Étale morphisms

Ole Ossen, 1st November 2018

We mostly follow Bhatt’s notes [1].

Definition. A local homomorphism of local rings \(f : (B, n) \to (A, m) \) is called **unramified** if \(f(n)B = m \) and \(\kappa(m) \) is a finite separable extension of \(\kappa(n) \).

Definition. A morphism of schemes \(\pi : X \to Y \) is called **unramified** at \(x \in X \) if

(i) the local homomorphism \(O_{Y, f(x)} \to O_{X, x} \) is unramified,

(ii) \(\pi \) is locally of finite type at \(x \).

If \(\pi \) is unramified at all \(x \in X \), it is called **unramified**.

Lemma 1. Suppose \(A \) is a finitely generated algebra over a field \(k \) with \(\Omega_{A/k} = 0 \). Then \(A \) is a finite direct sum of finite separable field extensions of \(k \).

Sketch of proof. First assume \(k = \bar{k} \). Then for any prime \(p \subset A \) and any maximal ideal \(m \subset A \) containing \(p \),

\[
m_m / m_m^2 \cong k \otimes_{A_m} \Omega_{A_m/k} = 0.
\]

By Nakayama’s lemma, it follows that \(m_m = p_m = 0 \). Varying \(p \) and \(m \), we deduce that \(A \) is a reduced artinian \(k \)-algebra, hence a finite direct sum of copies of \(k \).

Deduce the case of arbitrary \(k \) using a base change

\[
A \otimes_k \bar{k} \xleftarrow{\square} A \quad \xrightarrow{\square} \quad \bar{k} \xleftarrow{\square} k.
\]

Theorem 2. Suppose \(\pi : X \to Y \) is locally of finite type. Then for any \(x \in X \), the following are equivalent:

(i) \(\pi \) is unramified at \(x \).

(ii) \(\Omega_{X/Y, x} = 0 \).

(iii) There exists an open \(x \in U \) and a locally closed embedding \(j : U \to \mathbb{A}_Y^n \) defined by an ideal sheaf \(I \) such that \(\Omega_{\mathbb{A}_Y^n / Y, x} \) is generated by \(dg \) for sections \(g \) of \(I \).

(iv) There exists an open \(x \in U \) such that \(\text{diag}_{X/Y} |_U \) is an open embedding.
Sketch of proof. (i) \implies (ii). Consider a homomorphism $B \to A$ and primes $p \in \text{Spec } A$, $q = p \cap B$. If $B_q \to A_p$ is an unramified homomorphism of local rings, we have a cartesian diagram

\[
\begin{array}{c}
\kappa(p) \\ \uparrow \\
\kappa(q) \\ \uparrow \\
A_p \\ \square \\ B_q
\end{array}
\]

It follows that

\[
\Omega_{A/B_p} \otimes_{A_p} \kappa(p) = \Omega_{A_p/B_q} \otimes_{A_p} \kappa(p) = \Omega_{\kappa(p)/\kappa(q)} = 0.
\]

(ii) \implies (i). Use Lemma 1.

(ii) \iff (iii). Use the conormal exact sequence

\[
j^*(I/I^2) \to j^*\Omega_{A^n/Y} \to \Omega_{U/Y} \to 0.
\]

(ii) \iff (iv). We show that for any affine opens Spec $B \subset Y$ and Spec $A \subset \pi^{-1}(\text{Spec } B)$, the closed embedding Spec $A \to \text{Spec } A \otimes_B A$ is actually an open embedding if and only if $\Omega_{A/B} = 0$. To this end, apply the following lemma to the ideal ker $(A \otimes_B A \to A)$.

Lemma 3. Suppose R is a ring and $I \subset R$ is a finitely generated ideal. If $I^2 = I$, then $V(I) = D(e)$ for an idempotent element $e \in R$.

Proposition 4. Unramified morphisms are stable under base change and composition. A morphism that is locally of finite type is unramified if and only if all its fibers are unramified.

Sketch of proof. Use Theorem 2.(ii).

Proposition 5. (i) If for morphisms $f : X \to Y$ and $g : Y \to Z$ the composition gf is unramified, then so is f.

(ii) Every monomorphism locally of finite type is unramified.

Sketch of proof. (i) Use Theorem 2.(ii).

(ii) Use Theorem 2.(iv).

Theorem 6. Suppose $\pi : X \to S$ is locally of finite type. Then π is unramified if and only if for every affine morphism $Y \to S$ and every closed subscheme $Y_0 \subset Y$ defined by an ideal sheaf I with $I^2 = 0$, the map

\[
\text{Mor}_S(Y, X) \to \text{Mor}_S(Y_0, X)
\]

is injective.
Sketch of proof. Reduce to the affine case as in the following diagrams:

\[\begin{align*}
A
\downarrow
\to
R
\to
B
\to
B/I
\end{align*}\]

\[\begin{align*}
X
\uparrow
\to
S
\to
Y
\to
Y_0
\end{align*}\]

Fix a homomorphism \(A \to B/I\). The trick is to notice that differences of factorizations \(A \to B\) correspond to derivations \(A \to I\).

For the backward implication, consider \(B := (A \otimes_R A)/J^2\), where \(J = \ker(A \otimes_R A \to A)\), as well as the ideal \(I := J/J^2\).

Definition. A morphism of schemes \(\pi : X \to Y\) is called \(\acute{e}tale\) at \(x \in X\) if \(\pi\) is unramified and flat at \(x\).

It is called \(\acute{e}tale\) if it is \(\acute{e}tale\) at all points \(x \in X\).

Proposition 7. Consider morphisms \(f : X \to Y\) and \(g : Y \to Z\). If \(g\) is unramified and \(gf\) is \(\acute{e}tale\), then \(f\) is \(\acute{e}tale\).

Sketch of proof. Use Proposition 5 and the fiberwise criterion for flatness, Theorem 17 of Sebastian’s talk.

Theorem 8. A morphism \(\pi : X \to Y\) is \(\acute{e}tale\) if and only if the following holds:

(i) There exists an open \(x \in U\) and a locally closed embedding \(j : U \hookrightarrow \mathbb{A}_Y^n\).

(ii) If \(I\) is the corresponding ideal sheaf, then there exist sections \(g_1, \ldots, g_n\) of \(I\) such that the \(d g_1, \ldots, d g_n\) form a basis for \(\Omega_{\mathbb{A}_Y^n/Y, x} \otimes \mathcal{O}_{\mathbb{A}_Y^n, x} \kappa(x)\).

Sketch of proof. (ii) \(\implies\) (i). Unramifiedness follows from Theorem 2. Flatness uses the theory of Cohen-Macaulay rings. See for example the exposition in [3, Section 25.2.1].

(i) \(\implies\) (ii). See for example [2, Tag 00UE].

We record some more properties of \(\acute{e}tale\) morphisms that follow quickly from the properties of unramified and flat morphisms:

Proposition 9. \(\acute{e}tale\) morphisms are open.

Sketch of proof. In fact, flat morphisms locally of finite type are open (Theorem 7 of Sebastian’s talk).

Proposition 10. \(\acute{e}tale\) morphisms are stable under base change and composition.

Proposition 11. \(\acute{e}tale\) morphisms are quasi-finite.

Proposition 12. A flat morphism locally of finite type is \(\acute{e}tale\) if and only if it is unramified.

Finally, we present an analog of Theorem 6 for \(\acute{e}tale\) morphisms:
Theorem 13. Suppose $\pi : X \to S$ is locally of finite type and separated. Then π is étale if and only if for every affine morphism $Y \to S$ and every closed subscheme $Y_0 \subset Y$ defined by an ideal sheaf I with $I^2 = 0$, the map

$$\text{Mor}_S(Y, X) \to \text{Mor}_S(Y_0, X)$$

is bijective.

Sketch of proof. (i) \implies (ii). Reduce to the case $Y = S$ via base change. Let $\varphi : X \to Y$ be the structure morphism. Then the cartesian diagram

$$\begin{array}{ccc}
Y & \xrightarrow{s} & X \\
\downarrow & & \downarrow \\
X & \xrightarrow{\text{diag}_{X/Y}} & X \times_Y X
\end{array}$$

shows that every section $s : Y \to X$ is an isomorphism onto a connected component of X. Now consider a morphism $t \in \text{Mor}_Y(Y_0, X)$. Since the underlying sets of Y_0 and Y are the same, there is a connected component X_i of Y such that $X_i \to Y$ is a universal homeomorphism. Also, $X_i \to Y$ is étale. Now the faithfully flat base change

$$\begin{array}{ccc}
X_i \times_Y X_i & \longrightarrow & X_i \\
\downarrow & & \downarrow \\
X_i & \longrightarrow & Y
\end{array}$$

shows that $X_i \to Y$ is in fact an isomorphism. The inverse is our desired extension of t to Y.

(ii) \implies (i). Assume $S = \text{Spec } R$, $X = \text{Spec } R[X]/I$. Using the hypothesis, find a splitting of the exact sequence

$$0 \to I/I^2 \to R[X]/I^2 \to R[X]/I \to 0.$$

The resulting map $R[X]/I^2 \to I/I^2$ is a derivation, so induces a map $\Omega_{R[X]/R} \otimes_{R[X]} R[X]/I \to I/I^2$ that is inverse to $I/I^2 \to \Omega_{R[X]/R} \otimes_{R[X]} R[X]/I$. \blacksquare

References

