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1. INTRODUCTION

In [28] C. T. C. Wall conjectured that if a countable group G of
finite virtual cohomological dimension, ved G' < oo, has periodic Farrell
cohomology then G acts freely and properly on R™ x S™ for some n and
m. Obviously, if a group G acts freely and properly on some R” x S™
then GG is countable since R™ x S™ is a separable metric space. The
Farrell cohomology generalizes the Tate cohomology theory for finite
groups to the class of groups G with ved G < oo (see for instance Ch. X
of [2]). Wall’s conjecture was proved by Johnson in some cases [12] and
Connolly and Prassidis in general [4].

In [19] Prassidis showed that there are groups of infinite ved which
act freely and properly on some R™ x S™. In particular, it follows from
results of Prassidis [19] and Talelli [24] that if a countable group G has
periodic cohomology after 1-step then G acts freely and properly on
some R" x S™ [25].

A group G is said to have periodic cohomology after k-steps if there is
a positive integer g such that the functors HY(G; ) and H'(G; )
are naturally equivalent for all i > k (cf. [22], [26]). In [25] it was
conjectured that the following statements are equivalent for a countable
group G:

(1) G acts freely and properly on some R™ x S™
(2) there is an integer ¢ and an exact sequence

0=+Z—+A—=FP o= =P —=Z—0

with P; projective ZG-modules, Z with trivial G-action and
proj.dimy; A < oo
(3) G has periodic cohomology after some steps.
Note that if a group G has periodic cohomology with period ¢ after
k-steps and the isomorphisms are induced by cup product with an
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element g € HY(G;Z), then g is represented by a g-extension
0=+Z—+A—=F o= =P —=Z—0

with P; projective ZG-modules and proj. dimy,,; A < k; conversely, from
(2) one can deduce that (3) holds, with the periodicity induced via a
cup product (cf. [25]).

Now (1)=(2)=(3) (see Cor. 5.2) and from the results mentioned
above (3)= (1) if ved G < oo or if G has periodic cohomology after
1-step. Also, by a result of Talelli [22], the condition (3) is equivalent
for an arbitrary group G to the condition

(3') G admits a periodic (complete) resolution.

The definition of complete resolutions is recalled in Section 2, where
we also review the definition of generalized Tate cohomology H*(G; M)
for an arbitrary group G. It turns out (cf. Theorem 4.1) that (3') is
equivalent for an arbitrary group G to

(3") H*(G;Z) contains a unit of non-zero degree.

The condition concerning units can be analyzed by considering suit-
able actions of GG on finite dimensional contractible spaces and leads us
to the following

Theorem A . If G is a countable group in the class HE and there is
a bound on the orders of the finite subgroups of G then (3) = (1).

The class HF of hierarchically decomposable groups was introduced
by Kropholler [13] as follows. Let HyF be the class of finite groups.
Now define H,§ for each ordinal « inductively: if « is a successor
ordinal then H,§ is the class of groups which admit a finite dimensional
contractible G-CW-complex with cell stabilizers in H,_1§, and if « is
a limit ordinal then H,§ = Ug<,HgF. A group belongs to HF if it
belongs to H,§ for some a.

Notation. If X is a class of groups, we denote by X, the subclass
consisting of those groups in X for which there is a bound on the orders
of their finite subgroups.

We show
Theorem B . Let G € HF,. Then the following statements are equiv-

alent for G, and they all imply that G € H1§, :

(I) there is a finite dimensional free G-CW -complex homotopy equiv-
alent to a sphere
(IT) there is an integer q and an exact sequence

0=+Z—-A—=PFP o= - —=FP—17Z
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with P; projective ZG-modules, 7 with trivial G-action and
proj.dimy;,; A < 0o

(IIT) G has periodic cohomology after some steps

(IV) there is an invertible element in the ring H*(G;Z) of non-zero
degree.

Moreover, for G € HiF, the following is equivalent to (I), (IT), (III)
and (IV):

(V) every finite subgroup of G has periodic cohomology.

Note that in case the group G in Theorem B is countable, (I) gives
rise to a free and proper G-action on R™ x S™ for some n and m
(Lemma 5.4) and therefore Theorem B implies Theorem A.

It follows from a theorem of Serre (e.g. Thm. 11.1, Ch. VIII in [2])
that the class of groups of finite ved is contained in H;§,. Connolly
and Prassidis [4] proved essentially that (III) = (I) if ved G < o0, and
Brown (Ch. X in [2]) that (V)= (III) if ved G < o0. Our proof of
Theorem B is based on the methods developed in these papers.

Note that there are groups in H;§ such that (V) # (III) and there
are also groups in H, such that (V) #- (III); but there is also a family
of groups in H;§ \ H;§, such that (V)= (III) = (I) (for examples see
Remark 4.11).

The class H1§, is a larger class than the class of groups of finite ved.
For example if ved G; < oo (i = 1,2) and G = G *g G4 then the group
G need not be of finite ved [20]. However, G € H;§,. Actually if a
group G is the fundamental group of a finite graph of groups of finite
ved then G € H §; also H1§, is extension closed whereas the class of
groups of finite ved is not (see 3.9 and 3.10 for general results on groups
in H;§,). The Burnside group B(d,e) of odd exponent e > 665 on d
generators is another example of a group of infinite ved in H;F,. It
turns out that it has periodic cohomology after 2-steps and it follows
from Theorem A that it acts freely and properly on some R" x S™
(cf. Cor. 5.6).

The proof of Theorem B relies on a result of Kropholler and Mis-
lin [15] which states that if G € HF, and proj.dim,, B(G,Z) < oo,
where B(G,Z) is the ZG-module of bounded functions from G to Z,
then G € H;§, and admits a finite dimensional EG. (Recall that EG,
the classifying space for proper G-actions, is a G-CW -complex X char-
acterized up to G-homotopy by the requirement that for every finite
subgroup H < G the fixed point space X is contractible, and for
infinite H < G, X is empty).
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We also show that if a group G contains a free abelian subgroup of
infinite rank, then GG does not act freely and properly on any R"™ x S™
(cf. Cor. 5.6).

For every group G there is a free G-CW-complex Sz homotopy equiv-
alent to a sphere. For example, if Y is the universal cover of a K (G, 1)
complex then Y x S™ with diagonal G-action, trivial on S™ is such a
complex Sg.

We believe that periodicity in cohomology after some steps is the
algebraic characterization of those groups G' which admit a finite di-
mensional Sg. We prove this for G € HE,.

2. GENERALIZED TATE COHOMOLOGY

The classical Tate cohomology for finite groups was generalized by
Farrell [7] to the case of groups of finite ved and subsequently by
Tkenaga [10] to the more general class of groups G admitting com-
plete resolutions and having finite generalized cohomological dimen-
sion, cd G < oo (for the definition of cd see below). In [17] generalized
Tate cohomology groups H*(G; M) are defined for arbitrary groups G
and G-modules M, specializing to the ones defined by Farrell and Ike-
naga, when the latter are defined. The definition of these generalized
Tate groups is as follows:

H™(G; M) :=1lim S7VH"(G; M), neZ
720

with STVH™(G; ) denoting the jth left satellite of H"™(G; ) (for
details, the reader is referred to [17]; different, but equivalent definitions
of generalized Tate groups can be found in [1] and [9]). The following
are three of their basic properties:
(T1) HY(G;P) = 0 for every projective P and i € Z
(T2) there is a canonical natural transformation

T HY(G; )— H'(G; )

such that every natural transformation from ordinary cohomology
to a cohomological functor which vanishes on projectives, factors
uniquely through 7

(T3) if there exists n € Z such that H*(G; P) = 0 for all projective P
and all 2 > n then

T HY(G; )= H'(G; )

for all 7 > n.
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Note that (T1) implies that generalized Tate cohomology is effaceable:
there is dimension-shifting upwards

HY(G; M) = HY(G; QM)
where QQM denotes the kernel of a surjection of a projective module
onto M.
Sometimes the generalized Tate cohomology groups can be computed
using complete resolutions. For this we recall a few definitions.

Definition 2.1. A complete resolution for a group G is an acyclic
complex F = {F;,0; |1 € Z} of projective ZG-modules, together with
a projective resolution P={P;,d;|i > 0} of G such that F and P
coincide in sufficiently high dimensions:

Fi1—- > Fp—>F;—.-.

S

o= Fppr = Fy

N\

Ppi—--=>FP—2Z—0
The number k£ € N is called the coincidence indexr of the complete
resolution.

Clearly this definition generalizes the notion of complete resolution
for finite groups and groups of finite ved (e.g. Ch. X in [2]). In an
analogous way one defines a complete resolution for a particular G-
module M instead of Z. It is easy to prove that G has a complete
resolution if and only if every G-module M has a complete resolution.

We say that M has a complete resolution in the strong sense if it has
a complete resolution F such that the complex Homgzg(F, P) is exact
for all projective P (this is the way the term “complete resolution” is
used in [5]). In case the trivial G-module Z has a complete resolution
in the strong sense, we just say that G has a complete resolution in the
strong sense.

Lemma 2.2. If G admits a complete resolution and if every projec-
tive Z.G-module has finite injective dimension, then every ZG-module
admits a complete resolution in the strong sense.

Proof. Let F be a complete resolution for G (cf. 2.1). We first show
how to construct a complete resolution in the strong sense for a Z-
free ZG-module M. Clearly F ® M with diagonal G-action yields a
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complete resolution for M. We need to show that for P projective, the
complex Homyg(F ® M, P) is exact. For this we choose an injective
resolution
O—-P—->IL—-1L—>---—1,—0

and notice that for 0 < k£ < n the complexes Homyq(F ® M, I;) are
exact, because I} is injective. Thus Homyg(F ® M, P) is exact too. To
treat the case of a general M we choose a surjection F' — M, F' a free
ZG-module and write QM for the kernel, which is Z-free. Clearly, a
complete resolution of 2M in the strong sense yields one for M in an
obvious way. O

Definition 2.3. A group G admits a periodic resolution, if it admits
a complete resolution F={F;, 0; |i € Z} such that for some k£ > 0 and
all © € Z one has F; ., = F; and 0, ,=0;.

It was proved by Talelli [22] that a group G has period ¢ after k-steps
if and only if there is an exact sequence

0= Ryyg = Phyg1— ... P —Z—0
with all P; projective ZG-modules and with Ry, isomorphic to Ry=
Im(P, — Py_1). Clearly by splicing together copies of
0—>Rk—>Pk+q,1—)...—>Pk—>Rk—)0

one obtains a periodic resolution for G of coincidence index k.

Corollary 2.4. A group G admits a periodic resolution if and only if
G has periodic cohomology after some steps.

If G has a complete resolution F in the strong sense, then by def-
inition H*(Homgz(F, P)) = 0 for all projective P, and the universal
property of the generalized Tate groups implies that one has a canonical
equivalence of cohomological functors

H*(G; )= H*(Homza(F, )).

We then say that “the generalized Tate cohomology can be computed
using a complete resolution of G”.

The following theorem characterizes groups for which the generalized
Tate cohomology can be computed using a complete resolution of G (see
also Thm. 3.10 of [5]). It involves the invariants spli G, which is the
supremum of the projective length of injective ZG-modules

spliG :=sup{i: Ext,(I, )#0|I ZG-injective},

and Ikenaga’s generalized cohomological dimension cd GG, which is de-
fined by

cd G = sup{i: Extho(M,F) #0|M Z-free, F ZG-free}.
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Occasionally we will also use the invariant silp G, which is the supre-
mum of the injective length of projective ZG-modules

silpG :=sup{i : Extl,o( ,P)# 0| P ZG-projective}.

It is straightforward that cd G and silp G are either both finite or both
infinite, and more precisely

cdG <silpG <1+cdG.

Theorem 2.5. Let G be an arbitrary group. Then the following con-
ditions (1) and (2) are equivalent and they imply (3):

(1) spliG < o0

(2) G admits a complete resolution and ¢cd G < oo

(3) G admits a complete resolution and the generalized Tate cohomol-
ogy groups of G can be computed using any complete resolution of

G.

Proof. (1) = (2): If spliG < oo then G admits a complete resolution
by Thm. 4.1 of [8]. In general silp G < spliG (cf. [8]) and ¢d G <silpG
as remarked above.

(2) = (1): If F denotes a complete resolution for G' and c¢d G < oo,
then silpG < 14 ¢dG < oo. Therefore, by Lemma 2.2, every ZG-
module admits a complete resolution in the strong sense. By Thm. 3.10
of [5] this implies that spliG < oc.

(2) = (3): If F denotes a complete resolution for G and ¢d G < oo,
then H'(G; P) = Ext},4(Z,P) = 0 for i > cd G and P projective. As
noted earlier, this implies that the generalized Tate cohomology groups
can be computed using the complete resolution F. Since cdG < oo,
complete resolutions of G are unique up to chain homotopy [10], thus
any complete resolution of G can be used to compute the generalized
Tate cohomology of G. O

Ikenaga in [10] defined a class of groups €. via actions on finite
dimensional acyclic complexes, and he proved that the groups in this
class possess complete resolutions and have finite c¢d [10, Thm. 2],
hence by 2.5 these groups satisfy spli G < oco.

The class €4 is defined as follows. Let €, be the class of finite
groups and for an integer n > 0 let G € €, if and only if there is a
finite dimensional acyclic G-simplicial complexr X for which

e GG, € €,_; for all simplices o of X
e sup,{cd G,} < oo where ¢ runs over all simplices of X,

and €y = U,C,.
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Ikenaga’s “G-simplicial complexes” are such that their barycentric
subdivision are G-CW-complexes and they are therefore G-homeomor-
phic to G-C'W-complexes. On the other hand it is an elementary fact
that every G-C'W-complex is G-homotopy equivalent to a “G-simplicial
complex” of the same dimension. If X is an acyclic G-simplicial com-
plex X of dimension k, then its join X xG is a contractible G-simplicial
complex of dimension k£ + 1, whose barycentric subdivision is a G-C'W -
complex, with point stabilizers being subgroups of the original stabi-
lizers G,. As proved above, for any group G with spliG < oo the
invariants cd G and spli G differ at most by one, and clearly cd G = 0
for finite G. Therefore we can record the following relationship with
Kropholler’s classes.

Corollary 2.6. Ilkenaga’s class € agrees with Kropholler’s class H§,
and for every n € N one has

¢, ={G € H,§| spliG < oc}.

Moreover €, consists of those groups in H,§ for which spliG < oo;
here w denotes the first infinite ordinal.

Remark 2.7. We don’t know of an example of a group G with spliG <
oo not belonging to H;§; it is conceivable that €,,=H;¥.

In case the generalized Tate cohomology can be computed using com-
plete resolutions, i.e. if spliG < oo, the generalized Tate cohomology
has many properties analogous to those of the Farrell theory, where the
role of ved G is played by ¢d G (cf. [10]), namely:

(T4) the natural map H(G; M) — H'(G; M) is an isomorphism for
1>cdG

(T5) Shapiro’s Lemma holds: for any subgroup H < G and ZH-module
M

H*(H: M) = H*(G; Homyx(ZG, M))

(T6) H*(G;I) = 0 for injective ZG-modules I; hence generalized Tate
cohomology is coeffaceable and one also has dimension shifting
downwards

(T7) there is a cup products with the usual properties, compatible with
that in ordinary cohomology:

H?(G; M) ® HY(G; N) —— H?™(G; M ® N)

J l

H?(G; M) ® HY(G; N) —— HP(G; M ® N)
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Remark 2.8. Cup products as in (T7) exist for arbitrary G' (cf. [14]).
In particular, R := H%(G;Z) is a commutative ring with 1, H*(G;Z)
is an R-algebra and H*(G; M) is an R-module. In case of spliG < oo

one can use a complete resolution F of G' to define a cup product using
a suitable diagonal (cf. [10])

A:F = FRF.

The following result implies that not every group has a complete
resolution.

Proposition 2.9. If a group G has a complete resolution of coinci-
dence indez k, then H*(G; P) # 0 for some projective ZG-module P
and some 1 < k.

Proof. If GG is finite, it admits a complete resolution of coincidence index
0 and H%(G;ZG) # 0. If G is infinite and

Fk_1—>"'_>F0_>F_1_>"'

/!

cor = ey = Fi

pY

Piy—--- =P —=+72Z—-0
is a complete resolution with coincidence index k, we define A; =
Ker(F; = Fj_1), j € Z, and Q; = Ker(P; = P,_1), ¢ > 0. Since G
is infinite H°(G; M) = 0 for any submodule M of a projective module.
Assume that H*(G; P) = 0 for all projective P and all i < k. Then, by
dimension shifting

H°(G;Z) = H*(G; Q) = HY(G; Ay) =2 H(G5 Ay)

which is a contradiction, since H°(G;Z) = Z and A_; is a submodule
of the projective module F_;. Whence the result follows. O

Corollary 2.10. (i) If a group G contains a free abelian group of
infinite rank then G does not admit a complete resolution.
(ii) The Thompson group
T:<$0,.’L'1,... ‘J?ixjxi_l:l‘j+1, Z<]>

1s an example of a group of type F P, which does not admit a
complete resolution.

Proof. (i): A free abelian group A of countably infinite rank satisfies
H'(A;P) = 0 for all 4 > 0 and all projective P. The result now
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follows from 2.9 since if a group G has a complete resolution then
every subgroup of G has a complete resolution too.

(ii): Thompson’s group is of type F' Py, and contains the free abelian
subgroup with basis {z;z;}; |i € N} (cf. [3]). O

3. THE STABILIZER SPECTRAL SEQUENCE

The classical stabilizer spectral sequence of Farrell cohomology (cf.
Ch. X in [2]) admits a generalization to the case of groups G with
spliG < oc.

Theorem 3.1. Let X be a finite dimensional contractible G-CW -com-
plex and write G, for the stabilizer of the cell o of X. Assume that
spliG' < oo. Then there is a finitely convergent spectral sequence

EY = | H(Gs; M) = H"™(G; M)
0EY,

where ¥, is a set of representatives for the p-cells of X mod G, and
M is a 7Z.G-module.

The spectral sequence is obtained as in the case of Farrell cohomology
from the double complex

Homyq(F,C*(X; M)),

where F denotes a complete resolution of G and C*(X; M) the cellular
cochain complex of X with coefficients in M and diagonal G-action.
There is no need here to assume that the stabilizers G, be finite; how-
ever, we will mainly be interested in that case. The finite convergence
results from the assumption that X be finite dimensional. This spec-
tral sequence is discussed in [19]. An analysis of the first differential
leads to the following useful result. For any cell o C X let

c(g™H)* : H*(Gy; M) — H*(Gyo; M)

be the isomorphism induced by conjugation with ¢ € G and put
c(g)*(u) = g -u. It follows that Ey? in 3.1 can be identified with
the subgroup of compatible families in

H I;[q(Gv; M), X, the set of vertices of X,
veXo

that is, the families (u,) satisfying the following conditions:

® gu, = ugy forall g € G and v € X
e if v and w are vertices of a 1-cell o of X, then u, and u,, restrict
to the same element of HY(G,; M).
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Since all groups in H; § satisfy spli < oo we can argue as in the proof
of Prop. 4.4, Ch. X of [2] to obtain the following.

Theorem 3.2. Let X be a finite dimensional contractible G-CW -com-
plex with finite stabilizers such that for every finite subgroup H < G
the fized point set X is non-empty and connected. Let § stand for the
set of finite subgroups of G' and write

H(G; M) C [ [ HY(H; M)
HeF

for those families (uy)nez which are compatible with respect to the
restriction maps I:I‘I(H; M) — ﬁq(K; M) induced by embeddings K —
H given by conjugation by elements of G. Then the Ey-term of the
associated stabilizer spectral sequence 3.1 satisfies

Ey? = HU(G; M).

Note that the theorem applies in particular to groups which admit
a finite dimensional classifying space for proper actions EG (the defi-
nition of EG was recalled in the Introduction).

Corollary 3.3. Suppose G admits a G-CW -complex X as in the pre-
vious theorem and let p be a prime number. Then the natural map
induced by restricting to finite subgroups

p: H'(G;2/pL) — H*(G; Z/pZ) C [ B*(H;Z/pZ)
Heg

has the property that every element in the kernel of p is nilpotent, and
that for any u € H*(G;Z/pZ) there is an integer k such that u?" lies
inIm p (i.e. pis an F-isomorphism).

The proof is exactly the same as the one for Prop. 4.6 of Ch. X in
[2].

We will also make use of the following consequence of 3.1.

Theorem 3.4. Let G be a group in HiF, and let n be a positive integer
such that the order of any torsion subgroup of G divides n. Then there
15 an integer k such that

n* - H(G; M) =0

for all i and all ZG-modules M. Moreover, if p is a torsion prime for
G then H°(G;Z) contains an element of order p.
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Proof. Let n be a positive integer such that the order of every tor-
sion subgroup of G divides n. Choose a contractible finite dimensional
G-CW-complex X with finite stabilizers. Then the E;-term of the as-
sociated stabilizer spectral sequence is annihilated by n. It follows that
every H'(G; M) is annihilated by n*, where k = dim X + 1. It remains
to show that the torsion group H %(G;Z) contains an element of order
p if p is a torsion prime for G. If Z/pZ < G then the restriction map

H(G;7Z) — H(Z/pZ; 7) = 7./ pZ
is surjective since it maps 1 to 1 and the claim follows. O

Remark 3.5. If there is no bound on the order of finite subgroups of G,
then H°(G;Z) is not a torsion group, because 1 € H°(G;Z) restricts
to a generator of HY(H;Z) = Z/|H|Z for every finite H < G. On the
other hand if A %(G;Z) is torsion then all generalized Tate groups of
G with coefficients in any ZG-module are torsion, annihilated by the
characteristic of the ring H(G;Z).

Note that for GG as in 3.4, one has
H*(G;Z) = HH'GZ @H'GZ

where H*(G;7Z) (p) stands for the p-primary part. This p-primary part
can sometimes be computed up to F-isomorphism by passing to Tate
cohomology with coefficients in Z/pZ.

Lemma 3.6. Let G € Hi§, and p a prime number. Then the natural
map

a: H(G; L)) — H'(G; Z/pl)
has the property that every element in the kernel of « is nilpotent, and
for any u € H*(G;Z/pZ) there is an integer k such that u?" lies in
Ima (i.e. the map « is an F-isomorphism).

The proof is the same as the one for Lemma 6.6, Ch. X in [2].

In view of our applications it is convenient to make use the follow-
ing fact on groups in HF,, which is an easy consequence of the main
theorem of [15].

Proposition 3.7. For groups G € HF,, the following are equivalent:
(i) spliG < o0

(ii) G admits a finite dimensional EG

(i) G € H15,.
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Proof. (i) = (ii): Let k(@) be the supremum over the projective dimen-
sion of those ZG-modules which have finite projective dimension when
restricted to any finite subgroup of G. It was shown in [6, Thm. C] that
for G in HF one has k(G) = spliG. On the other hand, it is well known
that for an arbitrary group G the module B(G,Z) of bounded func-
tions G — Z, is free over ZH for any finite subgroup H < G, (cf. [16]).
Thus if G € Hg, satisfies spliG < oo then proj.dimy,; B(G,Z) < oo
and therefore G admits by [15] a finite dimensional EG.

(ii) = (iii): This is clear since we assume that the torsion subgroups
of G have bounded order.

(iii) = (i): As observed in 2.6, all groups in H; § satisfy spli < co. O

By combining 3.3 with 3.6 and 3.7 we obtain the following
Corollary 3.8. Let G € HF, with spliG < oco. Then the natural map

H*(G;2) — [ [ #*(G; 2/pZ)
p
15 an F'-isomorphism.

The following lemma is useful for recognizing whether a group be-
longs to H;§5.

Lemma 3.9. Let X be a finite dimensional contractible G-CW -com-
plex. Then the following holds:

e if X/G is compact and every cell stabilizer belongs to H1§, then
G € Hi%,

e if all cell stabilizers are finite of order dividing some fized integer
n > 0, then the order of every finite subgroup of G divides n and
G belongs to H 1 §y.

Proof. If X/G is compact and G, € H;§, is a cell stabilizer, then
cd G, < 00. Since

c¢d G < dim X + sup{cd G,}

and the number of GG orbits of cells is finite, we conclude that cd G
and thus spli GG is finite and clearly G € HF. To check that the order
of the finite subgroups of G are bounded, it suffices to check that the
order of the p-subgroups is bounded by a bound independent of p. If
P < @ is a finite p-subgroup of G then the fixed-point space X7 is
not empty (cf. [2, Thm. 10.5, Ch. VIII]) which implies that P < G,
for some cell 0. But by assumption the order of the finite subgroups
of each G, is bounded and, as X/G is compact, there are only finitely
many G,’s up to isomorphism. This implies that there is a universal
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bound independent of p for the order of the finite p-subgroups P < G.
It follows that G € H,3§, by 3.7.

Next, if the order of every cell stabilizer divides n, then the order of
every finite p-subgroup P < G divides n, because P is a subgroup of
some cell stabilizer. As a result the order of every finite subgroup of G
divides n. O

Corollary 3.10. The class of groups belonging to H1§, is extension
closed. Moreover, if G is the fundamental group of a finite graph of
groups tn H1§, then G € H §,. In particular, HiF, is closed under
amalgamated free products and HN N -extensions.

Proof. Let K — G —» () be an extension with K and ) in H;gj,.
Then G € HF, since HF is extension closed. But by a general fact
spliG < spli K +spli@ (cf. [8, Thm. 5.5]) and therefore G € H;§;, by
3.7.

Next, if G is the fundamental group of a finite graph of groups in
H, 3, then G acts cocompactly on a tree 7" with stabilizers in H;§, so
that G € H1§, by 3.9. O

Remark 3.11. An interesting group in Hg, which is not of finite ved
(because it is an infinite torsion group), is the Burnside group B(d, e)
of odd exponent e > 665 on d generators. It is known that there is
a 2-dimensional contractible B(d, e)-CW-complex with all non-trivial
stabilizers cyclic of order e (e.g. [18]). By 3.9, B(d, e) belongs to H, 5.
We will come back to this example in the next section.

4. PERIODICITY IN COHOMOLOGY AND UNITS

The existence of periodic resolutions is closely related to the existence
of units of non-zero degree in generalized Tate cohomology. The precise
relationship is as follows.

Theorem 4.1. Let G be an arbitrary group. Then H *(G;Z) contains
a unit of non-zero degree if and only if G admits a periodic resolution.

Proof. Let
. > PP — ... P =7
be a projective resolution and put Q' = Ker(P; — P,_;). Let u €
H*(G';Z) be a unit for some k > 0. According to [17] one has for all
n ez
H"(G;7Z) = lim [+, O]
j>In/

where [M, N] stands for Homyg(M, N)/S, with S the group of ZG-
module homomorphisms M — N which factor through a projective
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module. By choosing j large enough we can thus represent u and u *

by module maps 2% — Q7 and ¥ — ** such that the composites
of these two maps are equal to identity maps modulo maps which factor
through projectives. But this implies that there is a projective module
P such that

VeoP=2*aP
Clearly, this implies that G admits a periodic resolution. For the con-
verse we may assume that there are inverse isomorphisms

fQr 5 g: QY — Qitk
for some j > 0 and some £ > 0. Then f and g represent inverse units
in H*(G; Z) of non-zero degree. We used here the fact that the product
zy of z,y € H*(G;Z) is represented by f og, if g : Qm*rs — QM7
resp. f: Q™" — Q™ represent y resp. x for some large m [14]. O

Remark 4.2. 1t is conceivable that all groups G which admit complete
resolutions actually satisfy spliG < oo.

We will make use repeatedly of the following well-known fact on
F-isomorphisms (see for instance the proof of Prop. 6.1, Ch. X in [2]).

Lemma 4.3. Let ¢ : R — S be an F-isomorphism of rings with 1. If
u € S is a unit, then there is a k > 0 such that u* = ¢(v) for some
unit v € R.

The following result permits in some cases to detect units in gener-
alized Tate cohomology of G' by looking at finite subgroups. If p is a
prime we say that a finite group H has p-periodic cohomology, if the
(trivial) ZH-module Z/pZ has a periodic resolution. This is equivalent
with the existence of ¢ > 0 such that the functors H'(H; — ® Z/pZ)
and H""(H; — ® 7Z/pZ) are equivalent for all i > 0; it is well-known
that in this situation the minimal such ¢ > 0 divides 2(p—1) for p odd,
or 4 for p =2 (cf. [21]).

Theorem 4.4. Let p be a prime and let X be a finite dimensional
contractible G-CW -complex with finite stabilizers such that for all fi-
nite subgroups H < G the fized point spaces X" are non-empty and
connected. Then the following statements are equivalent:

(i) the ring H*(G;7Z/pZ) contains a unit of non-zero degree

(ii) every finite subgroup H of G has p-periodic cohomology.

Proof. (i)= (ii): Let z be an invertible element of H*(G;Z/pZ) of
some positive degree ¢q. If H is a finite subgroup of GG then since the
restriction map

H*(G;Z/pZ) — H*(H;Z/pZ)
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is a morphism of rings with 1, the image of z is a unit of [:['(H; 7.]pZ.)
of degree ¢ and this is equivalent to H having p-periodic cohomology
with p-period ¢ (cf. [2], Thm 9.7, Ch. VI).

(ii))=(i): Let ¢ = 2(p — 1) for p odd or ¢ = 4 for p = 2, which
is a p-period for every finite subgroup H of G. Choose for each H a
generator

vy € HY(H;7/pZ) = 7./pZ. & 7.]|H|Z.
Note that vy is unique up to a unit in the ring Z/pZ. Therefore

u = (ug)ger with ug = v%_l for all H defines a compatible family and
thus a unit in H*(G;Z/pZ) of degree ¢*~*. Since by 3.3

p: H*(G;Z/pZ) — H*(G; Z/pT)
is an F-isomorphism the result follows from 4.3. 0

Definition 4.5. Let G be an arbitray group. Then the finitistic di-
mension fin. dim G is the supremum of the projective dimension of all
7Z.G-modules of finite projective dimension.

Lemma 4.6. Let G be a group such that either spliG < oo or G € HE.
Then fin.dim G = spliG.

Proof. Without any assumtion on G one has fin.dim G < silpG. In-
deed, if A is a module of finite projective dimension d, then Ext?(A, P)
# 0 for some projective module P. It follows that the injective dimen-
sion of P is at least d. According to [8] for any G one hassilp G < spliG.
If spliG = k < o0, the there exits an injective module of projective
dimension k, thus fin.dimG > spliG. It follows that for groups with
spliG < oo one has fin.dimG = spliG. If G is an arbitrary group in
HF the fin. dim G = spli G by [6, Thm. C]. O

Lemma 4.7. Let G be a group with periodic cohomology after k-steps.
Then fin.dimG < k + 1.

Proof. By assumption there exist £ > 0 and ¢ > 0 such that the func-
tors HY(G; ) and H*™(G; ) are equivalent for all i > k. We claim
that then fin.dimG < k£ + 1. Indeed if M is a ZG-module of finite
projective dimension m + 1 > 0, the Q2M, the kernel of a surjection
P — M with P projective, has projective dimension m. Therefore
there exists a ZG-module A such that Ext™(QM, A) # 0. But if we
had m > k, then

Ext™(QM, A) & Ext™9(QM, A) # 0

which is in contradiction with proj.dim QM = m. It follows that
fin.dimG < k + 1. O
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By combining the two previous results we conclude the following.

Corollary 4.8. Let G € HF and assume that G admits a periodic
resolution. Then spliG < oo.

By putting together some of our previous results we obtain

Theorem 4.9. Suppose G has periodic cohomology after k-steps. Then
the following holds:

(i) HY(G; P) # 0 for some i < k and some projective ZG-module P;
moreover fin.dimG < k + 1 and every subgroup H < G of finite
cohomological dimension satisfies cd H < k

(ii) if G € HF then H'(G;P) =0 fori > k+1, ¢cdgG < k+ 1 and
every torsion-free subgroup H < G satisfies cd H < k.

Proof. (i): If G has periodic cohomology after k-steps then it admits
a complete resolution of coincidence index k, thus H'(G; P) # 0 for
some i < k and some projective P (cf. 2.9). That fin.dimG < k+1
follows from the proof of 4.7; moreover, since every subgroup H < G
has periodic cohomology after k£ steps too, it follows that if cd H < oo
then cd H < k, because there is a complete resolution with coincidence
index k.

(ii): If G is in HF then fin.dim G = spliG (cf. 4.6), and obviously
H(G; P) = 0 for i > spliG and P projective, because H'(G; ) van-
ishes on injectives for ¢ > 0. Moreover, for any group G in HF one
has

cdg G = splig G < spliG = fin.dim G
and therfore cdg G < k + 1 (splig G is defined like spli G, but using
QG-modules instead of ZG-modules). Finally, if H < G is a torsion-

free subgroup, then H belongs to H;F, since spli H < spliG < oo. It
then follows from (i) that cd H < k. O

The following theorem corresponds to part of Theorem B of the
Introduction.

Theorem 4.10. Let G € HF,. Then the following statements are
equivalent and they all imply that G € H1 3§y :

(i) G has periodic cohomology after some steps
(i) there erists an invertible element of non-zero degree in the ring

I:I'(G; 7).
Moreover, for G € Hi§, the following is equivalent to (i) and (ii):
(iii) every finite subgroup of G has periodic cohomology.



18 GUIDO MISLIN AND OLYMPIA TALELLI

Proof. (i)<(ii): This holds for general G (cf. 4.1). Also, (i) and (ii)
imply that G lies in H;§, because for groups in HF they imply that
spliG < oo (cf. 4.8 and 3.7).

(1),(ii)=-(iii): this is well-known ([2, Thm. 6.7, Ch. X]).

(iii)=>(ii) (assuming that G € H;§,): in that case spliG < oo and it
follows from 3.7 that G admits a finite dimensional EG. We can thus
apply 3.3, 3.6 and 4.4 to conclude (ii). O

Remark 4.11. The following is an example of a group G € HF), satis-
fying (iii) but not (i) or (ii). Let G = @nZ. Clearly G € HF, and it
satisfies (iii). But G does not satisfy (i) because of 2.10.

There is also an example of a group K € H;§ such that (iii) does not
imply (i) (see 2.2 in [23]). The group K is given as the fundamental
group of a certain graph of finite cyclic p-groups for a fixed prime
p. Note that it follows from 4.4 that H*(K;Z/pZ) has an invertible
element of non-zero degree.

On the other hand there are also groups in H;§ \ H;§, such that
(iii) does imply (i). For instance it was shown in [23] that a countable
locally finite group has period ¢ after 1-step if and only if all its finite
subgroups have period q.

The following example illustrates 4.10

Lemma 4.12. Let B(d,e) be the Burnside group on d generators and
of odd exponent e > 665. Then B(d,e) € HiF, and

(i) B(d,e) has periodic cohomology after 2-steps

(ii) H(B(d,e); )=[IyH'(Z/eZ; ) for alli> 2

(iii) A*(B(d,e); )= H"(Z/eZ; )

(iv) all finite subgroups of B(d,e) are cyclic of order dividing e.
Proof. We know already that B(d,e) =: G belongs to H;§, (3.11). It
was shown by Ivanov [11] that G has a presentation with associated

relation module of the form &,nZ[G/G,] with each G, cyclic of order
e. It follows that

HY(G; )2]|[H (Z/ezZ; ), forall i>2.
N

This implies in particular that G has period 2 after 2-steps and that
HY(G; ) vanishes on projectives for i > 2, implying (i), (ii) and (iii).
It follows that H?(G;Z) contains a unit and therfore, by restricting to
finite subgroups, we see that every finite subgroup has periodic coho-
mology of period two. But finite groups of period two are known to
be cyclic. Moreover, the order of the finite subgroups of G' divides the
exponent of H9(G;Z), which is e and (iv) follows. O
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5. FREE ACTIONS ON FINITE DIMENSIONAL HOMOLOGY SPHERES

Proposition 5.1. Let G be a group which admits a finite dimensional
free G-CW -complex X such that H*(X;7Z) = H*(S™ Z). Then

(i) there is a finite dimensional free G-CW -complex Y homotopy
equivalent to S such that G acts trivially on H*"T1(S?"1:7)
(i) there is an exact sequence

02Z—>A— Py, —>...>P—>7Z—0
with P; projective ZG-modules and proj. dimy, A < oo.

Proof. (i): The join Y = X % X with diagonal G-action has the homo-
topy type of S2"*1, with homologically trivial G-action.

(ii): Take Y as in (i) and write {C,, d,|n € N} for its cellular chain
complex. Since H*(C,) = H*(S***1;Z) we obtain the following exact
sequence of ZG-modules

0 — Kerdopi1 = Copyy = Copp =+ = Cyg—=>Z—0
and a push-out square
Kerds,.1 — Coppt
J al

H™Y(Y;2) 2 A

Then since Ker 0 = Ker 7 = Im ds,, 2, we obtain exact sequences
0=2Z—>A—>Cy,—--—Co—=7Z—0
and
0 = Cgimy = -+ = Copp1 > A—0,

which proves (ii). O

Corollary 5.2. Let G be an arbitrary group and consider the following
statements:

(1) G acts freely and properly on R™ x 8™ for some n > 0 and some
m>1
(2) there is an eract sequence

0=2Z—-A—=P 9—---Phb—=7Z—0

with P; projective and proj.dimy;,; A < 0o
(3) G has periodic cohomology after some steps, spliG < oo and
H(G; P) =0 for P ZG-projective and i > 1 + proj. dim A.

Then (1)=(2)=(3).
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Proof. (1) = (2): Write X for R™ x S™ with the given G-action. Since
X/@G is a topological manifold, it has the homotopy type of a CW-
complex Z of dimension equal to the dimension of X/G. The covering
space of Z associated with m(X) < m(Z) is a finite dimensional G-
CW-complex G-homotopy equivalent to X. Thus (2) follows from the
previous proposition.
(2) = (3): Clearly, (2) implies that
Ext, 4(Z, )2Exthq(Z, )

for ¢+ > proj.dimy, A so that G has periodic cohomology with period ¢
after (proj.dimy, A)-steps. It remains to prove that spliG < oco. Let
I be an injective ZG-module. Note that the inclusion Z — A in (2) is

Z-split. Therefore, upon tensoring with /, we obtain an injective map
I - A® I, which is ZG-split, because I is injective. Thus

proj.dim I < proj.dimA® I <1+ proj.dim A

which shows that spliG < 1 + proj.dim A. Since for general G one
has silpG < spliG we conclude that for 7 > 1 + proj.dim A and P
projective the cohomology groups H*(G; P) vanish. O

Corollary 5.3. Let G be a group of finite cohomological dimension
and Z. < G an infinite cyclic normal subgroup such that G/Z lies in
HF. Then cdg G/Z < 0.

Proof. Let Y be the universal cover of a finite dimensional K(G, 1).
Then Y/Z is a finite dimensional free (G/Z)-CW -complex and, as Y is
contractible, Y/Z is a K(Z,1) thus homotopy equivalent to S*. By (ii)
of 5.1 and making use of the implication (2) = (3) of 5.2 we infer that
the group G/Z has periodic cohomology after some steps. Therefore
(ii) of 4.9 implies that cdg G/Z < 0. O

Clearly, if G' acts freely and properly on some R™ x S™ then G must
be countable. Conversely, the following holds.

Lemma 5.4. Let X be a finite dimensional free G-CW -complezx ho-
motopy equivalent to S™ and suppose that G is countable. Then there
exists for some n > 0 a free and proper G action on R™ x S™.

Proof. Since X/G has countable homotopy groups and is a finite dimen-
sional CW-complex, it has the homotopy type of a finite dimensional
locally finite countable simplicial complex Z. Choose a regular neigh-
borhood S D Z of a simplicial embedding of Z into some Euclidean
space RV. Tt follows that Z is homotopy equivalent to the open sub-
manifold S C R". Using the h-cobordism theorem it follows that the
universal cover of S xR? for ¢ large enough is diffeomorphic to R™ x §™
for some n > 0 (see also the proof of Theorem A in [4]). O
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To prove Theorem B of the introduction, we need the following.

Proposition 5.5. Let G € HE, and assume that H*(G;Z) contains a
unit of degree k > 0. Then for some n > 0 there exists a finite dimen-
sional free G-CW -complex E homotopy equivalent to S™ 1 admitting
an orientable spherical fibration

£:8"1 4 F — EG
whose Euler class e(§) induces isomorphisms
—Ue(&): H(G; ) — H"™G; )
for large 1.

Proof. From 4.10 we infer that G € !—Il&, and it admits therefore a
finite dimensional EG (3.7). Let u € H*(G;Z) be a unit, k > 0. Since
G € H;3,, the natural map

HY(G;Z) — HY(G;Z)

is an isomorphism for large ¢ and we can choose m > 0 such that
u™ is the image of some x € H*"((G;Z). Choose a finite dimensional
model for EG. Since the finite subgroups of G have bounded order,
G contains only finitely many isomorphism classes of finite subgroups
and we can proceed as in the proof of Prop. 2.4 and Lemma 2.5 of [4]
to construct an orientable spherical fibration

£: 8-l L F 5 EG

for some large enough [, with E a finite dimensional free G-C'W-
complex. The construction is such that the Euler class e(§) € H*(G; Z)
is of the form 2'+v, where v is a nilpotent element in the ring H*(G; Z).
It follows that

—Ue(§) : H(G; )— H™™G; )

is an equivalence for ¢ large, because e(£) maps to a unit in H *(G;Z).
U

We are now ready to prove the theorems mentioned in the introduc-
tion.

Proof of Theorem A: Let G € HE, be a countable group with
periodic cohomology after some steps. Then, by 4.10, H *(G, Z) contains
an invertible element of non-zero degree. From 5.5 we infer that there is
a finite dimensional G-C'W-complex homotopy equivalent to a sphere,

and 5.4 then implies that there is a proper and free G-action on some
R™ x S™. U
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Proof of Theorem B: Let G € HF,. The assertion (I)= (II) is
a consequence of 5.1; (II) = (III) according to 5.2 and (III)= (IV)
because of 4.10; next, (IV)=-(I) by 5.5, and 4.10 shows that (IV)
implies that G must belong to H;J,. Finally, with the assumption
that G is in H;§, the assertion (IV) < (V) follows from 4.10. O

Corollary 5.6. Let G be an arbitrary group.

(i) If G contains a free abelian subgroup of infinite rank then G does
not act freely and properly on any R™ x S™. In particular, the
Thompson group (2.10) does not act freely and properly on any
R™ x S™.

(ii) The Burnside group B(d,e) on d generators and of odd exponent
e > 665 acts freely and properly on some R™ x S™.

Proof. (i): If G contains a free abelian subgroup of infinite rank then G
does not admit a complete resolution (2.10), and therefore cannot have
periodic cohomology after some steps. The result now follows from 5.2.
(ii): By 4.12 the group B(d,e) belongs to H;§, and has periodic co-
homology after 2-steps. Since B(d, e) is countable, Theorem A implies
the assertion. O
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