Flat and étale morphisms

Maxim Mornev

All rings are commutative.

Contents

1 Flat morphisms
 1.1 Preliminaries on tensor product .. 1
 1.2 Flat modules ... 2
 1.3 Artin-Rees lemma and Krull intersection theorem 4
 1.4 Modules of finite length ... 5
 1.5 Criteria of flatness ... 6
 1.6 Flatness in the context of schemes 8

2 Étale morphisms .. 9
 2.1 The module of Kähler differentials 9
 2.2 Étale algebras over fields ... 12
 2.3 Unramified morphisms ... 14
 2.4 Étale morphisms .. 16

1 Flat morphisms

1.1 Preliminaries on tensor product

Let A be a ring, M and A-module. For all A-modules N_1, N_2 we have a natural isomorphism

$$\text{Hom}_A(N_1 \otimes_A M, N_2) \cong \text{Hom}_A(N_1, \text{Hom}_A(M, N_2)).$$

In other words $\otimes_A M$ is left adjoint to $\text{Hom}_A(M, -)$. Hence $\otimes_A M$ is right exact and commutes with colimits.
Left derived functors $L^i(\otimes_A M)(-)$ are denoted $\text{Tor}^A_i(-, M)$. A morphism of modules $M \to M'$ induces natural morphisms $\text{Tor}^A_i(-, M) \to \text{Tor}^A_i(-, M')$, so Tor_i is a bifunctor. The most important property of Tor is its commutativity:

Theorem 1.1.1. Let A be a ring, and let M, N be A-modules. For every $i \geq 0$ there exists a natural isomorphism $\text{Tor}^A_i(N, M) \to \text{Tor}^A_i(M, N)$\footnote{See [3], chapter 2, section 2.7}.

We will not need the full force of this theorem and so omit its proof.

Proposition 1.1.2. Let A be a ring, $I \subset A$ an ideal, and M an A-module. $\text{Tor}^A_1(A/I, M) = \ker (I \otimes_A M \to M)$.

Proof. The short exact sequence $0 \to I \to A \to A/I \to 0$ induces an exact sequence $0 = \text{Tor}^A_1(A, M) \to \text{Tor}^A_1(A/I, M) \to I \otimes_A M \to M$. □

Corollary 1.1.3. Let $a \in A$ be a nonzero element. $\text{Tor}^A_1(A/(a), M)$ is the a-torsion of M.

Let A, B be rings, N_1 an A-module, N_2 an A, B-bimodule, and N_3 a B-module. There is an isomorphism of A, B-bimodules

$$(N_1 \otimes_A N_2) \otimes_B N_3 \to N_1 \otimes_A (N_2 \otimes_B N_3),$$

which is natural in N_1, N_2, N_3.

Also recall that if A is a ring and $S \subset A$ a multiplicative system, then the functor $\otimes_A A_S$ is isomorphic to the functor of localization at S.

1.2 Flat modules

Definition 1.2.1. Let A be a ring. A module M over A is called flat if $\otimes_A M$ is exact.

Proposition 1.2.2. Let $A \to B$ be a morphism of rings, and M a B-module. If M is flat over B and B is flat over A then M is flat over A.

Proof. The functor $- \otimes_A M$ is isomorphic to the composition $(- \otimes_A B) \otimes_B M$ of exact functors. □

Proposition 1.2.3. Let $A \to B$ be a morphism of rings. If M is a flat A-module, then $B \otimes_A M$ is a flat B-module.

Proof. The functor $- \otimes_B (B \otimes_A M)$ is isomorphic to the functor $- \otimes_A M$, which is exact. □
Localization is exact. Hence, if \(\otimes M \) of \(A \) proof.

The “only if” part is trivial. We want to show that for arbitrary inclusion
of \(B \)-module inherited from \(M \). Let \(q \in \text{Spec} B \), and \(p = \varphi^{-1}q \). We have
an isomorphism of functors from the category of \(A \)-modules to the category of
\(B_q \)-modules:

\[
(- \otimes A M)_q = (- \otimes A M) \otimes_B B_q = - \otimes_A (M \otimes_B B_q) = - \otimes_A M_q = - \otimes_A (A_p \otimes_{A_p} M_q) = (-) p \otimes_{A_p} M_q.
\]

Notice that \(\otimes A M \) of \(A \) over \(N \) exact sequence

\[
\text{Proposition 1.2.5.} \text{ Let } A \text{ be a ring. An } A \text{-module is flat if and only if } I \otimes_A M \to M \text{ is injective (equivalently, } \text{Tor}_1^A(A/I, M) = 0) \text{ for every finitely generated ideal } I \subset A.
\]

\[
\text{Proof.} \text{ The “only if” part is trivial. We want to show that for arbitrary inclusion of } A \text{-modules } N' \subset N \text{ the induced morphism } N' \otimes_A M \to N \otimes_A M \text{ is injective.}
\]

We first show that \(I \otimes_A M \to M \) is injective for every ideal \(I \). Let \(x \in I \otimes_A M \) be an element which vanishes in \(M \). The element \(x \) is a finite linear combination of elementary tensors \(y \otimes m \) where \(y \in I, m \in M \). Thus there exists a finitely generated ideal \(I' \subset I \) and \(x' \in I' \otimes_A M \) such that the image of \(x' \) in \(I' \otimes_A M \) is equal to \(x \). The map \(I' \otimes_A M \to M \) is injective, so \(x' = 0 \) and hence \(x = 0 \), i.e. \(I \otimes_A M \to M \) is injective. As a corollary, \(\text{Tor}_1^A(N, M) = 0 \) if \(N \) is a cyclic module, that is, \(N = A/I \) for some ideal \(I \subset A \).

Let \(N \) be an arbitrary module and \(N' \) its submodule. Consider an index set \(J \) whose elements are finite subsets of \(N \setminus N' \). For \(j \in J \) let \(N_j \) be the submodule of \(N \) generated by \(N' \) and \(j \). If \(j \subset j' \) then there is a natural injection \(N_j \to N_{j'} \).

The inclusion order on \(J \) makes it a directed poset. Clearly, \(\text{colim}_{j \in J} N_j = N \).

Let \(j \subset j' \) be an inclusion. Assume that \(j' \setminus j \) consists of a single element. In this case \(N_{j'}/N_j \) is a cyclic module. The short exact sequence \(0 \to N_j \to N_{j'}/N_j \to 0 \) induces an exact sequence \(\text{Tor}_1^A(N_{j'}/N_j, M) \to N_{j'} \otimes_A M \to N_j \otimes_A M \). Since \(N_{j'}/N_j \) is cyclic, \(\text{Tor}_1^A(N_{j'}/N_j, M) \) vanishes, and so \(N_j \otimes_A M \to N_{j'} \otimes_A M \) is injective.

A general inclusion \(j \subset j' \) can be factored into a sequence of inclusions such that at each step only one new element appears. Hence \(N_j \otimes_A M \to N_{j'} \otimes_A M \) is injective, which implies that the morphism \(N' \otimes_A M \to \text{colim}_{j \in J} N_j \otimes_A M \) is injective too. It remains to recall that \(\otimes_A M \) commutes with colimits. \(\square \)
Corollary 1.2.6. Let A be a PID. An A-module M is flat if and only if it is torsion-free.

Proposition 1.2.7. Let A be a ring, let $0 \to M' \to M'' \to M \to 0$ be a short exact sequence of A-modules, and let N be an A-module. If M is flat then $M' \otimes_A N \to M'' \otimes_A N$ is injective.

Proof. One can either refer to commutativity of Tor or do a direct proof as follows. Let $0 \to K \to F \to N \to 0$ be a short exact sequences with F a free module. Consider a commutative diagram with exact rows and columns:

$$
\begin{array}{cccccc}
0 & & & & & \\
\downarrow & & & & & \\
M' \otimes_A K & \longrightarrow & M'' \otimes_A K & \longrightarrow & M \otimes_A K & \longrightarrow & 0 \\
\downarrow & & & & & \\
0 & \longrightarrow & M' \otimes_A F & \longrightarrow & M'' \otimes_A F & \longrightarrow & M \otimes_A F & \longrightarrow & 0 \\
\downarrow & & & & & \\
M' \otimes_A N & \longrightarrow & M'' \otimes_A N & \longrightarrow & M \otimes_A N & \longrightarrow & 0. \\
\downarrow & & & & & \\
0 & & & & & 0.
\end{array}
$$

A simple diagram chase finishes the proof.

Theorem 1.2.8. Let A be a local noetherian ring, and M an A-module of finite type. If M is flat then it is free.

Proof. Let k be the residue field of A. Take a k-basis of $M \otimes_A k$. Lifting it to M we obtain a morphism from a free A-module F of finite type to M. By Nakayama lemma this morphism is surjective. Let K be its kernel. Tensoring the short exact sequence $0 \to K \to F \to M \to 0$ by k we obtain exact sequence $K \otimes_A k \to F \otimes_A k \to M \otimes_A k \to 0$. The morphism $K \otimes_A k \to F \otimes_A k$ is injective by proposition [1.2.7]. The morphism $F \otimes_A k \to M \otimes_A k$ is an isomorphism by construction. Hence $K \otimes_A k$ is zero. On the other hand, K is of finite type since A is noetherian. So, Nakayama lemma shows that $K = 0$.

1.3 Artin-Rees lemma and Krull intersection theorem

Let A be a ring, $I \subset A$ an ideal.

Definition 1.3.1. Let M be an A-module. An I-filtration on M is a descending chain of submodules $F_iM \subset M$, $i \in \mathbb{Z}_{\geq 0}$, such that $F_0M = M$ and $IF_iM \subset F_{i+1}M$ for every i.

4
Definition 1.3.2. Let \(M \) be an \(A \)-module. An \(I \)-filtration \(F_iM \) is called stable if \(IF_iM = F_{i+1}M \) for sufficiently large \(i \).

Proposition 1.3.3. Let \(A \) be a ring, \(I \subset A \) an ideal, and let \(N, M \) be \(A \)-modules. If \(F_iN \) is a stable \(I \)-filtration of \(N \) then the filtration of \(N \otimes_A M \) by images of \(F_iN \otimes_A M \) is stable.

Proof. Omitted.

Proposition 1.3.4. Let \(A \to B \) be a morphism of rings, \(I \subset A \) an ideal, and \(M \) a \(B \)-module, and \(F_iM \) a stable \(I \)-filtration of \(M \) as an \(A \)-module. If each \(F_iM \) is a \(B \)-submodule, then \(F_iM \) is a stable \(IB \)-filtration of \(M \) as a \(B \)-module.

Proof. Omitted.

Let \(M \) be an \(A \)-module endowed with an \(I \)-filtration \(F_iM \). Consider a graded ring \(B_I A = \bigoplus_{i=0}^{\infty} I^i \) and a \(B_I A \)-module \(B_F M = \bigoplus_{i=0}^{\infty} F_iM \).

Proposition 1.3.5. Let \(A \) be a noetherian ring, \(I \subset A \) an ideal, \(M \) an \(A \)-module with an \(I \)-filtration \(F_iM \). The filtration is stable if and only if \(B_F M \) is of finite type over \(B_I A \).

Lemma 1.3.6 (Artin-Rees lemma). Let \(A \) be a noetherian ring, \(I \subset A \) an ideal, \(M \) an \(A \)-module with a stable \(I \)-filtration \(F_iM \), and \(N \subset M \) a submodule. The filtration \(F_iN = N \cap F_iM \) is stable.

Proof. The ring \(B_I A \) is noetherian since it is a quotient of the polynomial ring \(A[x_1, \ldots, x_n] \) for some \(n \). The module \(B_F N \) is a submodule of \(B_F M \), and thus is of finite type. Now the claim follows from the previous proposition.

Theorem 1.3.7 (Krull intersection theorem). Let \(A \) be a noetherian local ring, \(I \subset A \) an ideal and \(M \) a module of finite type. If \(F_iM \) is a stable \(I \)-filtration of \(M \), then \(\bigcap_{i=0}^{\infty} F_iM = 0 \).

Proof. Consider the submodule \(N = \bigcap_{i=0}^{\infty} F_iM \). By construction \(N \cap F_iM = N \) for every \(i \), and so by Artin-Rees lemma \(N = IN \). Hence \(N = mN \). Since \(N \) is of finite type, Nakayama lemma implies that \(N = 0 \).

1.4 Modules of finite length

Let \(A \) be a ring, \(M \) a module. A strict chain of submodules of length \(n \) is an increasing sequence of submodules of \(M \):

\[
M_0 \subset M_1 \subset \cdots \subset M_n,
\]
such that \(M_0 = 0, M_n = M \), and each inclusion \(M_i \subset M_{i+1} \) is nontrivial.

We define \(l_A(M) \), the length of \(M \), as the supremum of lengths of strict chains.
Definition 1.4.1. M is called a module of finite length if $l_A(M)$ is finite (i.e. if the supremum exists).

Proposition 1.4.2. $l_A(M) = 1$ if and only if $M = A/m$ for some $m \in \text{Spec}_{\text{max}} A$.

Proof. Excercise. \hfill \Box

Proposition 1.4.3. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of A-modules. If M is of finite length or M' and M'' are of finite length then all three modules are of finite length and $l_A(M) = l_A(M') + l_A(M'')$.

Proof. Excercise. \hfill \Box

Proposition 1.4.4. Let A be a ring, $m \subset A$ a maximal ideal of finite type, and M an A-module of finite type. If $m^n M = 0$ for some $n > 0$, then M is of finite length.

Proof. Let $n > 0$ be an integer. Suppose that A/m^n is of finite length. If a module M of finite type is annihilated by m^n then it is an A/m^n-module, and so is a quotient of a finite direct sum of A/m^n's. Hence M is of finite length.

We next prove that A/m^n is of finite length using induction over n. The case $n = 1$ was already established. Consider a short exact sequence

$$0 \to m/m^n \to A/m^n \to A/m \to 0.$$

The module m/m^n is of finite type since m is, and is annihilated by m^{n-1}, whence of finite length. But then A/m^n is also of finite length. \hfill \Box

Proposition 1.4.5. Let A be a ring, M an A-module. If $\text{Tor}^1_A(A/m, M) = 0$ for every $m \in \text{Spec}_{\text{max}} A$, then $\text{Tor}^1_A(N, M) = 0$ for every module N of finite length.

Proof. We will do it by induction on $l_A(N)$. If $l_A(N) = 1$ then N is of the form A/m, and so $\text{Tor}^1_A(N, M) = 0$ by assumption. Otherwise there exists a proper nontrivial submodule $N' \subset N$. Consider an exact sequence $\text{Tor}^1_A(N', M) \to \text{Tor}^1_A(N, M) \to \text{Tor}^1_A(N/N', M)$ induced by short exact sequence $0 \to N' \to N \to N/N' \to 0$. Since $l_A(N') < l_A(N)$ and $l_A(N/N') < l_A(N)$, we see that $\text{Tor}^1_A(N', M) = \text{Tor}^1_A(N/N', M) = 0$, so $\text{Tor}^1_A(N, M) = 0$. \hfill \Box

1.5 Criteria of flatness

Theorem 1.5.1 (Critère local de platitude). Let $A \to B$ be a local morphism of noetherian local rings, k the residue field of A, and M a B-module of finite type. If $\text{Tor}^1_A(k, M) = 0$ then M is flat over A.

6
Proof. We want to show that for every ideal \(I \subset A \) the module \(\text{Tor}^A_1(A/I, M) \) vanishes. Notice that if \(A/I \) is of finite length, then \(\text{Tor}^A_1(A/I, M) = 0 \) by proposition 1.4.5.

Let \(m \subset A \) be the maximal ideal, and \(I \subset A \) an arbitrary ideal. Let \(n > 0 \) be an integer. Consider a diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & I \cap m^n & \rightarrow & I & \rightarrow & I/(I \cap m^n) & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & m^n & \rightarrow & A & \rightarrow & A/m^n & \rightarrow & 0.
\end{array}
\]

Tensoring it with \(M \) over \(A \) we obtain a diagram

\[
\begin{array}{ccccccccc}
(I \cap m^n) \otimes_A M & \rightarrow & I \otimes_A M & \rightarrow & (I/(I \cap m^n)) \otimes_A M \\
& & \downarrow & & \alpha & & \downarrow & & \\
m^n \otimes_A M & \rightarrow & M & \rightarrow & (A/m^n) \otimes_A M.
\end{array}
\]

with right exact rows. The cokernel of the map \(I/(I \cap m^n) \rightarrow A/m^n \) is \(A/(I + m^n) \). It has finite length by proposition 1.4.4. Thus \(\text{Tor}^A_1(A/(I + m^n), M) = 0 \) and the morphism \(\beta_n \) is injective. As a consequence, \(\ker(\alpha) \) is contained in the image of \((I \cap m^n) \otimes_A M \).

The filtration \(m^n \) on \(A \) is \(m \)-stable. Hence by Artin-Rees lemma the filtration \(I \cap m^n \) on \(I \) is \(m \)-stable, and so the filtration on \(I \otimes_A M \) by images of \((I \cap m^n) \otimes_A M \) is \(m \)-stable (notice that \(I \otimes_A M \) is not necessarily an \(A \)-module of finite type!).

The module \(I \otimes_A M \) has a structure of \(B \)-module via \(M \), and the images of \((I \cap m^n) \otimes_A M \) in this module are \(B \)-submodules. Let \(J = mB \subset B \). This ideal is proper since \(A \rightarrow B \) is a local morphism. The filtration on \(I \otimes_A M \) as a \(B \)-module is \(J \)-stable. Now, Krull intersection theorem tells us that \(\ker(\alpha) = 0 \) as a submodule of zero module. \(\square \)

Lemma 1.5.2. Let \(A \rightarrow B \) be a local morphism of local noetherian rings, \(I \subset A \) an ideal, and \(M \) a \(B \)-module of finite type. If \(\text{Tor}^A_1(A/I, M) = 0 \) and \(M/IM \) is a flat \(A/I \)-module, then \(M \) is a flat \(A \)-module.

Proof. Let \(k \) be the residue field of \(A \). A short exact sequence

\[
0 \rightarrow K \rightarrow A/I \rightarrow k \rightarrow 0.
\]

yields an exact sequence

\[
\text{Tor}^A_1(A/I, M) \rightarrow \text{Tor}^A_1(k, M) \rightarrow K \otimes_A M \rightarrow A/I \otimes_A M
\]

By assumptions \(\text{Tor}^A_1(A/I, M) = 0 \). The modules \(K \) and \(A/I \) are \(A/I \)-modules, and the functor \(\otimes_A M \) restricted to such modules is isomorphic to \(\otimes_{A/I} M/IM \). The latter functor is exact, and so the arrow \(K \otimes_A M \rightarrow A/I \otimes_A M \) is injective. Hence \(\text{Tor}^A_1(k, M) = 0 \), and the local criterion of flatness finishes the proof. \(\square \)
Proposition 1.5.3. Let A be a ring, M a flat A-module. If $M/mM \neq 0$ for every $m \in \text{Specmax} A$, then $N \otimes_A M = 0$ implies $N = 0$.

Proof. If $m \in \text{Specmax} A$, then

$$(N \otimes_A M) \otimes_A k(m) = N/mN \otimes_{k(m)} M/mM.$$

Since $N \otimes_A M = 0$, we see that $N/mN = 0$ for every $m \in \text{Specmax} A$. If N is of finite type, then by Nakayama $N_m = 0$ for every $m \in \text{Specmax} A$, so $N = 0$. If N is not of finite type, then we take an element $x \in N$ and consider a submodule N' generated by x. The morphism $N' \to N$ is injective, so $N' \otimes_A M \to N \otimes_A M$ is injective, and as a consequence $N' = 0$, i.e. $x = 0$. Hence, $N = 0$. \qed

Theorem 1.5.4 (Critère de platitude par fibres, cas noethérien). Let $A \to B \to C$ be local morphisms of local noetherian rings, and M a C-module of finite type. Let k be the residue field of A. If M is nonzero, flat over A, and $M \otimes_A k$ is flat over $B \otimes_A k$, then B is flat over A and M is flat over B.

Proof. Let m be the maximal ideal of A, and $I = mB$. The natural map $m \otimes_A B \to I$ is surjective, and $(m \otimes_A B) \otimes_B C = m \otimes_A C$, so $m \otimes_A C \to I \otimes_B C$ is surjective. As a consequence, $m \otimes_A M \to I \otimes_B M$ is surjective.

The composition $m \otimes_A M \to I \otimes_B M \to M$ is injective, since M is flat over A. Hence $m \otimes_A M \to I \otimes_B M$ is an isomorphism, and $I \otimes_B M \to M$ is injective. In particular, $\text{Tor}_1^A(B/I, M) = 0$, so M is flat over B by lemma 1.5.2.

Consider an exact sequence $0 \to m \to A \to k \to 0$. Tensoring with B over A gives us an exact sequence $0 \to \text{Tor}_1^A(k, B) \to m \otimes_A B \to I \to 0$. Tensoring the latter sequence with M over B yields a sequence $0 \to \text{Tor}_1^A(k, B) \otimes_B M \to m \otimes_A M \to I \otimes_B M \to 0$. The last map is an isomorphism, so $\text{Tor}_1^A(k, B) \otimes_B M = 0$.

If $m_B \subset B$ and $m_C \subset C$ are maximal ideals, then M/m_CM is nonzero by Nakayama, so $M/m_B M$ is nonzero. Hence, proposition 1.5.3 applies and shows that $\text{Tor}_1^A(k, B) = 0$. It remains to apply theorem 1.5.4. \qed

1.6 Flatness in the context of schemes

Definition 1.6.1. Let $f : X \to Y$ be a morphism of schemes, and \mathcal{F} a sheaf of \mathcal{O}_X-modules. We say that \mathcal{F} is flat over Y at $x \in X$ if the stalk \mathcal{F}_x is a flat module over $\mathcal{O}_{Y,f(x)}$. We say that f is flat at $x \in X$ if \mathcal{O}_X is flat over Y at x. We say that \mathcal{F} is flat over Y if it is flat over Y at all points. We say that f is flat if \mathcal{O}_X is flat over Y.

Proposition 1.6.2. Flat morphisms have following properties:

(1) If X and Y are affine schemes and \mathcal{F} is quasi-coherent, then \mathcal{F} is flat over Y if and only if $\Gamma(X, \mathcal{F})$ is a flat module over $\Gamma(Y, \mathcal{O}_Y)$.

8
(2) Let $f : X \to Y$, $g : Y \to Z$ be morphisms, and F a quasi-coherent sheaf. If F is flat over Y and g is flat, then F is flat over Z. In particular, a composition of flat morphisms is flat.

(3) Let $X \to Y$ be a morphism, F a quasi-coherent sheaf, $g : Z \to Y$ a morphism, and $p : X \times_Y Z \to X$ a projection. If F is flat over Y, then p^*F is flat over Z. In particular, a basechange of a flat morphism is flat.

(4) An open immersion is flat.

Proof. Follows easily from what we have already done. \hfill \Box

Theorem 1.6.3. Let S, X, Y be locally noetherian schemes, and $f : X \to Y$ a morphism of schemes over S. Let F a coherent O_X-module. Assume that all stalks of F are nonzero, F is flat over S, and for every $s \in S$ the pullback of F to X_s is flat over Y_s. Then F is flat over Y and Y is flat over S at all points $y \in f(X)$.

Proof. Follows at once from theorem 1.5.4. \hfill \Box

Corollary 1.6.4. Let S, X, Y be locally noetherian schemes. Let $f : X \to Y$ and $g : Y \to S$ be morphisms of schemes. If $g f$ is flat and for every $s \in S$ the pullback $X_s \to Y_s$ of f is flat, then f is flat, and g is flat at all points $y \in f(X)$.

2 Étale morphisms

2.1 The module of Kähler differentials

Definition 2.1.1. Let $A \to B$ be a morphism of rings, and M a B-module. An A-derivation $d : B \to M$ is an A-module morphism, which satisfies Leibnitz identity: $d(b_1 b_2) = b_2 d(b_1) + b_1 d(b_2)$ for every $b_1, b_2 \in B$.

A sum of two derivations is again an A-derivation, as well as a scalar multiple of a derivation by an element of B. Hence, A-derivations $B \to M$ form a B-module, which is denoted $\text{Der}_A(B, M)$. The association $M \mapsto \text{Der}_A(B, M)$ is a covariant functor in an evident way.

Proposition 2.1.2. Let $A \to B \to C$ be morphisms of rings. There is an induced exact sequence of functors

$$0 \to \text{Der}_B(C, -) \to \text{Der}_A(C, -) \to \text{Der}_A(B, C -)$$

The first map takes a B-derivation and interprets it as an A-derivation. The second map precomposes a derivation with the morphism $B \to C$. The symbol $B -$ denotes restriction of scalars from C to B.

9
Proof. The first map is obviously injective. If an A-derivation $d: C \to M$ vanishes when restricted to B, then it is a B-derivation, so the sequence is exact at $\text{Der}_A(C, -)$.

Proposition 2.1.3. Let $A \to B$ be a morphism of rings, $I \subset B$ an ideal. There is an exact sequence of functors:

$$0 \to \text{Der}_A(B/I, -) \to \text{Der}_A(B, B/I -) \to \text{Hom}_{B/I}(I/I^2, -)$$

The first map precomposes a derivation with $B \to B/I$. The second map restricts a derivation to I.

Proof. Let M be a B/I-module. Leibnitz identity and the fact that $IM = 0$ show that every A-derivation $d: B \to M$ vanishes on I^2, and determines a morphism $d: I/I^2 \to M$ of B/I-modules. On the other hand, if $d|_I = 0$, then clearly d comes from an A-derivation $B/I \to M$, hence the sequence is exact.

Proposition 2.1.4. Let $A \to B$ be a morphism of rings, $s \in B$ a unit, $b \in B$ an element, and $d: B \to M$ an A-derivation.

$$d\left(\frac{b}{s}\right) = \frac{sdb - bds}{s^2}$$

Proof. From the formula $0 = d(1) = d(ss^{-1}) = sd(s^{-1}) + s^{-1}ds$ we conclude that $d\left(\frac{1}{s}\right) = -\frac{ds}{s^2}$, and then the claim follows by Leibnitz identity.

Proposition 2.1.5. Let A be a ring, $S \subset A$ a multiplicative system, and $A \to A_S$ a localization morphism. The functor $\text{Der}_A(A_S, -)$ is zero.

Proof. From the previous proposition it follows that every A-derivation of A_S is zero.

Proposition 2.1.6. Let $A \to B$ be a morphism of rings, and $S \subset B$ a multiplicative system. The morphism $\text{Der}_A(B, B-) \to \text{Der}_A(B_S, -)$ induced by $B \to B_S$ is an isomorphism.

Proof. Let M be a B_S-module. We first show that the morphism in question is surjective. Let $d: B \to M$ be an A-derivation. It induces a derivation $D: B_S \to M$ by the rule

$$D\left(\frac{b}{s}\right) = \frac{sdb - bds}{s^2}.$$

Additivity and Leibnitz identity follow from trivial but lengthy calculations. Clearly, $D\left(\frac{1}{s}\right) = \frac{db}{s}$, so D is an A-derivation which restricts to d on B.

As for injectivity, consider the exact sequence of proposition [2.1.2] induced by $A \to B \to B_S$, and observe that $\text{Der}_B(B_S, -) = 0$.

\[10\]
Proposition 2.1.7. Let A be a ring, let B, C be A-algebras. The morphism $\text{Der}_C(B \otimes_A C, -) \to \text{Der}_A(B, B -)$ induced by ring morphism $B \to B \otimes A C$ is an isomorphism.

Proof. Let M be a module over $B \otimes A C$. An element of $\text{Der}_C(B \otimes A C, M)$ is a bilinear map $d: B \times C \to M$ which satisfies the following identities for every $a \in A, b \in B, c \in C, b_i \in B$:

\[
\begin{align*}
 d(ab, c) &= d(b, ac) = ad(b, c), \\
 d(b, c) &= (1 \otimes A c) d(b, 1), \\
 d(b_1 b_2, 1) &= (b_1 \otimes_A 1) d(b_2, 1) + (b_2 \otimes_A 1) d(b_1, 1).
\end{align*}
\]

From this description it is clear that if d vanishes in $\text{Der}_A(B, M)$, then $d = 0$. Given $D \in \text{Der}_A(B, M)$ we define $d(b, c) = (1 \otimes_A c) D(b)$, which clearly satisfies the equation above, so the claim follows.

Proposition 2.1.8. Let $f: A \to B$ be a morphism of rings, $S \subset B$ a multiplicative system. The natural morphism $\text{Der}_{A^{-1} S}(B_S, -) \to \text{Der}_A(B, -)$ induced by ring morphisms $B \to B_S$ and $A \to A_{f^{-1} S}$ is an isomorphism.

Proof. The morphism in question factors as $\text{Der}_{A^{-1} S}(B_S, -) \to \text{Der}_A(B_S, -) \to \text{Der}_A(B, -)$. Since $B_S \otimes_A A_{f^{-1} S} = B_S$, the first morphism is an isomorphism by proposition 2.1.7. The second morphism is an isomorphism by proposition 2.1.6.

Theorem 2.1.9. Let $A \to B$ be a morphism of rings. The functor $\text{Der}_A(B, -)$ is representable.

Proof. Such proofs are better done on one’s own.

Let $f: X \to Y$ be a morphism of schemes. One can extend the definition of Ω^1 to $X \to Y$ in two ways. First, since $\Omega^1_{B/A}$ commutes with restrictions to principal open subsets of Spec B and pullbacks to principal open subsets of Spec A, one can pick a covering U_i of Y by open affines and coverings V_{ij} of $f^{-1} U_i$ by open affines, then glue various $\Omega^1_{V_{ij}/U_i}$, and show that this construction does not depend on the choice of covers. The other way is, given a morphism $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of ringed spaces and a \mathcal{O}_X-module \mathcal{F}, define a \mathcal{O}_X-module of derivations $\text{Der}_{f^{-1} \mathcal{O}_Y}(\mathcal{O}_X, \mathcal{F})$. One then shows that whenever X, Y are schemes and the morphism f is local, $\text{Der}_{f^{-1} \mathcal{O}_Y}(\mathcal{O}_X, -)$ is represented by a quasi-coherent \mathcal{O}_X-module, which agrees with Ω^1 when X and Y are affine. Either way, one obtains the following theorem:

Theorem 2.1.10. To every morphism of schemes $f: X \to Y$ one can associate a quasi-coherent \mathcal{O}_X-module $\Omega^1_{X/Y}$ which has following properties:
• If \(X, Y \) are affine, then \(\Omega^1_{X/Y} \) coincides with the module of Kähler differentials associated to the ring morphism \(\Gamma(Y, \mathcal{O}_Y) \to \Gamma(X, \mathcal{O}_X) \).

• \(\Omega^1_{X/Y} \) commutes with restrictions to opens \(U \subset X \).

• Let \(X \xrightarrow{f} S \) and \(Y \xrightarrow{g} S \) be morphism. The sheaf \(\Omega^1_{X \times_S Y/Y} \) is isomorphic to \(p^* \Omega^1_{X/S} \), where \(p: X \times_S Y \to X \) is a projection.

• If \(X \xrightarrow{f} Y \xrightarrow{g} Z \) are morphisms, then there is an exact sequence
 \[
 f^* \Omega^1_{Y/Z} \to \Omega^1_{X/Z} \to \Omega^1_{X/Y} \to 0.
 \]

• If \(X \xrightarrow{f} Y \) is a morphism and \(Z \xrightarrow{g} X \) is a closed immersion with ideal sheaf \(I \), then there exists an exact sequence
 \[
 I/I^2 \to g^* \Omega^1_{X/Y} \to \Omega^1_{Z/Y} \to 0.
 \]

• If \(f: X \to Y \) is locally of finite type, then \(\Omega^1_{X/Y} \) is locally of finite type (in particular, coherent if \(X \) is locally noetherian).

2.2 Étale algebras over fields

Proposition 2.2.1. Let \(k \to K \) be a finite extension of fields. \(\Omega^1_{K/k} \) vanishes if and only if \(k \to K \) is separable.

Proof. Assume that \(k \to K \) is finite and separable. Let \(x \in K \) be a primitive element, \(f \) its minimal polynomial. Let \(M \) be a \(K \)-module, and \(d: K \to M \) a derivation.

\[
0 = d(f(x)) = f'(x)dx.
\]

Since \(K \) is separable, \(f'(x) \neq 0 \), so \(dx = 0 \) in \(M \). Since \(K \) is generated over \(k \) by powers of \(x \), we conclude that \(d = 0 \).

Assume that \(k \to K \) is inseparable and primitive. Let \(x \in K \) be a primitive element and \(f \) its minimal polynomial. Write \(K = k[T]/(f) \). Recall that every derivation \(d \in \text{Der}_k(k[T], K) \) is determined by \(d(T) \) and \(d(T) \) can be arbitrary. Set \(d(T) = x \). Then \(d \) vanishes when restricted to \((f) \), since \(d(gf) = g(x)f'(x)dx + f(x)dg = 0 \) as \(f(x) = 0 \) and \(f'(x) = 0 \). Hence \(d \) comes from some derivation in \(\text{Der}_k(k[T]/(f), K) \) i.e. \(\text{Der}_k(K, K) \). As a consequence, \(\text{Der}_k(K, K) \neq 0 \).

Assume that \(k \to K \) is inseparable. There is a nontrivial proper subfield \(E \subset K \) such that \(E \to K \) is inseparable and primitive. Then \(\Omega^1_{K/E} \) is nonzero, since its quotient \(\Omega^1_{K/E} \) is nonzero. \(\square \)
Proposition 2.2.2. Let k be an algebraically closed field, A a k-algebra of finite type, and $m \in \text{Spec}_{\text{max}} A$. The homomorphism $m/m^2 \rightarrow \Omega_{A/k}^1 \otimes_A k(m)$ is an isomorphism.

Proof. We need to prove that the natural restriction map
\[\text{Der}_k(A, M) \rightarrow \text{Hom}_{A/m}(m/m^2, M) \]
is an isomorphism for every A/m-module M.

By Hilbert’s Nullstellensatz the composition $k \rightarrow A \rightarrow A/m$ is an isomorphism. In particular, $\text{Der}_k(A/m, -) = 0$, so that the natural map in question is injective.

Let $f : m/m^2 \rightarrow M$ be a morphism of A/m-modules. We define a map $d : A \rightarrow M$ by sending an element $a \in A$ to $f(a - a(m))$, where $a(m)$ is the image of a modulo A. If $a_1, a_2 \in A$, then
\begin{align*}
 a_1a_2 - a_1(m)a_2(m) &= (a_1 - a_1(m))(a_2 - a_2(m)) + a_2(m)(a_1 - a_1(m)) + a_1(m)(a_2 - a_2(m)).
\end{align*}
Also, $a_i = a_i(m)$ in A/m, so that $d(a_1a_2) = a_2d(a_1) + a_1d(a_2)$. Clearly, d vanishes on elements of k, so it is a derivation. \qed

Definition 2.2.3. Let k be a field. A k-algebra A is called étale if it is a finite cartesian product of finite separable extensions of k.

Theorem 2.2.4. Let k be a field. A k-algebra of finite type A is étale if and only if $\Omega_{A/k}^1 = 0$.

Proof. Let A be a k-algebra of finite type such that $\Omega_{A/k}^1 = 0$. Let us first assume that k is algebraically closed. By virtue of proposition 2.2.2 we then know that $m/m^2 = 0$ for every maximal ideal m of A. Localizing at m and applying Nakayama lemma we conclude that A_m is a field, the kernel of the localization morphism $A \rightarrow A_m$ is m, and $A_m = A/m$. By Nullstellensatz, $A/m \cong k$.

Let $p \in \text{Spec} A$ be a prime, and let m be a maximal ideal containing it. Let $a \in m$. Since a vanishes in A_m, there exists $s \notin m$ such that $sa = 0$ in A. In particular, $sa \in p$, so $a \in p$. Hence each prime of A is maximal.

The algebra A is noetherian, so that the set of its minimal primes is finite. But all primes are maximal, so $\text{Spec}_{\text{max}} A$ is finite. Now, consider a morphism
\[A \rightarrow \prod_{m \in \text{Spec}_{\text{max}} A} A/m \] (1)

By Chinese remainder theorem it is surjective. But $A/m = A_m$, so that the kernel of this morphism consists of elements which vanish in all localizations.
of A at maximal ideals, i.e. the kernel is zero. Hence, this morphism is an isomorphism. In particular, dim$_k A$ is finite.

Now, let k be arbitrary, and \bar{k} its algebraic closure. Let $A_{\bar{k}} = A \otimes_k \bar{k}$. Since dim$_{\bar{k}} A_{\bar{k}}$ is finite, dim$_k A$ is finite too. Let $p \in \text{Spec} A$ be a prime. The k-algebra A/p is finite-dimensional and has no zero divisors, hence it is a field. So Spec $A = \text{Specmax} A$, and Specmax A is finite.

We consider a morphism as in (1). Its kernel is the nilradical of A. If $a \in A$ is nilpotent, then its image in $A_{\bar{k}}$ is nilpotent too, hence zero. But $A \to A_{\bar{k}}$ is injective, so that the kernel of (1) is zero. Now, proposition 2.2.1 finishes the proof.\]

2.3 Unramified morphisms

Definition 2.3.1. Let $f: X \to Y$ be a morphism of schemes. We say that f is unramified if f is locally of finite type and $\Omega^1_{X/Y} = 0$.

Proposition 2.3.2. Unramified morphisms have following properties:

(1) If $f: X \to Y$ and $g: Y \to Z$ are unramified, then gf is unramified.

(2) If $f: X \to Y$ and $g: Y \to Z$ are such that gf is unramified, then f is unramified.

(3) If $f: X \to S$ is unramified, and $g: Y \to S$ is a morphism, then the pullback $X \times_S Y \to Y$ of f is unramified.

(4) Open immersions are unramified.

Proof. (1) The composition gf is locally of finite type. The exact sequence

$$g^*\Omega^1_{Y/Z} \to \Omega^1_{X/Z} \to \Omega^1_{X/Y} \to 0$$

implies that $\Omega^1_{X/Z} = 0$.

(2) The exact sequence above shows that $\Omega^1_{X/Y} = 0$. The fact that f is locally of finite type is left as an exercise (see [2] tag 01T8).

(3) Follows from proposition 2.1.7

(4) Follows from proposition 2.1.5 \]

Proposition 2.3.3. Let $f: X \to Y$ be a morphism locally of finite type. It is unramified if and only if for each $y \in Y$ the fiber $X_y \to y$ is unramified.
Proof. If $\Omega^1_{X/Y} = 0$, then clearly each fiber is unramified. Conversely, if $X_y \to y$ is unramified, then the fiber of $\Omega^1_{X/Y}$ at each point $x \in X$ is zero, as an inclusion of a point $x \in X$ factors through $X_{f(y)} \to X$. Since $\Omega^1_{X/Y}$ is locally of finite type, Nakayama lemma shows that $\Omega^1_{X/Y} = 0$.

Proposition 2.3.4. Let $X \to \text{Spec } k$ be a scheme over a field. It is unramified if and only if X is discrete as a topological space, and for every $x \in X$ the field extension $k \to k(x)$ is finite separable.

Proof. Assume that $X \to \text{Spec } k$ is unramified. Let $x \in X$ and $U \subset X$ be an affine open neighbourhood of x which is of finite type over $\text{Spec } k$. By theorem 2.2.4 we conclude that U is a spectrum of an étale algebra over k. In particular, U is discrete. Hence X is discrete.

Assuming the converse, take $x \in X$ and $U \subset X$ an affine open neighbourhood of x. Since X is discrete, U is discrete too, and as U is quasi-compact, we conclude that U is finite as a topological space. Hence U is a spectrum of an étale algebra over k, and so $\Omega^1_{X/k}|_U = 0$. As a consequence, $\Omega^1_{X/k} = 0$. Since U is a spectrum of an algebra of finite type over k, we conclude that $X \to \text{Spec } k$ is locally of finite type.

Proposition 2.3.5. Let X, Y be schemes and $f : X \to Y$ a morphism locally of finite type. The fiber of $\Omega^1_{X/Y}$ at x is zero if and only if the residue field extension $k(f(x)) \to k(x)$ is finite separable, and $m_{Y,f(y)}O_{X,x} = m_{X,x}$.

Proof. We immediately reduce to the case when $X = \text{Spec } B$ and $Y = \text{Spec } A$ are affine, and f is of finite type. Let $q \in \text{Spec } B$ and $p = f(q)$.

Assume that $\Omega^1_{B/A} \otimes_B k(q) = 0$. Since $\Omega^1_{B/A}$ is of finite type, Nakayama lemma implies that $(\Omega^1_{B/A})_q = 0$. Hence replacing B by its localization at some element not contained in q we may assume that $\Omega^1_{B/A} = 0$. As a consequence, $\Omega^1_{B_p/A_p} = 0$.

Consider a ring $B \otimes_A k(p)$. Since $\Omega^1_{B \otimes_A k(p)/k(p)} = 0$ and B is of finite type over A, theorem 2.2.4 shows that $B \otimes_A k(p)$ is a finite étale algebra over $k(p)$.

The morphism $A_p \to k(p)$ is surjective, so $B_q \to B_q \otimes_{A_p} k(p)$ is surjective. On the other hand

$$B \otimes_A k(p) = B \otimes_A (A_p \otimes_{A_q} k(p)) = B_p \otimes_{A_p} k(p),$$

so $B_q \otimes_{A_p} k(p)$ is a localization of a finite étale algebra over $k(p)$, hence is itself such an algebra.

The morphism $\text{Spec}(B_q \otimes_{A_p} k(p)) \to \text{Spec } B_q$ is a closed immersion. In particular, it is injective and sends closed points to closed points. As B_q has only one maximal ideal, we conclude that $B_q \otimes_{A_p} k(p)$ also has unique maximal ideal,
which forces it to be a finite separable field extension of \(k(p) \). On the other hand \(B_q \otimes_{A_p} k(p) = B_q/pB_q \), so that \(pB_q = qB_q \).

Now, assume that \(pB_q = qB_q \) is maximal, and that \(k(q) \) is a finite separable extension of \(k(p) \). Our assumptions imply that \(B_q/pB_q = B_q \otimes_{A_p} k(p) = k(q) \). Hence \(\Omega^1_{B/A} \otimes_B k(q) = \Omega^1_{B_q/A_p} \otimes_{B_q} k(q) = \Omega^1_{k(q)/k(p)} = 0. \)

2.4 Étale morphisms

Definition 2.4.1. Let \(f : X \to Y \) be a morphism of schemes. We say that \(f \) is étale if it is unramified and flat.

Proposition 2.4.2. Étale morphisms have following properties:

1. If \(f : X \to Y \) and \(g : Y \to Z \) are étale, then \(gf \) is étale.

2. If \(f : X \to S \) is étale, and \(g : Y \to S \) is a morphism, then the pullback \(X \times_S Y \to Y \) of \(f \) is étale.

3. Open immersions are étale.

4. If a morphism \(f : X \to Y \) of schemes is locally of finite type, flat, and every fiber \(X_y \to y \) is unramified, then \(f \) is étale.

Proof. Everything follows at once from corresponding properties of flat and unramified morphisms.

Proposition 2.4.3. Let \(f : X \to Y \) and \(g : Y \to S \) be morphisms of schemes. If \(gf \) is étale and \(g \) is unramified, then \(f \) is étale. If in addition \(f \) is surjective, then \(g \) is étale.

Proof. Follows from corollary [1.6.4] because each fiber \(Y_s \) is a disjoint union of spectra of fields.

References

2. A.J. de Jong et al., *Stacks Project*