EQUIVARIANT K-HOMOLOGY AND RESTRICTION
TO FINITE CYCLIC SUBGROUPS

MICHEL MATTHEY AND GUIDO MISLIN

ABSTRACT. For a discrete group G, we prove that a G-map between proper G-
CW -complexes induces an isomorphism in G-equivariant K-homology if it in-
duces an isomorphism in C-equivariant K-homology for every finite cyclic sub-
group C of G'. As an application, we show that the source of the Baum-Connes
assembly map, namely KC(E(G,Fin)), is isomorphic to KZ(E(G,FC)),
where E(G,FC) denotes the classifying space for the family of finite cyclic
subgroups of G . Letting VC be the family of virtually cyclic subgroups of G,
we also establish that K& (E(G, Fin)) & K& (E(G,VC)) and related results.

1. INTRODUCTION

The goal of this note is to prove the following result.

Theorem 1.1. For a discrete group G , the natural map E(G,FC) — E(G, Fin) of
classifying spaces for the family of all finite, respectively all finite cyclic subgroups
of G, induces an isomorphism KC(E(G,FC)) = KS¢(E(G,Fin)) .

The Baum-Connes Conjecture [3] can be viewed as the statement that the natural
map K& (E(G,Fin)) - K& (E(G, Al)) is an isomorphism, where A% stands for
the family of all subgroups of G. As a consequence, we get a reformulation of it.

Corollary 1.2. For a discrete group G, the following statements are equivalent :
(i) G satisfies the Baum-Connes conjecture;
(i) K¢ (B(G,FC)) = K.(C:G).
In (ii) the homomorphism is induced by the constant map, using the standard iden-
tification of K& (pt) = K¢ (E(G, Al)) with K.(C}G) .

The spaces X = E(G,FC) and Y = E(G, Fin) being C-contractible for every
finite cyclic subgroup C of G, Theorem 1.1 will follow from the following general
result concerning equivariant K-homology.

Theorem 1.3. Let G be a discrete group and let f: X — Y be a G-map between
proper G-CW -complexes. Consider the following properties :
(i) the induced map KC(f): K¢(X) — KS(Y) is an isomorphism for every
finite cyclic subgroup C of G ;
(ii) the induced map KF(f): KF(X) — KF(Y) is an isomorphism for every
finite subgroup F of G ;
(iii) the induced map KG(f): K&(X) — KE&(Y) is an isomorphism.
Then, (i) and (i) are equivalent and imply ().
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For finite groups, a cohomological version of Theorem 1.3 goes back to Jack-
owski in [12]. Theorem 1.3 will follow from a reduction to the finite group case,
together with an adaption of the tom Dieck Localization Theorem for equivariant
homology [22] to the setting of equivariant K-homology. Actually, the result for K-
cohomology requires a completion theorem (also proved in [12]), dual to tom Dieck’s
localization result.

We thank the referee for pointing out simplifications in some of the proofs and
in the presentation of the material.

2. RECOLLECTION ON EQUIVARIANT HOMOLOGY THEORIES

In this section, we review basic properties of equivariant homology theories. It is
in this setting that we will state, in Section 3, the general form of the main results
of the Introduction.

Let G be a (discrete) group. A G-equivariant homology theory HY (=), with
values in abelian groups, is a collection of functors HS(—): (X, A4) — HY (X, A),
with n € Z, from G-C'W-pairs to abelian groups together with natural transforma-
tions 99 (X, A): HE(X,A) = HE | (A) :=HE (A, @) ; we also write S for short.
These are required: to be G-homotopy invariant, to fit in the long exact sequence
of a pair and to satisfy excision. We moreover require HS (=) to be additive, in
the sense that it satisfies the disjoint union aziom, i.e. if {X;};cr is a collection of
G-CW -complexes, then there is an isomorphism

iel iel i€l
For a pointed G-C'W-complex X , with G acting trivially on the base-point zo , as
usual, we define H&(X) as the cokernel of the map induced by the inclusion of zg .

For the sequel, we need a notation. Let ¢: H — G be a group homomorphism,
and X an H-CW-complex. We denote by ind,(X) the space G x X modulo the
equivalence relation (g,z) ~ (go(h),h~1z) for all g€ G, h € H and x € X . The
class of (g, ) is denoted by [g,z]. The space ind, (X) is a G-CW-complex for the
action on the ‘first factor’, i.e. v - [g,z] := [vg,z] for v, g € G and z € X . For an
H-CW-pair, we denote (ind,(X),ind,(A4)) simply by ind,(X, A) . When ¢ is an
inclusion, we also write ind%(X) and G x g X for ind,,(X) and similarly for a pair.

Let 9rps and Zin%rps be the class of groups and finite groups respectively. An
equivariant homology theory H’(—) is a collection {HY (—)}Gewrps of G-equivariant
homology theories equipped with an induction structure, that is, for a group homo-
morphism ¢: H — G and an H-CW-pair (X, A) such that Ker(p) acts freely on
X , there is a natural isomorphism

ind,: HIT(X, 4) = HE (ind, (X, A))

satisfying the following properties: it is compatible with boundaries; it is compati-
ble with conjugations (i.e. if ¢, denotes the conjugation of G by the element g € G,

then ind,, = HZ(h) holds, where h: (X, A) = ind., (X, A), & — (e,g 'x) is the
canonical G-homeomorphism). If ¢ is an inclusion, we also write indg for ind,, .
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Observe that for an equivariant homology theory H’(—), a group G and a free
G-CW-complex X , the projection 7: G — {e} induces an isomorphism

ind, : HE(X) = Ha(ind (X)) = H.(G\X) .

A restriction structure on an equivariant homology theory H®(—) is given by the
following additional data. For an injective group homomorphism ¢: H — G with
t(H) of finite index in G, there is a natural transformation

res,: HE (X, A) — HI (res, (X, A)),
where res, (X, A) merely denotes (X, A) viewed as an H-CW-pair via ¢; if ¢ is an
inclusion, we write resg for res,. These are required: to be compatible with the
boundary homomorphisms; to be functorial, i.e. if //: G — T is a second monomor-
phism with ¢/(G) of finite index in T', then res,.,, = res, ores, ; to be compatible
with the induction structure, i.e. if ¢: H — G is an isomorphism, then

HE (h) oind, ores, = idye(x)

where h: ind,, res, (X) =, X is the canonical G-homeomorphism; to satisfy the
double coset formula, i.e. for subgroups H and K of G with K of finite index in G,
and for an H-CW-pair (X, A), the compositions

res% oind§ : HH (X, A) — HE (res ind§ (X, A))
and
HE(h) o, 0 @ (indg, o resfg)
KgHEK\G/H
coincide, where @, is the isomorphism given by the finite disjoint union axiom, and
forge G, L,:=HNg 'Kg, é: L, - K is the conjugation by g, and

h: H indg, resfg (X,A) = res% ind$ (X, A)
KgHEK\G/H
is the canonical K-homeomorphism.

A G-equivariant homology theory HE (—) is multiplicative (with unit) if for two
G-CW-pairs (X, A) and (Y, B), and for p, ¢ € Z, there is an external product

x: HY (X, A) @z HE (Y, B) = HE, (X, A) x (Y, B)),

Pt+q
that is natural both in (X, A) and (Y, B). As usual, (X, A) x (Y, B) is the G-CW-
pair (X xY, (X x B)U(AxY)). The external product is required to be compatible
with the boundary homomorphisms in the sense that

8 qla x ) = 85 (@) x B+ (=1)"a x 07 (B)

fora € ’Hf(X, A)and 8 € ’HqG(Y, B), and to posses a unit 14 = 1§, € H§ (pt) . For
example, if an equivariant homology theory #?(—) has a multiplicative structure in
the strong sense of Liick [16], then HY(—) is multiplicative with unit in our sense,
for every group G .

Let F be a finite group. We denote by Rep(F) the class of all finite dimensional
complex representations of F'. For a locally finite (hence locally compact) F-CW -
complex Z with F' therefore acting via proper homeomorphisms, we designate its
one-point compactification by Z*° = ZU {oo}, with F acting trivially on the base-
point co; this is (non-canonically) an F-CW-complex as well. An F-equivariant
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homology theory HI' (=) is called stable if given V € Rep(F), there is, for every
pointed F-CW-complex X , an isomorphism

Th(X): 1y (X) — Hf—i—dimR(V) (VZAX),
called equivariant suspension isomorphism or product Thom isomorphism, which is
natural in X ; we also require that

VieoVa — Vi
Thn ® (X) - Ihn—‘,—dim]g(Vz)

(Vs° AX) o TH2(X),

for a pointed F-CW-complex X , n € Z, and Vi, Vo € Rep(F), where we identify
the F-spaces (Vi @ V2)®° A X and V™ A (V5° A X) as usual. Note that the name
‘product Thom isomorphism’ is justified, for a finite F-CW-complex X , by the

F-homeomorphism (V x X)® =V A X, , so that ThY (X ) is a map
THY (X 4): HE(X) — HE, i) (V x X)),

and V x X is a product F-equivariant complex vector bundle over X . Suppose
further that HE'(—) is multiplicative with unit 1y € HE (pt) . Define the Euler class
el (V) e HE dimg (v (Pt) Of V' € Rep(F) as the image of 13; under the composite
F SF a0y Mo (V) R ey a8 ~p oo F
Hy (pt) = Ho (S°) —— Hg (V) ————— HZ,(S°) =HI,(pt),
where 1y : SO = pty = {0, 0} = V°°, and d := dimgr(V) .
We denote by 1z the trivial one-dimensional complex representation of a finite

group F'. For convenience, we make the following definition, that we will need on
various occasions in the sequel.

Definition 2.1. Let {H{ (=)} pegingrps be a collection of stable, multiplicative F -
equivariant homology theories with unit and with restriction structure. Let F' be a
finite group. We say that the Euler class e% is nimble if
(i) it is pointed in the sense that eX,(1p) =0;
(i) it is exponential, i.e. e, (Vi @ V) = ek, (V1) -eX,(V2), for Vi, V2 € Rep(F) ;
(iii) 4t is compatible with restriction homomorphisms, that is, for V € Rep(F)
and H < F, el (vest; V) = resk; (el (V)) holds.

Example 2.2. As we will see in Proposition 3.2 below, the Euler class is nimble
for equivariant K-homology for finite groups.

Finally, given a (non-trivial) group G, we denote by Pr(G) the set of proper
subgroups of G.

3. GENERAL FORM OF THEOREM 1.3

Using the terminology introduced in Section 2 for equivariant homology theories
(in particular Definition 2.1), we can state the general form of Theorem 1.3.

Theorem 3.1. Let H’(—) be an equivariant homology theory. Suppose that H:(—)
has a restriction structure, and that for every finite group F and every finite non-
cyclic group F', the following properties hold :

(a) HE (=) is stable;

(b) HE(=) is multiplicative with unit;

(c) the Euler class e}, is nimble;
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(d) the following map is injective :

H I‘esgl : Hg‘inF" (pt) — H Hf_mfm‘ (pt) .
HePr(F') HePr(F)
Let G be a group, and let f: X — Y be a G-map between proper G-CW -complexes.
Consider the following properties :
(i) the induced map HE (f): HE(X) — HE(Y) is an isomorphism for every
finite cyclic subgroup C of G ;
(ii) the induced map HE(f): HE(X) — HE(Y) is an isomorphism for every
finite subgroup F of G ;
(iii) the induced map HE (f): HE(X) = HE(Y) is an isomorphism.
Then, (i) and (ii) are equivalent, and they imply (iii).

The proof of this result will occupy Sections 4 and 5. In view of the following
result, Theorem 1.3 is a consequence of Theorem 3.1.

Proposition 3.2. Equivariant K-homology K (—) is an equivariant homology the-
ory with restriction structure. For any group G, K& (=) is a multiplicative G-
equivariant homology theory with unit. For any finite group F, KF' (=) is a stable
F-equivariant homology theory and its Fuler class is nimble; under Bott periodicity
KF(-) = KF ,(-) and via the ring isomorphism between K} (pt) and the complex
representation ring R(F) of F, the Euler class ek (V) of V € Rep(F) corresponds
to the usual Euler class e(V') in representation theory :

dimg (V)
K gy (0t) 3 eR(V) = e(V):= Y (=1))[AV] € R(F).
7=0

Furthermore, for a finite non-cyclic group F' , the following map is injective :
H resg  KF (pt) — H KH2(pt).
HePr(F') HePr(F')

Before the proof, let us say a few words about equivariant K-homology. We start
with the definition via the Davis-Liick approach [7]. Let G be a group, and Or(QG)
the orbit category of G, whose objects are orbits G/H , where H < G, and with
G-maps as morphisms. Let 2-SPECTRA be the category of Q-spectra and consider

K©P = KBP(G/?): Or(G) — Q-SPECTRA, G/H — K&P(G/H),

the Or(G)-Q-spectrum (i.e. the covariant functor) constructed in [7] (see also [13]).
Recall that its fundamental property, besides functoriality, is that

m(Kg"(G/H)) = K.(C}H),

canonically, for every H < G, where C} H is the reduced C*-algebra of H. For a
G-CW-complex X , one considers the spectrum X ®or(q) Kg’p(G /7) and defines

KY(X):=m, (Xl ®or(G) th)p(G/?)) )

where X?+ is the contravariant functor from Or(G) to the category of CW-
complexes, taking G/H to X¥ (see [7] for the definition of the tensor product
over the orbit category). For a G-CW-pair (X, A) , we define K& (X, A) merely as
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KG(X /A). This theory satisfies Bott periodicity, that is, for a G-CW-pair (X, 4),
there is a canonical and natural isomorphism

B8 (X, A): KG(X,4) = K& ,(X, A).

Note that for H < G, (G/H)% ®or(q) K$P(G/?) identifies with the spectrum
KgP(G/H), so that K¢(G/H) = K.(CrH) in a canonical way. In particular,
taking H = G, one has G/G = pt and K&(pt) = K.(C;G). For proper G-CW-
complexes, there is another approach, namely in terms of G-equivariant Kasparov
KK-theory. Indeed, for a proper G-CW-complex X , there is a natural isomorphism

K7 (X) = colim KK (Co(Y), C),

where the colimit is taken over the G-compact G-subspaces of X (or equivalently
over the G-compact G-sub-C'W-complexes of X). For details, we refer to [14] and
[20]. The reader may be reassured by the fact that these explicit constructions and
definitions will not be used here (except for the isomorphism K¢ (pt) & K. (C;Q)).

Proof of Proposition 3.2. The general statements for K. (—) and K¢(-), and
the fact that K (—) is multiplicative with unit are folklore (compare with [16, pp.
201-202]). By [15], as in the diagram on page 301 of [10], K¥(-) is stable and
the Euler class e (V) identifies with e(V) as stated. Using this identification, to
prove nimbleness of ek , it suffices to note that e(1r) = [C] — [C] = 0; that, given
Vi, V2 € Rep(F), a direct computation based on the classical formula

NVieW) = P AV @AY,
k+e=j

implies that e(V; @ V2) = e(V1) - e(V2) ; and that one has e(resk; V) = res}; (e(V))
for H < F'. Finally, by standard representation theory, for a finite group F', we
have, for FC(F') the set of cyclic subgroups of F', an injection

II resé: R(F) = ] R(C).
CEeFC(F) CeFC(F)
So, the injectivity statement follows from the inclusion FC(F"') C Pr(F"), and, for
n € Z, from the equality K%H(pt) = 0, the isomorphism K (pt) = R(F') and
the obvious compatibility of the latter with the restriction homomorphisms. O

4. RESTRICTION TO FINITE SUBGROUPS

The following general principle will permit us to reduce the proof of Theorem 3.1
to the case of finite groups.

Proposition 4.1. Let H. (=) be an equivariant homology theory and let f: X —Y
be a G-map between G-CW -complexes. Assume that for every H < G such that
the fized-point set (X ILY)H is not empty, the induced map

HI(): HI(X) = HI(Y)
is an isomorphism, as indicated. Then, the following map is an isomorphism too :
HE(f): HE(X) = HE(Y).

In the proof of Proposition 4.1 we will make use of the following three lemmas.
The first one is obvious, but we state it as a lemma for later reference.
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Lemma 4.2. Let G be a group, H a subgroup of G, and Z a G-space. Consider
G/H x Z as a G-space via the diagonal action: v-(gH, z) := (ygH,vz) forv,9 € G
and z € Z . Then, the following map is a canonical G-homeomorphism :

WS(Z): G xuZ —G/HXZ, [9,2]— (gH,gz).
It is natural both in Z and H . The inverse is given by (gH,z) — [g,9712] . O

The second lemma is standard and follows straightforwardly from the defining
properties of G-equivariant homology theories. Before we state it, recall that by a
family of subgroups F = F(QG) of a group G , we mean a non-empty set of subgroups
which is closed under conjugation and passing to subgroups; a G-CW-complex is
called F-free, if all of its isotropy groups lie in F .

Lemma 4.3. Let F be a family of subgroups of a group G. Consider a natural
transformation 7.(—): HE (=) — K¢(-) of G-equivariant homology theories. If
T«(G/H) is an isomorphism for every H € F, then 7.(Z) is an isomorphism for
every F-free G-CW -complex Z . O

If F is a family of subgroups of G , we write E(G, F) for its classifying space. We
recall that E(G, F) is characterized by the fact that it is F-free and that for any F-
free G-CW-complex X there is, up to G-homotopy, a unique G-map X — E(G,F).

Lemma 4.4. For a family F of subgroups of a group G and an F-free G-CW -
complex Z , the projection map prz: E(G,F)x Z — Z is a G-homotopy equivalence
with, as G-homotopy inverse, the unique G-homotopy class ing: Z — E(G,F)x Z ,
given by the universal property of E(G,F) and with idz as second component. [

Proof of Proposition 4.1. The map f induces a natural transformation
HE(=x f: HE (= x X) — HE(— x )
of G-equivariant homology theories (the G-action on products is the diagonal one).

Let F denote the family of all subgroups of G for which (X ITY)¥ is non-empty.
Given H € F, the induced map

HE(G/H x f): HE(G/H x X) — HE(G/H x Y)
is an isomorphism, because, by Lemma 4.2 and by making use of the restriction
structure, H¥(G/H x —) is naturally isomorphic to H (), and, by assumption,
HE(f): HE(X) — HE(Y) is an isomorphism. It follows then from Lemma 4.3, by
choosing Z to be the F-free G-CW-complex E(G, F), that the induced map
HE(B(G,F) x f): HE(E(G,F) x X) — HE(E(G,F) x Y)

is an isomorphism too. Since X and Y are F-free (by very choice of F), applying
Lemma 4.4, we get a composition of G-maps

g id x, g
XS EGF) x X BGF) <Yy,
X pry
which is both G-homotopic to f and an HE-isomorphism, finishing the proof. [

Remark 4.5. Proposition 4.1 proves that (i) implies (i) in Theorem 3.1 (note
that the properness assumption on X and Y is used to assure that (X I Y)H is
empty for H an infinite group). It is clear that (i) follows from (ii) in Theorem
3.1. Thus, it remains to prove that (i) implies (ii) to establish Theorems 1.8 and
3.1; this is precisely what Proposition 5.1 below does.
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5. RESTRICTION FROM FINITE SUBGROUPS TO FINITE CYCLIC SUBGROUPS

In this section, we start by proving the following proposition; we conclude it by
assembling the pieces to prove Theorems 1.3 and 3.1.

Proposition 5.1. Let H’ be an equivariant homology theory for finite groups,
with restriction structure. Suppose that properties (a)—(d) of Theorem 3.1 hold
for every finite group F and every finite non-cyclic group F'. Let F be a finite
group, and f: X =Y an F-map between F-CW -complexes. Consider the following
statements :

(i) the induced map HE (f): HE(X) — HE(Y) is an isomorphism for every

finite cyclic subgroup C of F;

(ii) the induced map HE (f): HE(X) — HE(Y) is an isomorphism.

Then, (i) implies (ii).

We point out that the corresponding statement for G-equivariant K-theory
K} (—) (i.e. G-equivariant K-cohomology) and for X and Y finite G-CW -complexes
with G a compact Lie group, is true too. Indeed, in [19], McClure proved that if
z € K}(X) restricts to zero in K},(X) for every finite subgroup F' of G, then
z = 0. Combined with [12], this gives the required result. Closely related ideas are
contained in [6] and in the article [5], based on [4].

Proof of Proposition 5.1. We will proceed by induction on the order of F'. For
the induction step, it suffices to show that the forthcoming result holds, and then
the proof is complete. O

Proposition 5.2. Under the assumptions of 5.1, let F' be a finite non-cyclic group.
If HP(X) — HE(Y) is an isomorphism for all proper subgroups P < F', then
HE' (X)) = HE (V) is an isomorphism too.

Proof. If HF(X) — HE(Y) is an isomorphism for all proper subgroups P < F'
then by applying 4.1, we see that H" (X x E(F',Pr)) — HI' (Y x E(F',Pr)) is
an isomorphism too, where Pr stands for the family of proper subgroups of F'.
To conclude the proof, it suffices therefore to show that the F’-homology theory
HE' (= x(E(F', Alt), E(F',Pr))) is the zero theory. Let Veq denote the reduced
regular representation of F' over C. Clearly, every proper subgroup H < F' has a
fixed non-zero vector in Veq and, by nimbleness of eg, we infer that eg (Viea) = 0 for
all such H . By assumption (d) of 3.1 and by nimbleness of eg, we therefore have

ef{' (Vea) = 0. By [22, Satz 5], in our situation, there is a canonical isomorphism
of F'-equivariant homology theories

{efi (ea) Y 7HE (=) = I (= x (B(F, A, E(F, Pr))

where the left-hand side denotes the localization with respect to the multiplica-
tive subset of HI" (pt) generated by el; (Vea) ; 50, {€2] (Viea)} HE (=) is the zero
theory, simply because e% (Viea) = 0. O
Remark 5.3. Let F' be a finite group and F a family of subgroups of F' . It follows
from Propositions 3.2 and 5.1 that, provided F contains FC , the constant map from
E(F,F) induces, for n € Z, the following isomorphism (compare with [10]) :
R(F), if n is even

0, otherwise .

o

KF(B(F, 7)) 25 KF(pt) = {
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Proof of Theorem 3.1. As observed in Remark 4.5, the result is a consequence
of Propositions 4.1 and 5.1. O

Proof of Theorem 1.3. This follows from Theorem 3.1 and Proposition 3.2. [

6. APPLICATIONS TO THE BAUM-CONNES CONJECTURE

In this section, we give some applications of our results in the framework of the
Baum-Connes conjecture.

The Baum-Connes conjecture states that for a countable discrete group G, the
Baum-Connes assembly map (or analytic assembly map or G-index map)

u$: K¢ (E(G,Fin)) — K& (pt) = K.(C!G),

induced by the constant map on E(G, Fin), is an isomorphism [1, 2, 3, 20]. (To be
precise, this is the reformulation & la Davis-Liick [7] of the conjecture, which, by
work of Hambleton-Pedersen [11], is equivalent to the usual form.) In fact, u¢ is
defined for arbitrary discrete groups (i.e. not necessarily countable) and the state-
ment of the conjecture makes sense in this generality. The slogan is that one would
like to understand (or compute) the group K.(C;G) of analytic nature, and that
KS(E(G, Fin)) is of geometric and topological nature, and is in principle com-
putable, compare [1, 16, 18, 20]. In the sequel, we identify K& (pt) with K. (C;G).
Theorem 6.1. Let F and G be two families of subgroups of a group G, satisfying
FC(G) C F C Fin(G) and F C G. Suppose that every group in G satisfies the
Baum-Connes conjecture. Then, for an arbitrary G-free G-CW -complex Z , the
G-map p79: E(G,F) = E(G,G) (unique up to G-homotopy) induces the following
isomorphism in G-equivariant K-homology, that is natural in Z :

KS(idz xp¥9): K¢(Z x E(G,F)) = KS(Z x E(G,0)).
Moreover, G satisfies the Baum-Connes conjecture if and only if the map
K¢ (B(G,6)) — K.(C;G),
induced by the projection onto the point, is an isomorphism.
For closely related results, we refer to [9, Thm. A.10], to [21, Thm. 2.6.1], to [17,

Thm. 2.3] and to [8, Cor. 3.6].
Proof. Observe that for every H € G, the map

KH(prin9): KH(E(G, Fin)) — KP(E(G,0))

is an isomorphism. Indeed, both sides are naturally isomorphic to K,(C}H),
because K (E(G, Fin)) = KH(E(H,Fin)) = K.(C}H) since E(G, Fin) is H-
homotopy equivalent to E(H, Fin) and H satisfies the Baum-Connes conjecture,
and because KX (E(G,G)) = K.(C;H) as E(G,G) is H-contractible. By Theo-
rem 1.3, since E(G,F) and E(G, Fin) are C-contractible for C' < G finite cyclic,
the natural transformations of G-homology theories

K¢ (- xE(G,F)) — K¢ ( - xE(G,Fin)) — K&(— xE(G,G))

are therefore isomorphisms on any orbit G/H with H € G, hence the first as-
sertion. The second part of the theorem follows straightforwardly from the first
and from Theorem 1.3, since for C' < G finite cyclic, E(G, Fin) and E(G,G) are
C-contractible, so that K& (E(G, Fin)) = K¢ (E(G,G)) . O



10 MICHEL MATTHEY AND GUIDO MISLIN

The next result illustrates 6.1, using the fact that amenable groups satisfy the
Baum-Connes conjecture.

Corollary 6.2. Let G be an arbitrary group. Then one has natural isomorphisms
K¢ (E(G,FC)) =2 K¢ (E(G, Fin)) 2 K¢ (E(G,C)) = K¢ (E(G, #/m)),

induced by the inclusions FC C Fin C VC C &/m where VC (respectively </m ) stands
for the family of virtually cyclic (respectively amenable) subgroups of G . O
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