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Enumerative geometry

Enumerative geometry is an ancient and very interesting topic that
has been pushing algebraic geometry since the late 1800s. The last
∼ 30 years have seen great developments, partially thanks to input
from theoretical physics.

A few model problems:

1 Given 3 generic circles in the plane, how many circles are
tangent to the 3 of them?
Ans: 8 (Apollonius’ problem – Ancient Greece)

2 How many lines does a smooth cubic surface contain?
Ans: 27 (A. Cayley, G. Salmon – 1849)

3 How many conics does a generic quintic 3-fold contain?
Ans: 609250 (S. Katz – 1986)
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Enumerative geometry

4 How many rational curves of degree d passing through 3d − 1
generic points are there on P2?

Ans: N1 = N2 = 1,N3 = 12,N4 = 620, . . .

Nd =
∑

d1+d2=d
d1,d2>0

Nd1Nd2

(
d2
1d

2
2

(
3d − 4

3d1 − 2

)
− d3

1d2

(
3d − 4

3d1 − 1

))

(Kontsevich – 1994)
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One problem, two solutions

All the problems above have something in common, we’re counting
curves in some space X . (X=cubic, quintic, P2, etc.)

In all these situations the problems are easy to describe: in generic
conditions we have a well defined number. This is not always the
case, but the last decades gave us powerful tools to define curve
counts even when we can’t deform the problem to something
enumerative.
Two ways to think of curves:

f : P1 → P2

[x : y ] 7→ [x : y : 0]
I ⊆ OP2

I = (z = 0)
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Stable maps and Gromov-Witten theory

The first approach (curves=maps) lead to the development of
Gromov-Witten theory in the 90s. Gromov-Witten theory uses the
space of stable maps

Mg ,m(X , β) = {(C , p1, . . . , pm, f )}

parametrizing maps f : C → X from a nodal curve of genus g to
X such that f∗[C ] = β ∈ H2(X ) and distinct marked points
p1, . . . , pm ∈ C .
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Stable maps and Gromov-Witten theory

Morally speaking, curve counts are integrals over moduli spaces of
stable maps

#conics of quintic 3-fold X5 =

∫
M0,0(X5,2)

1 = 609250

Nd =

∫
M0,3d−1(P2,d)

ev∗1(pt) . . . ev∗3d−1(pt)

But sometimes the spaces Mg ,m(X , β) are very singular, sometimes
they have strata with higher dimension than expected, etc.
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Gromov-Witten invariants

This problem was solved with the introduction of virtual
fundamental classes by Behrend-Fantechi and Li-Tian (around
95).

They define a homology class

[Mg ,m(X , β)]vir ∈ H2virdim(Mg ,m(X , β)).

This homology class lives in degree equal to the expected
dimension

virdim = (dim(X )− 3)(1− g) +

∫
β
c1(X ) + m.
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Gromov-Witten invariants

When the expected dimension is 0, the moduli space is virtually a
finite number of points.

In that case we get numerical invariants

GWX
g ,β =

∫
[Mg (X ,β)]vir

1 ∈ Q.

This leads us to a special case: when X is a Calabi-Yau 3-fold
(c1(X ) = 0; e.g. quintic 3-fold) the expected dimension is always 0
(for m = 0). For a Calabi-Yau 3-fold we define the partition
function

ZX
GW = exp

∑
g ,β

GWX
g ,βu

2g−2zβ

 .
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Ideal sheaves and Donaldson-Thomas invariants

The alternative approach of thinking in terms of embedded curves
led to the definition of Donaldson-Thomas theory (∼2000).

In(X , β) = {Z ⊆ X : subscheme of dimension at most 1

with [Z ] = β, χ(OZ ) = n}.

When X is a 3-fold it admits a virtual fundamental class
[In(X , β)]vir. If moreover X is Calabi-Yau, the expected dimension
is zero and we define DT invariants

DTX
n,β =

∫
[In(X ,β)]vir

1 ∈ Z.



Ideal sheaves and Donaldson-Thomas invariants

The alternative approach of thinking in terms of embedded curves
led to the definition of Donaldson-Thomas theory (∼2000).

In(X , β) = {Z ⊆ X : subscheme of dimension at most 1

with [Z ] = β, χ(OZ ) = n}.

When X is a 3-fold it admits a virtual fundamental class
[In(X , β)]vir. If moreover X is Calabi-Yau, the expected dimension
is zero and we define DT invariants

DTX
n,β =

∫
[In(X ,β)]vir

1 ∈ Z.



Ideal sheaves and Donaldson-Thomas invariants

The alternative approach of thinking in terms of embedded curves
led to the definition of Donaldson-Thomas theory (∼2000).

In(X , β) = {Z ⊆ X : subscheme of dimension at most 1

with [Z ] = β, χ(OZ ) = n}.

When X is a 3-fold it admits a virtual fundamental class
[In(X , β)]vir.

If moreover X is Calabi-Yau, the expected dimension
is zero and we define DT invariants

DTX
n,β =

∫
[In(X ,β)]vir

1 ∈ Z.



Ideal sheaves and Donaldson-Thomas invariants

The alternative approach of thinking in terms of embedded curves
led to the definition of Donaldson-Thomas theory (∼2000).

In(X , β) = {Z ⊆ X : subscheme of dimension at most 1

with [Z ] = β, χ(OZ ) = n}.

When X is a 3-fold it admits a virtual fundamental class
[In(X , β)]vir. If moreover X is Calabi-Yau, the expected dimension
is zero and we define DT invariants

DTX
n,β =

∫
[In(X ,β)]vir

1 ∈ Z.



A picture



A Miró picture



Normalized DT invariants

To have compactness we have to allow free points in X .

To
remove the contribution of points the generating function is
divided by this β = 0 contribution:

ZX
DT =

∑
n,β DTX

n,βq
nzβ∑

n≥0DTX
n,0q

n
.

Theorem (Behrend-Fantechi, Li)

For β = 0 ∑
n≥0

DTX
n,0q

n =
∏
k≥1

(1− (−q)k)−k·e(X )



Normalized DT invariants

To have compactness we have to allow free points in X . To
remove the contribution of points the generating function is
divided by this β = 0 contribution:

ZX
DT =

∑
n,β DTX

n,βq
nzβ∑

n≥0DTX
n,0q

n
.

Theorem (Behrend-Fantechi, Li)

For β = 0 ∑
n≥0

DTX
n,0q

n =
∏
k≥1

(1− (−q)k)−k·e(X )



Normalized DT invariants

To have compactness we have to allow free points in X . To
remove the contribution of points the generating function is
divided by this β = 0 contribution:

ZX
DT =

∑
n,β DTX

n,βq
nzβ∑

n≥0DTX
n,0q

n
.

Theorem (Behrend-Fantechi, Li)

For β = 0 ∑
n≥0

DTX
n,0q

n =
∏
k≥1

(1− (−q)k)−k·e(X )



Stable pairs and Pandharipande-Thomas invariants

An alternative to DT theory that removes the issue with free
points was proposed by Pandharipande-Thomas (2009).

Curve in
DT theory is the same as a surjection OX → F = OZ with F of
dimension 1. Instead:

Definition

A stable pair is a sheaf F of pure dimension 1 together with a map
φ : OX → F such that coker φ has dimension 0. Let Pn(X , β) be
the moduli of stable pairs with n = χ(F ), β = [supp(F )].

Think of stable pairs as a curve together with points on the curve.
If C ⊆ X is smooth then stable pairs supported on C are

OX → OC (D)

with D ⊆ C effective divisor.
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Pandharipande-Thomas invariants

As before we define the PT invariants and the PT partition
function:

PTX
n,β =

∫
[Pn(X ,β)]vir

1 ∈ Z.

ZX
PT =

∑
PTX

n,βq
nzβ.

Stable pairs have a strinking rationality property:

Theorem (Bridgeland 2016)

For every β ∈ H2(X ) the generating function

PTX
β =

∑
n∈Z

PTX
n,βq

n

is the Laurent expansion of a rational function satisfying the
symmetry

PTX
β (q) = PTX

β (q−1).



Pandharipande-Thomas invariants

As before we define the PT invariants and the PT partition
function:

PTX
n,β =

∫
[Pn(X ,β)]vir

1 ∈ Z.

ZX
PT =

∑
PTX

n,βq
nzβ.

Stable pairs have a strinking rationality property:

Theorem (Bridgeland 2016)

For every β ∈ H2(X ) the generating function

PTX
β =

∑
n∈Z

PTX
n,βq

n

is the Laurent expansion of a rational function satisfying the
symmetry

PTX
β (q) = PTX

β (q−1).



Maps/equations correspondences

All the 3 enumerative theories discussed (GW, DT, PT) are
expected to be equivalent.

Theorem (Bridgeland 2016)

For a Calabi-Yau 3-fold

ZX
DT = ZX

PT .

The equivalence with Gromov-Witten is more complicated and still
conjectural:

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande 2006)

After the change of variables −q = e iu we have

ZX
GW (u, z) = ZX

PT (−e iu, z).

This opens a very interesting direction: we can use the equations
side to study/compute the maps side!
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Pros and Cons

Gromov-Witten

Is defined for every
dimension (PT and DT
only dimension 3).

Are symplectic invariants.

Defined over moduli of
curves Mg ,n.

Stable pairs

Rationality.

Invariants are integers a
priori.

No multiple cover
contributions.

Easier to compute (e.g.
localization has more
manageable
combinatorics).

Motivic
description/wall-crossing
techniques.
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Applications

Stable pairs have been very useful in proving results or giving
better understanding of GW theory.

1 Explanation of the topological vertex formalism.

2 Proof of the Katz-Klemm-Vafa conjecture
(Pandharipande-Thomas, 2016).

3 Definition with good properties of BPS numbers for
irreducible classes β (Pandharipande-Thomas, 2017).

4 Modularity properties of curve counts on elliptic Calabi-Yau
3-folds (Oberdieck-Shen, 2019).

5 Formulation of the Virasoro constraints on the PT world
(M-Oblomkov-Okounkov-Pandharipande, 2020).
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3-folds containing P1 × P1

Let X be a Calabi-Yau 3-fold containing a smooth divisor
E ∼= P1 × P1. Let B ∈ H2(X ) be the curve class of P1 × pt (and

assume the ray generated by B is extremal in the curve cone of X ).

Theorem (Buelles-M, 2021)

Let β ∈ H2(X ), g ≥ 0. Assume GW /PT correspondence holds.
Then ∑

j∈Z
GWX

g ,β+jBQ
j

is the expansion of a rational function f (Q) satisfying

f (Q−1) = Q−E ·βf (Q).

Suggested by physics as consequence of heterotic string+mirror
symmetry.
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3-folds containing P1 × P1

The proof goes through the moduli of stable pairs.

It’s a
consequence of

Theorem (Buelles-M, 2021)

The generating function∑
j ,n PT

X
n,β+jBq

nQ j∑
j ,n PT

X
n,jBq

nQ j

is the expansion of rational function in Q(q,Q) satisfying similar
symmetry.

The symmetry is explained by a certain automorphism in the
derived category

ρ = STOE (−C) ◦ STOE (−C+B) ◦ D ∈ Aut(Db(X )).
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Thank you!


