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Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses
the moduli of stable maps and its virtual fundamental class

[Mg(X. B)I"" € Avirdim(Mg (X, 8))-

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual
dimension of is 0 for all g > 0, 8 € Ha(X;Z) so we get numbers

Gw)giﬁ:/ 1eQ.

[Mg (X, 8)]¥"

Compute all numbers GW;(,,B- Equivalently, understand the
partition function

Zx = exp Z GWgﬁuzg_2zﬁ
g
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Stable pairs

Stable pairs provide an alternative approach to curve counting on
CY3.

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object {Ox = F} € D®(X) in the derived
category where F is a coherent sheaf and s a section satisfying the
following two stability conditions:

@ F is pure of dimension 1: every non-trivial coherent sub-sheaf
of F has dimension 1.

@ The cokernel of s has dimension 0.

We associate two discrete invariants:
B = cha(F) = [supp(F)] € H2(X;Z) and n= x(X,F).

The space P,(X,3) parametrizing stable pairs with fixed discrete
invariants is a projective fine moduli space.
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Pandharipande-Thomas invariants

The moduli of stable pairs P,(X, ) also has a virtual fundamental
class, and when X is a CY3 its virtual dimension is 0, producing

again numbers
PTY,; = / leZ
[Pn(X,B)]V

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande- Thomas invariants
determine each other:

exp Z ngﬁuzg_2zﬁ = ZPTffﬂ(—q)”zB
g:ﬁ n/j’

after the change of variables q = e™.
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Think of the theorem as PT, 3 ~ PT_, 3 after analytic
continuation.
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Rationality and symmetry

Theorem (Bridgeland, Toda '16)
For each (5 the generating function

>_PThs(=a)"

nez

is the expansion of a rational function fg satisfying the symmetry

fs(1/q) = f5(q)-

Think of the theorem as PT, 3 ~ PT_, 3 after analytic
continuation.
Typical example (contribution of isolated rational curve):

—ﬁ=q+2q2+3q3+...

=ql14+2¢2+3¢3+...
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Proof of rationality

The proof of rationality illustrates a very general principle:

Symmetry of the derived category ¢ € Aut(D?(X))

!

Constraints on curve counting on X.
The proof of rationality uses the derived dual
¢ =D = RHom(—, Ox)[2].

Note: x(ID(F)) = —x(F).
Basic idea: use wall-crossing in the derived category to relate

Pa(X, B) e~ ¢(Pa(X, 8)) € D*(X).
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Geometric setting

Let W be a ruled surface over a genus g curve C, i.e.
W ="Pc(€) — C.

Let X be a Calabi-Yau 3-fold containing W as a divisor. Let
B = [P!] € Ha(X) be the curve class of the fibers of the ruling.

B W ‘s X

I

C

We also assume that the ray generated by B is extremal in the
effective cone of X, i.e. if Gy, G, are effective curve classes such
that C; + G, is a multiple of B then both C;, (5 are multiples of B.
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Geometric setting

o X = KW
o X elliptic fibration
over W
I‘. o X = STU model,

which is a particular
|
|

elliptic fibration over
L P! x P
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Weyl symmetry

Consider the involution defined on H»(X) by

B f =6+ (W-pB)B.

w

piVa

U \J 8=+ 4b

(it's an involution because W - B = —2)
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Weyl symmetry for PT invariants

Our work is about some symmetry relating curve counting
invariants in classes 3 and 3’

GWg s~ GWg g
PT,5~ PT, 4.

Let

PT5(q,Q) = Y Pupije (—q)"@.
njezZ

The generating series PT( of multiples of B can be shown to equal

PTo(q, Q) = [J(1 - # @)%~ 2V.

j>1
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Weyl symmetry for PT invariants

Theorem (Buelles-M. '21/22)

Let X be a Calabi-Yau 3-fold containing a smooth, ruled divisor W
as described before. Then

PTs(q, Q)

PTo(0.Q) Q(g, Q)

is the expansion of a rational function f3(q, Q) which satisfies the
functional equations

f3(q~", Q) = f3(q, Q) and f3(q, Q") = Q¥ f3(q, Q).
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Think of the functional equation as equality
GWgp~GWg

after analytic continuation.
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Weyl symmetry for GW invariants

Corollary (Assuming GW /PT)
For all (g, 3) # (0, mB) , (1, mB) the series

Z GWg,ﬁJer Q’

JEZ.

is the expansion of a rational function f3(Q) with functional
equation

Q) = Q" "7H(Q).

Think of the functional equation as equality
GWgp~GWg

after analytic continuation.
Predicted by physics, at least in the local case Ky
(Katz-Klemm-Vafa '97).
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Examples

Let X = Kpi,p1 and let C be the other P! in the product. A
computation with the topological vertex shows:
PTc(q,Q) 2q
PTo(q,Q)  (1-q)*(1-Q)?
PTc(q,Q) 2q*
PTo(q,Q)  (1-9)*(1—q?)*(1-qQ)*(1- Q)
+ 2"
(1-9)*(1-¢%)*(q— Q)*(1 - Q)?
4F 24°
(1—q)*(1-qQ)2(q—Q)*
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Spherical twists

The main ingredient of our symmetry is the existence of a certain
anti-equivalence p € Aut(D?(X)) promoting the involution

BB =B+ (W-B)B

on Hy(X) to the derived category. It's constructed using the
spherical functor

®: D°(C) — D*(X)
V = 14 (0p(—1) @ p*V).

From a spherical functor we associate an automorphism of the
derived category, the spherical twist ST defined by

bodbrp —id — ST.
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derived equivalence p is then
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Derived equivalence p

We already have the derived equivalence ST € Aut(D?(X)). The
derived equivalence p is then

p=SToD.

© p is an involution, i.e. pop =id.
Q p(0Ox) = Ox|2].
© If F is a sheaf of dimension 1 and chy(F) = 3, x(F) = n then

cha(p(F)) =B =B+ (W-p)B
x(p(F)) = —n.
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Orbifold inspiration

When X arises as a crepant resolution X — ) of an orbifold with
7 /2-singularities along the curve C so that W is the exceptional
divisor (and the fibers B are contracted to points), the main result
is a consequence of the DT crepant resolution conjecture proven
by Beentjes-Calabrese-Rennemo ('18).

'\‘ / Y
\ /
N [/
N / ’
\\ L —
L/ C




Anti-equivalence p
[e]ele] Tolo)

Orbifold inspiration

Their proof immitates Bridgeland-Toda proof of rationality using
DY to prove the symmetry of PT invariants in ).



Anti-equivalence p
00000

Orbifold inspiration

Their proof immitates Bridgeland-Toda proof of rationality using
DY to prove the symmetry of PT invariants in .

Proposition

Under the McKay correspondence
Vv : DP(X) 5 DP(Y)
the derived dual DY corresponds to p, i.e.

p=VloDYoW.




Anti-equivalence p
00000

Orbifold inspiration

Their proof immitates Bridgeland-Toda proof of rationality using
DY to prove the symmetry of PT invariants in .

Proposition

Under the McKay correspondence
Vv : DP(X) 5 DP(Y)

the derived dual DY corresponds to p, i.e.

p=VloDYoW.

Important examples (e.g. the STU) don't arise as such crepant
resolution.
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Homological mirror symmetry?

What can we say about the mirror geometry X? In particular, how
to interpret the derived equivalence ST under HMS:

ST € Aut(D?(X)) = Aut(Fuk(X))?

When the genus of C is g = 0 we can write ST as a composition
of twists around spherical objects

ST = SToy(-c+8) ©SToy(-c)

so (the mirror of) ST should be induced by a symplectomorphism
obtained as a composition of two Dehn twists.
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functor

FS(Z,w) —— Fuk(X)
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Homological mirror symmetry?

How to think about this composition and what about g > 07 A
typical way in which spherical functors appear in the Fukaya
category is through symplectic fibrations: if w: Z — C is a
symplectic fibration with general fiber X then we get a spherical
functor

FS(Z,w) —— Fuk(X)
HMS? HHMS

Db(C) —2— Db(X)

In such a situation, the derived equivalence corresponding to ST
on the symplectic side would be induced by monodromy of
w: Z — C around cc.
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Perverse stable pairs

Recall that stable pairs are of the form s: Ox — F with
F € Coh1(X), coker(s) € Cohg(X).
Bridgeland’s proof of rationality with the derived dual uses

D(Coh1(X)) = Coh1(X) and D(Cohg(X)) = Cohg(X)[—1]

to describe the image of D(P,(X, 3)) and to help finding
wall-crossing between D(P,(X, 3)) and P,(X, ).

If x € W is a point in the divisor lying in a fiber B then

p(Ox) = {0s(-1)[-1] = Op(-2)}.
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Perverse sheaves

To study p it's more appropriate to use a tilt of Coh(X) and a
different notion of dimension (which corresponds to sheaves on the
orbifold)

T ={T € Coh(X) : R'p, Tjy = 0}
F ={F € Coh(X) : Hom(T,F) =0}
A= (FIAL, T)ex-
A is a heart of D?(X) and its elements are perverse sheaves. The

dimension of a perverse sheaf is the dimension of its support after
we contract the fibers B.

@ Cohg C Ay;

@ 05(-1),05(-2)(1] € Ao;
© 0,(—1), 0x(—-2)[1] € As.
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Perverse stable pairs

The action of p on A (with perverse dimension) is analogous to
the action of I on Coh(X) (with usual dimension):

p(A1) = Ay and p(Ao) = Ao[-1].

Definition

A perverse stable pair is an object | € (Ox[1], A<1)ex such that
rk(/) = —1 and

Hom(Ap, /) = 0 = Hom(/, A;).

We define the virtual counts of perverse stable pairs:

PP*FmB €,
PPTy(q, Q) = Y PPT,p18(—q)" Q.

nj€eZ
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The series PPT3(q, Q) is the expansion of a rational function
fs € Q(q, Q) satisfying the symmetry
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Rationality of PPT3(q, Q)
Anti-equivalence p
Torsion pair (Ao, A1)
Nironi slope stability

Rationality of PT(q)
Anti-equivalence D

Torsion pair (Cohg, Cohy)

Usual slope stability
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Rationality for PPT

Theorem (Buelles-M)

The series PPT3(q, Q) is the expansion of a rational function
fs € Q(q, Q) satisfying the symmetry

f3(q7L, Q1) = Q WFfy(q, Q).

Rationality of PPT3(q, Q)
Anti-equivalence p
Torsion pair (Ao, A1)
Nironi slope stability

Rationality of PT(q)
Anti-equivalence D
Torsion pair (Cohg, Cohy)
Usual slope stability

Vanishing of Poisson brackets No vanishing, extra
{Coh<;,Coh<1} =0 combinatorial difficulty
(dealt with in [BCR]).
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Wall-crossing

We proved rationality of perverse PT invariants, but now need to
relate them to classical stable pairs.

Theorem (Buelles-M)

For any 3 € Ha(X;Z) we have the following identity of rational

functions:
PTs(q, Q)

P60 Q) = 7y, Q)°

The wall-crossing establishing the equality has two steps and uses
the counting of a third type of objects: Bryan-Steinberg invariants.
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introduced ('12) invariants BS,, 3. Roughly speaking, they count
sheafs+sections {Ox > F} but allowing the cokernel to have
support on finitely many fibers B.
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Wall-crossing PT/BS

When X arises as a crepant resolution X — ), Bryan-Steinberg
introduced ('12) invariants BS,, 3. Roughly speaking, they count
sheafs+sections {Ox > F} but allowing the cokernel to have
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Wall-crossing PT/BS

When X arises as a crepant resolution X — ), Bryan-Steinberg
introduced ('12) invariants BS,, 3. Roughly speaking, they count
sheafs+sections {Ox > F} but allowing the cokernel to have
support on finitely many fibers B.

They provide a natural interpretation for the quotient PT3/PTq
via a DT/PT type wall-crossing.

Proposition

_ PTs(q, Q)

BSp(q, Q) = Y BSnsiia(—a)"@ = PTo(q, Q)"
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Unlike PPT, BS are defined using the heart Coh(X), no need to
tilt.
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Final step is comparing PPT and BS.
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Wall-crossing PPT/BS

Final step is comparing PPT and BS.

Proposition
We have the following identity of rational functions:

BSs(q. Q) = PPT5(q, Q).

The identity above is strictly of rational functions, the coefficients
are not the same on the nose. When we cross a wall in the path of
stability conditions we change the direction in which we expand the
same rational function.
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The rational function q_LQ can be expanded in two different ways:
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Crossing a wall — re-expansion

The rational function q_LQ can be expanded in two different ways:

1 i ,—1—i
0 1—oq—1 =7 @

i>0

1 II
-Q 1—Q1 ZQI

i>0
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Thank you!

quotient re—expansion

PT BS PPT

p(PPT)
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