Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results

Virasoro constraints for sheaf moduli spaces via wall-crossing

Miguel Moreira ETHZ Joint with Arkadij Bojko and Woonam Lim

UIC Algebraic Geometry Seminar 19 September 2022

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
•00000		00000	00000000	0000
History c	of Virasoro constrain	ts		

• In 1990, Witten proposed a conjecture saying that integrals of ψ -classes in the moduli space of curves $\overline{\mathcal{M}}_{g,n}$ satisfy some relations which completely determine them:

$$L_k(Z) = 0$$
 for $k \ge -1$,

where Z is the generating function of these integrals and L_k are differential operators satisfying the Virasoro bracket

$$[L_k, L_\ell] = (\ell - k) L_{k+\ell} \,.$$

- Witten's conjecture was proven in 1992 by Kontsevich. Alternative proofs by Okounkov-Pandharipande and Mirzakhani were found later.
- Eguchi-Hori-Xiong propose in 1997 a generalization to the Gromov-Witten (GW) theory of a target variety X.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
0●0000		00000	00000000	0000
History c	of Virasoro constrain	ts		

- In 2006, Maulik-Nekrasov-Okounkov-Pandharipande (MNOP) propose a conjecture connecting Gromov-Witten invariants on 3-folds to Donaldson-Thomas (DT) invariants, defined using the moduli space of ideal sheaves.
- An analog of Virasoro constraints should exist in DT theory! Oblomkov-Okounkov-Pandharipande make a precise conjecture by calculations in X = P³.
- In 2020, with Oblomkov-Okounkov-Pandharipande we prove that the MNOP correspondence intertwines the GW Virasoro and the DT Virasoro constraints (in stationary regime).
- This proves Virasoro constraints for the DT theory of toric 3-folds with stationary descendents.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
00000	0000000	00000	00000000	0000
History of	of Virasoro constrain	ts		

- In 2020 I used the previous result to prove a version of Virasoro constraints for the Hilbert scheme of points on simply-connected surfaces.
- In 2021 D. van Bree conjectures a generalization of the Hilbert scheme result to moduli spaces of stable sheaves on surfaces.
- Much more general?...

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	000000000	0000
Today				

I will explain joint work with A. Bojko and W. Lim containing:

- General formulation of Virasoro for moduli spaces of sheaves and pairs.
- How the Virasoro constraints are naturally formulated using the vertex algebra that D. Joyce introduced to study wall-crossing.
- Virasoro constraints are compatible with wall-crossing.
- A proof of the Virasoro constraints for moduli spaces of stable sheaves on curves and surfaces with $h^{0,1} = h^{0,2} = 0$ (either torsion-free or dimension 1 sheaves).

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
0000●0		00000	00000000	0000
Moduli s	spaces of sheaves			

We consider moduli spaces M of stable sheaves on a smooth projective variety X (typically of small dimension) such that:

- There are no strictly semistable sheaves in *M*.
- ② There is an (in principle non-unique) universal sheaf G in X × M; G is such that G_{|X×{[G]}} ≃ G. Tensoring G by a line bundle pulled back from M gives another universal sheaf.
- *M* admits a 2-term perfect obstruction theory with deformation theory at $[G] \in M$ given by

$$\mathsf{Tan}=\mathsf{Ext}^1({\mathsf{G}},{\mathsf{G}})\,,\,\mathsf{Obs}=\mathsf{Ext}^2({\mathsf{G}},{\mathsf{G}})\,,\,\mathsf{0}=\mathsf{Ext}^{>2}({\mathsf{G}},{\mathsf{G}})\,.$$

It follows that there is a virtual fundamental class $[M]^{vir} \in H_{\bullet}(M)$.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
00000●		00000	00000000	0000
Moduli s	paces of pairs			

Let V be a fixed sheaf. We also consider moduli spaces of pairs P parametrizing a sheaf F together with a map $V \rightarrow F$.

• There are no strictly semistable pairs in P.

-

- **2** There is a unique (!) universal pair $q^*V \to \mathbb{F}$ in $X \times P$.
- P admits a 2-term perfect obstruction theory with deformation theory at (V → F) ∈ P given by

$$\begin{aligned} \mathsf{Tan} &= \mathsf{Ext}^0([V \to F], F) \,, \, \mathsf{Obs} = \mathsf{Ext}^1([V \to F], F) \,, \\ 0 &= \mathsf{Ext}^{>1}([V \to F], F) \,. \end{aligned}$$

It follows that there is a virtual fundamental class $[P]^{\text{vir}} \in H_{\bullet}(P)$.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000	●000000	00000	00000000	0000
Descend	lents			

To get numerical invariants from M we integrate certain natural cohomology classes against the virtual fundamental class.

Definition (Descendent algebra)

Let \mathbb{D}^X be the free (super)commutative $\mathbb{C}\text{-algebra}$ generated by symbols

$$\operatorname{ch}_{i}^{H}(\gamma)$$
 for $i \ge 0, \gamma \in H^{\bullet}(X)$.

Definition (Geometric realization of descendents)

Let M be a moduli of sheaves with a universal sheaf \mathbb{G} in $X \times M$. Define the geometric realization morphism $\xi_{\mathbb{G}} \colon \mathbb{D}^X \to H^{\bullet}(M)$ by

$$\xi_{\mathbb{G}}\left(\operatorname{ch}_{i}^{H}(\gamma)\right) = p_{*}\left(\operatorname{ch}_{i+\dim(X)-s}(\mathbb{G})q^{*}\gamma\right) \in H^{\bullet}(M)$$

for $\gamma \in H^{s,t}(X)$. p, q are the projections of the product onto M and X, respectively.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000	000000	00000	000000000	0000
Descend	lents for pairs			

There is an analogous definition for pairs:

Definition (Pair descendent algebra)

Let $\mathbb{D}^{X,\mathrm{pa}} \cong \mathbb{D}^X \otimes \mathbb{D}^X$ be the free (super)commutative \mathbb{C} -algebra generated by symbols

$$\operatorname{ch}_{i}^{\mathcal{H},\mathcal{V}}(\gamma), \operatorname{ch}_{i}^{\mathcal{H},\mathcal{F}}(\gamma) \quad \text{for } i \ge 0, \gamma \in \mathcal{H}^{\bullet}(X).$$

Definition (Geometric realization of pair descendents)

Let *P* be a moduli of sheaves with a universal pair $q^*V \to \mathbb{F}$ in $X \times P$. Define the geometric realization morphism by

$$\begin{split} \xi_{q^*V \to \mathbb{F}} \big(\mathrm{ch}_i^{H, \mathcal{F}}(\gamma) \big) &= p_* \big(\mathrm{ch}_{i+\dim(X)-s}(\mathbb{F}) q^* \gamma \big) \,, \\ \xi_{q^*V \to \mathbb{F}} \big(\mathrm{ch}_i^{H, \mathcal{V}}(\gamma) \big) &= p_* \big(\mathrm{ch}_{i+\dim(X)-s}(q^*V) q^* \gamma \big) = \delta_{i0} \int_X \mathrm{ch}(V) \gamma \,. \end{split}$$

Virasoro o	nerators			
	Descendents and Virasoro operators	Vertex algebras 00000	Joyce's vertex algebra 00000000	Results 0000

Definition

For $n \ge -1$ define the operators $L_n : \mathbb{D}^X \to \mathbb{D}^X$ by $L_n = R_n + T_n$ where:

• The operator $R_n \colon \mathbb{D}^X \to \mathbb{D}^X$ is a derivation defined on generators by

$$\mathsf{R}_{n}\mathrm{ch}_{i}^{H}(\gamma) = \left(\prod_{j=0}^{n} (i+j)\right) \mathrm{ch}_{i+n}^{H}(\gamma).$$

2 The operator $T_k : \mathbb{D}^X \to \mathbb{D}^X$ is the multiplication by the element of \mathbb{D}^X given by

$$\mathsf{T}_n = \sum_{i+j=n} i! j! \sum_{s} (-1)^{\dim X - p_s^L} \mathrm{ch}_i^H(\gamma_s^L) \mathrm{ch}_j^H(\gamma_s^R) \,,$$

where $\sum_{s} \gamma_{s}^{L} \otimes \gamma_{s}^{R} = \Delta_{*} \operatorname{td}(X)$.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	000000000	0000
Virasoro	operators			

They satisfy the Virasoro bracket:

$$[\mathsf{L}_n,\mathsf{L}_m]=(m-n)\mathsf{L}_{n+m}\,.$$

There is also a version $L_n^{pa} : \mathbb{D}^{X,pa} \to \mathbb{D}^{X,pa}$ for pairs. The main difference is in the T_n operator:

$$\mathsf{T}^{\mathrm{pa}}_{n} = \sum_{i+j=n} i! j! \sum_{s} (-1)^{\dim X - \mathsf{p}^{L}_{s}} \mathrm{ch}^{H,\mathcal{F}-\mathcal{V}}_{i}(\gamma^{L}_{s}) \mathrm{ch}^{H,\mathcal{F}}_{j}(\gamma^{R}_{s}) \,.$$

Virgeore	constraints for pairs			
000000		00000	000000000	0000
Introduction	Descendents and Virasoro operators	Vertex algebras	Jovce's vertex algebra	Results

virasoro constraints for pairs

Conjecture (Virasoro for pairs)

Let P be a moduli space of pairs with universal pair $q^*V \to \mathbb{F}$. For any $D \in \mathbb{D}^{X, \mathrm{pa}}$ and $n \ge 0$ we have

$$\int_{[P]^{\mathrm{vir}}} \xi_{q^*V \to \mathbb{F}} (\mathsf{L}_n^{\mathrm{pa}}(D)) = 0.$$

Introduction 000000	Descendents and Virasoro operators	Vertex algebras 00000	Joyce's vertex algebra 00000000	Results 0000
Virasoro	constraints for shea	ves		

Let

$$\mathsf{L}_{\rm inv} = \sum_{n \ge -1} \frac{(-1)^n}{(n+1)!} \mathsf{L}_n \mathsf{R}_{-1}^{n+1} \,.$$

Fact

The geometric realization $\xi_{\mathbb{G}}(\mathsf{L}_{\mathrm{inv}}(D)) \in H^{\bullet}(M)$ does not depend on the choice of universal sheaf \mathbb{G} .

Conjecture (Virasoro for sheaves)

Let M be a moduli space of sheaves. For any $D \in \mathbb{D}^X$ we have

$$\int_{[M]^{\rm vir}} \mathsf{L}_{\rm inv}(D) = 0\,.$$

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	000000000	0000
Example	- rank 2 sheaves on	a curve		

Let $M = M_C(2, \Delta)$ be the moduli space of stable bundles on a curve *C* of genus *g* with rank 2 and fixed determinant Δ of odd degree; this is a smooth moduli space of dimension 3g - 3. All integrals of descendents on *M* can be deduced from integrals of products of certain classes

$$\eta \in H^2(M), \quad \theta \in H^4(M), \quad \zeta \in H^6(M).$$

Thaddeus proved:

$$\int_{M} \eta^{m} \theta^{k} \zeta^{p} = (-1)^{g-1-p} \frac{m!g!}{(g-p)!} 2^{2g-2-p} \frac{(2^{q}-2)B_{q}}{q!} \,,$$

where m + 2k + 3p = 3g - 3 and q = m + p - g + 1. The Virasoro constraints for *M* are equivalent to

$$(g-p)\int_{\mathcal{M}}\eta^{m}\theta^{k}\zeta^{p}=-2m\int_{\mathcal{M}}\eta^{m-1}\theta^{k-1}\zeta^{p+1}.$$

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		●0000	00000000	0000
Vertex a	lgebras			

A vertex algebra is a (graded) vector space V_{\bullet} together with the following data:

- A vacuum vector $|0\rangle \in V_{\bullet}$;
- **2** A translation operator $T: V_{\bullet} \rightarrow V_{\bullet+2}$;
- ③ A state to field correspondence Y: V_• → End(V_•)[[z, z⁻¹]] denoted by

$$Y(v,z)u = \sum_{n \in \mathbb{Z}} v_n u \, z^{-n-1}$$

Equivalently, Y carries the information of the infinite collection of products $v \otimes u \mapsto v_n u$.

This data has to satisfy some compatibility axioms (vacuum, translation and locality axioms).

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		0●000	00000000	0000
Conform	nal element			

An element $\omega \in V_{\bullet}$ is called a conformal element if the corresponding fields $L_n = \omega_{n+1} \in End(V_{\bullet})$ defined by

$$Y(\omega, z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$$

satisfy

$$\mathbf{L}_{-1}=T$$

$$[\mathbf{L}_n,\mathbf{L}_m] = (n-m)\mathbf{L}_{m+n} + \delta_{m+n,0} c \frac{m^3-m}{12} \operatorname{id}$$

where $c \in \mathbb{C}$ is a constant called the central charge of ω .

00000 0000000 00000 00000 00000 00000		Lie algebra			0000
		0000000	00000	00000000	0000

Given a Lie algebra, Borcherds showed that the quotient

 $\check{V}_{\bullet} = V_{\bullet}/T(V_{\bullet})$

has the structure of a Lie algebra with bracket given by

 $\left[\overline{v},\overline{u}\right] = \overline{v_0 u}.$

This bracket lifts to $\check{V}_{\bullet} \otimes V_{\bullet} \to V_{\bullet}$ for which we still use the same notation:

$$[\overline{u},v] = u_0 v.$$

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		000●0	000000000	0000
Physical	states			

There is a vertex algebra notion of physical states that roughly corresponds to elements of V_{\bullet} or \check{V}_{\bullet} that satisfy Virasoro constraints:

$$\begin{split} P_i &= \{ v \in V_{\bullet} \colon \mathcal{L}_n(v) = \delta_{n0} i v \,, n \geq 0 \} \subseteq V_{\bullet} \,, \\ \check{P}_0 &= P_1 / T(P_0) \subseteq \check{V}_{\bullet} \,. \end{split}$$

Proposition

Under some conditions, $\overline{u}\in \check{P}_0$ if and only if

$$0 = \left[\overline{u}, \omega\right] = \sum_{n \ge -1} \frac{(-1)^n}{(n+1)!} T^{n+1} \mathcal{L}_n(u) \,.$$

Wall-cros	ssing compatibility			
Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		0000●	00000000	0000

Proposition

$$lacksymbol{0}$$
 The subspace $reve{P}_0\subseteqreve{V}_ullet$ is a Lie subalgebra, i.e.

$$\overline{u}, \, \overline{v} \in \check{P}_0 \Rightarrow [\overline{u}, \overline{v}] \in \check{P}_0 \,.$$

② The subspace P₀ ⊆ V_• is a Lie algebra subrepresentation of P̃₀ ⊆ Ṽ_•, i.e.

$$\overline{u} \in \check{P}_0, v \in P_0$$
 htarrow $[\overline{u}, v] \in P_0$.

This proposition will translate to a compatibility between the Virasoro constraints and wall-crossing in moduli spaces of sheaves!

lovce's g	eometric vertex alg	ebra		
Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	●00000000	0000

Let \mathcal{M}_X be the (higher) stack parametrizing objects in $D^b(X)$, i.e. perfect complexes. If this is scary replace it by the topological version

$$\mathcal{M}^{\mathrm{top}}_X = \mathsf{Maps}_{\mathcal{C}^0}(X^{\mathsf{an}}, BU imes \mathbb{Z})$$
 .

Joyce defined a vertex algebra structure on the homology

$$V_{\bullet} = H_{\bullet}(\mathcal{M}_X)$$
.

The translation operator T is related to the $B\mathbb{G}_m$ action $B\mathbb{G}_m \times \mathcal{M}_X \to \mathcal{M}_X$. The state-to-field is given explicitly by

$$Y(v,z)u = (-1)^{\chi(\alpha,\beta)} z^{\chi_{\text{sym}}(\alpha,\beta)} \Sigma_* \left((e^{zT} \boxtimes \text{id}) (c_{z^{-1}}(\Theta) \cap v \boxtimes u) \right).$$

 Θ is a complex on $\mathcal{M}_X\times\mathcal{M}_X$ related to the deformation theory of sheaves.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	o●ooooooo	0000
Joyce's	geometric vertex alg	ebra		

There is a pair version. Let $\mathcal{P}_X = \mathcal{M}_X \times \mathcal{M}_X$ and

$$V_{ullet}^{\mathrm{pa}} = H_{ullet}(\mathcal{P}_X).$$

The state-to-field is defined by modifying

$$Y(v,z)u = (-1)^{\chi^{\mathrm{pa}}(\alpha,\beta)} z^{\chi^{\mathrm{pa}}_{\mathrm{sym}}(\alpha,\beta)} \Sigma_* \left((e^{zT} \boxtimes \mathrm{id}) (c_{z^{-1}}(\Theta^{\mathrm{pa}}) \cap v \boxtimes u) \right).$$

 Θ^{pa} is a complex on $\mathcal{P}_X \times \mathcal{P}_X$ related to the deformation theory of pairs.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results		
000000	0000000	00000	00●000000	0000		
Joyce invariant classes						

If M is a moduli of sheaves with universal sheaf \mathbb{G} , by the universal property of \mathcal{M}_X there is a map $f_{\mathbb{G}} \colon M \to \mathcal{M}_X$. Define

$$[M]^{\mathrm{vir}}_{\mathbb{G}} = (f_{\mathbb{G}})_* [M]^{\mathrm{vir}} \in V_{\bullet} = H_{\bullet}(\mathcal{M}_X),$$

$$[M]^{\mathrm{vir}} = \overline{[M]^{\mathrm{vir}}_{\mathbb{G}}} \in \widehat{V}_{\bullet} = V_{\bullet}/T(V_{\bullet}).$$

Theorem (J. Gross)

The cohomology $H^{\bullet}(\mathcal{M}_X)$ is closely related to \mathbb{D}^X . Integrating descendents against the virtual fundamental class is identified with pairing between a homology and cohomology class in \mathcal{M}_X , i.e.

$$\int_{[M]^{\mathrm{vir}}} \xi_{\mathbb{G}}(D) = \langle [M]^{\mathrm{vir}}_{\mathbb{G}}, D \rangle.$$

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	000●00000	0000
Wall-cro	ossing			

Moduli spaces of sheaves often depend on a choice of a stability parameter μ . Denote by $M_{\alpha}(\mu)$ the moduli of μ -stable sheaves with Chern character equal to α . Wall-crossing is about trying to understand how $M_{\alpha}(\mu)$ and the corresponding numerical invariants change when μ changes.

Theorem (Joyce)

For every α there exist classes

 $[M_{\alpha}(\mu)]^{\mathsf{Jo}} \in \widecheck{V}_{\bullet}$

even if $M_{\alpha}(\mu)$ contains strictly semistable sheaves. When there are no strictly semistables, $[M_{\alpha}(\mu)]^{\mathsf{Jo}} = [M_{\alpha}(\mu)]^{\mathsf{vir}}$.

Wall-cros	sino			
Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	000000000	0000

Theorem (Joyce)

Let μ,τ be two stability conditions. Then

$$[M_{\alpha}(\mu)]^{\mathsf{Jo}} = \sum_{\alpha_1 + \dots + \alpha_l = \alpha} U(\alpha_1, \dots, \alpha_l; \mu, \tau) \times \\ [\dots [[M_{\alpha_1}(\tau)]^{\mathsf{Jo}}, [M_{\alpha_2}(\tau)]^{\mathsf{Jo}}], \dots, [M_{\alpha_l}(\tau)]^{\mathsf{Jo}}]$$

in \check{V}_{\bullet} , where $U(\alpha_1, \ldots, \alpha_l; \mu, \tau)$ are some combinatorial coefficients.

Gross' isomorphism			
Introduction Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000 0000000	00000	00000●000	0000

Theorem (Gross+BLM)

Under some conditions, the vertex algebras $V_{\bullet}, V_{\bullet}^{\mathrm{pa}}$ are isomorphic to the lattice vertex algebras

$$V_{\bullet} \cong \mathbb{C}[K^{0}_{sst}(X)] \otimes SSym[H^{\bullet}(X)[t]]$$
$$V_{\bullet}^{\mathrm{pa}} \cong \mathbb{C}[K^{0}_{sst}(X)^{\oplus 2}] \otimes SSym[H^{\bullet}(X)^{\oplus 2}[t]]$$

constructed from the bilinear forms on $H^{\bullet}(X)$ and $H^{\bullet}(X)^{\oplus 2}$ given by

$$\chi_{sym}(\gamma, \delta) = \chi(\gamma, \delta) + \chi(\delta, \gamma)$$

$$\chi_{sym}^{pa}((\gamma_1, \gamma_2), (\delta_1, \delta_2)) = \chi(\gamma_2 - \gamma_1, \delta_2) + \chi(\delta_2 - \delta_1, \gamma_2)$$

where

$$\chi(\gamma,\delta) = \int_{X} (-1)^{\lfloor \frac{\deg \gamma}{2} \rfloor} \gamma \cdot \delta \cdot \operatorname{td}(X).$$

Introduction 000000	Descendents and Virasoro operators	Vertex algebras 00000	Joyce's vertex algebra 000000●00	Results 0000
Conform	nal element			

A lattice vertex algebra constructed from a bilinear pairing Q comes naturally equipped with a conformal element provided we have two things:

- Q is non-degenerate. In our case, $\chi^{\rm pa}_{\rm sym}$ is non-degenerate but $\chi_{\rm sym}$ is not in general.
- **2** We are given an isotropic decomposition of the fermionic part, which in our case is $H^{\text{odd}}(X)$.

Assumption (†)

$$H^{p,q}(X) = 0$$
 if $|p-q| > 1$.

Holds for curves and surfaces with $h^{0,2} = 0$.

In this case we have an isotropic decomposition

$$H^{\mathsf{odd}}(X) = H^{\bullet, \bullet+1}(X) \oplus H^{\bullet+1, \bullet}(X)$$
.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	0000000●0	0000
Virasoro	fields			

Under (†), there is a natural conformal element ω on $V_{\bullet}^{\mathrm{pa}}$ and corresponding Virasoro fields $L_n: V_{\bullet}^{\mathrm{pa}} \to V_{\bullet}^{\mathrm{pa}}$.

Theorem (Bojko-Lim-M)

Assume (†). Under the duality between $V_{\bullet}^{\mathrm{pa}}$ and $\mathbb{D}^{X,\mathrm{pa}}$, the Virasoro fields L_n induced by ω are dual to the pair Virasoro operators L_n^{pa} defined in the algebra of descendents $\mathbb{D}^{X,\mathrm{pa}}$.

Virasoro	fields			
Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	00000000●	0000

Corollary (Bojko-Lim-M)

• A moduli of sheaves M satisfies the sheaf Virasoro constraints if and only if

$$[M]^{\mathrm{vir}}\in \check{P}_0$$

is a physical state.

② A moduli of pairs P with universal pair q^{*}V → F satisfies the pair Virasoro constraints if and only if

$$[P]_{q^*V \to \mathbb{F}}^{\mathrm{vir}} \in P_0^{\mathrm{pa}}$$

is a physical state.

Corollary

The Virasoro constraints are compatible with wall-crossing.

Introduction

Results

Theorem (Bojko-Lim-M)

The Virasoro constraints hold for the following moduli spaces:

- **(**) Moduli spaces of stable bundles on curves $M_C(r, d)$;
- **2** Moduli spaces of stable torsion-free sheaves $M_S^H(r, \beta, n)$ on surfaces S with $h^{0,1} = h^{0,2} = 0$ and a polarization H;
- Moduli spaces of stable 1 dimensional sheaves M^H_S(β, n) on surfaces S with h^{0,1} = h^{0,2} = 0 and a polarization H (assuming a technical condition necessary for the proof of the relevant wall-crossing formula).

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	00000000	0●00
Sketch o	f proof			

I will focus on the torsion-free cases (1 and 2).

- 1. Let P_{α}^{t} be the moduli spaces of Bradlow pairs $\mathcal{O}_{X} \to F$, depending on a parameter $0 < t < \infty$; we will prove by induction on $\operatorname{rk}(\alpha)$ that M_{α} satisfies the sheaf Virasoro constraints and P_{α}^{t} satisfies the pair Virasoro constraints.
- 2. The base case is when $rk(\alpha) = 1$. In the case of curves, it amounts to proving Virasoro for the symmetric powers of a curve, which can be done directly. For surfaces, it reduces to proving Virasoro constraints for Hilbert scheme of points on S, which was done previously.
- For s ≫ 1 and rk(α) > 1 the moduli space P^s_α becomes empty. The wall-crossing formula between s-stability and t-stability writes [P^t_α]^{vir}_{O→F} in terms of iterated brackets involving lower rank classes.

Sketch c	of proof			
Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	000000000	00●0

- 4. By induction and the compatibility between wall-crossing and Virasoro, P_{α}^{t} satisfies the pair Virasoro constraints.
- 5. If M_{α} doesn't have strictly semistables and $0 < t \ll 1$ then $P_{\alpha}^{t} \rightarrow M_{\alpha}$ is a projective bundle.
- 6. The projective bundle structure can be used to prove that if P^t_{α} satisfies the pair Virasoro then M_{α} satisfies the sheaf Virasoro.

Introduction	Descendents and Virasoro operators	Vertex algebras	Joyce's vertex algebra	Results
000000		00000	000000000	000●
Thanks!				