Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing

Weyl symmetry for curve counting invariants via spherical twists

Miguel Moreira ETHZ Joint with Tim Buelles

YMSC – Tsinghua University Enumerative Geometry seminar 26 May 2022

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Gromov Witte	n invaria	ntc		
•0000	0000000	000000	0000	00000
Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing

Given a smooth projective variety X, Gromov-Witten theory uses

the moduli of stable maps and its virtual fundamental class

$$[M_g(X,\beta)]^{\mathsf{vir}} \in A_{\mathsf{virdim}}(M_g(X,\beta)).$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

C	to contract			
•0000	000000	000000	0000	00000
Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing

Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses the moduli of stable maps and its virtual fundamental class

$$[M_g(X,\beta)]^{\mathsf{vir}} \in A_{\mathsf{virdim}}(M_g(X,\beta)).$$

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual dimension of is 0 for all $g \ge 0$, $\beta \in H_2(X; \mathbb{Z})$ so we get numbers

$$\operatorname{GW}_{g,\beta}^{X} = \int_{[M_{g}(X,\beta)]^{\operatorname{vir}}} 1 \in \mathbb{Q}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

C	14/11	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
•0000		0000000	000000	0000	00000
Curve counting on CY3	n CY3	Results Anti-equivalence	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing

Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses the moduli of stable maps and its virtual fundamental class

$$[M_g(X,\beta)]^{\mathsf{vir}} \in A_{\mathsf{virdim}}(M_g(X,\beta)).$$

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual dimension of is 0 for all $g \ge 0$, $\beta \in H_2(X; \mathbb{Z})$ so we get numbers

$$\operatorname{GW}_{g,\beta}^{X} = \int_{[M_{g}(X,\beta)]^{\operatorname{vir}}} 1 \in \mathbb{Q}.$$

Goal:

Compute all numbers $\mathrm{GW}_{g,\beta}^{X}.$ Equivalently, understand the partition function

$$Z_X = \exp\left(\sum_{g,\beta} \operatorname{GW}_{g,\beta}^X u^{2g-2} z^\beta\right)$$

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
00000	0000000	000000	0000	00000
Stable pairs				

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0000	Wall-crossing
Stable pairs				

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\{\mathcal{O}_X \xrightarrow{s} F\} \in D^b(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:

• *F* is pure of dimension 1: every non-trivial coherent sub-sheaf of *F* has dimension 1.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

The cokernel of s has dimension 0.

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0000	Wall-crossing
Stable pairs				

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\{\mathcal{O}_X \xrightarrow{s} F\} \in D^b(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:

- *F* is pure of dimension 1: every non-trivial coherent sub-sheaf of *F* has dimension 1.
- 2 The cokernel of *s* has dimension 0.

We associate two discrete invariants:

$$eta=\mathsf{ch}_2(F)=[\mathsf{supp}(F)]\in H_2(X;\mathbb{Z}) \quad ext{and} \quad n=\chi(X,F).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0000	Wall-crossing
Stable pairs				

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\{\mathcal{O}_X \xrightarrow{s} F\} \in D^b(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:

- *F* is pure of dimension 1: every non-trivial coherent sub-sheaf of *F* has dimension 1.
- 2 The cokernel of *s* has dimension 0.

We associate two discrete invariants:

$$\beta = \operatorname{ch}_2(F) = [\operatorname{supp}(F)] \in H_2(X; \mathbb{Z}) \text{ and } n = \chi(X, F).$$

The space $P_n(X,\beta)$ parametrizing stable pairs with fixed discrete invariants is a projective fine moduli space.

Curve counting on CY3
oo ooResults
oo oo ooAnti-equivalence ρ
oo oo ooPerverse stable pairs
oo ooWall-crossing
oo oo ooDeep dia evine and a
Deep dia evine and a<br/

Pandharipande-Thomas invariants

The moduli of stable pairs $P_n(X,\beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0, producing again numbers

$$\mathrm{PT}_{n,eta}^{X} = \int_{[\mathcal{P}_n(X,eta)]^{\mathrm{vir}}} 1 \in \mathbb{Z}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Curve counting on CY3
 Results
 Anti-equivalence ρ Perverse stable pairs
 Wall-crossing

 ooooo oooooo ooooo ooooo ooooo ooooo

Pandharipande-Thomas invariants

The moduli of stable pairs $P_n(X,\beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0, producing again numbers

$$\mathrm{PT}_{n,\beta}^{X} = \int_{[P_n(X,\beta)]^{\mathrm{vir}}} 1 \in \mathbb{Z}.$$

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande-Thomas invariants determine each other:

 Curve counting on CY3
 Results
 Anti-equivalence ρ Perverse stable pairs
 Wall-crossing

 ooooo oooooo ooooo ooooo ooooo ooooo

Pandharipande-Thomas invariants

The moduli of stable pairs $P_n(X,\beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0, producing again numbers

$$\mathrm{PT}_{n,\beta}^{X} = \int_{[P_n(X,\beta)]^{\mathrm{vir}}} 1 \in \mathbb{Z}.$$

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande-Thomas invariants determine each other:

$$\exp\left(\sum_{g,\beta} \operatorname{GW}_{g,\beta}^{X} u^{2g-2} z^{\beta}\right) = \sum_{n,\beta} \operatorname{PT}_{n,\beta}^{X} (-q)^{n} z^{\beta}$$

after the change of variables $q = e^{iu}$.

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0000	Wall-crossing 00000
Rationality and	symmetr	у		
Theorem (Bridg	geland, Toda	a '16)		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

	0000000		0000	00000		
Rationality and symmetry						

Theorem (Bridgeland, Toda '16)

For each β the generating function

$$\sum_{n\in\mathbb{Z}}\mathrm{PT}^X_{n,\beta}(-q)^n$$

is the expansion of a rational function f_{β} satisfying the symmetry

$$f_{\beta}(1/q) = f_{\beta}(q).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Think of the theorem as $PT_{n,\beta} \sim PT_{-n,\beta}$ after analytic continuation.

		000000		00000
Curve counting on CY3	Results 0000000	Anti-equivalence ρ 000000	Perverse stable pairs 0000	Wall-crossing

Theorem (Bridgeland, Toda '16)

For each β the generating function

$$\sum_{n\in\mathbb{Z}}\mathrm{PT}^X_{n,\beta}(-q)^n$$

is the expansion of a rational function f_{β} satisfying the symmetry

$$f_{\beta}(1/q) = f_{\beta}(q).$$

Think of the theorem as $\operatorname{PT}_{n,\beta} \sim \operatorname{PT}_{-n,\beta}$ after analytic continuation.

Typical example (contribution of isolated rational curve):

$$f(q) = \frac{q}{(1-q)^2} = q + 2q^2 + 3q^3 + \dots$$
$$= q^{-1} + 2q^{-2} + 3q^{-3} + \dots$$

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	00000
Proof of ration	ality			

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	00000
Proof of ration	ality			

Symmetry of the derived category $\phi \in \operatorname{Aut}(D^b(X))$ \downarrow Constraints on curve counting on X.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Symmetry of the derived category $\phi \in \operatorname{Aut}(D^b(X))$ \downarrow Constraints on curve counting on X.

The proof of rationality uses the derived dual

$$\phi = \mathbb{D} = \mathsf{RHom}(-, \mathcal{O}_X)[2].$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Symmetry of the derived category
$$\phi \in Aut(D^b(X))$$

 \downarrow
Constraints on curve counting on X.

The proof of rationality uses the derived dual

$$\phi = \mathbb{D} = \mathsf{RHom}(-, \mathcal{O}_X)[2].$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note: $\chi(\mathbb{D}(F)) = -\chi(F)$.

Symmetry of the derived category
$$\phi \in \operatorname{Aut}(D^b(X))$$

 \downarrow
Constraints on curve counting on X.

The proof of rationality uses the derived dual

$$\phi = \mathbb{D} = \mathsf{RHom}(-, \mathcal{O}_X)[2].$$

Note: $\chi(\mathbb{D}(F)) = -\chi(F)$. Basic idea: use wall-crossing in the derived category to relate

$$P_n(X,\beta) \iff \phi(P_n(X,\beta)) \subseteq D^b(X).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	●000000	000000	0000	00000
Geometric setti	ng			

Let W be a ruled surface over a genus g curve C, i.e.

 $W = \mathbb{P}_{C}(\mathcal{E}) \to C.$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	●000000	000000	0000	00000
Geometric set	ting			

Let W be a ruled surface over a genus g curve C, i.e.

$$W = \mathbb{P}_{C}(\mathcal{E}) \to C.$$

Let X be a Calabi-Yau 3-fold containing W as a divisor. Let $B = [\mathbb{P}^1] \in H_2(X)$ be the curve class of the fibers of the ruling.

$$\begin{array}{ccc} B & \longleftrightarrow & W & \stackrel{\iota}{\longrightarrow} & X \\ & & & \downarrow^p \\ & & C \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	●000000	000000	0000	00000
Geometric sett	ing			

Let W be a ruled surface over a genus g curve C, i.e.

$$W = \mathbb{P}_{C}(\mathcal{E}) \to C.$$

Let X be a Calabi-Yau 3-fold containing W as a divisor. Let $B = [\mathbb{P}^1] \in H_2(X)$ be the curve class of the fibers of the ruling.

$$\begin{array}{ccc} B & \longleftrightarrow & W & \stackrel{\iota}{\longrightarrow} & X \\ & & & \downarrow^{p} \\ & & C \end{array}$$

We also assume that the ray generated by *B* is extremal in the effective cone of *X*, i.e. if C_1, C_2 are effective curve classes such that $C_1 + C_2$ is a multiple of *B* then both C_1, C_2 are multiples of *B*.

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	0●00000	000000	0000	00000
Geometric set	ting			

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Curve counting on CY3	Results 0●00000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0000	Wall-crossing
Geometric se	tting			

Examples

- $X = K_W$
- X elliptic fibration over W
- X = STU model, which is a particular elliptic fibration over $\mathbb{P}^1 \times \mathbb{P}^1$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Curve counting on CY3	Results 00●0000	Anti-equivalence ρ 000000	Perverse stable pairs 0000	Wall-crossing
Weyl symmetry	y			

Consider the involution defined on $H_2(X)$ by

$$\beta \mapsto \beta' = \beta + (W \cdot \beta)B.$$

Curve counting on CY3	Results 00●0000	Anti-equivalence ρ 000000	Perverse stable pairs 0000	Wall-crossing
Weyl symmetry	y			

Consider the involution defined on $H_2(X)$ by

$$\beta \mapsto \beta' = \beta + (W \cdot \beta)B.$$

(it's an involution because $W \cdot B = -2$)

Our work is about some symmetry relating curve counting invariants in classes β and β'

 $\begin{aligned} \mathrm{GW}_{g,\beta} &\sim \mathrm{GW}_{g,\beta'} \\ \mathrm{PT}_{n,\beta} &\sim \mathrm{PT}_{n,\beta'}. \end{aligned}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our work is about some symmetry relating curve counting invariants in classes β and β'

 $\begin{aligned} \mathrm{GW}_{g,\beta} &\sim \mathrm{GW}_{g,\beta'} \\ \mathrm{PT}_{n,\beta} &\sim \mathrm{PT}_{n,\beta'}. \end{aligned}$

Let

$$\operatorname{PT}_{\beta}(q, Q) = \sum_{n, j \in \mathbb{Z}} P_{n, \beta+jB} (-q)^n Q^j.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our work is about some symmetry relating curve counting invariants in classes β and β'

 $\begin{aligned} \mathrm{GW}_{g,\beta} &\sim \mathrm{GW}_{g,\beta'} \\ \mathrm{PT}_{n,\beta} &\sim \mathrm{PT}_{n,\beta'}. \end{aligned}$

Let

$$\operatorname{PT}_{\beta}(q,Q) = \sum_{n,j \in \mathbb{Z}} P_{n,\beta+jB} (-q)^n Q^j.$$

The generating series PT_0 of multiples of *B* can be shown to equal

$$\operatorname{PT}_{0}(q, Q) = \prod_{j \ge 1} (1 - q^{j} Q)^{(2g-2)j}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Curve counting on CY3	Results 0000●00	Anti-equivalence ρ 000000	Perverse stable pairs	Wall-crossing 00000
Weyl symmetry	for PT i	nvariants		

Theorem (Buelles-M. '21/22)

Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W as described before.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Curve counting on CY3	Results 0000●00	Anti-equivalence ρ 000000	Perverse stable pairs 0000	Wall-crossing
Wevl symmetry	, for PT i	nvariants		

Theorem (Buelles-M. '21/22)

Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W as described before. Then

$$rac{\mathrm{PT}_eta(q,Q)}{\mathrm{PT}_0(q,Q)}\in\mathbb{Q}(q,Q)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

is the expansion of a rational function $f_{\beta}(q,Q)$

Curve counting on CY3	Results 0000●00	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0000	Wall-crossing
Wevl symmetry	/ for PT	invariants		

Theorem (Buelles-M. '21/22)

Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W as described before. Then

$$rac{\mathrm{PT}_eta(q,Q)}{\mathrm{PT}_0(q,Q)}\in\mathbb{Q}(q,Q)$$

is the expansion of a rational function $f_{\beta}(q, Q)$ which satisfies the functional equations

$$f_{\beta}(q^{-1},Q) = f_{\beta}(q,Q)$$
 and $f_{\beta}(q,Q^{-1}) = Q^{-W\cdot\beta}f_{\beta}(q,Q)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Curve counting on CY3
 Results
 Anti-equivalence ρ
 Perverse stable pairs
 Wall-crossing

 O0000
 Weyl symmetry for GW invariants
 Weyl symmetry
 Weyl symmetry
 Weyl symmetry

Corollary (Assuming GW/PT)

 Curve counting on CY3
 Results
 Anti-equivalence ρ Perverse stable pairs
 Wall-crossing

 00000
 000000
 00000
 0000
 0000
 0000

Weyl symmetry for GW invariants

Corollary (Assuming GW/PT)

For all $(g, \beta) \neq (0, mB), (1, mB)$ the series

$$\sum_{j\in\mathbb{Z}}\operatorname{GW}_{{m g},eta+j{m B}}{m Q}^j$$

is the expansion of a rational function $f_{\beta}(Q)$ with functional equation

$$f_{\beta}(Q^{-1}) = Q^{-W \cdot \beta} f_{\beta}(Q).$$

Think of the functional equation as equality

$$\mathrm{GW}_{\boldsymbol{g},\beta}\sim\mathrm{GW}_{\boldsymbol{g},\beta'}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

after analytic continuation.

 Curve counting on CY3
 Results
 Anti-equivalence ρ Perverse stable pairs
 Wall-crossing

 00000
 000000
 00000
 0000
 0000
 0000

Weyl symmetry for GW invariants

Corollary (Assuming GW/PT)

For all $(g, \beta) \neq (0, mB), (1, mB)$ the series

$$\sum_{j\in\mathbb{Z}}\operatorname{GW}_{{m g},eta+j{m B}}{m Q}^j$$

is the expansion of a rational function $f_{\beta}(Q)$ with functional equation

$$f_{\beta}(Q^{-1}) = Q^{-W \cdot \beta} f_{\beta}(Q)$$
.

Think of the functional equation as equality

$$\mathrm{GW}_{\boldsymbol{g},\beta}\sim\mathrm{GW}_{\boldsymbol{g},\beta'}$$

after analytic continuation. Predicted by physics, at least in the local case K_W (Katz-Klemm-Vafa '97).

Curve counting on CY3	Results 000000●	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0000	Wall-crossing
Examples				

Example

Let $X = K_{\mathbb{P}^1 \times \mathbb{P}^1}$ and let C be the other \mathbb{P}^1 in the product. A computation with the topological vertex shows:

$$rac{\mathrm{PT}_{\mathcal{C}}(q,Q)}{\mathrm{PT}_{0}(q,Q)} = rac{2q}{(1-q)^{2}(1-Q)^{2}}$$
Curve counting on CY3	Results 000000●	Anti-equivalence ρ 000000	Perverse stable pairs	Wall-crossing 00000
Examples				

Example

Let $X = K_{\mathbb{P}^1 \times \mathbb{P}^1}$ and let *C* be the other \mathbb{P}^1 in the product. A computation with the topological vertex shows:

$$\begin{split} \frac{\mathrm{PT}_{\mathcal{C}}(q,Q)}{\mathrm{PT}_{0}(q,Q)} &= \frac{2q}{(1-q)^{2}(1-Q)^{2}} \\ \frac{\mathrm{PT}_{2\mathcal{C}}(q,Q)}{\mathrm{PT}_{0}(q,Q)} &= \frac{2q^{4}}{(1-q)^{2}(1-q^{2})^{2}(1-qQ)^{2}(1-Q)^{2}} \\ &+ \frac{2q^{4}}{(1-q)^{2}(1-q^{2})^{2}(q-Q)^{2}(1-Q)^{2}} \\ &+ \frac{2q^{4}}{(1-q)^{4}(1-qQ)^{2}(q-Q)^{2}}. \end{split}$$

Curve counting on CY3	Results 0000000	Anti-equivalence ρ ●00000	Perverse stable pairs 0000	Wall-crossing
Spherical twists	5			

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in Aut(D^b(X))$ promoting the involution

$$\beta \mapsto \beta' = \beta + (W \cdot \beta)B$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

on $H_2(X)$ to the derived category.

Curve counting on CY3	Results 0000000	Anti-equivalence ρ ••••••	Perverse stable pairs	Wall-crossing 00000
Spherical twists	5			

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in Aut(D^b(X))$ promoting the involution

$$\beta \mapsto \beta' = \beta + (W \cdot \beta)B$$

on $H_2(X)$ to the derived category. It's constructed using the spherical functor

$$\Phi\colon D^b(C) o D^b(X) \ V\mapsto \iota_*\left(\mathcal{O}_p(-1)\otimes p^*V
ight).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence ρ ••••••	Perverse stable pairs	Wall-crossing
Spherical twists	5			

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in Aut(D^b(X))$ promoting the involution

$$\beta \mapsto \beta' = \beta + (W \cdot \beta)B$$

on $H_2(X)$ to the derived category. It's constructed using the spherical functor

$$\Phi\colon D^b(C)\to D^b(X)$$
$$V\mapsto\iota_*\left(\mathcal{O}_p(-1)\otimes\rho^*V\right).$$

From a spherical functor we associate an automorphism of the derived category, the spherical twist ${\rm ST}$ defined by

$$\Phi \circ \Phi_R \longrightarrow \mathsf{id} \longrightarrow \mathsf{ST}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence ρ ο●οοοο	Perverse stable pairs 0000	Wall-crossing
Derived equiva	lence ρ			

$$\rho = \mathrm{ST} \circ \mathbb{D}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\rho = \mathrm{ST} \circ \mathbb{D}.$$

$$\rho = \mathrm{ST} \circ \mathbb{D}.$$

$$\rho = \mathrm{ST} \circ \mathbb{D}.$$

Facts *ρ* is an involution, i.e. *ρ* ∘ *ρ* = id. *ρ*(*O_X*) = *O_X*[2]. If *F* is a sheaf of dimension 1 and ch₂(*F*) = *β*, *χ*(*F*) = *n* then ch₂(*ρ*(*F*)) = *β'* = *β* + (*W* · *β*)*B χ*(*ρ*(*F*)) = -*n*.

When X arises as a crepant resolution $X \to \mathcal{Y}$ of an orbifold with $\mathbb{Z}/2$ -singularities along the curve C so that W is the exceptional divisor (and the fibers B are contracted to points), the main result is a consequence of the DT crepant resolution conjecture proven by Beentjes-Calabrese-Rennemo ('18).

▲ロト▲母ト▲目ト▲目ト 目 のへの

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	00000
Orbifold inspira	ntion			

Their proof immitates Bridgeland-Toda proof of rationality using $\mathbb{D}^{\mathcal{Y}}$ to prove the symmetry of PT invariants in $\mathcal{Y}.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	00000
Orbifold inspira	ation			

Their proof immitates Bridgeland-Toda proof of rationality using $\mathbb{D}^{\mathcal{Y}}$ to prove the symmetry of PT invariants in $\mathcal{Y}.$

Proposition

Under the McKay correspondence

 $\Psi: D^b(X) \stackrel{\sim}{\to} D^b(\mathcal{Y})$

the derived dual $\mathbb{D}^{\mathcal{Y}}$ corresponds to ρ , i.e.

$$\rho = \Psi^{-1} \circ \mathbb{D}^{\mathcal{Y}} \circ \Psi$$

Curve counting on CY3	Results 0000000	Anti-equivalence ρ 000000	Perverse stable pairs 0000	Wall-crossing
Orbifold inspi	ration			

Their proof immitates Bridgeland-Toda proof of rationality using $\mathbb{D}^{\mathcal{Y}}$ to prove the symmetry of PT invariants in $\mathcal{Y}.$

Proposition

Under the McKay correspondence

 $\Psi: D^b(X) \stackrel{\sim}{
ightarrow} D^b(\mathcal{Y})$

the derived dual $\mathbb{D}^{\mathcal{Y}}$ corresponds to ρ , i.e.

$$\rho = \Psi^{-1} \circ \mathbb{D}^{\mathcal{Y}} \circ \Psi.$$

Important examples (e.g. the STU) don't arise as such crepant resolution.

What can we say about the mirror geometry \check{X} ? In particular, how to interpret the derived equivalence ST under HMS:

 $ST \in Aut(D^b(X)) \cong Aut(Fuk(\check{X}))?$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What can we say about the mirror geometry \check{X} ? In particular, how to interpret the derived equivalence ST under HMS:

 $\mathrm{ST} \in \mathrm{Aut}(D^b(X)) \cong \mathrm{Aut}(\mathrm{Fuk}(\check{X}))?$

When the genus of C is g = 0 we can write ST as a composition of twists around spherical objects

$$\mathrm{ST} = \mathrm{ST}_{\mathcal{O}_W(-C+B)} \circ \mathrm{ST}_{\mathcal{O}_W(-C)}$$

so (the mirror of) ${\rm ST}$ should be induced by a symplectomorphism obtained as a composition of two Dehn twists.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing	
	0000000	00000●	0000	00000	
Homological mirror symmetry?					

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

How to think about this composition and what about g > 0?

How to think about this composition and what about g > 0? A typical way in which spherical functors appear in the Fukaya category is through symplectic fibrations: if $w: Z \to \mathbb{C}$ is a symplectic fibration with general fiber \check{X} then we get a spherical functor

 $\mathsf{FS}(Z,w) \overset{\cap}{\longrightarrow} \mathsf{Fuk}(\check{X})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

How to think about this composition and what about g > 0? A typical way in which spherical functors appear in the Fukaya category is through symplectic fibrations: if $w: Z \to \mathbb{C}$ is a symplectic fibration with general fiber \check{X} then we get a spherical functor

$$\begin{array}{c} \mathsf{FS}(Z,w) & \longrightarrow & \mathsf{Fuk}(\check{X}) \\ \\ \mathsf{HMS?} \\ \| & \| \\ \mathsf{HMS} \\ D^b(C) & \stackrel{\Phi}{\longrightarrow} & D^b(X) \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

How to think about this composition and what about g > 0? A typical way in which spherical functors appear in the Fukaya category is through symplectic fibrations: if $w: Z \to \mathbb{C}$ is a symplectic fibration with general fiber \check{X} then we get a spherical functor

$$\begin{array}{ccc} \mathsf{FS}(Z,w) & \longrightarrow & \mathsf{Fuk}(\check{X}) \\ \\ \mathsf{HMS?} & & & & & \\ \mathsf{D}^b(C) & \stackrel{\Phi}{\longrightarrow} & \mathsf{D}^b(X) \end{array}$$

In such a situation, the derived equivalence corresponding to ST on the symplectic side would be induced by monodromy of $w: Z \to \mathbb{C}$ around ∞ .

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	000000	●000	00000
Perverse stable	pairs			

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall that stable pairs are of the form $s \colon \mathcal{O}_X \to F$ with $F \in \operatorname{Coh}_1(X)$, $\operatorname{coker}(s) \in \operatorname{Coh}_0(X)$.

Recall that stable pairs are of the form $s \colon \mathcal{O}_X \to F$ with $F \in \operatorname{Coh}_1(X)$, $\operatorname{coker}(s) \in \operatorname{Coh}_0(X)$. Bridgeland's proof of rationality with the derived dual uses

 $\mathbb{D}(\operatorname{Coh}_1(X)) = \operatorname{Coh}_1(X)$ and $\mathbb{D}(\operatorname{Coh}_0(X)) = \operatorname{Coh}_0(X)[-1]$

(日)

to describe the image of $\mathbb{D}(P_n(X,\beta))$ and to help finding wall-crossing between $\mathbb{D}(P_n(X,\beta))$ and $P_n(X,\beta)$.

Recall that stable pairs are of the form $s \colon \mathcal{O}_X \to F$ with $F \in \operatorname{Coh}_1(X)$, $\operatorname{coker}(s) \in \operatorname{Coh}_0(X)$. Bridgeland's proof of rationality with the derived dual uses

 $\mathbb{D}(\operatorname{Coh}_1(X)) = \operatorname{Coh}_1(X)$ and $\mathbb{D}(\operatorname{Coh}_0(X)) = \operatorname{Coh}_0(X)[-1]$

to describe the image of $\mathbb{D}(P_n(X,\beta))$ and to help finding wall-crossing between $\mathbb{D}(P_n(X,\beta))$ and $P_n(X,\beta)$.

Example

If $x \in W$ is a point in the divisor lying in a fiber B then

$$\rho(\mathcal{O}_{\times}) = \{\mathcal{O}_B(-1)[-1] \to \mathcal{O}_B(-2)\}.$$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0●00	Wall-crossing
Perverse sheav	ves			

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0●00	Wall-crossing
Parvarsa shaa	VAS			

$$\mathcal{T} = \{T \in \operatorname{Coh}(X) : R^1 p_* T_{|W} = 0\}$$
$$\mathcal{F} = \{F \in \operatorname{Coh}(X) : \operatorname{Hom}(\mathcal{T}, F) = 0\}$$
$$\mathcal{A} = \langle \mathcal{F}[1], \mathcal{T} \rangle_{ex}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 0●00	Wall-crossing
Parvarsa shaa	VAS			

$$\mathcal{T} = \{ T \in \operatorname{Coh}(X) : R^1 p_* T_{|W} = 0 \}$$
$$\mathcal{F} = \{ F \in \operatorname{Coh}(X) : \operatorname{Hom}(\mathcal{T}, F) = 0 \}$$
$$\mathcal{A} = \langle \mathcal{F}[1], \mathcal{T} \rangle_{ex}.$$

 \mathcal{A} is a heart of $D^b(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

			0000			
Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing		

$$\mathcal{T} = \{T \in \operatorname{Coh}(X) : R^1 p_* T_{|W} = 0\}$$

 $\mathcal{F} = \{F \in \operatorname{Coh}(X) : \operatorname{Hom}(\mathcal{T}, F) = 0\}$
 $\mathcal{A} = \langle \mathcal{F}[1], \mathcal{T} \rangle_{ex}.$

 \mathcal{A} is a heart of $D^b(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

Dorworco chor	Dereverse chanves						
			0000				
Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing			

$$\mathcal{T} = \{T \in \operatorname{Coh}(X) : R^1 p_* T_{|W} = 0\}$$
$$\mathcal{F} = \{F \in \operatorname{Coh}(X) : \operatorname{Hom}(\mathcal{T}, F) = 0\}$$
$$\mathcal{A} = \langle \mathcal{F}[1], \mathcal{T} \rangle_{ex}.$$

 \mathcal{A} is a heart of $D^b(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

Example

1 Coh₀
$$\subseteq \mathcal{A}_0$$
;

2
$$\mathcal{O}_B(-1), \mathcal{O}_B(-2)[1] \in \mathcal{A}_0;$$

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing		
			0000			
Partierra chanves						

$$\mathcal{T} = \{T \in \operatorname{Coh}(X) : R^1 p_* T_{|W} = 0\}$$
$$\mathcal{F} = \{F \in \operatorname{Coh}(X) : \operatorname{Hom}(\mathcal{T}, F) = 0\}$$
$$\mathcal{A} = \langle \mathcal{F}[1], \mathcal{T} \rangle_{ex}.$$

 \mathcal{A} is a heart of $D^b(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

Example

1
$$\operatorname{Coh}_0 \subseteq \mathcal{A}_0;$$

$$\ \, {\mathcal O}_B(-1), {\mathcal O}_B(-2)[1] \in {\mathcal A}_0;$$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing
Perverse stahl	e nairs			

The action of ρ on \mathcal{A} (with perverse dimension) is analogous to the action of \mathbb{D} on Coh(X) (with usual dimension):

$$ho(\mathcal{A}_1)=\mathcal{A}_1$$
 and $ho(\mathcal{A}_0)=\mathcal{A}_0[-1].$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 00●0	Wall-crossing
Perverse stah	le nairs			

The action of ρ on \mathcal{A} (with perverse dimension) is analogous to the action of \mathbb{D} on Coh(X) (with usual dimension):

$$\rho(\mathcal{A}_1) = \mathcal{A}_1 \text{ and } \rho(\mathcal{A}_0) = \mathcal{A}_0[-1].$$

Definition

A perverse stable pair is an object $I \in \langle \mathcal{O}_X[1], \mathcal{A}_{\leq 1} \rangle_{\mathsf{ex}}$ such that $\mathrm{rk}(I) = -1$ and

 $\operatorname{Hom}(\mathcal{A}_0, I) = 0 = \operatorname{Hom}(I, \mathcal{A}_1).$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs 00●0	Wall-crossing
Perverse stah	le nairs			

The action of ρ on \mathcal{A} (with perverse dimension) is analogous to the action of \mathbb{D} on Coh(X) (with usual dimension):

$$\rho(\mathcal{A}_1) = \mathcal{A}_1 \text{ and } \rho(\mathcal{A}_0) = \mathcal{A}_0[-1].$$

Definition

A perverse stable pair is an object $I \in \langle \mathcal{O}_X[1], \mathcal{A}_{\leq 1} \rangle_{\mathsf{ex}}$ such that $\operatorname{rk}(I) = -1$ and

$$\operatorname{Hom}(\mathcal{A}_0, I) = 0 = \operatorname{Hom}(I, \mathcal{A}_1).$$

We define the virtual counts of perverse stable pairs:

$$^{p}\mathrm{PT}_{n,\beta}\in\mathbb{Z},$$

$${}^{p}\mathrm{PT}_{\beta}(q,Q) = \sum_{n,j\in\mathbb{Z}} {}^{p}\mathrm{PT}_{n,\beta+jB}(-q)^{n}Q^{j}.$$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing
Rationality fo	r ^p PT			

The series ${}^{p}\mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$f_eta(q^{-1},Q^{-1})=Q^{-W\cdoteta}f_eta(q,Q).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing
Rationality fo	r ^p PT			

The series ${}^{p}\mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$f_{\beta}(q^{-1},Q^{-1})=Q^{-W\cdot\beta}f_{\beta}(q,Q).$$

• Rationality of $\operatorname{PT}_{\beta}(q)$

• Rationality of ${}^{p}\mathrm{PT}_{\beta}(q,Q)$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing
Rationality fo	r ^p PT			

The series ${}^{p}\mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$f_eta(q^{-1},Q^{-1})=Q^{-W\cdoteta}f_eta(q,Q).$$

- Rationality of $\operatorname{PT}_{\beta}(q)$
- \bullet Anti-equivalence $\mathbb D$

• Rationality of ${}^p\mathrm{PT}_\beta(q,Q)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \bullet Anti-equivalence ρ

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing
Rationality fo	r ^p PT			

The series ${}^{p}\mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$f_eta(q^{-1},Q^{-1})=Q^{-W\cdoteta}f_eta(q,Q).$$

- Rationality of $\operatorname{PT}_{\beta}(q)$
- Anti-equivalence $\mathbb D$
- Torsion pair $\langle Coh_0, Coh_1 \rangle$

• Rationality of ${}^{p}\mathrm{PT}_{\beta}(q,Q)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Anti-equivalence ρ
- \bullet Torsion pair $\langle \mathcal{A}_0, \mathcal{A}_1 \rangle$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing
Rationality fo	or ^p PT			

The series ${}^{p}\mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$f_eta(q^{-1},Q^{-1})=Q^{-W\cdoteta}f_eta(q,Q).$$

- Rationality of $\operatorname{PT}_{\beta}(q)$
- Anti-equivalence $\mathbb D$
- Torsion pair $\langle Coh_0, Coh_1 \rangle$
- Usual slope stability

• Rationality of ${}^{p}\mathrm{PT}_{\beta}(q,Q)$

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

- Anti-equivalence ρ
- Torsion pair $\langle \mathcal{A}_0, \mathcal{A}_1 \rangle$
- Nironi slope stability

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing
Rationality fo	r ^p PT			

The series ${}^{p}\mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$f_eta(q^{-1},Q^{-1})=Q^{-W\cdoteta}f_eta(q,Q).$$

- Rationality of $\operatorname{PT}_{\beta}(q)$
- Anti-equivalence $\mathbb D$
- Torsion pair $\langle Coh_0, Coh_1 \rangle$
- Usual slope stability
- Vanishing of Poisson brackets $\{Coh_{\leq 1},Coh_{\leq 1}\}=0$

- Rationality of ${}^p\mathrm{PT}_\beta(q,Q)$
- Anti-equivalence ρ
- \bullet Torsion pair $\langle \mathcal{A}_0, \mathcal{A}_1 \rangle$
- Nironi slope stability
- No vanishing, extra combinatorial difficulty (dealt with in [BCR]).
| Curve counting on CY3 | Results | Anti-equivalence ρ | Perverse stable pairs | Wall-crossing |
|-----------------------|---------|-------------------------|-----------------------|---------------|
| | 0000000 | 000000 | 0000 | ●0000 |
| Wall-crossing | | | | |

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	●0000
Wall-crossing				

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

Theorem (Buelles-M)

For any $\beta \in H_2(X; \mathbb{Z})$ we have the following identity of rational functions:

$${}^{p}\mathrm{PT}_{eta}(q,Q) = rac{\mathrm{PT}_{eta}(q,Q)}{\mathrm{PT}_{0}(q,Q)},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	οοοοοο	0000	●0000
Wall-crossing				

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

Theorem (Buelles-M)

For any $\beta \in H_2(X; \mathbb{Z})$ we have the following identity of rational functions:

$${}^{p}\mathrm{PT}_{\beta}(q,Q)=rac{\mathrm{PT}_{\beta}(q,Q)}{\mathrm{PT}_{0}(q,Q)}.$$

The wall-crossing establishing the equality has two steps and uses the counting of a third type of objects: Bryan-Steinberg invariants.

When X arises as a crepant resolution $X \to \mathcal{Y}$, Bryan-Steinberg introduced ('12) invariants $BS_{n,\beta}$. Roughly speaking, they count sheafs+sections $\{\mathcal{O}_X \xrightarrow{s} F\}$ but allowing the cokernel to have support on finitely many fibers B.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Curve counting on CY3	Results 0000000	Anti-equivalence ρ 000000	Perverse stable pairs	Wall-crossing ○●○○○
Wall-crossing I	PT/BS			

When X arises as a crepant resolution $X \to \mathcal{Y}$, Bryan-Steinberg introduced ('12) invariants $BS_{n,\beta}$. Roughly speaking, they count sheafs+sections $\{\mathcal{O}_X \xrightarrow{s} F\}$ but allowing the cokernel to have support on finitely many fibers B. They provide a natural interpretation for the quotient PT_β/PT_0 via a DT/PT type wall-crossing.

Proposition

$$\mathrm{BS}_{\beta}(q,Q) \equiv \sum_{n,j \in \mathbb{Z}} \mathrm{BS}_{n,\beta+jB}(-q)^n Q^j = \frac{\mathrm{PT}_{\beta}(q,Q)}{\mathrm{PT}_0(q,Q)}.$$

When X arises as a crepant resolution $X \to \mathcal{Y}$, Bryan-Steinberg introduced ('12) invariants $BS_{n,\beta}$. Roughly speaking, they count sheafs+sections $\{\mathcal{O}_X \xrightarrow{s} F\}$ but allowing the cokernel to have support on finitely many fibers B. They provide a natural interpretation for the quotient PT_{β}/PT_0 via a DT/PT type wall-crossing.

Proposition

$$\mathrm{BS}_{\beta}(q,Q)\equiv\sum_{n,j\in\mathbb{Z}}\mathrm{BS}_{n,\beta+j\mathcal{B}}(-q)^nQ^j=rac{\mathrm{PT}_{\beta}(q,Q)}{\mathrm{PT}_0(q,Q)}.$$

Unlike ${}^{p}\text{PT}$, BS are defined using the heart Coh(X), no need to tilt.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	00●00
Wall-crossing ^p	PT/BS			

Final step is comparing $^{p}\mathrm{PT}$ and BS .

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 000000	Perverse stable pairs	Wall-crossing 00●00
Wall-crossing ^p	PT/BS			

Final step is comparing $^{p}\mathrm{PT}$ and BS .

Proposition

We have the following identity of rational functions:

 $\mathrm{BS}_\beta(q,Q) = {}^p\mathrm{PT}_\beta(q,Q).$

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	οοοοοο	0000	00●00
Wall-crossing	PT/BS			

Final step is comparing $^{p}\mathrm{PT}$ and BS .

Proposition

We have the following identity of rational functions:

$$\mathrm{BS}_{\beta}(q,Q) = {}^{p}\mathrm{PT}_{\beta}(q,Q).$$

The identity above is strictly of rational functions, the coefficients are not the same on the nose. When we cross a wall in the path of stability conditions we change the direction in which we expand the same rational function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	II			
				00000
Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing

Crossing a wall – re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	000●0
<u> </u>				

Crossing a wall – re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$rac{1}{q-Q} = rac{q^{-1}}{1-Qq^{-1}} = \sum_{i > 0} Q^i q^{-1-i}$$

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	000●0
<u> </u>				

Crossing a wall – re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

$$rac{1}{q-Q} = rac{q^{-1}}{1-Qq^{-1}} = \sum_{i\geq 0} Q^i q^{-1-i}$$
 $rac{1}{q-Q} = -rac{Q^{-1}}{1-Q^{-1}q} = -\sum_{i\geq 0} Q^{-1-i} q^i.$

・ロト・(四ト・(川下・(日下・))

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	0000000	000000	0000	0000●
Thank you!				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @