Elementary Number Theory - Exercise 10a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that, if $d=m^{2}$ is a square, then Pell's equation $x^{2}-d y^{2}=1$ only has the trivial solutions $(x, y)=(\pm 1,0)$.

Problem 2. Determine some non-trivial solutions of Pell's equation $x^{2}-2 y^{2}=1$ and use them to find a rational approximation $\frac{x}{y}$ to $\sqrt{2}$ with $\left|\frac{x}{y}-\sqrt{2}\right| \leq 10^{-6}$.

Problem 3. Let $d>0$ be a non-square. Consider the set

$$
\mathbb{Q}(\sqrt{d})=\{x+\sqrt{d} y: x, y \in \mathbb{Q}\} .
$$

1. Show that $\mathbb{Q}(\sqrt{d})$ is closed under addition and multiplication.
2. Show that $(x+\sqrt{d} y)^{-1}=\frac{x-\sqrt{d} y}{x^{2}-d y^{2}}$ for $(x, y) \neq(0,0)$, and deduce that $\mathbb{Q}(\sqrt{d})$ is a field.
3. If $(x, y) \in \mathbb{Q}^{2}$ solves Pell's equation $x^{2}-d y^{2}=1$, then we have

$$
(x+\sqrt{d} y)^{-n}=(x-\sqrt{d} y)^{n}
$$

for every $n \in \mathbb{Z}$.

Problem 4. Compute the continued fraction expansion and the convergents of $\frac{128}{1527}$.

Problem 5. Show the identities

$$
\begin{aligned}
{\left[a_{0}, \ldots, a_{n}\right] } & =a_{0}+\frac{1}{\left[a_{1}, \ldots, a_{n}\right]}, \\
{\left[a_{0}, \ldots, a_{n}\right] } & =\left[a_{0}, \ldots, a_{n-1}+\frac{1}{a_{n}}\right], \\
{\left[a_{0}, \ldots, a_{n}\right] } & =\left[a_{0}, \ldots, a_{n}-1,1\right], \\
{\left[a_{0}, \ldots, a_{n}\right]^{-1} } & =\left[0, a_{0}, \ldots, a_{n}\right] .
\end{aligned}
$$

Problem 6 (sage). Write programs that

1. finds the fundamental solution to Pell's equation (apply it to $d=43$).
2. lists solutions to Pell's equation using Lagrange's Theorem.
3. computes the continued fraction expansion and the convergents of a rational number.
