Weyl symmetry for curve counting invariants via spherical twists

Miguel Moreira
ETHZ
Joint with Tim Buelles

YMSC - Tsinghua University
Enumerative Geometry seminar 26 May 2022

Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses the moduli of stable maps and its virtual fundamental class

$$
\left[M_{g}(X, \beta)\right]^{\mathrm{vir}} \in A_{\text {virdim }}\left(M_{g}(X, \beta)\right)
$$

Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses the moduli of stable maps and its virtual fundamental class

$$
\left[M_{g}(X, \beta)\right]^{v i r} \in A_{\text {virdim }}\left(M_{g}(X, \beta)\right)
$$

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual dimension of is 0 for all $g \geq 0, \beta \in H_{2}(X ; \mathbb{Z})$ so we get numbers

$$
\mathrm{GW}_{g, \beta}^{X}=\int_{\left[M_{g}(X, \beta)\right]^{\mathrm{ir}}} 1 \in \mathbb{Q}
$$

Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses the moduli of stable maps and its virtual fundamental class

$$
\left[M_{g}(X, \beta)\right]^{\text {vir }} \in A_{\text {virdim }}\left(M_{g}(X, \beta)\right)
$$

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual dimension of is 0 for all $g \geq 0, \beta \in H_{2}(X ; \mathbb{Z})$ so we get numbers

$$
\mathrm{GW}_{g, \beta}^{X}=\int_{\left[M_{g}(X, \beta)\right]^{\mathrm{ir}}} 1 \in \mathbb{Q}
$$

Goal:

Compute all numbers $\mathrm{GW}_{g, \beta}^{X}$. Equivalently, understand the partition function

$$
Z_{X}=\exp \left(\sum_{g, \beta} \mathrm{GW}_{g, \beta}^{X} u^{2 g-2} z^{\beta}\right)
$$

Stable pairs

Stable pairs provide an alternative approach to curve counting on CY3.

Stable pairs

Stable pairs provide an alternative approach to curve counting on CY3.

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\} \in D^{b}(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:
(1) F is pure of dimension 1: every non-trivial coherent sub-sheaf of F has dimension 1 .
(2) The cokernel of s has dimension 0 .

Stable pairs

Stable pairs provide an alternative approach to curve counting on CY3.

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\} \in D^{b}(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:
(1) F is pure of dimension 1: every non-trivial coherent sub-sheaf of F has dimension 1 .
(2) The cokernel of s has dimension 0 .

We associate two discrete invariants:

$$
\beta=\operatorname{ch}_{2}(F)=[\operatorname{supp}(F)] \in H_{2}(X ; \mathbb{Z}) \quad \text { and } \quad n=\chi(X, F) .
$$

Stable pairs

Stable pairs provide an alternative approach to curve counting on CY3.

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\} \in D^{b}(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:
(1) F is pure of dimension 1: every non-trivial coherent sub-sheaf of F has dimension 1 .
(2) The cokernel of s has dimension 0 .

We associate two discrete invariants:

$$
\beta=\operatorname{ch}_{2}(F)=[\operatorname{supp}(F)] \in H_{2}(X ; \mathbb{Z}) \quad \text { and } \quad n=\chi(X, F) .
$$

The space $P_{n}(X, \beta)$ parametrizing stable pairs with fixed discrete invariants is a projective fine moduli space.

Pandharipande-Thomas invariants

The moduli of stable pairs $P_{n}(X, \beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0 , producing again numbers

$$
\mathrm{PT}_{n, \beta}^{X}=\int_{\left[P_{n}(X, \beta)\right]^{\mathrm{vir}}} 1 \in \mathbb{Z}
$$

Pandharipande-Thomas invariants

The moduli of stable pairs $P_{n}(X, \beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0 , producing again numbers

$$
\mathrm{PT}_{n, \beta}^{X}=\int_{\left[P_{n}(X, \beta)\right]^{\mathrm{vir}}} 1 \in \mathbb{Z}
$$

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande-Thomas invariants determine each other:

Pandharipande-Thomas invariants

The moduli of stable pairs $P_{n}(X, \beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0 , producing again numbers

$$
\mathrm{PT}_{n, \beta}^{X}=\int_{\left[P_{n}(X, \beta)\right]^{\mathrm{vir}}} 1 \in \mathbb{Z}
$$

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande-Thomas invariants determine each other:

$$
\exp \left(\sum_{g, \beta} \mathrm{GW}_{g, \beta}^{X} u^{2 g-2} z^{\beta}\right)=\sum_{n, \beta} \mathrm{PT}_{n, \beta}^{X}(-q)^{n} z^{\beta}
$$

after the change of variables $q=e^{i u}$.

Rationality and symmetry

Theorem (Bridgeland, Toda '16)

Rationality and symmetry

Theorem (Bridgeland, Toda '16)

For each β the generating function

$$
\sum_{n \in \mathbb{Z}} \mathrm{PT}_{n, \beta}^{X}(-q)^{n}
$$

is the expansion of a rational function f_{β} satisfying the symmetry

$$
f_{\beta}(1 / q)=f_{\beta}(q)
$$

Think of the theorem as $\mathrm{PT}_{n, \beta} \sim \mathrm{PT}_{-n, \beta}$ after analytic continuation.

Rationality and symmetry

Theorem (Bridgeland, Toda '16)

For each β the generating function

$$
\sum_{n \in \mathbb{Z}} \mathrm{PT}_{n, \beta}^{X}(-q)^{n}
$$

is the expansion of a rational function f_{β} satisfying the symmetry

$$
f_{\beta}(1 / q)=f_{\beta}(q)
$$

Think of the theorem as $\mathrm{PT}_{n, \beta} \sim \mathrm{PT}_{-n, \beta}$ after analytic continuation.
Typical example (contribution of isolated rational curve):

$$
\begin{aligned}
f(q)=\frac{q}{(1-q)^{2}} & =q+2 q^{2}+3 q^{3}+\ldots \\
& =q^{-1}+2 q^{-2}+3 q^{-3}+\ldots
\end{aligned}
$$

Proof of rationality

The proof of rationality illustrates a very general principle:

Proof of rationality

The proof of rationality illustrates a very general principle:
Symmetry of the derived category $\phi \in \operatorname{Aut}\left(D^{b}(X)\right)$ \downarrow
Constraints on curve counting on X.

Proof of rationality

The proof of rationality illustrates a very general principle:

Symmetry of the derived category $\phi \in \operatorname{Aut}\left(D^{b}(X)\right)$

Constraints on curve counting on X.
The proof of rationality uses the derived dual

$$
\phi=\mathbb{D}=\operatorname{RHom}\left(-, \mathcal{O}_{X}\right)[2] .
$$

Proof of rationality

The proof of rationality illustrates a very general principle:

Symmetry of the derived category $\phi \in \operatorname{Aut}\left(D^{b}(X)\right)$

Constraints on curve counting on X.
The proof of rationality uses the derived dual

$$
\phi=\mathbb{D}=\operatorname{RHom}\left(-, \mathcal{O}_{X}\right)[2] .
$$

Note: $\chi(\mathbb{D}(F))=-\chi(F)$.

Proof of rationality

The proof of rationality illustrates a very general principle:
Symmetry of the derived category $\phi \in \operatorname{Aut}\left(D^{b}(X)\right)$ \downarrow
Constraints on curve counting on X.
The proof of rationality uses the derived dual

$$
\phi=\mathbb{D}=\operatorname{RHom}\left(-, \mathcal{O}_{X}\right)[2] .
$$

Note: $\chi(\mathbb{D}(F))=-\chi(F)$.
Basic idea: use wall-crossing in the derived category to relate

$$
P_{n}(X, \beta) \leadsto \phi\left(P_{n}(X, \beta)\right) \subseteq D^{b}(X) .
$$

Geometric setting

Let W be a ruled surface over a genus g curve C, i.e.

$$
W=\mathbb{P}_{C}(\mathcal{E}) \rightarrow C
$$

Geometric setting

Let W be a ruled surface over a genus g curve C, i.e.

$$
W=\mathbb{P}_{C}(\mathcal{E}) \rightarrow C
$$

Let X be a Calabi-Yau 3-fold containing W as a divisor. Let $B=\left[\mathbb{P}^{1}\right] \in H_{2}(X)$ be the curve class of the fibers of the ruling.

Geometric setting

Let W be a ruled surface over a genus g curve C, i.e.

$$
W=\mathbb{P}_{C}(\mathcal{E}) \rightarrow C
$$

Let X be a Calabi-Yau 3-fold containing W as a divisor. Let $B=\left[\mathbb{P}^{1}\right] \in H_{2}(X)$ be the curve class of the fibers of the ruling.

We also assume that the ray generated by B is extremal in the effective cone of X, i.e. if C_{1}, C_{2} are effective curve classes such that $C_{1}+C_{2}$ is a multiple of B then both C_{1}, C_{2} are multiples of B.

Geometric setting

Geometric setting

Examples

- $X=K_{W}$
- X elliptic fibration over W
- $X=$ STU model, which is a particular elliptic fibration over $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Weyl symmetry

Consider the involution defined on $\mathrm{H}_{2}(X)$ by

$$
\beta \mapsto \beta^{\prime}=\beta+(W \cdot \beta) B .
$$

Weyl symmetry

Consider the involution defined on $\mathrm{H}_{2}(X)$ by

$$
\beta \mapsto \beta^{\prime}=\beta+(W \cdot \beta) B .
$$

(it's an involution because $W \cdot B=-2$)

Weyl symmetry for PT invariants

Our work is about some symmetry relating curve counting invariants in classes β and β^{\prime}

$$
\begin{aligned}
\mathrm{GW}_{g, \beta} & \sim \mathrm{GW}_{g, \beta^{\prime}} \\
\mathrm{PT}_{n, \beta} & \sim \mathrm{PT}_{n, \beta^{\prime}} .
\end{aligned}
$$

Weyl symmetry for PT invariants

Our work is about some symmetry relating curve counting invariants in classes β and β^{\prime}

$$
\begin{aligned}
\mathrm{GW}_{g, \beta} & \sim \mathrm{GW}_{g, \beta^{\prime}} \\
\mathrm{PT}_{n, \beta} & \sim \mathrm{PT}_{n, \beta^{\prime}} .
\end{aligned}
$$

Let

$$
\operatorname{PT}_{\beta}(q, Q)=\sum_{n, j \in \mathbb{Z}} P_{n, \beta+j B}(-q)^{n} Q^{j}
$$

Weyl symmetry for PT invariants

Our work is about some symmetry relating curve counting invariants in classes β and β^{\prime}

$$
\begin{aligned}
\mathrm{GW}_{g, \beta} & \sim \mathrm{GW}_{g, \beta^{\prime}} \\
\mathrm{PT}_{n, \beta} & \sim \mathrm{PT}_{n, \beta^{\prime}} .
\end{aligned}
$$

Let

$$
\operatorname{PT}_{\beta}(q, Q)=\sum_{n, j \in \mathbb{Z}} P_{n, \beta+j B}(-q)^{n} Q^{j}
$$

The generating series PT_{0} of multiples of B can be shown to equal

$$
\operatorname{PT}_{0}(q, Q)=\prod_{j \geq 1}\left(1-q^{j} Q\right)^{(2 g-2) j}
$$

Weyl symmetry for PT invariants

Theorem (Buelles-M. '21/22)
Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W as described before.

Weyl symmetry for PT invariants

Theorem (Buelles-M. '21/22)

Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W as described before. Then

$$
\frac{\mathrm{PT}_{\beta}(q, Q)}{\mathrm{PT}_{0}(q, Q)} \in \mathbb{Q}(q, Q)
$$

is the expansion of a rational function $f_{\beta}(q, Q)$

Weyl symmetry for PT invariants

Theorem (Buelles-M. '21/22)

Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W as described before. Then

$$
\frac{\operatorname{PT}_{\beta}(q, Q)}{\operatorname{PT}_{0}(q, Q)} \in \mathbb{Q}(q, Q)
$$

is the expansion of a rational function $f_{\beta}(q, Q)$ which satisfies the functional equations

$$
f_{\beta}\left(q^{-1}, Q\right)=f_{\beta}(q, Q) \text { and } f_{\beta}\left(q, Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(q, Q)
$$

Weyl symmetry for GW invariants

Corollary (Assuming GW/PT)

Weyl symmetry for GW invariants

Corollary (Assuming GW/PT)

For all $(g, \beta) \neq(0, m B),(1, m B)$ the series

$$
\sum_{j \in \mathbb{Z}} \mathrm{GW}_{g, \beta+j B} Q^{j}
$$

is the expansion of a rational function $f_{\beta}(Q)$ with functional equation

$$
f_{\beta}\left(Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(Q) .
$$

Think of the functional equation as equality

$$
\mathrm{GW}_{g, \beta} \sim \mathrm{GW}_{g, \beta^{\prime}}
$$

after analytic continuation.

Weyl symmetry for GW invariants

Corollary (Assuming GW/PT)

For all $(g, \beta) \neq(0, m B),(1, m B)$ the series

$$
\sum_{j \in \mathbb{Z}} \mathrm{GW}_{g, \beta+j B} Q^{j}
$$

is the expansion of a rational function $f_{\beta}(Q)$ with functional equation

$$
f_{\beta}\left(Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(Q) .
$$

Think of the functional equation as equality

$$
\mathrm{GW}_{g, \beta} \sim \mathrm{GW}_{g, \beta^{\prime}}
$$

after analytic continuation.
Predicted by physics, at least in the local case K_{W}
(Katz-Klemm-Vafa '97).

Examples

Example

Let $X=K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$ and let C be the other \mathbb{P}^{1} in the product. A computation with the topological vertex shows:

$$
\frac{\mathrm{PT}_{C}(q, Q)}{\mathrm{PT}_{0}(q, Q)}=\frac{2 q}{(1-q)^{2}(1-Q)^{2}}
$$

Examples

Example

Let $X=K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$ and let C be the other \mathbb{P}^{1} in the product. A computation with the topological vertex shows:

$$
\begin{aligned}
\frac{\mathrm{PT}_{C}(q, Q)}{\mathrm{PT}_{0}(q, Q)} & =\frac{2 q}{(1-q)^{2}(1-Q)^{2}} \\
\frac{\mathrm{PT}_{2}(q, Q)}{\mathrm{PT}_{0}(q, Q)} & =\frac{2 q^{4}}{(1-q)^{2}\left(1-q^{2}\right)^{2}(1-q Q)^{2}(1-Q)^{2}} \\
& +\frac{2 q^{4}}{(1-q)^{2}\left(1-q^{2}\right)^{2}(q-Q)^{2}(1-Q)^{2}} \\
& +\frac{2 q^{4}}{(1-q)^{4}(1-q Q)^{2}(q-Q)^{2}}
\end{aligned}
$$

Spherical twists

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in \operatorname{Aut}\left(D^{b}(X)\right)$ promoting the involution

$$
\beta \mapsto \beta^{\prime}=\beta+(W \cdot \beta) B
$$

on $\mathrm{H}_{2}(X)$ to the derived category.

Spherical twists

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in \operatorname{Aut}\left(D^{b}(X)\right)$ promoting the involution

$$
\beta \mapsto \beta^{\prime}=\beta+(W \cdot \beta) B
$$

on $H_{2}(X)$ to the derived category. It's constructed using the spherical functor

$$
\begin{aligned}
\Phi: & D^{b}(C) \rightarrow D^{b}(X) \\
& V \mapsto \iota_{*}\left(\mathcal{O}_{p}(-1) \otimes p^{*} V\right)
\end{aligned}
$$

Spherical twists

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in \operatorname{Aut}\left(D^{b}(X)\right)$ promoting the involution

$$
\beta \mapsto \beta^{\prime}=\beta+(W \cdot \beta) B
$$

on $H_{2}(X)$ to the derived category. It's constructed using the spherical functor

$$
\begin{aligned}
\Phi: & D^{b}(C) \rightarrow D^{b}(X) \\
& V \mapsto \iota_{*}\left(\mathcal{O}_{p}(-1) \otimes p^{*} V\right)
\end{aligned}
$$

From a spherical functor we associate an automorphism of the derived category, the spherical twist ST defined by

$$
\Phi \circ \Phi_{R} \longrightarrow \text { id } \longrightarrow \mathrm{ST} .
$$

Derived equivalence ρ

We already have the derived equivalence $\mathrm{ST} \in \operatorname{Aut}\left(D^{b}(X)\right)$. The derived equivalence ρ is then

$$
\rho=\mathrm{ST} \circ \mathbb{D} .
$$

Derived equivalence ρ

We already have the derived equivalence $\mathrm{ST} \in \operatorname{Aut}\left(D^{b}(X)\right)$. The derived equivalence ρ is then

$$
\rho=\mathrm{ST} \circ \mathbb{D} .
$$

Facts

(1) ρ is an involution, i.e. $\rho \circ \rho=$ id.

Derived equivalence ρ

We already have the derived equivalence $\mathrm{ST} \in \operatorname{Aut}\left(D^{b}(X)\right)$. The derived equivalence ρ is then

$$
\rho=\mathrm{ST} \circ \mathbb{D} .
$$

Facts

(1) ρ is an involution, i.e. $\rho \circ \rho=$ id.
(2) $\rho\left(\mathcal{O}_{X}\right)=\mathcal{O}_{X}[2]$.

Derived equivalence ρ

We already have the derived equivalence $\mathrm{ST} \in \operatorname{Aut}\left(D^{b}(X)\right)$. The derived equivalence ρ is then

$$
\rho=\mathrm{ST} \circ \mathbb{D}
$$

Facts

(1) ρ is an involution, i.e. $\rho \circ \rho=$ id.
(2) $\rho\left(\mathcal{O}_{X}\right)=\mathcal{O}_{X}[2]$.
(3) If F is a sheaf of dimension 1 and $\operatorname{ch}_{2}(F)=\beta, \chi(F)=n$ then

$$
\begin{aligned}
\operatorname{ch}_{2}(\rho(F)) & =\beta^{\prime}=\beta+(W \cdot \beta) B \\
\chi(\rho(F)) & =-n .
\end{aligned}
$$

Orbifold inspiration

When X arises as a crepant resolution $X \rightarrow \mathcal{Y}$ of an orbifold with $\mathbb{Z} / 2$-singularities along the curve C so that W is the exceptional divisor (and the fibers B are contracted to points), the main result is a consequence of the DT crepant resolution conjecture proven by Beentjes-Calabrese-Rennemo ('18).

Orbifold inspiration

Their proof immitates Bridgeland-Toda proof of rationality using $\mathbb{D}^{\mathcal{Y}}$ to prove the symmetry of PT invariants in \mathcal{Y}.

Orbifold inspiration

Their proof immitates Bridgeland-Toda proof of rationality using $\mathbb{D}^{\mathcal{Y}}$ to prove the symmetry of PT invariants in \mathcal{Y}.

Proposition

Under the McKay correspondence

$$
\Psi: D^{b}(X) \xrightarrow{\sim} D^{b}(\mathcal{Y})
$$

the derived dual $\mathbb{D}^{\mathcal{Y}}$ corresponds to ρ, i.e.

$$
\rho=\Psi^{-1} \circ \mathbb{D}^{\mathcal{Y}} \circ \Psi
$$

Orbifold inspiration

Their proof immitates Bridgeland-Toda proof of rationality using $\mathbb{D}^{\mathcal{Y}}$ to prove the symmetry of PT invariants in \mathcal{Y}.

Proposition

Under the McKay correspondence

$$
\psi: D^{b}(X) \xrightarrow{\sim} D^{b}(\mathcal{Y})
$$

the derived dual $\mathbb{D}^{\mathcal{Y}}$ corresponds to ρ, i.e.

$$
\rho=\Psi^{-1} \circ \mathbb{D}^{\mathcal{Y}} \circ \Psi
$$

Important examples (e.g. the STU) don't arise as such crepant resolution.

Homological mirror symmetry?

What can we say about the mirror geometry \check{X} ? In particular, how to interpret the derived equivalence ST under HMS:

$$
\operatorname{ST} \in \operatorname{Aut}\left(D^{b}(X)\right) \cong \operatorname{Aut}(\operatorname{Fuk}(\check{X})) ?
$$

Homological mirror symmetry?

What can we say about the mirror geometry \check{X} ? In particular, how to interpret the derived equivalence ST under HMS:

$$
\mathrm{ST} \in \operatorname{Aut}\left(D^{b}(X)\right) \cong \operatorname{Aut}(\operatorname{Fuk}(\check{X})) ?
$$

When the genus of C is $g=0$ we can write ST as a composition of twists around spherical objects

$$
\mathrm{ST}=\mathrm{ST}_{\mathcal{O}_{w}(-C+B)} \circ \mathrm{ST}_{\mathcal{O}_{w}(-C)}
$$

so (the mirror of) ST should be induced by a symplectomorphism obtained as a composition of two Dehn twists.

Homological mirror symmetry?

How to think about this composition and what about $g>0$?

Homological mirror symmetry?

How to think about this composition and what about $g>0$? A typical way in which spherical functors appear in the Fukaya category is through symplectic fibrations: if $w: Z \rightarrow \mathbb{C}$ is a symplectic fibration with general fiber \check{X} then we get a spherical functor

$$
\operatorname{FS}(Z, w) \xrightarrow{\cap} \operatorname{Fuk}(\check{X})
$$

Homological mirror symmetry?

How to think about this composition and what about $g>0$? A typical way in which spherical functors appear in the Fukaya category is through symplectic fibrations: if $w: Z \rightarrow \mathbb{C}$ is a symplectic fibration with general fiber \check{X} then we get a spherical functor

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{FS}(Z, w) & \mathrm{\cap} \\
\text { HMS? } & \text { Fuk }(\check{X}) \\
& \| \text { HMS } \\
D^{b}(C) \xrightarrow{\Phi} & D^{b}(X)
\end{array}
\end{array}
$$

Homological mirror symmetry?

How to think about this composition and what about $g>0$? A typical way in which spherical functors appear in the Fukaya category is through symplectic fibrations: if $w: Z \rightarrow \mathbb{C}$ is a symplectic fibration with general fiber \check{X} then we get a spherical functor

$$
\begin{array}{ll}
\mathrm{FS}(Z, w) & \xrightarrow{\cap} \mathrm{Fuk}(\check{X}) \\
\text { HMS? } \| & \| \mathrm{HMS} \\
D^{b}(C) \xrightarrow{\Phi} & D^{b}(X)
\end{array}
$$

In such a situation, the derived equivalence corresponding to ST on the symplectic side would be induced by monodromy of $w: Z \rightarrow \mathbb{C}$ around ∞.

Perverse stable pairs

Recall that stable pairs are of the form $s: \mathcal{O}_{X} \rightarrow F$ with $F \in \operatorname{Coh}_{1}(X), \operatorname{coker}(s) \in \operatorname{Coh}_{0}(X)$.

Perverse stable pairs

Recall that stable pairs are of the form $s: \mathcal{O}_{X} \rightarrow F$ with $F \in \operatorname{Coh}_{1}(X), \operatorname{coker}(s) \in \operatorname{Coh}_{0}(X)$.
Bridgeland's proof of rationality with the derived dual uses

$$
\mathbb{D}\left(\operatorname{Coh}_{1}(X)\right)=\operatorname{Coh}_{1}(X) \text { and } \mathbb{D}\left(\operatorname{Coh}_{0}(X)\right)=\operatorname{Coh}_{0}(X)[-1]
$$

to describe the image of $\mathbb{D}\left(P_{n}(X, \beta)\right)$ and to help finding wall-crossing between $\mathbb{D}\left(P_{n}(X, \beta)\right)$ and $P_{n}(X, \beta)$.

Perverse stable pairs

Recall that stable pairs are of the form $s: \mathcal{O}_{X} \rightarrow F$ with $F \in \operatorname{Coh}_{1}(X), \operatorname{coker}(s) \in \operatorname{Coh}_{0}(X)$.
Bridgeland's proof of rationality with the derived dual uses

$$
\mathbb{D}\left(\operatorname{Coh}_{1}(X)\right)=\operatorname{Coh}_{1}(X) \text { and } \mathbb{D}\left(\operatorname{Coh}_{0}(X)\right)=\operatorname{Coh}_{0}(X)[-1]
$$

to describe the image of $\mathbb{D}\left(P_{n}(X, \beta)\right)$ and to help finding wall-crossing between $\mathbb{D}\left(P_{n}(X, \beta)\right)$ and $P_{n}(X, \beta)$.

Example

If $x \in W$ is a point in the divisor lying in a fiber B then

$$
\rho\left(\mathcal{O}_{x}\right)=\left\{\mathcal{O}_{B}(-1)[-1] \rightarrow \mathcal{O}_{B}(-2)\right\} .
$$

Perverse sheaves

To study ρ it's more appropriate to use a tilt of $\operatorname{Coh}(X)$ and a different notion of dimension (which corresponds to sheaves on the orbifold)

Perverse sheaves

To study ρ it's more appropriate to use a tilt of $\operatorname{Coh}(X)$ and a different notion of dimension (which corresponds to sheaves on the orbifold)

$$
\begin{aligned}
& \mathcal{T}=\left\{T \in \operatorname{Coh}(X): R^{1} p_{*} T_{\mid W}=0\right\} \\
& \mathcal{F}=\{F \in \operatorname{Coh}(X): \operatorname{Hom}(\mathcal{T}, F)=0\} \\
& \mathcal{A}=\langle\mathcal{F}[1], \mathcal{T}\rangle_{\text {ex }} .
\end{aligned}
$$

Perverse sheaves

To study ρ it's more appropriate to use a tilt of $\operatorname{Coh}(X)$ and a different notion of dimension (which corresponds to sheaves on the orbifold)

$$
\begin{aligned}
& \mathcal{T}=\left\{T \in \operatorname{Coh}(X): R^{1} p_{*} T_{\mid W}=0\right\} \\
& \mathcal{F}=\{F \in \operatorname{Coh}(X): \operatorname{Hom}(\mathcal{T}, F)=0\} \\
& \mathcal{A}=\langle\mathcal{F}[1], \mathcal{T}\rangle_{\mathrm{ex}} .
\end{aligned}
$$

\mathcal{A} is a heart of $D^{b}(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

Perverse sheaves

To study ρ it's more appropriate to use a tilt of $\operatorname{Coh}(X)$ and a different notion of dimension (which corresponds to sheaves on the orbifold)

$$
\begin{aligned}
& \mathcal{T}=\left\{T \in \operatorname{Coh}(X): R^{1} p_{*} T_{\mid W}=0\right\} \\
& \mathcal{F}=\{F \in \operatorname{Coh}(X): \operatorname{Hom}(\mathcal{T}, F)=0\} \\
& \mathcal{A}=\langle\mathcal{F}[1], \mathcal{T}\rangle_{\mathrm{ex}} .
\end{aligned}
$$

\mathcal{A} is a heart of $D^{b}(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

Example

(1) $\mathrm{Coh}_{0} \subseteq \mathcal{A}_{0}$;

Perverse sheaves

To study ρ it's more appropriate to use a tilt of $\operatorname{Coh}(X)$ and a different notion of dimension (which corresponds to sheaves on the orbifold)

$$
\begin{aligned}
& \mathcal{T}=\left\{T \in \operatorname{Coh}(X): R^{1} p_{*} T_{\mid W}=0\right\} \\
& \mathcal{F}=\{F \in \operatorname{Coh}(X): \operatorname{Hom}(\mathcal{T}, F)=0\} \\
& \mathcal{A}=\langle\mathcal{F}[1], \mathcal{T}\rangle_{\mathrm{ex}} .
\end{aligned}
$$

\mathcal{A} is a heart of $D^{b}(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

Example

(1) $\mathrm{Coh}_{0} \subseteq \mathcal{A}_{0}$;
(2) $\mathcal{O}_{B}(-1), \mathcal{O}_{B}(-2)[1] \in \mathcal{A}_{0}$;

Perverse sheaves

To study ρ it's more appropriate to use a tilt of $\operatorname{Coh}(X)$ and a different notion of dimension (which corresponds to sheaves on the orbifold)

$$
\begin{aligned}
& \mathcal{T}=\left\{T \in \operatorname{Coh}(X): R^{1} p_{*} T_{\mid W}=0\right\} \\
& \mathcal{F}=\{F \in \operatorname{Coh}(X): \operatorname{Hom}(\mathcal{T}, F)=0\} \\
& \mathcal{A}=\langle\mathcal{F}[1], \mathcal{T}\rangle_{\text {ex }} .
\end{aligned}
$$

\mathcal{A} is a heart of $D^{b}(X)$ and its elements are perverse sheaves. The dimension of a perverse sheaf is the dimension of its support after we contract the fibers B.

Example

(1) $\mathrm{Coh}_{0} \subseteq \mathcal{A}_{0}$;
(2) $\mathcal{O}_{B}(-1), \mathcal{O}_{B}(-2)[1] \in \mathcal{A}_{0}$;
(3) $\mathcal{O}_{p}(-1), \mathcal{O}_{p}(-2)[1] \in \mathcal{A}_{1}$.

Perverse stable pairs

The action of ρ on \mathcal{A} (with perverse dimension) is analogous to the action of \mathbb{D} on $\operatorname{Coh}(X)$ (with usual dimension):

$$
\rho\left(\mathcal{A}_{1}\right)=\mathcal{A}_{1} \text { and } \rho\left(\mathcal{A}_{0}\right)=\mathcal{A}_{0}[-1] .
$$

Perverse stable pairs

The action of ρ on \mathcal{A} (with perverse dimension) is analogous to the action of \mathbb{D} on $\operatorname{Coh}(X)$ (with usual dimension):

$$
\rho\left(\mathcal{A}_{1}\right)=\mathcal{A}_{1} \text { and } \rho\left(\mathcal{A}_{0}\right)=\mathcal{A}_{0}[-1] .
$$

Definition

A perverse stable pair is an object $I \in\left\langle\mathcal{O}_{X}[1], \mathcal{A}_{\leq 1}\right\rangle_{\text {ex }}$ such that $\operatorname{rk}(I)=-1$ and
$\operatorname{Hom}\left(\mathcal{A}_{0}, I\right)=0=\operatorname{Hom}\left(I, \mathcal{A}_{1}\right)$.

Perverse stable pairs

The action of ρ on \mathcal{A} (with perverse dimension) is analogous to the action of \mathbb{D} on $\operatorname{Coh}(X)$ (with usual dimension):

$$
\rho\left(\mathcal{A}_{1}\right)=\mathcal{A}_{1} \text { and } \rho\left(\mathcal{A}_{0}\right)=\mathcal{A}_{0}[-1] .
$$

Definition

A perverse stable pair is an object $I \in\left\langle\mathcal{O}_{X}[1], \mathcal{A}_{\leq 1}\right\rangle_{\text {ex }}$ such that $\operatorname{rk}(I)=-1$ and
$\operatorname{Hom}\left(\mathcal{A}_{0}, I\right)=0=\operatorname{Hom}\left(I, \mathcal{A}_{1}\right)$.
We define the virtual counts of perverse stable pairs:

$$
\begin{gathered}
{ }^{p} \mathrm{PT}_{n, \beta} \in \mathbb{Z}, \\
{ }^{p} \mathrm{PT}_{\beta}(q, Q)=\sum_{n, j \in \mathbb{Z}}{ }^{p} \mathrm{PT}_{n, \beta+j B}(-q)^{n} Q^{j}
\end{gathered}
$$

Rationality for ${ }^{P} \mathrm{PT}$

Theorem (Buelles-M)

The series ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$
f_{\beta}\left(q^{-1}, Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(q, Q)
$$

Rationality for ${ }^{P} \mathrm{PT}$

Theorem (Buelles-M)

The series ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$
f_{\beta}\left(q^{-1}, Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(q, Q)
$$

- Rationality of $\mathrm{PT}_{\beta}(q)$
- Rationality of ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$

Rationality for ${ }^{P} \mathrm{PT}$

Theorem (Buelles-M)

The series ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$
f_{\beta}\left(q^{-1}, Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(q, Q)
$$

- Rationality of $\mathrm{PT}_{\beta}(q)$
- Anti-equivalence \mathbb{D}
- Rationality of ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$
- Anti-equivalence ρ

Rationality for ${ }^{p} \mathrm{PT}$

Theorem (Buelles-M)

The series ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$
f_{\beta}\left(q^{-1}, Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(q, Q)
$$

- Rationality of $\mathrm{PT}_{\beta}(q)$
- Anti-equivalence \mathbb{D}
- Torsion pair $\left\langle\mathrm{Coh}_{0}, \mathrm{Coh}_{1}\right\rangle$
- Rationality of ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$
- Anti-equivalence ρ
- Torsion pair $\left\langle\mathcal{A}_{0}, \mathcal{A}_{1}\right\rangle$

Rationality for ${ }^{p} \mathrm{PT}$

Theorem (Buelles-M)

The series ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$
f_{\beta}\left(q^{-1}, Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(q, Q)
$$

- Rationality of $\mathrm{PT}_{\beta}(q)$
- Anti-equivalence \mathbb{D}
- Torsion pair $\left\langle\mathrm{Coh}_{0}\right.$, Coh $\left._{1}\right\rangle$
- Usual slope stability
- Rationality of ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$
- Anti-equivalence ρ
- Torsion pair $\left\langle\mathcal{A}_{0}, \mathcal{A}_{1}\right\rangle$
- Nironi slope stability

Rationality for ${ }^{p} \mathrm{PT}$

Theorem (Buelles-M)

The series ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$ is the expansion of a rational function $f_{\beta} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$
f_{\beta}\left(q^{-1}, Q^{-1}\right)=Q^{-W \cdot \beta} f_{\beta}(q, Q)
$$

- Rationality of $\mathrm{PT}_{\beta}(q)$
- Anti-equivalence \mathbb{D}
- Torsion pair $\left\langle\mathrm{Coh}_{0}\right.$, Coh $\left._{1}\right\rangle$
- Usual slope stability
- Vanishing of Poisson brackets $\left\{\mathrm{Coh}_{\leq 1}, \mathrm{Coh}_{\leq 1}\right\}=0$
- Rationality of ${ }^{p} \mathrm{PT}_{\beta}(q, Q)$
- Anti-equivalence ρ
- Torsion pair $\left\langle\mathcal{A}_{0}, \mathcal{A}_{1}\right\rangle$
- Nironi slope stability
- No vanishing, extra combinatorial difficulty (dealt with in [BCR]).

Wall-crossing

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

Wall-crossing

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

Theorem (Buelles-M)

For any $\beta \in H_{2}(X ; \mathbb{Z})$ we have the following identity of rational functions:

$$
{ }^{p} \mathrm{PT}_{\beta}(q, Q)=\frac{\mathrm{PT}_{\beta}(q, Q)}{\mathrm{PT}_{0}(q, Q)}
$$

Wall-crossing

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

Theorem (Buelles-M)

For any $\beta \in H_{2}(X ; \mathbb{Z})$ we have the following identity of rational functions:

$$
{ }^{p} \mathrm{PT}_{\beta}(q, Q)=\frac{\mathrm{PT}_{\beta}(q, Q)}{\mathrm{PT}_{0}(q, Q)}
$$

The wall-crossing establishing the equality has two steps and uses the counting of a third type of objects: Bryan-Steinberg invariants.

Wall-crossing PT/BS

When X arises as a crepant resolution $X \rightarrow \mathcal{Y}$, Bryan-Steinberg introduced ('12) invariants $\mathrm{BS}_{n, \beta}$. Roughly speaking, they count sheafs+sections $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\}$ but allowing the cokernel to have support on finitely many fibers B.

Wall-crossing PT/BS

When X arises as a crepant resolution $X \rightarrow \mathcal{Y}$, Bryan-Steinberg introduced ('12) invariants $\mathrm{BS}_{n, \beta}$. Roughly speaking, they count sheafs+sections $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\}$ but allowing the cokernel to have support on finitely many fibers B.
They provide a natural interpretation for the quotient $\mathrm{PT}_{\beta} / \mathrm{PT}_{0}$ via a DT/PT type wall-crossing.

Proposition

$$
\mathrm{BS}_{\beta}(q, Q) \equiv \sum_{n, j \in \mathbb{Z}} \mathrm{BS}_{n, \beta+j B}(-q)^{n} Q^{j}=\frac{\mathrm{PT}_{\beta}(q, Q)}{\mathrm{PT}_{0}(q, Q)}
$$

Wall-crossing PT/BS

When X arises as a crepant resolution $X \rightarrow \mathcal{Y}$, Bryan-Steinberg introduced ('12) invariants $\mathrm{BS}_{n, \beta}$. Roughly speaking, they count sheafs+sections $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\}$ but allowing the cokernel to have support on finitely many fibers B.
They provide a natural interpretation for the quotient $\mathrm{PT}_{\beta} / \mathrm{PT}_{0}$ via a DT/PT type wall-crossing.

Proposition

$$
\mathrm{BS}_{\beta}(q, Q) \equiv \sum_{n, j \in \mathbb{Z}} \mathrm{BS}_{n, \beta+j B}(-q)^{n} Q^{j}=\frac{\mathrm{PT}_{\beta}(q, Q)}{\mathrm{PT}_{0}(q, Q)}
$$

Unlike ${ }^{p} \mathrm{PT}, \mathrm{BS}$ are defined using the heart $\operatorname{Coh}(X)$, no need to tilt.

Wall-crossing ${ }^{p} \mathrm{PT} / \mathrm{BS}$

Final step is comparing ${ }^{p} \mathrm{PT}$ and BS .

Wall-crossing ${ }^{p} \mathrm{PT} / \mathrm{BS}$

Final step is comparing ${ }^{p} \mathrm{PT}$ and BS .

Proposition

We have the following identity of rational functions:

$$
\mathrm{BS}_{\beta}(q, Q)={ }^{p} \mathrm{PT}_{\beta}(q, Q)
$$

Wall-crossing ${ }^{p} \mathrm{PT} / \mathrm{BS}$

Final step is comparing ${ }^{p} \mathrm{PT}$ and BS .

Proposition

We have the following identity of rational functions:

$$
\mathrm{BS}_{\beta}(q, Q)={ }^{p} \mathrm{PT}_{\beta}(q, Q)
$$

The identity above is strictly of rational functions, the coefficients are not the same on the nose. When we cross a wall in the path of stability conditions we change the direction in which we expand the same rational function.

Crossing a wall - re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

Crossing a wall - re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

$$
\frac{1}{q-Q}=\frac{q^{-1}}{1-Q q^{-1}}=\sum_{i \geq 0} Q^{i} q^{-1-i}
$$

Crossing a wall - re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

$$
\begin{aligned}
& \frac{1}{q-Q}=\frac{q^{-1}}{1-Q q^{-1}}=\sum_{i \geq 0} Q^{i} q^{-1-i} \\
& \frac{1}{q-Q}=-\frac{Q^{-1}}{1-Q^{-1} q}=-\sum_{i \geq 0} Q^{-1-i} q^{i}
\end{aligned}
$$

Thank you!

