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Gromov-Witten invariants

Given a smooth projective variety X , Gromov-Witten theory uses
the moduli of stable maps and its virtual fundamental class

[Mg (X , β)]vir ∈ Avirdim(Mg (X , β)).

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual
dimension of is 0 for all g ≥ 0, β ∈ H2(X ;Z) so we get numbers

GWX
g ,β =

∫
[Mg (X ,β)]vir

1 ∈ Q.

Goal:

Compute all numbers GWX
g ,β. Equivalently, understand the

partition function

ZX = exp

∑
g ,β

GWX
g ,βu

2g−2zβ

 .
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Stable pairs

Stable pairs provide an alternative approach to curve counting on
CY 3.

Definition (Pandharipande-Thomas ’09)

A stable pair on X is an object {OX
s→ F} ∈ Db(X ) in the derived

category where F is a coherent sheaf and s a section satisfying the
following two stability conditions:

1 F is pure of dimension 1: every non-trivial coherent sub-sheaf
of F has dimension 1.

2 The cokernel of s has dimension 0.

We associate two discrete invariants:

β = ch2(F ) = [supp(F )] ∈ H2(X ;Z) and n = χ(X ,F ).

The space Pn(X , β) parametrizing stable pairs with fixed discrete
invariants is a projective fine moduli space.
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Pandharipande-Thomas invariants

The moduli of stable pairs Pn(X , β) also has a virtual fundamental
class, and when X is a CY3 its virtual dimension is 0, producing
again numbers

PTX
n,β =

∫
[Pn(X ,β)]vir

1 ∈ Z.

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande ’06)

The Gromov-Witten and Pandharipande-Thomas invariants
determine each other:

exp

∑
g ,β

GWX
g ,βu

2g−2zβ

 =
∑
n,β

PTX
n,β(−q)nzβ

after the change of variables q = e iu.
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Rationality and symmetry

Theorem (Bridgeland, Toda ’16)

For each β the generating function∑
n∈Z

PTX
n,β(−q)n

is the expansion of a rational function fβ satisfying the symmetry

fβ(1/q) = fβ(q).

Think of the theorem as PTn,β ∼ PT−n,β after analytic
continuation.
Typical example (contribution of isolated rational curve):

f (q) =
q

(1− q)2
= q + 2q2 + 3q3 + . . .

= q−1 + 2q−2 + 3q−3 + . . .
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Proof of rationality

The proof of rationality illustrates a very general principle:

Symmetry of the derived category φ ∈ Aut(Db(X ))

Constraints on curve counting on X .

The proof of rationality uses the derived dual

φ = D = RHom(−,OX )[2].

Note: χ(D(F )) = −χ(F ).
Basic idea: use wall-crossing in the derived category to relate

Pn(X , β) ! φ(Pn(X , β)) ⊆ Db(X ).
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Geometric setting

Let W be a ruled surface over a genus g curve C , i.e.

W = PC (E)→ C .

Let X be a Calabi-Yau 3-fold containing W as a divisor. Let
B = [P1] ∈ H2(X ) be the curve class of the fibers of the ruling.

B W X

C

ι

p

We also assume that the ray generated by B is extremal in the
effective cone of X , i.e. if C1,C2 are effective curve classes such
that C1 +C2 is a multiple of B then both C1,C2 are multiples of B.
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Geometric setting

Examples

X = KW

X elliptic fibration
over W

X = STU model,
which is a particular
elliptic fibration over
P1 × P1.
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Weyl symmetry

Consider the involution defined on H2(X ) by

β 7→ β′ = β + (W · β)B.

(it’s an involution because W · B = −2)
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Weyl symmetry for PT invariants

Our work is about some symmetry relating curve counting
invariants in classes β and β′

GWg ,β ∼ GWg ,β′

PTn,β ∼ PTn,β′ .

Let
PTβ(q,Q) =

∑
n,j∈Z

Pn,β+jB (−q)nQ j .

The generating series PT0 of multiples of B can be shown to equal

PT0(q,Q) =
∏
j≥1

(1− qjQ)(2g−2)j .
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Weyl symmetry for PT invariants

Theorem (Buelles-M. ’21/22)

Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W
as described before.

Then

PTβ(q,Q)

PT0(q,Q)
∈ Q(q,Q)

is the expansion of a rational function fβ(q,Q) which satisfies the
functional equations

fβ(q−1,Q) = fβ(q,Q) and fβ(q,Q−1) = Q−W ·βfβ(q,Q).
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Weyl symmetry for GW invariants

Corollary (Assuming GW/PT)

For all (g , β) 6= (0,mB) , (1,mB) the series∑
j∈Z

GWg ,β+jB Q j

is the expansion of a rational function fβ(Q) with functional
equation

fβ(Q−1) = Q−W ·βfβ(Q) .

Think of the functional equation as equality

GWg ,β ∼ GWg ,β′

after analytic continuation.
Predicted by physics, at least in the local case KW

(Katz-Klemm-Vafa ’97).
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Examples

Example

Let X = KP1×P1 and let C be the other P1 in the product. A
computation with the topological vertex shows:

PTC (q,Q)

PT0(q,Q)
=

2q

(1− q)2(1− Q)2

PT2C (q,Q)

PT0(q,Q)
=

2q4

(1− q)2(1− q2)2(1− qQ)2(1− Q)2

+
2q4

(1− q)2(1− q2)2(q − Q)2(1− Q)2

+
2q4

(1− q)4(1− qQ)2(q − Q)2
.
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Spherical twists

The main ingredient of our symmetry is the existence of a certain
anti-equivalence ρ ∈ Aut(Db(X )) promoting the involution

β 7→ β′ = β + (W · β)B

on H2(X ) to the derived category.

It’s constructed using the
spherical functor

Φ: Db(C )→ Db(X )

V 7→ ι∗ (Op(−1)⊗ p∗V ) .

From a spherical functor we associate an automorphism of the
derived category, the spherical twist ST defined by

Φ ◦ ΦR −→ id −→ ST.
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Derived equivalence ρ

We already have the derived equivalence ST ∈ Aut(Db(X )). The
derived equivalence ρ is then

ρ = ST ◦ D.

Facts

1 ρ is an involution, i.e. ρ ◦ ρ = id.

2 ρ(OX ) = OX [2].

3 If F is a sheaf of dimension 1 and ch2(F ) = β, χ(F ) = n then

ch2(ρ(F )) = β′ = β + (W · β)B

χ(ρ(F )) = −n.
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Orbifold inspiration

When X arises as a crepant resolution X → Y of an orbifold with
Z/2-singularities along the curve C so that W is the exceptional
divisor (and the fibers B are contracted to points), the main result
is a consequence of the DT crepant resolution conjecture proven
by Beentjes-Calabrese-Rennemo (’18).
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Orbifold inspiration

Their proof immitates Bridgeland-Toda proof of rationality using
DY to prove the symmetry of PT invariants in Y.

Proposition

Under the McKay correspondence

Ψ : Db(X )
∼→ Db(Y)

the derived dual DY corresponds to ρ, i.e.

ρ = Ψ−1 ◦ DY ◦Ψ.

Important examples (e.g. the STU) don’t arise as such crepant
resolution.
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resolution.
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Homological mirror symmetry?

What can we say about the mirror geometry X̌? In particular, how
to interpret the derived equivalence ST under HMS:

ST ∈ Aut(Db(X )) ∼= Aut(Fuk(X̌ ))?

When the genus of C is g = 0 we can write ST as a composition
of twists around spherical objects

ST = STOW (−C+B) ◦ STOW (−C)

so (the mirror of) ST should be induced by a symplectomorphism
obtained as a composition of two Dehn twists.
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Homological mirror symmetry?

How to think about this composition and what about g > 0?

A
typical way in which spherical functors appear in the Fukaya
category is through symplectic fibrations: if w : Z → C is a
symplectic fibration with general fiber X̌ then we get a spherical
functor

FS(Z ,w) Fuk(X̌ )∩
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How to think about this composition and what about g > 0? A
typical way in which spherical functors appear in the Fukaya
category is through symplectic fibrations: if w : Z → C is a
symplectic fibration with general fiber X̌ then we get a spherical
functor

FS(Z ,w) Fuk(X̌ )

Db(C ) Db(X )

∩

HMS?

Φ

HMS

In such a situation, the derived equivalence corresponding to ST
on the symplectic side would be induced by monodromy of
w : Z → C around ∞.
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Perverse stable pairs

Recall that stable pairs are of the form s : OX → F with
F ∈ Coh1(X ), coker(s) ∈ Coh0(X ).

Bridgeland’s proof of rationality with the derived dual uses

D(Coh1(X )) = Coh1(X ) and D(Coh0(X )) = Coh0(X )[−1]

to describe the image of D(Pn(X , β)) and to help finding
wall-crossing between D(Pn(X , β)) and Pn(X , β).

Example

If x ∈W is a point in the divisor lying in a fiber B then

ρ(Ox) = {OB(−1)[−1]→ OB(−2)}.
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Perverse sheaves

To study ρ it’s more appropriate to use a tilt of Coh(X ) and a
different notion of dimension (which corresponds to sheaves on the
orbifold)

T = {T ∈ Coh(X ) : R1p∗T|W = 0}
F = {F ∈ Coh(X ) : Hom(T ,F ) = 0}
A = 〈F [1], T 〉ex.

A is a heart of Db(X ) and its elements are perverse sheaves. The
dimension of a perverse sheaf is the dimension of its support after
we contract the fibers B.

Example

1 Coh0 ⊆ A0;

2 OB(−1),OB(−2)[1] ∈ A0;

3 Op(−1),Op(−2)[1] ∈ A1.
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Perverse stable pairs

The action of ρ on A (with perverse dimension) is analogous to
the action of D on Coh(X ) (with usual dimension):

ρ(A1) = A1 and ρ(A0) = A0[−1].

Definition

A perverse stable pair is an object I ∈ 〈OX [1],A≤1〉ex such that
rk(I ) = −1 and

Hom(A0, I ) = 0 = Hom(I ,A1).

We define the virtual counts of perverse stable pairs:

pPTn,β ∈ Z,
pPTβ(q,Q) =

∑
n,j∈Z

pPTn,β+jB(−q)nQ j .
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Rationality for pPT

Theorem (Buelles-M)

The series pPTβ(q,Q) is the expansion of a rational function
fβ ∈ Q(q,Q) satisfying the symmetry

fβ(q−1,Q−1) = Q−W ·βfβ(q,Q).

Rationality of PTβ(q)

Anti-equivalence D
Torsion pair 〈Coh0,Coh1〉
Usual slope stability

Vanishing of Poisson brackets
{Coh≤1,Coh≤1} = 0

Rationality of pPTβ(q,Q)

Anti-equivalence ρ

Torsion pair 〈A0,A1〉
Nironi slope stability

No vanishing, extra
combinatorial difficulty
(dealt with in [BCR]).
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Wall-crossing

We proved rationality of perverse PT invariants, but now need to
relate them to classical stable pairs.

Theorem (Buelles-M)

For any β ∈ H2(X ;Z) we have the following identity of rational
functions:

pPTβ(q,Q) =
PTβ(q,Q)

PT0(q,Q)
.

The wall-crossing establishing the equality has two steps and uses
the counting of a third type of objects: Bryan-Steinberg invariants.
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Wall-crossing PT/BS

When X arises as a crepant resolution X → Y, Bryan-Steinberg
introduced (’12) invariants BSn,β. Roughly speaking, they count

sheafs+sections {OX
s→ F} but allowing the cokernel to have

support on finitely many fibers B.

They provide a natural interpretation for the quotient PTβ/PT0

via a DT/PT type wall-crossing.

Proposition

BSβ(q,Q) ≡
∑
n,j∈Z

BSn,β+jB(−q)nQ j =
PTβ(q,Q)

PT0(q,Q)
.

Unlike pPT, BS are defined using the heart Coh(X ), no need to
tilt.
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Wall-crossing pPT/BS

Final step is comparing pPT and BS.

Proposition

We have the following identity of rational functions:

BSβ(q,Q) = pPTβ(q,Q).

The identity above is strictly of rational functions, the coefficients
are not the same on the nose. When we cross a wall in the path of
stability conditions we change the direction in which we expand the
same rational function.
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Crossing a wall – re-expansion

Example

The rational function 1
q−Q can be expanded in two different ways:

1

q − Q
=

q−1

1− Qq−1
=

∑
i≥0

Q iq−1−i

1

q − Q
= − Q−1

1− Q−1q
= −

∑
i≥0

Q−1−iqi

.
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Thank you!

PT BS pPT

ρ(pPT)

quotient re−expansion
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