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Abstract. We prove that the cohomology rings of the moduli space Md,χ of one-dimensional
sheaves on the projective plane are not isomorphic for general different choices of the Euler
characteristics. This stands in contrast to the χ-independence of the Betti numbers of these
moduli spaces. As a corollary, we deduce that Md,χ are topologically different unless they are
related by obvious symmetries, strengthening a previous result of Woolf distinguishing them
as algebraic varieties.
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1. Introduction

We work over the complex numbers C.

1.1. Moduli of sheaves. Fix two integers d and χ with d ≥ 1. We consider the moduli space
Md,χ of semistable one-dimensional sheaves F on P2 with

[supp(F)] = d ·H ∈ H2(P2,Z), χ(F) = χ.

Here H is the class of a line, supp(F) denotes the Fitting support, and the stability condition
is with respect to the slope

µ(E) = χ(E)
c1(E) ·H

∈ Q.

Le Potier [LeP] first studied this moduli space and showed that Md,χ is a irreducible pro-
jective variety of dimension d2 + 1, nonsingular at all stable points. In particular, when d and
χ are coprime, semistability coincides with stability and Md,χ is nonsingular. Geometry and
topology of the moduli space Md,χ have been intensively studied from various perspectives;
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see [PS, Introduction] for a brief overview. In this paper, we are interested in the cohomology
rings H∗(Md,χ,C) for a fixed d and different Euler characteristics χ coprime to d. Under the
coprime assumption, the cycle class map

cl : CH∗(Md,χ) −→ H2∗(Md,χ,Z)

is an isomorphism by [Mar, Theorem 2]. Hence in this case we use A∗(−) to denote the even
cohomology H2∗(−,C), or equivalently the Chow ring CH∗(−,C) with complex coefficients.

The moduli spaces Md,χ admit two types of symmetries:
(a) The first type of symmetry is given by the isomorphism

ψ1 : Md,χ
∼−→ Md,χ+d, F 7→ F ⊗ OP2(1).

(b) The second type of symmetry [Mai, Theorem 13] is given by the duality isomorphism

ψ2 : Md,χ
∼−→ Md,−χ, F 7→ Ext1(F , ωP2).

Thus given two Euler characteristics χ, χ′ satisfying χ ≡ ±χ′ mod d, there is a natural
isomorphism Md,χ ≃ Md,χ′ . The following theorem states that this is essentially the only case.

Theorem 1.1 ([Woo, Theorem 8.1]). For d ≥ 3, there is an isomorphism of algebraic varieties

Md,χ ≃ Md,χ′

if and only if χ ≡ ±χ′ mod d.

The main result of this paper is a cohomological version of Theorem 1.1:

Theorem 1.2. For d ≥ 1 and χ, χ′ coprime to d, there is an isomorphism of graded C-algebras

A∗(Md,χ) ≃ A∗(Md,χ′)

if and only if χ ≡ ±χ′ mod d.

The proof of Theorem 1.2 consists of a careful analysis of the tautological relations [PS,
Section 2] in Ad(Md,χ). We found this cohomological χ-dependence of ring structure interest-
ing, since the (intersection) Betti numbers of Md,χ are χ-independent; see Theorem 1.4. As
a corollary, we deduce that Md,χ are in general topologically different, strengthening Theo-
rem 1.1:

Corollary 1.3. For any χ, χ′ coprime to d, the moduli spaces Md,χ and Md,χ′ are not home-
omorphic unless χ ≡ ±χ′ mod d.

Our proof of Theorem 1.2 involves heavy computations aided by the software Mathemat-
ica [M]. The code (together with a printed file) has been uploaded to the third author’s website

https://github.com/Weite-Pi/weitepi.github.io
under the name cohomological ring chi-dependence, which we shall frequently refer to in
the later part of this paper.

https://github.com/Weite-Pi/weitepi.github.io
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1.2. BPS invariants and χ-independence. One motivation to study the moduli spaces
Md,χ comes from enumerative geometry. Let X = Tot(KP2) be the local Calabi–Yau 3-fold
given by the total space of the canonical bundle on P2. Considerations from physics [GV]
predict an action of the Lie algebra sl2 × sl2 on the cohomology of a certain moduli space of
D-branes supported on degree d curves in X, yielding double-indexed integral invariants

(1) ni,j
d ∈ Z

as the dimensions of the weight spaces of this sl2 × sl2-action. These are known as refined
BPS invariants of X, which are expected to refine curve counting invariants for X defined via
Gromov–Witten/Donaldson–Thomas/Pandharipande–Thomas theory [PT].

One proposal by Hosono–Saito–Takahashi [HST], Kiem–Li [KL], and Maulik–Toda [MT]
suggests a mathematical definition of the invariants (1) by the perverse filtration on the coho-
mology of moduli spaces of one-dimensional sheaves. More precisely, the moduli space Md,χ

admits a Hilbert–Chow morphism

h : Md,χ −→ PH0(P2,OP2(d)),

sending a sheaf to its Fitting support. This map is proper and induces an increasing filtration
on the intersection cohomology

P0 IH∗(Md,χ,Q) ⊂ P1 IH∗(Md,χ,Q) ⊂ · · · ⊂ IH∗(Md,χ,Q)

called the perverse filtration; see [KPS, Section 1.1]. The invariants (1) are defined in loc. cit.
as the dimension of the graded pieces of this filtration:

(2) ni,j
d := dim GrP

i IHi+j(Md,χ,Q).

For this to be well-defined, the RHS in (2) should not depend on the choice of χ, which
is a priori non-trivial in light of Theorem 1.1. This is a special case of Toda’s cohomological
χ-independence conjecture [Tod, Conjecture 1.2]; see also [Bou, Conjecture 0.4.3] for a version
on the intersection Betti numbers of Md,χ. The following theorem of Maulik and Shen confirms
this conjecture1.

Theorem 1.4 ([MS1, Theorem 0.1]). For any χ, χ′ ∈ Z not necessarily coprime to d, there is
a (non-canonical) isomorphism of graded vector spaces

IH∗(Md,χ) ≃ IH∗(Md,χ′)

preserving the perverse and Hodge filtrations on both sides.

If we restrict to the coprime case, intersection cohomology coincides with singular cohomol-
ogy which admits a canonical Q-algebra structure. It is then natural to ask if we can choose
the isomorphism of Theorem 1.4 to be an isomorphism of Q-algebras. More generally, we can
ask the following:

1The case where χ, χ′ are coprime to d was previously proven by Bousseau [Bou].
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Question 1.5 ([PS, Section 0.3]). For any χ, χ′ coprime to d, is there an isomorphism

H∗(Md,χ,Q) ≃ H∗(Md,χ′ ,Q)

of graded Q-algebras?

Our main result Theorem 1.2 gives a complete answer to this question, in the stronger sense
that we work with C-coefficients instead of Q.

1.3. Relations to other works. The moduli space Md,χ shares similar features with two
types of other moduli spaces, the moduli of Higgs bundles2 and the moduli of one-dimensional
sheaves on K3 surfaces. The parallel statement of Question 1.5 holds in those cases. Coho-
mology rings of the moduli of Higgs bundles are proven to be χ-independent in the stronger
sense that perverse filtrations are preserved, as predicted by the P = W conjecture [dCHM,
MS2, HMMS]. A direct proof using techniques in characteristic p is given in [dCMSZ]. The
case of K3 surfaces follows from the fact that moduli of sheaves on K3 surfaces with respect to
a primitive class and generic stability is birational to the Hilbert scheme of points [BM] and
that any two birational projective hyperkähler manifolds are deformation equivalent [Huy].

Our main result asserts that the cohomology rings H∗(Md,χ,C) are χ-dependent in gen-
eral; on the other hand, some χ-independent multiplicative structures have been observed or
speculated:

• It is conjectured and proven under certain assumptions in [BLM] that the Virasoro
constraints hold for the moduli spaces Md,χ. Briefly speaking, the Virasoro constraints
predict that certain intersection numbers on Md,χ obtained by integrating natural
cohomology classes satisfy some explicit universal relations. See [BLM, Section 1.3]
for the precise statement.

• The main theorem of [PS] is a uniform3 minimal generation and freeness result on
H∗(Md,χ,C) for all χ coprime to d; see Theorem 2.2 for a precise and slightly stronger
statement. The P = C conjecture formulated in [KPS] seeks to identify the perverse
filtration on the free part of H∗(Md,χ,Q) with an explicit Chern filtration defined in
terms of the generators. This prediction is also independent of χ.

• Finally, we remark that the perverse filtration on H∗(Md,χ,C) comes from the ring
structure. Indeed, denoting by L the pull-back of the hyperplane class by the Hilbert–
Chow morphism, it is completely determined by the multiplication operator L accord-
ing to [dCM, Proposition 5.2.4].

2Recall that Higgs bundles on a curve C are in correspondence with one-dimensional sheaves on the surface
Tot(KC) via the spectral correspondence [BNR]. This analogy provides another motivation to study Md,χ; see
[PS, Introduction] for details.

3In the sense that the generators ck(j) in Theorem 2.2 are defined without explicit reference to χ.
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2. Tautological classes and relations in Ad(Md,χ)

For the remainder of this paper, we assume χ, χ′ are coprime to d. This section provides
some preliminary results on the cohomology of the moduli spaces Md,χ. We recall the nor-
malized tautological classes and certain tautological relations introduced in [PS], and prove a
first result on the relations in Ad(Md,χ).

2.1. Tautological classes. Under the assumption that gcd(d, χ) = 1, there exists a universal
sheaf [HL, Theorem 4.6.5] over the product P2 × Md,χ which we denote by F. For a stable
sheaf [F ] ∈ Md,χ, the restriction of F to the fiber P2 × [F ] recovers F .

Consider the two projection maps πP and πM from P2 ×Md,χ to its first and second compo-
nents. One way to obtain natural cohomology classes on Md,χ is to take the Chern characters
of F, intersect with classes pulled back from P2, and push forward to Md,χ. The choice of F is
however not unique: any two universal sheaves differ by tensoring with a line bundle pulled
back from Md,χ. We thus conduct a normalization of F as follows.

For a universal sheaf F and a class

δ = π∗
P δP + π∗

MδM ∈ A1(P2 ×Md,χ), with δP ∈ A1(P2), δM ∈ A1(Md,χ),

we consider the twisted Chern character

chδ(F) := ch(F) · exp(δ),

and denote by chδ
k(F) its degree k-part. For any class γ ∈ A∗(P2), we write∫

γ
chδ

k(F) := πM ∗(π∗
Pγ · chδ

k(F)) ∈ A∗(Md,χ).

It is proven in [PS, Proposition 1.2] that for a fixed F, there exists a unique class δ0 = δ0(F)
as above satisfying the normalizing conditions

(3)
∫

H
chδ0

2 (F) = 0,
∫

1P2
chδ0

2 (F) = 0.

This class is computed explicitly in [KPS, Proposition 2.1]:

(4) δ0 =
(3

2 − χ

d

)
·H − 1

d

((3
2 − χ

d

)∫
H2

ch1(F) +
∫

H
ch2(F)

)
.
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Note that the twisted Chern character chδ0(F) does not depend on the choice of F anymore.
With this normalizing class, we define the tautological classes

(5) ck(j) :=
∫

Hj
chδ0

k+1(F) ∈ Ak+j−1(Md,χ).

We collect some basic properties of the tautological classes from [PS, Section 1.2].

Proposition 2.1. Let ck(j) be the tautological classes defined by (5).
(a) The classes ck(j) do not depend on the choice of a universal sheaf.
(b) We have

c1(0) = 0 ∈ A0(Md,χ), c1(1) = 0 ∈ A1(Md,χ), c0(1) = d ∈ A0(Md,χ).

(c) Let ψ1 and ψ2 be the two symmetries introduced in Section 1.1. Then we have

ψ∗
1ck(j) = ck(j), ψ∗

2ck(j) = (−1)kck(j).

The next theorem gives a first result on the structure of A∗(Md,χ) in terms of the tautological
classes. Note that we change the coefficient from Q to C.

Theorem 2.2 ([PS, Y2]). Assume d ≥ 5. We have:
(a) A∗(Md,χ) is generated as a C-algebra by the 3d− 7 classes4 of degrees ≤ d− 2:

(6) c0(2), c2(0) ∈ A1(Md,χ), ck(0), ck−1(1), ck−2(2) ∈ Ak−1(Md,χ), 3 ≤ k ≤ d− 1.

(b) There is no relation among these 3d− 7 classes in degrees ≤ d− 1.
(c) There are exactly three linearly independent relations in degree d.

We briefly recall the proof of Theorem 2.2: (i) By the results of Beauville [Bea] or Markman
[Mar], the ring A∗(Md,χ) is generated by the tautological classes. (ii) Using the geometry of
Md,χ, we produce tautological relations that express any tautological class in terms of the
3d−7 classes in (6); see the paragraph after Proposition 2.6. (iii) Part (b) and (c) follow from
comparing the Betti numbers of Md,χ with those of Hilbert schemes of points on P2; this is
explained in Yuan [Y1, Y2].

As we will see, the three relations in Ad(Md,χ) are the central characters in our proof of
Theorem 1.2. By carefully investigating the χ-dependence of the three relations, we are able
to deduce that A∗(Md,χ) are non-isomorphic for different choices of χ unless they are related
by the symmetries in Section 1.1.

Remark 2.3. The choice of the normalization (3) and the shift in degrees of the Chern character
in (5) are motivated by the P = C conjecture [KPS]. Roughly speaking, the P = C conjecture
predicts that the Chern grading of the tautological generators ck(j) coincides with its perver-
sity; this gives a conjectural explicit description of the perverse filtration on A∗≤d−2(Md,χ) in
terms of (6). See [KPS, Conjecture 0.3 and Proposition 1.2] for details.

4We call these 3d − 7 classes the tautological generators.
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2.2. Tautological relations. We recall in this section certain tautological relations [PS,
Section 1.2] on the cohomology of Md,χ. By the symmetry (a) in Section 1.1, we may assume
that 0 < χ < d, so that any F ∈ Md,χ satisfies 0 < µ(F) < 1.

Consider the triple product Y := P2 × Md,χ × P̌2, where P̌2 is the dual projective space
parametrizing lines in P2. Let πR : Y → P̌2 be the third projection. We write p = πP ×πM , q =
πP × πR, and r = πM × πR:

Y

P2 ×Md,χ Md,χ × P̌2 P2 × P̌2.

p
r

q

Let Z ⊂ P2 × P̌2 be the incidence subscheme, and let OZ be its structure sheaf. For a fixed
universal sheaf F on Md,χ, we consider the complex

(7) H(n) := RHom(p∗F, q∗OZ ⊗ π∗
P OP2(−n)) ∈ DbCoh(Y ).

The projection r : Y → Md,χ × P̌2 is a trivial P2-bundle, so the derived push-forward

Rr∗H(n) ∈ Db(Md,χ × P̌2)

admits a three-term resolution 0 → K0 → K1 → K2 → 0 by vector bundles.

Lemma 2.4. For n ∈ {1, 2, 3}, we can choose Ki with K0 = K2 = 0 and K1 free of rank d.

Proof. This is [PS, Lemma 2.4]; we briefly recall the proof here. Take a point

P = ([F ], [L]) ∈ Md,χ × P̌2,

where [L] ∈ P̌2 corresponds to the line L ⊆ P2. Over the point P , cohomology of the complex
K0(P ) → K1(P ) → K2(P ) computes the extension groups

Exti(F ,OL(−n)), i = 1, 2, 3.

Note that µ(OL(−n)) = 1 − n. By stability and Serre duality, one checks that

Ext0(F ,OL(−n)) = 0, Ext2(F ,OL(−n)) = 0

as long as n ∈ {1, 2, 3}. It follows that Rr∗H(n) can be represented by a single vector bundle
K1 concentrated in degree 1, whose rank is d by a Hirzebruch–Riemann–Roch calculation. □

It follows that −Rr∗H(n) is a rank d vector bundle on Md,χ × P̌2, whence

Corollary 2.5. For ℓ ≥ d+ 1 and n ∈ {1, 2, 3}, we have

(8) cℓ(−Rr∗H(n)) = 0 ∈ Aℓ(Md,χ × P̌2).
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Recall that H(n) is defined by (7) in terms of a fixed universal sheaf F. If we replace F by

F′ := F ⊗ π∗
ML,

with L a fractional line bundle over Md,χ, then according to (7) and the projection formula,
the vector bundle −Rr∗H(n) is replaced by its tensor with the dual line bundle π∗

ML∨. Using
a formal argument involving Chern roots, one checks that the identity (8) also holds for F′.

In particular, we choose the fractional line bundle L to have first Chern class5

c1(L) = −1
d

((3
2 − χ

d

)
c0(2) +

∫
H

ch2(F)
)
,

so that the normalizing class (4) for F′ is given by δ0(F′) =
(

3
2 − χ

d

)
·H. Now we apply (8) to

F′. The Chern classes in (8) can be expressed in terms of the Chern character ch(Rr∗H(n)),
which is computed by the Grothendieck–Riemann–Roch theorem:

ch(Rr∗H(n)) = r∗(ch(H(n)) · td(P2))

= r∗(ch(p∗F′∨) · ch(q∗OZ ⊗ π∗
P OP2(−n)) · td(P2)).

We denote by β the class of a line on P̌2. Expanding the right-hand side of the above
equation, Corollary 2.5 then gives relations in A∗(Md,χ × P̌2):

Proposition 2.6. For every ℓ ≥ d+ 1 and n ∈ {1, 2, 3}, the following identity holds:

(9)
∑
m

ℓ∏
s=1

((s− 1)!)ms

(ms)!

π∗
MAs −

∑
0≤i≤2

π∗
Rβ

i

i! (−1)iπ∗
MBs−i

ms

= 0.

Here, the first sum is over all ℓ-tuple of non-negative integers m = (m1,m2, . . . ,mℓ) such that
m1 + 2m2 + · · · + ℓmℓ = ℓ, and writing c̃s(j) := (−1)s+1cs(j), the terms As, Bs are given by

As := c̃s+1(0) +
(

3 − n− χ

d

)
c̃s(1) + 1

2d2

((
n− 7

2

)
d+ χ

)((
n− 5

2

)
d+ χ

)
c̃s−1(2),

Bs := c̃s+1(0) +
(

2 − n− χ

d

)
c̃s(1) + 1

2d2

((
n− 5

2

)
d+ χ

)((
n− 3

2

)
d+ χ

)
c̃s−1(2).

Proof. The proof is essentially the same as [PS, Proposition 2.6], except that we use the
normalized Chern character chδ0(F′∨) = ch(F′∨) · exp(−δ0). The convoluted formula results
from applying Newton’s identity to express Chern classes in the Chern characters, and the
class β comes from ch(q∗OZ). See also [KPS, Proposition 2.7] for an explicit version for
M4,1. □

To obtain relations in A∗(Md,χ), we first take the identity (9) for some ℓ ≥ d+ 1; this gives
a relation Cℓ = 0 in Aℓ(Md,χ × P̌2). Then we multiply Cℓ by π∗

R(βj) and push forward to
Md,χ, with 0 ≤ j ≤ 2. This produces relations in Aℓ+j−2(Md,χ) among the tautological classes
(5). The procedure is explained in detail in [PS, Section 2.3] and the paragraph before it.

5One can check that
∫

H2 ch1(F) = c0(2) for every universal sheaf F.
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Indeed, as a key step in the proof of Theorem 2.2(a), it is shown in [PS, Section 2.3] that the
relations produced by Proposition 2.6 express all the tautological classes (5) in terms of the
3d− 7 generators (6).

2.3. Three relations in Ad(Md,χ). The goal of this section is to prove the following result:

Proposition 2.7. For d ≥ 5, the three linearly independent relations in Ad(Md,χ), cf. Theo-
rem 2.2(c), can be produced by Proposition 2.6.

We first introduce some notations for the rest of the paper. Let T k be the linear space
spanned by tautological classes in degree k, that is

T 1 = spanC{c2(0), c0(2)} , T k = spanC{ck+1(0), ck(1), ck−1(2)} .

Let

T :=
d−2⊕
k=1

T k

be the span of the 3d− 7 tautological generators in (6), and let

T+ := T ⊕ T d−1 ⊕ T d.

We denote by C[T ] the symmetric algebra in T (i.e. the free algebra generated by the 3d− 7
tautological generators), and by C[T ]k its graded piece of degree k. Similarly we write C[T+]
for the symmetric algebra on T+.

Furthermore, we endow the basis of T+ with a total ordering ≺ as follows: first order the
basis by cohomological degrees; within each degree, we order by the Chern grading of the
basis. In a precise way, this means ck(j) ≺ ck′(j′) if and only if k + j − 1 < k′ + j′ − 1, or
k + j − 1 = k′ + j′ − 1 and k < k′. Finally, we endow monomials in each degree of C[T+] the
lexicographical order induced by the total ordering ≺ on T+. In this way, we can talk about
the leading term of a polynomial in C[T+], as well as in C[T ].

We have graded algebra homomorphisms

C[T ] ↪→ C[T+] → A∗(Md,χ) .

Theorem 2.2 states that the homomorphism C[T ] → A∗(Md,χ) is surjective, that it is an
isomorphism up to degree d−1, and that ker

(
C[T ]d → Ad(Md,χ)

)
is 3-dimensional. A relation

is by definition an element in the kernel of C[T ] → A∗(Md,χ) or C[T+] → A∗(Md,χ).

With the above setup, Theorem 2.2 (b) and (c) are equivalent to the following6.

6See [Y2, Theorem 1.1], where the relevant Betti numbers b2k(P2[n]) of the Hilbert scheme equal dimC[T +]k

by Göttsche’s formula [Göt].
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Proposition 2.8. For d ≥ 5, we have

dimAk(Md,χ) =


dimC[T+]k, k ≤ d− 2,
dimC[T+]k − 3, k = d− 1,
dimC[T+]k − 12, k = d.

Since dimC[T+]d = dimC[T ]d +9, to prove Proposition 2.7 it suffices to produce 12 linearly
independent relations in C[T+]d from Proposition 2.6. These 12 relations in degree d are
produced in the following three ways:

(a) Take ℓ = d + 1 in (9), we get the vanishing of a cohomology class in Md,χ × P̌2.
Pushing forward to Md,χ yields a relation Rn

(a) ∈ C[T+]d−1 for n = 1, 2, 3. Each of
these 3 relations produces 2 relations in degree d, namely c2(0)Rn

(a) and c0(2)Rn
(a).

(b) Take ℓ = d+ 1 in (9), multiply by π∗
R(β) and push forward to Md,χ. This produces 3

relations Rn
(b) ∈ C[T+]d for n = 1, 2, 3.

(c) Take ℓ = d+2 in (9) and push forward toMd,χ. This produces 3 relations Rn
(c) ∈ C[T+]d

for n = 1, 2, 3.
We now proceed to argue that these 12 relations are linearly independent. It can be checked, cf.
det1 in the Mathematica file and [PS, Section 2.3], that under the assumption gcd(d, χ) = 1,
the 3 × 3 matrix of coefficients of cd(0), cd−1(1), cd−2(2) in the three relations R1

(a), R
2
(a), R

3
(a)

is nonsingular; in fact, it has determinant

det1 = (−1)d(d− 2)4(d− 1)
4 χ(d− χ)(d− 2χ) .

In particular, equations Rn
(a) can be used to express cd(0), cd−1(1), cd−2(2) in terms of the

tautological generators (6). Multiplying these equations with c2(0), c0(2), we obtain 6 relations
in C[T+]d. These are still linearly independent since the 6 × 6 matrix given by the coefficients
of the monomials

Mon1 = {cd(0)c2(0), cd(0)c0(2), cd−1(1)c2(0), cd−1(1)c0(2), cd−2(2)c2(0), cd−2(2)c0(2)}

is invertible with determinant det12.
We consider now the 6 relations Rn

(b), R
n
(c), for n = 1, 2, 3 and the set of monomials

Mon2 = {cd+1(0), cd(1), cd−1(2), cd−1(0)c3(0), cd−1(0)c2(1), cd−1(0)c1(2)} .

The 6 × 6 matrix of coefficients of Mon2 in these 6 relations is non-singular. Indeed, a direct
computation (cf. det2 in the Mathematica file) gives the determinant

det2 = 4(d− 2)6(d− 1)3d4 ̸= 0 .

It follows that the 6 relations Rn
(b) and Rn

(c) with n ∈ {1, 2, 3} are linearly independent.
Finally, we note that the monomials in Mon2 do not appear in the relations of the form

c2(0)Rn
(a), c0(2)Rn

(a), so the 12 × 12 matrix of coefficients of monomials Mon1 ∪ Mon2 in the 12
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relations obtained by (a), (b), (c) is also nonsingular. We conclude that these 12 relations are
all linearly independent, completing the proof of Proposition 2.7.

To explicitly obtain the 3 relations in C[T ]d, we proceed as follows. We use the relations Rn
(a)

to express cd(0), cd−1(1), cd−2(2) in terms of lower degree generators in the image of C[T ]; we
then use R1

(b), R
1
(c), R

2
(c) to write cd+1(0), cd(1), cd−1(2) in terms of the tautological generators.

Finally, plugging these into the other three relations

R2
(b), R

3
(b), R

3
(c)

yields the 3 relations in C[T ]d. By the non-vanishing of det2, the row-echelon form (with
respect to the ordering ≺ of monomials) of this system produces 3 relations R1, R2, R3 such
that

(10) Ri = cd−1(0)c4−i(i− 1) +
(
sum of monomials ≺ cd−1(0)c1(2)

)
∈ C[T ]d .

A truncated version (see Remark 3.2) of these relations is implemented in the Mathematica
file as TruncRelations.

3. Truncated relations and proof of the main result

In this section we will prove the main result of this paper, Theorem 1.2. By the symmetry
(a) in Section 1.1, we may assume without loss of generality that 0 < χ, χ′ < d. Note that
when d < 5 there is nothing to prove, so we assume as well that d ≥ 5. Suppose that there is
an isomorphism of graded C-algebras ϕ : A∗(Md,χ) → A∗(Md,χ′). We first remark that ϕ can
be uniquely lifted to the free algebra C[T ], i.e., there exists a map ϕ̃ fitting into the diagram

C[T ] C[T ]

A∗(Md,χ) A∗(Md,χ′) .

ϕ̃

ϕ

Such unique lift exists since the cohomology is freely generated up to degree d− 2, where the
tautological generators (6) lie. More precisely, the lift is defined by

ϕ̃(ck(j)) ∈ Ak+j−1(Md,χ′) ∼= C[T ]k+j−1 for k + j ≤ d− 1 .

By abuse of notation, we write ϕ also for the lifted graded ring isomorphism. We will show
that unless χ ≡ ±χ′ mod d, there is no such lift respecting the three relations in degree d,
i.e., that sends the 3-dimensional subspace

ker
(
C[T ]d → Ad(Md,χ)

)
⊆ C[T ]d to ker

(
C[T ]d → Ad(Md,χ′)

)
.

Remark 3.1. A graded ring endomorophism of C[T ] is defined by an element of
d−2∏
k=1

Hom
(
T k,C[T ]k

)
.
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For d = 5, the space above has dimension 2 × 2 + 3 × 6 + 3 × 13 = 61. On the other hand, a
3-dimensional subspace of C[T ]d defines a point in the Grassmannian Gr

(
3,C[T ]d

)
, which has

dimension 3 × (45 − 3) = 126 for d = 5. Thus we expect no graded ring endomorphism that
takes a general point in Gr(3,C[T ]d) to another.

Let R1, R2, R3 ∈ C[T ]d be the three relations in (10); these span ker
(
C[T ]d → Ad(Md,χ)

)
and are such that the matrix (R1 R2 R3)T is in row echelon form with respect to the total
ordering introduced in Section 2.3 on the basis of C[T ]d. Similarly, we define R′

1, R
′
2, R

′
3 to

be the relations in C[T ]d which come from Md,χ′ . Since ϕ : C[T ]d ∼−→ C[T ]d preserves the
3-dimensional kernels, it induces an invertible matrix

S = (sij)0≤i, j≤3

such that

(11) ϕ(Ri) =
3∑

j=1
sijR

′
j .

Step 1: truncating relations. We start by truncating the relations Ri by looking only at the
terms which are obtained as a product of a generator of degree d−2 with a generator of degree
2. In other words, we consider the projection of Ri to T 2 ⊗ T d−2 ⊆ C[T ]d and regard it as a
3 × 3 matrix Mi by identifying

Mi ∈ T 2 ⊗ T d−2 ∼= Hom((T d−2)∨, T 2) ∼= M3×3 .

This is implemented in the Mathematica file as TopRelations[d,chi]. The identification with
a 3 × 3 matrix uses the ordered basis for T 2, T d−2 given by the generators from Section 2.3.

More concretely,

Mi =
(
[c3−s(s)cd−1−t(t)]Ri

)
0≤s, t≤2

where [c3−s(s)cd−1−t(t)] means reading off the corresponding coefficient with respect to the
monomial basis. The matrices M1,M2,M3 can be explicitly calculated as follows:

M1 =


1 0 0
0 0 (d−2)(d−2χ)χ(d−χ)

8d3

d−4
8d−16

(d−2χ)χ(χ−d)
2(d−2)d3

(−6χ−1)d5+(6χ2+6χ+3)d4+18χ2d3−(48χ3+48χ2)d2+(24χ4+96χ3)d−48χ4

32(d−2)d4

 ,

M2 =


0 1 0
1 0 (−6χ−1)d2+(6χ2+12χ)d−12χ2

8d2

0 24χ2−24χd−d3+2d2

8(d−2)d2
χ(d2+8d−16)(2χ−d)(d−χ)

8(d−2)d3

 , M3 =


0 0 1
0 0 0
2

d−2 0 12χ2−12χd−d2

8(d−2)d

 .
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Remark 3.2. To compute these matrices, and also the extended matrices that will appear
later in Section 3.3, we follow the strategy described in the previous section. Note that the
truncation of the relationsRn

(a), R
n
(b), R

n
(c) can be computed since only finitely many terms of (9)

contribute. For instance, for ℓ = d+ 1 the only contributing terms are the ones corresponding
to the partitions

(d+ 1), (d, 1), (d− 1, 1, 1), (d− 1, 2), (d− 2, 2, 1), (d− 2, 3), (d− 2, 1, 1, 1) .

Similarly, we define M ′
i with χ replaced by χ′. Let A,B be the invertible linear maps

A : T d−2 ↪→ C[T ]d−2 ϕ−−→ C[T ]d−2 ↠ T d−2 ,

B : T 2 ↪→ C[T ]2 ϕ−−→ C[T ]2 ↠ T 2 .

They are implemented in the Mathematica file as AutA and AutB, respectively. By considering
the standard basis for T 2, T d−2 we identify again A,B with 3 × 3 matrices. More concretely,
A = (ast)0≤s, t≤2, B = (bst)0≤s, t≤2 where

ϕ
(
cd−1−s(s)

)
=

2∑
t=0

astcd−1−t(t) + (lower terms in C[T ]d−2) ,

ϕ
(
c3−s(s)

)
=

2∑
t=0

bstc3−t(t) + (lower terms in C[T ]2) .

Then the truncation of (11) to T 2 ⊗ T d−2 can be written as an equality between 3 × 3
matrices

(12) ATMiB =
3∑

j=1
sijM

′
j , i = 1, 2, 3 .

Step 2: finding sij. We begin with solving sij for which there are matrices A,B satisfying
(12). By scaling both A,B (hence also S) we may assume that det(A) = det(B) = 1. Then
taking a linear combination of (12) and applying the determinant it follows that

(13) det
( 3∑

i=1
xiMi

)
= det

 3∑
i,j=1

xisijM
′
j

 ,

as an equality between two homogeneous cubic polynomials in x1, x2, x3. We let E ⊆ P2 be
the cubic curve defined by

E =
{

[x1 : x2 : x3] : det
( 3∑

i=1
xiMi

)}
⊆ P2

x1,x2,x3 .

Similarly define E′ ⊆ P2. The matrix S defines an automorphism of P2
x1,x2,x3 sending E to E′.

Lemma 3.3. The cubic curves E,E′ are elliptic nodal curves with a single node at [0 : 0 : 1].
Hence s13 = s23 = 0.
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Proof. We can directly compute the equation defining E. In the chart

C2
x1,x2 = {[x1 : x2 : 1]} ⊆ P2

x1,x2,x3

the cubic polynomial defining E has the form

−χ(d− χ)(d− 2χ)
4(d− 2)d2 x1x2 + (cubic terms in x1, x2).

It follows that [0 : 0 : 1] is indeed a node and the two branches of E at [0 : 0 : 1] are tangent to
the lines x1 = 0 and x2 = 0. A cubic with a node either has exactly one node or has two nodes
and is the union of a line and a conic. If the latter were the case, the line would necessarily
be x1 = 0 or x2 = 0, but this is not possible since det(M2) ̸= 0 and det(M1) ̸= 0.

Finally, we note that an automorphism of P2
x1,x2,x3 sending E to E′ must preserve the

common node [0 : 0 : 1], so it follows that s31 = s32 = 0. □

We now use equation (13) to determine the remaining entries of S. Given a triple (u, v, w)
of non-negative integers such that u+v+w = 3 we get an equation among the entries of S by
comparing the xu

1x
v
2x

w
3 coefficient of both sides of (13); this is implemented in the Mathematica

file as coeff[u,v,w]7. The triples (0, 2, 1) and (2, 0, 1) give, respectively,

s21s22s33 = 0 and s12s11s33 = 0 .

On the other hand, the equation for (1, 1, 1) implies that s33 ̸= 0 and s12s21 + s11s22 ̸= 0. It
follows that solutions must have either:

I. s11 = s22 = 0. We call the solutions of this form Type I solutions.
II. s12 = s21 = 0. We call the solutions of this form Type II solutions.

From now on we divide the analysis of (12) and (13) according to the type of the solutions.

3.1. Type I. Suppose that S is a solution of Type I to (13), so that we have already the
vanishing of the entries s31 = s32 = s11 = s22 = 0. We now obtain the remaining entries. By
looking at the (0, 3, 0) and (3, 0, 0) equations we obtain s21, s12 up to a choice of a cubic root
of unity:

s3
21 = −d3 2χ(d− χ)(d− 2χ)(d2 + 8d− 16)

χ′2(d− χ′)2(d− 2χ′)2(d− 2) ,

s3
12 = − 1

d3
χ2(d− χ)2(d− 2χ)2(d− 2)

2χ′(d− χ′)(d− 2χ′)(d2 + 8d− 16) .

Equation (1, 1, 1) then writes s33 in terms of s12 and s21 and we can conclude that s3
33 = 1.

By simultaneously scaling the matrices B and S, if necessary, by a cubic root of unity8 we
may assume without loss of generality that s33 = 1. Finally, we obtain s23 using (1, 2, 0) and

7In the code, we use chi1 and chi2 instead of χ and χ′.
8Note that we already scaled B so that we could assume that det(B) = 1; since scaling by a cubic root of

unity does not affect the determinant, we are allowed to do so.
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s13 using (2, 1, 0); note that these are uniquely determined once we choose which cubic root
we take for s21.

After having obtained S, the next step now is to solve equation (12) for the entries of A
and B. The equation is quadratic in the entries of A and B; however, by rewriting it as

(14) ATMi =

 3∑
j=1

sijM
′
j

B−1 , i = 1, 2, 3 ,

it becomes a linear (homogeneous) system in the entries ast of A and in the entries b̃st (written
as bb[s,t] in the Mathematica file) of B−1. It turns out that the linear system only admits
the trivial solution ast = b̃st = 0. Indeed, we can express all ast, b̃st as a multiple of a33, and
one additional constraint, denoted by Diff[d,chi1,chi2][[1]][[1,2]] in the Mathematica
file, imposes that

− 2χ(d− 4)(d− χ)(d− 2χ)a33

d((d− 2)d2 + 24dχ′ − 24χ′2)
= 0,

whence a33 = 0. Note that the demoninator is always positive, thus nonzero. This gives a
contradiction since A and B are invertible matrices; thus there are no solutions to (11) with
S of Type I.

3.2. Type II. Suppose that S is a solution of Type II to (13). We already have the vanishing
of the entries s31 = s32 = s12 = s21 = 0. The remaining entries are obtained exactly as in the
Type I case. The equations (3, 0, 0) and (0, 3, 0) determine, respectively, s11 and s22 up to a
choice of a cubic root:

s3
11 =

(
χ(d− χ)(d− 2χ)
χ′(d− χ′)(d− 2χ′)

)2
, s3

22 = χ(d− χ)(d− 2χ)
χ′(d− χ′)(d− 2χ′) .

Equation (1, 1, 1) then writes s33 in terms of s11 and s22 and we can conclude that s3
33 = 1.

As we did for Type I, we may assume without loss of generality that s33 = 1. This fixes
s11 = s2

22. Finally, we obtain s13 using (2, 1, 0) and s23 using (1, 2, 0); note that these are
uniquely determined once we choose which cubic root we take for s22.

After obtaining S, equation (14) is again linear in the entries ast of A and in the entries b̃st of
B−1. The linear system can be solved explicitly and it turns out that it has a one-dimensional
space of solutions. By writing all the variables in terms of a11, the normalization imposed on
the determinant det(A) = 1 gives

a3
11 = χ(d− χ)(d− 2χ)

χ′(d− χ′)(d− 2χ′) = s3
22 .

By further scaling A by a cubic root of unity and scaling B by its inverse hence leaving
S unchanged, we may assume without loss of generality that a11 = s22. This completely
solves all the matrices S,A,B once we choose which cubic root we take for s11. Solu-
tions are implemented in the Mathematica file as solS[d,chi1,chi2], solA[d,chi1,chi2],
solB[d,chi1,chi2], respectively.
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Remark 3.4. When χ = χ′, the unique solution of Type II is given by S = A = B = Id3×3, as
expected. When χ+ χ′ = d, the solution is given by simple sign matrices

A = B =

−1 0 0
0 1 0
0 0 −1

 , S =

1 0 0
0 −1 0
0 0 1

 .
In either case, these truncated solutions extend to a solution of (11) since the moduli spaces
Md,χ and Md,χ′ are isomorphic. Indeed, the solution matrices are compatible with Proposition
2.1(c) which describes how the tautological generators are mapped under the two types of
symmetries.

3.3. Type II – extended matrices. Recall that we have used only a part of the full equation
(11) truncated via the projection C[T ]d ↠ T 2 ⊗ T d−2. This was sufficient to determine A,B,
and S.

Step 3: bigger truncation. We proceed by considering a bigger truncation via the projection

C[T ]d ↠
(
T 2 ⊕ Sym2(T 1)

)
⊗ T d−2.

We can regard the truncated relations as a block 3 × (3 | 3) matrix by identifying[
Mi Ni

]
∈
(
T 2 ⊕ Sym2(T 1)

)
⊗ T d−2 ∼= Hom((T d−2)∨, T 2 ⊕ Sym2(T 1)) ∼= M3×6 ,

whereMi is as before andNi is implemented in the Mathematica file as ExtRelations[d,chi].
Similarly, we define

[
M ′

i N ′
i

]
with χ replaced by χ′. As before, ϕ induces a linear map[

B U

0 V

]
: T 2 ⊕ Sym2(T 1) = C[T ]2 ϕ−−→ C[T ]2 = T 2 ⊕ Sym2(T 1) ,

where U : T 2 → Sym2(T 1) and V : Sym2(T 1) → Sym2(T 1). They are implemented in the
Mathematica file as AutU and AutV, respectively. Note that the lower left block is zero because
ϕ is a graded ring isomorphism. Then the truncation of (11) to

(
T 2 ⊕ Sym2(T 1)

)
⊗ T d−2 can

be written as an equality between 3 × 6 matrices

AT
[
Mi Ni

] [B U

0 V

]
=

3∑
j=1

sij

[
M ′

j N ′
j

]
, i = 1, 2, 3 .

Since A,B, and S satisfy (12), this reduces to

(15) ATMiU +ATNiV =
3∑

j=1
sijN

′
j , i = 1, 2, 3 ,

which is a linear system in the entries ust and vst of U and V , respectively.
We show that this linear system, referred to as ExtDiff[d,chi1,chi2] in the Mathematica

file, has a solution only if χ = χ′ or χ + χ′ = d. By using certain parts of the linear system
(15), as explained in the Mathematica file, we can express u11, u21, u31, v11, v21 in terms of
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v31. Once this is done, we further use two of the remaining linear system (15), referred to
as ExtDiff[d,chi1,chi2][[1]][[1,1]] and ExtDiff[d,chi1,chi2][[1]][[2,1]], which take
the form

AA[d,chi1,chi2]v31 + BB[d,chi1,chi2] = 0 ,
CC[d,chi1,chi2]v31 + DD[d,chi1,chi2] = 0 ,

following the notations from the code. Existence of the solution v31 implies an equation which
is purely in terms of d, χ and χ′:

Constraint[d,chi1,chi2]

:= AA[d,chi1,chi2] · DD[d,chi1,chi2] − BB[d,chi1,chi2] · DD[d,chi1,chi2] = 0.

This expression admits a factorizaton

Constraint[d,chi1,chi2] = P1[d,chi1] · P2[d,chi1,chi2] · (other terms)

with (other terms) being clearly nonzero, see the Mathematica file. Note that the roles of
χ and χ′ are symmetric, we conclude that

(16) P1(d, χ) · P2(d, χ, χ′) = 0 and P1(d, χ′) · P2(d, χ′, χ) = 0.

We are left to prove that (16) implies χ = χ′ or χ + χ′ = d. Suppose for the contradiction
that χ ̸= χ′ and χ+ χ′ ̸= d.

We first show that P2(d, χ, χ′) and P2(d, χ′, χ) are nonzero. From the formula in the file, it
is straightforward to check that P2(d, χ, χ′) = 0 if and only if P2(d, χ′, χ) = 0, if and only if

d2(χ− χ′)(χ+ χ′ − d)
(
216χ4χ′4 − 432χ3χ′3(χ+ χ′)d+ d2 · f(d, χ, χ′)

)
= 0

for some explicit integral polynomial f(d, χ, χ′). Since we assumed that χ ̸= χ′ and χ+χ′ ̸= d,
the last term must vanish. On the other hand, gcd(d, χ) = gcd(d, χ′) = 1 implies that d must
divide 216. This further implies that d2 divides 216 by looking at the linear term in d, so we
are left with d = 1, 2, 3, 6. But there are no non-trivial pairs χ and χ′ for such d.

Therefore, we may assume P1(d, χ) = P1(d, χ′) = 0. We can check that P1(d, x) is a degree
four polynomial in x, with the symmetry

P1(d, x) = P1(d, d− x).

This implies that P1(d, x) is a degree four polynomial with four distinct roots

x = χ, χ′, d− χ, d− χ′,

all within the interval [1, d− 1]. On the other hand, explicit computation shows that

P1(d, 0) > 0, P1(d, 1) < 0
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as long as d ≥ 5. This forces P1(d, x) to have an additional root in the interval (0, 1), which
contradicts that it is a degree four polynomial. It follows that (16) implies χ = χ′ or χ+χ′ = d,
hence completing the proof.
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