.84)

if in (9.80)
γ :≡ 1

2 bTA−1b . (9.85)

Of course, the value of the constant γ has no influence on the solution, so we can assume from now on that
we have made this choice; thus, in other words, we are minimizing the A-norm of the error, which is often
referred to as the energy norm [Energienorm].

In summary: If A is spd, to minimize the quadratic function Ψ means to minimize the energy norm of
the error vector of the linear system Ax = b.

Since A is spd, the level curves Ψ(x) = const are ellipses if N = 2 and ellipsoids if N = 3.

9.6.2 Steepest Descent

The interpretation of the solution of a linear system as the minimizer of convex quadratic function Ψ
suggests to find this minimizer by moving down the surface representing Ψ in the direction of steepest
descent given by minus the gradient.

However, to follow approximately the so defined curve would require to make many small steps and to
evaluate the gradient at every step. We prefer to follow a piecewise straight line with rather long pieces, that
is, to make a long step whenever the gradient and thus the direction of steepest descent has been computed.
So, in the nth step, we proceed from (xn,Ψ(xn)) on a straight line in the opposite direction of the gradient
∇Ψ(x), that is, in the direction of rn. A natural choice is to go to the point with the minimum value of Ψ
on that line. In general, finding the minimum value of a functional on a line is called line search, but here,
since Ψ is quadratic, the length of the step is easy to compute. On the line

ω 7→ xn + rnω (9.86)

the minimum
xn+1 := xn + rnωn (9.87)

of ‖xn+1 − x?‖2A = ‖rn+1‖2A−1 is readily found: xn+1 = xn + rnωn implies that rn+1 = rn −Arnωn,
so that

‖rn+1‖2A−1 = ‖rn −Arnωn‖2A−1

= ‖rn‖2A−1 − 2 〈rn,Arn〉A−1 ωn + ‖Arn‖2A−1 ω2
n

= ‖rn‖2A−1 − 2 〈rn, rn〉 ωn + 〈rn,Arn〉 ω2
n .

As a function of ωn, this expression has a vanishing derivative (and is thus minimal) when

ωn :≡ 〈rn, rn〉
〈rn,Arn〉

. (9.88)

114

This is the method of steepest descent [Methode des steilsten Abstiegs]. Comparing its formulas
(9.87) and (9.88) with (9.11) we see that it differs from the Jacobi iteration only in the (locally optimal)
choice of the step length.

−3 −2 −1 0 1 2 3 4 5 6 7 8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4
Steepest descent method

x
0

x
1

x
2

x
3

x
4

x
*

Figure 9.3: The steepest descent method for N = 2.

However, this method may converge very slowly even if N is only 2. This is easily seen if we assume
that N = 2 and that the two (positive) eigenvalues of A differ very much in size. Then the level curves
of Ψ are concentric ellipses with a large axis ratio of λ1/λ2, and the search directions are orthogonal to
these ellipses. Obviously, there are situations, where it takes many steps to come close to the center of the
ellipses; see Figure 9.3. It is also clear that, in general, this method does not converge in at most N steps.

9.6.3 Conjugate Direction Methods

Figure 9.3 manifests where the slow convergence of the steepest descent method comes from: while the
direction of steepest descent is optimal on an infinitesimally small scale, it may be far from optimal when
we take long steps. For an optimal step in the two-dimensional situation depicted we would have to choose
as the second direction one that leads directly to the center of the ellipse. In elementary geometry we have
learned that this second direction must be conjugate [konjugiert] to the first one, which at the minimum
x1 := x0 + v0ω0 is tangential to the ellipse; in other words, we need vT

1 Av0 = 0, see Figure 9.4.
How does this generalize to N dimensions? We choose nonzero search directions [Suchrichtungen]

or direction vectors [Richtungsvektoren] vn (n = 0, 1, 2, . . .) that are conjugate or A–orthogonal to each
other, that is

vT

nAvk = 0 , k = 0, . . . , n− 1, (9.89)

and define
xn+1 := xn + vnωn , (9.90)

so that
rn+1 = rn −Avnωn . (9.91)

We choose the step length ωn again such that the A-norm of the error (that is, the A−1-norm of the
residual) is minimized on the line

ω 7→ xn + vnω . (9.92)

For any spd matrix C, the minimum of

‖rn −Avnω‖2C = ‖rn‖2C − 2 〈rn,Avn〉C ω + ‖Avn‖2C ω2 (9.93)

115

on this line is at

ωn :≡ 〈rn,Avn〉C
‖Avn‖2C

. (9.94)

Here, in order to minimize the A−1-norm of the residual, we choose C = A−1 and obtain,

ωn :≡ 〈rn,vn〉
〈vn,Avn〉

. (9.95)

DEFINITION. Any iterative method satisfying (9.89), (9.90), and (9.95) is called a conjugate direction
method [Methode der konjugierten Richtungen]. N

By definition, such a method chooses the step length ωn so that xn+1 is locally optimal on the line
(9.92). But does it also yield the best

xn+1 ∈ x0 + span {v0, . . . ,vn} (9.96)

with respect to the A–norm of the error? We will show next that due to choosing conjugate directions this
is indeed true.

THEOREM 9.6.1. For a conjugate direction method the problem of minimizing the energy norm of the
error of an approximate solution of the form (9.96) decouples into n + 1 one-dimensional minimization
problems on the lines ω 7→ xk + vkω, k = 0, 1, . . . , n.
A conjugate direction method yields after n + 1 steps the approximate solution of the form (9.96) that
minimizes the energy norm (A–norm) of the error in this affine space.

PROOF. By (9.84),

Ψ(xn+1) = 1

2
‖xn+1 − x?‖

2
A

= 1

2
‖xn + vnωn − x?‖

2
A

= 1

2
‖(xn − x?) + vnωn‖

2
A

= Ψ(xn) + ωnv
T

nA(xn − x?) + 1

2
ω2

nv
T

nAvn

= Ψ(xn)− ωnv
T

nrn + 1

2
ω2

nv
T

nAvn .

As a consequence of (9.89) we get

v
T

nrn = v
T

n (r0 + A(x0 − xn))

= v
T

nr0 − v
T

nA(v0ω0 + · · ·+ vn−1ωn−1)

= v
T

nr0 .

Therefore,
Ψ(xn+1) = Ψ(xn)− ωnv

T

nr0 + 1

2
ω2

nv
T

nAvn . (9.97)

Here, the last two terms on the right-hand side are independent of v0, . . . , vn−1 and ω0, . . . , ωn−1. So from (9.97)
we conclude that the problem of finding the global minimum with respect to the search directions v0, . . . ,vn de-
couples into the one of minimizing with respect to v0, . . . ,vn−1 (which by induction we may assume to yield
xn) and the one-dimensional minimization (line search) with respect to vn. The optimal ωn in (9.97) is given by
ωn = (vT

nr0)/(v
T

nAvn), but in view of (9.89) this yields the same as (9.95). By induction, finding the global mini-
mum of Ψ(xn) decouples further into n one-dimensional minimum problems. �

Conjugate direction methods in this general sense, as well as the special case of the conjugate gradient
method treated next have been introduced by [HS52].

116

9.6.4 The Conjugate Gradient (CG) method

In general, conjugate direction methods are not Krylov space solvers, but if we choose the search directions
in a suitable Krylov subspace, then we obtain one. ¿From the relation

xn+1 = x0 + v0ω0 + · · ·+ vnωn ∈ x0 + span {v0,v1, . . . ,vn} (9.98)

we see that we need to choose search directions v0, . . . ,vn (which by (9.89) are linearly independent) such
that they span the Krylov space Kn+1 = Kn+1(A, r0):

span {v0, . . . ,vn} = Kn+1(A, r0) , n = 0, 1, 2, (9.99)

Actually, we need primarily that span {v0, . . . ,vn} ⊆ Kn+1, but the conjugacy condition (9.89) and the
requirement that vn 6= 0 imply that equality must hold.

DEFINITION. The conjugate gradient (CG) method [Methode der konjugierten Gradienten] is the
conjugate direction method with the choice (9.99). N

Theorem 9.6.1 gives us the main result on this method:

THEOREM 9.6.2. The conjugate gradient method yields approximate solutions xn ∈ x0 + Kn(A, r0)
that are optimal in the sense that they minimize the energy norm (A–norm) of the error vector for xn
from this affine space, or, equivalently, it minimizes the A−1–norm of the residual.

By the two conditions (9.89) and (9.99) the search directions vn have to satisfy, they are uniquely
determined up to a factor ±1. But how can we construct them efficiently?

We note first that if rn ∈ Kn+1\Kn, we may normalize vn so that

vn − rn ∈ Kn . (9.100)

Before we can proceed we need

LEMMA 9.6.3. A Krylov space solver based on (9.90) with conjugate search directions vn (satisfying
(9.89)) and optimal step length (9.95) produces mutually orthogonal residuals:

rT

nrk = 0 , k = 0, . . . , n− 1 . (9.101)

So, if r0, . . . , rn−1 6= o,
span {r0, . . . , rn−1} = Kn(A, r0) ⊥ rn . (9.102)

PROOF. Let us insert the optimal ωn of (9.95) into the update formula (9.91) for rn:

rn+1 = rn −Avnωn

= rn −Avn
〈rn,vn〉

〈vn,Avn〉
. (9.103)

By induction, assuming that o 6= rk ⊥ Kk for k ≤ n, which implies that (9.102) holds, we see using (9.100) and
(9.89), respectively, that

〈rn, rn〉 = 〈rn,vn〉 , 〈rn,Avn〉 = 〈vn,Avn〉 . (9.104)

Multiplying (9.103) from the left by rT

n we conclude that rn+1 ⊥ rn. And multiplying it by rT

k with k < n shows
likewise that rn+1 ⊥ rk . So, (9.101) and (9.102) hold with n replaced by n+ 1. �

Note that in the formula (9.95) for ωn we can replace 〈rn,vn〉 by 〈rn, rn〉; see (9.104). So,

ωn =
〈rn, rn〉
〈vn,Avn〉

=
δn
δ′n
, (9.105)

where δn :≡ 〈rn, rn〉, δ′n :≡ 〈vn,Avn〉.

117

In view of the above we can choose

vn+1 := rn+1 − linear combination of v0,v1, . . . ,vn .

But we may try the simpler ansatz
vn+1 := rn+1 − vnψn . (9.106)

Since Avk ∈ Kn+1 for k < n, we find from Lemma 9.6.3 that (Avk)
Trn+1 = 0 for k < n. Therefore,

by multiplying (9.106) from the left by (Avk)
T with k < n we see that 〈vn+1,Avk〉 = 0 (k < n)

as required. Moreover, we also get 〈vn+1,Avn〉 = 0 if we choose ψn = 〈rn+1,Avn〉 / 〈vn,Avn〉.
Substituting in numerator and denominator Avn = (rn − rn+1)

1
ωn

(from the update formula (9.100) for
rn) and making use of 〈vn, rn〉 = 〈rn, rn〉 we finally obtain

ψn :≡ 〈rn+1,Avn〉
〈vn,Avn〉

= − 〈rn+1, rn+1〉
〈rn, rn〉

= − δn+1

δn
. (9.107)

Putting things together we now get a detailed algorithm for the CG method. We will see that there exist
other algorithms using different recursions, but here we get the (standard) Hestenes-Stiefel algorithm,
which is also called coupled two-term version or OMIN version of the method. The terminology “coupled
two-term” refers to the fact that for both the residuals and the search directions two-term recursions, namely
(9.91) and (9.106), are used for updating. The similar recursion for the iterates xn follows from the one
for the residuals. Again, these recursions actually contain three terms, but only two belong to the same
sequence. The name “OMIN” refers to orthogonality and minimality and will be put in a broader context
later.

Algorithm 9.2 (OMIN FORM OF THE CG METHOD). .
For solving Ax = b choose an initial approximation x0, and let v0 := r0 := b−Ax0 and δ0 := ‖r0‖2.
Then, for n = 0, 1, 2, . . . , compute

δ′n := ‖vn‖2A , (9.108a)

ωn := δn/δ
′
n , (9.108b)

xn+1 := xn + vnωn , (9.108c)

rn+1 := rn −Avnωn , (9.108d)

δn+1 := ‖rn+1‖2, (9.108e)

ψn := −δn+1/δn , (9.108f)

vn+1 := rn+1 − vnψn . (9.108g)

If ‖rn+1‖ ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate approximation of the
solution.

In MATLAB: x = pcg(A,b) , but there are many options:

[X,FLAG,RELRES,ITER,RESVEC] = PCG(A,B,TOL,MAXIT,M1,M2,X0)

These options include: multiple right-hand sides, tolerance, maximum number of iterations, precondition-
ing, stopping flag, residual norm, iteration number, residual history.

Since the CG method produces optimal approximations from the affine spaces x0 +Kn it is clear that it
finds the solution in the minimum number of steps, and from Corollary 9.3.5 we know that ν̄(r0,A) steps
are needed:
THEOREM 9.6.4. The conjugate gradient method yields (in exact arithmetic) the solution of Ax = b in
the minimum number ν̄(r0,A) of steps.

However, it is important to point out that this is a theoretical result, which does not hold in practice due
to rounding errors. These often have a very strong effect on the method. Nevertheless, in most cases the

118

method still converges, and in fact delivers very small residuals in far less than ν̄(r0,A) steps. We stop
when some measure of the error is small enough, and ‖rn+1‖ is a simple such measure. However, since
the CG method minimizes the energy norm within each Krylov subspace, it might be more appropriate to
check the size of ‖dn+1‖A = ‖rn+1‖A−1 . [HS52] also showed how this can be done efficiently.

Next we want to illustrate how the recursions Krylov space solvers are based on can be described by
matrix equations. We note that the recursions (9.108c), (9.108d), and (9.108g) mean that

vn = − (xn − xn+1)
1
ωn
,

Avn = (rn − rn+1)
1
ωn
,

rn+1 = vn+1 + vnψn .

If we let

Rm :≡
(

r0 r1 · · · rm−1

)
, (9.109a)

Vm :≡
(

v0 v1 · · · vm−1

)
, (9.109b)

Xm :≡
(

x0 x1 · · · xm−1

)
, (9.109c)

and assume m > n, we can write them as

vn = −
(

x0 · · · xn−1 xn xn+1 xn+2 . . . xm
)

︸ ︷︷ ︸
Xm+1




0
...
0
ω−1
n

−ω−1
n

0
...
0




,

Avn =
(

r0 · · · rn−1 rn rn+1 rn+2 . . . rm
)

︸ ︷︷ ︸
Rm+1




0
...
0
ω−1
n

−ω−1
n

0
...
0




,

and

rn+1 =
(

v0 · · · vn−1 vn vn+1 vn+2 . . . vm
)

︸ ︷︷ ︸
Vm+1




0
...
0
ψn
1
0
...
0




.

Let us further introduce the matrices

Um :≡




1 ψ0

1 ψ1

1
. . .
. . . ψm−2

1



, (9.110)

119

L
◦

m :≡




ω−1

0

−ω−1

0 ω−1

1

−ω−1

1 ω−1

2

. . .
. . .

−ω−1

m−2 ω−1

m−1

−ω−1

m−1



, (9.111)

Em :≡




1
−1 1

−1 1
. . .

. . .
−1 1

−1



, (9.112)

and
Dω; m :≡ diag {ω0, ω1, . . . , ωm−1} , (9.113)

so that
L◦m = EmD−1

ω; m . (9.114)

L◦m and Em are “extended” lower bidiagonal matrices of the size (m+1)×mwhose column sums vanish3.
In terms of all these matrices the coupled two-term CG recursions (9.108d) for n = −1, . . . ,m − 2

and (9.108g) for n = 0, . . . ,m− 1 can then be summarized as

Rm = VmUm , AVm = Rm+1L
◦
m (m ≤ ν̄) , (9.115)

and the additional recursion (9.108c) for the iterates turns into

Vm = −Xm+1L
◦
m (m ≤ ν̄) . (9.116)

Eliminating the direction vectors contained in Vm yields

ARm = Rm+1T
◦
m , Rm = −Xm+1T

◦
m (m ≤ ν̄) , (9.117)

where
T◦m :≡ L◦mUm (9.118)

is an ‘extended’ tridiagonal matrix:

T◦
m ≡:




T◦
m

γm−1l
T
m


 ≡:




α0 β0

γ0 α1 β1

γ1 α2
. . .

. . .
. . . βm−2

γm−2 αm−1

γm−1




, (9.119)

where lTm is the last row of the unit matrix of size m.

The characteristic property of a matrix Z with column sums 0 is that eTZ = oT for e :≡
(

1 1 . . . 1
)T

of appropriate size. So, eTL◦m = oT, and therefore also

eTT◦m = eTL◦mUm = oT . (9.120)

Thus, T◦m has column sums zero too: if we let β−1 :≡ 0, then

γn = −αn − βn−1 , n = 0, 1, . . . ,m− 1 ≤ ν̄ − 1 . (9.121)

3By underlining Em we want to indicate that we augment this matrix by an additional row. We suggest reading Em as “E sub m
extended”. The same notation will be used on other occasions.

120

According to (9.117) the CG residuals and iterates satisfy three-term recursions:

rn+1γn = (Arn − rnαn − rn−1βn−1) , (9.122a)

xn+1γn = −(rn + xnαn + xn−1βn−1) , (9.122b)

but what remains to find are formulas for αn and βn−1. In Lemma 9.6.3 we have seen that the residuals are
orthogonal to each other, and, when multiplying (9.122a) from the left by rT

n and rT
n−1 this property gives

αn =
rT

nArn

rT
nrn

, βn−1 =
rT

n−1Arn

rT
n−1rn−1

.

Here, since A is symmetric and since the three-term recursion and the orthogonality property of Lemma 9.6.3
hold,

rT

n−1Arn = (Arn−1)
Trn

= (rnγn−1 + rn−1αn−1 + rn−2βn−2)
Trn

= rT

nrnγn−1 ,

so, we only need to compute two inner products, 〈rn,Arn〉 and 〈rn, rn〉 per step since 〈rn−1, rn−1〉 and
γn−1 will be known from the previous step, while γn is computed from (9.121).

Summarizing everything we obtain a new algorithm for the CG method, which is called three-term
version or ORES version of the method, the latter because it makes direct use of the orthogonality of the
residuals.
Algorithm 9.3 (ORES FORM OF THE CG METHOD). .
For solving Ax = b with an Hpd matrix A, choose an initial approximation x0, and let r0 := b−Ax0,
β−1 := 0, and δ0 := ‖r0‖2. Then, for n = 0, 1, . . . , compute

αn := ‖rn‖2A / δn , (9.123a)

βn−1 := γn−1δn/δn−1 (if n > 0), (9.123b)

γn := −αn − βn−1 , (9.123c)

xn+1 := −(rn + xnαn + xn−1βn−1)/γn , (9.123d)

rn+1 := (Arn − rnαn − rn−1βn−1)/γn , (9.123e)

δn+1 := ‖rn+1‖2 . (9.123f)

If ‖rn+1‖ ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate approximation of the
solution.

Of course, Arn, which is needed in (9.123a) and (9.123e), is computed only once and stored in a
temporary vector.

There is yet another version of the CG method. Instead of Vm one can eliminate Rm in (9.115) to
obtain

AVm = Vm+1T
′
m (m ≤ ν̄) , (9.124)

where
T′
m :≡ Um+1L

◦
m (9.125)

is again an ‘extended’ tridiagonal matrix. Here, (9.124) describes a 3-term recursion for the direction
vectors:

vn+1γ
′
n = Avn − vnα

′
n − vn−1β

′
n−1 , (9.126)

where we are free to choose γ ′n 6= 0, while α′n and β′n−1 have to be determined such that

vT

nAvn+1 = 0 , vT

n−1Avn+1 = 0 . (9.127)

It is easy to verify that the search direction are then all conjugate to each other, as required by (9.89). In
general, T′m does not have column sums zero.

121

To update the residuals and iterates we can use (9.108d) and (9.108c) from the OMIN version. Al-
together we obtain yet another algorithm, which is called ODIR version of the CG method, as it makes
explicit usage of the A–orthogonality of the search directions.
Algorithm 9.4 (ODIR FORM OF THE CG METHOD). .
For solving Ax = b, choose an initial approximation x0, and let v0 := r0 := b−Ax0, β′−1 := 0.
Then, for n = 0, 1, . . . , compute

δ′n := ‖vn‖2A , (9.128a)

ω′n := 〈vn, rn〉 /δ′n , (9.128b)

xn+1 := xn + vnω
′
n , (9.128c)

rn+1 := rn −Avnω
′
n , (9.128d)

α′n := ‖Avn‖2/δ′n , (9.128e)

β′n−1 := γ′n−1δ
′
n/δ

′
n−1 (if n > 0), (9.128f)

vn+1 := (Avn − vnα
′
n − vn−1β

′
n−1)/γ

′
n , (9.128g)

where γ′n 6= 0 can be chosen (e.g., to normalize vn+1).
If ‖rn+1‖ ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate approximation of the
solution.

REMARK. Both in (9.123e) and (9.128g) it is preferable to use the modified Gram-Schmidt algorithm,
which also means to modify the formulas (9.123a) for αn and (9.128e) for α′n. But, since there are only
two terms to subtract, the difference will be marginal. H

REMARK. Each step in the sequence

T◦m (L◦m, Um) T′m (L′m, U′
m) (9.129)

is essentially half a step of Rutihauser’s quotient-difference (qd) algorithm [Rut57], except that here the
matrices are not square. H

9.6.5 The Conjugate Residual (CR) Method

We can replace the aim of minimizing the energy norm considered in Section 9.6.1 by the aim of minimiz-
ing the 2-norm of the residual. Let us still assume that A is symmetric positive definite (spd), so that this
is the same as minimizing the A2–norm of the error:

‖x− x?‖2A2 = ‖d‖2
A2 = ‖r‖2 = ‖Ax− b‖2 = 2 Ψ̂(x) (9.130)

if

Ψ̂(x) :≡ 1
2 xTA2x− bTAx + 1

2 bTb . (9.131)

Now we have

∇Ψ̂(x) = A2x−Ab = −Ar (9.132)

and

x minimizer of Ψ̂ ⇐⇒ ∇Ψ̂(x) = o ⇐⇒ Ar = o . (9.133)

It should be no surprise that we can develop a variation of the conjugate gradient method adapted to
this error norm by replacing in the derivations of Sections 9.6.3 and 9.6.4 the occurrences of the A–inner
product by those of the A2–inner product, and the occurrences of the standard inner product by those of
the A–inner product. In particular, the search directions are chosen from a growing sequence of Krylov
subspaces as in (9.99), but are now A2–orthogonal:

vT

nA
2vk = 0 , k = 0, . . . , n− 1 . (9.134)

122

The new iterates are again found by line search,

xn+1 := xn + vnωn , (9.135)

where now the step length ωn is chosen such that the 2-norm of the residual is minimized on the line
ω 7→ xn + vnω . In (9.94) this requires that C = I, hence

ωn :≡ 〈rn,Avn〉
‖Avn‖2

. (9.136)

DEFINITION. The Krylov space solver satisfying (9.99), (9.134), (9.135), and (9.136) is called the
conjugate residual (CR) method [Methode der konjugierten Residuen]. N

The CR method comes again in three basic version, OMIN, ORES, and ODIR, analogous to those for
CG. A straightforward adaptation leads to two matrix-vector products (MVs) per step, but it is possible to
replace one by a recursion. (This causes additional roundoff error propagation, however.) Again some of
the formulas for the coefficients can be simplified.

Below is an OMIN version that requires only one MV per iteration, namely for computing Arn+1,
which is needed in (9.137e) and is then also used in (9.137h). The algorithm requires to store the actual
wn :≡ Avn, but this is only one extra vector in addition to the three that are needed in the OMIN version:
xn, rn, and vn. The ORES version also needs four: xn, xn−1, rn, and rn−1.

Note that wn = o implies n = ν̄, hence, δ′n :≡ ‖wn‖2 cannot vanish before the Krylov space is
exhausted and we have found the solution of the linear system.
Algorithm 9.5 (OMIN FORM OF THE CR METHOD). .
For solving Ax = b choose an initial approximation x0, and let v0 := r0 := b −Ax0, w0 := Av0,
and δ0 := ‖r0‖2A. Then, for n = 0, 1, 2, . . . , compute

δ′n := ‖wn‖2 , (9.137a)

ωn := δn/δ
′
n , (9.137b)

xn+1 := xn + vnωn , (9.137c)

rn+1 := rn −wnωn , (9.137d)

δn+1 := ‖rn+1‖2A, (9.137e)

ψn := −δn+1/δn , (9.137f)

vn+1 := rn+1 − vnψn , (9.137g)

wn+1 := Arn+1 −wnψn . (9.137h)

If ‖rn+1‖ ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate approximation of the
solution.

The conjugate residual method was introduces by [Sti55], who gave formulas for an ORES version, but
for one that differs from the analogue of our ORES version of CG. Stiefel used update formulas for the
differences of two successive approximations and two successive residuals, respectively.

As in the various forms of the CG method, here there are again several theoretically equivalent ways to
compute the quantities δn and δ′n as inner products.

An interesting aspect of the ODIR version is that it also applies to indefinite symmetric (or Hermitian)
matrices. In fact, A2 is still spd (or Hpd), and thus the quantities ‖vn‖A2 that are analogous to δ′n in
Algorithm 9.4 cannot vanish as long as vn 6= o.

Nevertheless, the ODIR version of the CR method is no longer used much, since the mathematically
equivalent MINRES algorithm has been said to be more stable. Only recently, it was pointed out by
[SvM00] that with MINRES the attainable accuracy of the approximate solutions may be rather low for
ill-conditioned matrices.

We will later treat a generalization of the CR method to nonsymmetric and non-Hermitian matrices.

123

9.6.6 A Bound for the Convergence

For the moment, let us assume that A is symmetric and consider the C-norm of the error vector dn, where
C = A` is a positive power of A. If A is indefinite, we need an even power to make C Hpd. Then, since
A = UΛU−1 with U orthogonal and Λ diagonal, and since, for any Krylov space solver, dn = pn(A)d0

according to (9.49), we have

‖dn‖C = ‖A`/2pn(A)d0‖ = ‖Upn(Λ)U−1A`/2d0‖

≤ ‖pn(Λ)‖ ‖A`/2d0‖ = ‖pn(Λ)‖ ‖d0‖C

= max
i=1,...,N

|pn(λi)| ‖d0‖C . (9.138)

Further, we assume that the spectrum of A lies on the interval I = [α − δ, α + δ] of the positive real
axis, and we consider the Chebyshev iteration for that interval. We denote its nth error vector and residual
polynomial by dCheb

n and pCheb
n , respectively, while dn is assumed to be the error for a Krylov space solver

that is optimal in the ‖.‖C–norm of the error when applied to Ax = b with a matrix whose spectrum lies
on I. Then we have

‖dn‖C
‖d0‖C

≤ ‖d
Cheb
n ‖C
‖d0‖C

≤ max
i=1,...,N

|pCheb
n (λi)| ≤ min

p∈Pn

p(0)=1

max
τ∈I

|p(τ)| . (9.139)

Note that in this estimate the dependence of the residual polynomial on the initial residual and on the
norm used is lost: we estimate the error of any optimal method by the error of the Chebyshev method, and
in the estimate of the latter, the norm used has no effect on the bound for the error reduction.

In particular, the estimate is applicable for the CG method, which is optimal in the A–norm of the
error, and for the CR method, which is optimal in the A2–norm of the error, that is, in the 2–norm of the
residual.

The bound on the right-hand side of (9.139) was estimated in the derivation of Theorem 9.4.2, and we
can conclude that the bounds obtained in that theorem hold here too.

THEOREM 9.6.5. The residual norm reduction of the CR method and the energy norm reduction of the
CG method, when applied to an spd system whose condition number is bounded by κI , have the bounds
given in (9.68) for the residual norm reduction of the Chebyshev iteration.

9.6.7 Preconditioned CG Algorithms

The conjugate gradient method is a typical example where preconditioning must be done so that the sym-
metry of A is not lost. So it seems to be a case for split preconditioning with CL = CT

R or ML = MT

R,
respectively. In principle, we could then apply any CG algorithm with A, b, and x replaced by Â, b̂, and
x̂ to get a preconditioned CG algorithm, or, as often referred to, a PCG algorithm. However, we will
see that there are more refined ways to incorporate the preconditioning into the algorithms. There are even
ways to use one-sided preconditioning destroying the symmetry of A if we combine it with a variation of
CG using an alternative inner product.

We start with the details of the integration of symmetrically split preconditioning. For simplicity, we
want to write the preconditioner as in (9.77): M = LLT or C = KKT, even if L or K, respectively, is
not lower triangular. Although the former notation is more common, we prefer the latter, because we can
avoid the usage of L−1 in the formulation of the preconditioned algorithm. If L is known instead of K,
we will just have to solve a linear system — assumed to be easy due to the structure of L — whenever a
matrix-vector product with K or KT comes up.

If A is spd and K is nonsingular, then Â :≡ KAKT is spd too, so we can replace the spd system
Ax = b by the spd system

KAKT

︸ ︷︷ ︸
Â

x̂ = Kb︸︷︷︸
b̂

, x = KTx̂ . (9.140)

124

In the following OMIN form of CG with split preconditioning x̂n does not appear. The iterates xn are
computed directly.
Algorithm 9.6 (PCG–OMIN WITH SPLIT PRECONDITIONING). For solving Ax = b with spd A in the
split preconditioned form (9.140) choose an initial approximation x0, and let r0 := b−Ax0, r̂0 := Kr0,
v0 := KTr̂0, and δ0 := ‖r̂0‖2.
Then, for n = 0, 1, 2, . . . , compute

δ′n := ‖vn‖2A , (9.141a)

ωn := δn/δ
′
n , (9.141b)

xn+1 := xn + vnωn , (9.141c)

r̂n+1 := r̂n −KAvnωn , (9.141d)

δn+1 := ‖r̂n+1‖2 , (9.141e)

ψn := −δn+1/δn , (9.141f)

vn+1 := KTr̂n+1 − vnψn . (9.141g)

If δn+1 ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate approximation of the solution.

The algorithm makes use of the fact that for the preconditioned direction vectors v̂n :≡ K−Tvn, which
do not appear, we have

‖v̂n‖2bA =
〈
v̂n, Âv̂n

〉
=
〈
K−Tvn, ÂK−Tvn

〉
= 〈vn,Avn〉 = ‖vn‖2A .

Let us now turn to a widely used alternative based on preconditioning Ax = b on the left with the
inverse M−1 of an spd matrix M that is in some sense an approximation of A. So, we solve (as in (9.73),
but in different notation),

M−1A︸ ︷︷ ︸
Â

x = M−1b︸ ︷︷ ︸
b̂

. (9.142)

The CG method can be defined for any inner product space, in particular for RN with the inner product
induced by M, the so-called M–inner product [M–Skalarprodukt],

〈x,y〉
M

:≡ 〈x,My〉 = 〈Mx,y〉 .

The matrix Â :≡M−1A in (9.142) is M–self-adjoint [M–selbst-adjungiert], that is, it is self-adjoint (or,
symmetric) with respect to the M–inner product:

〈
M−1Ax,y

〉
M

= 〈Ax,y〉 = 〈x,Ay〉 =
〈
x,M−1Ay

〉
M
. (9.143)

Noting that
〈r̂n, r̂n〉M = 〈rn, r̂n〉 ,

〈
vn,M

−1Avn
〉
M

= 〈vn,Avn〉
we obtain the following version of a PCG algorithm suggested by [Mv77]:

125

Algorithm 9.7 (PCG–OMIN WITH M–INNER PRODUCT). For solving Ax = b with spd A and an
spd left preconditioner M as in (9.142) choose an initial approximation x0, and let r0 := b − Ax0,
v0 := r̂0 := M−1r0, and δ0 := 〈r0, r̂0〉.
Then, for n = 0, 1, 2, . . . , compute

δ′n := ‖vn‖2A , (9.144a)

ωn := δn/δ
′
n , (9.144b)

xn+1 := xn + vnωn , (9.144c)

rn+1 := rn −Avnωn , (9.144d)

r̂n+1 := M−1rn+1 , (9.144e)

δn+1 := 〈rn+1, r̂n+1〉 , (9.144f)

ψn := −δn+1/δn , (9.144g)

vn+1 := r̂n+1 − vnψn . (9.144h)

If δn+1 ≤ tol (or, if ‖rn+1‖2 ≤ tol), the algorithm terminates and xn+1 is a sufficiently accurate
approximation of the solution.

9.6.8 CG and CR for Complex SystemsF

The CG and CR methods can also be applied to linear systems Ax = b with complex data A and b, but
again, for CG the matrix must be Hermitian positive definite (Hpd). Of course, in the formulas AT has to
be replaced by AH, and 〈x,y〉 :≡ xTy becomes4 〈x,y〉 :≡ xHy.

Some adaptations are necessary in the treatment of error functional minimization: In particular, in
(9.80) bTx is replaced by Re (bHx) = Re 〈b,x〉, and in (9.131) we have Re (bHAx) = Re 〈b,Ax〉.

With these changes, virtually everything remains correct (I hope!).
In the following we normally allow that the data are complex, although in nearly all applications they

are real. Recall that we let E :≡ R or C to combine the real and the complex cases, and that we denote
the adjoint of A by A? — so this is the transpose AT if A is real, and the Hermitian transpose AH if A is
complex.

9.6.9 CG for Least Squares ProblemsF

When parameters of a linear model are determined by measurements, the influence of measurement errors
can be reduced by making many more measurements than the number of parameters. This leads to an
overdetermined linear system Ax ≈ b of M equations in N unknowns, where M > N .

The classical approach to this problem, introduced by Gauss, is to determine the approximate solution
for which the (Euclidean) 2-norm of the residual is minimized, or, what amounts to the same, where the
square of this 2-norm is minimized:

‖r‖2 = ‖b−Ax‖2 = min! (9.145)

Since ‖r‖2 =
∑
r2i , Gauss called this approximation the least squares solution. The geometric properties

of the Euclidean space imply that the residual of the least squares solution is orthogonal to the column space
of A, so A?r = o or

A?Ax = A?b . (9.146)

These are the normal equations. If we assume that A has full column rank (i.e., rankA = N), then A?A

is Hpd and the CG method can be applied to the normal equations (9.146). This approach is known as the
CGNR method; the “N” and “R” refer to the normal equations and the residual, respectively. It means that
the approximate solutions are chosen such that

xn − x0 ∈ Kn(A?A,A?r0) , where r0 :≡ b−Ax0 . (9.147)

4Attention: many people define 〈x,y〉 :≡ yHx instead.

126

Hence, with B :≡ AA?, the residuals rn :≡ b−Axn satisfy

rn − r0 ∈ AKn(A?A,A?r0) = AA? Kn(AA?, r0) = BKn(B, r0) . (9.148)

According to the CG optimality property xn minimizes the A?A-norm of the error xn− (A?A)−1A?b

of the normal equations (9.146) subject to the condition (9.147), but the A?A-norm of the error is just the
2-norm of the residual. So, in each step CGNR produces a least squares solution subject to a reduced space
defined by the condition (9.147). Adapting the derivation of (9.201) below we could see that the residuals
rn satisfy the Galerkin condition

rn ⊥ AKn(A?A,A?r0) = BKn(B, r0) . (9.149)

For the residuals sn :≡ A?rn of the normal equations we have then

sn − s0 ∈ A?AKn(A?A, s0) , sn ⊥ Kn(A?A, s0) , (9.150)

which reflects properties of CG applied to the normal equations.
Let us summarize some of these results:

THEOREM 9.6.6. Let a full rank overdetermined rectangular system Ax = b be given; so A is M ×N ,
rankA = N ≤ M . Its least squares solution minimizing (9.145) is the unique solution of the normal
equations (9.146).
The CGNR method consisting of applying the CG method to these normal equations has the following
properties:

• The iterates xn minimize the 2-norm of the residuals rn :≡ b−Axn of the original system subject
to the condition (9.147), and in this sense they are least squares solution of the given system
restricted further by (9.147).

• The residuals rn satisfy (9.148) and (9.149). For the residuals sn of the normal equations holds
(9.150).

On the other hand, if the given system Ax = b is an underdetermined linear system of M equations
in N unknowns, where M < N , then we can restrict x to the image of A? in order to define a unique
solution if A has full rank M , which we assume again. We define z by

x ≡: A?z (9.151)

and write the given system as
AA?z = b , (9.152)

which is again referred to as normal equations. We claim that (9.151) restricts x to be orthogonal to the
kernel of A. In fact, we can write any x′ ∈ EN as

x′ = x⊥ + A?z̃ , where x⊥ ⊥ imA? , z̃ ∈ E
M . (9.153)

The latter means that
〈
x⊥,A?w

〉
= 0 (∀w ∈ EM) or Ax⊥ ⊥ EM , which implies that Ax⊥ = o. In

other words, x⊥ lies in the kernel of A. Actually, it is a well-known fact from matrix theory that the
kernel (or null space) of A and the image (or range) of A? are orthogonal complementary subspaces. We
conclude that Ax′ = AA?z̃. So any solution of the given system Ax′ = b has the form (9.153) with
z̃ = z being a solution of (9.152) and x⊥ ∈ kerA. ¿From Pythagoras’ theorem we can conclude further
that ‖x′‖2 = ‖x⊥‖2 + ‖A?z‖2. Hence, x = A?z is the shortest solution. In other words, if A has full rank
M (< N), then under the substitution x = A?z the system (9.152) is equivalent with

Ax = b , ‖x‖ = min! (9.154)

Since AA? is Hpd, we can apply the CG method to the normal equations (9.152). This is the CGNE
method, where “E” now refers to the error. It is also called Craig’s method. If zn is any approximate
solution, the corresponding residual is

‖rn‖ = ‖b−AA?zn‖ = ‖b−Axn‖ (9.155)

127

and is also the residual of the original system. So, implicitly, CGNE yields approximate solutions zn of the
normal equations (9.152) with

zn − z0 ∈ Kn(AA?, r0) = Kn(B, r0) , (9.156)

corresponding approximate solutions of the original system with

xn − x0 ∈ A?Kn(AA?, r0) = Kn(A?A,A?r0) , (9.157)

as well as residuals that satisfy again (9.148) and, as can be seen,

rn ⊥ Kn(AA?, r0) = Kn(B, r0) . (9.158)

Consequently, the relevant Krylov space is the same as for CGNR, but the Galerkin condition is different.
In the nth step, the AA?-norm or B-norm of the error zn− (AA?)−1b of (9.152) is minimized subject

to the condition (9.156). This is the same as minimizing the 2-norm of the error xn − x? of the original
system subject to the condition (9.157).
THEOREM 9.6.7. Let a full rank underdetermined rectangular system Ax = b be given; so A isM×N ,
rankA = M < N . Its least squares solution minimizing (9.154) is the unique solution of the normal
equations (9.152). Any other solution is of the form x = x⊥ + A?z, where x⊥ ⊥ imA?, which is
equivalent to x⊥ ∈ kerA.
The CGNE algorithm consisting of applying the CG method to these normal equations has the following
properties:

• zn minimizes the B-norm of the error of the normal equations (9.152) subject to (9.156), where
B :≡ AA?.

• The corresponding original unknowns xn = A?zn minimize the 2-norm of the errors xn − x? of
the original system subject to the condition (9.157).

• The residuals rn, which are both the residuals of the original system and the normal equations,
satisfy (9.148) (as in CGNR) and the Galerkin condition (9.158).

The theorem remains correct for M = N if we let x⊥ := o. The condition ‖x‖ = min! in (9.154) can
be dropped because Ax = b has then a unique solution.

Let us now look at the normally used OMIN versions of the CGNR and CGNE algorithms. We have
to adapt Algorithm 9.2 of Section 9.6.4 so that it is applied to the normal equations (9.146) and (9.152),
respectively.

For CGNR the relevant residuals that are orthogonal to each other are the residuals sn(= A?r0) of the
normal equations that satisfy (9.150). They can be used to determine δn. The search directions vn are now
A?A-orthogonal, and thus δ′n := ‖vn‖2A?A

= ‖Avn‖2.

128

Algorithm 9.8 (OMIN FORM OF THE CGNR METHOD). .
For solving the least squares problem (9.145) via the normal equations (9.146) choose an initial ap-
proximation x0, and let r0 := b − Ax0, v0 := s0 := A?r0, δ0 := ‖s0‖2, and ψ−1 := 0. Then, for
n = 0, 1, 2, . . . , compute

δ′n := ‖Avn‖2 , (9.159a)

ωn := δn/δ
′
n , (9.159b)

xn+1 := xn + vnωn , (9.159c)

rn+1 := rn −Avnωn , (9.159d)

sn+1 := A?rn+1 , (9.159e)

δn+1 := ‖sn+1‖2 , (9.159f)

ψn := − δn+1/δn , (9.159g)

vn+1 := sn+1 − vnψn . (9.159h)

If ‖rn+1‖ ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate approximation of the
solution.

We have chosen to update in (9.159d) also rn, which allows us to rely on ‖rn+1‖ for termination. One
could instead update directly sn according to

sn+1 := sn −A?Avnωn , (9.160)

but then termination must rely on ‖sn+1‖.
For CGNE the residuals rn are the same for the original and the normal equations (9.152), but the

iterates seem to change to zn. However, it turns out that instead everything can be formulated in terms of
the approximate solutions xn = A?zn of the original system and the corresponding search directions.
Algorithm 9.9 (OMIN FORM OF THE CGNE METHOD). .
For solving the minimum solution least squares problem (9.154) via the normal equations (9.152) choose
an initial approximation x0, and let v0 := r0 := b−Ax0, δ0 := ‖r0‖2, and ψ−1 := 0.
Then, for n = 0, 1, 2, . . . , compute

δ′n := ‖vn‖2 , (9.161a)

ωn := δn/δ
′
n , (9.161b)

xn+1 := xn + vnωn , (9.161c)

rn+1 := rn −Avnωn , (9.161d)

δn+1 := ‖rn+1‖2 , (9.161e)

ψn := − δn+1/δn , (9.161f)

vn+1 := A?rn+1 − vnψn . (9.161g)

If ‖rn+1‖ ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate approximation of the
solution.

A potential disadvantage of using the normal equations (9.146) and (9.152) is that the condition number
of A?A and AA? may be large compared to the one of the triangular matrix R in a QR decomposition of
A. In particular, if A is square and nonsingular,

κ2(A
?A) = κ2(AA?) = (κ2(A))2 = (κ2(R))2 .

9.7 The Symmetric Lanczos ProcessF

9.7.1 The Lanczos Process and Its Relation to the CG MethodF

We have seen in Lemma 9.6.3 that the CG residuals are mutually orthogonal. So, as long as rm 6= 0, that
is, the Krylov space is not exhausted, the set {r0, r1, . . . , rm} forms an orthogonal basis of Km+1(A, r0).

129

To find an orthonormal basis {y0,y1, . . . ,ym}, we have just to scale each basis vector. We also include a
factor (−1)n that will be justified in a moment:

yn :≡ (−1)n
rn

‖rn‖
. (9.162)

In principle, we can use any of our three versions of the CG method for computing residuals, but if our
goal is to construct an orthogonal basis it seems most appropriate to use the ORES version, in particular
the three-term recursion (9.123e),

rn+1 := (Arn − rnαn − rn−1βn−1)/γn .

It is easy to modify this recursion so that it produces directly orthonormal vectors. In fact, αn and βn were
chosen to make rn+1 orthogonal to rn and rn−1, respectively. So we just have to replace r by y in the
formulas, that is, in (9.123a), (9.123b), and (9.123f):

αn := ‖yn‖2A / δn , βn−1 := γn−1δn/δn−1 , δn+1 := ‖yn+1‖2 .

However, δn := ‖yn‖2 = 1 (n = 0, 1, . . .) now, and therefore,

βn = γn (n = 0, 1, . . .). (9.163)

In contrast, formula (9.123c) for γn needs to be replaced: γn is now chosen to normalize yn+1. This
determines |γn|, but not yet its sign or, in the complex case, its argument. While it can be shown that in
ORES (with A spd or Hpd) we have γn < 0 and βn < 0, we opt here for γn > 0. This entails the factor
(−1)n in (9.162); see (9.183) below, where we compare the polynomials associated with the CG residuals
rn and those for the normalized vectors yn.

Altogether we obtain the following algorithm for computing an orthonormal basis {y0,y1, . . . ,ym} for
the Krylov subspace Km+1(A,y0), where m < ν̄(y0,A). We call it the symmetric Lanczos algorithm
[symmetrischer Lanczos-Algorithmus]. It adapts the Lanczos process [Lanczos-Prozess] from [Lan50] to
a Hermitian or (real symmetric) matrix A, which needs not be positive definite. Note that Lanczos’ method
predates the conjugate gradient method by two years. For clarity we denote its recursion coefficients by αL

n

and βL
n to distinguish them from αn and βn in the ORES version of the CG method.

The formulas derived above are also correct in the (complex) Hermitian case. Note, that even in that
case αL

n and βL
n are real, the latter nonnegative.

Algorithm 9.10 (SYMMETRIC LANCZOS ALGORITHM). .
Let a Hermitian (or real symmetric) matrix A and a vector y0 of norm 1 be given, and set βL

−1 := 0.
For constructing a nested set of orthonormal bases {y0,y1, . . . ,ym} for the nested Krylov subspaces
Km+1(A,y0) (m = 1, 2, . . . , ν̄(y0,A)− 1) compute, for n = 0, 1, . . . ,m− 1,

αL
n := 〈yn,Ayn〉 , (9.164a)

ỹn+1 := Ayn − ynα
L
n − yn−1β

L
n−1 , (9.164b)

βL
n := ‖ỹn+1‖ , (9.164c)

yn+1 := ỹn+1/β
L
n . (9.164d)

When n = m = ν̄ − 1, then ỹn+1 = o.
Of course, the last statement is normally only valid in exact arithmetic.
The orthonormal vectors yn are often called Lanczos vectors.
One step of this algorithm can be understood as one step of a Gram–Schmidt orthogonalization process:

Ayn is made orthogonal to yn and yn−1, and the resulting projection onto the orthogonal complement of
span {yn,yn−1} is normalized. However, here this projection is automatically orthogonal to y0, . . . ,
yn−2. This follows from Lemma 9.6.3. We will give another derivation of the symmetric Lanczos algo-
rithm with a direct proof of this property later.

The recurrence given by (9.164b) and (9.164d) implies that

Ayn = yn+1β
L
n + ynα

L
n + yn−1β

L
n−1 . (9.165)

130

Again, for all n, these relations can be gathered into a matrix equation: as in (9.109a) and (9.119) we let

Ym :≡
(

y0 y1 · · · ym−1

)
(9.166)

and

Tm :≡




Tm

βL
m−1l

T

m


 :≡




αL
0 βL

0

βL
0 αL

1

. . .

βL
1

. . . βL
m−2

. . . αL
m−1

βL
m−1




. (9.167)

Then (9.165) is for n = 0, 1, . . . ,m− 1 expressed by

AYm = Ym+1Tm . (9.168)

Here, Tm has no longer vanishing column sums, but its principal submatrices, in particular Tm, are now
real symmetric. Since the columns of Ym+1 are orthonormal, we have

Y?
mYm = Im , Y?

mYm+1 =
(

Im o
)
, (9.169)

so that
Y?
mAYm = Tm . (9.170)

As we have noted at the end of Algorithm 9.10, when n = m = ν̄ − 1, then ỹn+1 ≡ yν̄ = o, at least
in theory. So, for m = ν̄ we have

AYν̄ = Yν̄Tν̄ and Y?
ν̄AYν̄ = Tν̄ . (9.171)

The relation at left has the following meaning:
LEMMA 9.7.1. The Krylov subspace Kν̄ , which is the column space of Yν̄ , is an invariant subspace of
A. The restriction of the linear operator A to this subspace has the matrix representation Tν̄ if expressed
in the orthonormal basis {y0, . . . ,yν̄−1}.

In particular, in this case of termination, every eigenvalue of Tν̄ is an eigenvalue of A (see [Par98] for
a proof).This raises the question whether before, under certain conditions, the eigenvalues of Tm approxi-
mate eigenvalues of A. This is discussed in Section 9.7.2.

Here we want to further explore the connection between CG and the symmetric Lanczos algorithm.
Let

D±ρ; m :≡ diag {ρ0,−ρ1, ρ2, . . . , (−1)m−1ρm−1} , (9.172)

where ρn :≡ ‖rn‖, so that by (9.162)
Rm = YmD±ρ; m . (9.173)

By the orthogonality of the residuals R?
mRm+1 =

(
D±ρ; m| o

)
. Thus, the matrix identities (9.117) and

(9.119) imply that
R?
mARm = D2

±ρ; mT◦
m , (9.174)

and the comparison with (9.170) yields

T◦
m = D−2

±ρ; mR?
mARm

= D−1
±ρ; mY?

mAYmD±ρ; m

= D−1
±ρ; mTmD±ρ; m . (9.175)

So, the two tridiagonal matrices are diagonally similar. It is an easy exercise to prove that under any such
similarity the diagonal elements remain invariant, and so do the products of any two symmetrically located
elements on the first codiagonals:

αn = αL
n , βn γn = (βL

n)
2 . (9.176)

131

By (9.162), the CG residual polynomials pn defined by rn = pn(A)r0 and the Lanczos polynomials
p L
n defined by yn = p L

n (A)y0 = p L
n (A) r0/ρ0 are for n < ν̄ related just by scaling:

p L
n (t) = (−1)n

ρ0

ρn
pn(t) or, pn(t) = (−1)n

ρn
ρ0

p L
n (t) . (9.177)

On the other hand, we know that pn(0) = 1, hence

pn(t) =
p L
n (t)

p L
n (0)

, where p L
n (0) = (−1)n

ρ0

ρn
. (9.178)

In analogy to the recursions for rn and yn there are recursions for these polynomials:

pn+1(t) =
(
(t− αn)pn(t)− βn−1pn−1(t)

)
/γn , (9.179)

p L
n+1(t) =

(
(t− αL

n)p L
n (t)− βL

n−1p
L
n−1(t)

)
/βL

n . (9.180)

They get started with p0(t) ≡ 1, β−1 := 0 and p L
0 (t) ≡ 1, βL

−1 := 0, respectively, and they show in
particular that

pn(t) =
tn

γ0 · · · γn−1
+ · · ·+ 1 , (9.181)

p L
n (t) =

tn

βL
0 · · ·βL

n−1

+ · · ·+ (−1)n
ρ0

ρn
. (9.182)

So, using (9.176) and (9.177) we obtain

pn(t)

p L
n (t)

≡ (−1)n
ρn
ρ0

=
βL

0 · · ·βL
n−1

γ0 · · · γn−1
=
β0 · · ·βn−1

βL
0 · · ·βL

n−1

. (9.183)

Like the recursions for the residuals and for the Lanczos vectors, those for the corresponding polyno-
mials, that is, (9.179) and (9.180), can be summarized in matrix notation. We illustrate this for the Lanczos
vectors and define the row vector

(pL
m(t))T :≡

(
p L
0 (t) . . . p L

m−1(t)
)
. (9.184)

Then (9.180) turns into

t(pL
m(t))T = (pL

m+1(t))
T Tm . (9.185)

If we partition Tm as in (9.167) into Tm and the last row βL
m−1l

T
m, we can write this as

t(pL
m(t))T = (pL

m(t))TTm + p L
m(t)βL

m−1l
T

m (9.186)

or
(pL
m(t))T

(
tI−Tm

)
= p L

m(t)βL
m−1l

T

m . (9.187)

Since p L
0 (t) ≡ 1 is never zero, pL

m(t) 6= o for all t and all m. Consequently, when t is a zero of p L
m, then

it is an eigenvalue of Tm, and the corresponding left eigenvector is pm(t). But since Tm is symmetric,
pm(t) is also a right eigenvector. One can show that conversely every eigenvalue of Tm is a zero of p L

m. Of
course, all the eigenvalues of Tm are real. If we knew that they are all simple, we could further conclude
that they match all the zeros of p L

m, and that p L
m is up to scaling equal to the characteristic polynomial

χm(t) :≡ det (tI −Tm) of Tm, which we choose to be monic. This is indeed true and can be verified by
analyzing the recurrence

χn+1(t) = (t− αL
n)χn(t)− (βL

n−1)
2χn−1(t) (9.188)

that holds for these polynomials. The following can be shown; for a proof, see, e.g., page 137 of [SRS68].

132

THEOREM 9.7.2. If all off-diagonal elements βL
k of the real symmetric tridiagonal matrix Tm are

nonzero, then, for n = 1, . . . ,m, the characteristic polynomial χn of its n× n leading principal subma-
trix Tn has simple zeros ζ1,n > ζ2,n > · · · > ζn,n, which, if n < m, separate those of χn+1:

ζk,n+1 > ζk,n > ζk+1,n+1 , k = 1, . . . , n . (9.189)
As pointed out before, this leads to the following conclusion.

COROLLARY 9.7.3. The polynomials χn, p L
n , and pn differ only by scaling. So, they have the same zeros,

and these satisfy (9.189).
The sequences of these polynomials (up to degree ν̄) are examples of a so-called Sturm sequence

[Sturmsche Kette] of functions. For the definition of such a sequence see, e.g., page 135 of [SRS68].
Since the characteristic polynomials are monic, it follows from (9.181)–(9.182) that

χn(t) = γ0 · · · γn−1pn(t) = βL
0 · · ·βL

n−1p
L
n (t) . (9.190)

Note that the inequalities in (9.189) are strict. If we allow equality signs, the assumptions can be relaxed
to matrices that are not tridiagonal. The result goes then under the name of Cauchy’s interlacing theorem
see, e.g., [Par80].

So far in this section, we have only assumed that A is Hermitian (or real symmetric). For applying the
CG method we normally assume that A is Hpd (or spd). Then the matrices Tm are spd too, because by
(9.170), for z 6= o,

z?Tmz = z?Y?
mAYmz = (Ymz)?A(Ymz) > 0 .

LEMMA 9.7.4. If A is Hpd (or spd), then, for m = 1, . . . , ν̄, the tridiagonal matrices Tm generated by
the Lanczos algorithm are real and spd, and thus the square part T◦

m of the matrices T◦m generated by
the ORES form of the conjugate gradient method, which are diagonally similar to Tm, have real positive
eigenvalues.

The risk when applying the CG method to an indefinite Hermitian matrix is that, even if the matrix is
nonsingular, some Tm may be singular, so that p L

m(0) = 0. But then it is impossible to normalize pm so
that pm(0) = 1; see (9.178). How could we fix this?

—————————————————————————–

9.7.2 Eigenvalue Computations With the Symmetric Lanczos ProcessF

Comparing the basic matrix identities of the symmetric Lanczos process, namely

AYm = Ym+1Tm , Y?
mYm = Im , Y?

mAYm = Tm (9.191)

with the assumptions of the Rayleigh–Ritz procedure for symmetric matrices discussed in [Par98], we see
that the symmetric tridiagonal matrix Tm represents the restricted orthogonal projection A

∣∣Km
of A into

the subspace Km, when this projection is expressed in terms of the basis consisting of the columns of Ym.
In particular, Tm is the matrix Rayleigh quotient of Ym, and the Rayleigh residual matrix is just

R(Ym; A) = AYm −YmTm = ymβ
L
m lTm , (9.192)

where lm is the last row of the m×m unit matrix, as before.
Therefore, the symmetric Lanczos algorithm is a tool for constructing the basis of a subspace and the

corresponding matrix Rayleigh quotient H = Tm. The remaining steps of the Rayleigh–Ritz procedure
are readily adapted. In addition to the error bounds from the general Rayleigh–Ritz theory there are more
specific ones for eigenvalue computations based on the symmetric Lanczos algorithm; see [Par98].

The symmetric Lanczos algorithm is in fact widely used for computing eigenvalue approximations
of large sparse symmetric (or Hermitian) matrices. There are, however, a number of difficulties in its
implementation. Rounding errors in finite precision arithmetic cause a loss of orthogonality of the Lanczos
vectors yn, the columns of Ym. This effect can be serious or even disastrous since only the orthogonality
of yn+1 with respect to yn and yn−1 is explicitly enforced, while the orthogonality with respect to earlier

133

Lanczos vectors is inherited. It was shown by [Pai71] that this roundoff error propagation is governed by
certain rules, which tell us that devastating errors only occur when the last row of the Rayleigh residual
matrix, ymβL

m, is very small. Paige’s theory is also covered in [Par80]. It lead to a number of proposals
to extend the explicit orthogonalization to certain other vectors (partial reorthogonalization, selective
reorthogonalization). Without this extra work for reorthogonalization, Tm will soon contain multiple
copies of extremal eigenvalues, even when these are simple eigenvalues of A. Then extra work is needed
to distinguish these ghost eigenvalues from the true ones; this approach has been followed by [CW85].

As mentioned at the beginning of Section 9.7.1, the symmetric Lanczos algorithm is the adaptation of a
more general algorithm for nonsymmetric problems suggested by [Lan50]. That algorithm generates a pair
of biorthogonal bases {yn}, {ỹn}, for which 〈ỹm,yn〉 = δm,n. Today, the eigenvalue approximations are
extracted in a different way from these algorithms than was described by Lanczos, normally, by applying
the QR algorithm to Tm for sufficiently large m.

Lanczos also mentioned the applicability of his approach to the problem of solving a sparse linear
system of equations, and he worked this out in [Lan52]. He called it method of minimized iterations, but
it became known as the biconjugate gradient (BICG) method [Methode der bikonjugierten Gradienten].
However, again, an important detail of this solution technique has changed, namely how the approximations
xn are found. In [Fle76] (and in earlier Russian work) it was pointed out that Lanczos’s approach can be
applied in a form completely analogous to the CG algorithm Hestenes and Stiefel had suggested for spd
systems — what we called the OMIN form of CG (following [AMS90]). The natural name for this newer,
standard form of BICG is therefore BIOMIN.

So, in some sense, Lanczos generalized CG before it was published by [HS52], and he seems to have
developed his method independently, although he was working at the same institute as Hestenes, the Insti-
tute of Numerical Analysis (INA) of the National Bureau of Standard (NBS) on the campus of UCLA. But
the Hestenes–Stiefel paper was much better worked out, both with regard to the theory and the details of
the implementation of the method.

9.7.3 Solving the System in Coordinate SpaceF

The symmetric Lanczos process (Algorithm 9.10) produces a series of nested orthonormal bases for the
Krylov subspaces Kn(A,y0), n = 1, 2, When solving Ax = b, we assume that y0 := r0/‖r0‖ with
r0 = b −Ax, so that Kn(A,y0) = Kn(A, r0). We could try to transform the linear system into such a
new basis; but if n < ν̄, we can represent A only approximately in this basis. However, it turns out that
we can directly formulate the CG optimality condition in the Krylov subspace, and that we obtain a linear
system for the coordinates of the optimal approximation xn.

To this end, we return to the error norm minimization approach of Section 9.6.1, but we improve it by
taking into account the restriction (from the definition of a Krylov space solver)

xn − x0 ∈ Kn :≡ Kn(A, r0) = span {y0, . . . ,yn−1} .

Here,
(

y0 y1 · · · yn−1

)
≡: Yn, with Y?

nYn = In and y0 := r0/ρ0, is now the nth Lanczos basis.
We can write, with some coordinate vector kn,

xn = x0 + Ynkn , rn = r0 −AYnkn . (9.193)

When A is spd or Hpd, minimization of half the square of the A-norm of the nth error dn subject to the
restriction means minimization of the quadratic functional

Φn(kn) :≡ 1
2‖dn‖2A = 1

2‖xn − x?‖2A = 1
2‖x0 − x? + Ynkn‖2A (9.194)

over kn ∈ En, where En is the coordinate space R
n or C

n. Writing the right-hand side of (9.194) as an
inner product and multiplying out we obtain

Φn(kn) = 1
2‖x0 − x?‖2A + Re 〈x0 − x?,AYnkn〉+ 1

2 〈Ynkn,AYnkn〉 , (9.195)

134

from which one can derive that

∇Φn(kn) = Y?
nA(x0 − x? + Ynkn) = −Y?

nrn . (9.196)

Since YT
nAYn is Hpd, the quadratic function Φn has only one stationary point, and this is a minimum. It

is characterized by the Galerkin condition [Galerkin-Bedingung]

r?nYn = oT or rn ⊥ Kn . (9.197)

This condition, which we have found before under different assumptions in Lemma 9.6.3, implies that the
residuals are mutually orthogonal. We can formulate the following results:
THEOREM 9.7.5. Let A be spd or Hpd. A Krylov space solver for Ax = b achieves minimization in the
energy norm (i.e., in the A-norm of the error) in each step if and only if the Galerkin condition (9.197)
holds for n = 0, . . . , ν̄, or, in other words, if and only if the residuals are mutually orthogonal.

Now note that r0 = Yne1ρ0 if e1 denotes the first column of the n× n unit matrix. So, from r?nYn =
oT, Y?

nYn = In, and (9.193) we can conclude that

o = Y?
nrn = Y?

n(r0 −AYnkn) = e1ρ0 −Y?
nAYnkn ,

and, using (9.170), that
Tnkn = e1ρ0 . (9.198)

This result can summarized as follows:
THEOREM 9.7.6. When a real symmetric or Hermitian system Ax = b is treated with any Krylov
space solver characterized by the Galerkin condition (9.197) (such as, in particular, the CG method)
the coordinates kn of xn − x0 with respect to the Lanczos basis are solutions of the real symmetric
tridiagonal n× n system (9.198), which itself results from the Galerkin condition (9.197).

This result gives us further insight on why the CG algorithms are limited to positive definite (or negative
definite) matrices.
COROLLARY 9.7.7. When the Krylov space solver addressed in Theorem 9.7.6 is applied to a real sym-
metric or Hermitian indefinite system, some approximations xn may be undefined because the tridiagonal
matrix Tn can be singular — in which case
• the nth Lanczos polynomial p L

n has a zero at the origin: p L
n (0) = 0,

• a residual polynomial pn satisfying the consistency condition pn(0) = 1 does not exist, and
• the system (9.198) has no solution.

But if kn and xn are undefined, then kn+1 and xn+1 are again defined and can be computed according
to Theorem 9.7.6.

PROOF. We have seen above that p L
n is up to scaling the characteristic polynomial of Tn. Hence, p L

n (0) = 0 if and
only if Tn is singular. Clearly, in view of (9.178), a normalized residual polynomial cannot exist if p L

n (0) = 0.
If the singular system (9.198) had a solution kn, it would define an approximate solution xn whose residual

would satisfy the Galerkin condition (9.197) and whose residual polynomial would satisfy the consistency condition,
in contradiction to the above.

The fact that kn+1 is again well defined follows from the interlacing of the zeros of p L
n and p L

n+1; see Theo-
rem 9.7.2. �

The fact that at least every other xn is well defined has been used to derive CG-like algorithms that do
an implicit double step when Tn is singular or near-singular.

The conjugate residual method can be formulated in an analogous way. For a nonsingular square
matrix, also for a non-Hermitian one, minimization of half the square of the 2–norm of the residual under
the restriction xn − x0 ∈ Kn means minimization of

Φ̂n(kn) :≡ 1
2‖rn‖2 = 1

2‖r0 −AYnkn‖2 (9.199)

over kn ∈ En. The gradient of Φ̂n can be seen to be

∇Φ̂n(kn) = − Y?
nA

?rn . (9.200)

135

Since the matrix Y?
nA

?AYn of the quadratic function Φ̂n is Hpd, the minimum is characterized by the
Galerkin condition

r?nAYn = oT or rn ⊥ AKn . (9.201)

It implies that the residuals are (in general only formally) A-orthogonal. For true A-orthogonality we need
that A is spd or Hpd, which is usually the case when the CR method is applied, but has not been assumed
in the derivation of this Galerkin condition.
THEOREM 9.7.8. A Krylov space solver for Ax = b achieves minimization in the 2-norm of the residual
in each step if and only if the Galerkin condition (9.201) holds for n = 0, . . . , ν̄, or, in other words, if
and only if the residuals are mutually conjugate.

Next we use the representation rn = r0 −AYnkn from (9.193) and insert

r0 = y0ρ0 = Yn+1 e1 ρ0 ,

with e1 the first column of the (n+ 1)× (n+ 1) unit matrix, as well as the matrix representation (9.168),

AYn = Yn+1Tn

of the symmetric Lanczos process. We obtain the fundamental relation

rn = Yn+1 (e1ρ0 −Tnkn) . (9.202)

Here, in contrast to (9.193) we do not only represent xn−x0 and rn− r0 in the Lanczos basis, but directly
rn. The corresponding coordinate vector

qn :≡ e1ρ0 −Tnkn (9.203)

is called the quasi-residual [Quasi-Residuum].
Since Yn+1 has orthonormal columns, minimizing rn is equivalent to minimizing its coordinate vector:

‖rn‖2 = q?nY
?
n+1Yn+1qn = ‖qn‖2 . (9.204)

In view of the definition (9.203) minimizing ‖qn‖2 is a (n + 1) × n real least-squares problem for the
unknown kn, whose matrix is the extended real tridiagonal Tn.

The above derived result can be summarized as follows:
THEOREM 9.7.9. When a real symmetric or Hermitian system Ax = b is solved by any Krylov space
solver that minimizes the 2-norm of the residual (such as, in particular, the CR method), the coordinates
kn of xn − x0 with respect to the Lanczos basis are solutions of the real tridiagonal (n + 1) × n least
squares problem

min
kn∈En

‖qn‖2 = min
kn∈En

‖e1ρ0 −Tnkn‖2 . (9.205)

A least squares problem always has a solution, but this solution is only unique if the matrix has full
rank. Here, this is the case:
THEOREM 9.7.10. In the least squares problem (9.205) the matrix Tn resulting from the symmetric
Lanczos process has full rank n, and therefore the problem has a unique solution kn.

PROOF. In the notation (9.167) for Tn we have by construction (see Algorithm 9.10) either βL
k 6= 0, k = 0, 1, . . . , n−

1, or βL
k 6= 0, k = 0, 1, . . . , n − 2 and βL

n−1 = 0. In the first case, the last n rows of Tn form a nonsingular upper
triangular matrix, so Tn has rank n. In the second case the columns of Yn span an invariant subspace of A, and
Tn represents A in this subspace; in particular any eigenvalue of Tn is an eigenvalue of A, which is assumed to be
nonsingular. So, Tn is also nonsingular, and thus Tn has rank n. �

We could solve the sequence of least squares problems (9.205) by solving for each n the normal equa-
tions

TT

nTnkn = TT

ne1ρ0 =
(
αL

0 βL
0 0 0 . . .

)T
ρ0

136

or, preferably, by deriving an update procedure for this. But efficiency and accuracy command to use
instead a well-known special update procedure for the QR or the LQ decomposition of Tn .

If A is real symmetric, the successive solution of (9.205) by updating in each step the LQ or QR
decomposition of Tn leads to the MINRES algorithm of [PS75]. With a minor modification MINRES is
also applicable to Hermitian A, and a straightforward generalization leads to the GMRES algorithm of
[SS85] for non-Hermitian (or real non-symmetric) A, one of the most widely used Krylov space solvers
for this case. In this situation the tridiagonal real matrix Tn is replaced by an upper Hessenberg matrix Hn

of the same size, which is in general complex if A is.
The quasi-minimal residual (QMR) method of [FN91], which is also for the non-Hermitian case but

works with a tridiagonal Tn again, follows the same pattern, except that it does not use an orthogonal basis,
and hence only minimizes the 2–norm of the quasi-residual, not the one of the residual itself.

9.7.4 Further Topics Related to the CG Method and the Lanczos ProcessF

There are many more interesting topics in connection with the CG method:

• CG and CR as orthogonal projections.

• The connection to orthogonal polynomials.

• The connection to Gauss quadrature.

• A stopping criterion based on the energy norm.

• The connection to Padé approximation (high order rational interpolation at one point) and contin-
ued fractions [Kettenbrüchen].

• CG in finite precision arithmetic: the effects of roundoff (in particular, the “loss of orthogonality”)
on the speed of convergence.

• CG in finite precision arithmetic: the effects of roundoff (in particular, the “gap between the recur-
sively updated and the true residual”) on the ultimate accuracy. (OMIN may be far better than
ORES or ODIR.)

• The connections between CG and CR as well as CGNE and CGNR.

The CG and CR methods, including the MINRES version of the latter, have also been an important
source of ideas for creating iterative method for nonsymmetric linear systems. In the years ≈ 1970–1995
many such methods have been proposed.

9.8 Solving the System in Coordinate Space

In this chapter, we return to the approach outlined in Section 9.7.3, where we transformed the linear system
into coordinate space by first constructing a nested basis of the nested Krylov subspaces. While we used
there the symmetric Lanczos process to generate the basis, we will now allow for non-Hermitian matrices
and apply the Arnoldi process. In this setting the most effective way to solve the system in coordinate
space is the GMRES algorithm of [SS85]. The symmetric Lanczos process can be viewed as a special case
of the Arnoldi process, and GMRES is a quite straightforward generalization of the MINRES algorithm of
[PS75], which is restricted to Hermitian and real symmetric matrices, but is much more economical than
GMRES. We will also encounter a few other related iterative methods.

9.8.1 The Arnoldi Process

By definition of the Krylov space Kn(A,y) and by Lemma 9.3.1 the vectors y, Ay, . . . , An−1y form a
basis of Kn(A,y) as long as n ≤ ν̄(y,A). However, as mentioned before, see page 106, this so-called
Krylov basis is typically very ill-conditioned.

137

To construct a better basis, we could apply Gram-Schmidt orthogonalization to the Krylov basis. But
as suggested by [Lan50] and [Arn51] it is is far better to combine the Gram-Schmidt process directly with
the generation of the basis, as we did in the symmetric Lanczos process of Section 9.7.1. Here is a first
version of the Arnoldi algorithm (or Arnoldi process [Arnoldi-Prozess]) using classical Gram-Schmidt
(CGS) orthonormalization.
Algorithm 9.11 (ARNOLDI ALGORITHM BASED ON CGS). .
Let a nonsingular matrix A and a nonzero vector y be given. For constructing a nested set of orthonormal
bases {y0,y1, . . . ,ym} for the nested Krylov subspaces Km+1(A,y) (m = 0, . . . , ν̄(y,A) − 1) we let
η0 := ‖y‖, y0 := y/η0 and compute, for n = 0, 1, . . . ,m− 1,

ỹ := (Ayn − yn ηn,n − · · · − y0 η0,n) ,

yn+1 := ỹ/ηn+1,n ,

}
(9.206)

where the coefficients η0,n, η1,n, . . . , ηn,n are chosen to make ỹ orthogonal to y0, y1, . . . ,yn, while
ηn+1,n is used to normalize ỹ:

ηk,n :≡ 〈yk,Ayn〉 (k = 0, . . . , n), ηn+1,n :≡ ‖ỹ‖ . (9.207)

When n = m− 1 = ν̄ − 1, then ỹ = o and the process terminates.
However, it is well known that the classical Gram-Schmidt process may produce a basis whose or-

thogonality is inaccurate due to large roundoff errors. Therefore, in practice, the modified Gram-Schmidt
(MGS) algorithm should be applied instead of the classical one, as in the following second version of the
Arnoldi algorithm.
Algorithm 9.12 (ARNOLDI ALGORITHM BASED ON MGS). .
Let a nonsingular matrix A and a nonzero vector y be given. For constructing a nested set of orthonormal
bases {y0,y1, . . . ,ym} for the nested Krylov subspaces Km+1(A,y) (m = 1, . . . , ν̄(y,A) − 1) we let
y0 := y/η0 and compute, for n = 0, 1, . . . ,m− 1,

ỹ := Ayn

ỹ := ỹ − yk ηk,n , ηk,n :≡ 〈yk , ỹ〉
(k = n, n − 1, . . . , 0),

yn+1 := ỹ/ηn+1,n , ηn+1,n :≡ ‖ỹ‖ .





(9.208)

When n = m− 1 = ν̄ − 1, then ỹ = o and the process terminates.

The orthonormal basis of Km (m ≤ ν̄) that is generated here is called the Arnoldi basis [Arnoldi-
Basis].

Clearly, in exact arithmetic, the Arnoldi process will terminate with ην̄,ν̄−1 = 0 when n = m − 1 =
ν̄ − 1 since the Krylov space generated from y is then exhausted. We therefore define

yν̄ :≡ o . (9.209)

This is useful for theoretical considerations. In practice ην̄,ν̄−1 may be far from small due to roundoff
errors. But, typically,m is limited to values much smaller than ν̄.

An obvious disadvantage of the Arnoldi process is that the whole basis must be stored and that at each
step all the vectors that have been generated before must be retrieved.

There is, as we know, an important exception: when the matrix is real symmetric or (complex) Hermi-
tian, the long recursion of (9.206) reduces to a three-term recursion, and the Arnoldi process becomes the
symmetric Lanczos process:

138

LEMMA 9.8.1. If A = A?, then in (9.206) with (9.207) we have

ηk,n = 0 , k = 0, 1, . . . , n− 2, (9.210)

ηn−1,n = ηn,n−1 , (9.211)

so that if we let βL
−1 :≡ 0 and

αL
n :≡ ηn,n = 〈yn,Ayn〉 , (9.212a)

βL
n :≡ ηn+1,n = ‖Ayn − yn α

L
n − yn−1 β

L
n−1‖ , (9.212b)

the recursion (9.206) reduces to

yn+1 :=
(
Ayn − yn α

L
n − yn−1 β

L
n−1

)
/βL

n , n = 0, 1, . . . , ν̄ − 2 , (9.213)

with αL
n ∈ R (n = 0, . . . , ν̄ − 1) and βL

n > 0 (n = 0, . . . , ν̄ − 2).
In other words, the Arnoldi process reduces then to the symmetric Lanczos process of Algorithm 9.10.

PROOF. By construction we have yn ⊥ yi for i = 0, 1, . . . , n − 1 and ‖yj‖ = 1 for j = 0, 1, . . . , n. Therefore, if
k < n− 1 we can conclude from (9.206) that

ηk,n = 〈yk,Ayn〉 = 〈Ayk,yn〉

= 〈yk+1ηk+1,k + ykηk,k + · · ·+ y0η0,k , yn〉

= 0 .

Moreover,

αL
n = ηn,n = 〈yn,Ayn〉 = 〈A?

yn,yn〉 = 〈Ayn,yn〉 = 〈yn,Ayn〉 = αL
n ,

βL
n = ηn+1,n = ‖Ayn − yn α

L
n − yn−1 β

L
n−1‖ > 0

except when n = ν̄ − 1 where βL
ν̄−1 = 0. Finally,

ηn−1,n = 〈yn−1,Ayn〉 = 〈Ayn−1,yn〉

= 〈ynηn,n−1 + yn−1ηn−1,n−1 + · · ·+ y0η0,n−1 , yn〉

= 〈yn,yn〉 ηn,n−1

= ηn,n−1 . �

In Chapter 9.6 we made heavy use of the fact that the recursions of the various CG algorithms as well
as those of the symmetric Lanczos process can be written compactly in matrix notation. In the following
we will often use analogue notation for the Arnoldi and further similar recursions. We define again the
N ×m matrix

Ym :≡
(

y0 y1 · · · ym−1

)
(9.214)

and gather the coefficients of m steps of the recursion (9.206) in an extended Hessenberg matrix of size
(m+ 1)×m:

Hm :≡




η0,0 η0,1 · · · η0,m−1

η1,0 η1,1 · · · η1,m−1

η2,1
. . .

...
. . . ηm−1,m−1

ηm,m−1



. (9.215)

Hm can be partitioned into

Hm ≡:




Hm

ηm,m−1l
T

m


 , (9.216)

139

where lTm is the last row of the m ×m unit matrix Im and Hm is square. If m > n recursion (9.206) can
be written as

Ayn =
(

y0 · · · yn yn+1 yn+2 . . . ym
)

︸ ︷︷ ︸
= Ym+1




η0,n
...

ηn,n
ηn+1,n

0
...
0




.

So we can summarize these recursions for n = 0, . . . ,m− 1 as

AYm = Ym+1Hm . (9.217)

This is often referred to as Arnoldi relation. In the Arnoldi process, the matrices Ym have orthonormal
columns, but this has not been used in the derivation of (9.217). In the symmetric Lanczos process the
matrix Hm reduces to the real tridiagonal matrix Tm of (9.167) whose square part Tm is real symmetric
— even if A is (complex) Hermitian.

By (9.217), the image of the restriction A
∣∣Km

to the subspace Km of the linear mapping (or, operator)
defined by A is contained inKm+1. With respect to the bases y0, . . . , ym−1 and y0, . . . , ym in the domain
and the range, respectively, this restricted linear mapping is represented by the (m + 1) ×m matrix Hm .
Let Πm denote the projection of Km+1 onto Km along ym. If the bases are orthogonal, then so is this
projection, but we need not assume this. With Πm we can project the image A

∣∣Km
(Km) into Km In terms

of the aforementioned bases, Πm has the simple representation
(

Im o
)
, and the self-mapping of Km

defined by ΠA
∣∣Km

is just (
Im o

)
Hm = Hm . (9.218)

The square matrix Hm and, likewise Tm, are therefore often referred to as orthogonal projections of A

into Km.
Once the Krylov space is exhausted, that is, once m + 1 = ν̄ and ην̄,ν̄−1 = 0, yν̄ = o (as defined in

(9.209)), identity (9.217) simplifies to
AYν̄ = Yν̄Hν̄ . (9.219)

This means that the columns of Yν̄ span an invariant subspace of A. In other words, Kν̄ is an invariant
subspace of A, and every eigenvalue of Hν̄ is also an eigenvalue of A (but, in general, not vice-versa).

The square matrix A has a spectrum σ(A) = {λ}Nk=1 consisting of N eigenvalues if the algebraic
multiplicity of the eigenvalues is accounted for. If ηm,m−1 is small, one can expect that the spectrum
of Hm approximates in some sense the one of A, although A has many more eigenvalues than Hm if
N � m. But in the case of non-Hermitian matrices the connection between the size of ηm,m−1 and the
accuracy of the approximate eigenvalues is more complicated than in the Hermitian case treated in [Par98]
and mentioned before in Section 9.7.1, even when the underlying basis {yn}m−1

n=0 is orthonormal.
To generate a basis of a Krylov subspace, we can also use recursions of the form (9.206) with coeffi-

cients other than those of (9.207). In view of Lemma 9.3.1, any such recursion will guarantee that

span (y0,y1, . . . ,yn−1) = span (y,Ay, . . . ,An−1y) = Kn(A,y) . (9.220)

Of course, the generated basis will no longer be orthonormal.
Let us next consider the relation between the Arnoldi bases, denoted by {yn}m−1

n=0 , and some other
nested Krylov space bases denoted {ŷn}m−1

n=0 , which may be neither normalized nor orthogonal. When we
express the new bases in the old ones, then, since the Krylov subspaces and their bases are nested, we have
relations of the form

ŷk = y0σ0,k + y1σ1,k + · · ·+ ykσk,k , k = 0, . . . ,m.

Therefore, the transformation matrix Sm+1 =
(
σn,k

)m
k=0

, for which Ŷm+1 = Ym+1Sm+1 holds, is

upper triangular. Thus, Sm with Ŷm = YmSm is just the m × m leading principal minor of Sm+1.

140

So, we have a nested sequence of triangular transformation matrices. When the restricted linear mapping
A
∣∣Km

: Km → Km+1 is in the new basis represented by Ĥm, then

Ĥm = S−1
m+1HmSm . (9.221)

In fact, if w = Ymk = Ŷmk̂ and Aw = Ym+1j = Ŷm+1ĵ with k = Smk̂, j = Sm+1 ĵ, j = Hmk, and
ĵ = Ĥmk̂, then it follows that

ĵ = S−1
m+1j = S−1

m+1Hmk = S−1
m+1HmSmk̂ = Ĥmk̂

if Ĥm satisfies (9.221). So, the following holds:
LEMMA 9.8.2. Any generation of a nested sequence of bases for a nested sequence of Krylov subspaces
can be represented by a matrix identity of the form (9.217) with a nested sequence of extended upper
Hessenberg matrices Hm (m = 1, 2, . . . , ν̄) with nonzero elements on the first subdiagonal, except for
ην̄,ν̄−1 = 0 if m+ 1 = ν̄.
A basis transformation in such a nested sequence of Krylov subspaces is expressed by a nested sequence
of upper triangular matrices Sm (m = 1, 2, . . .). The two sets of Hessenberg matrices describing the
generation of the two sets of bases are then related by (9.221).

A particularly simple special case is when we rescale a basis, that is, just change the length of the basis
vectors. In this case, the matrices Sm are nested diagonal matrices.

Finally we mention that the recursion (9.206) may also be used for generating a sequence of vectors
that has more than ν̄ elements. Then, for n ≥ ν̄ these vectors will no longer be linearly independent. But
also in this case, the matrix identity (9.217) remains valid. An example is Chebyshev iteration.

9.8.2 The Transformation to Coordinate Space

As we have seen in Section 9.7.3, there is the option of designing Krylov space methods that generate a
basis for the space independently from computing the residuals or search directions and then specify the
iteration by conditions in the coordinate space.

Given A, x0, and y := r0 :≡ b −Ax0, assume that the vectors yn, n = 1, 2, . . . , are generated by
the Arnoldi process or by some other application of recursion (9.206). Then (9.217) holds after n steps
with m = n, and the columns of Ym form a generating set of Kn(A, r0). Recall that for a Krylov space
method, xn − x0 ∈ Kn(A, r0), so there exists a coordinate vector kn such that

xn = x0 + Ynkn , rn = r0 −AYnkn . (9.222)

In view of y0 = r0/ρ0 with ρ0 :≡ ‖r0‖, we find, by inserting (9.217) in the last equation and using

r0 = y0ρ0 = Yn+1 e1 ρ0 , (9.223)

with e1 :≡
(

1 0 0 · · ·
)T ∈ Rn+1, that

rn = Yn+1 (e1ρ0 −Hnkn) . (9.224)

If Yn+1 has orthonormal columns, minimizing rn is equivalent to minimizing its coordinate vector, the
quasi-residual

qn :≡ e1ρ0 −Hnkn . (9.225)

The only difference to (9.202)–(9.203) is that the tridiagonal matrix Tn from the Lanczos process is
replaces by the Hessenberg matrix Hn resulting from the Arnoldi process — if we construct an orthonormal
basis — or from another recursion of the form (9.206).

If we are using the Arnoldi basis (or the Lanczos basis if A is Hermitian), ‖rn‖ = ‖qn‖ because
with respect to an orthonormal basis the coordinate map rn 7→ qn is an isometry, so we can replace the
minimization of ‖rn‖ by the minimization of ‖qn‖. This is the basic idea behind the GMRES algorithm
of [SS85] and the preceding MINRES algorithm of [PS75] for Hermitian A. But GMRES requires to store
the whole Arnoldi basis. In contrast, in MINRES the basis has not to be stored, as we will see.

141

9.8.3 GMRES

In this section we assume that the Krylov space is generated by the symmetric Lanczos process if A is
Hermitian, and by the Arnoldi process otherwise. We start from the relations (9.222)–(9.225) and recall
that ‖rn‖ = ‖qn‖, so that the minimization of ‖rn‖2 can be replaced by the minimization of ‖qn‖2:

‖rn‖2 = ‖qn‖2 = ‖e1ρ0 −Hnkn‖2 = min! (9.226)

The obvious advantages of this approach are that the restriction to the Krylov space is taken into account
explicitly and that the unknown vector is just an n-vector instead of an N -vector. In fact, since Hn is an
(n+ 1)× n matrix, minimizing ‖qn‖2 is an (n+ 1)× n least-squares problem. Because we want to solve
it for each n, we need a method that allows us to update the solution simply as the dimension increases.
But since Hn is upper Hessenberg or tridiagonal, there is indeed a well-known efficient way to update its
QR decomposition, based on applying at each step a suitable Givens rotation; details are given below. This
is how the GMRES algorithm of [SS85] operates. In the Hermitian case, Hn is symmetric tridiagonal, and
thus the QR and the LQ decompositions are equivalent. [PS75] chose to describe their MINRES algorithm
in terms of LQ, but we will here use QR also in this case, since this variation of MINRES is essentially a
special case of GMRES. (Moreover, the QMR method, which is a modification of the biconjugate gradient
(BICG) method for non-Hermitian systems, uses the same technique.)

Let Hn = Qn+1R
QR
n be a QR decomposition of Hn (with a unitary matrix Qn+1 of order n+ 1). In

RQR
n the marker QR helps us to distinguish this matrix from the matrix Rn of residual vectors. The last

row of this upper triangular (n+ 1)× n matrix RQR
n is zero. We denote its upper square n× n submatrix

by RQR
n and define

hn :≡
(

hn
η̃n

)
:≡ Q?

n+1e1ρ0 . (9.227)

In view of

‖e1ρ0 −Hnkn‖2 = ‖Q?
n+1e1ρ0 −RQR

n kn‖2

= ‖hn −RQR
n kn‖2 (9.228)

= ‖hn −RQR
n kn‖2 + |η̃n|2

we see that
kn = (RQR

n)−1hn (9.229)

is the solution of our least-squares problem and that the corresponding least-squares error equals

‖e1ρ0 −Hnkn‖2 = |η̃n|2 . (9.230)

In fact, multiplying the least-squares problem (9.226) by the unitary matrix Q?
n+1 turns it into one with the

upper triangular matrix RQR
n , see (9.228), where the choice of kn no longer influences the defect of the last

equation, and thus the problem is solved by choosing kn such that the first n equations are fulfilled.
¿From (9.226) and (9.230) we see in particular that the minimum residual norm is equal to |η̃n| and can

be found without computing kn or the residual rn. We will determine the unitary matrix Qn+1 only in its
factored form, namely as the product of n Givens rotations that are chosen to annihilate the subdiagonal
elements of the Hessenberg (or tridiagonal) matrix:

Qn+1 :≡
(

Qn o

oT 1

)
Gn with Gn :≡




In−1 o o

oT cn −sn
oT sn cn


 , (9.231)

where cn ≥ 0 and sn satisfying c2n + |s2n| = 1 are chosen such that the two last coordinates of the last
column of Hn with respect to the orthogonal basis consisting of the columns of

(
Qn o

oT 1

)

142

that is, 


?
...
?
µn
νn




:≡
(

Q?
n o

oT 1

)
Hn




0
...
0
1


 ,

are transformed by Gn so that the last component vanishes:

G?
n




?
...
?
µn
νn




=




?
...
?

cnµn + snνn
0



.

This means that

cn :=
|µn|√

|µn|2 + |νn|2
, sn := cn

νn
µn

, if µn 6= 0 ,

cn := 0 , sn := 1 , if µn = 0 .

(9.232)

If Hn is real, cn and sn are the cosine and sine of the rotation angle.
In view of (9.227) and (9.231) updating hn−1 is simple:

hn = G?
n

(
hn−1

0

)
= G?

n




hn−1

η̃n−1

0


 =




hn−1

cn η̃n−1

−sn η̃n−1


 .

So,
(

hn
η̃n

)
= hn :=




hn−1

cn η̃n−1

−sn η̃n−1


 . (9.233)

In particular, since η̃1 = ‖r0‖, it follows by induction that

‖e1ρ0 −Hnkn‖ = |η̃n| = |snη̃n−1| = |s1 s2 · · · sn| ‖r0‖ . (9.234)

Hence, in GMRES we can update the QR decomposition of Hn along with the generation of the Arnoldi
basis, where in each step a new column of Hn containing the Gram-Schmidt coefficients is created. At the
same time we can compute the residual norm for nearly free (without computing the residual itself). Once
the norm is sufficiently small, we find the solution kn of the least squares problem by solving an upper
triangular system, see (9.229), and can then insert it into the first equation of (9.222) to determine the
approximate solution xn. Note that an approximation xn is only available at the end, and that to compute
it, the whole Arnoldi basis has to be stored. Therefore, in practice, GMRES is normally restarted after
a fixed number of steps, say m. In Box 9.1 we give the standard version of this restarted GMRES(m)
algorithm based on the Arnoldi process with modified Gram-Schmidt.

In the algorithm we use as before the notation Hm ≡: (ηk,l)
(m,m−1)
(k,l)=(0,0) and

hT

n ≡:
(
η0 η1 . . . ηn−1 η̃n

)
.

Recall that the first n components of hn are the same as in hn−1; only ηn−1 and η̃n have to be computed.
As initial value for n = 0 we can use hn :=

(
1
)
, which means to set η̃0 := 1.

In our formulation of this algorithm some quantities are overwritten: ỹn in the modified Gram-Schmidt
part and the elements ηk,l of Hm during the QR decomposition of this matrix. In fact, after n steps, we
will have stored there the upper triangle of the leading n × n submatrix of the R-factor, that is, RQR

n =

(ηk,l)
(n−1,n−1)
(k,l)=(0,0) .

143

Box 9.1 The restarted GMRES algorithm

Algorithm 9.13 (GMRES(m)). .
For solving Ax = b choose an initial approximation x0, and let r0 := b −Ax0, ρ0 := ‖r0‖, y0 :=
r0/ρ0, and η̃0 := 1.
Then, for n = 1, . . . ,m:

1. Do one step of the Arnoldi algorithm by applying the modified Gram-Schmidt process to ỹn :=
Ayn−1:

for k := 0, 1, . . . , n− 1 :

ηk,n−1 := 〈yk , ỹn〉 , ỹn := ỹn − ykηk,n−1 ,

ηn,n−1 := ‖ỹn‖ , yn := ỹn/ηn,n−1 .

2. If n > 1, apply the n− 1 adjoint Givens rotations G?
k (k = 1, . . . , n− 1) with the parameters ck

and sk to the new last column of Hn:

for k := 1, 2, . . . , n− 1 :
(
ηk−1,n−1

ηk,n−1

)
:=

(
ck sk
−sk ck

)(
ηk−1,n−1

ηk,n−1

)
.

3. Let µn := ηn−1,n−1 , νn := ηn,n−1 and compute cn and sn of the Givens rotation Gn according
to (9.232).

4. Apply the adjoint Givens rotation G?
n to update hn−1 and the last two components of the modified

last column of Hn:

ηn−1 := cn η̃n−1 , ηn−1,n−1 := cnηn−1,n−1 + snηn,n−1 ,

η̃n := −sn η̃n−1 , ηn,n−1 := 0 .

5. If |η̃n| ≤ tol or n = m, the iteration or the sweep terminates and the triangular system RQR
n kn =

hn has to be solved for kn, so that xn := x0 + Ynkn can be computed.

If |η̃n| ≤ tol terminate; otherwise, set x0 := xm and restart.

144

9.8.4 MINRES

When we have a Hermitian matrix A, the Arnoldi process reduces to the symmetric Lanczos process, see
Lemma 9.8.1, which has the benefit of a three-term recursion. So for the generation of the basis there is no
need to keep all the computed basis vectors available. However, to fully capitalize upon this, we also need
a recursive way of computing xn in order to avoid the evaluation of xn := x0 + Ynkn at the end of the
algorithm. In the Hermitian case such a recursion exists and is part of the MINRES algorithm of [PS75].
This also means that there is no reason for restarting MINRES.

To see how this can be done, we first recall that the n-vector hn emerges from the (n− 1)-vector hn−1

by just appending the component ηn := cnη̃n−1, see (9.233). We rewrite xn = x0 + Ynkn by using
(9.229) as

xn = x0 + Znhn , where Zn :≡ Yn(R
QR
n)−1

contains the search directions z0, . . . , zn−1, and we conclude that

xn := xn−1 + zn−1cnη̃n−1 . (9.237)

This is true for MINRES and GMRES. However, only in MINRES RQR
n is a banded upper tridiagonal

matrix with bandwidth three. Therefore the relation

Yn = ZnR
QR
n (9.238)

can be viewed as the matrix representation of a three-term recursion for generating the vectors {zk}n−1
k=0 : if

the elements in column k of RQR
n are γ̃k−2, β̃k−1, and α̃k, then

zk := (yk − zk−1β̃k−1 − zk−2γ̃k−2)/α̃k . (9.239)

Our variant of MINRES, which as we mentioned differs from the original of [PS75] by using a QR
instead of an LQ decomposition is given in Box 9.2. In the steps 2 and 4 of the MINRES loop, the last
column of the tridiagonal matrix Tn with the elements βn−2, αn−1, and βn−1 gets transformed into the
last column of the banded upper triangular matrix RQR

n with the elements γ̃n−3, β̃n−2, and α̃n−1 in the
positions (n− 3, n− 1), (n− 2, n− 1), and (n − 1, n− 1), respectively. In contrast to GMRES, storing
the vectors yn is not necessary here.

In general, computing or updating the residual is unnecessary in both MINRES and GMRES since its
norm is equal to |η̃n|. So, the progress of the algorithm can be judged from this number.

Let us nevertheless note that by multiplying (9.237) by A we could find a recursion for the residuals;
but since it would require an extra matrix-vector product, it is not of interest. There is another, cheaper way
of updating the residual, which also holds for GMRES. First, inserting Hn = Qn+1R

QR
n and (9.229) into

(9.224) and taking (9.227) into account we get

rn = Yn+1

(
e1ρ0 −Qn+1R

QR
n (RQR

n)−1hn

)

= Yn+1

(
e1ρ0 −Qn+1

(
hn
0

))

= Yn+1Qn+1 ln+1η̃n , (9.240)

where, as before, ln+1 :≡
(

0 . . . 0 1
)T

is the last column of the unit matrix of order n+ 1. Using
(9.231) we see further that

rn =
(

Yn yn
)(Qn o

oT 1

)
Gn

(
o

1

)
η̃n

= −YnQnlnsnη̃n + yncnη̃n .

Finally, using (9.240) and η̃n = −sn η̃n−1 (see (9.233)) to simplify the first term on the right-hand side,
we get the recursion

rn = rn−1|sn|2 + yncnη̃n . (9.241)

145

Box 9.2 A variant of the MINRES algorithm

Algorithm 9.14 (MINRES). .
For solving Ax = b with Hermitian A choose x0, and let r0 := b −Ax0, ρ0 := ‖r0‖, y0 := r0/ρ0,
z−2 := z−1 := o, and η̃0 := 1.
Then, for n = 1, . . . ,m:

1. Do one step of the symmetric Lanczos algorithm:

ỹn := Ayn−1 , ỹn := ỹn − yn−2βn−2 if n > 1,

αn−1 := 〈yn−1, ỹn〉 , ỹn := ỹn − yn−1αn−1 ,

βn−1 := ‖ỹn‖ , yn := ỹn/βn−1 .

2. Let α̃n−1 := αn−1, and, if n > 1, β̃n−1 := βn−1.
If n > 2, apply G?

n−2 to the new last column of Tn:

(
γ̃n−3

β̃n−2

)
:=

(
cn−2 sn−2

−sn−2 cn−2

)(
0

β̃n−2

)
;

if n > 1, apply G?
n−1 to the last column of G?

n−2Tn:

(
β̃n−2

α̃n−1

)
:=

(
cn−1 sn−1

−sn−1 cn−1

)(
β̃n−2

α̃n−1

)
.

3. Let µn := α̃n−1 , νn := βn−1 (no tilde!) and compute cn and sn of the Givens rotation Gn

according to (9.232).

4. Apply the adjoint Givens rotation G?
n to update hn−1 and the last two components of the modified

last column of Tn:

ηn−1 := cn η̃n−1 , η̃n := −sn η̃n−1 , α̃n−1 := cnµn + snνn .

5. Compute zn−1 and xn according to (9.239) and (9.237).

6. If |η̃n| ≤ tol, the algorithm terminates and xn is a sufficiently accurate approximate solution.

146

9.8.5 FOMF

Instead of minimizing the residual norm we could aim at satisfying the Galerkin condition (9.197), rn ⊥
Kn or Y?

nrn = o, known from the CG method, though it does in general not belong to an optimality
property. In view of Y?

nYn+1 =
(

In o
)

Eq. (9.224) then yields the n× n linear Hessenberg system

Hnkn = e1ρ0 , (9.242)

which has a unique solution if and only if Hn is nonsingular. A recursive solution by the Gauss LU decom-
position without pivoting is possible if and only if all leading principle submatrices Hk are nonsingular.
It can be shown that this condition is equivalent to the existence of the approximants xk for all k. This
is in particular also true if A is Hermitian and thus Hn is tridiagonal. When A is even Hpd, the LU
decomposition does exist and the above approach is mathematically equivalent to the CG method.

In the case of a non-Hermitian system, solving (9.242) is the basis of the Full Orthogonalization
Method (FOM). Like GMRES it applies the Arnoldi process starting from r0 to generate the orthonormal
Krylov subspace basis {yk} and the matrix Hn. If the system (9.242) is also solved recursively (which
may not be stable, however), termination can be controlled using the following result:
LEMMA 9.8.3. The FOM residual vector rn can be expressed in terms of the subdiagonal element ηn,n−1

of Hn, the solution kn or (9.242), and the latest Krylov subspace basis vector yn:

rn = −yn ηn,n−1 e?n kn , (9.243)

‖rn‖ = |ηn,n−1| |e?nkn| . (9.244)

PROOF. By (9.224), when we separate the last basis vector yn, and by (9.242), rn = Yn (e1ρ0 −Hnkn) −
ynηn,n−1e

?
nkn = −ynηn,n−1e

?
nkn . �

9.8.6 SYMMLQF

Related to MINRES and the aforementioned FOM-type realization of the CG method is yet another al-
gorithm of [PS75] called SYMMLQ. It is also applicable to nonsingular Hermitian systems, including
indefinite ones. It differs from MINRES in two fundamental aspects: the search space

xn − x0 ∈ Ln := AKn(A, r0) (9.245)

and the optimization property

‖dn‖ = ‖xn − x?‖ = min! (9.246)

So, SYMMLQ is minimizing the error in the 2-norm, but, as we mentioned before, this requires a space
different from Kn(A, r0). Additionally SYMMLQ allows one to compute with an extra recursion the CG
iterates xCG

n whenever they all exist.
We construct as in MINRES with the symmetric Lanczos process an orthonormal basis y0, . . . , yn−1

of Kn :≡ Kn(A, r0) and write these vectors as the columns of Yn, so that (9.245) is matched by the
representation

xn − x0 = AYnkn , (9.247)

where, of course, kn is different from the one in (9.222), GMRES, MINRES, or FOM. Condition (9.246)
takes the form

‖AYnkn − (x? − x0)‖ = min! (9.248)

which is a least squares problem with the normal equations

Y?
nA

?AYnkn = Y?
nA

?(x? − x0) (9.249)

and the Galerkin condition

dn = xn − x? ⊥ AKn(A, r0) , i.e., rn ⊥ Kn(A, r0) . (9.250)

147

Now, A? = A and A(x? −x0) = r0. So, since y?kr0 = y?ky0ρ0 = δk,0ρ0, we can simplify the right-hand
side of (9.249) to e1ρ0. On the left-hand side, using the Lanczos relation AYn = Yn+1Tn and the QR
decomposition Tn = Q

n
RQR
n (with an (n + 1) × n matrix Q

n
with orthonormal columns and an n × n

upper triangular Q
n

, we get

Y?
nA

?AYn = T?
nY

?
n+1Yn+1Tn = T?

nTn = (RQR
n)?Q?

n
Q
n
RQR
n

= (RQR
n)?RQR

n .

(RQR
n)?RQR

n is just the Cholesky decomposition of the Hpd matrix T?
nTn, here computed via the more

stable QR decomposition of Tn. Altogether, (9.249) reduces to

(RQR
n)?RQR

n kn = e1ρ0 . (9.251)

Setting LQR
n :≡ (RQR

n)?, inserting kn into (9.247), and using first AYn = Yn+1Tn and then Tn =
Q
n
RQR
n , we obtain further

xn = x0 + AYn(RQR
n)−1(LQR

n)−1e1ρ0

= x0 + Yn+1Tn(R
QR
n)−1(LQR

n)−1e1ρ0

= x0 + Yn+1Qn
(LQR

n)−1e1ρ0 .So, if we let

Wn :≡ Yn+1Qn
, gn :≡ (LQR

n)−1e1ρ0 , (9.252)

we finally get
xn = x0 + Wngn = xn−1 + wn−1gn−1 . (9.253)

Wn and the coordinate vector gn are easy to update: Wn by appending the last column of Yn+1 and
applying the Givens tranformation Gn to the last two columns; and gn by the three-term recursion induced
by LQR

n , a lower triangular matrix with bandwidth three.
The resulting SYMMLQ algorithm is given in Box 9.3. Note that the first three steps and part of the

forth are the same as in MINRES.
Since LQR

n = (RQR
n)? the recursion for the components gk of gn is the same as the recursion for the

columns wk of Wn. Of course, we could exhibit this by writing the relation LQR
n gn = e1ρ0 from (9.252)

as g?nR
QR
n = ρ0e

?
1.

148

Box 9.3 The SYMMLQ algorithm

Algorithm 9.15 (SYMMLQ). .
For solving Ax = b with Hermitian A choose x0, and let r0 := b −Ax0, ρ0 := ‖r0‖, w0 := y0 :=
r0/ρ0, and g−2 := g−1 := 0.
Then, for n = 1, . . . ,m:

1. Do one step of the symmetric Lanczos algorithm:

ỹn := Ayn−1 , ỹn := ỹn − yn−2βn−2 if n > 1,

αn−1 := 〈yn−1, ỹn〉 , ỹn := ỹn − yn−1αn−1 ,

βn−1 := ‖ỹn‖ , yn := ỹn/βn−1 .

2. Let α̃n−1 := αn−1, and, if n > 1, β̃n−1 := βn−1.
If n > 2, apply G?

n−2 to the new last column of Tn:

(
γ̃n−3

β̃n−2

)
:=

(
cn−2 sn−2

−sn−2 cn−2

)(
0

β̃n−2

)
;

if n > 1, apply G?
n−1 to the last column of G?

n−2Tn:

(
β̃n−2

α̃n−1

)
:=

(
cn−1 sn−1

−sn−1 cn−1

)(
β̃n−2

α̃n−1

)
.

3. Let µn := α̃n−1 , νn := βn−1 (no tilde!) and compute cn and sn of the Givens rotation Gn

according to (9.232).

4. Apply the adjoint Givens rotation G?
n to update the last two components of the modified last column

of Tn (which turns into RQR
n), then compute the last component gn−1 of gn by the three-term

recurrence induced by LQR
n = (RQR

n)?.

5. Compute xn according to (9.253) and update the value of the error norm ηn. [Details not given.]

6. If |ηn| ≤ tol, the algorithm terminates and xn is a sufficiently accurate approximate solution.

149

−3 −2 −1 0 1 2 3 4 5 6 7 8
−8

−6

−4

−2

0

2

4
Conjugate gradient method

x
0

x
1

x
*

Figure 9.4: Conjugate directions — the CG method for N = 2.

150

Bibliography

[AMS90] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. A taxonomy for conjugate gradient methods.
SIAM J. Numer. Anal., 27:1542–1568, 1990.

[Arn51] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quart. Appl. Math., 9:17–29, 1951.

[BBC+94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.

[CW85] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue
Computations (2 Vols.). Birkhäuser, Boston-Basel-Stuttgart, 1985.

[DS00] Jack Dongarra and Francis Sullivan. Guest editors’ introduction to the top 10 algorithms.
Computing in Science and Engineering, 2(1):22–23, 2000.

[FF90] B. Fischer and R. W. Freund. On the constrained Chebyshev approximation problem on el-
lipses. Journal of Approximation Theory, 62:297–315, 1990.

[FF91] B. Fischer and R. W. Freund. Chebyshev polynomials are not always optimal. Journal of
Approximation Theory, 65:261–272, 1991.

[Fle76] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. A. Watson, editor,
Numerical Analysis, Dundee, 1975, volume 506 of Lecture Notes in Mathematics, pages 73–
89. Springer, Berlin, 1976.

[FN91] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numer. Math., 60:315–339, 1991. Received Feb. 19, 1991.

[Gre97] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, PA, 1997.

[GV61] G. H. Golub and R. S. Varga. Chebyshev semiiterative methods, successive overrelaxation
iterative methods, and second order Richardson iterative methods. Numer. Math., 3:147–168,
1961.

[Hen74] P. Henrici. Applied and Computational Complex Analysis, Vol. 1. Wiley, New York, 1974.

[HS52] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Res. Nat. Bureau Standards, 49:409–435, 1952.

[Lan50] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators. J. Res. Nat. Bureau Standards, 45:255–281, 1950.

[Lan52] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat.
Bureau Standards, 49:33–53, 1952.

[Mv77] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear equations
systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148–162,
1977.

151

[Pai71] C. C. Paige. The computations of eigenvalues and eigenvectors of very large sparse matrices.
PhD thesis, University of London, 1971.

[Par80] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, N.J., 1980.

[Par98] B. N. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics. SIAM,
2nd edition, 1998.

[PS75] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12:617–629, 1975.

[Rut57] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Mitt. Inst. angew. Math. ETH, Nr.
7. Birkhäuser, Basel, 1957.

[Rut59] H. Rutishauser. Theory of gradient methods. In Refined Iterative Methods for Computation of
the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Mitt. Inst. angew.
Math. ETH Zürich, Nr. 8, pages 24–49. Birkhäuser, Basel, 1959.

[Saa96] Youcef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[SRS68] H. R. Schwarz, H. Rutishauser, and E. Stiefel. Numerik symmetrischer Matrizen. Teubner,
Stuttgart, 1968.

[SS85] Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving nonsymmetric linear
systems. Math. Comp., 44:417–424, 1985.

[Sti55] E. Stiefel. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme.
Comm. Math. Helv., 29:157–179, 1955.

[SvM00] G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki. Differences in the effects of rounding
errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. Appl.,
22(3):726–751, 2000.

[van00] H. A. van der Vorst. Krylov subspace iteration. Computing in Science and Engineering, 2:32–
37, 2000.

[Var62] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962. Rev. 2nd
ed., Springer-Verlag, 1999.

[You50] David M. Young. Iterative Methods for Solving Partial Difference
Equations of Elliptic Type. PhD thesis, Harvard University, 1950.
http://www.cs.utexas.edu/users/young/david young thesis.pdf.

[You71] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, Orlando, 1971.

152

Chapter 10

Preconditioning

One can distinguish between two different aspects of the iterative solution of a linear system. The first
one in the particular acceleration technique for a sequence of iterations vectors, that is a technique used to
construct a new approximation for the solution, with information from previous approximations. This was
covered in Chapter 9. The second aspect is the transformation of the given system to one that can be more
efficiently solved by a particular iteration method. This is called preconditioning. A good preconditioner
improves the convergence of the iterative method, sufficiently to overcome the extra cost of its construction
and application. Indeed, without a preconditioner the iterative method may even fail to converge in practice.

The general (and challenging) problem of finding an efficient preconditioner is to identify a linear
operator P with the following properties:

1. P−1 is a good approximation of A−1 is some sense. Although no general theory is available, we
can say that P should act so that P−1A is near to being the identity matrix and its eigenvalues are
clustered within a sufficiently small region of the complex plane (see for instance [Gre97]);

2. P is efficient, in the sense that the iteration method converges much faster, in terms of CPU time,
for the preconditioned system. In other words, preconditioners must be selected in such a way that
the cost of constructing and using them is offset by the improved convergence properties they permit
to achieve;

3. P or P−1 can be constructed in parallel, to take advantage of the architecture of modern super-
computers.

The choice of P varies from “black-box” algebraic techniques which can be applied to general matrices
to “problem dependent” preconditioners which exploit special features of a particular class of problems.
Although problem dependent preconditioners can be very powerful, there is still a practical need for ef-
ficient preconditioning techniques for large classes of problems. Between these two extrema, there is a
class of preconditioners which are “general-purpose” for a particular – although large – class of problems.
These preconditioners are sometimes called “grey-box” preconditioners, since the user has to supply few
information about the matrix and the problem to be solved.

The preconditioners that we are going to address in this course can roughly be grouped into two familes,
the one of single-level algebraic preconditioners and the one of multilevel (algebraic) preconditioners,
which comprise

1. Relaxation schemes, like Jacobi, Gauss-Seidel and symmetric Gauss-Seidel (point or block ver-
sions) [Var00]. These schemes seldomly provide satisfactory performances as stand-alone precon-
ditioner, but can be very effective if used as smoothers in multilevel methods (like, for example,
ML [SHT04]);

2. Polynomial preconditioners, like Neumann, Least-Squares, and Chebyshev [Saa96a].

3. Incomplete Factorizations preconditioners, like IC(k,ε), ILU(k,ε), ILUT(k,ε), ILUS(k,ε) and ILUC(k,ε) [Saa96a];

153

4. Sparse Approximate Inverses, like SPAI [GH97], AINV [BCT00] and RIF [BT03].

5. One-level domain decomposition preconditioners of Schwarz type, with minimal or wider over-
lap among the subdomains [SBG96a, QV99]. The local linear problems can be solved with exact
factorizations, incomplete factorizations, or other techniques.

6. Two-level domain decomposition preconditioners of Schwarz type, with either geometrically or
algebraically constructed coarse grid correction.

7. (Algebraic/Geometric) Multigrid schemes, where the grid/matrix hierarchy is generated by geo-
metric reasonings (MG) [Bra77], by algebraic procedures (AMG) [RS87] or by smoothed aggrega-
tion (SA) [VBM98].

8. H -Matrices, which, in case of symmetric positive definite matrices, allow for an efficient approx-
imative matrix factorisation by using a geometrically motivated tree-like storage structure [Hac99,
GH03, BH03, BGH05].

Remark 10.1. Single-level preconditioners can be used as stand-alone preconditioners, on in conjunction
with multilevel preconditioners. In this latter case, the single-level preconditioner is reinterpreted as a
smoother for the multilevel hierarchy.

10.1 Preconditioning based on classical matrix splittings

Recall from Section 9.2 that a matrix splitting A = M−N with appropriately chosen N may be used to
speed up the linear fixed point iteration

xn+1 := Bxn + b with B :≡ I−A , (10.1)

by replacing it by

xn+1 := B̂xn + b̂ (10.2)

with

B̂ :≡M−1N = M−1(I−A) , b̂ :≡M−1b . (10.3)

While (10.1) is the straightforward fixed point iteration for the linear system Ax = b, the modified iteration
(10.2)–(10.3) is the fixed point iteration for the left-preconditioned system M−1Ax = M−1b.

So the methods based on matrix splittings that we discussed in Section 9.2 can all be understood as
linear fixed point iterations for preconditioned systems. There the aim of the preconditioning was to make
the spectral radius ρ(B̂) as small as possible, since this spectral radius equals the asymptotic rate of con-
vergence. In any case it has to be smaller than 1, since this is a necessary and sufficient condition for
convergence for all x0. This condition also guarantees that Â :≡M−1A = I− B̂ is nonsingular.

The same preconditioners M can also be used with other Krylov space solvers. For example, we could
use the matrix M from a block Jacobi splitting or the one from an SSOR splitting as a left preconditioner in
the Chebyshev method or in many of the Krylov space solvers we will discuss later. This simple approach
to preconditioning is quite popular. Note that here the preconditioning has the effect that all eigenvalues
of Â lie in a circle of radius ρ(B̂) < 1 around the point 1. We do not iterate with, say block Jacobi or
SSOR, but we only use the underlying splitting to obtain a better conditioned matrix Â. In some sense, we
combine each step of the Krylov space solver with one step of the iteration based on splitting.

The SOR splitting is not appropriate for preconditioning. In this case, as we mentioned, if A has
Property A and is consistently ordered, and if D−1A has real eigenvalues, then the eigenvalues of B̂ lie
for the optimal ω on the circle with radius ρ(B̂) < 1 and center 0, those of Â lie on a circle with the same
radius but center 1. This kind of spectrum is not very suitable for Krylov space solvers unless ρ(B̂) is
really small.

154

How more effective are iterative procedures when used as preconditioners? Let us consider, for exam-
ple, the use of the preconditioned CG method to accelerate a linear iterative solver in the form

xm+1 = P−1Nxm + P−1b

with P symmetric and definite. This process converges provided that

‖P−1N‖A = ‖I − P−1A‖A = q < 1.

By simple computations, it is possible to show that the condition number of the matrix P−1A can be
bounded by

κ(P−1A) ≤ 1 + q

1− q .

Therefore, the application of preconditioned CG method with preconditioner P−1 yields a superior con-
vergence factor, as

√
κ(P−1A)− 1√
κ(P−1A) + 1

≤

√
1+q
1−q − 1

√
1+q
1−q + 1

≤ 1−
√

1− q2
q

≤ q ∀q ∈ (0, 1).

10.2 Incomplete LU and Cholesky factorizations

If we knew a Gaussian LU factorization of A, say A = PTLU with a permutation matrix P, a lower
triangular matrix L, and an upper triangular matrix U, we could choose

M :≡ PTLU (10.4)

as a left preconditioner, which means that Â = M−1A = I would be optimally preconditioned. Appli-
cation of this preconditioner would require to forward substitute with U, back substitute with L, and to
permute components according to P. But application of M−1 to r0 would yield in one step

x? = x0 − d0 = x0 + M−1r0 . (10.5)

Of course, when we choose x0 := o, so that r0 = b, then this is essentially just the application of Gauss
elimination.

As we mentioned in Chapter 8 the problem with the LU factorization is that for most large sparse
matrices (except for banded ones with a very dense band) this approach is inefficient because the LU
factors are much denser than A and thus their computation is costly and their memory requirement is large.
The set of additional nonzero elements in L and U in positions of zero elements in A is called fill-in.

An often very effective alternative is to compute an approximate LU factorization that is as sparse as
A or at least nearly as sparse: we choose sparse matrices L and U and a permutation matrix P so that the
difference LU − PA is small. The product M :≡ PTLU ≈ A is then called an incomplete LU (ILU)
factorization [unvollständige LU-Zerlegung]. For the case of spd and Hpd matrices there are analogous
products M :≡ LLT ≈ A called incomplete Cholesky (IC) factorization [unvollständige Cholesky-
Zerlegung].

There are many variants of ILU and IC factorizations. Often, no pivoting is used even in the unsym-
metric ILU decomposition; that is, P = I. In the simplest variant we compute an LU or a Cholesky
factorization, but where A has a zero element we replace any nonzero element of L or U by a zero. That
is, zero fill-in is enforced.

The next step of sophistication is to prescribe some pattern [Muster] P of forced zeros:

P ⊆
{
(i, j)

∣∣ i 6= j, ai,j = 0, 1 ≤ i ≤ N, 1 ≤ j ≤ N
}
. (10.6)

One version of the corresponding ILU factorization algorithm without pivoting looks as follows:

155

Algorithm 10.1 (ILU FACTORIZATION WITH FIXED PATTERN P).

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do
if (i, k) 6∈ P ,
aik := aik/akk ;
for j = k + 1, . . . , n do
if (i, j) 6∈ P ,
aij := aij − aik ∗ akj ;

endif
endfor

endif
endfor

endfor

This simple ILU factorisation is known as ILU(0). Although effective, in some cases the accuracy of
the ILU(0) may be insufficient to yield an adequate rate of convergence. More accurate factorisations will
differ from ILU(0) by allowing some fill-in. The resulting class of methods is called ILU(f), where f
is the level-of-fill. A level-of-fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the level-of-fill. The level-of-fill should be indicative of the size of the
element: the higher the level-of-fill, the smaller the elements. A simple model can be employed to justify
to effectiveness of this approach is detailed in [Saa96a, Section 10.3.3].

Alternative dropping techniques can be based on the numerical size of the element to be discarded.
Numerical dropping strategies generally yield more accurate factorisations with the same amount of fill-in
than level-of-fill methods. The general strategy is to compute an entire row of the L̃ and Ũ matrices, and
then keep only the biggest entries in a certain number. In this way, the amount of fill-in is controlled;
however, the structure of the resulting matrices is undefined. These factorisations are usually referred to as
ILUT, and a variant which performs pivoting is called ILUTP. Many other variants have been presented in
literature; see for instance [Axe94, Saa96a, Cv97].

Of course, there is no guarantee that ILU decompositions exist, even when A is nonsingular, since we
do not include pivoting here. But worse, the ILU decomposition may not exist even when the full LU
decomposition of A exists. For example, even when A is spd, the ILU decomposition or the corresponding
IC decomposition need not exist. But there are classes of matrices for which it can be shown that the ILU
decomposition exists, at least in exact arithmetic.

It is easy to show that after the ILU decomposition — if it can be completed — holds

A = LU−R , (10.7)

where
lij = 0 if i < j or (i, j) ∈ P ,
uij = 0 if i < j or (i, j) ∈ P ,
rij = 0 if (i, j) 6∈ P .

(10.8)

If one wants to avoid the assumption (i, j) ∈ P =⇒ ai,j = 0 in the definition of P , then one needs the
following assignment before executing the algorithm

∀(i, j) ∈ P with aij 6= 0 : rij := −aij , aij := 0 . (10.9)

But this is hardly ever required in practice.
In other versions of ILU algorithms the pattern P is not fixed in advance, but depends on the sizes of

the matrix elements that are constructed: any constructed small element of L or U is deleted on the spot
by comparison with a threshold (drop tolerance) T . This version is called ILUT. A detailed treatment of
various ILU algorithms is given in [Saa96b].

MATLAB provides for example:

156

[L,U,P] = luinc(A,’0’): ILU with pivoting, no fill-in
[L,U,P] = luinc(A,droptol): ILUT with pivoting
[L,U,P] = cholinc(A,’0’): IC with no fill-in
[L,U,P] = cholinc(A,droptol): IC with drop tolerance

10.3 Polynomial preconditioning

Given A and c, a Krylov space solver applied to Aw = c delivers approximations w` of w? :≡ A−1c,
and according to (9.43) we have, when choosing w0 := o,

w` = q`−1(A)c ∈ K`(A, c) . (10.10)

For some Krylov space solvers, the polynomial q`−1 ∈ P`−1 depends on the right-hand side c, but in others,
like Jacobi or Chebyshev iteration, it does not. Let us assume the latter case. Then q`−1(A) can be viewed
as an operator that maps any c into an approximation of A−1c. In particular, if c := Aw is considered
as an image point of A (and if A is nonsingular, it always can be considered so), then q`−1(A)A can be
viewed as an approximation of the identity. So, C := q`−1(A) is an approximate inverse of A, which can
be used for preconditioning.

In summary: given any Krylov space solver whose recurrence coefficients only depend on A but not on
c, and given any fixed iteration number `, if q`−1 ∈ P`−1 is the polynomial representing the `th iterate w`

when solving Aw = c, then C := q`−1(A) is an approximate inverse of A.
To implement this preconditioner for computing, say, CAz, we first compute c := Az and then

perform ` steps of the Krylov space solver applied to Aw = c; so that w` = CAz.
As early as 1959, it was suggested by [Rut59] to use Chebyshev iteration in this way as a preconditioner

(although the notion of “preconditioning” did not yet exist at that time).

10.4 Inner-outer iteration

A natural generalization of polynomial preconditioning is to allow to use any Krylov space solver, even
one where q`−1 depends on c, and also to allow ` to vary from one application of C to the next; so we
should write Cn when applying the inner iteration [innere Iteration] the nth time, that is, in the nth step
of the outer iteration [äussere Iteration]. Instead of choosing ` in advance, we may then terminate each
inner iteration when the inner residual

cn −Awn,` = cn −A qn,`n−1(A)︸ ︷︷ ︸
≡: Cn

cn = (I−Aqn,`n−1(A))︸ ︷︷ ︸
≡: pn,`n(A)

cn

is considered small enough. It need not be very small. The combination of such a flexible preconditioning
[flexible Vorkonditionierung] with a Krylov space solver as outer iteration is called inner-outer iteration
and has become very fashionable recently.

10.5 Sparse Approximate Inverse Preconditioners (SPAI)F

Rather than constructing an approximationP of A, an alternative is to build M = P−1 which approximates
A−1 directly. When M is available, no inversion or solve operations will be required on the preconditioning
stage. Preconditioners based on this technique are called “explicit” preconditioners, while those based on
the former are called “implicit.”

To approximate A−1 is a difficult task since this matrix is in general dense, and moreover the con-
struction should be done in parallel. One possible way to operate is to minimise the Frobenius norm of the
residual matrix I−AMF . An important feature of this objective function is that it can be decoupled as the
sum of squares of the 2-norm of the n individual column:

I−AM2
F =

n∑

j=1

ej −Amj
2
2, (10.11)

157

in which ej and mj are the j−th column of the identity matrix I and of matrix M, respectively. Hence,
one can minimise the individual functions ej − Amj

2
2. This approach has been proposed by Grote and

Huckle [GH97]. Of course, the exact inverse will be found if no restriction is placed on M. Usually, a
sparsity pattern (that is, the set of non-zero indexes) for M is prescribed (or other dropping strategies as in
ILU preconditioners), or minimisation is performed using an iterative method like GMRES, implemented
with sparse matrix-vector and sparse vector-vector operators.

A notable disadvantage of this approach is that it is difficult to assess in advance whether or not the
resulting matrix will be non-singular. An alternative is to seek a two-sided approximation, i.e. a pair of L

and U respectively lower triangular and upper triangular, which attempt to minimise the objective function

‖I− LAU‖2F .

Gould and Scott [GS98] indicate that the SPAI preconditioner may be a good alternative to ILU, but it
is more expensive to compute both in terms of time and storage, at least if computed sequentially. Thus,
the use of SPAI preconditioner can be of interest when used for several right-hand sides.

References about SPAI methods can be found in [BMT96, BT98, Zha98, Cho00]. For a comparative
study of various SPAI preconditioners we refer to [BT99].

10.6 Domain Decomposition Preconditioners

A class of preconditioners, well-suited for parallel computations, is based on the domain decomposition
(DD) approach. The basic idea of DD methods is to decompose the computational domain Ω into M
smaller parts Ωi, i = 1, . . . ,M , called subdomains, such that

Ω =

M⋃

i=1

Ωi and Ωi ∩ Ωj = ∅ for i 6= j. (10.12)

Next, the original problem can be reformulated within each subdomain Ωi, of smaller size. This family of
subproblems is coupled one to another through the values of the unknown solution at subdomain interface.
This coupling is then removed at the expense of introducing an iterative process which involves, at each
step, solutions on the Ωi with additional interface conditions on ∂Ωi \ ∂Ω.

Note that the term DD can embrace a large variety of numerical schemes. Each subdomain may refer
to a different physical region, modelled with different physical or numerical models. This leads to the so-
called heterogeneous DD; see [QV99, Chap. 8]. On the other hand, when each subdomain is modelled and
discretized using the same equations and numerical model, one has a homogeneous domain decomposition.

The class of homogeneous DD methods is rather large. A common classification divides these DD
methods into two groups [SBG96b, CM94, SBG96a, QV99]:

• In the first group, named after Schwarz, the computational domain is subdivided into overlapping
subdomains (as depicted on the left of Figure 10.1), and local Dirichlet-type problems are then solved
on each subdomain. The “communication” between the solutions on the different subdomains is here
guaranteed by the overlapping region. This method has been proposed by H.-A. Schwarz in 1870 to
prove the existence of solutions of elliptic PDEs on domains of complex shape, that is, domains for
which no exact solution of the problem is available [Sch70].

• The second group uses non-overlapping subdomains (as shown on the right of Figure 10.1). It
is thus possible to decompose the unknowns into two sets: one formed by the unknowns on the
interface between subdomains, the other formed by unknowns associated with nodes internal to the
subdomains. At the algebraic level, one may then compute the Schur complement (SC) matrix by
“condensing” the unknowns in the second set. The system is then solved by first computing the values
of the interface unknowns and then solving the independent problems for the internal unknowns.

These DD methods are usually rather inefficient when used as solvers of the linear problem; however,
they can be reformulated as efficient parallel preconditioners. Note that all the state-of-the-art DD precon-
ditioners consist of local and global components. The local part, acting at the subdomain level, captures the

158

ΩΩΩ Ω2121

Figure 10.1: Example of overlapping (left) and non-overlapping (right) DD. Overlapping area is shaded.

strong couplings that appear between neighbouring subdomains, while the global part provide an overall
– although inexpensive – communication among the subdomains. Should a preconditioner act only locally,
then the iterative method that uses such a local preconditioner will have convergence rate that depends
strongly on the number of the subdomains.

The global component is usually referred to as a “coarse space correction”, since usually it is defined
on a space that is coarse with respect to the fine space containing the solution. The complexity of this
auxiliary problem is much lower than that of the original problem, and its role is to diffuse information
among the subdomains. In an analogous manner to multigrid methods, this coarse space is used to correct
the “smooth” part of the error, whereas the (local) preconditioner is used to damp the “high-frequency”
part.

[1D Poisson problem] For the sake of clarity, we will illustrate the notation considering the
1D Poisson problem

−u′′(x) = f(x) x ∈ Ω = (0, 1)
u(x) = 0 x ∈ Γ = ∂Ω

(10.13)

Following the FEM principle introduced in Chapter 6, we start by discretising the computa-
tional domain Ω by subdividing the unit interval into disjoint subintervals [ih, (i + 1)h] of
width h = 1/N each. The element functions that we use to model the solution are the hat
functions ψi centered at xi = ih and formaly defined as

ψi(x) =





h−1(x− xi−1), xi−1 ≤ x ≤ xi
1− h−1(x− xi), xi ≤ x ≤ xi+1

0, otherwise

PSfrag replacements

xi−1 xi xi+1

spanning the function space
Vh = {ψ1, ψ2, . . . , ψN−1} (10.14)

of piecewise linear functions.
Finally, we define the associated bilinear forms a(·, ·) and the linear form b(·) as

a(v, u) =

∫

Ω

v′(x)u′(x) dΩ and b(v) =

∫

Ω

v(x)f(x) dΩ, (10.15)

which are used to construct the discrete representation of the variational problem

Ax = b where Ai,j = a(ψi, ψj), bi = b(ψi). (10.16)

Note that the homogeneous Dirichlet boundary conditions are satisfied by not including ψ0

and ψN into the space Vh.

159

10.6.1 One-level Schwarz Preconditioners

The simplest Schwarz preconditioner is the one-level preconditioner, defined as follows. We divide Ω
into M subdomains {Ωi}Mi=1 such that Ω =

⋃M
i=1 Ωi and with an overlap width of the order of δ = ξh,

where ξ ∈ N+ and h denotes the meshwidth of the geometry discretisation. The value ξ = 1 corresponds to
the minimal overlap, that is, in that case we mean that the overlap among the subdomains is of one element.
From an algorithmic point of view, we can think to subdivide Ω into M non-overlapping subdomains Ω̂i,
and then extend each of them to Ωi by adding all layers of elements in Ω within a distance δ from Ω̂i. See
Figure 10.2 for an illustration of a 1D and a 2D domain Ω partitioned into several non-overlapping regions
Ω̂i, on the left, and into extended subdomains, on the right.

PSfrag replacements

Ω̂1

Ω̂2

Ω̂3

PSfrag replacements

Ω1

Ω2

Ω3

PSfrag replacements

Ω̂1 Ω̂2

Ω̂3 Ω̂4

PSfrag replacements

Ω1 Ω2

Ω3 Ω4

Figure 10.2: Decomposition of the domain Ω into subdomains. (top/left) The 1D domain is decomposed
into 3 non-overlapping subdomains Ω̂i. (top/right) By expanding the subdomains, yielding regions Ωi,
we obtain simple overlaps depicted in grey. (bottom/left) The 2D domain is decomposed into 4 non-
overlapping subdomains Ω̂i. (bottom/right) By expanding the subdomains, yielding regions Ωi, we obtain
simple and multiple overlaps depicted in grey.

By notation, let H be the linear size of the subdomains, H = max{diam(Ωi)}. We assume that all
subdomains have comparable size, i.e.,C1H ≤ diam(Ωi) ≤ C2H , whereC1 andC2 are positive constants
independent of H .

Now consider the discretised problem formulation (10.14), (10.15), (10.16). Vh is the standard finite
element space spanned by the basis functions associated with the nodes in Ω \ ∂Ω. Let Vi ⊂ Vh be the
finite element space spanned by the basis function associated to the nodes in Ωi \ ∂Ωi, and let ni be the
dimension of Vi. Moreover, letRi be the restriction operator Vh → Vi and Ri the associated ni×nmatrix.
RT
i is the injection map, more precisely RT

i is a n× ni matrix whose action extends by zero a vector with
nodal values in Ωi \ ∂Ωi.

[1D Poisson problem continued] After having discretised the computational domain, we form
the function subspaces Vi by grouping the appropriate element functions ψj . To this end, we
define the quantities mk which correspond to the numbers of subintervals that belong to the
different subdomains only. These quantities satisfy the relation

M∑

k=1

mk = N − (M − 1)ξ (10.17)

and should be chosen about the same size to ensure balanced subdomain sizes. We then con-

160

PSfrag replacements

Ω1

Ω2

Ω3

PSfrag replacements

Ω1

Ω2

Ω3

ρ1(x) ρ2(x) ρ3(x)

0

1

Figure 10.3: Domain decomposition on the discretised geometry. (left) Partitioning of the computational
domain using ξ = 1. (right) Definition of the (unit partitioning) weight functions ρk(x) which guarantee a
“conservation of the solution” in the overlaps.

tinue by defining the start index sk and end index ek of each subdomain, i.e.

sk+1 = ek − ξ
ek+1 = ek +mk+1 + ξ

}
with





s1 = 0
e1 = m1 + ξ
eM = N

(10.18)

and with their help we finally define the function subspaces

Vi = {ψsi+1, ψsi+2, . . . , ψei−1} where ni = ei − si − 1. (10.19)

Note that this choice implies

Hmax = max
k

Hk = h
(⌈N

M

⌉
+ 2ξ

)
. (10.20)

For the sake of clarity, we consider the concrete example shown in Figure 10.3 (left). The
chosen decomposition leads to the values

m = (2, 2, 2),
s = (0, 2, 5)
e = (3, 6, 8)

and
V1 = {ψ1, ψ2}
V2 = {ψ3, ψ4, ψ5}
V3 = {ψ6, ψ7}

(10.21)

In order to define the restriction matrices Rk, it is convenient to (at least implictly) define
the weight functions ρk(x), as shown in Figure 10.3 (right). With their help we readily obtain

Rk(i, sk + i) = ρk(xsk+i) for i = 1, . . . , nk. (10.22)

It is now possible to define the local bilinear forms

ai(·, ·) : Vi × Vi → R, i = 1, . . . ,M

which are in general an approximation of a(·, ·) (yet often it coincides with a). Should a(·, ·) be coercive,
then ai(·, ·) is coercive too. This guarantees that the corresponding algebraic matrix Ai is non-singular. In
the case of ai(·, ·) ≡ a(·, ·), the algebraic counterpart of ai(·, ·) is the matrix

Ai = RiART
i .

Let the non-singular symmetric matrix Ãi be either Ai itself or an approximation of it. Then, the additive
(or one-level) Schwarz preconditioner can be written as

P−1
S =

M∑

i=1

RT
i Ã−1

i Ri︸ ︷︷ ︸
Bi

. (10.23)

Remark 10.2. Non-symmetric preconditioners can be obtained using different restriction and prolongation
operators. A typical choice consists of using RT

i,0 instead of RT
i , where RT

i,0 represents the restriction
operator for the minimal overlap case. This preconditioner is called RAS [CS99, FS01].

161

Preconditioner (10.23) is not scalable. Its convergence rate deteriorates as the number of subdomains
increases (i.e., H decreases), as stated by the following theorem.

Theorem 10.1. Let Ãi = Ai. Then, there exists a positive constant C independent of H and h (but
possibly dependent on the operator coefficients) such that

κ(P−1
S A) ≤ C 1

Hδ
,

where κ(P−1
S A) denotes the condition number of A w.r.t. the inner PS-product and is defined as

κ(P−1
S A) := κ(P

−1/2
S AP

−1/2
S) =

λmax(P
−1/2
S AP

−1/2
S)

λmin(P
−1/2
S AP

−1/2
S)

.

Proof. See [DW90].

10.6.2 Two-level Schwarz Preconditioners

The non-scalability of the one-level Schwarz preconditioner is due to the fact that information is exchanged
only locally via the overlapping regions, while for elliptic problems the domain of dependence is global.
The Green’s function is non-zero throughout the whole domain, and some way of transmitting global
information is needed to make the algorithm scalable.

In a two-level Schwarz preconditioner, a further correction term B0 is added to the corrections on the
subdomains, obtaining

P−1
C = B0 + P−1

S =

M∑

i=0

Bi, (10.24)

where B0 = RT
0 A−1

0 R0 is the coarse level correction. A0 corresponds to the solution of the original
variational problem in the space V0, which is “coarse” in the sense that it contains a limited number of
degrees of freedom so to make the “exact” inversion of A0 computationally acceptable – if n0 is the
dimension of the coarse space, one has n0 � n.

Remark 10.3. To build up the stiffness matrix on the coarse grid, one has two possibilities. The first one
is to assemble the coarse grid exactly in the same way as on the fine level. This can be easily implemented
in simple cases, whereas it is more difficult if the coefficient exhibits rapid variation since in that case data
must be scaled down to the coarse grid. The second possibility is to build up the coarse matrix using the
method called the Galerkin approximation,

A0 = R0ART
0 . (10.25)

This can be performed using matrix multiplication techniques.

Since rank(RT
0 A−1

0 R0) = n0, B0 has a large null space. Therefore, it cannot be directly used as a
preconditioner: any component of the error which lies in the null space of RT

0 A−1
0 R0 is never corrected.

Therefore, the formulation of equation (10.24) completes B0. Note that B0 reduces only the components
of the error that can be represented on the coarse space, that is, the low frequencies, whereas PS corrects
the high frequencies.

The spectral properties (and the parallel performances) of two-level Schwarz preconditioners will de-
pend strongly on the definition of the coarse space V0. There are virtually unlimited choices of the coarse
grid correction that may be used. Convergence of the entire scheme will depend on the particular interpo-
lation and coarse grid operator used. Whenever possible, the coarse space V0 should be contained in Vh.
Usually, the coarse operator represents the discretisation of the continuous problem on a very coarse mesh.
This is the common case, for instance, of structured grids like the one depicted in Figure 10.4. In this case,
the following result holds.

162

Figure 10.4: Example of coarse mesh selection. (left) The original mesh (top) is either coarsened following
an algebraic reasoning (middle) or a geometric one (bottom). (right) If a structured grid is available (e.g. for
a 2D domain), the elments (triangles) of the fine mesh (thin) are contained in the elements of a coarser mesh
(thick), suggesting a geometric approach.

Theorem 10.2. Consider the additive two-level overlapping Schwarz method, where the overlap is uni-
form of width O(δ), the coarse grid space V0 corresponds to the finite-element functions on elements of
width O(H), and V0 ⊂ Vh. Then

κ(P−1
C A) ≤ C

(
1 +

H

δ

)
, (10.26)

where C does not depend on h, H and δ and, similar to Theorem 10.1, κ(P−1
C A) denotes the condition

number w.r.t. the inner PC-product.

Proof. See [SBG96a].
In a more general setting, with a coarse space which is not embedded in the fine space, it is possible to

prove more general (yet usually weaker) theorems. For more details we refer the reader to [CZ96, CGZ99].

[1D Poisson problem concluded] The coarse grid correction B0 can be implemented in nu-
merous ways, mainly depending on the coarse level restriction R0.

An algebraic way to construct R0 using the already available restriction mappings Ri can
be formulated as

RT
0 = (RT

1 1,RT
2 1, . . . ,RT

M1), (10.27)

where 1 is the vector consisting of all ones. Note that this corresponds to defining the functions

ψ
(0)
k (x) =

ek∑

i=sk

ρ(xi)ψi(x) yielding V0 = {ψ(0)
1 , ψ

(0)
2 , . . . , ψ

(0)
M }, (10.28)

as shown in Figure 10.4 (left).
This approach typically suffers from a poor conditioning of the matrix A0 and thus an

alternative set of functions ψ(0)
k should be chosen. Hence, let us turn our attention to a geomet-

ric approach. Following the FEM paradigm and assuming the availability of a coarser mesh
(nested into the already used one), one could chose ψ(0)

k to be the set of hat functions on the
coarse grid, see Figure 10.4 (left).

We conclude this section by reporting a few numerical results that validate Theorems 10.1
and 10.2. In this case we have

κ(P−1
S A) ≤ C1

1

Hδ
≈ C1

1

ξ
NM (10.29)

κ(P−1
C A) ≤ C2

(
1 +

H

δ

)
≈ C2

1

ξ

N

M
(10.30)

163

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

MN

κ(
P

S−
1 A

)

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

N/M

κ(
P

C−
1 A

)

Figure 10.5: Condition number estimates for several overlaps ξ (• = 1, ◦ = 2, � = 3, ♦ = 4) obtained
by a Lanczos procedure. (left) Estimate for the one-level Schwarz preconditioner (right) Estimate for the
two-level additive Schwarz preconditioner

since H ≈ M−1 and δ ≈ ξN−1. The condition number estimates shown in Figure 10.5
exhibit the behaviour predicted by (10.29) and (10.30), respectively.

10.7 Multigrid Preconditioners

A very important class of methods, mainly developed during the 80’s, is the class of multigrid (MG)
methods, which can be used as solvers and preconditioners for both linear and non-linear systems.

MG methods are based on the observation that the (one-level) schemes presented in Sections 10.1
to 10.5 are well suited for reducing high frequency components of the residual, while they are less effective
on the low frequency part. This is why they are often referred to as smoothers.

[Smoothing properties of damped Jacobi] We reconsider the 1D Poisson problem described
in Section 10.6. Similar to before, we discretise the computational domain Ω by using the
grid G1 = {j h1}N1

j=0, this time subdividing the unit interval into N ≡ N1 = 2L subintervals
of width h1 = 1/N1. Moreover, we choose the hat functions ψi as element functions and
assemble the corresponding sparse matrix A ≡ A1 and the right-hand side b ≡ b1 according
to (10.16).

For this problem the damped Jacobi iteration represents a simple yet powerful smoother.
In fact, given a damping parameter ω, one can perform ν steps of

xk+1 = xk + ωD−1rk with rk = b−Axk, (10.31)

which corresponds to performing ν steps of the iteration

rk+1 =
(
I− ωD−1A

)
︸ ︷︷ ︸

J(ω)

rk, (10.32)

where D contains the diagonal entries of A and rk is the residual associated with xk . By
choosing the optimal ω = 2/3, see [Hac85], the Jacobi operator J(ω) acts as damping device
on the high frequency components of the residual r only, as shown in Figure 10.6.

Intuitively, one can think of recasting the original problem (and the associated residual in particular) into
an auxiliary problem, where the former low part of the spectrum will become the high part of the new
spectrum. Analogous to before, these high frequencies can be damped by using an appropriate smoother.
The procedure can be recursively repeated yielding a sequence of problems related to the orignal one.

164

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Index k

λ k(I
 −

 ω
D

−
1 A

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

100

150

200

Figure 10.6: Effect of applying a smoother (left) The spectrum of the damped Jacobi operator for several
values ω (—: 1.0, −−: 0.8, —: 0.67, − · −: 0.6, · · · : 0.4). The optimum is attained at ω = 2/3, where
the first eigenvalue in the upper half of the spectrum and the last one have the same magnitude. (right)
Applying the damped Jacobi iteration to an actual approximation dampens the high frequency coefficients,
whereas the low frequency coefficients are preserved.

This sequence of auxiliary problems can be constructed by resorting to geometric or algebraic proce-
dures. In fact, if the original problem is set on a mesh which has been obtained by several refinement steps,
one can use this grid hierarchy to define transfer operators between the finer and the coarser meshes, then
speaking of geometric multigrid (GMG) [Bra86]. Conversely, if no such hierarchy is available, transfer
operators can algebraicaly be derived by considering the system matrix (on the corresponding level) lead-
ing to algebraic multigrid (AMG) schemes [RS85]. More about such schemes, their implementations and
their implications can be found in [BCF+00], [Wes92], [Hac94] and [St01].

For the sake of simplicity we will restrict ourselves to the simplest case of a GMG which, as in the
Domain Decomposition case presented in Section 10.6, will be illustrated using the 1D Poisson prob-
lem (10.13). Assume that we are given a sequence of nested grids Gk , k = 1, . . . , L, with mesh widths hk
and that we want to compute the solution to the problem

Akxk = bk (10.33)

defined on the finest mesh (h ≡ h1), where the matrix A1 ∈ R
n1×n1 and the vector b1 ∈ R

n1 stem from
a (FE) discretisation say of a PDE problem. Moreover, let

Rk ∈ R
nk+1×nk and Pk ∈ R

nk×nk+1 (k = 1, . . . , L− 1) (10.34)

be restriction and prolongation operators that will be used to transfer vectors between the gridsGk andGk+1.

[1D Poisson Problem revisited] For the 1D Poisson problem, we generate a sequence of
grids G1, . . . , GL so that hk = 2k−1h1. The transfer operators Pk and Rk are chosen to
be the linear interpolation and extrapolation operators between the corresponding grids Gk

and Gk+1 and are defined as

Rk(i, [2i− 1, 2i, 2i+ 1]) = [0.25, 0.5, 0.25]

Pk([2i− 1, 2i, 2i+ 1], i) = [0.50, 1.0, 0.50]T

for k = 1, . . . , L− 1 and i = 1, . . . , nk where

Nk+1 =
1

2
Nk and nk = Nk − 1. (10.35)

Figure 10.7 shows a grid hiearchy with L = 4 and illustrates the action of the restriction and
prolongation operators.

165

PSfrag replacements

R1

R2

R3

P1

P2

P3

G1

G2

G3

G4

Figure 10.7: Grid hierarchy with associated restriction and prolongation operators.

Given an approximate solution x1 to problem (10.33) we start by applying the smoother S1 in order to
damp the high frequency components of the residual, i.e.

x̄1 = S1(x1,b). (10.36)

Typical smoothers are matrix splitting based methods (Damped Jacobi, SOR, SSOR), incomplete factori-
sations (ILUT, ILUS, ILUC), polynomial methods, SPAIs and one-level domain decomposition methods.
For details we refer the interested reader to [Hac85, BHM00, Wes92, TOS01]. Then, we compute the
associated residual

r1 = b1 −A1x̄1 (10.37)

and recall the residual relation
A1e1 = −r1, (10.38)

where e1 = x̄1 − x?1 denotes the approximation error and x?1 the exact solution.
At this point we proceed by restricting the residual equation onto the next coarser grid G2, i.e. we

construct the coarse grid projected problem

A2x2 = (R1A1P1)x2 = −R1r1 = b2. (10.39)

Note, that since r1 is smooth by construction there will be no aliasing artifacts when restricting to the next
coarser level.

Once problem (10.39) has been solved, we prolongate the solution x2, which corresponds to the re-
stricted approximate error e1, and we add it to the current approximation

x̂1 = S1(x̄1 −P1x2), (10.40)

where, in order to alleviate prolongation artifacts, a so called post smoothing is performed.
If we apply this idea recursively, i.e. if we (approximately) solve the linear system (10.39) by us-

ing the same smooth–restrict–approximate–prolongate–smooth mechanism described in (10.36), (10.39)
and (10.40) on the next coarser grids G2, . . . , GL, we come up with the well known V-cycle for the multi-
grid iteration scheme, whose pseudo code formulation reads

Algorithm 10.2.
MGV(A,b,x, k){
if (k = L) then

x̂ := A−1b

else
x̄ := Sk(b,x)
r := b−Ax̄

e := MGV(RkAPk,−Rkr,0, k + 1)
x̂ := Sk(b, x̄−Pke)

endif
return(x̂)

}

166

Bibliography

[Axe94] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994.

[BCF+00] M. Brezina, A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F. Mc-
Cormick, and J.W. Ruge. Algebraic multigrid based on element interpolation (AMGe). SIAM
Journal on Scientific Computing, 22(5):1570–1592, 2000.

[BCT00] M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse preconditioning for the
conjugate gradient method. SIAM Journal on Scientific Computing, 22(4):1318–1332, 2000.

[BGH05] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Max–Planck-Institut für
Mathematik in den Naturwissenschaften, revised edition, 2005. Lecture notes, http://www.
mis.mpg.de/scicomp/Fulltext/WS HMatrices.pdf.

[BH03] M. Bebendorf and W. Hackbusch. Existence ofH-matrix approximants to the inverse fe-matrix
of elliptic operators with l∞-coefficients. Numerische Mathematik, 95:1–28, 2003.

[BHM00] William L. Briggs, Van Emden Henson, and Steve McCormick. A multigrid tutorial, Second
Edition. SIAM, Philadelphia, 2000.

[BMT96] M. Benzi, C.D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the
conjugate gradient method. SIAM Journal on Scientific Computing, 17(5):1135–1149, 1996.

[Bra77] A. Brandt. Multi-level Adaptive Solutions to Boundary-Value Problems. Math. Comp.,
31:333–390, 1977.

[Bra86] A. Brandt. Algebraic multigrid: the symmetric case. Appl. Math. Comp., 19:23–56, 1986.

[BT98] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric linear
systems. SIAM Journal on Scientific Computing, 19(3):968–994, 1998.

[BT99] M. Benzi and M. Tůma. A comparative study of sparse approximate inverse preconditioners.
Applied Numerical Mathematics: Transactions of IMACS, 30(2–3):305–340, 1999.

[BT03] M. Benzi and M. Tůma. A robust incomplete factorization preconditioner for positive definite
matrices. Numerical Linear Algebra with Applications, 10:385–400, 2003.

[CGZ99] T.F. Chan, S. Go, and J. Zou. Boundary treatments for multilevel methods on unstructured
meshes. SIAM Journal on Scientific Computing, 21(1):46–66, 1999.

[Cho00] E. Chow. A priory sparsity patterns for parallel sparse approximate inverse preconditioners.
SIAM Journal on Scientific Computing, 21:1804–1822, 2000.

[CM94] T.F. Chan and T.P. Mathew. Domain decomposition algorithms. In Acta Numerica, pages
61–143. Cambridge University Press, 1994.

[CS99] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM Journal on Scientific Computing, 21:239–247, 1999.

167

[Cv97] T.F. Chan and H. van der Vorst. Approximate and incomplete factorizations. In D.E. Keyes,
A. Sameh, and V. Venkatakrishnan, editors, Parallel Numerical Algorithms, ICASE/LaRC In-
terdisciplinary Series in Science and Engineering, pages 167–202. Kluwer, Dordrecht, 1997.

[CZ96] T.F. Chan and J. Zou. A convergence theory of multilevel additive Schwarz methods on un-
structured grids. Numer. Algorithms, 13:365–398, 1996.

[DW90] M. Dryja and O.B. Widlund. Towards a unified theory of domain decomposition algorithms for
elliptic problems. In T.F. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Third In-
ternational Symposium on Domain Decomposition Methods for Partial Differential Equations,
pages 3–21. SIAM, Philadelphia, PA, 1990.

[FS01] A. Frommer and D.B. Szyld. An algebraic convergence theory for restricted additive Schwarz
methods using weighted max norms. SIAM Journal on Numerical Analysis, 39:463–479, 2001.

[GH97] M. J. Grote and Th. Huckle. Parallel preconditioning with sparse approximate inverses.
18(3):838–853, 1997.

[GH03] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing,
70:295–334, 2003.

[Gre97] A. Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in Applied Mathemat-
ics 17. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[GS98] N. Gould and J. Scott. Sparse approximate-inverse preconditioners using norm-minimization
techniques. SIAM Journal on Scientific Computing, 19(2):605–625, 1998.

[Hac85] W. Hackbusch. Multi-grid Methods and Applications. Springer-Verlag, Berlin, 1985.

[Hac94] W. Hackbusch. Iterative Solution of Large Sparse Linear Systems of Equations. Springer-
Verlag, Berlin, 1994.

[Hac99] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices. Computing, 62:89–108, 1999.

[QV99] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations.
Oxford University Press, Oxford, 1999.

[RS85] J.W. Rube and K. Stüben. Efficient solution of finite difference and finite element equations by
algebraic multigrid (AMG). In D. J. Paddon and H. Holstein, editors, Multigrid Methods for In-
tegral and Differential Equations, The Institute of Mathematics and its Application Conference
Series, 3, pages 169–212. Claredon Press, Oxford, 1985.

[RS87] J. Ruge and K. Stuben. Algebraic multigrid (AMG). In S. McCormick, editor, Multigrid
Methods. Frontiers in Applied Mathematics, 1987.

[Rut59] H. Rutishauser. Theory of gradient methods. In Refined Iterative Methods for Computation of
the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Mitt. Inst. angew.
Math. ETH Zürich, Nr. 8, pages 24–49. Birkhäuser, Basel, 1959.

[Saa96a] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston, 1996.

[Saa96b] Youcef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[SBG96a] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel methods for
elliptic partial differential equations. Cambridge University Press, 1996.

[SBG96b] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Parallel Multilevel Methods for
Elliptic Partial Differential Equations. Cambridge University Press, 1996.

168

[Sch70] H.-A. Schwarz. Uber einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift
der Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870.

[SHT04] M. Sala, J. Hu, and R. Tuminaro. ML 3.1 smoothed aggregation user’s guide. Technical Report
SAND-4819, Sandia National Laboratories, September 2004.

[St01] K. Stben. A review of algebraic multigrid. Journal of Computational and Applied Mathematics,
128(1-2):281–309, 2001.

[TOS01] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press, Inc., 2001.

[Var00] R. Varga. Matrix Iterative Analysis, Second Edition. Springer-Verlag, Berlin, 2000.

[VBM98] P. Vanek, M. Brezina, and J. Mandel. Convergence of Algebraic Multigrid Based on Smoothed
Aggregation. Technical Report report 126, UCD/CCM, Denver, CO, 1998.

[Wes92] P. Wesseling. An Introduction To Multigrid Methods. Wiley, New York, 1992.

[Zha98] J. Zhang. A sparse approximate inverse technique for parallel preconditioning of general sparse
matrices. Technical Report 281-98, Department of Computer Science, University of Kentucky,
Lexington, KY, 1998.

169

Chapter 11

Finite Difference and
Finite Element Discretisations of
Eigenvalue ProblemsF

Before we start with the subject of this chapter we want to show how one actually gets to large eigenvalue
problems at all. What large means at all. We thereby restict ourselves on problems from physics [CH68,
Str86].

11.1 What makes eigenvalues interesting?

Eigenvalues are connected to vibrations. Objects like violin strings, drums, bridges, sky scrapers can swing.
They do this at certain frequencies. And in some situations they swing so much that the are destroyed. On
November 7, 1940, the Tacoma narrows bridge collapsed, less than half a year after their opening. Strong
winds exited the bridge so much that the platform in reinforced concrete fell in pieces. A few years ago the
London millenium footbridge started wobbling in a way that it had to be closed. The wobbling had been
excited by the pedestrians passing the bridge. These are prominent examples of vibrating structures.

But eigenvalues appear in many other places. Electric fields in cyclotrones, a special form of particle
accelerators, have to vibrate in a precise manner, in order to accelerate the charged particles that circle
around its center. The solutions of the Schrödinger equation from quantum physics and quantum chemistry
have solutions that correspond to vibrations of the, say, molecule it models. The eigenvalues correspond to
energy levels that molecule can occupy.

Many characteristic quantities in science are eigenvalues,

• decay factors

• frequencies

• norms of operators (or matrices)

• singular values

• condition numbers

In the squel we give a few simple examples that show why computing eigenvalues is important. At the
same time we introduce some notation.

170

11.2 Example 1: The vibrating string

11.2.1 Problem setting

Let us consider a string as displayed in Fig. 11.1. The string is fixed at both ends, at x = 0 and x = L.

u

x
L0

u(x,t)

Figure 11.1: The vibrating string

The x-axis coincides with the string’s equilibrium position. The displacement of the rest position at x,
0 < x < L, and time t is denoted by u(x, t).

We will assume that the spacial derivatives of u are not very big:

|∂u
∂x
| is small.

This assumption entails that we neglect terms of higher order.
Let v(x, t) be the velocity of the string at position x and at time t. Then the kinetic energy of a string

section ds of mass dm = ρ ds is given by

dT =
1

2
dm v2 =

1

2
ρ ds

(
∂u

∂t

)2

. (11.1)

From Fig. 11.2 we see that ds2 = dx2 +
(
∂u
∂x

)2
dx2 and thus

ds

dx
=

√
1 +

(
∂u

∂x

)2

= 1 +
1

2

(
∂u

∂x

)2

+ higher order terms.

Plugging this into (11.1) and omitting all higher order terms (leaving just the number 1) gives

dT =
ρ dx

2

(
∂u

∂t

)2

.

The kinetic energy of the whole string is obtained by integrating over its length,

T =

∫ L

0

dT (x) =
1

2

∫ L

0

ρ(x)

(
∂u

∂t

)2

dx

The potential energy of the string has two components

171

ds

dx

Figure 11.2: The vibrating string

1. the stretching times the excerted strain τ .

τ

∫ L

0

ds− τ
∫ L

0

dx = τ

∫ L

0



√

1 +

(
∂u

∂x

)2

− 1


 dx

= τ

∫ L

0

(
1

2

(
∂u

∂x

)2

+ higher order terms

)
dx

2. exterior forces of density f

−
∫ L

0

fudx

Summing, the kinetic energy of the string becomes

V =

∫ L

0

(
τ

2

(
∂u

∂x

)2

− fu
)
dx (11.2)

To consider the motion (vibration) of the string in a certain time interval t1 ≤ t ≤ t2 we form the integral

I(u) =

∫ t2

t1

(T − V) dt

=
1

2

∫ t2

t1

∫ L

0

[
ρ(x)

(
∂u

∂t

)2

− τ
(
∂u

∂x

)2

− fu
]
dx dt

(11.3)

Here functions u(x, t) are admitted that are differentiable with respect to x and t and satisfy the boundary
conditions (BC) that correspond to the fixed string,

u(0, t) = u(L, t) = 0, t1 ≤ t ≤ t2, (11.4)

as well as given initial conditions and end conditions,

u(x, t1) = u1(x),
u(x, t2) = u2(x),

0 < x < L. (11.5)

172

According to the principle of Hamilton a mechanical system with kinetic energy T and potential energy
V behaves in a time interval t1 ≤ t ≤ t2 for given initial and end positions such that

I =

∫ t2

t1

Ldt, L = T − V,

is minimized.
Let u(x, t) be such that I(u) ≤ I(w) for all w, that satisfy the initial, end, and boundary conditions.

Let w = u+ ε v with
v(0, t) = v(L, t) = 0, v(x, t1) = v(x, t2) = 0.

v is called a variation. We now consider I(u+ ε v) as a function of ε. Then we have the equivalence

I(u) minimal ⇐⇒ dI
dε

(u) = 0 for all admitted v.

Plugging u+ ε v into eq. (11.3) we obtain

I(u+ ε v) =
1

2

t2∫

t1

L∫

0

[
ρ(x)

(
∂(u+ ε v)

∂t

)2

− τ
(
∂(u+ ε v)

∂x

)2

− 2f(u+ ε v)

]
dx dt

= I(u) + ε

t2∫

t1

L∫

0

[
ρ(x)

∂u

∂t

∂v

∂t
− τ ∂u

∂x

∂v

∂x
+ 2fv

]
dx dt+O(ε2).

(11.6)

Thus,
∂I

∂ε
=

∫ t2

t1

∫ L

0

[
−ρ∂

2u

∂t2
+ τ

∂2u

∂x2
+ 2 f

]
v dx dt = 0

for all admissible v. Therefore, the bracketed expression must vanish,

−ρ∂
2u

∂t2
+ τ

∂2u

∂x2
+ 2 f = 0. (11.7)

This last differential equation is named Euler-Lagrange equation.
Next we want to solve a differential equation of the form

−ρ(x)∂
2u
∂t2

+ ∂
∂x

(
p(x)∂u∂x

)
+ q(x)u(x, t) = 0.

u(0, t) = u(1, t) = 0
(11.8)

which is a generalization of the Euler-Lagrange equation (11.7) Here, ρ(x) plays the role of a mass density,
p(x) of a locally varying elasticity module. We do not specify initial and end conditions for the moment.

From physics we know that ρ(x) > 0 and p(x) > 0 for all x. These properties are of importance also
from a mathematical view point! For simplicity, we assume that ρ(x) = 1.

11.2.2 The method of separation of variables

For the solution u in (11.8) we make the ansatz

u(x, t) = v(t)w(x). (11.9)

Here, v is a function that depends only on the time t, while w depends only on the spacial variable x. With
this ansatz (11.8) becomes

v′′(t)w(x) − v(t)(p(x)w′(x))′ + q(x)v(t)w(x) = 0. (11.10)

173

Now we separate the variables depending on t from those depending on x,

v′′(t)

v(t)
=

1

w(x)
(p(x)w′(x))′ + q(x).

This equation holds for any t and x. We can vary t and x independently of each other without changing the
value on eech side of the equation. Therefore, each side of the equation must be equal to a constant value.
We denote this value by−λ. Thus, from the left side we obtain the equation

−v′′(t) = λv(t). (11.11)

This equation has the well-known solution v(t) = a · cos(
√
λt) + b · sin(

√
λt) where λ > 0 is assumed.

The right side of (11.10) gives a so-called Sturm-Liouville problem

−(p(x)w′(x))′ + q(x)w(x) = λw(x), w(0) = w(1) = 0 (11.12)

A value λ for which (11.12) has a non-trivial solution w is called an eigenvalue; w is a corresponding
eigenfunction. It is known that all eigenvalues of (11.12) are positive. By means of our ansatz (11.9) we
get

u(x, t) = w(x)
[
a · cos(

√
λt) + b · sin(

√
λt)
]

as a solution of (11.8). It is known that (11.12) has infinitely many real positive eigenvalues 0 < λ1 ≤
λ2 ≤ · · · , (λk −→

k→∞
∞). (11.12) has a non-zero solution, say wk(x) only for these particular values λk.

Therefore, the general solution of (11.8) has the form

u(x, t) =
∞∑

k=0

wk(x)
[
ak · cos(

√
λk t) + bk · sin(

√
λk t)

]
. (11.13)

The coefficients ak and bk are determined by initial and end conditions. We could, e.g., require that

u(x, 0) =
∞∑

k=0

akwk(x) = u0(x),

∂u

∂t
(x, 0) =

∞∑

k=0

√
λk bkwk(x) = u1(x),

where u0 and u1 are given functions. It is known that the wk form an orthogonal basis in the sapce of
square integrable functions L2(0, 1). Therefore, it is not difficult to compute the coefficients ak and bk.

In concluding, we see that the difficult problem to solve is the eigenvalue problem (11.12). Knowing
the eigenvalues and eigenfunctions the general solution of the time dependant problem (11.8) is easy to
form.

Eq. (11.12) can be solved analytically only in very special situation, e.g., if all coefficients are constants.
In general a numerical method is needed to solve the Sturm-Liouville problem (11.12).

11.3 Numerical methods for solving 1-dimensional problems

In this section we consider three methods to solve the Sturm-Liouville problem.

11.3.1 Finite differences

We approximate w(x) by its values at the discrete points xi = ih, h = 1/(n+ 1), i = 1, . . . , n.
At point xi we approximate the derivatives by finite differences. We proceed as follows. First we write

d

dx
g(xi) ≈

g(xi+ 1
2
)− g(xi+ 1

2
)

h
.

174

x
L0 x x x

i−1 i i+1

Figure 11.3: Grid points in the interval (0, L).

For g = pdwdx we get

g(xi+ 1
2
) = p(xi+ 1

2
)
w(xi+1)− w(xi)

h

and finally, for i = 1, . . . , n,

− d

dx

(
p
dw

dx
(xi)

)
≈ − 1

h

[
p(xi+ 1

2
)
w(xi+1)− w(xi)

h
− p(xi− 1

2
)
w(xi)− w(xi−1)

h

]

=
1

h2

[
p(xi− 1

2
)wi−1 + (p(xi− 1

2
) + p(xi+ 1

2
))wi − p(xi+ 1

2
)wi+1

]
.

Note that at the interval endpoints w0 = wn+1 = 0.
We can collect all equations in a matrix equation,




p(x 1
2

)+p(x 3
2

)

h2 + q(x1) −p(x 3
2
)

−p(x 3
2
)

p(x 3
2

)+p(x 5
2

)

h2 + q(x2) −p(x 5
2
)

−p(x 5
2
)

. . .
. . .







w1

w2

w3

...
wn




= λ




w1

w2

w3

...
wn




or, briefly,
Aw = λw. (11.14)

By construction,A ist symmetric and tridiagonal. One can show that it is positive definite as well.

11.3.2 The finite element method

We write (11.12) in the form

Find a twice differentiable function w with w(0) = w(1) = 0 such that

∫ 1

0

[−(p(x)w′(x))′ + q(x)w(x) − λw(x)] φ(x)dx = 0

for all smooth functions φ that satisfy φ(0) = φ(1) = 0.

To relax the requirements on w we integrate by parts and get the new so-called weak form of the
problem:

Find a differentiable function w with w(0) = w(1) = 0 such that

∫ 1

0

[−p(x)w(x)′φ′(x) + q(x)w(x)φ(x) − λw(x)φ(x)] dx = 0 (11.15)

for all differentiable functions φ that satisfy φ(0) = φ(1) = 0.

We now write w as the linear combination

w(x) =

n∑

i=1

ξi Ψi(x) (11.16)

175

x
L0 x x x

i−1 i i+1

1Ψi

Figure 11.4: A basis function of the finite element space: a hat function.

where

Ψi(x) =

(
1− |x− xi|

h

)

+

= max{0, 1− |x− xi|
h

}, (11.17)

is the function that is linear in each interval (xi, xi+1) and satisfies

Ψi(xk) = δik :=

{
1, i = k,
0, i 6= k.

An example of such a basis function, a so-called hat function, is given in Fig. 11.4.
We now replace w in (11.15) by the linear combination (11.16), and replace testing ‘against all φ’ by

testing against all Ψk. In this way (11.15) becomes
∫ 1

0

(
−p(x)(

n∑

i=1

ξi Ψ
′
i(x))Ψ

′
k(x) + (q(x) − λ)

n∑

i=1

ξi Ψi(x)Ψk(x)

)
dx, for all k,

or,
∑n

i=1 ξi
1∫
0

(p(x)Ψ′
i(x)Ψ

′
k(x) + (q(x)− λ)Ψi(x)Ψk(x)) dx = 0, for all k. (11.18)

These last equations are called the Rayleigh–Ritz–Galerkin equations. Unknown are the n values ξi and
the eigenvalue λ. In matrix notation (11.18) becomes

Ax = λMx (11.19)

with

aij =

∫ 1

0

(
p(x)Ψ′

iΨ
′
j + q(x)ΨiΨj

)
dx and mij =

∫ 1

0

ΨiΨj dx

For the specific case p(x) = 1 + x and q(x) = 1 we get

akk =

∫ kh

(k−1)h

[
(1 + x)

1

h2
+

(
x− (k − 1)h

h

)2
]
dx

+

∫ (k+1)h

kh

[
(1 + x)

1

h2
+

(
(k + 1)h− x

h

)2
]
dx = 2(n+ 1 + k) +

2

3

1

n+ 1

ak,k+1 =

∫ (k+1)h

kh

[
(1 + x)

1

h2
+

(k + 1)h− x
h

· x− kh
h

]
dx = −n− 3

2
− k +

1

6

1

n+ 1

In the same way we get

M =
1

6(n+ 1)




4 1

1 4
. . .

. . .
. . . 1
1 4




Notice that both matrices A and M are symmetric tridiagonal and positive definite.

176

11.3.3 Global functions

Formally we proceed as with the finite element method. But now we choose the Ψk(x) to be functions with
global support. We could, e.g., set

Ψk(x) = sin kπx,

functions that are differentiable and satisfy the homogeneous boundary conditions. The Ψk are eigenfunc-
tions of the nearby problem −u′′(x) = λu(x), u(0) = u(1) = 0 corresponding to the eigenvalue k2π2.
The elements of matrix A are given by

akk =

∫ 1

0

[
(1 + x)k2π2 cos2 kπx+ sin2 kπx

]
dx =

3

4
k2π2 +

1

2
,

akj =

∫ 1

0

[
(1 + x)kjπ2 cos kπx cos jπx+ sin kπx sin jπx

]
dx

=
kj(k2 + j2)((−1)k+j − 1)

(k2 − j2)2 , k 6= j.

11.3.4 A numerical comparison

We consider the above 1-dimensional eigenvalue problem

−((1 + x)w′(x))′ + w(x) = λw(x), w(0) = w(1) = 0, (11.20)

and solve it with the finite difference and finite element methods as well as with the global functions
method. The results are given in Table 11.1.

Clearly the global function method is the most powerful of them all. With 80 basis functions the
eigenvalues all come right. The convergence rate is exponential.

With the finite difference and finite element methods the eigenvalues exhibit quadratic convergence
rates. If the mesh width h is reduced by a factor of q = 2, the error in the eigenvalues is reduced by the
factor q2 = 4.

11.4 Example 2: The heat equation

The instationary temperature distribution u(x, t) in an insulated container satisfies the equations

∂u(x, t)

∂t
−∆u(x, t) = 0, x ∈ Ω, t > 0,

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(11.21)

Here Ω is a 3-dimensional domain1with boundary ∂Ω. u0(x),x = (x1, x2, x3)
T ∈ R3, is a given bounded,

sufficiently smooth function. ∆u =
∑

∂2u
∂xi

2 is called the Laplace operator and ∂u
∂n denotes the derivative

of u in direction of the outer normal vector n. To solve the heat equation the method of separation of
variables is employed. We write u in the form

u(x, t) = v(t)w(x). (11.22)

If a constant λ can be found such that

∆w(x) + λw(x) = 0, w(x) 6= 0, x in Ω,

∂w(x, t)

∂n
= 0, x on ∂Ω,

(11.23)

1In the sequel we understand a domain to be bounded and simply connected.

177

Table 11.1 Numerical solutions of problem (11.20)

Finite difference method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)
1 15.245 15.312 15.331 15.336
2 56.918 58.048 58.367 58.451
3 122.489 128.181 129.804 130.236
4 206.419 224.091 229.211 230.580
5 301.499 343.555 355.986 359.327
6 399.367 483.791 509.358 516.276
7 492.026 641.501 688.398 701.185
8 578.707 812.933 892.016 913.767
9 672.960 993.925 1118.969 1153.691

10 794.370 1179.947 1367.869 1420.585

Finite element method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)
1 15.447 15.367 15.345 15.340
2 60.140 58.932 58.599 58.511
3 138.788 132.657 130.979 130.537
4 257.814 238.236 232.923 231.531
5 426.223 378.080 365.047 361.648
6 654.377 555.340 528.148 521.091
7 949.544 773.918 723.207 710.105
8 1305.720 1038.433 951.392 928.983
9 1702.024 1354.106 1214.066 1178.064

10 2180.159 1726.473 1512.784 1457.733

Global function method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)
1 15.338 15.338 15.338 15.338
2 58.482 58.480 58.480 58.480
3 130.389 130.386 130.386 130.386
4 231.065 231.054 231.053 231.053
5 360.511 360.484 360.483 360.483
6 518.804 518.676 518.674 518.674
7 706.134 705.631 705.628 705.628
8 924.960 921.351 921.344 921.344
9 1186.674 1165.832 1165.823 1165.822

10 1577.340 1439.083 1439.063 1439.063

178

then the product u = vw is a solution of (11.21) if and only if

dv(t)

dt
+ λv(t) = 0, (11.24)

the solution of which has the form a · exp(−λt). By separating variables, the problem (11.21) is divided
in two subproblems that are hopefully easier to solve. A value λ, for which (11.23) has a nontrivial (i.e. a
nonzero) solution is called an eigenvalue; w then is called a corresponding eigenfunction.

If λn is an eigenvalue of problem (11.23) with corresponding eigenfunctionwn, then

e−λntwn(x)

is a solution of the first two equations in (11.21). It is known that equation (11.23) has infinitely many real
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · , (λn −→

t→∞
∞). Multiple eigenvalues are counted acording to their multi-

plicity. An arbitrary bounded piecewise continuous function can be represented as a linear combination of
the eigenfunctions w1, w2, Therefore, the solution of (11.21) can be written in the form

u(x, t) =

∞∑

n=1

cne
−λntwn(x), (11.25)

where the coefficients cn are determined such that

u0(x) =

∞∑

n=1

cnwn(x). (11.26)

The smallest eigenvalue of (11.23) is λ1 = 0 with w1 = 1 and λ2 > 0. Therefore we see from (11.25) that

u(x, t) −→

t→∞ c1. (11.27)

Thus, in the limit (i.e., as t goes to infinity), the temperature will be constant in the whole container. The
convergence rate towards this equilibrium is determined by the smallest positive eigenvalue λ2 of (11.23):

‖u(x, t)− c1‖ = ‖
∞∑

n=2

cne
−λntwn(x)‖ ≤

∞∑

n=2

|e−λnt|‖cnwn(x)‖

≤ e−λ2t
∞∑

n=2

‖cnwn(x)‖ ≤ e−λ2t‖u0(x)‖.

Here we have assumed that the value of the constant function w1(x) is set to unity.

11.5 Example 3: The wave equation

The air pressure u(x, t) in a volume with acoustically “hard” walls satisfies the equations

∂2u(x, t)

∂t2
−∆u(x, t) = 0, x ∈ Ω, t > 0, (11.28)

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0, (11.29)

u(x, 0) = u0(x), x ∈ Ω, (11.30)

∂u(x, 0)

∂t
= u1(x), x ∈ Ω. (11.31)

Sound propagates with the speed−∇u, i.e. along the (negative) gradient from high to low pressure.

179

To solve the wave equation we proceed as with the heat equation in section 11.4: separation of u
according to (11.22) leads again to equation (11.23) but now together with

d2v(t)

dt2
+ λv(t) = 0. (11.32)

We know this equation from the analysis of the vibrating sting, see (11.11). From there we know that the
general solution of the wave equation has the form

u(x, t) =

∞∑

k=0

wk(x)
[
ak · cos(

√
λk t) + bk · sin(

√
λk t)

]
. (11.13)

where the wk, k = 1, 2, . . . are the eigenfunctions of the eigenvalue problem (11.23). The coefficients ak
and bk are determined by eqrefeq:wave3 and eqrefeq:wave4.

If a harmonic oscillation is forced on the system, an inhomogeneous problem

∂2u(x, t)

∂t2
−∆u(x, t) = f(x, t), (11.33)

is obtained. The boundary and initial conditions are taken from (11.28)–(11.31). This problem can be
solved by setting

u(x, t) :=

∞∑

n=1

ṽn(t)wn(x),

f(x, t) :=

∞∑

n=1

φn(t)wn(x).

(11.34)

With this approach, ṽn has to satisfy equation

d2ṽn
dt2

+ λnṽn = φn(t). (11.35)

If φn(t) = a sinωt, then the solution becomes

ṽn = An cos
√
λnt+Bn sin

√
λnt+

1

λn − ω2
a sinωt. (11.36)

An and Bn are real constants that are determined by the initial conditions. If ω gets close to
√
λ1, then the

last term can be very large. In the limit, if ω =
√
λn, ṽn gets the form

ṽn = An cos
√
λnt+Bn sin

√
λnt+ at sinωt. (11.37)

In this case, ṽn is not bounded in time anymore. This phenomenon is called resonance. Often resonance is
not desirable; it may, e.g., mean the blow up of some structure. In order to prevent resonances eigenvalues
have to be known. Possible remedies are changing the domain (the structure).

Remark 11.1. Vibrating membranes satisfy the wave equation, too. In general the boundary conditions
are different from (11.29). If the membrane (of a drum) is fixed at its boundary, the condition

u(x, t) = 0 (11.38)

is imposed. This boundary conditions is called Dirichlet boundary conditions. The boundary conditions
in (11.21) and (11.29) are called Neumann boundary conditions. Combinations of these two can occur.

180

11.6 Numerical methods for solving the Laplace eigenvalue problem
in 2D

In this section we again consider the eigenvalue problem

−∆u(x) = λu(x), x ∈ Ω, (11.39)

with the more general boundary conditions

u(x) = 0, x ∈ C1 ⊂ ∂Ω, (11.40)

∂u

∂n
(x) + α(x)u(x) = 0, x ∈ C2 ⊂ ∂Ω. (11.41)

Here, C1 and C2 are disjoint subsets of ∂Ω with C1 ∪ C2 = ∂Ω. We restrict ourselfs in the following on
two-dimensional domains and write (x, y) instead of (x1, x2).

In general it is not possible to solve a problem of the Form (11.39)–(11.41) exactly (analytically).
Therefore one has to resort to numerical approximations. Because we cannot compute with infinitely many
variables we have to construct a finite-dimensional eigenvalue problem that represents the given problem as
well as possible, i.e., that yields good approximations for the desired eigenvalues and eigenvectors. Since
finite-dimensional eigenvalue problem only have a finite number of eigenvalues one cannot expect to get
good approximations for all eigenvalues of (11.39)–(11.41).

Two methods for the discretization of eigenvalue problems of the form (11.39)–(11.41) are the Finite
Difference Method [Ame77, Sch93] and the Finite Element Method (FEM) [Sch91, SF73]. We deal with
these methods in the following subsections.

11.6.1 The finite difference method

In this section we just want to mediate some impression what the finite difference method is about. There-
fore we assume for simplicity that the domain Ω is a square with sides of length 1: Ω = (0, 1)× (0, 1). We
consider the eigenvalue problem

−∆u(x, y) = λu(x, y), 0 < x, y < 1

u(0, y) = u(1, y) = u(x, 0) = 0, 0 < x, y < 1,

∂u
∂n

(x, 1) = 0, 0 < x < 1.

(11.42)

This eigenvalue problem occurs in the computation of eigenfrequencies and eigenmodes of a homogeneous
quadratic membrane with three fixed and one free side. It can be solved analytically by separation of the
two spatial variables x and y. The eigenvalues are

λk,l =

(
k2 +

(2l − 1)2

4

)
π2, k, l ∈ N,

and the corresponding eigenfunctions are

uk,l(x, y) = sin kπx sin
2l − 1

2
πy.

In the finite difference method one proceeds by defining a rectangular grid with grid points (xi, yj), 0 ≤
i, j ≤ N . The coordinates of the grid points are

(xi, yj) = (ih, jh), h = 1/N.

By a Taylor expansion one can show for sufficiently smooth functions u that

−∆u(x, y) =
1

h2
(4u(x, y)− u(x− h, y)− u(x+ h, y)− u(x, y − h)− u(x, y + h))

+O(h2).

181

It is therefore straightforward to replace the differential equation ∆u(x, y) + λu(x, y) = 0 by a differ-
ence equation at the interiour grid points

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = λh2ui,j , 0 < i, j < N. (11.43)

We consider the unknown variables ui,j as approximations of the eigenfunctions at the grid points (i, j):

ui,j ≈ u(xi, xj). (11.44)

The Dirichlet boundary conditions are replaced by the equations

ui,0 = ui,N = u0,i, 0 < i < N. (11.45)

At the points at the upper boundary of Ω we first take the difference equation (11.43)

4ui,N − ui−1,N − ui+1,N − ui,N−1 − ui,N+1 = λh2ui,N , 0 ≤ i ≤ N. (11.46)

The value ui,N+1 corresponds to a grid point outside of the domain! However the Neumann boundary con-
ditions suggest to reflect the domain at the upper boundary and to extend the eigenfunction symmetrically
beyond the boundary. This procedure leads to the equation ui,N+1 = ui,N−1. Plugging this into (11.46)
and multipling the new equation by the factor 1/2 gives

2ui,N −
1

2
ui−1,N −

1

2
ui+1,N − ui,N−1 =

1

2
λh2ui,N , 0 < i < N. (11.47)

In summary, from (11.43) and (11.47), taking into account that (11.45) we get the matrix equation



4 −1 0 −1
−1 4 −1 0 −1

0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0 −1
−1 0 −1 4 −1 0 −1

−1 0 −1 4 0 0 −1
−1 0 0 2 − 1

2 0
−1 0 − 1

2 2 − 1
2

−1 0 − 1
2 2







u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

u4,1

u4,2

u4,3




= λh2




1
1

1
1

1
1

1
1

1
1
2

1
2

1
2







u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

u4,1

u4,2

u4,3




.

(11.48)

182

For arbitraryN > 1 we define

ui :=




ui,1
ui,2

...
ui,N−1


 ∈ RN−1,

T :=




4 −1

−1 4
. . .

. . .
. . . −1
−1 4



∈ R(N−1)×(N−1),

I :=




1
1

. . .
1


 ∈ R(N−1)×(N−1).

In this way we obtain from (11.43), (11.45), (11.47) the discrete eigenvalue problem




T −I
−I T

. . .
. . .

. . . −I
−I 1

2T







u1

...
u3

u4


 = λh2




I
. . .

I
1
2I







u1

...
uN−1

uN


 (11.49)

of size N × (N − 1). This is a matrix eigenvalue problem of the form

Ax = λMx, (11.50)

where A and M are symmetric and M additionally is positive definite. If M is the identity matrix is, we
call (11.50) a special and otherwise a generalized eigenvalue problem. In these lecture notes we deal with
numerical methods, to solve eigenvalue problems like these.

In the case (11.49) it is easy to obtain a special (symmetric) eigenvalue problem by a simple transfor-
mation: By left multiplication by 



I
I

I √
2I




we obtain from (11.49)




T −I
−I T −I

−I T −
√

2I

−
√

2I T







u1

u2

u3
1√
2
u4


 = λh2




u1

u2

u3
1√
2
u4


 . (11.51)

A property common to matrices obtained by the finite difference method are its sparsity. Sparse matri-
ces have only very few nonzero elements.

In real-world applications domains often cannot be covered easily by a rectangular grid. In this situation
and if boundary conditions are complicated the method of finite differences can be difficult to implement.

Because of this the finite element method is often the method of choice.

183

11.6.2 The finite element method (FEM)

Let (λ, u) ∈ R× V be an eigenpair of problem (11.39)–(11.41). Then
∫

Ω

(∆u+ λu)v dx dy = 0, ∀v ∈ V, (11.52)

where V is vector space of bounded twice differentiable functions that satisfy the boundary conditions (11.40)–
(11.41). By partial integration (Green’s formula) this becomes

∫

Ω

∇u∇v dx dy +

∫

∂Ω

αu v ds = λ

∫

Ω

u v dx dy, ∀v ∈ V, (11.53)

or
a(u, v) = (u, v), ∀v ∈ V (11.54)

where

a(u, v) =

∫

Ω

∇u∇v dx dy +

∫

∂Ω

αu v ds, and (u, v) =

∫

Ω

u v dx dy.

We complete the space V with respect to the Sobolev norm [SF73, AB84]

√∫

Ω

(u2 + |∇u|2) dx dy

to become a Hilbert space H [AB84, Wei74]. H is the space of quadratic integrable functions with
quadratic integrable first derivatives that satisfy the Dirichlet boundary conditions (11.40)

u(x, y) = 0 (x, y) ∈ C1.

(Functions in H in general no not satisfy the so-called natural boundary conditions (11.41).) One can
show [Wei74] that the eigenvalue problem (11.39)–(11.41) is equivalent with the eigenvalue problem

Find (λ, u) ∈ R×H such that
a(u, v) = λ(u, v) ∀v ∈ H. (11.55)

(The essential point is to show that the eigenfunctions of (11.55) are elements of V .)

The Rayleigh–Ritz–Galerkin method

In the Rayleigh–Ritz–Galerkin method one proceeds as follows: A set of linearly independent functions

φ1(x, y), · · · , φn(x, y) ∈ H, (11.56)

are chosen. These functions span a subspace S ofH . Then, problem (11.55) is solved whereH is replaced
by S.

Find (λ, u) ∈ R× S such that
a(u, v) = λ(u, v) ∀v ∈ S. (11.57)

With the Ritz ansatz [Sch91]

u =

n∑

i=1

xiφi, (11.58)

equation (11.57) becomes

Find (λ,x) ∈ R× Rn such that
n∑
i=1

xia(φi, v) = λ
n∑
i=1

xi(φi, v), ∀v ∈ S. (11.59)

184

Eq. (11.59) must hold for all v ∈ S, in particular for v = φ1, · · · , φn. But since the φi, 1 ≤ i ≤ n, form a
basis of S, equation (11.59) is equivalent with

n∑

i=1

xia(φi, φj) = λ

n∑

i=1

xi(φi, φj), 1 ≤ j ≤ n. (11.60)

This is a matrix eigenvalue problem of the form

Ax = λMx (11.61)

where

x =




x1

...
xn


 , A =




a11 · · · a1n

...
. . .

...
an1 · · · ann


 , M =




m11 · · · m1n

...
. . .

...
mn1 · · · mnn


 (11.62)

with

aij = a(φi, φj) =

∫

Ω

∇φi∇φj dx dy +

∫

∂Ω

αφi φj ds

and

mij = (φi, φj) =

∫

Ω

φi φj dx dy.

The finite element method (FEM) ia a special case of the Rayleigh–Ritz method. In the FEM the
subspace S and in particular the basis {φi} is chosen in a particularly clever way. For simplicity we
assume that the domain Ω is a simply connected domain with a polygonal boundary, c.f. Fig 11.5. (This
means that the boundary is composed of straight line segments entirely.) This domain is now partitioned

Figure 11.5: Triangulation of a domain Ω

into triangular subdomains T1, · · · , TN , so-called elements, such that

Ti ∩ Tj = ∅, i 6= j,
⋃
e
Te = Ω. (11.63)

Finite element spaces for solving (11.39)–(11.41) are typically composed of functions that are continuous in
Ω and are polynomials on the individual subdomains Te. Such functions are called piecewise polynomials.
Notice that this construction provides a subspace of the Hilbert space H but not of V , i.e., the functions in
the finite element space are not very smooth and the natural boundary conditions are not satisfied.

185

An essential issue is the selection of the basis of the finite element space S. If S1 ⊂ H is the space
of contiuous, piecewise linear functions (the restriction to Te is a polynomial of degree 1) then a function
in S1 is uniquely determined by its values at the vertices of the triangles. Let these nodes, except those on
the boundary portion C1, be numbered from 1 to n, see Fig. 11.6. Let the coordinates of the i-th node be
(xi, yi). Then φi(x, y) ∈ S1 is defined by

7 9

211411

15 19 23 26

17 20 24 27
29

28

2522
18

12

8
4

16

13

10

6

3

5
2

1

Figure 11.6: Numerierung der Knotenpunkte von Ω (stückweise lineare Polynome)

φi((xj , yj)) := δij =

{
1 i = j
0 i 6= j

(11.64)

A typical basis function φi is sketched Fig. 11.7 dargestellt.

Figure 11.7: A piecewise linear basis function (or hat function)

Another often used finite element element space is S2 ⊂ H , the space of continuous, piecewise
quadratic polynomials. These functions are (or can be) uniquely determined by their values at the ver-
tices and and edge midpoints of the triangle. The basis functions are defined according to (11.64). There
are two kinds of basis functions φi now, first those that are 1 at a vertex and second those that are 1 in an
edge midpoint, cf. Fig. 11.8. One immediatly sees that for most i 6= j

a(φi, φj) = 0, (φi, φj) = 0. (11.65)

Therefore the matrices A and M in (11.61) will be sparse. The matrix M is positive definite as

xTMx =
N∑

i,j=1

xixjmij =
N∑

i,j=1

xixj(φi, φj) = (u, u) > 0, u =
N∑

i=1

xiφi 6= 0, (11.66)

186

Figure 11.8: A piecewise quadratic basis function corresponding to a edge midpoint [Chi05]

because the φi are linearly independent and because u =
√

(u, u) is a norm. Similarly it is shown that

xTAx ≥ 0.

It is possible to have xTAx = 0 for a nonzero vector x. This is the case if the constant function u = 1 is
contained in S. This is the case if Neumann boundary conditions ∂u

∂n = 0 are posed on the whole boundary
∂Ω. Then,

u(x, y) = 1 =
∑

i

φi(x, y),

i.e., we have xTAx = 0 for x = [1, 1, . . . , 1].

11.6.3 A numerical example

We want to determine the acoustic eigenfrequencies and corresponding modes in the interior of a car.
This is of interest in the manufacturing of cars, since an appropriate shape of the form of the interior can
suppress the often unpleasant droning of the motor. The problem is three-dimensional, but by separation
of variables the problem can be reduced to two dimensions. If rigid, acoustically hard walls are assumed,
the mathematical model of the problem is again the Laplace eigenvalue problem (11.23) together with
Neumann boundary conditions. The domain is given in Fig. 11.9 where three finite element triangulations
are shown with 87 (grid1), 298 (grid2), and 1095 (grid3) vertices (nodes), respectively. The results

Table 11.2 Numerical solutions of acoustic vibration problem

Finite element method

k λk(grid1) λk(grid2) λk(grid3)
1 0.0000 -0.0000 0.0000
2 0.0133 0.0129 0.0127
3 0.0471 0.0451 0.0444
4 0.0603 0.0576 0.0566
5 0.1229 0.1182 0.1166
6 0.1482 0.1402 0.1376
7 0.1569 0.1462 0.1427
8 0.2162 0.2044 0.2010
9 0.2984 0.2787 0.2726

10 0.3255 0.2998 0.2927

obtained with piecewise linear polynomials are listed in Table 11.2. From the results we notice the quadratic
convergence rate. The smallest eigenvalue is always zero. The corresponding eigenfunction is the constant
function. This function can be represented exactly by the finite element spaces, whence its value is correct
(up to rounding error).

187

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

16

Figure 11.9: Three meshes for the car length cut

The fourth eigenfunction of the acoustic vibration problem is displayed in Fig. 11.10. The physical
meaning of the function value is the difference of the presure at a given location to the normal pressure.
Large amplitudes thus means that the corresponding noise is very much noticable.

11.7 Cavity resonances in particle accelerators

The Maxwell equations in vacuum are given by

curlE(x, t) = −∂B
∂t

(x, t), (Faraday’s law)

curlH(x, t) =
∂D

∂t
(x, t) + j(x, t), (Maxwell–Ampère law)

div
(
D(x, t)

)
= ρ(x, t), (Gauss’s law)

div
(
B(x, t)

)
= 0. (Gauss’s law – magnetic)

where E is the electric field intensity, D is the electric flux density, H is the magnetic field intensity, B is
the magnetic flux density, j is the electric current density, and ρ is the electric charge density. Often the
“optical” problem is analysed, i.e. the situation when the cavity is not driven (cold mode), hence j and ρ
are assumed to vanish.

Again by separating variables, i.e. assuming a time harmonic behavior f the fields, e.g.,

E(x, t) = e(x)eiωt

188

−0.1

−0.05

0

0.05

Figure 11.10: Fourth eigenmode of the acoustic vibration problem

189

using the constitutive relations
D = εE, B = µH, j = σE,

one obtains after elimination of the magnetic field intensity the so called time-harmonic Maxwell equa-
tions

curlµ−1curle(x) = λ ε e(x), x ∈ Ω,

div
(
ε e(x)

)
= 0, x ∈ Ω,

n× e = 0, x ∈ ∂Ω.

(11.67)

Here, additionally, the cavity boundary ∂Ω is assumed to be perfectly electrically conducting, i.e. E(x, t)×
n(x) = 0 for x ∈ ∂Ω.

The eigenvalue problem (11.67) is a constrained eigenvalue problem. Only functions are taken into
account that are divergence-free. This constraint is enforced by Lagrange multipliers. A weak formulation
of the problem is then

Find (λ, e, p) ∈ R×H0(curl; Ω)×H1
0 (Ω) such that e 6= 0 and

(a) (µ−1curle, curlΨ) + (gradp,Ψ) = λ(ε e,Ψ), ∀Ψ ∈ H0(curl; Ω),
(b) (e, gradq) = 0, ∀q ∈ H1

0 (Ω).

With the correct finite element discretization this problem turns in a matrix eigenvalue problem of the form
[
A C
CT O

][
x

y

]
= λ

[
M O
O O

][
x

y

]
.

The solution of this matrix eigenvalue problem correspond to vibrating electric fields.

190

Bibliography

[AB84] O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value Problems. Academic
Press, Orlando FL, 1984.

[Ame77] W.F. Ames. Numerical Methods for Partial Differential Equations. Academic Press, New York
NY, 2nd edition, 1977.

[CH68] R. Courant and D. Hilbert. Methoden der Mathematischen Physik. Springer, Berlin, 1968.

[Chi05] O. Chinellato. The Complex-Symmetric Jacobi–Davidson Algorithm and its Application to
the Computation of some Resonance Frequencies of Anisotropic Lossy Axisymmetric Cavities.
PhD Thesis No. 16243, ETH Zürich, 2005. (Available at URL http://e-collection.
ethbib.ethz.ch/show?type=diss&nr=16243).

[Sch91] H. R. Schwarz. Methode der finiten Elemente. Teubner, Stuttgart, 3rd edition, 1991.

[Sch93] H. R. Schwarz. Numerische Mathematik. Teubner, Stuttgart, 3rd ed. edition, 1993.

[SF73] G. Strang and G. J. Fix. Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs,
1973.

[Str86] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley, 1986.

[Wei74] H. F. Weinberger. Variational Methods for Eigenvalue Approximation. Regional Conference
Series in Applied Mathematics 15. SIAM, Philadelphia, PA, 1974.

191

Chapter 12

Iterative Eigenvalue Solvers

Eigenvalue problems (EVPs) have a long standing history dating back more than a century and a half. Over
all these years a lot of inventive methods to tackle such problems have been presented. Many of these ideas
improved on already existing methods and customised the latter for special problem classes. Some of these
ideas however had a pioneering character in that they reconsidered the problem from a brand new point of
view which made the field accessible for new mathematical adventures.

This chapter’s goal consists in roughly sketching some of the fundamental techniques used to solve
nonsymmetric eigenvalue problems these days. Since a complete discussion of all the developments made
on this field would go beyond the scope of these notes, the reader is referred to [vdVG97] and [GvdV00]
and references therein, where a more elaborated treatment of the subject is given. Note that in the following
we assume that the matrix A is large, sparse and diagonalisable.

In the following sections we introduce three popular EVP solver classes that have emerged over the
years, namely the vector iteration method, the inverse vector iteration method and the Arnoldi method.
Each algorithm that we are going to present could be improved on in manifold ways. However, mod-
ifications and optimisations often tend to conceal the fundamental ideas, which is the reason, why we
content ourselves with sketching the original algorithms. Readers interested in detailed investigations and
optimised variants of these algorithms are referred to [GV96], [Par98], [Ste01] and references therein.

12.1 The Vector Iteration Method

This method is especially well suited for the computation of the eigenpair (λ,x) associated with one of the
largest eigenvalues λ of the EVP

Ax = λx. (12.1)

Extensions which allow for the computation of several eigenpairs are described in [Par98] and [Ste01] and
will not be discussed here.

Let A = SΛS−1 be an eigenvalue factorisation with the eigenvalues λi sorted in descending order
w.r.t. their modulus, i.e.

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. (12.2)

Moreover, let x be a general vector. The d-fold product of A with the vector x considered in the space
spanned by the columns of S can be expressed as

y = Adx = SΛdS−1x ⇔ ŷ = Λdx̂. (12.3)

Obviously, the single entries of the coordinate vector ŷ grow proportional to the absolute value of the
associated eigenvalue for increasing exponents d. For large enough exponent values the component ŷ1,
being associated with the largest eigenvalue in modulus, will be standing out and y will increasingly point
in the direction of the corresponding eigenvector s1. Hence, the name vector iteration method (or the power

192

method). Clearly, the direction of y will be mainly contaminated by the eigenvector associated with the
second largest eigenvalue λ2, wherefore the convergence rate can be bound by

ηV I(A) =
|λ2|
|λ1|

, (12.4)

see [Wil65].
If we now consider a shifted eigenvalue problem of the type

(A− τI)x = (λ− τ)x (12.5)

we can carry out the same reasoning as above with the shifted eigenvalues. By applying the bound given
in (12.4) we can readily derive

ηSV I(A, τ) = ηV I
(
A− τI

)
=

maxj 6=k|λj − τ |
maxk|λk − τ |

, (12.6)

the convergence rate for the shifted vector iteration method.
In order to implement this scheme, we basically have to compute one matrix-vector product with the

shifted operator A− τI in each step. In order to check for convergence, we then compute the residual

r = (A− τI)x − ρx (12.7)

that is associated with the actual approximation x. As can be seen, we need to have an eigenvalue estimator
that computes an approximation ρ to a given x. One such estimator is the so called Rayleigh quotient which
reads

ρ(x) =
xT(A− τI)x

xTx
. (12.8)

Note, that this quantity ρ(x) minimises the residual r [Ste01]. Finally, in order to prevent the entries from
growing unboundedly, we normalise the actual eigenvector approximation in every iteration step, leading
to the following algorithm.

Algorithm 12.1.

ShiftedVectorIteration(A,x, τ, ε){
x := x/‖x‖
y := Ax− τx
ρ := yTx

r := y − ρx
while (‖r‖ > ε) do

x := y/‖y‖
y := Ax− τx
ρ := yTx

r := y − ρx
end
return(ρ+ τ,x)

}
As can be seen from Equation (12.6), the influence of the shift τ onto the behaviour of the shifted vector

iteration is only limited. If the desired eigenvalue is not clearly isolated from the rest of the spectrum there
is no way of substantially speeding up the algorithm, regardless from the choice of τ .

12.2 The Inverse Vector Iteration Method

It is often the case, that one is given an approximation (target) τ of a desired eigenvalue and would like to
compute the exact value λ closest to the given target. In such cases, shifted vector iteration methods are

193

barely usefull, given their disability in recovering interior eigenvalues, i.e. eigenvalues which lie somewhere
in the interior of the spectrum. What is usually done in these cases is to recast the eigenvalue problem (12.1)
into the shift-and-inverted form

(A− τI)−1x = µx where µ =
1

λ− τ . (12.9)

The largest eigenvalues of the matrix on the left hand side are the ones which are closest to τ . Hence, the
shifted vector iteration method can again be applied, however, to the matrix (A− τI)−1. Hence the name
inverse vector iteration scheme.

By making use of Equation (12.4), we can derive the following convergence rate

ηIV I(A, τ) = ηV I
(
(A− τI)−1

)
=

mink|λk − τ |
minj 6=k |λj − τ |

. (12.10)

Contrary to the shifted vector iteration method, the inverse vector iteration scheme is extremely re-
sponsive to shift values as can be seen when comparing the rates (12.6) and (12.10). In fact, the desired
eigenvalue λ need only be reasonably well separated from the remaining ones in order to allow for the
choice of a good shift τ ≈ λ and hence for a swift convergence.

Unfortunately, one needs to solve a linear system of equation per iteration steps in order to implement
this scheme. Besides this, however, the implementation is almost identical to the one of Algorithm 12.1,
except for the computation of the residual [Ste01], and leads to

Algorithm 12.2.

InverseVectorIteration(A,x, τ, ε){
x := x/‖x‖
y := (A− τI)−1x

ρ := yTx

r := x− ρ−1y

while (‖r‖ > ε) do
x := y/‖y‖

y := (A− τI)−1x

ρ := yTx

r := x− ρ−1y

end
return(ρ−1 + τ,x)

}

12.3 The Arnoldi Method

In contrast to the vector iteration methods, where only a single vector is used to scout the space for so-
lutions, Krylov space methods construct particular subspaces in which solutions are searched. In fact, an
examination of the behavior of the sequence of vectors produced by the shifted/inverted vector iteration
method suggests that the successive vectors may contain considerable information along eigenvector direc-
tions corresponding to eigenvalues other than the one with largest magnitude. The expansion coefficients
of the vectors in the sequence evolve in a very structured way. Therefore, linear combinations of the these
vectors can be constructed to enhance convergence to additional eigenvectors. A vector iteration scheme
based on a single vector simply ignores this additional information. We again assume a target value τ to be
given, close to a desired eigenvalue.

Let M be a given matrix and u0 be a vector with unit norm. We define the Krylov space

Kk(M,u0) = {u0,Mu0,M
2u0, . . . ,M

ku0}. (12.11)

One possible way that allows for a simple and efficient handling of linear combinations of eigenvector
approximations is the one of performing the Arnoldi process presented in Section 9.8.1. In fact, this pro-
cess induces a procedure which incrementally computes an orthonormal basis Uk = (u0, . . . ,uk) for the

194

Krylov space Kk(M,u0). After performing k steps of this procedure, the relations

MUk = UkHk + hk+1,kuk+1e
T
k and UT

kUk = Ik (12.12)

hold, where Hk is an upper Hessenberg matrix and ek is the kth unit vector. Once that such a basis Uk has
been constructed, one can build linear combinations of eigenvector approximations by just performing a
matrix-vector product with the basis vectors. Note that in order to increase the subspace by one additional
vector, one application of the M operator is required, among other things.

In analogy to the vector iteration methods, we define the residual r(θ,x) of the eigenpair approxima-
tion (θ,x) as

r(θ,x) = Mx− θx = MUkx̂− θUkx̂, (12.13)

where this time the eigenvector is constrained to the subspace spanned by Uk , i.e. x = Ukx̂. If we require
the residual to be orthogonal to Uk , i.e. if we require the eigenvalue problem to be solved exactly in the
subspace spanned by Uk, we obtain the so called Ritz projected eigenvalue problem

UT
kMUkx̂ = θUT

kUkx̂. (12.14)

The orthogonality condition stated above is called Galerkin condition. By left-multiplying the decompo-
sition given in Equation (12.12) with UT

k and by exploiting the orthonormality of Uk , we can simplify
problem (12.14) such as to finally be left with the small eigenvalue problem

Hkx̂ = θx̂, (12.15)

which can quickly be solved, e.g. by means of the QR algorithms presented in Chapters 3 and 4. We then
pick the eigenpair (θi, x̂i) closest to τ and have in this way obtained an eigenpair approximation (θi,Ukx̂i)
for the eigenproblem

Mxi = MUkx̂i ≈ θiUkx̂i = θixi. (12.16)

By alternately applying the Arnoldi process and the Ritz extraction to the original EVP we will finally
obtain the desired result.

The residual associated with the actual approximation Ukx̂ can be obtained at almost no extra cost. To
show this, we combine Equations (12.12) and (12.13) and obtain

r(θ,Ukx̂) = MUkx̂− θUkx̂

= (UkHk + hk+1,kuk+1e
T
k)x̂− θUkx̂

= (Uk ,uk+1)

(
Hk − θI
hk+1,ke

T
k

)
x̂.

Since (θ, x̂) is an eigenpair of the reduced matrix Hk, we see that

‖r(θ,Ukx̂)‖ = |hk+1,kx̂k|. (12.17)

The following algorithm shows a possible implementation of the Arnoldi method, where, in analogy to the
(shifted) vector iteration method, we assume the orignal problem to be Ax = λx.

195

−5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 12.1: Effect of a shift-and-invert transform. (left) Spectrum of the test matrix A (cavity07.mtx)
obtained from the Matrix-Market repository [BPR+97]. The marker shows the target τ = 3 − 2i. Given
that the dsired eigenvalue is in the interior of the spectrum one is expected to perform numerous Arnoldi
iteration steps. (right) Spectrum of the shift-and-inverted matrix (A − τI)−1. Note the clearly isolated
eigenvalue (with the largest modulus) in the lower right part of the spectrum.

Algorithm 12.3.

ArnoldiMethod(M,u, τ, ε){
u1 := u/‖u‖
k := 1
ρ := 2ε
while (ρ > ε) do

uA := Auk
for i := 1, . . . , k do

Hi,k := uT
i uA

uA := uA −Hi,kui
end
Hk+1,k := ‖uA‖
uk+1 := uA/Hk+1,k

[θ, X̂] := EVPSolve(H(1 : k, 1 : k))
[θ, j] := min(|θ1 − τ |, . . . , |θk − τ |)
ρ := |Hk+1,kX̂(k, j)|
k := k + 1

end
return(θ,U(:, 1 : k − 1)X̂(:, j))

}
As has been shown in [Par98], the eigenvalues θi of the reduced system swiftly converge towards the

extremal eigenvalues of the original problem Mx = λx. This suggests, that the original EVP should be
transformed in such a way as to place the desired eigenvalues close to the margin of the spectrum. As we
have seen in Section 12.2, this can be accomplished by the transformation

(A− τI)−1

︸ ︷︷ ︸
=M

x = θx where θ =
1

λ− τ , (12.18)

see Figure 12.1 for an example.
An implementation of the Arnoldi method which takes care of the necessary details in the shift-and-

invert context is given in the following.

196

Algorithm 12.4.

ArnoldiMethodSI(A,u, τ, ε){
u1 := u/‖u‖
k := 1
ρ := 2ε
while (ρ > ε) do

uA := (A− τ)−1uk
for i := 1, . . . , k do

Hi,k := uT
i uA

uA := uA −Hi,kui
end
Hk+1,k := ‖uA‖
uk+1 := uA/Hk+1,k

[θ, X̂] := EVPSolve(H(1 : k, 1 : k))
[θ, j] := max(θ1, . . . , θk)

ρ := |Hk+1,kX̂(k, j)/θ|
k := k + 1

end
return(θ−1 + τ,U(:, 1 : k − 1)X̂(:, j))

}

Remark 12.1. Note that in the shift-and-invert case, the norm of the residual associated with the original
problem

‖r(λ,Ukx̂)‖ = AUkx̂− λUkx̂ = AUkx̂−
(1
θ

+ τ
)
Ukx̂ (12.19)

typically deviates from the one computed in (12.17). We refer the reader to [Ste01] for a more detailed
discussion and content ourselves with the use of a modified residual norm (see computation of ρ in the
Algorithm below).

A closer look at the algorithm reveals that, as in the case of the inverse vector iteration method, a
linear system needs to be solved in each iteration step. Besides being a costly operation, it requires the
availability of a good preconditioner, in order not to waste too much computation time on the construction
of the next Arnoldi vector. Moreover care has to be taken when solving the system, due to the possibly
poor conditioning induced by the choice of τ .

In addition to that, the storage requirements grow linearly with the number of iteration steps k. To
prevent an exceedingly high memory consumption it is therefore common to periodically perform so called
restarts whenever a certain fixed number of iteration steps has been carried out. By computing the actual
approximation and using it to start the Arnoldi method over again, one can limit the storage that is used
by the algorithm — a procedure refered to as explicit restart. More involved methods, such as the implicit
restart procedure, can be found in [Ste01] and references therein. Note, however, that since a restart implies
the elimination of some of the directions contained in the search space, the follow-up approximations tend
to be worse, at least in the very beginning of each restart period, see Figure 12.2.

In order to add an explicit restart mechanism in Algorithm 12.4 it suffices to add the following code
fraction to the main loop.

197

Figure 12.2: Influence of the restart parameter. By varying the restart threshold krestart one can limit the
amount of storage that is required at the price of a potentially slower convergence. Here we show 5 residual
norm histories for the problem described in Figure 12.1 with the restart sizes given in the legend.

[...]

ρ := |Hk+1,kX̂(k, j)/θ|
k := k + 1

if (k = krestart) then
u1 := U(:, 1 : k − 1)X̂(:, j)
k := 1

end
[...]

12.4 Available Software

The (shift-and-inverted) Arnoldi method presented in the preceding section is the method of choice in
nowadays spectral decomposition software packages, which is mainly due to its relatively simple imple-
mentation and its robustness. Among the (freely) available packages, ARPACK [LSY98] is certainly the
most popular one. In the following, we will provide a brief of the problems ARPACK is able to solve and
of how this is accomplished.

Every problem that is solved in ARPACK, be it a standard EVP or a generalised EVP, is internally
considered as problem of the form

Cx = µx, (12.20)

where the definition of µ and C depends on the original problem class. The following table summarises
the definitions and transformations that are used in the according cases (τ is a user-specified target).

198

Origin. EVP Transf. EVP MC
?
= CTM Driver Mode

Ax = λx
C = A

µ = λ
M = I

yes
no

dsaupd
dnaupd

1
1

Ax = λBx

C = B−1A

µ = λ
M = B

yes
no

dsaupd
dnaupd

2
2

Ax = λBx

C = Re [(A− τB)−1B]

µ = 2λ−(τ+τ̄)
2(λ−τ)(λ−τ̄)

M = B

yes
no

dsaupd
dnaupd

3
3

Ax = λBx

C = Im [(A− τB)−1B]
µ = τ−τ̄

2i(λ−τ)(λ−τ̄)
M = B

yes
no

dsaupd
dnaupd

4
4

Remark 12.2. The driver dsaupd is the symmetric counterpart to the Arnoldi Method, i.e. the Lanczos
method, and is thus to be preferred in symmetric cases due to its lower storage reuqirements.

Remark 12.3. As a matter of fact, there exist several submodes which are slight variations of the ones
specified above and differ mainly in the representations of the operators A, B and C. For the sake of
brevity, however, we refer the reader to the documentation of ARPACK [LSY98] for a (detailed) mathemat-
ical description, whereas a more software-oriented description can be found in the source files dsaupd.f
and dnaupd.f contained in the package.

In order to guarantee a certain flexibility and reusability of the software package, ARPACK assumes
(and requires) that the user provides the means to evaluate the operators A, B and C, whenever they need to
be applied. This allows for a proper decoupling of the EVP solution process from the EVP transformation
process. The mechanism that is used to accomplish this separation is called reverse communication.

This mechanism is based on the oservation that the aforementioned operators are used as atomic oper-
ations in only a few places during of the Arnoldi method(s), as can be seen from Algorithms 12.3 and 12.4.
Therefore it seems reasonable, to interrupt the respective Arnoldi algorithm whenever an operator A, B

or C needs to be evaluated and to transfer control to the user. The latter, after having performed the nec-
essary computations needed to evaluate the relevant operation, can then restitute control to the ARPACK
library which will continue by carrying out the follow-up computations until the next control transfer op-
eration is required.

For the sake of illustration we will conclude this chapter by having a closer look at a concrete example,
where we use the ARPACK library to solve the standard (non-symmetric) EVP Ax = λx. We thereby
assume that the system matrix is available and that we can apply it as operator to a given vector. In this
example we do not use shift-and-invert.

// Fixed ARPACK parameters
int NEV = 1; // Number of desired eigenpairs
int NCV = 20; // Maximal number of Arnoldi vects.
char* BMAT = "I"; // M = B = I
char* WHICH = "SM"; // Search lambda with |lambda|=min
char TOL = 1e-6; // Residual norm
int EVECALSO = 0; // Find only lambdas

// The state indicators
int IDO; // Actual state of ARPACK
int IPARAM[11]; // Additional parameters (see below)
int INFO; // Information (ok or error)

199

// Arnoldi vectors
double* V;

// Additional working space
double* RESID; // Residual vector
double LAMBDAr[NEV+1]; // Eigenvalue (real part)
double LAMBDAi[NEV+1]; // Eigenvalue (imaginary part)
int IPTR[14]; // Indices to work space
double* WORKD; // Work space (pointed to by IPTR)
double* WORKL; // Work space (pointed to by IPTR)
double* WORKEV; // Work space (pointed to by IPTR)
int SELECT[NCV]; // Selects desired Ritzpairs
int LWORKL = 3*NCV*NCV + 6*NCV;

// Read the system matrix ...
CSCMatrix A;
mmRead("...", &A);

// Allocate space for the working space and the residual
RESID = (double*)malloc(A.m*sizeof(double));
V = (double*)malloc(A.m*NCV*sizeof(double));
WORKD = (double*)malloc(3*A.m*sizeof(double));
WORKL = (double*)malloc(LWORKL*sizeof(double));
WORKEV = (double*)malloc(3*NCV*sizeof(double));

The code shown so far is responsible for the allocation of the storage required to carry out the Arnoldi
process and to compute the eigenvalues of the Hesseneberg matrix. In the next phase, some of these
quantities need to be initialised.

// Initialise ARPACK by setting special values
IDO = 0; // Initialise the library
INFO = 0; // Use a random initial vector
IPARAM[0] = 1; // Shift choice
IPARAM[1] = 0; // ---
IPARAM[2] = A.m; // Maximum number of iterations
IPARAM[3] = 1; // Blocksize
IPARAM[4] = 0; // ---
IPARAM[5] = 0; // ---
IPARAM[6] = 1; // Mode: See manual
IPARAM[7] = 0; // ---
IPARAM[8] = 0; // ---
IPARAM[9] = 0; // ---
IPARAM[10] = 0; // ---

// Peform the main loop (IDO=99 means (ARPACK) termination)
while(IDO != 99){

// Call driver with next task IDO
dnaupd_(&IDO, BMAT, &A.n, WHICH, &NEV, &TOL, RESID,

&NCV, V, &A.m, IPARAM, IPTR, WORKD,
WORKL, &LWORKL, &INFO, 1, 2);

200

// REVERSE COMMUNICATION: Check which kind of
// operation needs to be provided
switch (IDO){
case -1,1:
MatVec(A, &WORKD[IPTR[0]-1], &WORKD[IPTR[1]-1]);
break;

case 2:
break;

case 3:
break;

}
}

After termination the variable INFO contains information on why the Arnoldi loop has been halted.
Usually, the required eigenpairs have converged and hence the computation can be stopped. However,
possible errors that were encountered are also signaled through this variable. Once the eigenpairs have
been found, a postprocessing has to be performed to extract all of the desired information. To this end
one can use the routines dneupd (for general systems) or dseupd (for symmetric systems), which will
retrieve the eigenvalues and the eigen-/Ritz-/Schur-vectors, whichever is preferred.

201

Bibliography

[BPR+97] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F. Barrett, and Jack J. Don-
garra. Matrix market: a web resource for test matrix collections. In Proceedings of the IFIP
TC2/WG2.5 working conference on Quality of numerical software, pages 125–137, London,
UK, UK, 1997. Chapman & Hall, Ltd.

[GV96] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathe-
matical Sciences. Johns Hopkins University Press, Baltimore, MD, 1996.

[GvdV00] G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th century. Journal of
Computational and Applied Mathematics, 123:35–65, 2000.

[LSY98] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems by Implicitely Restarted Arnoldi Methods. SIAM, Philadelphia,
PA, 1998. (The software and this manual are available at URL http://www.caam.rice.
edu/software/ARPACK/).

[Par98] B. N. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics. SIAM,
2nd edition, 1998.

[Ste01] G. W. Stewart. Matrix Algorithms. Volume II: Eigensystems. SIAM, 2001.

[vdVG97] H. A. van der Vorst and G. H. Golub. 150 years old and still alive: eigenproblems. The State
of the Art in Numerical Analysis, pages 93–119, 1997. Clarendon Press, Oxford.

[Wil65] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis.
Oxford Science Publications, 1965.

202

Part III

Parallel Sparse Linear Algebra

203

Chapter 13

Basic Aspects of Parallel Computing

13.1 Taxonomies for Parallel Computers

The definition of an efficient parallel algorithm requires a model of the architecture one is actually using.
This model should represent the main features that are supposed to influence the performances of the
algorithm: mainly, the memory organisation and the ratio communication/computation.

A first taxonomy divides computers into three categories: single instruction single data stream (SISD),
single instruction multiple data stream (SIMD), multiple instruction multiple data stream (MIMD). The
SISD model takes a single sequence of instructions and operates on a single sequence of data. The speed
of SISD is limited by the execution of a single sequence of instruction and the speed at which information
is exchanged between memory and CPU. Information exchange can be increased by the implementation of
cache memory and the execution rate can be improved by the execution pipelining techniques.

A SISD architecture is a sequential computer, while SIMD and MIMD architectures both belong to the
parallel computer category. A SIMD architecture system has a single control unit furnishing instruction
to each processing element in the system. The SIMD architecture is capable of applying exactly the same
instruction stream to multiple streams of data simultaneously. For certain classes of problems this archi-
tecture is perfectly suited to achieve very high processing rates. This requires data to be split into many
different independent pieces, so that multiple instruction units can operate on them at the same time. SIMD
architectures proved to be too inflexible; consequenly, they are now used only for very specific applications.

A MIMD architecture system has each control unit in each processing element in such a way that
each processor is capable of executing a different program independent of the others in the system. A
MIMD architecture is capable of running in true “multiple-instruction” mode, with every processor doing
something different, or every processor can be given the same code. The latter case is sometimes called
Single Program Multiple Data Stream (SPMD). SPMD architecture is a generalisation of SIMD with much
less strict synchronisation requirements.

A second taxonomy is based on granularity, i.e., the ratio of the time required for a basic communication
operation to the time required for a basic computation. Parallel computers with small granularity are
suitable for algorithms requiring frequent communication and the ones with large granularity are suitable
for algorithms that do not require frequent communication. The granularity of a parallel computer may
also be defined by the number or processors and the speed of each individual processor in the system.
Computers with large number of less powerful processors will have small granularity and are called fine-
grain computers or Massively Parallel Processors (MPP). In contrast computers with small number of very
powerful processors have large granularity and are called coarse-grain computers or multicomputers.

In the middle of the 80’s MPP computers were predicted to be the next big advance in high performance
computing. Many companies were formed to build MPP systems, like nCUBE and Thinking Machine. In
addition, several existing companies like INTEL, IBM, and Cray Research decided to build these systems.
However, nowadays only few centres host and currently use MPP systems. Industry is more oriented to
Symmetric Multi Processors (SMP) systems. An SMP system is a coarse-grain parallel computer. To
reduce price, they are usually composed of commodity processors. In addition to SMP systems, the so-

204

P P P

shared bus

MI/O

P

MI/O

P

MI/O

P

MI/O

switched interconnection network

Figure 13.1: Shared memory systems (on the left) and distributed memory systems (on the right). P
represents the CPU unit, M the memory, I/O a generic input/output systems.

called Commercial Off-the-Shelf (COTS) systems are increasingly adopted by many institutions, even if
these systems are not really a single parallel computer but a collection of systems. Both SMP and COTS
systems belong to the class of MIMD systems, with a moderate number of high-performance (and relative
low price) processors.

More recently, research is focusing on NOW (Network Of Workstation) architectures, and its gen-
eralisation, COMPS (Cluster Of Multi-Processor Systems). Among the NOW systems, an example is
represented by the Beowulf system. Is consists of a cluster of PCs or workstations dedicated to running
high-performance computing tasks. Instead, a COMPS is a network of multiprocessor computers, and it
differs from NOW in that it links multiprocessor workstations. The last frontier is now represented by grid
computing. A grid is a collection of distributed computing resources available over a local or wide area net-
work that appear to an end user or application as one large virtual computing system. For high-performance
computing, the present feeling is that NOW, COMPS and grid computing are still not competitive with SMP
systems.

A third taxonomy is based on memory organisation, and distinguishes parallel computers between
shared memory systems and distributed memory systems. Shared memory systems were extensively used
in the beginning of the 90’s. A parallel code running on a shared memory system uses more processors
(even if generally few), all sharing the same main memory. The CRAY X-MP, Y-MP, C-90, the IBM
3090-600, ALLIANT FX/80, the NEC SX/4 and SX/5, and the CONVEX C3800 belong to this class.

Using shared memory systems, the communication between processors is implicit and transparent.
Processors access memory through the shared bus; see the picture on the left of figure 13.1. Processors
do not explicitly communicate with each other so communication protocols are hidden within the system.
This means communication can be close to the hardware (or built into the processor), with the shared bus
system deciding on how most efficiently to manage communication. Therefore, a serial code can run on
these systems with no modification (although maybe performances will be poor).

On the contrary, in distributed memory systems the processors must explicitly communicate with each
other through messages. See the picture on the right of figure 13.1 for a graphical representation. The
resulting parallel computer has a “simple” architecture overall, since it is composed by local components,
connected by a network. The construction of the network (and the definition of a software library to access
it) becomes the key to success in the definition of the parallel computer.

Because of cost reasons, industry has now turned the attention to distributed memory systems. The
Connection Machine, the INTEL iPSC860 and Paragon, the IBM SP/2, the SGI Origin series, and the
ASCI project supercomputers are example of this class of parallel machines. Here every processor has
its own local memory and data is communicated among the processors via communication network. Due
to the explicit interface to communication, distributed memory systems are more scalable in the sense
that hundreds or even thousands of identical processors can work on one problem, without the need of an
(expensive) global memory. Moreover, the distributed memory eliminates the cache coherency problems
that are typical of the shared memory systems. The price to pay is a more aggressive redesign of the
algorithm the code is actually running.

205

We conclude this section with few references on the subject. More details about the classification of
parallel computers and a recent overview of the history of high-performance computing may be found, for
instance, in [WDH+99, SDMS99]. The book by Hockney and Reship [HJ88] is a valid reference for vector
and parallel computers till the end of the 1980’s, while the book by Ortega [Ort88] is a good mix between
implementation details and mathematical aspects of vector and parallel computers.

13.2 Cost of Communication Among Processors

We now discuss communication in more details, following [Ort88]. The typical communication problem
is to send n words from the local memory of one processor, say P1, to the memory of another processor,
say P2. On a distributed memory system this communication will be accomplished by a combination
of hardware and software. First, the data are loaded into a buffer memory or collected into contiguous
locations in memory. Then, a send command will be executed on P1, while P2 will execute a receive
command and the data will be routed to their final destination in the memory of P2. Although many
technical details have been omitted in the previous description, the main points of communications are
clear:

1. data are collected from the memory of the sending processor;

2. data are physically transfered over the network;

3. the received information are put in the correct memory location of the receiving processor.

Usually, the time tn required for these 3 phases to send n words is approximately given by

tn = s+ αn, (13.1)

where s is the startup time and α is the incremental time necessary for each of the n words to be sent. In
nowadays implementations, s is generally several order of magnitude greater than α.

This simple – although effective – model can furnish a guideline in the development of parallel algo-
rithms: it is better to have an algorithm which groups communication, that is, sent many data few times,
instead of one which requires many send/receive with a small amount of carried data. The number of
processors that a given processor has to communicate with, is also to be minimised, since it contributes to
additional communication time. This is because each time a processor has to communicate with a proces-
sor, a latency penalty for starting a new message is incurred.

Using equation (13.1), the parallel performances of simple algorithms can be studied to optimise the
algorithms themselves. Instead, the parallel performances of complex algorithms are usually analysed
looking to the global behaviour of a code implementing the algorithm, as the number of processors varies.
This global evaluation considers the following parameters:

• elapsed time Tp, that is the CPU-time needed to carry out the algorithm using p processors;

• speedup sp, defined as

sp =
execution time using a single processor

execution time using p processors
=
T1

Tp
.

One can also define the speedup of a parallel algorithm over the best serial algorithm:

s′p =
execution time using a single processor for the fast serial algorithm

execution time using p processors
=
T ′1
Tp

;

• relative speedup sp,q, defined as the ratio

sp,q =
Tq × q
Tp

(13.2)

206

where Tq ≈ T1/q is a reference time using q processors. In fact, often sp turns out to be hard to
compute accurately. Problems that can run on a large number of processors may not fit the memory
of a single processor, so that the time for one processor would have to include I/O time to secondary
memory – typically, the one of another processor. In this case, q represents the minimum number of
processors which can run the defined problem without requiring secondary memory.

• efficiency ep, defined as
ep = T1/(pTp) = sp/p.

It is also possible to define the efficiency of an algorithm with respect to the best serial algorithm as
e′p = s′p/p.

One goal in the development of a parallel algorithm is to achieve as large a speedup as possible. For
perfectly parallel algorithms we would expect an ideal speedup sp = s′p = p (that is, using p processors we
can reduce the elapsed time by a factor p). In practise, this value cannot be achieved unless the algorithm
does not require communications, or the ratio between communication and computations is extremely low
(the so-called embarassing parallelism). In general, an efficient parallel algorithm will present speedup
values close enough to the ideal ones.

Remark 13.1. Sometimes superlinear speedups may be observed, that is, sp > p or s′p > p. This is due
to non-linear effects, like, for instance, the cache reuse: as the dimension of the problem to be solved
diminishes, the code can use in a more efficient way the values in the high-performance cache memory,
therefore resulting in a consistently lower CPU time.

The degradation of the speedup value is mainly due to the following factors:

1. lack of perfect degree of parallelism in the algorithm and/or of load balance. Load balance means
the assignment of tasks to processors of the system so as to keep each processor doing useful work
as much as possible. Load balance may be done either statically or dynamically. In static load
balance tasks (and data) are assigned to processors at the beginning of computation. In dynamic load
balance tasks (and data) are assigned to processors as computation proceeds. The implementation of
a dynamic load balance algorithm may be difficult on distributed memory systems since data transfer
between local memories is in general required as a part of a task assignment;

2. communication, contention, and synchronisation time. We have already discussed about communi-
cation. Data contention mainly arises in shared memory computers. Synchronisation is necessary
when certain parts of computation must be completed before the overall computation can proceed.
There are two aspects of synchronisation that contribute to the overhead. The first is time required
to do the synchronisation. The second aspect is that some processors may become idle. Communi-
cation, contention, and synchronisation time are usually referred to as data ready time.

All these factors may be grouped in a model for the speedup, which reads:

sp =
T1

(α1 + α2/k + α/p)T1 + td
.

Here T1 is the time for a single processor, α1 is the fraction of operations done with one processor, α2 the
fraction of operations done with k processors (k < p), α if the fraction of operations done with degree of
parallelism p, and td is data ready time. Clearly, α+ α1 + α2 = 1.

A special (simple) case can be obtained considering α2 = 0 (that is, all the operations have the maxi-
mum degree of parallelism) and with no delays (td = 0). In this case, we obtain

sp =
T1

(1− α+ α
p)T1

=
1

1− α+ α
p

(13.3)

and

ep =

1
p

α
p + (1− α)

=
1

α+ (1− α)p
. (13.4)

207

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Efficiency

p

e(
p)

α=0.001
α=0.01
α=0.1
α=0.2
α=0.3
α=0.4
α=0.5
α=0.8

Figure 13.2: Efficiency ep for various values of α.

Expression (13.3) is known as the Amdahl’s law or Ware’s law. Although very simple, (13.3) is instructive.
Consider, for example, α = 1/2. Then,

sp =
2

1 + p
< 2,

that is, no matter how many processors there are, and ignoring all communication, delays, and synchronisa-
tion problems, the speedup is always less than 2. Hence, a “good” value of α is of fundamental importance
to obtain interesting parallel properties. Figure 13.2 reports the behaviour of ep with respect to p for several
values of α.

13.3 Load Balancing

From the discussion of the previous section, it is clear that both load balance and data ready time are
strongly affected by the way data is distributed among the processor. In a DD approach, this means that
an algorithm to partition the computational domain is required, to have optimal load balance and as little
communication between processors as possible. Ideally, one would like each processor to do exactly the
same amount of work. That way, each processor is always working and not staying idle. The way to do
this is to first determine what the basis computational task for the algorithm is. For a typical solver, the
two main tasks are the matrix-vector product and the preconditioning step. Therefore, it makes sense to
partition the grid such that each processor gets a (nearly) equal number of grid vertices. Moreover, the
amount of communication among processors should be minimised, as well as the number of neighbouring
processors.

During the last years, much work has been done is the area of unstructured grid partitioning. Here we
briefly review three algorithms of increasing complexity.

The Recursive Coordinate Bisection (RCB) is the simplest and fastest partitioning strategy of the
three presented here. It is based upon the ordering of the elements according to the spatial coordinates of
their centroids.

Here is the principle. For a given grid, determine along which direction the bisection will operate (for
example, the longest direction), say, the x−direction. Now, sort the elements according to the x−direction,
and choose the median value of the x−components so that equal number of elements lies in each partition.

208

Although RCB is very simple, the partition it can produce may be disconnected, and this is not a
desirable property since it will result in large communication times. Clearly, the poor parallel properties of
RCB are caused by the fact that the algorithm ignores all the grid connectivity. The other two algorithms
that we are about to present, instead, use the grid connectivity to obtain high-quality partitions.

The basic ideas of the Recursive Graph Bisection (RGB) algorithm are as follows. The two vertices
that are furthest apart graphically within the grid are chosen as the starting points for the method1. Actually,
this is a difficult problem in graph theory, by there are fast ways to find two vertices that are approximately
the furthest apart.

Now, start at one of these vertices; call it root. Then, find all the first-order vertices to this root vertex.
This set of vertices forms what is called the first level set. The next level set if found by determining all of
the neighbours of the first level set that are not already part of a level set. This process continues until half
of vertices are members of a level set. It turns out that RGB guarantees that one of the two subdomains
produced will be connected. Note that the RGB algorithm is also called the Cuthill-McKee algorithm, and
it is often used to reduce the bandwidth of sparse matrices.

The objective of Recursive Spectral Bisection (RSB) is to divide the graph into two parts having equal
number of vertices such that the number of edges cut is approximately minimised. The key feature is its
clever use of eigenstructure of what is called the Laplacian matrix of the graph.

Given a graph G with |G| = n (where |G| represents the number of nodes of G), the Laplacian of G is
the matrix L ∈ Rn×n defined as

L = −D +H,

where H is the adjacency matrix,

Hi,j =

{
1 if edge(vi, vj) belongs to G
0 otherwise,

and D is a diagonal matrix with entries equal to the degree of each vertex, that is the number of its first-
order neighbours. Clearly, the rows of L sum to zero, and therefore there is at least one zero eigenvalue.
Disconnected graph may have multiple non-zero eigenvalues; however, for this discussion we assume that
the graph is connected.

RSB is defined as in the following algorithm.

1. Compute the Laplacian matrix L of the graph.

2. Determine its smallest (in magnitude) non-zero eigenvalue and the corresponding eigenvector. This
is called the Fiedler vector.

3. Determine the median value of the entries in the Fiedler vector.

4. Those vertices whose Fiedler vector entry is greater than zero form one subgraph. The remaining
vertices form the other subgraph.

It is interesting to see why and how the Fiedler vector plays in this procedure. The argument given
below follows closely that given in [Bar94].

Define a partitioning vector p that assigns each vertex of the graph either a +1 or a −1, with pi = +1
if vertex i belongs to the first partition. An equal partition of the graph, which will be assumed to have an
even number of vertices, means that

s ⊥ p,

where s is a vector of 1’s.
The key observation is to notice that the number of cut edges Ec is precisely related to the L1−norm

of the Laplacian matrix multiplied by the partitioning vector,

4Ec = ‖Lp‖1.
1The graphical distance between two vertices is defined as the minimum number of edges one has to traverse to get from one

vertex to the other

209

Since the goal is to minimise the number of cut edges, one should find the vector p = p̂ that minimises
the norm ‖Lp̂‖1, where ‖p̂‖1 = n, and s ⊥ p̂. Because L is real symmetric negative semidefinite, it has a
complete set of eigenvectors that can be orthogonalised with each others. Therefore, one can write p̂ as

p̂ =

n∑

i=1

αivi,

vi being the eigenvectors ofL. It is possible to show that ‖Lp̂‖1 is minimised by choosing p̂ = nv2/‖v2‖1,
and therefore the Fiedler vector defines a partition of the graph which minimises the number of cut edges.
This is done using a Lanczos algorithm.

The numerical cost of RSB is higher than that of RCB or RGB because of the computation of the Fielder
vector. However, RSB can be applied to partition general unstructured grids, and results in partition of good
quality.

13.4 Parallel Programming Tools

Parallel programming is more challenging than serial programming for various reasons. First, parallel
programs must include mechanisms for data exchange. Second, in an efficient parallel program the work
must be evenly divided among processors. This is an algorithmic problem that has no counterpart in the
serial programming. And finally, the data structures must be divided among the processors to preserve data
locality. This is obviously true for distributed memory systems in which data movement is costly. It is also
true for shared memory systems since data locality reduces the cost of maintaining cache coherence, hence
resulting in a faster implementation of the algorithm.

To help the programmer in developing parallel codes, several different parallel methodologies have
been pursued. In the class of MIMD systems, there are different aspects for developing a parallel program,
one more suited for shared memory and the other for distributed memory systems. In shared memory
programming, programmers view their programs as a collection of processes accessing a central pool of
shared variables. In the message passing programming, programmers view their programs as a collection of
processes with private local variables and the ability to send and receive data between processes by passing
messages. On one side, we have the implicit parallelisation, automatically performed by the machine (and
the compiler); on the other side we find the explicit parallelisation, that requires the users to take control
of all the parallel aspects.

For shared memory computers, one can exploit the parallel programming using threads. The parallel
code is composed by many independent processors, thus manipulating data stocked in a common area.
Each thread is given to a different processor. A more recent approach for the programming of SMP is the
standard OpenMP. It consists in a set of procedures and directives that are added to the (sequential) source
code to aid the compiler to build up the parallel code. In this case, the aim is to produce parallel code
starting from the sequential one. Some compiler directives are added to help the compiler in detecting the
parallel cycles and the optimal distribution of data among the processors. An example of this approach is
High Performance FORTRAN (HPF). This approach is very practical for the programmer, and it can work
well for problems with a regular structure. Instead, it is in general quite difficult to apply for unstructured
data and for a large number of processors. This approach is somehow less common than others, and
in general the automatic parallelisation is more effective on shared memory than on distributed memory
architectures. Moreover, the best results are obtained for codes lying on cycles whose parallelism does not
rely on the input data.

For distributed memory computer, instead, the interaction among the processor is made up using mes-
sages. The parallel program is organised as a collection of processes running on a certain number of
processors, each of them owning its private local memory. Data exchange is performed only by means of
explicit send and receive operations.

Message passing is often preferred to other approached because, although explicit message passing
may be more complex to code with respect to other parallelisation techniques, it has a key advantage over
other approaches: it focalizes the programmer’s attention on the performance-critical issue of the parallel
hardware – data locality. The programmer is forced to exploit the data structure of the problem, and to use

210

(or develop) numerical methods which minimise the use of non-local data in all the various phases of the
code.

The two important standards for message passing are PVM and MPI [For95].
PVM was mainly built around the notion of ‘virtual machine’ – a set of heterogeneous hosts connected

by a network that appears logically to the user as a single large parallel computer. The exchange of data, or
in other words, communication, is accomplished using simple message-passing constructs. The concept of
portability was considered much more important than using the natural message passing constructs of the
underlying hardware. This in fact has paved the way for the present large scale use of PVM.

MPI, in contrast to PVM, was designed not with portability as the main aim, but with the view of
creating a standard message passing interface for high-performance parallel computing. The focus of
MPI developers’ team was more on performance, which they tried to improve with the natural message-
constructs of the unrelying hardware. One of MPI’s prime goals is to produce a system that would allow
manufacturers of high performance massively parallel processing computers to provide highly optimised
and efficient implementations, while PVM was designed primarily for network of workstations with the
goal of portability gained at the sacrifice of optimal performance. MPI has advantages in the areas of
point to point communication, collective communication, ability to specify communication topologies and
ability to create derived data types. There is also a study going on for developing a system PVMPI [FD96],
which uses the already proved and widely ported MPI message-passing system within PVM to enable
interoperability with different implementations execution on heterogeneous distributed hardware and more
recent projects to built interfaces portable to both MPI and PVM [AKK99].

MPI is the de-facto standard approach to program distributed memory machines. Because of its low-
level constructs, it allows programmers to precisely control how the parallel computation proceeds. Also,
it allows programmers to write portable parallel programs that run well on shared-memory machines, mas-
sively supercomputers, clusters. A wide variety of operations are available: there are more than 125 func-
tions in MPI 1.1, which is the version used by the majority of MPI programmers. This version of the library
was released in 1995. Since then, the standard has evolved. The specification on an enhanced version, MPI
2.0, with parallel I/O (MPI-IO), dynamic process management, one-sided communication, and other ad-
vanced features was released in 1997. Unfortunately, it was such a complex addition to the standard that
only few implementations support MPI 2.0.

Installing MPI on a Unix/Linux machine is quite simple. There are several implementations of MPI
in common used. The two most common are LAM/MPI [BDV94] and MPICH [GL96]. Both may be
downloaded free of charge and are quite straightforward to install, with support for a wide range of parallel
computers. The following section shows how to compile and run few simple MPI programs.

13.4.1 A Simple MPI Program

The simplest MPI program is the parallel extension of the famous Hello, World! C program of
Kernighan and Ritchie [KR78]. The C++ program reported below will output a sentence from each pro-
cessor involved in the computation.

#include <iostream>
#include "mpi.h"

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);

int NumProcs; // number of processors in the group
int MyPID; // a unique identifier ranging from 0 to (NumProcs - 1)

MPI_Comm_size(MPI_COMM_WORLD, &NumProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &MyPID);

std::cout << "Hello World from processor " << MyPID;
std::cout << " of " << NumProcs << std::endl;

211

MPI_Finalize();
return(EXIT_SUCCESS);

}

The structure of this simple example is quite typical of all MPI programs. First, we include the MPI
header file mpi.h. The MPI library is initialized by MPI Init(), and finalized by MPI Finalize(). No
MPI instructions can be executed before MPI_Init() or after MPI_Finalize()2. Among others,
the initialization function creates the global communicator, MPI_COMM_WORLD. In most cases, MPI pro-
grammers only need a single communicator and just the default one; however new communicator can be
created if required, to isolate few processors or to create different communication channels. Functions
MPI_Comm_rank() returns the process ID of the calling processor, while MPI_Comm_size() returns
the total number of processors in the computations.

To compile this program, you might simply need

$ mpic++ hello_world.cpp -o hello_world

You still need to run it. The MPI standard does not mandate how a job is started or executed, so there is
considerable variation between different MPI implementations. Typically, mpirun is used to launch MPI
programs; some architectures use prun (DEC) or yod (CRAY). The following instructions might suffice:

$ mpirun -np 2 ./hello_world
Hello World from processor 0 of 2
Hello World from processor 1 of 2

13.4.2 Basic Point-to-Point Message Passing

Once our first MPI program has been fired, let’s explore MPI a little bit more. Let us suppose that we
want to send the value of a double variable from processor 0 to processor 1. A possible solution is the
following:

#include <iostream>
#include "mpi.h"

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);

int NumProcs; // number of processors in the group
int MyPID; // a unique identifier ranging from 0 to (NumProcs - 1)

MPI_Comm_size(MPI_COMM_WORLD, &NumProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &MyPID);

double a = 0.0;
MPI_Status status;
if (MyPID == 0)
{
a = 123.4;
int SendTo = 1;
int Tag = 0;
MPI_Send(&a, 1, MPI_DOUBLE, SendTo, Tag, MPI_COMM_WORLD);

}
else
{
int RecvFrom = 0;
int Tag = 0;
MPI_Recv(&a, 1, MPI_DOUBLE, RecvFrom, Tag, MPI_COMM_WORLD, &status);

2Function MPI Finalized() can be used at any time to query the initialization state of the MPI library.

212

std::cout << "Value of a on processor 1 = " << a << std:endl;
}

MPI_Finalize();
return(EXIT_SUCCESS);

}

What we have just shown is the most commonly used message-passing functions in MPI: the blocking
send/receive functions MPI_Send() and MPI_Recv(). The former returns when the buffer has been
transmitted into the system and can safely be reused; the latter returns when the buffer has received the
message and is ready to use. Using sends and receives can be more challenging than it may appear at a
first sight. Since MPI_Send() is blocking, for large message sizes it will return only when the message
has been sent—that is, when the corresponding MPI_Recv() returns. One should be sure to pair the send
and receive phase correctly, or use non-blocking functions.

There are more than 21 functions in MPI 1.1 for point-to-point communication. This large set of
message-passing functions provides the controls needed to optimize the use of communication buffers and
specify how communication and computation overlap. An overview of the communication modes is as
follows:

• Standard Mode (MPI_Send()). The standard MPI send, the send will not complete until the send
buffer is empty and ready to reuse.

• Synchronous mode (MPI_Ssend()). The send does not complete until after a matching receive
has been posted. This makes it possible to use the communication as a pairwise synchronization
event.

• Buffered Mode (MPI_Bsend()). User-supplied buffer space is used to buffer the messages. The
send will complete as soon as the send buffer is copied to the system buffer.

• Read mode (MPI_Rsend()). The send will transmit the message immediately under the assump-
tion that a matching receive has already been posted. On some systems, ready mode communication
is more efficient.

13.4.3 Collective Operations

In addition to the point-to-point message-passing functions, MPI includes a set of operations which all the
processes in the group work together to carry out. The most commonly used collective operations include
the following:

• MPI_Barrier(). A barrier defines a synchronization point at which all processes arrive before
any of them are allows to proceed. For MPI, this means that every process using the indicated
communicator must call the barrier function before any of them proceed.

• MPI_Bcast(). A broadcast sends a message from one processor to all the processes in a group.

• MPI_Reduce(). A reduction operation takes a set of values spread out around a process group and
combines them using the indicated binary operation. To be meaningful, the operation in question
must be associative. The most common examples for the binary function are summation and finding
the maximum or a minimum of a set of values. The result is available only in the indicated destination
process. If the value is needed by all processes, there is a variant called MPI_Allreduce().

A simple example is reported below. First, we synchronize all the processors, then we perform a
reduction operation and we store the result on processor 0, then we broadcast a value from processor 0 to
all the other processors.

#include <iostream>
#include "mpi.h"

213

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);

int MyPID; // a unique identifier ranging from 0 to (NumProcs - 1)

MPI_Comm_rank(MPI_COMM_WORLD, &MyPID);

// Synchronize all the processors
MPI_Barrier(MPI_COMM_WORLD);

// sets some local values. LocalValue has a different
// value on each processor; GlobalValue is not set
int LocalValue = 10 * MyPID, GlobalValue;

// Finds the mininum (i.e., 0), store the result on processor 0
// Here "1" is the length of the array to be processed, which
// is of type MPI_INT (i.e., int)
MPI_Reduce(&LocalValue, &GlobalValue, 1, MPI_INT, MPI_MIN,

0, MPI_COMM_WORLD);

// reset LocalValue on processor 0
if (MyPID == 0) LocalValue = 123;

// Broadcast this value from process 0 to all processes
MPI_Bcast(&GlobalValue, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Finalize();
exit(EXIT_SUCCESS);

}

This concludes our short overview of the MPI library. More details can be found, for example,
ine [Pac96, GHLL+98].

214

Bibliography

[AKK99] V. Annamalai, C.S. Krishnamoorthy, and V. Kamakoti. Adaptive finite element analysis on a
parallel and distributed environment. Parallel Computing, 25:1413–1434, 1999.

[Bar94] T.J. Barth. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-
Stokes equations. In VKI LS 1994-05, Computational Fluid Dynamics, 1994.

[BDV94] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environment for MPI.
In Proceedings of Supercomputing Symposium, pages 379–386, 1994.

[FD96] G. Fagg and J. Dongarra. PVMPI: An integration of PVM and MPI systems. Calculateurs
Parallèles, 8(2):151–166, 1996.

[For95] Message Passing Interface Forum. MPI: A message-passing interface standard. Technical
report, 1995.

[GHLL+98] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Marc Snir. MPI - The Complete Reference: Volume 2, The MPI-2 Ex-
tensions. MIT Press, Cambridge, MA, USA, 1998.

[GL96] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Implementation
of MPI. Mathematics and Computer Science Division, Argonne National Laboratory, 1996.
ANL-96/6.

[HJ88] R.W. Hockney and C.R. Jesshope. Parallel Computers 2. Adam Hilger Ltd, Bristol, 1988.

[KR78] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1978.

[Ort88] J. Ortega. Introduction to Parallel and Vector Solution of Linear Systems. Plenum Press, New
York, 1988.

[Pac96] Peter S. Pacheco. Parallel programming with MPI. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[SDMS99] E. Strohmaier, J.J. Dongarra, H.W. Meuer, and H.D. Simon. The marketplace of high-
performance computing. Parallel Computing, 25:1517–1544, 1999.

[WDH+99] D.E. Womble, S.S. Dosanjh, B. Hendrickson, M.A. Heroux, S.J. Plimpton, J.L. Tomkins, and
D.S. Greenberg. Massively parallel computing: a Sandia perspective. Parallel Computing,
25:1853–1876, 1999.

215

Chapter 14

Distributed Linear Algebra with
Trilinos

14.1 Installing Trilinos

To obtain Trilinos, please follow the instructions at the web site

http://software.sandia.gov/Trilinos

Trilinos has been compiled on a variety of architectures, including various flavors of Linux, Sun Solaris,
SGI Irix, DEC, Mac OS X, ASCI Red, and many others. Trilinos has been designed to support parallel ap-
plications. However, it also compiles and runs on serial computers. Detailed comments on the installation,
and an exhaustive list of FAQs, may be found at the web pages:

http://software.sandia.gov/Trilinos/installing_manual.html
http://software.sandia.gov/Trilinos/faq.html

After obtaining Trilinos, the next step is its compilation. The description here is for LINUX platforms
with MPI, the compilation on other platforms being pretty similar. The configuration and compilation steps
follow the classical tt configure; make; make install procedure. For more details, simply type

$ <your-trilinos-directory>/configure --help

All Trilinos packages can be build to run with or without MPI. If you want to configure Trilinos without
MPI support, just type

$ <your-trilinos-directory>/configure
$ make
$ make install

If you want to enable to support for MPI, you may need--enable-mpi and--with-mpi-compilers.
Extensive support is reported on the Trilinos’ web page.

The Trilinos framework uses a two level software structure that connects a system of packages. A
Trilinos package is an integral unit, usually developed to solve a specific task, by a (relatively) small group
of experts. Packages exist beneath the Trilinos top level, which provides a common look-and-feel. Each
package has its own structure, documentation and set of examples, and it is possibly available indepen-
dently of Trilinos. However, each package is even more valuable when combined with other Trilinos
packages. In the following, we suppose that Trilinos has been configured with support for TEUCHOS, EPE-
TRA, AZTECOO, IFPACK and ML. All these packages are enabled by defauls, unless you configure with
the option --disable-default-packages. TEUCHOS is a collection of utilities; EPETRA provides
distributed linear algebra objects, and it is covered in Section 14.2; AZTECOO defines a variety of Krylov
solvers and preconditioners, as described in Section 14.3; IFPACK and ML provides preconditioners. A
simple usage of ML is decribed in Section 14.4.

216

14.2 Building Distributed Vectors and Sparse Matrices using Epetra

EPETRA is the core of Trilinos. Creating distributed vectors and sparse matrices with EPETRA is quite
simple. The library also offers some capabilities to handle serial dense objects, an interface to BLAS and
LAPACK.

Our overview of EPETRA is as follows:

1. We first create an communicator object in Section 14.2.1. If Trilinos has been configured with MPI
support, then this object encapsulates MPI. Otherwise, it simply mimics MPI functionalities on a
single-processor machine. By using this communicator wrapper, the same code can be compiled and
executed with serial and MPI support, with no changes.

2. We specify the data layout of our vectors and matrices using maps, in Section 14.2.2.

3. We create distributed vectors in Section 14.2.3.

4. We assemble a distributed sparse matrix in Section 14.2.4.

5. We define a linear system, and we solve it using AZTECOO, in Section 14.3.

6. Finally, we present state-of-the-art preconditioners for elliptic equations in Section 14.4.

14.2.1 Encapsulating MPI

EPETRA encapsulates the all intra-processor communications in the Epetra Comm virtual class. An Epe-
tra Comm object is required for building all Epetra Map objects, which in turn are required for all other
Epetra distributed objects. Epetra Comm has two basic concrete implementations: Epetra SerialComm for
serial executions, and Epetra MpiComm for MPI distributed memory executions. By encapsulating the
communicator, the calls to MPI Init() and MPI Finalize() are likely to be the only MPI calls you have to
explicitly introduce in your code.

For most basic applications, the user can create an Epetra Comm object using the following code:

#include "Epetra_ConfigDefs.h"
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif

int main(int argv, char *argv[])
{
#ifdef HAVE_MPI

MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

#else
Epetra_SerialComm Comm;

#endif
cout << "Hello World from processor " << Comm.MyPID();
cout << " of " << Comm.NumProc() << endl;

MPI_Finalize();
return(EXIT_SUCCESS);

}

217

Most of Epetra Comm methods are similar to MPI functions. The class provides methods such as MyPID(),
NumProc(), Barrier(), Broadcast(), SumAll(), GatherAll(), MaxAll(), MinAll(),
ScanSum().

Note that the macro HAVE_CONFIG_H must be defined either in the user’s code or as a compiler flag
in all examples that use Trilinos.

14.2.2 Data Layout using Maps

The distribution of a set of integer labels (or elements) across the processes is here called a map, and its
actual implementation is given by the Epetra Map class (or, more precisely, by an Epetra BlockMap, from
which Epetra Map is derived). Basically, the class handles the definition of the:

• global number of elements in the set (called NumGlobalElements);

• local number of elements (called NumMyElements);

• global numbering of all local elements (an integer vector of size NumMyElements, called MyGlobalElements).

There are three ways to define an map. The easiest way is to specify the global number of elements,
and let Epetra decide:

Epetra_Map Map(NumGlobalElements,0,Comm);

In this case, the constructor takes the global dimension of the vector, the base index1, and an Epetra_Comm
object (introduced in Section 14.2.1). As a result, each process will be assigned a contiguous set of ele-
ments.

A second way to build the Epetra Comm object is to furnish the local number of elements:

Epetra_Map Map(-1,NumMyElements,0,Comm);

This will create a vector of size
∑NumProc−1
i=0 NumMyElements. Each process will get a contiguous set

of elements.
A third more involved way to create an Epetra Map, is to specify on each process both the number of

local elements, and the global indexing of each local element. To understand this, consider the following
code. A vector of global dimension 5 is split among processes p0 and p1. Process p0 owns elements 0 an
4, and process p1 elements 1, 2, and 3.

#include "Epetra_Map.h"
// ...
MyPID = Comm.MyPID();
switch(MyPID) {
case 0:

MyElements = 2;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 4;
break;

case 1:
MyElements = 3;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;
break;

}

Epetra_Map Map(-1,MyElements,MyGlobalElements,0,Comm);
1The index base is the index of the lowest order element, and is usually, 0 for C or C++ arrays, and 1 for FORTRAN arrays.

Epetra can indeed accept any number as index base. However, some other Trilinos package may require a C-style index base.

218

Once created, a Map object can be queried for the global and local number of elements, using

int NumGlobalElements = Map.NumGlobalElements();
int NumMyElements = Map.NumMyElements();

and for the global ID of local elements, using

int* MyGlobalElements = Map.MyGlobalElements();

that returns a pointer to the internally stored global indexing vector, or, equivalently,

int MyGlobalElements[NumMyElements];
Map.MyGlobalElements(MyGlobalElements);

that copies in the user’s provided array the global indexing.

The class Epetra Map is derived from Epetra BlockMap. The class keeps information that describes the
distribution of objects that have block elements (for example, one or more contiguous entries of a vector).
This situation is common in applications like multiple-unknown PDE problems. A variety of constructors
are available for the class.

Note that different maps may coexist in the same part of the code. The user may define vectors with
different distributions (even for vectors of the same size). Two classes are provided to transfer data from
one map to an other: Epetra Import and Epetra Export (not described here).

Remark 14.1. Most Epetra objects overload the << operator. For example, to visualize information about
the Map, one can simply write

cout << Map;

14.2.3 Distributed Vectors

A distributed object is an entity whose elements are partitioned across more than one process. Epetra’s
distributed objects (derived from the Epetra DistObject class) are created from a Map. For example, a dis-
tributed vector can be constructed starting from an Epetra Map (or Epetra BlockMap) with an instruction
of type

Epetra_Vector x(Map);

(We shall see that this dependency on Map objects holds for all distributed Epetra objects.) This constructor
allocates space for the vector and sets all the elements to zero. A copy constructor may be used as well:

Epetra_Vector y(x);

A variety of sophisticated constructors are indeed available. For instance, the user can pass a pointer to an
array of double precision values,

Epetra_Vector x(Copy,Map,LocalValues);

Note the word Copy is input to the constructor. It specifies the Epetra CopyMode, and refers to many
Epetra objects. In fact, Epetra allows two data access modes:

1. Copy: allocate memory and copy the user-provided data. In this mode, the user data is not needed
be the new Epetra Vector after construction;

2. View: create a “view” of the user’s data. The user data is assumed to remain untouched for the life of
the vector (or modified carefully). From a data hiding perspective, View mode is very dangerous. But
is is often the only way to get the required performance. Therefore, users are strongly encouraged
to develop code using the Copy mode. Only use View mode as needed in a secondary performance
optimization phase. To use the View mode, the user has to define the vector entries using a (double)
vector (of appropriate size), than construct an Epetra Vector with an instruction of type

219

Epetra_Vector z(View,Map,z_values);

where z_values is a pointer a double array containing the values for z.

To set a locally owned element of a vector, one can use the [] operator, regardless of how a vector has
been created. For example,

x[i] = 1.0*i;

where i is in the local index space.
Epetra also defines some functions to set vector elements in local or global index space. ReplaceMyValues

or SumIntoMyValues will replace or sum values into a vector with a given indexed list of values, with
indexes in the local index space; ReplaceGlobalValues or SumIntoGlobalValues will replace
or sum values into a vector with a given indexed list of values in the global index space (but locally owned).
It is important to note that no process may set vector entries locally owned by another process. In other
words, both global and local insert and replace functions refer to the part of a vector assigned to the calling
process.

The user might need (for example, for reasons of computational efficiency) to work on Epetra Vectors
as if they were double * pointers. ExtractCopy does not give access to the vector elements, but only
copies them into the user-provided array. The user must commit those changes to the vector object, using,
for instance, ReplaceMyValues.

A further computationally efficient way, is to extract a “view” of the (multi-)vector internal data. This
can be done as follows, using method ExtractView(). Let z be an Epetra Vector.

double* z_values;
z.ExtractView(&z_values);
for (int i = 0; i < MyLength ; ++i) z_values[i] *= 10;

In this way, modifying the values of z_values will affect the internal data of the Epetra Vector z.

Remark 14.2. The class Epetra Vector is derived from Epetra MultiVector. Roughly speaking, a multi-
vector is a collection of one or more vectors, all having the same length and distribution.

The user can also consider the function ResetView, which allows a (very) light-weight replacement
of multi-vector values, created using the Epetra DataMode View. Note that no checking is performed to
see if the values passed in contain valid data. This method can be extremely useful in the situation where
a vector is needed for use with an Epetra operator or matrix, and the user is not passing in a multi-vector.
Use this method with caution as it could be extremely dangerous.

It is possible to perform a certain number of operations on vector objects. Some of them are reported
in Table 14.1.

14.2.4 Distributed Sparse Matrices

Epetra provides an extensive set of classes to create and fill distributed sparse matrices. These classes allow
row-by-row or element-by-element constructions. Support is provided for common matrix operations,
including scaling, norm, matrix-vector multiplication and matrix-multivector multiplication.

Using Epetra objects, applications do not need to know about the particular storage format, and other
implementation details such as data layout, the number and location of ghost nodes. Epetra furnishes two
basic formats, one suited for point matrices, the other for block matrices. Here, we will consider the format
for point matrices.

As an example, in this Section we will present how to construct a distributed (sparse) matrix, arising
from a finite-difference solution of a one-dimensional Laplace problem. This matrix looks like:

A =




2 −1
−1 2 −1

. −1
−1 2


 .

220

Table 14.1 Some methods of the class Epetra Vector

int NumMyELements()
returns the local vector length on the calling processor

int NumGlobalElements()
returns the global length

int Norm1(double *Result) const
returns the 1-norm (defined as

∑n
i |xi| (see also Norm2 and NormInf)

Normweigthed(double *Result) const

returns the 2-norm, defined as
√

1
n

∑n
j=1(wjxj)

2)

int Dot(const Epetra MultiVector A, double *Result) const
computes the dot product of each corresponding pair of vectors

int Scale(double ScalarA, const Epetra MultiVector &A
Replace multi-vector values with scaled values of A, this=ScalarA*A

int MinValue(double *Result) const
compute minimum value of each vector in multi-vector (see also MaxValue and MeanValue)

int PutScalar(double Scalar)
Initialize all values in a multi-vector with constant value

int Random()
set multi-vector values to random numbers

Table 14.2 Mathematical methods of Epetra RowMatrix

virtual int Multiply (bool TransA, const Epetra MultiVector &X,
Epetra MultiVector &Y) const=0
Returns the result of a Epetra RowMatrix multiplied by a Epetra MultiVector X in Y.

virtual int Solve (bool Upper, bool Trans, bool UnitDiagonal, const
Epetra MultiVector &X, Epetra MultiVector &Y) const=0
Returns result of a local-only solve using a triangular Epetra RowMatrix with Epetra MultiVectors X and
Y.

virtual int InvRowSums (Epetra Vector &x) const=0
Computes the sum of absolute values of the rows of the Epetra RowMatrix, results returned in x.

virtual int LeftScale (const Epetra Vector &x)=0
Scales the Epetra RowMatrix on the left with a Epetra Vector x.

virtual int InvColSums (Epetra Vector &x) const=0
Computes the sum of absolute values of the cols of the Epetra RowMatrix, results returned in x.

virtual int RightScale (const Epetra Vector &x)=0
Scales the Epetra RowMatrix on the right with a Epetra Vector x.

221

Table 14.3 Atribute access methods of Epetra RowMatrix

virtual bool Filled () const=0
If FillComplete() has been called, this query returns true, otherwise it returns false.
virtual double NormInf () const=0
Returns the infinity norm of the global matrix.
virtual double NormOne () const=0
Returns the one norm of the global matrix.
virtual int NumGlobalNonzeros () const=0
Returns the number of nonzero entries in the global matrix.
virtual int NumGlobalRows () const=0
Returns the number of global matrix rows.
virtual int NumGlobalCols () const=0
Returns the number of global matrix columns.
virtual int NumGlobalDiagonals () const=0
Returns the number of global nonzero diagonal entries, based on global row/column index comparisons.
virtual int NumMyNonzeros () const=0
Returns the number of nonzero entries in the calling processor’s portion of the matrix.
virtual int NumMyRows () const=0
Returns the number of matrix rows owned by the calling processor.
virtual int NumMyCols () const=0
Returns the number of matrix columns owned by the calling processor.
virtual int NumMyDiagonals () const=0
Returns the number of local nonzero diagonal entries, based on global row/column index comparisons.
virtual bool LowerTriangular () const=0
If matrix is lower triangular in local index space, this query returns true, otherwise it returns false.
virtual bool UpperTriangular () const=0
If matrix is upper triangular in local index space, this query returns true, otherwise it returns false.
virtual const Epetra Map & RowMatrixRowMap () const=0
Returns the Epetra Map object associated with the rows of this matrix.
virtual const Epetra Map & RowMatrixColMap () const=0
Returns the Epetra Map object associated with the columns of this matrix.
virtual const Epetra Import * RowMatrixImporter () const=0
Returns the Epetra Import object that contains the import operations for distributed operations.

222

The example illustrates how to construct the matrix, and how to perform matrix-vector operations.
We start by specifying the global dimension (here is 5, but can be any number):

int NumGlobalElements = 5;

We create a map (for the sake of simplicity linear), and define the local number of rows and the global
numbering for each local row:

Epetra_Map Map(NumGlobalElements,0,Comm);
int NumMyElements = Map.NumMyElements();
int* MyGlobalElements = Map.MyGlobalElements();

In particular, we have that j=MyGlobalElements[i] is the global numbering for local node i. Then,
we have to specify the number of nonzeros per row. In general, this can be done in two ways:

• Furnish an integer value, representing the number of nonzero element on each row (the same value
for all the rows);

• Furnish an integer vector NumNz, of length NumMyElements(), containing the nonzero elements
of each row.

The first approach is trivial: the matrix is create with the simple instruction

Epetra_CrsMatrix A(Copy,Map,3);

(The Copy keyword is explained in Section 14.2.3.) In this case, Epetra considers the number 3 as a
“suggestion,” in the sense that the user can still add more than 3 elements per row (at the price of a possible
performance decay). The second approach is as follows:

int* NumNz = new int[NumMyElements];
for (int i = 0; i < NumMyElements; i++)
if (MyGlobalElements[i] == 0 ||

MyGlobalElements[i] == NumGlobalElements-1)
NumNz[i] = 2;

else
NumNz[i] = 3;

We are building a tridiagonal matrix where each row has (-1 2 -1). Here NumNz[i] is the number of
nonzero terms in the i-th global equation on this process (2 off-diagonal terms, except for the first and last
equation).

Now, the command to create an Epetra CsrMatrix is

Epetra_CrsMatrix A(Copy,Map,NumNz);

We add rows one at a time. The matrix A has been created in Copy mode, in a way that relies on the specified
map. To fill its values, we need some additional variables: let us call them Indexes and Values. For
each row, Indices contains global column indices, and Values the correspondingly values.

double Values[2];
Values[0] = -1.0; Values[1] = -1.0;
int Indices[2];
double two = 2.0;
int NumEntries;

for (int i = 0; i < NumMyElements; ++i)
{

if (MyGlobalElements[i]==0)
{
Indices[0] = 1;

223

NumEntries = 1;
}
else if (MyGlobalElements[i] == NumGlobalElements - 1)
{
Indices[0] = NumGlobalElements - 2;
NumEntries = 1;

}
else
{
Indices[0] = MyGlobalElements[i] - 1;
Indices[1] = MyGlobalElements[i] + 1;
NumEntries = 2;

}
A.InsertGlobalValues(MyGlobalElements[i], NumEntries,

Values, Indices);
// Put in the diagonal entry
A.InsertGlobalValues(MyGlobalElements[i], 1, &two,

MyGlobalElements+i);
}

Note that column indices have been inserted using global indices (but a method called InsertMyValues
can be used as well) . Finally, we transform the matrix representation into one based on local indexes. The
transformation in required in order to perform efficient parallel matrix-vector products and other matrix
operations.

A.FillComplete();

This call to FillComplete() will reorganize the internally stored data so that each process knows the
set of internal, border and external elements for a matrix-vector product of the form B = AX . Also, the
communication pattern is established. As we have specified just one map, Epetra considers that the the
rows of A are distributed among the processes in the same way of the elements of X and B.

14.2.5 Epetra LinearProblem

A linear system AX = B is defined by an Epetra LinearProblem class. The class requires an Epe-
tra RowMatrix or an Epetra Operator object (often an Epetra CrsMatrix or Epetra VbrMatrix), and two
(multi-)vectors X and B. X must have been defined using a map equivalent to the DomainMap of A,
while B using a map equivalent ot the RangeMap of A (see Section 14.2.4).

14.2.6 Concluding Remarks on Epetra

More details about the Epetra project, and a technical description of classes and methods, can be found in
[Her02].

14.3 Solving the Linear Systems using AztecOO

Once an Epetra LinearProblem has been created with the command

Epetra_LinearProblem Problem(&A,&x,&b);

where A is an Epetra matrix, and both x and b are Epetra vectors, it can be easily solved using an iterative
method of Krylov type with the AZTECOO package. At this aim, we first need to create an AztecOO
object,

AztecOO Solver(Problem);

224

You have to specify how to solve the linear system. All AZTECOO options are set using two vectors, one
of integers and the other of doubles, as detailed in the Aztec’s User Guide [THHS99]. For example, to use
a Jacobi preconditioner, you can type

Solver.SetAztecOption(AZ_precond, AZ_Jacobi);

To use an ILU with fill-in of 3 and overlap of 2, do instead

Solver.SetAztecOption(AZ_precond, AZ_dom_decomp);
Solver.SetAztecOption(AZ_overlap, 2);
Solver.SetAztecOption(AZ_graph_fill, 3);

You are now ready to solve the linear system. Instruction

Solver.Iterate(1550,1E-9);

runs the Krylov solver, using 1550 maximum iterations, and a tolerance of 10−9 on the relative residual.
Note that the matrix must be in local form (that is, the command A.FillComplete() must have

been invoked before solving the linear system). The same AZTECOO linear system solution procedure
applies in serial and in parallel. However for some preconditioners, the convergence rate (and the number
of iterations) depends on the number of processor.

When Iterate() returns, one can query for the number of iterations performed by the linear solver
using Solver.NumIters(), while Solver.TrueResidual() gives the (unscaled) norm of the
residual.

14.4 Multilevel Preconditioners using ML

We now present how to define a multilevel preconditioner based on smoothed aggregation using the ML
package. This family of preconditioners is implemented in the MultiLevelPreconditioner class, defined in
the ML Epetra namespace.

The MultiLevelPreconditioner class automatically constructs all the components of the preconditioner,
using the parameters specified in a TEUCHOS parameter list. The constructor of this class takes as input an
Epetra RowMatrix pointer and a TEUCHOS parameter list2.

We now give a very simple fragment of code that uses the MultiLevelPreconditioner. The linear op-
erator A is derived from an Epetra RowMatrix, Solver is an AztecOO object, and Problem is an Epe-
tra LinearProblem object.

#include "ml_include.h"
#include "ml_MultiLevelPreconditioner.h"
#include "Teuchos_ParameterList.hpp"

...

Teuchos::ParameterList MList;

// set default values for smoothed aggregation in MLList
ML_Epetra::SetDefaults("SA",MLList);

// overwrite with user’s defined parameters
MLList.set("max levels",6);
MLList.set("increasing or decreasing","decreasing");
MLList.set("aggregation: type", "MIS");
MLList.set("coarse: type","Amesos-KLU");

2In order to use the MultiLevelPreconditioner class, ML must be configured with options -enable-epetra
--enable-teuchos.

225

// create the preconditioner
ML_Epetra::MultiLevelPreconditioner* MLPrec =

new ML_Epetra::MultiLevelPreconditioner(A, MLList);

// create an AztecOO solver
AztecOO Solver(Problem)

// set preconditioner and solve
Solver.SetPrecOperator(MLPrec);
Solver.SetAztecOption(AZ_solver, AZ_gmres);
Solver.Iterate(Niters, 1e-12);

...

delete MLPrec;

The code snippet first includes few header files: ml_config.h (as first ML include), Epetra_ConfigDefs.h
(as first EPETRA include), Epetra_RowMatrix.h,Epetra_MultiVector.h,Epetra_LinearProblem.h,
and AztecOO.h, and the ml_MultiLevelPreconditioner.h file.

All the parameters that affect the preconditioners are contained in a TEUCHOS parameter list. A param-
eter list is a container of objects; Table 14.4 briefly reports the most important methods of this class.

Table 14.4 Some methods of Teuchos::ParameterList class.
set(Name,Value) Add entry Name with value and type specified by Value. Any C++

type (like int, double, a pointer, etc.) is valid.
get(Name,DefValue) Get value (whose type is automatically specified by DefValue). If not

present, return DefValue.
subList(Name) Get a reference to sublist List. If not present, create the sublist.

The parameter list is passed to the constructor, together with a pointer to the matrix. Then, we have to
pass the preconditioner object to AZTECOO using the SetPrecOperator() method, then we solve the linear
system using Iterate(). The hierarchy is destroyed using MLPrec->DestroyPreconditioner().
We suggest to always create the preconditioning object with new and to delete it using delete. Some
MPI calls occur in DestroyPreconditioner(), so the user should not call MPI Finalize() or
delete the communicator used by ML before the preconditioning object is destroyed.

226

Bibliography

[Her02] M. A. Heroux. Epetra Reference Manual, 2.0 edition, 2002.
http://software.sandia.gov/trilinos/packages/epetra/doxygen/latex/EpetraReferenceManual.pdf.

[THHS99] R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid. Official Aztec user’s guide: Version
2.1. Technical Report Sand99-8801J, Sandia National Laboratories, Albuquerque NM, 87185,
Nov 1999.

227

