Elementary Number Theory - Exercise 10b
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that $\pi=[3,7,15,1, \ldots]$ and use it to find the rational approximation

$$
\frac{355}{113}=3.14159292035398
$$

of $\pi=3.14159265358979 \ldots$.

Problem 2. Compute the continued fraction expansions of $\sqrt{5}$ and the golden ratio $\phi=\frac{1+\sqrt{5}}{2}$.

Problem 3. Which quadratic irrational has the continued fraction expansion $[1, \overline{6,2}]$?

Problem 4. Compute the continued fraction expansion of $\sqrt{10}$ and use it to determine the fundamental solution of Pell's equation $x^{2}-10 y^{2}=1$.

Problem 5 (sage). Write a program that computes the continued fraction expansion of \sqrt{d} and gives a fundamental solution to Pell's equation. Verify that

$$
\sqrt{61}=[7,1,4,3,1,2,2,1,3,4,1,14]
$$

and solve Pell's equation $x^{2}-61 y^{2}=1$.

