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Enumerative geometry

In enumerative geometry the goal is to count how many geometric
objects satisfy certain restrictions. A model question is the
following:

Question

Given 3d ´ 1 generic points in the plane, how many rational
(genus 0) curves of degree d pass through those 3d ´ 1 points?

The problem has an interesting story and a complete (recursive)
answer was given by Kontsevich (1994).

N1 “ 1 , N2 “ 1 , N3 “ 12 (Steiner, 1848)

N4 “ 620 (Zeuthen, 1873) , N5 “ 87304 (Ran, 1989)

N6 “ 6312976,N7 “ 14616808192, . . . (Kontsevich, 1994)
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Enumerative geometry and moduli spaces

How are these problems defined?

We construct a moduli space: a space whose points
correspond to the (unrestricted) geometric objects that we
consider.
E.g. space of all degree d rational curves on the plane.

We need M to have nice properties, such as being compact
and (quasi)-smooth, so that it has a (virtual) fundamental
class

rMsvir P H2vdimpMq .
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Enumerative geometry and moduli spaces

To get finitely many objects we need to impose the correct
amount of conditions on the objects, which amounts to
choose a naturally defined cohomology class D P H2vdimpMq.
The enumerative invariants are given by

ż

rMsvir
D :“ xD, rMsviry P Q .

E.g. let Di be the locus where the curves pass through a fixed
point qi in the plane and

D “ PDprD1sq . . .PDprD3d´1sq.

Question

How to compute the enumerative invariants of a moduli space?
What structural properties do they have?
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Counting curves

Let X be a smooth compact variety (e.g. X “ CP2 the projective
plane). How to define a moduli space to count curves on X?
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Stable maps and Gromov-Witten theory

The moduli space of stable maps is

Mg ,mpX , βq “
!

f : C Ñ X |C nodal curve of genus g

p1, . . . , pm P C
smooth,

β “ f˚rC s, #Autpf q ă 8
)

Gromov-Witten invariants are defined by integrating certain
cohomology classes in Mg ,mpX , βq called descendents:

ż

rMg,mpX ,βqsvir
ψk1
1 ev˚1pγ1q . . . ψ

km
m ev˚mpγmq P Q

E.g. Nd “

ż

rM0,3d´1pCP2,dqsvir
ev˚1pptq . . . ev˚3d´1pptq.
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Gromov-Witten theory of the point

Even the Gromov-Witten theory of a point is highly non-trivial as
it amounts to study

ż

Mg,m

ψk1
1 . . . , ψkm

m P Q

We can compute these integrals thanks to a striking prediction due
to Witten (90) and proven by Kontsevich (92).
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GW of the point matrix models

KdV/Virasoro constraints KdV/Virasoro constraints



2d gravity

integration over
(8-dimensional)

space of metrics on surfaces

holomorphic curves triangulations of surfaces

GW of the point matrix models

KdV/Virasoro constraints KdV/Virasoro constraints



2d gravity

integration over
(8-dimensional)

space of metrics on surfaces

holomorphic curves triangulations of surfaces

GW of the point matrix models

KdV/Virasoro constraints? KdV/Virasoro constraints



Witten’s conjecture

Define the generating function

F pt0, t1, t2, . . .q “
ÿ

g ,mě0

u2g´2
ÿ

k1,...,km

tk1 . . . tkm
m!

ż

Mg,m

ψk1
1 . . . , ψkm

m

and the differential operators Ln for n ě ´1 in the variables
T2i`1 “ ti{p2i ` 1q!!.

Ln “
1

4

ÿ

k`l“2n

B2

BTkBTl
`

1

2

ÿ

kě0

p2k ` 1qT2k`1
B

BT2k`2n`1

´
1

2u2
B

BT2n`3
`
δn,´1T

2
1

4
`
δn,0
16

Theorem (Conjecture by Witten (90), proof by Kontsevich (92))

Ln exppF q “ 0 for every n ě ´1 .
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Virasoro constraints in Gromov-Witten theory

Eguchi-Hori-Xiong (97) proposed a conjecture generalizing
Witten’s conjecture to the Gromov-Witten theory of X .

Known in two large families:

When X is a curve, by work of Okounkov-Pandharipande (03).

When X is toric, by work of Givental (01) or more generally
when X is semisimple by Teleman (07) classification theorem .
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Ideal sheaves and DT invariants

Let X be a 3-fold and

InpX , βq “
!

IZ : Z Ď X 1 dimensional subscheme ,

rZ s “ β, χpOZ q “ n
)

.

There is a universal subscheme Z Ď InpX , βq ˆ X . For
k ě 0, γ P H‚pX q define sheaf theoretical descendents:

chkpγq “ p˚
`

chkpIZqq
˚γ

˘

P H‚pInpX , βqq .

Define the Donaldson-Thomas invariants of X by
ż

rInpX ,βqsvir
chk1pγ1q . . . chkmpγmq P Q .

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande, 06)

There are universal formulas expressing the DT invariants of a
3-fold X in terms of its GW invariants and vice-versa.
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Virasoro constraints

Definition (Descendent algebra)

Let DX be the free (super)commutative C-algebra generated by
symbols

chH
k pγq for k ě 0, γ P H‚pX q .

When we have a moduli space of sheaves M on X with a universal
sheaf F on the product M ˆ X we can realize chH

k pγq as

chH
k pγq ÞÑ p˚

`

chk`dimpX q´spFqq˚γ
˘

P H‚pMq

for γ P Hs,tpX q.
We get numerical invariants

ż

rMsvir
chH

k1pγ1q . . . chH
kmpγmq P Q .
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Virasoro operators

Definition

For n ě ´1 define the operators Ln : DX Ñ DX by

Ln “ Rn ` Tn , where:

1 The operator Rn : DX Ñ DX is a derivation defined on
generators by

Rn

`

chH
i pγq

˘

“

˜

n
ź

j“0

pi ` jq

¸

chH
i`npγq .

2 The operator Tn : DX Ñ DX is multiplication by

Tn “
ÿ

i`j“n

i !j!
ÿ

s

p´1qdimX´pLs chH
i pγ

L
s qchH

j pγ
R
s q .



Virasoro operators

Definition

For n ě ´1 define the operators Ln : DX Ñ DX by

Ln “ Rn ` Tn , where:

1 The operator Rn : DX Ñ DX is a derivation defined on
generators by

Rn

`

chH
i pγq

˘

“

˜

n
ź

j“0

pi ` jq

¸

chH
i`npγq .

2 The operator Tn : DX Ñ DX is multiplication by

Tn “
ÿ

i`j“n

i !j!
ÿ

s

p´1qdimX´pLs chH
i pγ

L
s qchH

j pγ
R
s q .



Virasoro operators

Definition

For n ě ´1 define the operators Ln : DX Ñ DX by

Ln “ Rn ` Tn , where:

1 The operator Rn : DX Ñ DX is a derivation defined on
generators by

Rn

`

chH
i pγq

˘

“

˜

n
ź

j“0

pi ` jq

¸

chH
i`npγq .

2 The operator Tn : DX Ñ DX is multiplication by

Tn “
ÿ

i`j“n

i !j!
ÿ

s

p´1qdimX´pLs chH
i pγ

L
s qchH

j pγ
R
s q .



Virasoro constraints

The operators define a representation of half of the Virasoro Lie
algebra:

rLn, Lms “ pm ´ nqLn`m .

Conjecture (Bojko-Lim-M, 22)

Let M be a moduli space of sheaves. For any D P DX we have

ż

rMsvir
Lwt0pDq “ 0

where

Lwt0 “
ÿ

ně´1

p´1qn

pn ` 1q!
LnRn`1

´1 .
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When are the constraints proven?

Theorem

The Virasoro constraints are true for

For the moduli space of ideal sheaves and stable pairs on a
toric 3-fold in the stationary regime. [M-Oblomkov-Okounkov-
-Pandharipande, 20]

For the Hilbert scheme of points on a simply-connected
surface. [M, 20]

For the moduli spaces of stable torsion-free sheaves on curves
and surfaces with h0,1pSq “ h0,2pSq “ 0. [Bojko-Lim-M, 22]

For the moduli spaces of Bradlow pairs on curves and surfaces
with h0,1pSq “ h0,2pSq “ 0. [BLM]

For the moduli spaces of 1-dimensional sheaves on surfaces
with h0,1pSq “ h0,2pSq “ 0, assuming a conjectural
wall-crossing formula. [BLM]
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Toric 3-folds and Hilbert scheme

For toric 3-folds the proof uses (new but based on previous
work by many people) very explicit formulas for the DT/GW
correspondence in the stationary regime to transport the
Virasoro constraints in GW theory to DT theory.

For Hilbert schemes of points on a surface S the proof uses
the 3-fold result applied to P1 ˆ S when S is toric and a
bootstrapping argument based on ideas of
Ellingsrud-Göttsche-Lehn (99).

Afterwards, van Bree (21) suggested a generalization to
moduli spaces of stable sheaves on surfaces and gave strong
numerical evidence.
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The vertex algebra story

With A. Bojko and W. Lim we explained how the constraints can
be formulated using the wall-crossing vertex algebra developed by
Joyce (18 –).

Given a variety X , Joyce (18) constructed a vertex algebra
structure pV‚, |0y ,T ,Y q on the homology of the stack of
complexes of sheaves on X . The quotient qV‚ “ V‚{T pV‚q is a
Lie algebra as observed by Borcherds (85).

Moduli spaces of sheaves define a class rMsvir P qV‚.

Joyce (21) shows that wall-crossing formulas can be expressed
using the Lie bracket on qV‚ (proved in some cases, conjectural
in others).
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The vertex algebra story

In [Bojko-Lim-M, 22] we proved the following:

When X is a curve or surface with h0,2 “ 0 there is a
conformal element on (an extension of) V‚ that induces the
previosuly defined Virasoro operators.

Virasoro constraints ô rMsvir is a physical state in qV‚.

The Virasoro constraints are compatible with wall-crossing.

With the wall-crossing compatibility we prove Virasoro
constraints in new cases using an inductive rank reduction
argument.
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