Virasoro constraints for sheaf moduli spaces via wall-crossing

Miguel Moreira ETHZ
Joint with Arkadij Bojko and Woonam Lim

UIC

Algebraic Geometry Seminar 19 September 2022

History of Virasoro constraints

- In 1990, Witten proposed a conjecture saying that integrals of ψ-classes in the moduli space of curves $\overline{\mathcal{M}}_{g, n}$ satisfy some relations which completely determine them:

$$
L_{k}(Z)=0 \quad \text { for } k \geqslant-1,
$$

where Z is the generating function of these integrals and L_{k} are differential operators satisfying the Virasoro bracket

$$
\left[L_{k}, L_{\ell}\right]=(\ell-k) L_{k+\ell} .
$$

- Witten's conjecture was proven in 1992 by Kontsevich. Alternative proofs by Okounkov-Pandharipande and Mirzakhani were found later.
- Eguchi-Hori-Xiong propose in 1997 a generalization to the Gromov-Witten (GW) theory of a target variety X.
- In 2006, Maulik-Nekrasov-Okounkov-Pandharipande (MNOP) propose a conjecture connecting Gromov-Witten invariants on 3-folds to Donaldson-Thomas (DT) invariants, defined using the moduli space of ideal sheaves.
- An analog of Virasoro constraints should exist in DT theory! Oblomkov-Okounkov-Pandharipande make a precise conjecture by calculations in $X=\mathbb{P}^{3}$.
- In 2020, with Oblomkov-Okounkov-Pandharipande we prove that the MNOP correspondence intertwines the GW Virasoro and the DT Virasoro constraints (in stationary regime).
- This proves Virasoro constraints for the DT theory of toric 3-folds with stationary descendents.

History of Virasoro constraints

- In 2020 I used the previous result to prove a version of Virasoro constraints for the Hilbert scheme of points on simply-connected surfaces.
- In 2021 D. van Bree conjectures a generalization of the Hilbert scheme result to moduli spaces of stable sheaves on surfaces.
- Much more general?...

Today

I will explain joint work with A. Bojko and W. Lim containing:

- General formulation of Virasoro for moduli spaces of sheaves and pairs.
- How the Virasoro constraints are naturally formulated using the vertex algebra that D. Joyce introduced to study wall-crossing.
- Virasoro constraints are compatible with wall-crossing.
- A proof of the Virasoro constraints for moduli spaces of stable sheaves on curves and surfaces with $h^{0,1}=h^{0,2}=0$ (either torsion-free or dimension 1 sheaves).

Moduli spaces of sheaves

We consider moduli spaces M of stable sheaves on a smooth projective variety X (typically of small dimension) such that:
(1) There are no strictly semistable sheaves in M.
(2) There is an (in principle non-unique) universal sheaf \mathbb{G} in $X \times M$; \mathbb{G} is such that $\mathbb{G}_{\mid X \times\{[G]\}} \cong G$. Tensoring \mathbb{G} by a line bundle pulled back from M gives another universal sheaf.
(3) M admits a 2-term perfect obstruction theory with deformation theory at $[G] \in M$ given by

$$
\text { Tan }=\operatorname{Ext}^{1}(G, G), O b s=\operatorname{Ext}^{2}(G, G), 0=\operatorname{Ext}^{>2}(G, G) .
$$

It follows that there is a virtual fundamental class $[M]^{\mathrm{vir}} \in H_{\bullet}(M)$.

Moduli spaces of pairs

Let V be a fixed sheaf. We also consider moduli spaces of pairs P parametrizing a sheaf F together with a map $V \rightarrow F$.
(1) There are no strictly semistable pairs in P.
(2) There is a unique (!) universal pair $q^{*} V \rightarrow \mathbb{F}$ in $X \times P$.
(3) P admits a 2-term perfect obstruction theory with deformation theory at $(V \rightarrow F) \in P$ given by

$$
\begin{aligned}
\mathrm{Tan} & =\mathrm{Ext}^{0}([V \rightarrow F], F), \mathrm{Obs}=\mathrm{Ext}^{1}([V \rightarrow F], F), \\
0 & =\operatorname{Ext}^{>1}([V \rightarrow F], F) .
\end{aligned}
$$

It follows that there is a virtual fundamental class $[P]^{\text {vir }} \in H_{\bullet}(P)$.

Descendents

To get numerical invariants from M we integrate certain natural cohomology classes against the virtual fundamental class.

Definition (Descendent algebra)

Let \mathbb{D}^{X} be the free (super)commutative \mathbb{C}-algebra generated by symbols

$$
\operatorname{ch}_{i}^{H}(\gamma) \quad \text { for } i \geqslant 0, \gamma \in H^{\bullet}(X) .
$$

Definition (Geometric realization of descendents)

Let M be a moduli of sheaves with a universal sheaf \mathbb{G} in $X \times M$. Define the geometric realization morphism $\xi_{\mathbb{G}}: \mathbb{D}^{X} \rightarrow H^{\bullet}(M)$ by

$$
\xi_{\mathbb{G}}\left(\operatorname{ch}_{i}^{H}(\gamma)\right)=p_{*}\left(\operatorname{ch}_{i+\operatorname{dim}(X)-s}(\mathbb{G}) q^{*} \gamma\right) \in H^{\bullet}(M)
$$

for $\gamma \in H^{s, t}(X) . p, q$ are the projections of the product onto M and X, respectively.

Descendents for pairs

There is an analogous definition for pairs:

Definition (Pair descendent algebra)

Let $\mathbb{D}^{X, \mathrm{pa}} \cong \mathbb{D}^{X} \otimes \mathbb{D}^{X}$ be the free (super)commutative \mathbb{C}-algebra generated by symbols

$$
\operatorname{ch}_{i}^{H, \mathcal{V}}(\gamma), \operatorname{ch}_{i}^{H, \mathcal{F}}(\gamma) \quad \text { for } i \geqslant 0, \gamma \in H^{\bullet}(X) .
$$

Definition (Geometric realization of pair descendents)

Let P be a moduli of sheaves with a universal pair $q^{*} V \rightarrow \mathbb{F}$ in $X \times P$. Define the geometric realization morphism by
$\xi_{q^{*} V \rightarrow \mathbb{F}}\left(\operatorname{ch}_{i}^{H, \mathcal{F}}(\gamma)\right)=p_{*}\left(\operatorname{ch}_{i+\operatorname{dim}(X)-s}(\mathbb{F}) q^{*} \gamma\right)$,
$\xi_{q^{*} V \rightarrow \mathbb{F}}\left(\operatorname{ch}_{i}^{H, \mathcal{V}}(\gamma)\right)=p_{*}\left(\operatorname{ch}_{i+\operatorname{dim}(X)-s}\left(q^{*} V\right) q^{*} \gamma\right)=\delta_{i 0} \int_{X} \operatorname{ch}(V) \gamma$.

Virasoro operators

Definition

For $n \geqslant-1$ define the operators $L_{n}: \mathbb{D}^{X} \rightarrow \mathbb{D}^{X}$ by $L_{n}=R_{n}+T_{n}$ where:
(1) The operator $\mathrm{R}_{n}: \mathbb{D}^{X} \rightarrow \mathbb{D}^{X}$ is a derivation defined on generators by

$$
\mathrm{R}_{n} \operatorname{ch}_{i}^{H}(\gamma)=\left(\prod_{j=0}^{n}(i+j)\right) \operatorname{ch}_{i+n}^{H}(\gamma)
$$

(2) The operator $\mathrm{T}_{k}: \mathbb{D}^{X} \rightarrow \mathbb{D}^{X}$ is the multiplication by the element of \mathbb{D}^{X} given by

$$
\mathrm{T}_{n}=\sum_{i+j=n} i!j!\sum_{s}(-1)^{\operatorname{dim} X-p_{s}^{L}} \operatorname{ch}_{i}^{H}\left(\gamma_{s}^{L}\right) \operatorname{ch}_{j}^{H}\left(\gamma_{s}^{R}\right)
$$

where $\sum_{s} \gamma_{s}^{L} \otimes \gamma_{s}^{R}=\Delta_{*} \operatorname{td}(X)$.

Virasoro operators

They satisfy the Virasoro bracket:

$$
\left[\mathrm{L}_{n}, \mathrm{~L}_{m}\right]=(m-n) \mathrm{L}_{n+m} .
$$

There is also a version $\mathrm{L}_{n}^{\mathrm{pa}}: \mathbb{D}^{X, \mathrm{pa}} \rightarrow \mathbb{D}^{X, \mathrm{pa}}$ for pairs. The main difference is in the T_{n} operator:

$$
\mathrm{T}_{n}^{\mathrm{pa}}=\sum_{i+j=n} i!j!\sum_{s}(-1)^{\operatorname{dim} X-p_{s}^{L}} \operatorname{ch}_{i}^{H, \mathcal{F}-\mathcal{V}}\left(\gamma_{s}^{L}\right) \operatorname{ch}_{j}^{H, \mathcal{F}}\left(\gamma_{s}^{R}\right)
$$

Virasoro constraints for pairs

Conjecture (Virasoro for pairs)

Let P be a moduli space of pairs with universal pair $q^{*} V \rightarrow \mathbb{F}$. For any $D \in \mathbb{D}^{X, \text { pa }}$ and $n \geqslant 0$ we have

$$
\int_{[P] \mathrm{vir}} \xi_{q * V \rightarrow \mathbb{F}}\left(\mathrm{~L}_{n}^{\mathrm{pa}}(D)\right)=0
$$

Virasoro constraints for sheaves

Let

$$
\mathrm{L}_{\text {inv }}=\sum_{n \geqslant-1} \frac{(-1)^{n}}{(n+1)!} \mathrm{L}_{n} \mathrm{R}_{-1}^{n+1} .
$$

Fact

The geometric realization $\xi_{\mathbb{G}}\left(\mathrm{L}_{\text {inv }}(D)\right) \in H^{\bullet}(M)$ does not depend on the choice of universal sheaf \mathbb{G}.

Conjecture (Virasoro for sheaves)

Let M be a moduli space of sheaves. For any $D \in \mathbb{D}^{X}$ we have

$$
\int_{[M]_{\mathrm{vir}}} \mathrm{~L}_{\mathrm{inv}}(D)=0 .
$$

Example - rank 2 sheaves on a curve

Let $M=M_{C}(2, \Delta)$ be the moduli space of stable bundles on a curve C of genus g with rank 2 and fixed determinant Δ of odd degree; this is a smooth moduli space of dimension $3 g-3$. All integrals of descendents on M can be deduced from integrals of products of certain classes

$$
\eta \in H^{2}(M), \quad \theta \in H^{4}(M), \quad \zeta \in H^{6}(M) .
$$

Thaddeus proved:

$$
\int_{M} \eta^{m} \theta^{k} \zeta^{p}=(-1)^{g-1-p} \frac{m!g!}{(g-p)!} 2^{2 g-2-p} \frac{\left(2^{q}-2\right) B_{q}}{q!},
$$

where $m+2 k+3 p=3 g-3$ and $q=m+p-g+1$.
The Virasoro constraints for M are equivalent to

$$
(g-p) \int_{M} \eta^{m} \theta^{k} \zeta^{p}=-2 m \int_{M} \eta^{m-1} \theta^{k-1} \zeta^{p+1}
$$

Vertex algebras

A vertex algebra is a (graded) vector space V_{\bullet} together with the following data:
(1) A vacuum vector $|0\rangle \in V_{\bullet}$;
(2) A translation operator $T: V_{\bullet} \rightarrow V_{\bullet+2}$;
(3) A state to field correspondence $Y: V_{\bullet} \rightarrow \operatorname{End}\left(V_{\bullet}\right)\left[\left[z, z^{-1}\right]\right]$ denoted by

$$
Y(v, z) u=\sum_{n \in \mathbb{Z}} v_{n} u z^{-n-1} .
$$

Equivalently, Y carries the information of the infinite collection of products $v \otimes u \mapsto v_{n} u$.
This data has to satisfy some compatibility axioms (vacuum, translation and locality axioms).

Conformal element

An element $\omega \in V_{\bullet}$ is called a conformal element if the corresponding fields $\mathrm{L}_{n}=\omega_{n+1} \in \operatorname{End}\left(V_{\bullet}\right)$ defined by

$$
Y(\omega, z)=\sum_{n \in \mathbb{Z}} \mathrm{~L}_{n} z^{-n-2}
$$

satisfy

$$
\begin{gathered}
\mathrm{L}_{-1}=T \\
{\left[\mathrm{~L}_{n}, \mathrm{~L}_{m}\right]=(n-m) \mathrm{L}_{m+n}+\delta_{m+n, 0} c \frac{m^{3}-m}{12} \mathrm{id}}
\end{gathered}
$$

where $c \in \mathbb{C}$ is a constant called the central charge of ω.

Borcherds Lie algebra

Given a Lie algebra, Borcherds showed that the quotient

$$
\check{V}_{\bullet}=V_{\bullet} / T\left(V_{\bullet}\right)
$$

has the structure of a Lie algebra with bracket given by

$$
[\bar{v}, \bar{u}]=\overline{v_{0} u} .
$$

This bracket lifts to $\check{V}_{\bullet} \otimes V_{\bullet} \rightarrow V_{\bullet}$ for which we still use the same notation:

$$
[\bar{u}, v]=u_{0} v .
$$

Physical states

There is a vertex algebra notion of physical states that roughly corresponds to elements of V_{\bullet} or \breve{V}_{\bullet} that satisfy Virasoro constraints:

$$
\begin{aligned}
P_{i} & =\left\{v \in V_{\bullet}: L_{n}(v)=\delta_{n 0} i v, n \geqslant 0\right\} \subseteq V_{\bullet}, \\
\check{P}_{0} & =P_{1} / T\left(P_{0}\right) \subseteq \check{V}_{\bullet}
\end{aligned}
$$

Proposition

Under some conditions, $\bar{u} \in \check{P}_{0}$ if and only if

$$
0=[\bar{u}, \omega]=\sum_{n \geqslant-1} \frac{(-1)^{n}}{(n+1)!} T^{n+1} \mathrm{~L}_{n}(u)
$$

Wall-crossing compatibility

Proposition

(1) The subspace $\check{P}_{0} \subseteq \check{V}_{\text {- }}$ is a Lie subalgebra, i.e.

$$
\bar{u}, \bar{v} \in \check{P}_{0} \Rightarrow[\bar{u}, \bar{v}] \in \check{P}_{0} .
$$

(2) The subspace $P_{0} \subseteq V_{0}$ is a Lie algebra subrepresentation of $\check{P}_{0} \subseteq \check{V}_{\bullet}$, i.e.

$$
\bar{u} \in \check{P}_{0}, v \in P_{0} h t a r r o w[\bar{u}, v] \in P_{0} .
$$

This proposition will translate to a compatibility between the Virasoro constraints and wall-crossing in moduli spaces of sheaves!

Joyce's geometric vertex algebra

Let \mathcal{M}_{X} be the (higher) stack parametrizing objects in $D^{b}(X)$, i.e. perfect complexes. If this is scary replace it by the topological version

$$
\mathcal{M}_{X}^{\mathrm{top}}=\operatorname{Maps}_{C^{0}}\left(X^{\mathrm{an}}, B U \times \mathbb{Z}\right) .
$$

Joyce defined a vertex algebra structure on the homology

$$
V_{\bullet}=H_{\bullet}\left(\mathcal{M}_{X}\right) .
$$

The translation operator T is related to the $B \mathbb{G}_{m}$ action $B \mathbb{G}_{m} \times \mathcal{M}_{X} \rightarrow \mathcal{M}_{X}$. The state-to-field is given explicitly by

$$
Y(v, z) u=(-1)^{\chi(\alpha, \beta)} z^{\chi_{\mathrm{sym}}(\alpha, \beta)} \Sigma_{*}\left(\left(e^{z T} \boxtimes \mathrm{id}\right)\left(c_{z^{-1}}(\Theta) \cap v \boxtimes u\right)\right) .
$$

Θ is a complex on $\mathcal{M}_{X} \times \mathcal{M}_{X}$ related to the deformation theory of sheaves.

Joyce's geometric vertex algebra

There is a pair version. Let $\mathcal{P}_{X}=\mathcal{M}_{X} \times \mathcal{M}_{X}$ and

$$
V_{\bullet}^{\mathrm{pa}}=H_{\bullet}\left(\mathcal{P}_{X}\right) .
$$

The state-to-field is defined by modifying
$Y(v, z) u=(-1)^{\chi^{\mathrm{pa}}(\alpha, \beta)} z^{\chi_{\mathrm{sym}}^{\mathrm{pa}}(\alpha, \beta)} \Sigma_{*}\left(\left(e^{z T} \boxtimes \mathrm{id}\right)\left(c_{z^{-1}}\left(\Theta^{\mathrm{pa}}\right) \cap v \boxtimes u\right)\right)$.
$\Theta^{\text {pa }}$ is a complex on $\mathcal{P}_{X} \times \mathcal{P}_{X}$ related to the deformation theory of pairs.

Joyce invariant classes

If M is a moduli of sheaves with universal sheaf \mathbb{G}, by the universal property of \mathcal{M}_{X} there is a map $f_{\mathbb{G}}: M \rightarrow \mathcal{M}_{X}$. Define

$$
\begin{gathered}
{[M]_{\mathbb{G}}^{\mathrm{vir}}=\left(f_{\mathbb{G}}\right)_{*}[M]^{\mathrm{vir}} \in V_{\bullet}=H_{\bullet}\left(\mathcal{M}_{X}\right),} \\
{[M]^{\mathrm{vir}}=\overline{[M]_{\mathbb{G}}^{\mathrm{vir}}} \in \widehat{V}_{\bullet}=V_{\bullet} / T\left(V_{\bullet}\right) .}
\end{gathered}
$$

Theorem (J. Gross)

The cohomology $H^{\bullet}\left(\mathcal{M}_{X}\right)$ is closely related to \mathbb{D}^{X}. Integrating descendents against the virtual fundamental class is identified with pairing between a homology and cohomology class in \mathcal{M}_{X}, i.e.

$$
\int_{[M]_{\mathrm{vir}}} \xi_{\mathbb{G}}(D)=\left\langle[M]_{\mathbb{G}}^{\mathrm{vir}}, D\right\rangle
$$

Wall-crossing

Moduli spaces of sheaves often depend on a choice of a stability parameter μ. Denote by $M_{\alpha}(\mu)$ the moduli of μ-stable sheaves with Chern character equal to α. Wall-crossing is about trying to understand how $M_{\alpha}(\mu)$ and the corresponding numerical invariants change when μ changes.

Theorem (Joyce)

For every α there exist classes

$$
\left[M_{\alpha}(\mu)\right]^{\mathrm{Jo}} \in \check{V}_{\bullet}
$$

even if $M_{\alpha}(\mu)$ contains strictly semistable sheaves. When there are no strictly semistables, $\left[M_{\alpha}(\mu)\right]^{\mathrm{Jo}}=\left[M_{\alpha}(\mu)\right]^{\mathrm{vir}}$.

Wall-crossing

Theorem (Joyce)

Let μ, τ be two stability conditions. Then

$$
\begin{aligned}
{\left[M_{\alpha}(\mu)\right]^{\mathrm{Jo}}=} & \sum_{\alpha_{1}+\ldots+\alpha_{l}=\alpha} U\left(\alpha_{1}, \ldots, \alpha_{l} ; \mu, \tau\right) \times \\
& {\left[\ldots\left[\left[M_{\alpha_{1}}(\tau)\right]^{\mathrm{Jo}},\left[M_{\alpha_{2}}(\tau)\right]^{\mathrm{Jo}}\right], \ldots,\left[M_{\alpha_{l}}(\tau)\right]^{\mathrm{Jo}}\right] }
\end{aligned}
$$

in \check{V}_{\bullet}, where $U\left(\alpha_{1}, \ldots, \alpha_{1} ; \mu, \tau\right)$ are some combinatorial coefficients.

Gross' isomorphism

Theorem (Gross+BLM)

Under some conditions, the vertex algebras $V_{\bullet}, V_{\bullet}^{\mathrm{pa}}$ are isomorphic to the lattice vertex algebras

$$
\begin{aligned}
V_{\bullet} & \cong \mathbb{C}\left[K_{\text {sst }}^{0}(X)\right] \otimes \operatorname{SSym}\left[H^{\bullet}(X)[t]\right] \\
V_{\bullet}^{\mathrm{pa}} & \cong \mathbb{C}\left[K_{\text {sst }}^{0}(X)^{\oplus 2}\right] \otimes \operatorname{SSym}\left[H^{\bullet}(X)^{\oplus 2}[t]\right]
\end{aligned}
$$

constructed from the bilinear forms on $H^{\bullet}(X)$ and $H^{\bullet}(X)^{\oplus 2}$ given by

$$
\begin{aligned}
\chi_{\text {sym }}(\gamma, \delta) & =\chi(\gamma, \delta)+\chi(\delta, \gamma) \\
\chi_{\text {sym }}^{\mathrm{pa}}\left(\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right)\right) & =\chi\left(\gamma_{2}-\gamma_{1}, \delta_{2}\right)+\chi\left(\delta_{2}-\delta_{1}, \gamma_{2}\right)
\end{aligned}
$$

where

$$
\chi(\gamma, \delta)=\int_{X}(-1)^{\left\lfloor\frac{\operatorname{deg} \gamma}{2}\right\rfloor} \gamma \cdot \delta \cdot \operatorname{td}(X)
$$

Conformal element

A lattice vertex algebra constructed from a bilinear pairing Q comes naturally equipped with a conformal element provided we have two things:
(1) Q is non-degenerate. In our case, $\chi_{\text {sym }}^{\mathrm{pa}}$ is non-degenerate but $\chi_{\text {sym }}$ is not in general.
(2) We are given an isotropic decomposition of the fermionic part, which in our case is $H^{\text {odd }}(X)$.

Assumption (\dagger)

$$
H^{p, q}(X)=0 \text { if }|p-q|>1 .
$$

Holds for curves and surfaces with $h^{0,2}=0$.
In this case we have an isotropic decomposition

$$
H^{\text {odd }}(X)=H^{\bullet, \bullet+1}(X) \oplus H^{\bullet+1, \bullet}(X)
$$

Virasoro fields

Under (\dagger), there is a natural conformal element ω on $V_{\bullet}^{\text {pa }}$ and corresponding Virasoro fields $\mathrm{L}_{n}: V_{\bullet}^{\mathrm{pa}} \rightarrow V_{\bullet}^{\mathrm{pa}}$.

Theorem (Bojko-Lim-M)

Assume (\dagger). Under the duality between $V_{\bullet}^{\mathrm{pa}}$ and $\mathbb{D}^{X, \mathrm{pa}}$, the Virasoro fields L_{n} induced by ω are dual to the pair Virasoro operators $\mathrm{L}_{n}^{\mathrm{pa}}$ defined in the algebra of descendents $\mathbb{D}^{X, \mathrm{pa}}$.

Virasoro fields

Corollary (Bojko-Lim-M)

(1) A moduli of sheaves M satisfies the sheaf Virasoro constraints if and only if

$$
[M]^{\mathrm{vir}} \in \check{P}_{0}
$$

is a physical state.
(2) A moduli of pairs P with universal pair $q^{*} V \rightarrow \mathbb{F}$ satisfies the pair Virasoro constraints if and only if

$$
[P]_{q^{*} V \rightarrow \mathbb{F}}^{\mathrm{vir}} \in P_{0}^{\mathrm{pa}}
$$

is a physical state.

Corollary

The Virasoro constraints are compatible with wall-crossing.

Results

Theorem (Bojko-Lim-M)

The Virasoro constraints hold for the following moduli spaces:
(1) Moduli spaces of stable bundles on curves $M_{C}(r, d)$;
(2) Moduli spaces of stable torsion-free sheaves $M_{S}^{H}(r, \beta, n)$ on surfaces S with $h^{0,1}=h^{0,2}=0$ and a polarization H;
(0) Moduli spaces of stable 1 dimensional sheaves $M_{S}^{H}(\beta, n)$ on surfaces S with $h^{0,1}=h^{0,2}=0$ and a polarization H (assuming a technical condition necessary for the proof of the relevant wall-crossing formula).

Sketch of proof

I will focus on the torsion-free cases (1 and 2).

1. Let P_{α}^{t} be the moduli spaces of Bradlow pairs $\mathcal{O}_{X} \rightarrow F$, depending on a parameter $0<t<\infty$; we will prove by induction on $\operatorname{rk}(\alpha)$ that M_{α} satisfies the sheaf Virasoro constraints and P_{α}^{t} satisfies the pair Virasoro constraints.
2. The base case is when $\operatorname{rk}(\alpha)=1$. In the case of curves, it amounts to proving Virasoro for the symmetric powers of a curve, which can be done directly. For surfaces, it reduces to proving Virasoro constraints for Hilbert scheme of points on S, which was done previously.
3. For $s \gg 1$ and $\operatorname{rk}(\alpha)>1$ the moduli space P_{α}^{s} becomes empty. The wall-crossing formula between s-stability and t-stability writes $\left[P_{\alpha}^{t}\right]_{\mathcal{O} \rightarrow \mathbb{F}}^{\operatorname{vir}}$ in terms of iterated brackets involving lower rank classes.

Sketch of proof

4. By induction and the compatibility between wall-crossing and Virasoro, P_{α}^{t} satisfies the pair Virasoro constraints.
5. If M_{α} doesn't have strictly semistables and $0<t \ll 1$ then $P_{\alpha}^{t} \rightarrow M_{\alpha}$ is a projective bundle.
6. The projective bundle structure can be used to prove that if P_{α}^{t} satisfies the pair Virasoro then M_{α} satisfies the sheaf Virasoro.

Thanks!

