Virasoro constraints for moduli spaces of sheaves

Miguel Moreira

22 May 2023

Advisor: Rahul Pandharipande Co-examiner: Paul Biran Chair: Sara van de Geer

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

In enumerative geometry the goal is to count how many geometric objects satisfy certain restrictions. A model question is the following:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

In enumerative geometry the goal is to count how many geometric objects satisfy certain restrictions. A model question is the following:

Question

Given 3d - 1 generic points in the plane, how many rational (genus 0) curves of degree d pass through those 3d - 1 points?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

In enumerative geometry the goal is to count how many geometric objects satisfy certain restrictions. A model question is the following:

Question

Given 3d - 1 generic points in the plane, how many rational (genus 0) curves of degree d pass through those 3d - 1 points?

The problem has an interesting story and a complete (recursive) answer was given by Kontsevich (1994).

 $N_1 = 1$, $N_2 = 1$, $N_3 = 12$ (Steiner, 1848) $N_4 = 620$ (Zeuthen, 1873), $N_5 = 87304$ (Ran, 1989) $N_6 = 6312976$, $N_7 = 14616808192$,... (Kontsevich, 1994)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

How are these problems defined?

How are these problems defined?

- We construct a moduli space: a space whose points correspond to the (unrestricted) geometric objects that we consider.
 - E.g. space of all degree d rational curves on the plane.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

How are these problems defined?

• We construct a moduli space: a space whose points correspond to the (unrestricted) geometric objects that we consider.

E.g. space of all degree d rational curves on the plane.

• We need *M* to have nice properties, such as being compact and (quasi)-smooth, so that it has a (virtual) fundamental class

$$[M]^{\mathsf{vir}} \in H_{2\mathsf{vdim}}(M)$$
.

How are these problems defined?

• We construct a moduli space: a space whose points correspond to the (unrestricted) geometric objects that we consider.

E.g. space of all degree d rational curves on the plane.

• We need *M* to have nice properties, such as being compact and (quasi)-smooth, so that it has a (virtual) fundamental class

$$[M]^{\mathsf{vir}} \in H_{2\mathsf{vdim}}(M)$$
.

Enumerative geometry and moduli spaces

 To get finitely many objects we need to impose the correct amount of conditions on the objects, which amounts to choose a naturally defined cohomology class D ∈ H^{2vdim}(M). The enumerative invariants are given by

$$\int_{[M]^{\mathsf{vir}}} D := \langle D, [M]^{\mathsf{vir}} \rangle \in \mathbb{Q} \,.$$

E.g. let D_i be the locus where the curves pass through a fixed point q_i in the plane and

$$D = \mathsf{PD}([D_1]) \dots \mathsf{PD}([D_{3d-1}]).$$

Enumerative geometry and moduli spaces

 To get finitely many objects we need to impose the correct amount of conditions on the objects, which amounts to choose a naturally defined cohomology class D ∈ H^{2vdim}(M). The enumerative invariants are given by

$$\int_{[M]^{\mathsf{vir}}} D := \langle D, [M]^{\mathsf{vir}} \rangle \in \mathbb{Q} \,.$$

E.g. let D_i be the locus where the curves pass through a fixed point q_i in the plane and

$$D = \mathsf{PD}([D_1]) \dots \mathsf{PD}([D_{3d-1}]).$$

Question

How to compute the enumerative invariants of a moduli space? What structural properties do they have? Let X be a smooth compact variety (e.g. $X = \mathbb{CP}^2$ the projective plane). How to define a moduli space to count curves on X?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Counting curves

Counting curves

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Counting curves

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Stable maps and Gromov-Witten theory

The moduli space of stable maps is

$$\overline{M}_{g,m}(X,\beta) = \left\{ f \colon C \to X \mid C \text{ nodal curve of genus } g \\ p_1, \dots, p_m \in C^{\text{smooth}}, \\ \beta = f_*[C], \ \#\text{Aut}(f) < \infty \right\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Stable maps and Gromov-Witten theory

The moduli space of stable maps is

$$\overline{M}_{g,m}(X,\beta) = \left\{ f \colon C \to X \mid C \text{ nodal curve of genus } g \\ p_1, \dots, p_m \in C^{\text{smooth}}, \\ \beta = f_*[C], \ \#\text{Aut}(f) < \infty \right\}$$

Gromov-Witten invariants are defined by integrating certain cohomology classes in $\overline{M}_{g,m}(X,\beta)$ called descendents:

$$\int_{[\overline{M}_{g,m}(X,\beta)]^{\operatorname{vir}}} \psi_1^{k_1} \operatorname{ev}_1^*(\gamma_1) \dots \psi_m^{k_m} \operatorname{ev}_m^*(\gamma_m) \in \mathbb{Q}$$

E.g.
$$N_d = \int_{[\overline{M}_{0,3d-1}(\mathbb{CP}^2,d)]^{\mathrm{vir}}} \mathrm{ev}_1^*(\mathrm{pt}) \dots \mathrm{ev}_{3d-1}^*(\mathrm{pt}).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへ⊙

Even the Gromov-Witten theory of a point is highly non-trivial as it amounts to study

$$\int_{\overline{M}_{g,m}} \psi_1^{k_1} \dots, \psi_m^{k_m} \in \mathbb{Q}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Even the Gromov-Witten theory of a point is highly non-trivial as it amounts to study

$$\int_{\overline{M}_{g,m}} \psi_1^{k_1} \dots, \psi_m^{k_m} \in \mathbb{Q}$$

We can compute these integrals thanks to a striking prediction due to Witten (90) and proven by Kontsevich (92).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへ⊙

・ロト・四ト・ヨト・ヨー つへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

・ ロ ト ・ 酒 ト ・ 三 ト ・ 三 ・ つ へ ()

Witten's conjecture

Define the generating function

$$F(t_0, t_1, t_2, \ldots) = \sum_{g, m \ge 0} u^{2g-2} \sum_{k_1, \ldots, k_m} \frac{t_{k_1} \ldots t_{k_m}}{m!} \int_{\overline{M}_{g, m}} \psi_1^{k_1} \ldots, \psi_m^{k_m}$$

・ロト・四ト・ヨト・ヨー つへぐ

Witten's conjecture

Define the generating function

$$F(t_0, t_1, t_2, \ldots) = \sum_{g, m \ge 0} u^{2g-2} \sum_{k_1, \ldots, k_m} \frac{t_{k_1} \ldots t_{k_m}}{m!} \int_{\overline{M}_{g, m}} \psi_1^{k_1} \ldots, \psi_m^{k_m}$$

and the differential operators L_n for $n \ge -1$ in the variables $T_{2i+1} = t_i/(2i+1)!!$.

$$L_{n} = \frac{1}{4} \sum_{k+l=2n} \frac{\partial^{2}}{\partial T_{k} \partial T_{l}} + \frac{1}{2} \sum_{k \ge 0} (2k+1) T_{2k+1} \frac{\partial}{\partial T_{2k+2n+1}} \\ - \frac{1}{2u^{2}} \frac{\partial}{\partial T_{2n+3}} + \frac{\delta_{n,-1} T_{1}^{2}}{4} + \frac{\delta_{n,0}}{16}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Witten's conjecture

Define the generating function

$$F(t_0, t_1, t_2, \ldots) = \sum_{g, m \ge 0} u^{2g-2} \sum_{k_1, \ldots, k_m} \frac{t_{k_1} \ldots t_{k_m}}{m!} \int_{\overline{M}_{g, m}} \psi_1^{k_1} \ldots, \psi_m^{k_m}$$

and the differential operators L_n for $n \ge -1$ in the variables $T_{2i+1} = t_i/(2i+1)!!$.

$$L_n = \frac{1}{4} \sum_{k+l=2n} \frac{\partial^2}{\partial T_k \partial T_l} + \frac{1}{2} \sum_{k \ge 0} (2k+1) T_{2k+1} \frac{\partial}{\partial T_{2k+2n+1}}$$
$$- \frac{1}{2u^2} \frac{\partial}{\partial T_{2n+3}} + \frac{\delta_{n,-1} T_1^2}{4} + \frac{\delta_{n,0}}{16}$$

Theorem (Conjecture by Witten (90), proof by Kontsevich (92))

 $L_n \exp(F) = 0$ for every $n \ge -1$.

Eguchi-Hori-Xiong (97) proposed a conjecture generalizing Witten's conjecture to the Gromov-Witten theory of X.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eguchi-Hori-Xiong (97) proposed a conjecture generalizing Witten's conjecture to the Gromov-Witten theory of X. Known in two large families:

- When X is a curve, by work of Okounkov-Pandharipande (03).
- When X is toric, by work of Givental (01) or more generally when X is semisimple by Teleman (07) classification theorem .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let X be a 3-fold and

 $I_n(X,\beta) = \Big\{ I_Z \colon Z \subseteq X \ 1 \text{ dimensional subscheme }, \Big\}$

$$[Z] = \beta, \chi(\mathcal{O}_Z) = n \Big\}.$$

Let X be a 3-fold and

 $I_n(X,\beta) = \Big\{ I_Z \colon Z \subseteq X \ 1 \text{ dimensional subscheme} \,,$

$$[Z] = \beta, \chi(\mathcal{O}_Z) = n \Big\}.$$

There is a universal subscheme $\mathcal{Z} \subseteq I_n(X,\beta) \times X$. For $k \ge 0, \gamma \in H^{\bullet}(X)$ define sheaf theoretical descendents:

$$\mathsf{ch}_k(\gamma) = p_* \big(\mathsf{ch}_k(I_{\mathcal{Z}}) q^* \gamma \big) \in H^{ullet}(I_n(X, \beta)) \,.$$

Define the Donaldson-Thomas invariants of X by

$$\int_{[I_n(X,\beta)]^{\mathrm{vir}}} \mathrm{ch}_{k_1}(\gamma_1) \dots \mathrm{ch}_{k_m}(\gamma_m) \in \mathbb{Q}.$$

Let X be a 3-fold and

 $I_n(X,\beta) = \Big\{ I_Z \colon Z \subseteq X \ 1 \text{ dimensional subscheme} \,,$

$$[Z] = \beta, \chi(\mathcal{O}_Z) = n \Big\}.$$

There is a universal subscheme $\mathcal{Z} \subseteq I_n(X,\beta) \times X$. For $k \ge 0, \gamma \in H^{\bullet}(X)$ define sheaf theoretical descendents:

$$\mathsf{ch}_k(\gamma) = p_*\bigl(\mathsf{ch}_k(I_{\mathcal{Z}})q^*\gamma\bigr) \in H^{\bullet}(I_n(X,\beta))\,.$$

Define the Donaldson-Thomas invariants of X by

$$\int_{[I_n(X,\beta)]^{\mathrm{vir}}} \mathrm{ch}_{k_1}(\gamma_1) \dots \mathrm{ch}_{k_m}(\gamma_m) \in \mathbb{Q}.$$

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande, 06)

There are universal formulas expressing the DT invariants of a 3-fold X in terms of its GW invariants and vice-versa.

World of sheaves

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

World of sheaves

Definition (Descendent algebra)

Let \mathbb{D}^X be the free (super)commutative $\mathbb{C}\text{-algebra}$ generated by symbols

$$\operatorname{ch}_{k}^{\mathsf{H}}(\gamma)$$
 for $k \ge 0, \gamma \in H^{\bullet}(X)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Definition (Descendent algebra)

Let \mathbb{D}^X be the free (super)commutative $\mathbb{C}\text{-algebra}$ generated by symbols

$$\operatorname{ch}_{k}^{\mathsf{H}}(\gamma)$$
 for $k \ge 0, \gamma \in H^{\bullet}(X)$.

When we have a moduli space of sheaves M on X with a universal sheaf \mathbb{F} on the product $M \times X$ we can realize $ch_k^H(\gamma)$ as

$$\mathsf{ch}^{\mathsf{H}}_{k}(\gamma) \mapsto p_{*}\big(\mathsf{ch}_{k+\mathsf{dim}(X)-s}(\mathbb{F})q^{*}\gamma\big) \in H^{\bullet}(M)$$

for $\gamma \in H^{s,t}(X)$. We get numerical invariants

$$\int_{[M]^{\mathrm{vir}}} \mathrm{ch}_{k_1}^{\mathrm{H}}(\gamma_1) \dots \mathrm{ch}_{k_m}^{\mathrm{H}}(\gamma_m) \in \mathbb{Q}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへ⊙

Virasoro operators

Definition

For $n \ge -1$ define the operators $L_n : \mathbb{D}^X \to \mathbb{D}^X$ by

$$L_n = R_n + T_n$$
, where:

Virasoro operators

Definition

For $n \ge -1$ define the operators $L_n : \mathbb{D}^X \to \mathbb{D}^X$ by

$$L_n = R_n + T_n$$
, where:

• The operator $\mathbb{R}_n \colon \mathbb{D}^X \to \mathbb{D}^X$ is a derivation defined on generators by

$$\mathsf{R}_{n}(\mathsf{ch}_{i}^{\mathsf{H}}(\gamma)) = \left(\prod_{j=0}^{n} (i+j)\right) \mathsf{ch}_{i+n}^{\mathsf{H}}(\gamma) \,.$$

Virasoro operators

Definition

For $n \ge -1$ define the operators $L_n : \mathbb{D}^X \to \mathbb{D}^X$ by

$$L_n = R_n + T_n$$
, where:

• The operator $\mathbb{R}_n \colon \mathbb{D}^X \to \mathbb{D}^X$ is a derivation defined on generators by

$$\mathbf{R}_{\mathbf{n}}\big(\mathsf{ch}_{i}^{\mathsf{H}}(\gamma)\big) = \left(\prod_{j=0}^{\mathbf{n}}(i+j)\right)\mathsf{ch}_{i+\mathbf{n}}^{\mathsf{H}}(\gamma)\,.$$

2 The operator $\mathsf{T}_n \colon \mathbb{D}^X \to \mathbb{D}^X$ is multiplication by

$$\mathsf{T}_{n} = \sum_{i+j=n} i!j! \sum_{s} (-1)^{\dim X - p_{s}^{L}} \mathsf{ch}_{i}^{\mathsf{H}}(\gamma_{s}^{L}) \mathsf{ch}_{j}^{\mathsf{H}}(\gamma_{s}^{R}) \,.$$

The operators define a representation of half of the Virasoro Lie algebra:

$$[\mathsf{L}_n,\mathsf{L}_m]=(m-n)\mathsf{L}_{n+m}\,.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The operators define a representation of half of the Virasoro Lie algebra:

$$\left[\mathsf{L}_{n},\mathsf{L}_{m}\right]=(m-n)\mathsf{L}_{n+m}\,.$$

Conjecture (Bojko-Lim-M, 22)

Let M be a moduli space of sheaves. For any $D \in \mathbb{D}^X$ we have

$$\int_{[M]^{\rm vir}} \mathsf{L}_{\mathsf{wt}_0}(D) = 0$$

where

$$\mathsf{L}_{\mathsf{wt}_0} = \sum_{n \ge -1} \frac{(-1)^n}{(n+1)!} \mathsf{L}_n \mathsf{R}_{-1}^{n+1}.$$

When are the constraints proven?

Theorem

The Virasoro constraints are true for

When are the constraints proven?

Theorem

The Virasoro constraints are true for

 For the moduli space of ideal sheaves and stable pairs on a toric 3-fold in the stationary regime. [M-Oblomkov-Okounkov--Pandharipande, 20]

When are the constraints proven?

Theorem

The Virasoro constraints are true for

- For the moduli space of ideal sheaves and stable pairs on a toric 3-fold in the stationary regime. [M-Oblomkov-Okounkov-Pandharipande, 20]
- For the Hilbert scheme of points on a simply-connected surface. [M, 20]

Theorem

The Virasoro constraints are true for

- For the moduli space of ideal sheaves and stable pairs on a toric 3-fold in the stationary regime. [M-Oblomkov-Okounkov-Pandharipande, 20]
- For the Hilbert scheme of points on a simply-connected surface. [M, 20]
- For the moduli spaces of stable torsion-free sheaves on curves and surfaces with $h^{0,1}(S) = h^{0,2}(S) = 0$. [Bojko-Lim-M, 22]
- For the moduli spaces of Bradlow pairs on curves and surfaces with h^{0,1}(S) = h^{0,2}(S) = 0. [BLM]
- For the moduli spaces of 1-dimensional sheaves on surfaces with $h^{0,1}(S) = h^{0,2}(S) = 0$, assuming a conjectural wall-crossing formula. [BLM]

Toric 3-folds and Hilbert scheme

• For toric 3-folds the proof uses (new but based on previous work by many people) very explicit formulas for the DT/GW correspondence in the stationary regime to transport the Virasoro constraints in GW theory to DT theory.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Toric 3-folds and Hilbert scheme

- For toric 3-folds the proof uses (new but based on previous work by many people) very explicit formulas for the DT/GW correspondence in the stationary regime to transport the Virasoro constraints in GW theory to DT theory.
- For Hilbert schemes of points on a surface S the proof uses the 3-fold result applied to P¹ × S when S is toric and a bootstrapping argument based on ideas of Ellingsrud-Göttsche-Lehn (99).

Toric 3-folds and Hilbert scheme

- For toric 3-folds the proof uses (new but based on previous work by many people) very explicit formulas for the DT/GW correspondence in the stationary regime to transport the Virasoro constraints in GW theory to DT theory.
- For Hilbert schemes of points on a surface S the proof uses the 3-fold result applied to P¹ × S when S is toric and a bootstrapping argument based on ideas of Ellingsrud-Göttsche-Lehn (99).
- Afterwards, van Bree (21) suggested a generalization to moduli spaces of stable sheaves on surfaces and gave strong numerical evidence.

Given a variety X, Joyce (18) constructed a vertex algebra structure (V_•, |0⟩, T, Y) on the homology of the stack of complexes of sheaves on X. The quotient V_• = V_•/T(V_•) is a Lie algebra as observed by Borcherds (85).

Given a variety X, Joyce (18) constructed a vertex algebra structure (V_•, |0⟩, T, Y) on the homology of the stack of complexes of sheaves on X. The quotient V_• = V_•/T(V_•) is a Lie algebra as observed by Borcherds (85).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Moduli spaces of sheaves define a class $[M]^{vir} \in \widecheck{V}_{\bullet}$.

- Given a variety X, Joyce (18) constructed a vertex algebra structure (V_•, |0⟩, T, Y) on the homology of the stack of complexes of sheaves on X. The quotient V_• = V_•/T(V_•) is a Lie algebra as observed by Borcherds (85).
- Moduli spaces of sheaves define a class $[M]^{\text{vir}} \in \check{V}_{\bullet}$.
- Joyce (21) shows that wall-crossing formulas can be expressed using the Lie bracket on \check{V}_{\bullet} (proved in some cases, conjectural in others).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

When X is a curve or surface with h^{0,2} = 0 there is a conformal element on (an extension of) V_• that induces the previosuly defined Virasoro operators.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

When X is a curve or surface with h^{0,2} = 0 there is a conformal element on (an extension of) V_• that induces the previosuly defined Virasoro operators.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Virasoro constraints $\Leftrightarrow [M]^{\text{vir}}$ is a physical state in \check{V}_{\bullet} .

- When X is a curve or surface with h^{0,2} = 0 there is a conformal element on (an extension of) V_• that induces the previosuly defined Virasoro operators.
- Virasoro constraints $\Leftrightarrow [M]^{\text{vir}}$ is a physical state in \check{V}_{\bullet} .
- The Virasoro constraints are compatible with wall-crossing.

- When X is a curve or surface with h^{0,2} = 0 there is a conformal element on (an extension of) V_• that induces the previosuly defined Virasoro operators.
- Virasoro constraints $\Leftrightarrow [M]^{\text{vir}}$ is a physical state in \check{V}_{\bullet} .
- The Virasoro constraints are compatible with wall-crossing.
- With the wall-crossing compatibility we prove Virasoro constraints in new cases using an inductive rank reduction argument.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Thank you for listening